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ABSTRACT

A variational objective analysis technique that modifies

observations of temperature, height, and wind on the cyclone scale

to satisfy the five "primitive" model forecast equations is

presented. This analysis method overcomes all of the problems that

hindered previous versions - problems such as over-determination,

time consistency, solution method, and constraint decoupling. A

preliminary evaluation of the method shows that it converges

rapidly, the divergent part of the wind is strongly coupled in the

solution, fields of height and temperature are well-preserved, and

derivative quantities such as vorticity and divergence are

improved. Problem areas are systematic increases in the horizontal

velocity components, and large magnitudes of the local tendencies

of the horizontal velocity components. The preliminary evaluation

makes note of these problems but detailed evaluations required to

determine the origin of these problems await future research.

1. Introduction

This study was designed to determine the feasibility of a

constrained objective analysis based upon the variational

methodology of Sasaki (1958, 1970). The method uses as dynamic

constraints the five primitive equations for a dry, adiabatic, and

non-viscous atmosphere: the two nonlinear horizontal momentum

equations, the continuity equation, the hydrostatic equation and

the thermodynamic equation. The method is diagnostic, however
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given the similarities between the dynamic constraints and the

hydrodynamical equations of numerical prediction models, there

exists a potential for extension of the technique to the derivation

of initial fields for numerical models.

The potential of the variational methods for multivariate

objective analyses has been explored with many dynamic constraints.

Some of the studies and the constraints used are: the geostrophic

approximation (Sasaki, 1958), the continuity equation (O,Brien,

1970; Dickerson, 1978; Sherman, 1978; Ray et al., 1978), divergence

and vorticity (Schaefer and Doswell, 1979), the balance equation

(Stephens, 1970), the two horizontal momentum equations (Lewis and

Grason, 1972; Bloom, 1983), the two horizontal momentum and

hydrostatic equation (Lewis, 1972), and the two horizontal

momentum, thermodynamic, and hydrostatic equations (Achtemeier,

1975).

Past attempts to develop a multivariate objective analysis

based upon Sasaki's variational method with the five "primitive"

equations as dynamical constraints have encountered several

fundamental problems. Courant (1936) showed that the number of

subsidiary conditions (dynamic constraints) must be at least one

less than the number of adjustable dependent variables else the

problem is overdetermined and a solution is not guaranteed. The

over-specification problem must be solved as the five primitive

equations form a closed set with five dependent variables.

The Euler-Lagrange operations yield local tendencies of the

Lagrange multipliers if the local tendencies of the temperature or
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the horizontal velocity components are explicit in the dynamic

constraints. Boundary conditions for these terms are unknown. The

problem of time consistency in variational problems has been

explored by Lewis (1980, 1982) and Lewis et al (1983) . More

recently, the time consistency problem has been found more

tractable through use of the adjoint method (Lewis and Derber,

1985; Talagrand and Courtier, 1987).

Achtemeier (1975) found that the Euler-Lagrange equations

decoupled the divergent part of the wind from the remainder of the

adjustment with the result that the continuity equation was not

satisfied. Attempts to constrain the local tendencies of velocity

and temperature to require exact solution of the continuity

equation did not solve the coupling problem (Achtemeier, 1979).

The methodology to circumvent the above problems and the

theoretical development of a primitive equation variational

objective analysis is presented in the next section (mathematical

details are presented in Appendices A, B,and C.) The method is

evaluated in Section 3.

2. Theoretical Development

The objective analysis is designed for a terrain-following

coordinate surface. We used a nonlinear vertical coordinate

created from two functions that are piecewise continuous through

the second derivatives. In this coordinate system, all coordinate

surfaces above a reference pressure level are pressure surfaces.
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The dynamical equations appear in their simplest form in pressure

coordinates. Furthermore, hydrostatic truncation errors are

confined to coordinate surfaces below the reference pressure level.

The problems of reducing hydrostatic truncation error along

terrain-following coordinate surfaces has been the subject of

considerable investigation (Kurihara, 1968; Gary 1973; Sundqvist,

1975, 1976; Janjic, 1977, 1989, and Achtemeier, 1990). The

vertical coordinate is described in Appendix A.I.

Subjecting the pressure gradient terms of the horizontal

momentum equations written in terrain-following coordinates to the

variational operations separates the two pressure gradient terms

and combines the large, now uncompensated terms with terms from the

other equations. These uncompensated terrain terms can dominate

the adjustment. A test found that these terms generated large

error that caused the variational method to diverge.

The pressure gradient problem was solved by

nondimensionalizing the dynamic constraints (Charney, 1948;

Haltiner, 1971) and partitioning the hydrostatic terms to isolate

the terrain part so that the variational adjustment could be

performed on the meteorological partition. Appendix A.2 presents

details of this procedure.

As regards the time consistency problem, Fjortoft (1952) found

that the local change in the winds could be approximated by the

translation of a weather system along an advective or steering

current, usually a smoothed middle tropospheric wind. Therefore,

the local tendencies of the velocity components were partitioned
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into advective components, represented by the steady part of a

weather system moving within a steering current, and developmental

components, represented by the development of a weather system.

Appendix A. 3 describes the partition. The developmental components

of u and v were defined as dependent variables to be subjected to

the variational adjustment.

Appendix A. 4 gives the five dynamic constraints as modified.

Abridged forms of these equations are as follows:

M1--V+$x+DTU+HAU+VAU+EXT(Mi) -0 (1)

M2 - U+$ y+DTV+HA V+ VAV+EXT (Mz ) = 0 { 2 )

~Q (3)

M4-ba+fT+EXT(Mt) -0 (4)

M5=LTT+HAT+VAT+WT+aaa+EXT(M5) -0 (5)

Conventional symbols are used. Abridged terms are defined as

follows:

DTU(V) = developmental component of local tendency of u or v.

LTT = local tendency of T.

HAU(V or T) = horizontal advection of u (v or T) relative to

a moving weather system.

VAU(V or T) = vertical advection of u (v or T) .

WT = product of vertical velocity with perturbations of

stability.
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j) = extra terms that arise from any of the following

sources:

a) Lambert conformal map image projection,

b) conversion into the nonlinear vertical coordinate,

c) expansion of the Coriolis and/or map scale factors.

Q = a normalized pressure thickness weight that arises from

(b) above. For pressure levels above 700 mb, Q = 1.

The fourth term on the right hand side of (5) is the product of the

layer average static stability with the vertical velocity.

These equations have been nondimensionalized and terms

expressed in powers of the Rossby number. All terms identified by

three letters (eg., LTU or EXT) are higher order terms - either

multiplied by the Rossby number or of order 0.1 or terms that

involve unadjusted (observed) variables.

Dependent variables are u, v, *, a, T, eu, and ey. The latter

two variables are the developmental components of the local

tendencies of u and v. This formulation leaves five constraints

and seven variables to be adjusted.

Following Achtemeier (1975), a variational objective analysis

was developed for adjustments of the seven dependent variables

subject to exact satisfaction of the dynamic constraints (l)-(5).

As expected, the addition of the two new dependent variables (the

developmental components of u and v) was sufficient to overcome the

over-specification problem. As regards the time consistency

problem, recomposition of the local tendencies of u and v from the

advective and developmental components yielded tendencies that
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compared favorably with observed 3-h changes in u and v. However,

the decoupling problem remained. Attempts to readjust the

divergent part of the wind by requiring the adjusted horizontal

velocity components to satisfy the continuity equation through a

"variational adjustment within a variational adjustment" were

unsuccessful in satisfying all five constraints.

An analysis of the growth of the divergent part of the

adjusted wind was performed to determine how the variational

solution decoupled from the continuity equation. It was found that

the divergent part of the wind is determined by adjustments through

the higher order terms (HOT) of (1) and (2) . The divergent

components can be made to satisfy the continuity constraint if

these higher order terms are made to satisfy a particular solution

of the vorticity theorem. Define

F5=HOT(M1) (6)

F6-HOT(M2) (7)

so that,

O (8)

(9)
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Forming the divergence,

.-F=v-0 (10)

The function that must integrate to zero is

f(ux+vy)da-f(F6x-F5y)da-0 (11)

for the vertical velocity to vanish at the top at the top of the

domain. Therefore, (11) is a particular solution of the integrated

vorticity theorem, the particular solution also requiring that the

horizontal divergence integrate to zero, a requirement for

satisfaction of the continuity equation.

It is necessary to build (11) into the dynamic constraints if

the decoupling problem is to be eliminated from the variational

objective analysis. Define F5 and F6 as dependent variables and

revise the dynamic constraints as follows:

M1~-F5+DTU+HAU+VAU+EXT(Mi) =0 (12)

M2=F6+DTV+HAV+VAV+EXT(M2)-Q (13)

(14)

(15)
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M^~LTT+HAT+VAT+WT+doa+EXT(M5) =0 (16)

(17)

(18)

The variational objective analysis is developed from these seven

constraints. The nine adjustable variables include the original

seven plus F5 and F6.

The dynamical constraints are written on centered differences

on an Arakawa D-grid (Mesinger and Arakawa, 1976) . The finite

difference operators and finite averaging operators are defined
i

following Anthes and Warner (1978) . The conversion of the

constraints from differential form into finite differences is given

in Appendix B.

The gridded fields of meteorological data to be modified are

meshed with the dynamical equations through Sasaki's (1970)

variational operations. To simplify the derivations, the

frictional terms in the horizontal momentum equations and the

diabatic heating term in the thermodynamic equation were set to

zero.

The finite difference analog of the adjustment functional is,

(19)
i J
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The integrand, I. . is
1 » J

I"-*! ( U-U °) 2+n i(v-V°) 2 + 7l2 (0-0 °) 2

+n3 (4H> °) 2+*4 (r-r°) 2+n5 (<i>x-<t>°) 2

+*5 (<|>y-<t>p 2+*6 (<t>0-<!>o0) 2+*7 (eu-O 2 (20)

The weights, TT,-, are Gauss' precision moduli (Whittaker and

Robinson, 1926) . The gridded initial variables (u°, v°, a°, *°, T°,

eu°' v°' F5°' F6°) enter in a least squares formulation and receive n.

according to their relative accuracies. The strong constraints to

be satisfied exactly are introduced through the Lagrangian

multipliers, Ai .

Objectively modified meteorological variables are determined

by requiring the first variation on F to vanish. A necessary

condition for the existence of a stationary set is that the

functions are determined from the domain of admissible functions as

solutions of the Euler-Lagrange equations. The variation is to be

carried out at every point (r,s) within the grid. Thus, upon

setting the weights a{ = bj = 1 and differentiating the integrand

(20) with respect to the arbitrary variable ar s, the Euler-Lagrange

operator in finite differences is

The Euler-Lagrange equations resulting from the operations
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specified by (21) are given in Appendix C [(C.7)-(C.16)].

Including the seven dynamic constraints, these complete a closed

set of 17 of linear and nonlinear partial differential and

algebraic equations. Solutions are difficult to obtain by

conventional methods. Achtemeier (1975) proposed a cyclical

solution method that moves higher order terms and terms involving

unadjusted (observed) variables into forcing functions. These

forcing functions may be expressed with observed variables at the

first cycle and with previously adjusted variables at higher

cycles. Therefore the forcing functions are known at each cycle.

This method of solution is valid for the latitudes and scales of

motion for which the Rossby number is less than one.

Use of the cyclical solution method yields the following set

of linear Euler-Lagrange equations:

M3 — g5(F6x-F5y)Ao+(d-00)+qr5F7Ao=0 (22)

0 (23)

0 (24)
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(25)

*J+*6.*: t %
(26)

0

(27)

(28)

tt20+A3+F3-0 (29)

(30)

(̂ê -O+floV'0 (32)

it8(er-er)+K0A7-0 (33)

n9 (F5-F5°) -A,1+A5-Aa (<gr5Tf ) y-o (34)

7i9 (F6-F6°) -A,2+X6+Ao (g5I°) x=0 (35)

As shown in Appendix C, variables may be easily eliminated among

the equations. There results three diagnostic equations in

geopotential, vorticity, and divergence,

0 0 j
w, (36)
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(37)

V2 [ (Ao) 2qJK2D] - 1̂0-D-V
2G1+G2x+G3y (38)

Details regarding symbol definition are found in Appendix C.

The variational theory specifies natural boundary conditions

that are consistent with the Euler-Lagrange equations. If it is

assumed that there are no adjustments in the data along the

boundaries, then the boundary conditions may be specified. In the

latter case, the Lagrange multipliers, A., , are zero at the

boundaries and the initial unadjusted values are used for the

boundary conditions.

Initially, the Euler-Lagrange equations were solved with

specified boundary conditions. These boundary conditions forced

high frequency waves into the solutions for the velocity components

near the boundaries. Divergences calculated from these velocity

components gave large erroneous vertical velocities. We therefore

returned to the natural boundary conditions.

The Euler-Lagrange operator for natural boundary conditions

is,

SI -0
dfA (39)
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Performing the operation specified by (39) produces a set of Euler-

Lagrange boundary equations in 4, u, v, and D. Details of the

derivations are given in Appendix D. The boundary conditions for

* are,

(40)

( Ĵ )4) * 4,°+ JLL̂ L(U
5 5 y

The boundary conditions for u and v that are consistent with (40)

are,

(41)

. u °-0
9 9

The derivation of (40) placed a constraint upon the boundary

conditions for the divergence, namely, that the divergence must be

specified along two rows or columns at the boundaries.

Subject to the boundary conditions and specification of the

precision moduli, (36) -(38) may be solved for the geopotential,

vorticity and divergence. Coefficients for the second order

partial derivative terms are always positive, the equations are

elliptic, and thus solutions by standard methods are assured. Then

u and v must be retrieved from the vorticity and the divergence.

A number of investigators (Sangster, 1960; Hawkins and

Rosenthal, 1965; Shukla and Saha, 1974; Schaefer and Doswell, 1979;
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Lynch, 1988) have proposed methods for reconstruction of the

velocity components from the vorticity and divergence (or

streamfunction and velocity potential) . After investigating

several of these methods, including those of Endlich (1967) and

Bjilsma et al. (1986), it was determined that the Lynch method

could be best adapted to the Arakawa D-grid with a minimum of error

in reconstructing the velocity components.

First, the field of divergence was modified by a small

constant so that Gauss' theorem,

r
nds (42)

was satisfied. Then the u-component was reconstructed through

(43)

subject to mixed boundary conditions in u (obtained from (41) )

along the y-boundaries and u obtained along the x-boundaries from

(44)

Then, beginning at the lower x-boundary with v from (41) ,

vy-D-ux (45)
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was solved to find v uniquely.

3. Case Study Description and Preprocessing of Data

The data used to test the variational objective analysis

consisted of rawinsonde temperature, height, and wind data at

standard National Weather Service reporting sites shown in Fig. 1

for a large part of the United States and parts of southern Canada

on 12 GMT 10 April 1979 and 00 GMT 11 April 1979. This case was

originally selected because microwave temperature soundings

coexisted with special 3-hr rawinsonde data over a large area of

the central United States (small dashed-line box in Fig. 1) during

a major cyclogenesis. The 3-hr rawinsonde data were used as ground

truth for the local tendencies of the velocity components and

temperature diagnosed from the variational objective analysis.

The data at 12 GMT 10 April 1979 described a weak, dissipating

short wave moving northward over the Central Plains in advance of

a more vigorous short wave. At 00 GMT 11 April, an intense jet

streak moved northeastward over Oklahoma and Texas and triggered a

mesoscale convective system over northern Texas that produced a

number of fatalities at Wichita Falls, Texas.

The data were gridded from the observations by a modification

of the Barnes (1964) objective technique that is designed to

minimize analysis error at the boundaries of the field of data

(Achtemeier, 1986) and to provide accurate derivatives within the
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interior of the domain (Achtemeier, 1989) . The analyses were done

for 10 levels from 1000 mb to 100 mb. The horizontal grid was a

40x25 array with a 100 km grid spacing. Then thermodynamic data

were converted to the nonlinear vertical coordinate through a

hydrostatically consistent interpolation downward from the

reference pressure level of 700 mb to the terrain-following

coordinate surfaces. In addition, a smoothed version of the 600 mb

wind velocity components was obtained through a single pass of the

objective interpolation designed to reproduce the long wavelength

features inherent in the data. The smoothed wind field served as

the advective wind in the calculation of the advective part of the

local tendencies of the velocity components.

The above analyses produced gridded fields of temperature,

height, and u and v wind components. The initial fields of

vertical velocity, developmental components of the local tendencies

and F5 and F6 must be estimated from these data. Letting

(46)

the adiabatic vertical velocity can be found by solving (B.10) for

a. Then an adjusted vertical velocity can be found by a

variational formulation using the continuity equation (Chance,

1986) that is similar to the O'Brien (1970) method with the

exception that compatibility between the divergence and the

vertical velocity is forced at each level. The relative weight

accorded to the adiabatic vertical velocity is directly
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proportional to the static stability. Thus the adiabatic vertical

velocity receives the greater weight in areas of higher stability

such as the stratosphere. This procedure keeps large erroneous

vertical velocities generated by divergence error from being

transferred from the troposphere into the stratosphere where,in

product with the static stability terms of (B.10), would produce

large errors in the adjusted time derivatives of temperature.

We have no way of estimating the developmental components of

the velocity component tendencies from data collected at a single

time. Therefore, these fields were set to zero. An alternative,

if available, would be local tendencies from a numerical model.

The forcing function variables, F5 and F6 are estimated by

substituting the initial variables into (B.4) and (B.6). Then F5

and F6 were adjusted to satisfy (11) with the exception that the

integral of the divergence was replaced by the adjusted vertical

velocity.

The resulting fields (and selected derivative fields) of T, $,

u, v, a, eu, ev, F5, and F6 were designated as unadjusted fields and

entered into the variational objective analysis through the

functional integrand, I, given by (20). The unadjusted quantities

were accorded precision modulus weights according to the formula,

Gi (x, y)
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where the ai is the root-mean-square (RMS) error of observation for

the ith variable. G,- is in general a function of observation

density but G=1. for this study. However, since observational

errors are available only for u, v, *, and T, only TT.,, 7T3, and ?r4

can be obtained from (47) . the a1 for the remaining unadjusted

quantities must be inferred from the known observational errors

through the dynamic constraints or simplifications therefrom.

These a. are given by,

ain(p)
da '

(48)

Here S is the average separation between observation sites.

In addition, n9 = TT,, as terms such as the Taylor series

expansion of the Coriolis parameter in product with the wind are

considered equal in weight with the wind itself.

Table 1 shows the standard errors of observation for the

winds, heights, and temperatures and the RMS errors for the other

adjustable meteorological variables. Estimates for the sealer wind

speed as functions of elevation angle of the balloon (Fuelberg,

1974) are given in the first two columns. The values for the 20
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degree elevation angle compare favorably with the results from

Hovermale's (1962) spectral decomposition of meteorological data.

RMS values for heights and rawinsonde temperatures are from a

composite of methods for estimating measurement error (Achtemeier,

1972).

Table 2 gives the nondimensional precision modulus weights

calculated from the various functional relationships of the RMS

errors from Table 1. The more accurately measured (estimated)

variables receive larger values. Largest weights are accorded the

geopotential height followed by the winds and temperatures. The

developmental components of the local velocity tendencies receive

the smallest weights.

Several modifications in the n. given in Table 2 were made

before the April 10-11 data were subjected to the variational

objective analysis. First, the precision modulus weights for

levels 9 and 10 of the vertical velocity were assigned large values

to require the adjusted vertical velocity to vanish at the top of

the domain. Second, the weights for the geopotential were reduced

by a factor of 10 because prior studies gave solutions that were

forced too strongly toward the geopotential. It is possible that,

as a boundary condition, the geopotential has a greater impact upon

the the solution than suggested by the magnitude of its precision

modulus weight.
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4. Evaluation of the Variational Assimilation Model

Three diagnostic criteria were used to evaluate the

variational objective analysis. These criteria are, satisfaction

of dynamical constraints, adjustment departures from observations,

and pattern analysis.

a) Satisfaction of Dynamical Constraints

The method must converge regardless of how well the other

criteria are satisfied. But some method must be developed that

demonstrates that the analysis does converge. The Sasaki (1970)

strong constraint formalism requires that the dynamical

constraints; the nonlinear horizontal momentum equations, the

hydrostatic equation, the continuity equation, and the

thermodynamic equation be satisfied exactly (to within truncation) .

Recall that the cyclical solution method for solving the Euler-

Lagrange equations required the substitution of observed or

previously adjusted variables into the forcing functions. As a

measure of progress toward convergence, at the end of each cycle,

the adjusted variables were averaged with their respective values

at the previous adjustment, reintroduced into the dynamical

constraints and residuals calculated. It follows that the

residuals decrease as the differences between adjusted variables at

two successive cycles decrease. The residuals vanish (the
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variational objective analysis converges) if the adjusted variables

at two successive cycles are the same. A convenient measure of how

rapidly the method is converging to a solution is the percent

reduction of the initial unadjustment given by,

Ar(%)-100(1- r°"rt) (49)
i

Fig. 2 shows how the reductions of the initial RMS differences

for the two horizontal momentum equations varies for each pass

through the cyclical solution sequence for the eight adjustable

levels of the model. The residuals for the u-component momentum

equation are approximately halved with each cycle through the

fourth cycle. The solution stabilizes to near 99-100 percent

reduction of the initial unadjustment except for a 97 percent

reduction at the 9th level after eight cycles. The RMS differences

for the v-component equation decrease at the first cycle and level

off at the second cycle. These differences increase slightly at

level 7. Then the residuals decrease monotonically through the

eighth cycle with reductions of the initial unadjustment of from

98-99 percent (96 percent at level 9).

There were two reasons why the analysis was done through eight

cycles. First, the objective of obtaining near 100 percent

reduction in the RMS differences was accomplished for most levels.

Second, regardless of the care taken in formulating consistent

boundary conditions, there remained deleterious boundary effects

that were drawn into the interior of the domain one grid space for
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each cycle. The outer three rows of grid points were deleted from

the evaluation statistics (see large dashed rectangle in Fig. 1).

Therefore, the effects of the boundary conditions entered the

evaluation area beginning at the fourth cycle.

The reductions of the initial unadjustment for the integrated

continuity equation are shown in the left panel of Fig. 3. The

rate of percentage reductions drops off after a large decline at

the first pass but still reductions by the eighth pass were mostly

between 97-99 percent. The slower convergence at level 9 (92

percent after 8 cycles) and also at level 9 for the horizontal

momentum equations may have been the result of large adjustments of

the divergent part of the wind required for mass consistency with

small vertical velocities in the stratosphere.

The initial unadjustments for the hydrostatic and

thermodynamic equations (middle and right panels of Fig. 3)

monotonically decreased by about one half at each cycle. The

percentage reductions of the RMS differences were mostly near 100

percent at all levels by the eighth cycle.

The satisfaction of constraints test shows that convergence

toward a solution was obtained for all levels and for all five

dynamic constraints. Therefore, MODEL IIB represents a significant

advancement over the MODEL II.
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b) Adjustment Departures from Observations

The transferral of the observations to the grid and the

modification of the gridded data to satisfy the dynamical

constraints is a two-step process. Information from the

observations is not available to the second step. Therefore, there

is an implicit assumption that the initial gridded fields correctly

carry the phenomena described by the observations. This assumption

is not strictly true and it is necessary to grid the data with

sufficient accuracy so that analysis error does not dominate the

first and second derivatives. We have modified the widely used

Barnes (1964, 1973) method for gridding meteorological data to

yield significant improvement in the accuracy of the gridded data

and its derivatives (Achtemeier, 1986, 1989).

In the section under a) above, we showed that the variational

objective analysis converges to a solution. Now we seek to find

whether the variational method improved upon the unadjusted

analysis by adjusting the fields to better fit the original

observations.

Consider an "accuracy index" given by the solid lines in Fig.

4. We first calculated two sets of RMS differences, one between

values from the unadjusted fields at observation locations and the

observations and the second between the adjusted fields and the

observations. Then we subtracted from these RMS differences the

standard errors of observation for wind components, height, and
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temperature listed in Table 1. This means that if the results are

zero, the objective analysis has gridded the data to within the

standard error of observation for the data. If the results are

negative, then the objective analysis has produced a better fit to

the observations. Positive values mean that the adjustments have,

on the whole, departed farther from the observations than expected.

In interpreting these results, it must be kept in mind that the

mean winter standard observational error estimates taken from

Hovermale's (1962) results do not exactly express the true

observational error for this case. Thus, some small departure of

either sign from given values should be expected.

The accuracy index for the unadjusted and adjusted heights and

temperatures (Figs. 4a and 4b) were within acceptable limits. The

index for the adjusted heights was displaced toward the positive,

an indication that adjustments away from the observations were

necessary to bring the fields into constraint satisfaction. The

unadjusted fields of the horizontal velocity components were also

within acceptable limits (Figs. 4c and 4d). However, above 800 mb,

large positive values for the adjusted velocity components show

that the variational analysis produced wind fields that were,

significantly different from the observations.

The dashed lines in Fig. 4 are the means of the differences

between the unadjusted (adjusted) fields interpolated to the

observation sites and the observations. Means near zero are

expected unless systematic adjustment is required to < achieve

solution of the variational equations. Means were near zero for
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the heights and the temperatures, except for temperatures near the

tropopause between 300 mb and 200 mb where systematic adjustments

were expected. The means were also near zero for the unadjusted

velocity components. However, large systematic adjustments were

found for the variationally adjusted velocity components (Figs. 4c

and 4d) . The u-components were increased on the average 6 m s"1

between 500 mb and 300 mb. The v-component systematic reduction

was a linear function of pressure. The v-component was on the

average decreased by approximately 8 m s"1 between 300 mb and 200

mb.

There was no systematic modification of the height fields that

could be called upon to explain the adjustments in the velocity

fields. An error in the mathematical derivation of the dynamic

constraints or in the programming is suspected in these cases. The

pattern analysis should provide further insight into the origin of

these large systematic adjustments.
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c) Pattern Analysis: 00 GMT 11 April 1979

Maps of heights, wind vectors, and temperatures were taken

from selected levels within the domain of the variational objective

analysis for 00 GMT, 11 April 1979, in order to interpret the

statistical results presented in subsections a) and b) .

Comparisons were made between patterns in the unadjusted initial

fields and the adjusted fields. The analyses were done on the

synoptic scale however, we note that a mesoscale convective system

was located within the high frequency observation area over parts

of Texas and Oklahoma.

Heights at 60 m intervals and wind vectors at 300 km intervals

are shown in Fig. 5 for 800 mb, 500 mb, and 300 mb. The convention

for wind speed is: flag (25 m s"1) , barb (5 m s"1), and short barb

(2.5 m s"1) . At 800 mb, the circulation center has been displaced

from its unadjusted location over northwestern Colorado to its

adjusted location over eastern Colorado in better agreement with

the center of lowest heights. Elsewhere, adjustments in both

heights and winds at 800 mb were small (Fig. 6). At 500 mb (Fig.

5) , the unadjusted analysis placed a weak short wave trough

oriented eastward into Kansas from the parent trough. No trough

appears in the wind field over Kansas. Thus, winds blow from high

to low heights over Texas and Oklahoma and from low to high heights

over Nebraska. The adjusted winds have been turned to more

westerly in better agreement with the heights over Texas and
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Oklahoma however, east of the Great Plains, the adjusted winds turn

to blow toward higher heights. The same pattern of adjustment is

also evident at the 300 mb jet stream level. The unadjusted

analysis fits the winds with the height field. The adjusted

analysis increases the wind speeds and turns the winds more

westerly to blow toward higher heights.

The differences between the adjusted and unadjusted fields are

shown in Fig. 6 for 500 mb and 300 mb. In general, the variational

objective analysis decreased the heights over the northern states

and increased the heights over the southern states. The 10 m

adjustment over Oklahoma at 500 mb tended to lessen the sharpness

of the short wave trough there. Elsewhere, heights were lowered

15-20 m over Montana.

Fig. 6 also shows that an average 5 m s " 1 westerly component

was added to the wind field at 500 mb and an average 10 m s"1

northwesterly component was added to the 300 mb wind field. This

broad scale adjustment has no apparent relationship to either the

height field adjustment or the synoptic weather pattern.

Fig. 7 shows fields of unadjusted and adjusted mean layer

temperatures for 750 mb, 450 mb, and 250 mb. The unadjusted

patterns at all levels have been preserved by the variational

objective analysis. Temperature adjustments were less than one

degree at 750 mb and 450 mb. The variational analysis cooled the

250 mb layer by an average of 2C. The unadjusted layer average

temperature was too warm across the tropopause and the change was

made to make the temperatures consistent with the heights.
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The variational objective analysis modified height,

temperature, and wind velocity for satisfaction of the dynamic

constraints. We now assess how these adjustments have impacted

upon derivative quantities such as vorticity, divergence, and

vertical velocity that are derived from these basic fields. In

addition, the local tendencies of the velocity components and

temperature are determined from arithmetic sums of adjusted terms.

Patterns of these sensitive variables must be physically realistic

when compared with other data sets such as cloud fields,

precipitation, and independent measurements of the variable.

Patterns of relative vorticity for the unadjusted and adjusted

wind fields are shown in Fig. 8 for 500 mb. The variational

objective analysis shifted the vorticity gradient, identifying the

area of positive vorticity advection and upward vertical velocity,

from over the Texas panhandle to over Oklahoma and Kansas,

locations coincident with the mesoscale convective system.

Elsewhere, there were only small differences between the unadjusted

and adjusted vorticities.

A comparison of the 500 mb vertical velocity patterns (Fig. 9)

shows that the variational objective analysis shifted the center of

maximum vertical velocity eastward from the Texas panhandle to

western Oklahoma in better agreement with the location of the

mesoscale convective system located over central Oklahoma and north

Texas. The variational analysis also weakened the subsidence area

over Nebraska by 2 cm s"1. The subsidence area over Louisiana and

eastern Texas in the unadjusted vertical velocities was replaced by
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2-4 cm s"1 rising motion in the adjusted field. Deep convective

precipitation was located within this area (see shaded area in Fig.

9).

Once the variational objective analysis was completed, the

developmental components of the local tendencies of velocity

components and temperature were recombined with the advective

components, redimensionalized, and expressed as 3-hr changes.

These 3-hr "adjustment" tendencies were compared with tendencies

calculated from 3-hr rawinsonde data collected over the central

part of the United States as part of the NASA AVE/SESAME project

(see fine dashed grid in Fig. 1) . Then "unadjusted" 3-hr

tendencies were calculated upon substitution of unadjusted

variables into the dynamical constraints and solving for the

tendency terms. Inherent in these comparisons is an assumption

that the observed 3-hr tendencies are "ground truth". This

assumption is not strictly valid for the following reasons. First,

it is likely that some of the observations, either at 0000 GMT or

at 0300 GMT, were influenced by the mesoscale phenomena within the

analysis areas. Second, the unadjusted and adjusted 3-hr

tendencies were calculated from 0000 GMT data and are therefore

centered at 0000 GMT. These tendencies were compared with the

ground truth tendencies that were calculated from observations

taken at both 0000-0300 GMT and are therefore centered at 0130 GMT.

And third, extrapolation of the local tendencies calculated from

the unadjusted and adjusted data has validity only if the time

scales of the passage of the weather systems are much greater than
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three hours.

Fig. 10 shows fields of the 3-hr u-component tendencies at 800

mb and 500 mb. The observed tendencies show increases in u over

Oklahoma and decreases in u over northern Missouri and Iowa. Both

unadjusted and adjusted tendencies show similar features but they

are shifted to the southwest by about 500 km. Note also that the

unadjusted and adjusted tendencies have approximately the same

pattern and the centers from the variational objective analysis

tend to be slightly larger in magnitude.

The v-component tendencies at 800 mb and 500 mb are shown in

Fig 11. Unlike the u-component tendencies, the centers for

unadjusted and adjusted tendencies are approximately collocated

with the observed centers. The magnitudes of the positive center

over Arkansas compare well at 800 mb however the adjusted field

shows little correlation with the observed v-tendencies in the

western half of the grid. At 500 mb, the centers were mostly

collocated however the magnitudes for both the unadjusted and

adjusted v-component tendencies were much greater than the observed

3-hr magnitudes - the magnitudes of the adjusted v-component being

the largest.

At 300 mb, Fig. 12, both unadjusted velocity component

tendencies departed considerably from the observed fields. The

adjusted tendencies appeared to be no more correct.

Table 3 gives correlation coefficients between the unadjusted

(initial) and observed tendencies and between the adjusted

(variational) and observed tendencies for the eight interior levels
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of the analysis domain. Somewhat surprisingly, the adjusted

correlations were higher than the unadjusted correlations for most

levels below 500 mb. In calculating the correlation coefficients

that appear in Table 4, we shifted the adjusted and unadjusted

tendency fields to the northeast approximately 150 km to account

for the 1.5 hr translation of the weather system. The correlations

for the shifted tendencies were larger. The variational objective

analysis gave improvement over the unadjusted u and v tendencies

however, in general the correlations for the adjusted fields were

in the range from 0.5-0.8 below 500 mb and were still negative

above 400 mb. Results for the temperature tendencies in both

tables showed no clear indication of superiority of the adjusted

temperatures over the unadjusted temperatures.

5. Discussion

Based upon our experience with developing a basic variational

objective analysis technique (Achtemeier et al., 1986) we have

derived a new variational objective analysis method that appears to

solve all of the problems encountered with earlier versions. These

problems included the problem of over-determination noted by

Courant (1936), the problem of time consistency that arose upon

applying the direct variational method to local tendencies of wind

velocity components and temperature, the problem of solving a set

of complicated nonlinear partial differential equations, and the

problem of decoupling the divergence equation constraint from the
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remaining dynamical constraints. This version of the objective

analysis contains more equations and requires more complicated

solution methods than were necessary for the 1986 version.

The evaluation presented in this report is only preliminary in

that it identifies problems with the method but does not determine

whether the problems are endemic to the method and therefore

degrade data assimilation or whether the problems arise because of

correctable errors in the mathematical derivations or the

programming.

The satisfactory results of the evaluation are as follows.

1) The method converges for all five dynamic constraints. The

divergent part of the wind is strongly coupled in the

solution. Convergence after only eight cycles ranged mostly

between 98-100 percent of the initial unadjustment with the

poorest convergence at the 9th level still at an acceptable 92

percent.

2) The method gave reasonable adjusted fields of heights and

temperatures from the standpoint of pattern recognition. The

major synoptic weather systems were retained from an accurate

initial objective interpolation to the analysis grid. Smaller

features such as short waves were also retained. The method

did not introduce erroneous wavelengths into the adjusted

fields.

3) Sensitive derivative fields such as vorticity and vertical

velocity were better located with respect to important
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precipitation producing weather systems relative to the

unadjusted fields. Gradients of positive vorticity advection

were collocated with upward vertical velocity centers.

The unsatisfactory results from the evaluation are as follows.

1) The variational objective analysis systematically increased

the zonal component of the wind in a way that caused

significant departures from the original observations. These

departures appeared to be a function of elevation and of

latitude from the grid origin (the largest increases were

found in the eastern part of the grid) . These departures

systematically turned the winds east of the Great Plains to

blow from low to high heights.

2) Though at many levels, the patterns were similar, the

variational objective analysis greatly overestimated the

magnitudes of the local tendencies of the wind components and

temperature. Correlations between verification 3-hr

tendencies and 3-hr tendencies derived from adjusted data

ranged from about 0.5 to 0.8 at levels below 500 mb.

Correlations were mostly very small or negative at 200 mb and

300 mb.

The reasons for the unsatisfactory results await a more

thorough analysis of the method. The systematic increases in the

adjusted wind velocity are suggestive of an error embedded within

the mathematical formulas or coding of the programs. We were able
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to trace the vary large magnitudes of the tendencies to the

advective components. These are relative simple formulations and

it has yet to be determined why large advective changes in velocity

were found in both the unadjusted and adjusted fields but were not

observed.

It could be argued that the large tendencies of the adjusted

fields should have been expected given that a mesoscale convective

system was within the analysis area during the period 0000-0300

GMT. The variational objective analysis was rerun for 1200 GMT 10

April 1979 data set to test this argument. This period was

characterized by the same general synoptic scale long wave trough

over the western United States. There were no significant

precipitation systems active however. The results showed large

magnitude centers of the local tendencies of u and v in both the

unadjusted and adjusted fields. Therefore, the finding of large

magnitude tendencies within the 0000 GMT 11 April variational

analysis was not coincidental with severe weather.

In conclusion, the variational objective analysis represents

a mammoth effort in mathematical development and programming. One

must question whether, if the problems encountered thus far are

solved, the difficulty of the method would limit its use in routine

analysis of meteorological data given that there are other

nonvariational techniques for blending meteorological data that are

being used with success. The answer to the question will in part

be delayed until the methods currently in use have been fully

applied and evaluated.
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Appendix A: The Dynamic Constraints

Following Shuman and Hovermale (1968), the horizontal momentum

equations and the continuity equation that form the basis of the

numerical variational objective analysis/assimilation method are

written below as they appear in an arbitrary vertical coordinate

and cartesian on a conformal projection of the earth:

+d*^f 0 (A.l)
"

dy da dp dy dy

dt do dx dy do dx dy

The hydrostatic equation is,

dp do p

and the thermodynamic equation,

(A>3)

(A.4)

_ _ _ Q
dt dx dy do Cpp cp
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These equations must be subject to several transformations before

they can be used in a successful variational method. These

transformations are described in the following sections.

A.I A Nonlinear Vertical Coordinate System

The vertical coordinate is designed to concentrate horizontal

variations with the lower coordinate surface to levels below a

reference pressure level p*. The coordinate surfaces above p* are

constant pressure surfaces. The transformation into a nonlinear

vertical coordinate was done for the following reasons:

(1) The dynamical equations appear in their simplest form on

pressure surfaces. The complex, compensatory terms are

confined to levels below p*.

(2) Vertical interpolation of meteorological observations to

coordinate surfaces is not required for pressure surfaces.

Further, there is no need to interpolate from sigma

coordinates back to pressure surfaces for purposes of

interpretation of the variationally adjusted fields of data.

(3) Hydrostatic truncation error and pressure gradient force

errors are eliminated on the pressure levels above p*. The

problems of reducing hydrostatic truncation error along
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sloping coordinate surfaces are well known (Achtemeier, 1990) .

Two curves that are piece wise continuous through the second

derivatives make up the nonlinear vertical coordinate. The upper

layer relates to pressure by a straight line. Boundary conditions

are a = 0 at p = pu and a = a* at p = p*. This equation is,

(A.6)

P -Pu

Boundary conditions for the lower curve are a = 1.0 at p = ps and

o-o*

da o*
dp (PS-PU) (A. 7)

=0

at p = p*. The lower curve, a cubic polynomial, is,

o = p (p-p*) 3+o* —, (A.8)
P*-PU

where

-o*--^) (ps-p*)-
3. (A.9)

P*-PU

Fig. A.I shows the distribution of coordinate surfaces below

600 mb for the approximate range of surface pressures (800 to 1025

mb) for the smoothed orography of the variational analysis. The

reference pressure p* is 700 mb. These coordinate surfaces tend to
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follow constant pressure surfaces at locations away from areas of

high elevation. The compression of the coordinate surfaces over

higher elevation is clearly evident.

Other variables that are an outcome of the nonlinear vertical

coordinate appear elsewhere in the transformation of the dynamic

equations. These are:

-Sp(p-p')
J2

2aJel
32 r5

*3 Jp' (A. 10)

where,

a-
P*-PU

It is understood that if p - p* < 0, then p - p* = o.

Terms in the dynamic equations that must be transformed are as

follows:



600

1 TOO

Fig. A.I Distribution of coordinate surfaces below 800 mb.
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(1) The pressure gradient force terms of the horizontal momentum

equations (A.I and A. 2) take the form,

_ _ _ >
op ox ox ox ox

(2) The first term of the continuity equation transforms into

(A. 12)

(3) The hydrostatic equation transforms to,

_
do do

(4) The fourth term of the thermodynamic equation (5) becomes,

RT& RTCP (g3o+gr4(,)s) (A. 14)

A.2 Reduction of Terrain Impacts upon Analysis

Small hydrostatic residuals and related pressure gradient

force errors that plague numerical models written in terrain-

following coordinates have been well documented. Much larger

errors can be generated upon subjecting the pressure gradient terms

of the horizontal momentum equations to the variational operations.

The variational operator separates the two pressure gradient terms

and combines the large now uncompensated terms with terms from the

other equations. The terrain terms, for which the

nonmeteorological part may exceed 90 percent of the magnitude of
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the term, can dominate the adjustment. A test found that these

terms generated large error that caused the variational method to

diverge.

The above problem may be avoided if the hydrostatic terms are

partitioned to isolate the terrain part so that the variation can

be applied to only the meteorological "signal". Note that a

partition not a transforation is done. There is no change in the

vertical coordinate.

The equations were nondimensionalized following the

methodology of Charney (1948) and Haltiner (1971). The resulting

nondimensional variables contain the "whole" signal. The

geopotential height and temperature are partitioned into terrain,

reference, meteorological, and residual categories according to,

In addition, the "whole" pressure is partitioned into terrain and

reference parts according to

PW=PT
+PR (A. 16)

The hydrostatic equation is partitioned into four groups of terms.

These are:

Terrain,

-
PR da da pR do
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Reference,

1 da

Meteorological,

(A. 19)
o

Residual,

[<£*-!> * (*-*o)+Ĵ *!5ES] (A>20)
PR °° PR °°

where ,

Y_Y do

Non-derivative pw and pR in (A. 17) and (A. 20) are layer mean

pressures which must be accurately known for the partition to be

successful. After some experimentation, it was found that, given

the pressures at the top and the bottom of the layer, vthe average

of the arithmetic mean plus twice the geometric mean,

0 . 5 (pc+pb) +
P"

yields accurate layer mean pressure. The superscript zero

identifies observed variables. These are not subject to the

variational operations.

Upon specification of pR (pR = 1000, 900, 800 mb) , pT is known

through (A. 16). Therefore, (A. 17) can be solved for the terrain
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height 0T. 0R is found from the level average of height after the

removal of 0T. Remaining reference variables are obtained through

(A.18) and the meteorological variables are found from (A.15). The

residual group (A.20) exist through small modifications in 0 that

result from the variational operation. These terms are typically

two orders of magnitude smaller than the meteorological terms. If

these terms are represented by B, then the hydrostatic equation

that is subject to the variational operation is,

-I&+YT+P-0 (A.21)
O<3

Now the pressure gradient terms of the horizontal momentum

equations can be partitioned to separate the terrain part from the

meteorological part that is subject to the variational operations.

The modified nondimensional pressure gradient term is,

(A.22)
dx dx '*

where,

dlnp-
n -(T1 1 v

= \ J.
* •= - •V - ^\

dx ax dx

A. 3 Partition of the Local Tendencies of u and v

Local changes in the horizontal velocity components result

from translation of existing disturbances and development.
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Consider that the local change in the u-component of the wind for

a moving weather system is,

(A.23,

where c is the velocity of an advective or steering current

(Fjortoft, 1952) usually a smoothed middle tropospheric wind. Let

u = u0 + u
1 where UQ is the u-component of the steady part of the

circulation and u1 arises from development. Then,

The first term is the local change in u caused by translation of

the steady part of a disturbance. The second term is the local

change of u from development. Note that the vertical advection of

u is considered part of development.

The use of the advective current throughout the troposphere is

valid because most synoptic systems tend to maintain vertical

structure. Any changes in vertical structure are assumed to be the

result of development. However, the variational operations require

that the adjustments be done on total velocity components.

Therefore, we represent the local tendency of u by (A.23) . The

total derivative, an approximate developmental component, is

defined as a new dependent variable, eu = du/dt (ey = dv/dt) .
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A.4 The Dynamic Constraints

Subjecting the dynamic equations (A.I) - (A.5) to the required

transformations yields the following constraints: For the

horizontal momentum equations,

R0(eu+m(u-cx) ̂.

R0[ev+m(u-cx)
y ° (A-25)

As part of the nondimensionalization, the Coriolis parameter and

the map scale factor have been expanded into a Taylor series.

Thus, f = 1 + R,C and m = 1 + R,K where R, = 0.1.

The continuity equation will become an integrated constraint,

(A. 26)

^ K ( + ) . R I ( U + V ) } da-01 dx dy 1 dx dy

The hydrostatic and thermodynamic equations are,

-^k+Yr+P-O (A. 27)
do
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R n* * '

where ,

••-4
is the static stability. Here F is the Froude number and Q*

carries nondimensionalization constants. In addition,

CP

where the latter is introduced as a dependent variable.
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Appendix B: Finite Difference Equations for the Dynamic Constraints

The dynamic equations will be written in centered differences

on an Arakawa D grid (Mesinger and Arakawa, 1976) . Fig. Bl shows

the distribution of variables on the staggered grid. Anthes and

Warner (1978) define the horizontal finite difference operators and

the finite averaging operators as

(B.I)

The i are the east-west indices, the j are the north-south indices

as defined at the grid origin located at the lower left corner of

the grid. In addition, the vertical differences and averages are

defined by

(B.2)

The finite difference equations for the horizontal momentum

equations are,

0 (B.3)
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D

T

FigBJL. The grid template for the variational assimilation model.
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-F5+R0&%+mx(u-cx)xyu%+mx(v-cy) u*

( u-cj v/+in

s+ ^^ ( "x+ V) -J?1 ( "X^+ ^yjKX) 3

M-R [e5 0

(B.4)

(B.5)

(B.6)

The continuity equation is

A f 3 - g 5 (ux+vy) cfo+ (o-o 0) +fq5F1da-0 (B. 7)

The hydrostatic and thermodynamic equations are,

-0 (B.9)
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The seven dynamic equations are referenced at, respectively, M, and

M6 at v, M2 and M7 at u, M3 at D, M4 at T, and Mg at the vertical

velocity.
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Appendix C: The Euler-Lagrange Equations

The gridded fields of meteorological data to be modified are

meshed with the dynamical equations through Sasaki's (1970a)

variational operations. To simplify the derivations, the

frictional terms in the horizontal momentum equations and the

diabatic heating term in the thermodynamic equation were set to

zero.

Early experiments with this method found that the divergent

part of the wind was decoupled from the adjustment with the result

that the continuity equation was not satisfied. Attempts to

readjust the winds through a subsidiary variational formulation

that satisfied the continuity equation were not successful. The

vertical velocity tended to "drift" with the result that the

thermodynamic equation was not satisfied.

Analysis of the problem revealed that the divergent part of

the wind could be coupled with the variational adjustment if an

additional constraint was satisfied. The adjusted variables must

satisfy a particular solution of the integrated vorticity equation.

The integrated divergence and the integrated vorticity theorem must

vanish at the top of the model domain. This requirement is met if

F5 and F6 are made dependent variables and M3 is modified to

0 (C.I)
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In addition,

(C.2)

0 (C.3)

The finite difference analog of the adjustment functional is,

ĵ (c.4)
i J

The integrand, I, . is
1 i J

(<|)y-<))°)2+7i6(<|)(r-<l)0
0)2-ni7(eu-e°)2 (c.5)

(e-O 2+7i (er-c?) 2+7t9 (F5-F5°) 2

-l

The weights, TT,-, are Gauss' precision moduli (Whittaker and

Robinson, 1926) . The gridded initial variables (u°, v°, a°, *°, T°,

eu°, v°, F5°, F6°) enter in a least squares formulation and receive n.

according to their relative accuracies. The strong constraints to

be satisfied exactly are introduced through the Lagrangian

multipliers A,..

Objectively modified meteorological variables are determined

by requiring the first variation on F to vanish. A necessary

condition for the existence of a stationary set is that the

functions are determined from the domain of admissible functions as

solutions of the Euler-Lagrange equations. The variation is to be
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carried out at every point (r,s) within the grid. Thus, upon

setting the weights a. = b, = 1 and differentiating the integrand

(C.5) with respect to the arbitrary variable otr s, the Euler-

Lagrange operator in finite differences is

Each term in I. . that contains an overbar term, that is, each term
1 i J

in M,. [(B.4), (B.6), (B.9), (B.10), (C.I) - C.3)] produces an

overbar term when subjected to the operations specified by (C.6).

Multiplicate overbar terms such as (~XX) are treated having no

overbar so that fewer grid points are required to express these

terms in the Euler-Lagrange equations.

The Euler-Lagrange equations resulting from the operations

specified by (C.6) are

7i1u+A.6-«-F1-0 (C.7)

(C.8)

(C.9)
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(C. 10)

(C.ll)

Variation on the Lagrange multipliers restores the original

constraints [(B.4), (B.6), (B.9), (B.10), (C.I) -C.3)].

The forcing functions, F1 - F4 contain the following:

x] x- [m̂ (v-cy) *] y-R0 ( o
 xf ° ) 0 ( C . 17 )
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Uy+m xAf v/

- [mX2(u-cx) n x- [m*T2
x ( v) n -*0 < o "If" ) 0 ( C . 18 )

(C.19)

In addition, the forcing function F8 is,

*+ (̂ ) ̂+̂ 3 ( 57̂ ) ̂
(C.21)

We observe that the forcing functions contain the nonlinear

terms of their respective equations. Further, the forcing

functions consist of terms that are either observed and therefore

not adjusted, or are multiplied by RQ or R^ These equations may

be therefore linearized and a solution obtained through a cyclical

method as follows. Terms multiplied by R0 or R1 are expressed with

observed variables at the first cycle, and are expressed by

previously adjusted variables at higher cycles. Therefore the

forcing functions are known at each cycle. This solution method is

valid for the latitudes and motion scales for which the Rossby

number is less than one.
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The set of equations [(B.4), (B.6), (B.9), (B.10), (C.I) -

C.3), (C.7) - (C.16)] are the linear algebraic and partial

differential equations to be solved. Variables may be eliminated

to reduce the number of equations to three diagnostic equations in

vorticity, divergence, geopotential. Eliminate A.4, A5, A6, and T

between, respectively, (B.9), (C.10) and (C.ll); (C.8) and (C.15),

and (C.7) and (C.16). Next, eliminate 3 between (C.9) and (C.15)

and (C.16). Then, A, and A,2 may be eliminated between (C.12) and

(C.13) and (C.10), (C.15) and (C.16). If M, and M2 are rewritten,

pulling out the eu and ev terms and designating the remaining terms

as f5 and f6, respectively, then eu and ev may be eliminated by

substituting (C.12) and (C.13) into (C.15) and (C.16). Finally,

letting D = uv + v , the vertical velocity can be eliminated betweenA /

(C.I) and (C.15) and (C.16). Performing the above operations

reduces the Euler-Lagrange equation set to the following five

equations:

0 (C.22)

(C.23)

(C.24)
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-n + (n9 + -̂ l) F6 + (Ao)
 2 [ (g5

2*2) °D] X-G1X-G2-0 (C. 25)

(C.26)

where the forcing functions, G1 - G4 are given by:

°) +F2

-F̂

We are now in a position to substitute (C.22) and (C.23) into

(C.24) and (C.25) to eliminate F5 and F6. We make note that the

substitution generates the following combination of precision

modulus weights,

Further, we note that all of these precision moduli vary

horizontally with horizontal variations in T^. Thus, if,



96

""i (x/Y/a) =7ri (a) f (X/Y) / a°d the horizontal variations of n7 and ?r9

also vary as f(x,y), then by dividing all precision moduli by

f(x/Y)/ the horizontal variations of 7r10 and TT^ may be removed

without changing the relative relationships between the weights.

With these modifications, the Euler-Lagrange equations (C.24) and

(C.25) may be combined to form a divergence equation,

V2 [ (Ao)2g|jt2£>] -^i0D=V2G1+G2x+G3y (C.27)

The vorticity formed from (C.24) and (C.25) is,

-^ (C-28)

Substitution of the vorticity between (C.26) and (C.28) leaves a

diagnostic equation in geopotential,

(C.29)

Equations (C.27) - (C.29) form the three diagnostic equations that

must be solved for a successful variational adjustment. All terms

to the right of the equal sign are forcing functions that contain

either unadjusted initial variables and/or variables that have been

adjusted at the last iteration. (C.29) is solved first to get the

geopotential height. Then the divergence and vorticity are
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obtained through (C.27) and (C .28 ) .
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Appendix D: Boundary Conditions

The variational theory specifies natural boundary conditions

that are consistent with the Euler-Lagrange equations. If it is

assumed that there are no adjustments in the data along the

boundaries, then the boundary conditions may be specified. In the

latter case, the Lagrange multipliers, A.,., are zero at the

boundaries and the initial unadjusted values are used for the

boundary conditions.

Initially, the Euler-Lagrange equations were solved with

specified boundary conditions. These boundary conditions forced

high frequency waves into the solutions for the velocity components

near the boundaries. Divergences calculated from these velocity

components gave large erroneous vertical velocities. We therefore

returned to the natural boundary conditions.

The Euler-Lagrange operator for natural boundary conditions

is,

dl _Q

af-̂ i)= (D>1)

\dxj)

Performing the operation specified by (D.I) yields the following

expressions for the boundary conditions on $
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The terms multiplied by R1 come from the constraints, M1 and M2.

These equations can be solved for the $ boundary conditions subject

to substitutions for the A.,, through the Euler-Lagrange equations

(22)-(35) in the text. The lateral boundary conditions for the x-

and y-boundaries are, respectively,

1 (D.5)

1 < D-6 )

where,

1C7

-5

K,

n7
'12

It,
—7t10
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Several observations may be made with regard to (D.5) and

(D.6) .

(.I) F.,, F2, A.3, f5, and f6 all contain terms that are updated at

each cycle. Thus it is possible to update the boundary

conditions as the interior fields are being adjusted.

(2) These forcing functions contain nonlinear terms that

cannot be calculated at the boundaries unless derivatives are

extrapolated across the boundaries. Therefore, the boundary

equations may be simplified by setting A1 = A2 = A3 = 0 at the

boundaries. It follows therefore, that

F1—K1u°t F2--it1v°, F3--n26°

(3) From (22) and (29),

(D.7)

Given that it is the gradient of A.3 that appears in (D.5) and

(D.6) it follows from (D.7) that gradient of the divergence

must be specified, or in other words, the divergence must be

specified along at least two boundary grid rows or columns in

order that the gradient of A,3 vanish in the * boundary

equations.

(4) n7 is at least two orders of magnitude smaller than the

remaining precision moduli. Neglecting n? leads to the

following simplifications,

The equations for the lateral boundary conditions on $ are thus,
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The boundary conditions for u and v may be found by solving

the same set of equations used for finding the * boundary

conditions but for u and v. The results are,

(D.9)

Tig
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Table 1

Nondimensional standard errors of observation for wind, height,
and temperature and RMS errors for other adjustable meteorological
variables.

VARIABLE
Model Pressure Mean
Level (mb) u20 u40 * A*/Ax A$/Aa Temp a eu

0.00
10 100 0.45 0.23 0.25 0.71

3.68 0.59 2.13 6.98
9 200 0.45 0.23 0.20 0.56

3.21 0.88 1.88 6.98
8 300 0.42 0.21 0.18 0.51

2.28 0.88 1.64 6.51
7 400 0.36 0.18 0.15 0.42

1,53 0.76 1.43 5.58
6 500 0.32 0.16 0.12 0.33

0.97 0.59 1.24 4.65
5 600 0.30 0.15 0.09 0.26

0.61 0.44 1.04 4.34
4 700 0.28 0.14 0.08 0.22

0.53 0.44 0.84 3.72
3 800 0.24 0.12 0.07 0.20

0.47 0.44 0.64 3.26
2 900 0.21 0.11 0.06 0.18

0.42 0.44 0.44 3.10
1 1000 0.20 0.10 0.06 0.17
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Table 2

Nondimensional precision modulus weights for variational objective
analysis.

Model
Level

10

9

8

7

6

5

4

3

2

1

Pressure
(mb)

100

200

300

400

500

600

700

800

900

1000

U20

2.5

2.5

2.8

3.9

4.9

5.6

6.4

8.7

11.3

12.5

$

8.

12.

15.

22.

34.

61.

78.

102.

138.

138.

0

5

4

2

7

7

1

0

9

9

AS/Ax

1.0

1.6

1.9

2.8

4.6

7.4

10.3

12.5

15.4

17.3

VARIABLE
Mean

A*/Aa Temp

0.04

0.05

0.10

0.21

0.53

1.34

1.78

2.26

2.83

1.

0.

0.

0.

1.

2.

2.

2.

2.

4

6

6

9

4

6

6

6

6

a

100

10

0.14

0.19

0.24

0.33

0.46

0.71

1.22

2.58

eu

0.

0.

0.

0.

0.

0.

0.

0.

0.

01

01

01

02

02

03

04

05

05
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Table 3. Correlation coefficients for a 216-point
subset of initial (i) and variational (v) u, v,
and T 3-h forward tendencies at 0000 UTC compared
with observed 3-h tendencies centered at 0130 UTC.

p
lev

200
300
400
500
600
700
800
900

u.. u

-0.
-0.
-0.
-0.
0.
0.
0.
0.

34
10
24
26
36
66
55
65

-0.
-0.
0.
0.
0.
0.
0.
0.

08
24
12
31
56
71
59
60

V,

-0.
0.
0.
0.
0.
0.
0.
0.

27
43
53
43
01
15
54
31

v

-0.
0.
0.
0.
0.
0.
0.
0.

25
10
35
71
35
61
79
37

T-

0.
-0.
0.
0.
0.
0.
0.
0.

17
36
24
75
42
55
48
25

Tv

0.07
0.17
0.59
0.65
0.75
0.72
0.17
0.22

Table 4. Same as Table l but with 0000 UTC
3-h forward tendencies shifted by weather system
translation to approximate 0130 UTC observed
tendencies.

P
lev

200
300
400
500
600
700
800
900

U.

-0.
0.
-0.
-0.
0.
0.
0.
0.

35
01
27
03
56
79
72
82

u

-0
-0
0
0
0
0
0
0

.06

.04

.20

.57

.69

.83

.75

.78

V,

-0.
0.
0.
0.
0.
0.
0.
0.

31
56
45
54
02
22
60
35

v

-0.
0.
0.
0.
0.
0.
0.
0.

25
23
30
73
45
73
87
48

Ti

0.
-0.
0.
0.
0.
0.
0.
0.

12
31
35
83
57
66
55
32

Tv

0.02
0.14
0.67
0.64
0.76
0.71
0.23
0.49
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FIGURE CAPTIONS

Fig. 1. The distribution of rawinsonde stations over the analysis
grid (solid rectangle), evaluation grid (large dashed
rectangle), and SESAME I network (small dashed rectangle).

Fig. 2. Residual reduction as a function of cycle for the u-
component (left panel) and v-component (right panel) dynamic
constraints.

Fig. 3. Residual reduction as a function of cycle for the
integrated continuity equation (left panel), the hydrostatic
equation (middle panel) , and the thermodynamic equation (right
panel).

Fig. 4. RMS differences between unadjusted (adjusted) fields and
observations after removal of standard observation error
(solid lines) and means of differences between unadjusted
(adjusted) fields and observations (dashed lines) for a)
heights, b) temperatures, c) u-comp, and d) v-comp.

Fig. 5. Heights and wind vectors at 800 mb, 500 mb, and 300 mb for
a) unadjusted and b) adjusted fields.

Fig. 6. Differences between adjusted and unadjusted heights and
vector winds at 800 mb, 500 mb, and 300 mb.

Fig. 7. Same as Fig. 5 but for temperature.

Fig. 8. Relative vorticities at 500 mb, a) unadjusted and b)
adjusted.

Fig. 9. a) unadjusted, b) adjusted vertical velocities (cm sec"1)
at 500 mb. Precipitation areas are stippled.

Fig. 10. u-component tendencies for 800 mb (left panels) and 500 mb
(right panels) for a) observed, b) unadjusted, and c) adjusted
fields in m sec"1 3-hr"1.

Fig. 11. Same as Fig. 10 but for the v-component.

Fig. 12. u-component tendencies (left panels) and v-component
tendencies (right panels) at 300 mb for a) observed, b)
unadjusted, and c) adjusted fields in m sec"1 3-hr"1.



?ig. 1. The distribution of rawinsonde stations over the analysis
grid (solid rectangle), evaluation grid (large dashed
rectangle), and SESAME I network (small dashed rectangle).



U-COMP
LEVEL SYMBOL

0. 1

0.0

0.6

0.7

0.6

0.5

g

SO. 4
(/i
u
at

0.3

0.2

0. 1

0.0 "-

V-COMP
LEVEL SYMBOL

Fig. 2. Residual reduction as a function of cycle for the u-
component (left panel) and v-component (right panel) dynamic
constraints.
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Fig. A. RMS differences between unadjusted (adjusted) fields and
observations after removal of standard observation error (solid
lines) and means of differences between unadjusted (adjusted)
fields and observations (dashed lines) for a) heights, b)
temperatures, c) u-comp, and d) v-comp.
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. 300 mb

500 mb

800 mb

Fig. 5. Heights and wind vectors at 800 mb, 500 mb, and 300 mb for
a) unadjusted and b) adjusted fields.
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Fig. 6. Differences between adjusted and unadjusted heights and
vector winds at 800 mb, 500 mb, and 300 mb.



300 mb
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Fig. 7. Same as Fig. 5 but for temperature.



2-

Fig. 8. Relative vorticities at 500 mb, a) unadjusted and b)
adjusted.



Fig. 9. a) unadjusted, b) adjusted vertical velocities (cm sec"1) at
500 mb. Precipitation areas are stippled.



800 mb 500 mb

-2
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Fig. 10. u-component tendencies for 800 mb (left panels) and 500 mb
(right panels) for a) observed, b) unadjusted, and c) adjusted
fields in m sec'1 3-hr"1.



800 mb 500 mb

Fig. 11. Same as Fig. 10 but for the v-component.



u-component v-component

-6

Fig. 12. u-component tendencies (left panels) and v-component
tendencies (right panels) at 300 mb for a) observed, b)
unadjusted, and c) adjusted fields in m sec"1 3-hr"1.




