51,153 research outputs found

    Partial differential equations for self-organization in cellular and developmental biology

    Get PDF
    Understanding the mechanisms governing and regulating the emergence of structure and heterogeneity within cellular systems, such as the developing embryo, represents a multiscale challenge typifying current integrative biology research, namely, explaining the macroscale behaviour of a system from microscale dynamics. This review will focus upon modelling how cell-based dynamics orchestrate the emergence of higher level structure. After surveying representative biological examples and the models used to describe them, we will assess how developments at the scale of molecular biology have impacted on current theoretical frameworks, and the new modelling opportunities that are emerging as a result. We shall restrict our survey of mathematical approaches to partial differential equations and the tools required for their analysis. We will discuss the gap between the modelling abstraction and biological reality, the challenges this presents and highlight some open problems in the field

    Mathematical models in Developmental Biology

    Get PDF
    We will introduce some of the mathematical modeling tools that have been introduced in the field of Developmental Biology, focusing in specific problems in embryogenesis. The use of multiscale models based on a combination of ordinary and partial differential equations is a well established research paradigm in this area by now. After reviewing some of the past and present contributions, we will discuss both their merits and shortcomings in the light of recent experimental results.Universidad de Málaga. Campus de Excelencia Andalucía Tech

    Lie Symmetries and Conservation Laws for the Viscous Cahn-Hilliard Equation

    Get PDF
    In this paper, we study a viscous Cahn-Hilliard equation from the point of view of Lie symmetries in partial differential equations. The analysis of this equation is motivated by its applications since it serves as a model for many problems in physical chemistry, developmental biology, and population movement. Firstly, a classification of the Lie symmetries admitted by the equation is presented. In addition, the symmetry transformation groups are calculated. Afterwards, the partial differential equation is transformed into ordinary differential equations through symmetry reductions. Secondly, all low-order local conservation laws are obtained by using the multiplier method. Furthermore, we use these conservation laws to determine their associated potential systems and we use them to investigate nonlocal symmetries and nonlocal conservation laws. Finally, we apply the multi-reduction method to reduce the equation and find a soliton solution

    Spectral element methods: Algorithms and architectures

    Get PDF
    Spectral element methods are high-order weighted residual techniques for partial differential equations that combine the geometric flexibility of finite element methods with the rapid convergence of spectral techniques. Spectral element methods are described for the simulation of incompressible fluid flows, with special emphasis on implementation of spectral element techniques on medium-grained parallel processors. Two parallel architectures are considered: the first, a commercially available message-passing hypercube system; the second, a developmental reconfigurable architecture based on Geometry-Defining Processors. High parallel efficiency is obtained in hypercube spectral element computations, indicating that load balancing and communication issues can be successfully addressed by a high-order technique/medium-grained processor algorithm-architecture coupling

    Turing Patterns and Biological Explanation

    Get PDF
    Turing patterns are a class of minimal mathematical models that have been used to discover and conceptualize certain abstract features of early biological development. This paper examines a range of these minimal models in order to articulate and elaborate a philosophical analysis of their epistemic uses. It is argued that minimal mathematical models aid in structuring the epistemic practices of biology by providing precise descriptions of the quantitative relations between various features of the complex systems, generating novel predictions that can be compared with experimental data, promoting theory exploration, and acting as constitutive parts of empirically adequate explanations of naturally occurring phenomena, such as biological pattern formation. Focusing on the roles that minimal model explanations play in science motivates the adoption of a broader diachronic view of scientific explanation

    Control of reaction-diffusion equations on time-evolving manifolds

    Full text link
    Among the main actors of organism development there are morphogens, which are signaling molecules diffusing in the developing organism and acting on cells to produce local responses. Growth is thus determined by the distribution of such signal. Meanwhile, the diffusion of the signal is itself affected by the changes in shape and size of the organism. In other words, there is a complete coupling between the diffusion of the signal and the change of the shapes. In this paper, we introduce a mathematical model to investigate such coupling. The shape is given by a manifold, that varies in time as the result of a deformation given by a transport equation. The signal is represented by a density, diffusing on the manifold via a diffusion equation. We show the non-commutativity of the transport and diffusion evolution by introducing a new concept of Lie bracket between the diffusion and the transport operator. We also provide numerical simulations showing this phenomenon

    A Variational Assimilation Method for Satellite and Conventional Data: a Revised Basic Model 2B

    Get PDF
    A variational objective analysis technique that modifies observations of temperature, height, and wind on the cyclone scale to satisfy the five 'primitive' model forecast equations is presented. This analysis method overcomes all of the problems that hindered previous versions, such as over-determination, time consistency, solution method, and constraint decoupling. A preliminary evaluation of the method shows that it converges rapidly, the divergent part of the wind is strongly coupled in the solution, fields of height and temperature are well-preserved, and derivative quantities such as vorticity and divergence are improved. Problem areas are systematic increases in the horizontal velocity components, and large magnitudes of the local tendencies of the horizontal velocity components. The preliminary evaluation makes note of these problems but detailed evaluations required to determine the origin of these problems await future research

    Modelling the spatial organization of cell proliferation in the developing central nervous system

    Get PDF
    How far is neuroepithelial cell proliferation in the developing central nervous system a deterministic process? Or, to put it in a more precise way, how accurately can it be described by a deterministic mathematical model? To provide tracks to answer this question, a deterministic system of transport and diffusion partial differential equations, both physiologically and spatially structured, is introduced as a model to describe the spatially organized process of cell proliferation during the development of the central nervous system. As an initial step towards dealing with the three-dimensional case, a unidimensional version of the model is presented. Numerical analysis and numerical tests are performed. In this work we also achieve a first experimental validation of the proposed model, by using cell proliferation data recorded from histological sections obtained during the development of the optic tectum in the chick embryo

    Combined State and Parameter Estimation for a Static Model of the Maypole (Hoop-Column) Antenna Suface

    Get PDF
    Parameter and state estimation techniques are discussed for an elliptic system arising in a developmental model for the antenna surface of the Maypole Hoop/Column antenna. A computational algorithm based on spline approximations for the state and elastic parameters is given and numerical results obtained using this algorithm are summarized

    Periodic pattern formation in reaction-diffusion systems -an introduction for numerical simulation

    Get PDF
    The aim of the present review is to provide a comprehensive explanation of Turing reaction–diffusion systems in sufficient detail to allow readers to perform numerical calculations themselves. The reaction–diffusion model is widely studied in the field of mathematical biology, serves as a powerful paradigm model for self-organization and is beginning to be applied to actual experimental systems in developmental biology. Despite the increase in current interest, the model is not well understood among experimental biologists, partly because appropriate introductory texts are lacking. In the present review, we provide a detailed description of the definition of the Turing reaction–diffusion model that is comprehensible without a special mathematical background, then illustrate a method for reproducing numerical calculations with Microsoft Excel. We then show some examples of the patterns generated by the model. Finally, we discuss future prospects for the interdisciplinary field of research involving mathematical approaches in developmental biology
    • …
    corecore