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Abrtract. Spectral element methods are high-order weighted 
residual techniques for partial differential equations that 
combine the geometric flexibility of finite element methods 
with the rapid convergence o f  spectral techniques. In this 
paper we describe spectral element methods for the 
simulation of incompressible fluid flows, with special 
emphasis on implementation of spectral element techniques o n  
medium-grained parallel processors. T w o  parallel 
architectures are considered: the first, a connnercially 
available message-passing hypercube system; the second, a 
developmental reconfigurable architecture based on Geometry- 
Defining Processors. H i g h  parallel efficiency is obtained 
in hypercube spectral element computations, indicating that 
load balancing and conmumication issues can b e  successfully 
addressed by a high-order technique/medium-grained processor 
algorithm-architecture coupling. 

1. Introduction. Spectral element methods are high-order 
weighted-residual techniques for partial differential 
equations th’at exploit both the common foundations and 
competitive advantages of h-type finite element methods 
(Strang and Fix, 1973) and p-type spectral techniques 
(Gottlieb and Orszag, 1977). In the spectral element 
discretization (Patera, 1984; Maday and Patera, 19871, the 
computational domain i s  broken up into macro-spectral 
elements, and the dependent and independent variables are 
approximated by Nth order tensor-product polynomial 
expansions within the individual subdomains. Variational 
projection operators and Gauss numerical quadrature are used 
to generate the discrete equations, w h i c h  are then solved by 
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direct or iterative procedures based on tensor-product sum- 
factorization techniques. Convergence to the exact solution 
is achieved by increasing the degree, N, of the polynomial 
approximation, while keeping fixed the number and identity 
of the underlying spectral elements. 

domain decomposftion in that an individual spectral element 
is the ”basic unit” as regards strong coupling between 
degrees-of-freedom. In the spectral element discretization 
the elements serve as the basic building blocks for mesh 
generation and physics, as w e l l  as the basic units of 
locally structured mesh. The latter is critical as regards 
the computational efficiency of the method, as i t  allows for 
the sum-factorized tensor-product matrix-vector products 
that render high-order methods competitive with low-order 
techniques. 

Although spectral element methods have proven 
competitive with h-type finite element methods for 
incompressible f l o w  simulations on serial and vector 
computers (Ghaddar, Magen, Mikic and Patera, 1 9 8 6 1 ,  i t  is 
clear that in the future techniques must be judged on the 
basis of their performance on parallel machines. 
Fortunately, whereas g l o b a l  spectral methods are not 
obviously parallelizable due to the strong coupling of all 
points in the computational domain, spectral element methods 
have a n  intrinsic ”domain-decomposition” granularity that in 
turn leads to natural and efficient implementation on 
medium-grained parallel processors. 

of spectral element algorithms. In Section 2 w e  describe 
the basic spectral element discretization as applied to 
elliptic problems. In Section 3 we discuss the parallel 
implementation of spectral element elliptic algorithms on a 
message-passing hypercube system, and present results for 
parallel efficiency on a commercially available Intel 
machine. The viability of the high-order method/medium- 
grained approach to parallel computing is discussed, and the 
issues of communication latency and load-balancing are 
addressed. Lastly, in Section 4 we present a developmental 
special-purpose reconfigurable architecture, Geometry- 
Defining Processors, and discuss the advantages of parallel 
implementation of spectral element and substructured finite 
element algorithms on this novel configuration. 

The spectral element discretization is a n  example of 

In this paper w e  focus on the parallel implementation 

2 .  Spectral Element Methoda. 

Ellintic Equatiopg. To illustrate the basic spectral 
element concepts we first consider the following one- 
dimensional elliptic Helmholtz problem: Find u(x) defined 
over A=]-1,1[ such that 

xEA , 2 (2.1a) -(pu’)’ + x u = f 
(2.lb) u(-l) = u(l) = 0 
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Here prime denotes differentiation, and we assume that p(x) 
’ Po solving (211) is based on the variational formulation: 
Find u E Ho(d) such that 
(2.2) a(u,v> = (f,v) V~EH&O , 
where 

> 0, and E R. Th e  spectral element discretization for 

Here Hi is the space of all functions w h i c h  satisfy the 
homogeneous boundary conditions (2.lb). w h i c h  are square 
integrable, and whose derivatives are also square 
integrable. 

The spectral element discretization proceeds by 
breaking u p  the interval A into K subintervalgh(spectral 
elements) dl,..,%, where the length of the k interval is 
Lk. Th e  space of approximation for the solution y is then 
takef to be a high-order polynomial subspace of H (A), 
Xh-Ho(A)nP . ( A ) ,  where PN K(A)=UkP,(Ak), and P (9,) is the 
space of arl polynomials o f  degree d4 on the inferval nk. 
To accurately evaluate the integrals associated with the 
bilinear forms in (2.3) we use Gauss-Lobatto Legendre 
numerical quadrature with quadrature points and weights 
given by (ti,pi), i-0, . . . . ,  N. 

Th e  abstract formulation of the resulting discrete 
problem is: Find uh E Xh such that 

where subscript h,GL refers to Gauss-Lobatto numerical 
quadrature of the bilinear forms in (2.3). Convergence of 
the spectral element solution uh to the exact solution u is 
then achieved by increasing the d e g r e e  of the approximation, 
N, for fired K. I t  is shown in Maday and Patera (1987) for 
this spectral (p-type) convergence strategy that the error 
goes to zero exponentially fast with N for sufficiently 
smooth solutions u. This should be contrasted to finite 
element h-type methods (N fixed, K=+oo) for w h i c h  algebraic 
convergence results. 

with a nodal basis, that is, any function w in X is 
written in terms of elemental Lagrangian inperpolants hi(r) 
through the Gauss-Lobatto Legendre points, 

T o  proceed further, we represent our polynomial space 
h 

(2.5a) wh(r) k = N k  wihi(r) 
i -0 

xEAk =+ rEA , 

2 ( 2.5 b ) h iEPN(d) , h ( ) = b  ij Vi,j€{O, . . . . ,  N }  , 
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where wk is the value of wh at theOlocal .point ti in the 
interval Ak. 
the boundary conditions we further require that 

In order to ensure C -continuity and satisfy 

(2.6a) k k+l VkE(1,. . . . ,K-1} , "N = wO 
and 
(2.6b) w 1 'WN30 K . 

0 

Expressing u and v in terms of the nodal basis (2.61, and 
choosing each test !unction to be nonzero at only one global 
collocation point, we arrive at the following s e t  of 
discrete equations: 

k 2Lk K , 2 N  N 
E [---E E P pkD .D .u + -p.ui] 1 - 

k-1 Lkj=O q-0 q q 41 qJ j 2 
(2.7) 

K, Lk k E - Pifi P 
k-1 2 1 1  k-1 2 

where pk and fk are the values of p(x) and f(x) at the local 
point rgc in , Di -dh.(Ei)/dr, and denotes the direct 
stiffness's-a$ion drhicd incorporates (2.6). 

with p(x1-e , f(x)=e (cosx-sinx), x = O  on x=]O,T[, for w h i c h  
the solution is u(x)=-sinx. The particular spectral element 
discretization corresponds to division of the domain into 
K-2 similar spectral elements, each of order N. Fig. 1 shows 
a plot of the m a x i m u m  nodal error llu-uhlIGkfLm as a 
function of t h e  total number of degrees-of- eedom N = 2 N + 1 .  
Exponential convergence is achieved due t o  the fact that the 
solution is analytic. 

T h e  spectral element discretization of multi- 
dimensional elliptic equations corresponds to a tensor- 
product extension o f  the one-dimensional method. W e  
consider he,re the two-dimensional Poisson equation on a 
domain nwith homogeneous boundary conditions on the domain 
boundary a?, 
(2.8a) -Au = f in f? 
(2.8b) u = o on LU?. 

As a numerical example we consider the problem (2.1) X X 

In this case the domain is broken up into K quadrilateral 
elements f? l,...,nK, and the corresponding discrete 
formulation is given by: Find uh E Xh such that 

1 where Xh-Ho(n)nPN .<n>. H e r e  PN .(n)=U P (n  1, and P (n  
the space o f  all fiiecewise polybomialskoy dkgree IN Citk i s  



respect to each spatial variable x and y. For a n  error 
analysis of the discretization (2.9) we refer to Funaro 
(1986) where i t  is shown that.spectra1 convergence obtains 
as N = + W  for fixed K .  

A basis for the space Xh is constructed by expressing 
any function w 
element nk ( (k,y> E nk=+ (r,s) E A X A  1, 

in Xh in tensor-product f o r m  within each 

N N  

i-0 j=O 
wk(r,s) k = wk hi(r)h.(s) 

ij J 
(2.10) 9 

where h. are the one-dimensional Gauss-Lobatto Lagrangian 
interpofants defined in (2.5b). The solution u , the 
testfunctions vh, and the (isoparametric) geomeiry ( x  
are all expressed in terms of the nodal basis (2.10>,hink 
the integrals in (2.9) are evaluated using Gauss-Lobatto 
Legendro X Gauss-Lobatto Legendre quadrature in (r,s). 
Choosing appropriate "delta" testfunctions v we arrive at 
the set of linear equations, 

y ) 

h 

(2.11) A u - B f  , 

where A is the discrete Laplace operator, B is the 
(diagonal) mass matrix, and underscore denotes nodal 
unknowns. 

(2.8a) on the domain ~ = ~ x E ] O , l [ , y E ] 0 , 1 + ~ s i n ~ x [ ~  with f-0 and 
u = s i n x . ~ - ~ .  Fig. 2 shows the isoparametric spectral element 
discretization (K-41, while in Figure 3 we plot the m a x i m u m  
nodal error Ilu-u I I  00 as a function of the number of 
degrees-of-freedom in dne spatial direction. Note that 
although the domain is relatively deformed compared to the 
mapped rectilinear problem, exponential convergence to the 
analytic solution is obtained (Ronquist and Patera, 1987). 

As a two-dimensional example w e  c o ~ s i d e r  the problem 

h GL L 

t i c  Solvers. In this section we address the problem of 
solution of the linear positive-definite s y m e t r i c  systems 
resulting f r o m  spectral element discretization of self- 
adjoint elliptic equations. For large three-dimensional 
problems the most attractive approach is iterative solvers, 
both in terms of operation count and storage requirements. 
In order for any solution method to be efficient in this 
context, fast matrix-vector evaluation schemes are needed; 
for high-order methods this is effected by tensor-product 
s u m  factorization, w h i c h  w e  n o w  discuss. 

Consider the solution of the two-dimensional Poisson 
equation (2.8) in a rectilinear domain n, resulting in the 
spectral element discretization (2.11). The matrix-vector 
product A &  can be written in terms of an elemental s u m  

2 Vi,j€{O, . . . . ,  N }  . k K ,  N 

k-1 m,n 
(2.12) A & =  *ijmn k U  mn 
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4 Naive evaluation of (2.12) r e q t i r e s  O(N 
element,kand also requires O(N storage as the elemental 
matrix A is, in general, full. Fortunately, due to the 
tensor-pfJWct representation (2.101, a typical elemental 
t e r m  in (2.12) can be f5ctoZed as (consider here only the 
term corresponding to a /ax 

operations per 

k 2 N N 
(2.13) E D  . [  P P . [  CDqmumj 1 1 1  Vi,j€{O,.. .,N} , 

q-0 q 1  J m-0 
5 yielding an operation c2unt of O(N 

requirement of only O(N 1. 

first forming the elemental matrices Ak knd then evaluating 
the elemental matrix-vector produc s A i  results in an 
operation count and storage of O(N per element, while the 
tensor-product s u m  factorization yields an operation count 
of O(N and storage requirement of O(N 1. I t  should be 
noted that for a ge3fial d-dimensional problem, the 
operation count O(N persists even for isoparametric 
discretization o f  non-separable problems. 

Given the efficient tensor-product evaluation, the 
system (2.11) is solved by preconditioned conjugate gradient 
iteration (Golub and Van Loan, 1983). First, w e  construct A, an h-type finite element approximation defined on the 
spectral element quadrature points (Orszag, 1980; Deville 
and Mund, 1985). The matrix A is then further approximated 
by its incomplete Cholesky decomposition, A , which in turn 
i s  used as a preconditioner for A (Meijerink and Van der 
Vorst, 1977; Kershaw, 1978). As a t e s t  problem to 
demonstrate the preconditioned conjugate gradient algorithm, 
we consider solut'on of th two-dimensional Poisson equation 
(2.8a), with f-e 
(xE~O,l[,yE]O,1[). The domain is discretized by an array o f  
K-K spectral elements, each of order N. In Figure 4 we 
plot the convergence history as a function of number of 
iterations for K -4 and N-5,7,9, and 11. The results 
demonstrate the significant savings due to effective 
preconditioning. 

and a storage 

For three-dimensional problems thg naive approach of 

6 
4 3 

, ~ - ~ e  "', and n defined by 

1 

Stokes Discretizatiom. To illustrate how the spectral 
element discretization of the Poisson equation extends to 
the full Stokes equations we consider here the following 
problem: Find a velocity u=(u,v) and a pressure p in the 
domain n=]-l,l[x]0,27r[ such that 

(2.14a) -VAU + Vp = f , 
(2.14b) -divu = 0 , 

subject to the semi-periodic boundary conditions 

(2.15a) VyE]0,27r[, u(-l,y) = U(1,Y) = 0 9 

(2.15b) VxE]-1,1[, u(x,o) = u(x,27r) 



7 

Here V is the kinematic viscosity of the fluid, and f is the 
prescribed force. 

Due to periodicity the dependent variables can be 
written in terms of Fourier series in the y-direction, 

where i = fl. The Fourier representation (2.16) results in 
a set o f  decoupled equations for each Fourier mode n, the 
variational statement of w h i c h  is given by (dropping the 
Fourier superscfipt ijnd carat notaiion): For n E N* find 
u-(u;v) in X=[Ho(n>l  and p in M-L ( A )  such that 

(2.17b) (q,uX+inv)* = 0 ,Vq€M , 

where 4=]-1,1[, L2 is the space o f  square-integrable 
functions, * refers to complex conjugate, and ($,$'I = In 
d$'*dx . For simplicity, we do not consider the case of n-0. 

In the same fashion as for the elliptic problem (2.11, 
the spectral element discretization proceeds by breaking up 
the interval A into K subintervals and searching for a 
solution in polynomial subspaces of X and M. However, 
choosing the polynomial degree N to be the same for the 
velocity and the pressure leads to spurious modes in the 
pressure. I t  can be shown that an optimal strategy is to 
use a staggered m e s h  for the pressure for w h i c h  the 
associated polynomial degree is N-2 (Bernardi and Maday, 
1987; M a d a y ,  Patera and Rdnquist, 1987a; M a d a y ,  Patera and 
Rdnquist, 
(2.17) can then be stated as: Find uN in XN-[Ho(n)nPN,K(A)l 
and PN in %='N-2,K ( A )  such that 

1987b). The discrete formulation corfesponding to2 

where the subscripts N,G and N,GL denote numerical 
quadrature based on the Gauss and Gauss-Lobatto points, 
respectively. Theoretical error estimates for the 
approximation error due to the discretization (2.18) can be 
found in (Maday and Patera, 1987; M a d a y ,  Patera and 
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Rdnquist, 1987a), in w h i c h  spectral convergence is 
demonstrated as N = + m  for fixed K .  

element nk the velocity uN is expanded in terms of N 
Lagrangian interpolants h through the Gauss-Lobatto i Legendre points i$ i-0, . . . . ,  N , 

W e  now define the bases for the space XN%. Int&ach 
order 

i ’  

(2.19) uN(r) k = N k  uihi(r) 
i-0 

xEAk =+ rEA , 

while the pressure is exkanded in terms of (N-2lth order 
Lagrangian interpolants h through the Gauss Legendre points 
S i ,  i=l, . . . ,  N - 1 ,  i 

Note the Gauss points are naturally suited for the pressure, 
w h i c h  need not be continuous across elemental boundaries. 
The expansions for the the velocity and the pressure are 
inserted into (2.181, appropriate ”delta” testfunctions 
wN E XN and q E % are chosen, and we arrive at the 
discrete saddye problem, 

(2.21a) A X  - R p - B f  * 
(2.21b) - Q x * Q  

T 

Here the matrix A is the discrete Laplacian, B is the mass 
matrix, R is the discrete gradient operator, and underscore 
refers to nodal unknowns. 

p r o b l e m w i t h  V=1.0, n=l, 
As a numerical example we consider the following test 

on a domain A w h i c h  is divided into K-2 similar spectral 
elements. W e  s h o w  in Figure 5 the error in the velocity and 
the pressure as the order N of the polynomial expansions is 
increased. As expected, exponential convergence is achieved 
due to the fact that the solution is analytic. In the case 
w h e n  the solution is less regular we obtain an algebraic 
convergence rate reflecting all the regularity of the 
solution (Maday, Patera and Rdnquist, 1987a). Note that we 
obtain spectral convergence with only limited continuity 
between elements due to proper choice of the w e a k  form. 

W e s  Solvers. In this section we consider solution o f  the 
algebraic system of equations (2.21) resulting f r o m  the 
spectral element discretization o f  the Stokes problem 
(2.14). I t  should be noted that the algorithms presented 
here are equally appropriate for other types o f  variational 
discretizations, and are in fact extensions of the classical 



9 

Uzawa algorithm used in finite element analysis (Girault and 
Raviart, 1986; Bristeau, Glowinski and Periaux, 1987). 

Our approach (Maday, Meiron, Rdnquist and Patera, 1987) 
to solving (2.21) is a global iterative procedure in which 
the original coupled saddle problem is decoupled into two 
positive-definite symnetric forms, 

(2.23a) - A X +  QTp- B f  , 
(2.23b) S p  = Q A - l B f  , 
where 
(2.24) S - Q A - Q  . 1 T  

In the solution process (2.23b) is first solved for p and 
then (2.23a) is solved for u w i t h  p known. 

The equation for the velocities -IL correspond to 
standard Laplacian solves, and the inversion of the matrix A 
is done by conjugate gradient iteration. Although the 
matrix S in thf equation for the pressure is full due to the 
presence of A- , the matrix is extremely well-conditioned. 
In particular, i t  can be shown that the matrix S is 
spectrally close to the variational equivalent of the 
identity matrix L, namely the mass matrix B defined on the 
pressure mesh. This suggests an inner/outer conjugate 
gradient iteration procedure in which the outer iteration 
corresponds to inverting the matrix S preconditioned with 
the diagonal mass matrix B, and the inner iteration 
corresponds to inverting the discrfte Laplacian, A. As the 
condition number for the matrix B- S is of order unity, the 
above algorithm requires only order unity elliptic solves, 
and is therefore an ideal decoupling of the Stokes problem. 

c o n d i t i o n i n g  o f  t h e  m a t r i x  S for t h e  s e m i - p e r i o d i c  m o d e l  
pioblem (2L14) and (2.15). 
Xk(n> of B S for the spectral element discretization w i t h  
K-4, N-7, and w a v e  number n-1. The clustering of the 
spectrum around unity i s  apparent, and a comparison with the 
continuous operator spectrum is seen to be virtually exact 
(Maday, Mei-ron, Rdnquist and Patera, 1987). For multi- 
dimensional Stgkes prpblem i t  can be shown that the 
conditioning n of B- S is still of order unity, allowing 
for rapid convergence of the outer i t e  ation. I t  should be 
noted that the good conditioning of B S is directly related 
to good approximation of the pressure (Maday and Patera, 
1987). 

The discretization and solution of the steady Stokes 
equations (2.14) can be readily extended to solve the 
unsteady Stokes equations. The implicit Stokes algorithm 
can be further extended to solve the unsteady Navier-Stokes 
equations by explicit treatment of the nonlinear term using 
a third-order Adams-Bashforth scheme. The resulting Navier- 
Stokes algorithm can be viewed as an implicit Stokes scheme 
with a n  "augmented" force w h i c h  includes the explicit 

W e  n o w  present numerical results demonstrating the good 

Figure 6 shows the spectrum 

- 1  
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convective contributions. Numerous spectral element 
calculations of unsteady flows have been performed to date 
(Ghaddar, Korczak, Mikic and Patera, 1986; Ghaddar, Magen, 
Mikic and Patera. 1 9 8 6 ) .  

3 .  Implementation on a Hypercube. 

Introduction. I t  is clear that the new direction of high 
performance architectures will entail large scale 
parallelism, and that successful algorithms must be able to 
exploit these new technological advances. The spectral 
element discretization and solution algorithms described in 
the previous section have been designed with parallel 
architecture in m i n d ;  in this section, w e  outline some 
parallel algorithm concepts, and describe the implementation 
of the spectral element method on the Intel iPSC Hypercube 
parallel processor. 

The Intel iPSC Hypercube is typical of the general 
class of parallel architectures for which our algorithms are 
appropriate. The Intel machine is a true multiple 
instruction-multiple data parallel processor, with M-2 
processors arranged in a classical hypercube fashion (Saad 
and Schultz,1985). Each processor has local source code 
operating on local data, w i t h  execution proceeding 
asynchronously until data is needed f r o m  another processor 
in the system. Information is exchanged between processors 
via a message passing scheme, in w h i c h  data-send and 
data-receive statements are issued by ?he participating 
processors. Efficient use of all the processors can be 
achieved only if the ratio of communication time to 
computation time is small, and if all the processors have 
the same amount of w o r k ,  that i s ,  are balanced as regards 
their computational load. 

the Navier-Stokes p r o b l e m w h i c h  a l l o w  for successful 
parallelization are the following: 

The key aspects o f  the spectral element formulation of 

a) use of a domain decomposition approach; 
b) limited coupling between domains; 
c) high order discretization within domains; 
d )  iterative solution techniques. 

Point (a) addresses the central issue of h o w  one divides the 
problem among the available processors. Following the 
domain decomposition approach, one or more spectral elements 
are assigned to each processor, w i t h  all the coefficients, 
geometry, and data associated with each element being 
locally resident. For our problem, the most natural 
decomposition is geometric, that i s ,  adjacent elements 
reside on the same processor s o  that inter-processor 
c o m u n i c a t i o n  can be minimized. An alternative approach is 
to use a random element placement such that incremental w o r k  
associated with local m e s h  refinement is distributed among 
several processors (Fox and O t t o ,  1 9 8 5 ) .  
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Points (b) and (c) address the requirement that there 
be minimal comnunication/computation if high parallel 
efficiencies are to be attained. 
condition at elemental i n t e r f a c e ~ ~ i m p l i e j  that the inter- 
element communication will be O ( N  ) in R , w h i l e  the high- 
order discr8tization implies that the computational w o r k  
will be O ( N  (see Section 2). In essence, high-order 
methods imply a large amount of computation per point, thus 
resulting in a l o w  ratio of communication to computation. 
Point (d) essentially addresses the load balance issue; 
iterative procedures such as conjugate gradient iteration 
are more readily amenable to node-simultaneous calculation 
than direct methods such as Gaussian elimination. By the 
same argument standard conjugate gradient preconditioning 
algorithms, such as incomplete Cholesky factorization, are 
not readily parallelizable; w o r k  is underway to find 
suitable alternatives. 

T h e  Co continuity 

A l P o r i t h m D e s c r i p t i u .  At the heart of the parallel Navier- 
Stokes algorithm are the elliptic solvers w h i c h  employ 
(unpreconditioned) conjugate gradient iteration (Golub and 
V a n  L o a n ,  1983). T o  illustrate the parallel implementation 
w e  describe the central step in this procedure, w h i c h  i s  
formation and evaluation of matrix vector products of the 
type: 

( 3 . 1 )  3-42 9 

w h e r e 2  is the desired global result vector, p is a n  
intermediate search direction, and A is the global Laplacian 
operator defined in Section 2. By definition of the 
variational statement (2.2-2.31, (3.1) c a n  be written as: 

(3.2) 

w h e r e  Ak is the local Laplace operatorkcoupling the nodal 
unknowns within the kth element, and p represents the 
values of p in element k. 

To compute r. in parallel, we first calculate 

( 3 . 3 )  k k  r. - k = A p  

and then compute 

( 3 . 4 )  

k=1,2,. . . , K  , 

H e r e  direct stiffness corresponds to summation o f  all 
elemental nodal values corresponding to the same global 
degree-of-freedom. Note that in practice ( 3 . 4 )  is not a 
global operation, but corresponds to local exchange of face 
data between neighboring spectral elements. T h e  sequence o f  
steps ( 3 . 3 - 3 . 4 )  i s  depicted graphically in Figure 7. 

The only other computational step in the conjugate 
gradient algorithm requiring inter-processor .communication 



1 2  

is the evaluation of inner products of the intermediate 
result vectors. This is readily handled using a 
substructuring technique, whereby local contributions to the 
inner product are computed on individual processors and then 
sumned via a binary-tree-like gather and sum. T h e  final 
result is then redistributed to all the processors via the 
same binary tree, resulting in a total communication count 
of 2D, wh e r e  D is the dimension of the hypercube network 
(Saad and Schultz, 1985). The communication associated with 
the inner products is therefore small compared to that 
associated with direct stiffness sumnation. 

Since the direct stiffness summation (3.4) invo ves 
only the faces of the spectrgl elements i t  is a n  O(N 
operation (per elementl4in R , whereas the matrix-vector 
product ( 3 . 3 )  is a n  O(N ) operation. T h e  ratio of 
calculation to c o m u n i c a t i o n  i s  therefore O(N 1, w h i c h  will 
typi.cally be quite large and will thus result in non- 
comnunication bound simulations. Note also that the direct 
stiffness s u m m e s s a g e  length of N2 will be relatively large, 
and thus startup costs associated with each data-send will 
be amortized over a large number of w o r d s ,  particularly on 
pipelined configurations. T h u s ,  in theory, the spectral 
element/conjugate gradient algorithm suffers little 
comnunication overhead when implemented on a distributed 
memory parallel processor. 

practice, w e  plot in Figure 8 parallel gfficiency 77 vs. D 
for solution to a Poisson equation in R . Parallel 
efficiency is defined here as: 

1 

As a n  example of the c o m u n i c a t i o n  overhead incurred in 

(3.5) T1 
7 7 -  . 

where M=2D is the number of processors, and T is the time 
required to s o l v e  a given problem on m processors. The 
efficiencies range f r o m  0.96 to 0.99 for D ranging f r o m  0 to 
5 .  T h e  K-32 spectral element discretization used in this 
example is of moderate order, N=6; higher order solutions 
will s h o w  a further increase in parallel efficiency. 

strong function of the particular hardware used. T h e  
results of Figure 8 w e r e  obtained on a D-5 iPSC Hypercube 
without high performance vector processors. Increases in 
floating point performance will increase the absolute 
calculation speed, but will at the same time make the 
parallel efficiency worse. T h e  question remains as to 
whether c o m u n i c a t i o n s  capability will continue to keep pace 
with the rapid advances in floating point hardware. 

rn 

T h e  actual efficiency obtained will of course be a 

Virtual Parallel Processor. Central to the development of 
the parallel spectral element algorithm is the treatment of 
each element as a separate entity, that is, as a virtual 
processor. A l l  data structures are set up on a n  element by 
element basis, and all operations are executed element by 
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element on this element-local data. In this w a y ,  
parallelism is inherent in the algorithm, and not overly 
dependent upon the particular machine on w h i c h  the code is 
run. 

T h e  practical implementation of this virtual parallel 
processor concept is relatively simple. T h e  critical 
feature is that all outer loops in the code run over the 
number of elements; on a serial machine, loops extend over 
the entire domain, while on a parallel machine, loops extend 
over the subset of elements associated with a given 
processor. T h e  source code on each of the processors is 
therefore identical. T h e  spectral element-virtual processor 
association further insures that the f e w  operations 
requiring c o m u n i c a t  ion between processors (direct stiffness 
sunmation, inner product evaluation) can be easily effected 
by device drivers w h i c h  translate send and receive 
subroutines into hardware-compatible d a t c s e n d  and d a t a  
receive comnands. 

Alternative A l g P r i t W A r c h i t e c t u r e  Coup-. W e  n o w  
consider our particular choice of architecture and algorithm 
in light of other available alternatives. O u r  algorithm is 
w e l l  suited for w h a t  w e  define as medium-grained parallel 
processing. Defining Nt to be the total number of degrees- 
of-freedom, M to be the number of processors, and p = Nt/M, 
w e  classify systems as 

coarse-grained: Nt =+m, M fixed, P + 0 , 
medium-grained: N, =+m, M = + o o ,  p < < l ,  ( p  =& 0 )  ; 

Coarse-grained machines d o  not exploit the full parallel 
potential o f  our algorithm and are consequently not of 
interest. I t  is also fairly c l e a r ,  u priori. that high- 
order methods will not readily parallelize on fine-grained 
systems due to c o m u n i c a t i o n  considerations. W e  therefore 
restrict our comparison to h i g h - o r d e r / m e d i u m - g r a i n e d  
couplings v e r s u s  low-orderlfine-grained couplings. 

W e  first note that a low-order approach is necessarily 
going to require m a n y  m o r e  points to achieve the same level 
of accuracy as the spectral element method. H e n c e ,  the 
fine-grained system will need many m o r e  processors than the 
number of degrees-of-freedom in the spectral element 
solution. Second, for each of the fine-grained processors 
the ratio of c o m u n i c a t i o n  time to computation time will be 
relatively large, as the number of words transmitted during 
direct stiffness summation will be of the same order as the 
number of calculations required to evaluate the local 
residual. T h i r d ,  the messages will of necessity be short on 
a fine-grained processor, and the advantages of pipelined 
communication m a y  not be realized. 

Next, w e  consider the issue of m e s h  refinement. 
Adaptive resolution is readily implemented in the spectral 
elementlmedium-grained algorithm. T h i s  is effected by 

fine-grained: N t + m ,  M a w ,  p =+ 1 
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increasing the order of the polynomial ap.proximation in the 
vicinity of the desired high resolution area (Mavripilis); 
due to spectral accuracy, a n  order of magnitude improvement 
c a n  be obtained at the cost of only a f e w  additional points 
in each spatial direction. Because of this exponential gain 
in accuracy, and because the w o r k  per processor is already 
large, the incremental w o r k  incurred due to refinement will 
be a fraction of the total w o r k  on the processor. 
Therefore, the processor load imbalance resulting f r o m  this 
localized refinement will not be significant. In contrast, 
m e s h  refinement on a fine-grainedllow-order implementation 
will probably require at least a doubling of the number of 
points on the relevant processors to improve local 
resolution. T h e  incremental w o r k  increase w i l l  then be of 
the same order as the initial work, and the parallel 
efficiency for a n  initially well balanced p r o b l e m w i l l  be 
reduced by a significant factor unless a large-scale load 
redistribution is carried out. 

associated a l g o r i t h m m u s t  be coupled to economic 
considerations w h i c h  are difficult to predict. T h e  above 
discussion should only be considered as plausibility 
arguments for a high-order method/medium-grained coupling. 

Ultimately, the choice of parallel architecture and 

4. Geometry Defining Processors (GDPs). 

tivation. The use of the hypercube for solution of finite 
or spectral element equations as described in Section 3 
results in efficient parallel solution of '  partial 
differential equations (PDE) in three dimensional 
geometries. However, w h e n  applied to this class o f  
problems, the general-purpose hypercube c o m u n i c a t i o n s  
network is too flexible, a n d ,  at the same time, non-optimal. 
In particular, as more processors are applied to the 
solution of a problem, the hypercube's log(M) connections 
will gro w ,  and eventually exceed, the number required for 
nearest neighbor c o m u n i c a t i o n ;  these unnecessary 
connections represent a significant increase in per 
processor cost and complexity. Furthermore, even with the 
available lpg(M) connections, computational problems in 
complex geometries w i l l  require some inter-processor 
conmunication to be routed through intermediate nodes, 
potentially resulting in increased communication latency. 

parallel processing issue that has not yet been explicitly 
considered in this paper. This is the mapping problem 
(Bokhari, 1979) . ,  w h i c h  addresses h o w  spectral (or finite) 
elements should be distributed onto a particular processor 
configuration. T h i s  mapping is typically performed by a 
(serial) front-end, w h i c h  is also responsible for the 
related activity of m e s h  generation. A number of computer- 
aided design systems have been designed to facilitate the 
transfer of a problem geometry f r o m  the physical domain to a 
computer representation, however the input and display of 
three dimensional objects and domains via essentially two 

T h e  issue of inter-processor communication raises a 
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dimensional tools is often cumbersome, and contributes 
little to solution of the associated parallel processing 
mapping problem. 

and convenient m e s h  generation appear superficially 
unrelated, i t  c a n  be seen that they a r e ,  in fact, intimately 
connected. In essense, m e s h  generation is related to the 
problem of specifying domain and connection topology, w h i c h  
is, in turn, a central issue in the subsequent parallel 
solution of the governing PDEs. In this section w e  briefly 
describe a special purpose parallel architecture that 
simulateously addresses the m e s h  generation and parallel 
solution problems by exploiting their underlying 
similarities (Dewey and Patera, 1 9 8 7 ) .  

Although the problems of efficient parallel solution 

Processors. Geometry-Defining Processors 
(GDPs) are microprocessors housed in physical g e o m e t r f c  
p a c k a g e s  w h i c h  c a n  be easily m a n u a l l y  assembled or 
reconfigured to define any particular system geometry. An 
individual GDP is aware of the parameters of its physical 
package, is able to communicate with neighboring G D P s  as 
well as with a host processor, and is capable of performing 
independent numerical computations. T o  solve a PDE, that 
is, to simulate a physical system, G D P s  are assembled in a 
"scale" model of the actual geometry, a s  shown in Figure 9 .  
T h e  GDP assembly provides a means for geometry input, and 
subsequently functions as a n  optimally-connected dedicated 
parallel processor for the particular problem at hand. 

GDP is shown schematically in Figure 10 for the simple case 
of a rectangular two-dimensional GDP. A communication port 
on each face of the GDP allows for two types of 
communication within the GDP assembly. F i r s t ,  each GDP is 
able to communicate with neighboring G D P s  through local 
busses. T h e  local bus is reconfigurable, in that the lines 
emanating f r o m  different faces can be internally connected 
to route messages through the GDP;  this allows high-speed, 
parallel, non-nearest-neighbor communication (e.g., for 
vector reduction operations (Lin and S i p s ,  1 9 8 6 ) ) .  T h e  
second type of comnunication supported by the GDP faces is a 
g l o b a l  bus w h i c h  all G D P s  and the host computer c a n  access. 
T h i s  bus is primarily used for communication between the 
host computer and one or more of the GDPs. 

Each GDP-resident microprocessor, in addition to 
controlling communications, performs local calculations 
related to m e s h  generation or equation solution using 
programs and parameters downloaded f r o m  the host computer 
via the global bus. T h e  G D P s  in a n  assembly are 
synchronized by the global bus, however they otherwise 
operate independently, performing autonomous calculations on 
locally-available data. 

following sections present details of the operation of GDP 
assemblies w h e n  applied to m e s h  generation and parallel 
solution. 

T h e  basic processor/communication structure of a single 

With the above description of a n  individual GDP, the 
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M e s h  Generation with GDPs. GDP m e s h  generation proceeds 
through several steps of c o m u n i c a t i o n  and computation. 
After (manual) assembly of the desired geometry, the host 
interrogates the assembly of G D P s  to determine the number, 
names, and geometry types of the constituent GDPs. N e x t ,  
each GDP is instructed to determine and report any 
connections between itself and its neighbors. By virtue of 
their physical proximity, and hence communication proximity 
through the local busses, the information needed to 
determine these connections is locally available to each 
GDP. Finally, by "integrating" the geometry-type and 
connection information obtained f r o m  the GDP assembly, the 
host-resident software can determine the absolute geometry 
of the assembly. 

With a philosophy similar t o  that of the graphics 
tablet, the G D P s  a l l o w  for data input directly in physical 
space, with all symbolic, computational-space processing 
performed transparently to the user. B o t h  the minimal 
learning curve associated with initial use of G D P s ,  and the 
minimal time required for subsequent particular realizations 
of GDP assemblies, should m a k e  the devices a useful addition 
to conventional software geometry-input techniques. 

Parallel Solution with GDPs. Geometry-Defining Processor 
solution of partial differential equations proceeds as 
follows. The physical domain is first (manually) 
constructed as shown in Figure 9 ,  and the system geometry is 
then determined by the host as described in the previous 
subsection. I t  should be noted that the geometry as input 
by the G D P s  need only represent a "rough-cut" of the actual 
system geometry, as conventional computer-aided design tools 
can be used to subsequently tailor the GDP shapes in 
software. 

a substructure of finite or spectral elements. Note that 
the mapping problem has been completely eliminated: with no 
computational overhead the processor/elements are now 
optimally connected in that neighboring elements in problem 
space are represented b y  connnunicating processors in 
computational space. In addition to this nearest-neighbor 
coxnnunicatiOn m a n y  solution algorithms, such as conjugate 
gradient iteration, require global summation and broadcast; 
these vector reduction operations can be efficiently 
provided through the use of the reconfigurable local bus. 
T h u s ,  the GDP assembly next determines a (time-dependent) 
re-routing of the local busses that will a l l o w  these 
operations to be performed in log(M) time (Dewey and Patera, 
1987). Finally, the discrete equations, physical 
properties, and boundary conditions for each GDP are 
downloaded f r o m  the host processor. 

preliminaries performed, the actual parallel s+olution is 
then initiated and subsequently synchronized by the host 
through the global bus. T h e  operations carried out by the 
G D P s  in this solution stage are essentially identical to 

Next, each GDP is assigned a single, or more generally, 

With these m e s h  generation and equation definition 



those n o w  implemented on the hypercube processor as 
described in Section 3, with the advantage of a n  optimal 
connection topology that results in reduced communication 
latency and greatly reduced hardware and software 
complexity. 

Development o f  Prototvpe GDPs. W e  have developed prototype 
hardware GDPs and associated host software to perform simple 
three-dimensional geometry input. The GDP shapes chosen for 
these prototypes are the cubical and wedge elements shown in 
the example of Figure 9. These prototype GDPs have faces 
outfitted with optical c o m u n i c a t i o n  ports for the local and 
global busses; a typical face is d i a g r a m e d  in Figure 11. 
Optical emitters and detectors (rather than 
physical/electrical connections) are used in order to have 
rotationally independent, easily reconfigurable interfaces. 
A central port on each face is used for global 
co&unication, while the four ports along the periphery of 
each face a l l o w  for local c o m u n i c a t i o n  and the 
determination of the rotational orientation of communicating 
faces. A 1 6  bit microprocessor with nominal amounts of RAM 
and EPROM in each GDP controls the communications ports and 
runs the host-downloaded m e s h  generation program. 

In operation, these prototypes allow simple three- 
dimensional geometries to be conveniently input and 
reconfigured. With these prototypes as a starting point, 
continued research aims to develop sufficient hardware and 
software to a l l o w  for a meaningful evaluation of the GDP 
concept as a mesh-generation and parallel solution 
architecture. 

Conclusion. In this paper, we have shown h o w  high-order 
spectral element algorithms coupled to medium-grained 
message-passing or geometry-defining architectures can 
result in significant improvements in performance over 
conventional serial solution methods. The results presented 
demonstrate that the use of parallel processors for the 
solution o f  complex problems is no longer only a promise, 
but in fact a reality. Future gains in computational power 
will be the result of continued emphasis on parallelism and 
algorithm-architecture coupling. 
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FIGURE CAPTIONS 

F i g u r e  1. A plot o f  the m a x i m u m  n o d a l  e r r o r  in 
the s p e c t r a l  e l e m e n t  s o l u t i o n  to the d i f f e r n t i a l  
e q u a t i o n  (2.1) as a f u n c t i o n  o f  the total n u m b e r  
o f  d e g r e e s - o f - f r e e d o m ,  Nt. In t h i s  p r o b l e m  A-0, 
p(x)-e , f(x>-e (cosx-sinx), for w h i c h  the 
s o l u t i o n  is u--sinx on x E ]O,T[. T h e  d o m a i n  is 
d i v i d e d  into K-2 s p e c t r a l  e l e m e n t s  o f  e q u a l  
length. E x p o n e n t i a l  c o n v e r g e n c e  is a c h i e v e d  a s  
t h e  p o l y n o m i a l  d e g r e e  o f  the f i x e d  e l e m e n t s  is 
i n c r e a s e d .  

X X 

F i g u r e  2. T h e  d o m a i n  a n d  s p a t i a l  d i s c r e t i z a t i o n  
f o r  s o l u t i o n  o f  the P o i s s o n  e q u a t i o n  (2.8a) with 
f-0. D i r i c h l e t  b o u n d a r y  c o n d i t i o n s  a r e  i m p o s e d  
s u c h  that t h e  s o l u t i o n  is ~ = = s i n x . e - ~ .  T h e  d o m a i n  
is d i v i d e d  into K-4 s p e c t r a l  e l e m e n t s .  

F i g u r e  3. A plot o f  the m a x i m u m  n o d a l  e r r o r  in 
the L e g e n d r e  s p e c t r a l  e l e m e n t  s o l u t i o n  o f  t h e  
P o i s s o n  e q u a t i o n  (2.8a) as a f u n c t i o n  o f  the 
t o t a l  n u m b e r  o f  d e g r e e s - o f - f r e e d o m  in o n e  
s p a t i a l  d i r e c t i o n ,  N,. E x p o n e n t i a l  c o n v e r g e n c e  
is a c h i e v e d  a s  the d e g r e e  o f  the the e l e m e n t s  is 
i n c r e a s e d .  

F i g u r e  4. C o n v e r g e n c e  h i s t o r y  for p r e c o n d i t i o n e d  
( c l o s e d  s y m b o l s )  a n d  u n p r e c o n d i t i o n e d  ( o p e n  
s y m b o l s )  c o n j u g a t e  g r a d i e n t  s o l u t i o n  o f  a 
s p e c t r a l  e l e m e n t  P o i s s o n  d i s c r e t i z a t i o n .  In a l l  
c a s e s  K1=4, with N-5(A), 7(0), 9(0), a n d  ll(v). 

F i g u r e  5. T h e  e r r o r  in the v e l o c i t y  uN=(uN,vN) 
a n d  the p r e s s u r e  p as a f u n c t i o n  o f  the t o t a l  
n u m b e  r o f  d e g r e e  - o p -  f r e e d o m  (Gaus s - L o b a  t t o  
L e g e n d r e  p o i n t s )  in the x - d i r e c t i o n ,  N,, when 
s o l v i n g  t h e  test p r o b l e m  (2.22). T h e  t o t a l  
i n t e r v a l  d-1-l,l[ is d i v i d e d  into K-2 s p e c t r a l  
e l e m e n t s  A,-]-l,O[ a n d  A2=]0,1[. E x p o n e n t i a l  
c o n v e r g e n c e  is o b t a i n e d .  

F i g u r e  6. A plot o f  t h z - f p e c t r u m  A (n) o f  the 
p r e c o n d i t i o n e d  m a t r i x  B 
p r e s s u r e  m a t r i x  g i v e n  in (2.24) a n d  E is the 
m a s s  m a t r i x  d e f i n e d  on the G a u s s  p r e s s u r e  m e s h .  
T h e  s p e c t r u m  ( A )  c o r r e s p o n d s  to a s p e c t r a l  
e l e m e n t  d i s c r e t i z a t i o n  K-4, N-7 for a w a v e n u m b e r  
n-1; the a g r e e m e n t  with the c o n t i n u o u s  o p e r a t o r  
s p e c t r u m  (0) is v e r y  g o o d .  

S 
S, w h e r e  5 is the 

F i g u r e  7. C a p t i o n  on f i g u r e .  



Figure 8 .  Parallel efficiency v s .  hypercube 
dimension for solution to three-dimensional 
Poisson equation using sixteen P spectral 
elements. 6 

Figure 9 .  Geometry-Defining Processor assembly 
corresponding to a physical domain D, wh i c h  in 
this case is a block cooled by a heat-sinking 
fin. T h e  GDP subsystem consists of the assembly 
o f  G D P s ,  a GDP interface block, and a controller 
through w h i c h  the host communicates with the 
G D P s  . 
Figure 10. Schematic of a (rectangular, two- 
dimensional) Geometry-Defining Processor. A GDP 
consists of a package, comnunication ports on 
each face, a microprocessor, a floating point 
unit (FPU), RAM and EPROM, a communications 
controller, a global bus (GB), and a 
reconfigurable local bus (LB). 

Figure 11. Layout of a typical face of the 
prototype G D P s ,  showing the arrangement of 
emitters and detectors used for local and global 
comnunication. T h e  use of four local detectors 
allows rotational orientation to be determined. 
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Figure 7 .  O n e  dimensional example of parallel matrix-vector 
multiply, r=&, for three spectral elements. (a) Global and 
local representations o f  intermediate search direction p, 
where * indicates nodab values at element interfaces which 
must be equal by the C continuity requirement. (b) Global 
f o r m  of the discrete Laplace operator, A, where + indicates 
sunmation of overlapping contributions f r o m  local matrices. 
(E) Expansion of global product-into three local products, 
r , evaluated in parallel. The r are th n direct stiffness 
sumned to f o r m  the final result vecior, L . Final ratio o f  
computation to conxnunication is O ( N  in all space 
dimensions. 
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