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ABSTRACT

Parameter and state estimation techniques are discussed for an ellip-
tic system arising in a developmental model for the antenna surface of the
Maypole Hoop/Column antenna. A computational algorithm based on spline
approximations for the state aud elastic parameters is given and numerical
results obtained using this algorithm are summarized.

I. INTRODUCTION

Results are presented from a Langley program divected towards
developing computationally efficient identification techuiques for flexible
systems modeled by partial differential equations with an emphaslis on large
space structures. Initial efforts have been directed towards extendiag the
spline-based theory and computational techniques used by the first two
authors [1]-[6] in solving identification problems with delay and partial
differential equation mocels in one spatial variable to solve distrituted
problems in seveval spatial variables. Additionally, ii. order to support
Langley's technology development program [7] in large space antennae, a
parameter and state estimation algorithm has been derived for a prototype
distributed model of the Maypole (Hoop/Column)  antenna reflector
surface [8). Tha next section describes the Hoop/Column antenna and pre-
sents the identification problem being considered. The state and parameter
estimation approach is rhen outlined and Aiscussed in tone context of the
Hoop/Column application. Subsequent sections include mathematical details
of the antenna application and numerical results.

MECEDING PAGE RLANK NOT FILMED

263


https://core.ac.uk/display/10381362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. THE MAYPOLE (BOOP/COLUMN) ANTENNA

For the purpose of technology development, the NASA Large Space
Srstems Technology (LSST) program office has pinpointed focus missions and
identified future requirements for large space antennas for communications,
earth sensing, and radio astronomy [7]. In this study, particular emphasis
is placed on mesh deplovable antennas in the 50-120 meter diameter cate-
gory. One such antenna is the Maypole (Hoop/Column) antenna shown for the
100m point-design in Figures 1 and Z. This antenna concept is being devel-
oped by the Harris Corporation, Melbourne, Florida, under contract to the
Langley Research Canter ([8].

The Hoop/Column antenna consists of a knitted gold-plated wolybdenum
wire reflective mesh stretched over a collapsible hoop that supplies the
rigidity necessary to maintain a circular outer shape. The annular
membrane~like reflector surface surrounds a- telescoping mast which provides
anchoring locati~ns for the mesh center section (Fig. 1). The mast also
provides anchoring for cables that connect the top end of the mast to the
outer hoop and the bottom end of the mast to 48 equally spaced radial
graphite cord truss systems woven through the mesh surface [8]. Tensions
on the upper (quartz) cables and outer lower (graphite epoxy) cables are
counter balanced to provide stiffness to the hoop structure. The inner
lower cables produce, through the truss systems, distributed surface load-
ing to control the shape of four circular reflective dishes (Figs. 1 and 2)
on tte me... surface.

After deployment or after a long period of operation, the reflector
surface may require adjustment. Optical sensors are to be locatri1 on the
upper mast which measure angles of retroreflective targets placed on the
truss radial cord edges on the antenna surface. This information can then
be processed using a ground-based computer to determine a data set of val-
ues of mesh surface location at selected targe. points. If necessary, a
new set of shaping (cortrol) cord tensions can be fed back to the antenna
for adjustment.

It is desirable to have an identification procedure which allows one
to estimate the antenna mesh shape at arbitrary surface points and the
distributed loading from data set observations. It can also be snticipated
that environmental stresses and the effects of aging will alter the mesh
material properties. The identification procedure must alsc allow one to
address this issue.

Considering the uantenna to be fully deployed and in static equilib-
rium, a distributed mathematical model whict describes the antemna surface
devistion from a curved equilibrium configuration 1is under investigation
(for preliminary findings, see [9]). Using a cylindrical coordinate system
with the z-axis along the mast, it is expected that the resulting model
will entail a system of coupled second-order linear partial differential
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equations in two spatial variables. The coefficients of these equations
are functions of the material properties of the gtretched mesh. The deri-
vation and computer software for this model are still under desvelopment.
In the meantime, a simpler developmental (prototype) problem has been
solved which is descriptive of the original problen.

For the developmental problem, the loading is assumed to be normal to
the horizontal plane containing the hoop rim, and the mesh surface is
assumed to be described by the static two-dimensional stretch:d membrane
equation [10] with variable stiffness (elastic) coefficients and appropri-

ate boundary conditions for tha Hoop/Column geometry. Mathematically, in
polar coordinates, we have

19 3u 1 3 . 3du
= 3% [rE(r,e) -a—r-] - ?8—6 [E\!‘,He) -3—6'] = f(r,0) (1)

where u(r,0) 1is the vertical displacement of the mesh from the hoop
plane, f(r,0) is the distributed loading force per unit area, and
E(r,0) > 0 1is the distributed stiffness (elastic) coefficient of the mesh
surface (force/unit length). Erwation (1) is to be solved over the annular
region & = [€,R] x [0,27]. Appropriate boundary conditions are

u(e,9) = u

o
(2)
u(R,0) = O
along with the periodicity requirement
u(r,0) = u(r,2v) , (3)

where R 1s the radius from the mast ceater to the circular outer hoop,
€ 1is the radius from the mast to the beginning of the mesh surface (see

Fig. 2), and uy 13 the coordinate at r = € of the mesh surface below
the outer hocp plate.

We further assume that the Jistributed loading along withk a data set
of vertical displacements, um(ri,ej), at selected points (ri,ej) on the

mesh surtace is known. Given this “‘nformarion, the developmental problem
is to estimate the material properties of the mesh as represented by
E(r,0) ani produce state estimates of the surface represented by u(r,9)
at arbitrary (r,0) points within Q. The procedure applied to solve this
problem is dis~ussed in the next section.
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I1I. THE SYSTEM IDENTIFICATION APPROACH

The first two authors and their colleagues have derived techniquec for
approximating the solutions to systems identification aund control probiems
involving delay equation models and partial differential equation models in
one spatial variable and have used them in a variety of applicatious
[11],{12]. The Hoop/Column application requires an extension of the theory
and numerical algorithms to elliptic distributed systems in several spatial
variables. The approach, when specialized to the system identification
problem, may be s’ mmarized as follows: (1) select a distributed parameter
formulation containing unknown parameters for a specific system; (2) mathe-
matically "project” the formulation down onto a finite dimensional subspace
through some approximation procedure such as finite differences, finite
elements, etc.; (3) solve the identification problem within the finite
dimensional subspace obtaining an estimate -dependent upon the order of the
approximation embodied in the subspace; (4) successively increase the order
of the approxima*ion and, in each case, solve the identification problem so
as to construct a sequence of parameter and state estimates ordered with
increasing refinement of the approximatiun scheme; (5) seek a mathematical
theory which provides conditions under which tle sequence of approximate
solutions approaches the distributed solution as the subspace dimension
increases with a convergent underlying sequunce of parameter estimates.

In applying this approach to the developmental problem, the stiffness
function is parametrized in terms of cubic splines of fixed order; thirs
converts the estimation of E(r,6) 1into a finite dimensional parameter
estimation problem. After writing the energy functional generic to the
membrane equation, the Galerkin procedure is used to project the dist-i-
buted formulation onto a finite dimensional state subspace gpanned by ten-
sor products of linear spline functions defined over Q. The approximate
displacement (state estimate; thus obtained is expressible in terms of the
spline basis functions. The Galerkin procedure in this case ylelds alge-
braic equations which define the displacement approximation coordinates in
terms of the unknown E(r,0) parameters. In order to solve the approxi-
mating parameter estimation problem, the parameters defining E(r,0) are
chosen so that a _east squares measure of the fit error between the
observed and predicted (by the estimated state) data 3et 1s minimized.
Finally, following steps (4) ai.d (5) an algorithm is constructed to
determine the order of the linear spline approximation above which little
or no further improvement 1is obtained in the unknown quantities as one
increases the dimension of the subspaces. Details of this system
identification approach are presented in the following sections.
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IV. FINITE DIMENSIONAI. APPROXIMATIONS

Prior to applying the Galerkin procedure [13,14] to perform the finite
dimensional approximation for the developmental problem, the boundary
corditicns (2} are converted to homogeneous form by introducing the new
dependent variable

y(r,0) = u(r,0) - (%—%—%) uy (4)

Equation (1) then becomes

13 3 1 2 ) ) 3 (FECr,0)ug
v (rE(r,e) _3%) - -;2' T (E(t.e) 3%) = f(r,6) + ;a—r\—s-—_——k—-— (5)

with boundary conditions
y(e,0) = 0
y(R,8) = 0 (6)
y(r,0) = y(r,2%) .

tollowing the standard formulation (see (13,14]) for the weak or
variational for~ of (5), the energy functional E associated with (5) is

. 2% R )
E(z) = f f [% E(r,0)Vz « Vz ~ .(r,e)z] rdrdo , (7
0 £

where V is the gradient in polar coordinates which, in the form used
here, 1. equivalent to
) 1 3\ T
(-a-; . ;33) . (8)

The function f is diver by

(9)

rE(r,O)uO
r

£(r,6) = £(r,0) + = 5= ( € - R

and the vertical displacement z(r,8) of the mesh surface awa, from the
hoop equilibrium plane 1is a fuaction satisfying the boundary conditions (6)
and possescing first derivatives on £ in the distributional sense (we

denote this by ze Hé per(ﬂ) £ Z). The first variation 6E of E about
’
the function y(r,0) 1s given by



- 2% ~R -
SE(y;v) "f f {E(x,0)Vy *» W - T(r,0)v} rdrde
J Ve

27 ~R
= f f {E(r,e)Vy e Vr ~ [£f(r,B)v + z(:,e)’i . Vv]} rdrd®© (10)
0 €

where
k )
k- o (11)
0 e
l -
and v 1is an arbitrary function in Z .Ho’pet(ﬂ).

Given a finite dimensional subspace Z of Z, the Galerkin procedure
defines the approximation y as the solution in Z of

2% R a - [‘2' R - ~ ~
f f {E(r,G)Vy * Vv} rdrdé = { f {f(t,e)v + E(x,6)k Vv} rdrde
0 € o} €

(12)

A A

for all veZ2.

For computational efficiency, the basis functions used for the
representations of y in (12) are taken as tensor products of linear

B-splines ([13], p. 27; (14}, p. 100). Thus v and y are in the space
spanned by

viE,e) = d{(08f8) . (L=l M-l eI, ()

where a’: = a;{(t), (1 =1,..., M~ 1), and B;‘ - a?(e), (3 ee,N = 1),
are standard linear B-aplines with knots uniformly spacea over fe,R] and
[0,2n], respectively, modified to satisfy the appropriate boundary

conditions. The elements {al:} are modified to satisfy homogeneous

N

bour "iry conditions while BN has been altered to satisfy periodic

boundary conditions [15].

268



For yM’N(r,O) within the subspace spanned by vT}N we can write

M-1
YH’N(r,O) - ) 2 a (r)w:jNﬁng) . (14)
i=] j=1

Replacing y(r,0) in (12) by yM’N(r,G) from (14) and successively set-
M,N

ting v(r,¢) = vij (r,” for 1i=1,...,M-1 and jJ = 1,...,48 1leads to
a set of high-order linear algebraic equations for the TjN coordinates.
We avoid sparse matrix methods 1in solving the ?j equation by
imposing a separability condition: .
E(r,0) = El(r)E2(e) . (15)
As shown in [15], condition (15) reduces the ng calculaticn to the
sorutio of the matrix equation *
TN L SN LN (16)
with
N [ M,N
W Gﬁj ) (17)
2 Ny oo
N - f E.(0)8}(0)8 (6)de (18)
(o <& k| q

~M

(f E (r)[—- oM )] [—- a (r)] rdr) (19)
(j;“ E, (0) de sj(e)] [ N(e)] ) (20)

M M
R a,(r) a(r)

B - (f E, (r) —1——;-P——dr> (21)
€
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and

R
f(r,e)aT(r) B?(B)rdrde

SMN (j’
0

2% R
~ N d M
+./; j; E(r,0)ic8}(9) ['E ai(r)] tdrde) , (22)

’

~—

whel‘e, 1“ (17)-(22), i’P = l,n-.,“ - l 8nd j,q = l’ooo’N.

Equation (i6) is rewritten in the equivalent form

[(Ta")“‘“ﬁ"]w"'" + w"'"[E"(“A“‘)“] - @GN (23)

and solved by the Bartels-Stewart algorithm [16].

Jn order to estimate, via a numerical scheme, the functional
coeffizients E; and E), we parametrize these functions so that

idertification is performed over a finite-dimensional parameter set. To
this end, let

)

E (r) = kzl v A () (24)
N

E,(6) = jgl ajuj(e) (25)

where v and ¢ are scalar parameters and ), and M are
cubic B-spline functions defined [13, p. 61] over [e,R] and 0,271,
respectively, whose orders are independent of M and N. The basic spline

functions are modified so that My and its derivatives satisfy periodic
boundary conditions. '

We turn next to the computer implementation of the identification
scheme.
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V. COMPUTATIONAL PROCEDURE

Appealing to the ideas found in previous sections, we now detail an
algorithm for estimating thc coefficients vy, k = l,..., M} and &y,

i = 1l,..., Ny, for E(r,0) that provide the “best fit" between
estimations of the state u and observed data uy, obtained from various

sample poincs on the surface. We may equivaleatly consider data for y by
making the transformation

ri - R
ym(r‘l ,Gj) = um(ri,ej) - (E__:—R—-) Y, (26)

for i = 1,.04, Ly and j = 1,..., Lg.

A parameter estimation algorithm may Je organized into the following
steps.

1. Select an order of approximation for the cubic spline elements

M, ko= l,e.., M) and My, J = l,e.., N), used to
represent E) and Ej. Set n = [,

2. Select M and N, .~ number of the linear spline basis elements
used to represent uM\N (and yM,N).

3. Assume a nominal set of values for

Vo= (vl, Vyreses le) (27)
and
5§ = (61, 62,..., 6N1) . (28)
4, Calculate the -~oefficient matrices 1in (22) and solve for
whil(v, 6).
5. Calculate, from (14}, y“’N(r{,ej; v,§) and evaluate
L L
M,N LI RV 2
JoNv, 8y = T Y lyN(r, 0. v,8) - y (r,,0)]" . (29)
=1 j=l 173 m 173

6. Proceed to steo 8 if JM,N(v, 6) is sufficiently small.
Otherwise, through an optimization procedure, determine a net pair

M,N .
(v,$) which decreases the value of J ' . If no such pair can

be found, go to step 3.
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7. Set (v,8) = (v,§) and return to step 4.

8. Preserve the current values of JMLN and the corresponding

(v,8) pair as the ath entry in a sequence of these pairs,
ordered with increasing M and N.

9. Proceed to step 10 if sufficient data has been ohtained to analyze
the sequences. Otherwise, set rn = n + 1] and return to step 2
with increased M and N. The current values of (v,8) will be
used as initial values for the next optimization process.

10. From analysis of the numerical sequences, select the (M,N) entry
which indicates the best numerical results. The corresponding
parameter estimate (v,6) pair yields E(r,0) which determines the
material properties of the antenna .mesh. The matrix wH»N(v,G),
when wused in conjunction with (14), determines a state
approximation yMsN for the shape of the antenna surface.

A convergence throry for the identification algorithm may be found

in [15]. Numerical results are described ia the nerxt sgeccion.

VIi. MNUMERICAL RESULTYS

Experimental data for the Hoop/Column antenna is not available at this

time. Therefore, synthetic data is constructed to demonstrace the
preceding algorithm.

As shown in Figure 2, the parent reflector has four separate areas of
{lluymination on its surface. Each area 18 assumed tO have the same

parabolic shape. For 0 £ © S_%- and € { r { R.

r
u.(R-:) r -
0 S L

e Lk(R)qz(e)+1,0365_36
u(R-1) _ . .
uO(r,e) = ﬁ 0R — k(r RE) ql(e) +11, %geg_-‘%—'—' (30)

u.{R~-1) b
0 r ~ € 17% 0

TEE L“(—i—) 938 + 1], 37 £0<3

[
~J
[



where

ql(O) = gind® + cosd ., (31)

The functions q;(0) and q3(0) are cubic polyaomial fits used to

ensure smoothness in regions of O near O = %-, v, %1 , 27. Formulae for

q2(0) and ¢4(0) may be found in [15]. The parameter k > 0, a

stretch factor used to perturb the surface below the conic (k = 0) shape is
taken as 0.25.

For the complete surface, we defire, for € { r { R,

[ e, . 0ce<y
0 L "
N u (r,@ -3 ), EHS CR
u(r,0) = ﬁ (32)
uo(r,O-ﬂ) . 1r_<_9_<_-23-'-'-
0 3 3
\J<r,e 5 ) - <oeg .

It 1is expected that the mesh will be stiffest near the outer hoop
(r = R) and around the inner radius {(r = €). For this reas~n we choose a
known value of E|(r) as

El(r) - 2; - ; sin [Tl %—E—g—] (e<r<R (33)

~

where T 1is a coastant dependent on the mesh material. The stf{ffness in
the angular direcion is evfected to oe uniform with

~

T. (34)

1}

EZ(G)
From data rrovid :8] for the 107-meter point design, a reasonable

value for 1 (given in units /N/m ) 1s

T = 3,391 ; (35)

similarly, other parameters are¢ calculated to be ug = -7.5m, € » £.235m
and R = 50m.
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A 10 x 24 grid of data points uq(ri,ej) is calculated by
e-aluating u(r,0) at pointe (ri,Gj) with

- (R -~ €) .
ry=e+d m (1= 1,2....,L = 10) (36)

n
18"

(J =1,2,...,L. = 24) . (37)

oj = [7.5° + (3 - 1) 15°] )

Values of 0Oy correspond to data taken along every other radial cord
truss system with reflectors assumed located on the gore edges.
Distributed loads are obtained by seubstituting (32)-7j4) int~ (1) and
evaluating f£(z,0).

In the examples of the iwentification process to pe presented, an
equal number of linear spline basis functions are used in bocth r end ©
directions. That is, M = N + 1 for an increasing sequence of N-values.
The cubic spline appruximstions (24) and (25) are ueed with fixed
M = N = 4 to 1epresent E;(r) and F-' €). The IMSL version
(ZXSSQ) of the Levenberg~Marquardt ulgorithm [17] is employed to minimize
JM,N gi.en by (29). For the first choice of N, rnominal (v,§) parameter
valves to initialize the Levenherg-Marquardt eigoritlm are obtained by
finding those (Vv,8) coordinates which cauge (24) and (25) to best approxi-

mate assumed futctions E?(r) and Eg(l) chogsen as guessed forus for
El(r) and 'Ez(e), respectively. Foxr larger N, the latest previously

obrained set of converged coordinates 18 usged as nomi..al parameters.
M- rical calculations are performed on a CDC Cyber 170-scries digit=l
- snpute: using default valuvee of the IMSL convergence paramcters.

Two measuvras of identification scheme performance are employed. The
quantity

- M.4 \1/2
N . {—-“I ) (38)

\ L

i8 used as a measure o’ state estimation accuracy. Additiosnslly,

|
0N . Jﬁ- x 100% (39)

N _ i
[E|



measures the relative error between the true

E(r,0) =‘El(r)ié(6) (40)

and the estimatec E(r,0) denoted by

%, 0) - z'l""(r)z'z""(e) (41)

which is calculated from (24) and (25) using the (M,N)th level of state
approxiu -rion obtained at step 8 of the computational procedure. In (39),

i°' teiotes the L2 norm on [€,R] x {[0,2x]. RH’N provides a

weasure of parameter estimation accuracy.
Convergence in the sense that

M,N

R + 0
and
PR
as
(H'N) > o

depends on the ability of the cubic spline approximates (24) and (25) to
accurately represent Ei(r) and Eé(e). An exact pointwise fit can be
obtained for EZ(G) by choice of the 4 &-coefficients in (25). However,
El(r) can at best be approximated to

'El(r) -'El(r)l
'El(t)l

= 1.232

relative error by (24) and (27) with Ml = 4, Consequently, entries in the
(RM’N, JM’N) sequence can be expected to cease decreasing past some (M,N)
value. Less realistic examples in which (24) ard (25) exactly fit simpler
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El(r) and EZ(O) functions, and JM’N and Ru'N

with increasing (M,N) can be found in [15]. Also, using the best cubic
spline fits to El(r) and 'Ez(e) obtained from (24) and (25) to
define E(r,0), along with the exact f£(r,0) data, we observed that

monotonically decrease

MY . 0.087

uniforely in (M,N). The following numerical results show that the
parameter estimates from the identification procedure tend to improve

M
(reduce) this J N value at the expense of RH’N.

Example 1: Estimate Ej(6)  holiing Ej(r) fixed at the best
cubic spline estimate of El (r) wusing (24). Nowinal parametecs tfor the
N = 4 starting value are obtained by fitting (25) to

1

0
EZ(G) =1 +3 cos O .

Four S-parameters are estimated and results summarized below.

N JH’N, n RH’N, 4 CP time, sec
4 0.0390 5.13 8
6 0.0384 5.57 23
8 0.0322 5.69 86
10 0.0347 6.01 105
12 0.0330 5.83 132

Essentially no improvement in state estimate was obtained past N= 8. The
Ey'N(0) terded to 3.591 instead of E,(0) =3.391. The =~0.20 bias is
attribated to the inability Lf (24) to exactly fit 'El(r).
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Example 2: Estimate E;(r) holding Ej(6) fixed at the best
cubic spline estimate of ié(e) using (25). Nominal parameters for the
N = 4 starting value are obtained by fitting (24) to

0 -
El(r) =]

Four »-parameters are estimated and results summarized below.

N JH’N, m RM’N, y 4 P time, sec
4 0.0355 32.25 22
6 0.0343 24.5 41
8 0.0270 4.39 75
10 0.0293 13.17 103
12 0.0275 8.08 130
14 0.0273 7.44 168
16 0.0271 7.59 222
18 0.0267 7.68 292
20 0.0264 8.03 370
22 0.0260 7.91 460
24 0.0267 8.11 578
26 0.0250 7.49 751
28 0.0203 7.58 847
30 0.0259 7.71 1050

From a state estimation viewpoint, N = 28 provides the best
accyracy. Overall, considering state, parameter and ease of computation,

N =8 is best. Figure 3 shows the character of ET’N(r) for selected

valugs of N.
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Example 3: Estimate both E;(r) and E3(6). Nominal parameters
are obtained as before for N = 4 from

"
n

0
El(r)

0 1
Ez(e) 1 - y sin ©

For each N, the first coefficient, &;, is held fixed at its initial
value. Seven parameters are estimated.

N JH'N, a RH'N, y 4 CP time, sec
4 0.0356 32.24 40
6 0.0341 28.71 67
8 0.0270 4.42 168
10 0.0293 13.18 209
12 0.0275 8.09 256
14 0.0273 7.45 332
16 0.0271 7.59 411
18 0.0267 7.69 490
20 0.0264 8.04 567
22 0.0262 7.90 651
24 0.0260 8.12 768
26 0.0260 7.47 945

Again, from overall considerations, N = 8 gives the best results.
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VII. COMCLUDING REMABXS

In all examples we have been able to successfully estimate the surface
shape of the wmodel antenna. Simile results have been cbtaired where
random noise (approximately 5% noise level) has been aided to the data.
These and other findings may be found in Section VI of [15].
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Figure 2.- Maypole (Hoop/Column) Antenna Reflector Surface.
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Figure 3.- Estimate El(r) with 52(9) fixed.
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