100 research outputs found

    MOSAR: A Soft-Assistive Mobilizer for Upper Limb Active Use and Rehabilitation

    Get PDF
    In this study, a soft assisted mobilizer called MOSAR from (Mobilizador Suave de Asistencia y Rehabilitación) for upper limb rehabilitation was developed for a 11 years old child with right paretic side. The mobilizer provides a new therapeutic approach to augment his upper limb active use and rehabilitation, by means of exerting elbow (flexion-extension), forearm (pronation-supination) and (flexion-extension along with ulnar-radial deviations) at the wrist. Preliminarily, the design concept of the soft mobilizer was developed through Reverse Engineering of his upper limb: first casting model, silicone model, and later computational model were obtained by 3D scan, which was the parameterized reference for MOSAR development. Then, the manufacture of fabric inflatable soft actuators for driving the MOSAR system were carried out. Lastly, a law close loop control for the inflation-deflation process was implemented to validate FISAs performance. The results demonstrated the feasibility and effectiveness of the FISAs for being a functional tool for upper limb rehabilitation protocols by achieving those previous target motions similar to the range of motion (ROM) of a healthy person or being used in other applications

    Robotic design and modelling of medical lower extremity exoskeletons

    Get PDF
    This study aims to explain the development of the robotic Lower Extremity Exoskeleton (LEE) systems between 1960 and 2019 in chronological order. The scans performed in the exoskeleton system’s design have shown that a modeling program, such as AnyBody, and OpenSim, should be used first to observe the design and software animation, followed by the mechanical development of the system using sensors and motors. Also, the use of OpenSim and AnyBody musculoskeletal system software has been proven to play an essential role in designing the human-exoskeleton by eliminating the high costs and risks of the mechanical designs. Furthermore, these modeling systems can enable rapid optimization of the LEE design by detecting the forces and torques falling on the human muscles

    Otimização muscle-in-the-loop em tempo real para reabilitação física com um exosqueleto ativo: uma mudança de paradigma

    Get PDF
    Assisting human locomotion with a wearable robotic orthosis is still quite challenging, largely due to the complexity of the neuromusculoskeletal system, the time-varying dynamics that accompany motor adaptation, and the uniqueness of every individual’s response to the assistance given by the robot. To this day, these devices have not met their well-known promise yet, mostly due to the fact that they are not perfectly suitable for the rehabilitation of neuropathologic patients. One of the main challenges hampering this goal still relies on the interface and co-dependency between the human and the machine. Nowadays, most commercial exoskeletons replay pre-defined gait patterns, whereas research exoskeletons are switching to controllers based on optimized torque profiles. In most cases, the dynamics of the human musculoskeletal system are still ignored and do not take into account the optimal conditions for inducing a positive modulation of neuromuscular activity. This is because both rehabilitation strategies are still emphasized on the macro level of the whole joint instead of focusing on the muscles’ dynamics and activity, which are the actual anatomical elements that may need to be rehabilitated. Strategies to keep the human in the loop of the exoskeleton’s control laws in real-time may help to overcome these challenges. The main purpose of the present dissertation is to make a paradigm shift in the approach on how the assistance that is given to a subject by an exoskeleton is modelled and controlled during physical rehabilitation. Therefore, in the scope of the present work, it was intended to design, concede, implement, and validate a real-time muscle-in-the-loop optimization model to find the best assistive support ratio that would induce optimal rehabilitation conditions to a specific group of impaired muscles while having a minimum impact on the other healthy muscles. The developed optimization model was implemented in the form of a plugin and was integrated on a neuromechanical model-based interface for driving a bilateral ankle exoskeleton. Experimental pilot tests evaluated the feasibility and effectiveness of the model. Results of the most significant pilots achieved EMG reductions up to 61 ± 3 % in Soleus and 41 ± 10 % in Gastrocnemius Lateralis. Moreover, results also demonstrated the efficiency of the optimization’s specific reduction on rehabilitation by looking into the muscular fatigue after each experiment. Finally, two parallel preliminary studies emerged from the pilots, which looked at muscle adaptation, after a new assistive condition had been applied, over time and at the effect of the lateral positioning of the exoskeleton’s actuators on the leg muscles.Auxiliar a locomoção humana com uma ortose robótica ainda é bastante desafiante, em grande parte devido à complexidade do sistema neuromusculoesquelético, à dinâmica variável no tempo que acompanha a adaptação motora e à singularidade da resposta de cada indivíduo à assistência dada pelo robô. Até hoje, está por cumprir a promessa inicial destes dispositivos, principalmente devido ao facto de não serem perfeitamente adequados para a reabilitação de pacientes neuropatológicos. Um dos principais desafios que dificultam esse objetivo foca-se ainda na interface e na co-dependência entre o ser humano e a máquina. Hoje em dia, a maioria dos exoesqueletos comerciais reproduz padrões de marcha predefinidos, enquanto que os exoesqueletos em investigação estão só agora a mudar para controladores com base em perfis de binário otimizados. Na maioria dos casos, a dinâmica do sistema musculoesquelético humano ainda é ignorada e não tem em consideração as condições ideais para induzir uma modulação positiva da atividade neuromuscular. Isso ocorre porque ambas as estratégias de reabilitação ainda são enfatizadas no nível macro de toda a articulação, em vez de se concentrar na dinâmica e atividade dos músculos, que são os elementos anatómicos que realmente precisam de ser reabilitados. Estratégias para manter o ser humano em loop nos comandos que controlam o exoesqueleto em tempo real podem ajudar a superar estes desafios. O principal objetivo desta dissertação é fazer uma mudança de paradigma na abordagem em como a assistência que é dada a um sujeito por um exosqueleto é modelada e controlada durante a reabilitação física. Portanto, no contexto do presente trabalho, pretendeu-se projetar, conceder, implementar e validar um modelo de otimização muscle-in-the-loop em tempo real para encontrar a melhor relação de suporte capaz de induzir as condições ideais de reabilitação para um grupo específico de músculos fragilizados, tendo um impacto mínimo nos outros músculos saudáveis. O modelo de otimização desenvolvido foi implementado na forma de um plugin e foi integrado numa interface baseada num modelo neuromecânico para o controlo de um exoesqueleto bilateral de tornozelo. Testes experimentais piloto avaliaram a viabilidade e a eficácia do modelo. Os resultados dos testes mais significativos demonstraram reduções de EMG de até 61 ± 3 % no Soleus e 41 ± 10 % no Gastrocnemius Lateral. Adicionalmente, os resultados demonstraram também a eficiência em reabilitação da redução específica no EMG devido à otimização tendo em conta a fadiga muscular após cada teste. Finalmente, dois estudos preliminares paralelos emergiram dos testes piloto, que analisaram a adaptação muscular após uma nova condição assistiva ter sido definida ao longo do tempo e o efeito do posicionamento lateral dos atuadores do exoesqueleto nos músculos da perna.Mestrado em Engenharia Biomédic

    A Review of Assistive Robotic Exoskeletons and Mobility Disorders in Children to Establish Requirements of Such Devices for Paediatric Population

    Get PDF
    There has been growing interest in robotic exoskeletons over the past two decades, and the use of robotic exoskeletons has increased with the development of technology and wider awareness of their benefits. Although there have been numerous studies in the area of robotic exoskeletons, the research appears to have neglected paediatric population end users. Possible reasons behind this could be the continuous growth of children which affects the requirements of the system and also relatively fewer number of immobilized subjects in the paediatric population compared to adult population. In this paper, firstly a review of state of the art of assistive robotic exoskeletons highlighting the lack of research for paediatric population is presented. Secondly, different mobility disorders in children and system requirements of an assistive robotic exoskeleton for these disorders are addressed

    Wearable haptic systems for the fingertip and the hand: taxonomy, review and perspectives

    Get PDF
    In the last decade, we have witnessed a drastic change in the form factor of audio and vision technologies, from heavy and grounded machines to lightweight devices that naturally fit our bodies. However, only recently, haptic systems have started to be designed with wearability in mind. The wearability of haptic systems enables novel forms of communication, cooperation, and integration between humans and machines. Wearable haptic interfaces are capable of communicating with the human wearers during their interaction with the environment they share, in a natural and yet private way. This paper presents a taxonomy and review of wearable haptic systems for the fingertip and the hand, focusing on those systems directly addressing wearability challenges. The paper also discusses the main technological and design challenges for the development of wearable haptic interfaces, and it reports on the future perspectives of the field. Finally, the paper includes two tables summarizing the characteristics and features of the most representative wearable haptic systems for the fingertip and the hand

    Development and assessment of a hand assist device: GRIPIT

    Get PDF
    Background Although various hand assist devices have been commercialized for people with paralysis, they are somewhat limited in terms of tool fixation and device attachment method. Hand exoskeleton robots allow users to grasp a wider range of tools but are heavy, complicated, and bulky owing to the presence of numerous actuators and controllers. The GRIPIT hand assist device overcomes the limitations of both conventional devices and exoskeleton robots by providing improved tool fixation and device attachment in a lightweight and compact device. GRIPIT has been designed to assist tripod grasp for people with spinal cord injury because this grasp posture is frequently used in school and offices for such activities as writing and grasping small objects. Methods The main development objective of GRIPIT is to assist users to grasp tools with their own hand using a lightweight, compact assistive device that is manually operated via a single wire. GRIPIT consists of only a glove, a wire, and a small structure that maintains tendon tension to permit a stable grasp. The tendon routing points are designed to apply force to the thumb, index finger, and middle finger to form a tripod grasp. A tension-maintenance structure sustains the grasp posture with appropriate tension. Following device development, four people with spinal cord injury were recruited to verify the writing performance of GRIPIT compared to the performance of a conventional penholder and handwriting. Writing was chosen as the assessment task because it requires a tripod grasp, which is one of the main performance objectives of GRIPIT. Results New assessment, which includes six different writing tasks, was devised to measure writing ability from various viewpoints including both qualitative and quantitative methods, while most conventional assessments include only qualitative methods or simple time measuring assessments. Appearance, portability, difficulty of wearing, difficulty of grasping the subject, writing sensation, fatigability, and legibility were measured to assess qualitative performance while writing various words and sentences. Results showed that GRIPIT is relatively complicated to wear and use compared to a conventional assist device but has advantages for writing sensation, fatigability, and legibility because it affords sufficient grasp force during writing. Two quantitative performance factors were assessed, accuracy of writing and solidity of writing. To assess accuracy of writing, we asked subjects to draw various figures under given conditions. To assess solidity of writing, pen tip force and the angle variation of the pen were measured. Quantitative evaluation results showed that GRIPIT helps users to write accurately without pen shakes even high force is applied on the pen. Conclusions Qualitative and quantitative results were better when subjects used GRIPIT than when they used the conventional penholder, mainly because GRIPIT allowed them to exert a higher grasp force. Grasp force is important because disabled people cannot control their fingers and thus need to move their entire arm to write, while non-disabled people only need to move their fingers to write. The tension-maintenance structure developed for GRIPIT provides appropriate grasp force and moment balance on the users hand, but the other writing method only fixes the pen using friction force or requires the users arm to generate a grasp force

    Development of Walk Assistive Orthoses for Elderly

    Get PDF
    The proportion of elderly people is rapidly growing and the resources to help them will soon be insufficient. An important difficulty faced by the seniors is locomotion. Among the conditions that may be responsible for gait impairment, the reduced muscular force is one of the most frequent in elderly. This thesis focuses on the design and the evaluation of new solutions for assisting people with reduced vigor. Robotic orthoses are then used to support critical movements required for walking. Over the last two decades, the use of actuated orthotic devices for helping people suffering from gait disorders has been made possible. Recently, autonomous devices have even enabled spinal cord injured patients to walk again by mobilizing their paralyzed limbs. Addressing a completely different population, similar devices have been developed to augment healthy users' capabilities, for instance when heavy loads need to be carried. In this case, the wearer is in charge of the movements and the device simply follows the imposed trajectories. Extra load can then be carried by the exoskeleton without being felt by the user. The walk assistive devices developed as part of this thesis being intended for the elderly, they are at the intersection between these two classes of robotic orthosis. Indeed, most of the seniors who have difficulties to walk are able to move and therefore the mobilization devices are not adapted to them. Even though they need assistance, they surely do not want to have their movements imposed by a robotic device. The performance augmentation exoskeletons cannot help them either, as they simply follow the movements and only reject the external perturbations. A device that follows their movements and that adds the right amount of force when needed is therefore required. In order to achieve the demanding characteristics associated with assistive devices, new actuation solutions based on conventional electric motors are proposed. The combination of specifications in terms of overall weight, required assistance torque, dynamics capabilities or transparency when no support is provided is undeniably challenging. Various mechanisms are therefore presented to address these requirements. Two prototypes based on the proposed solutions are presented. The first one is based on a ball-screw transmission combined with linkages which provides a transmission ratio that is adapted to multiple walk related activities. The second one uses a transmission with clutches and an inversion mechanism which notably limits the losses due to the inertia of the actuation and greatly improves the natural transparency. In order to limit the obstructiveness of the assistive device, we propose to use partial devices that support specific movements. Two studies about the influence of such partial devices on gait are therefore presented. The first one focuses on identifying the potential sources of gait disturbance that orthotic device can induce. The second examines the effects of an assistive controller implemented on one of the developed prototypes. These studies demonstrate that even though the passive influence of a hip assistive orthosis on kinematic patterns is limited, the metabolic cost is increased. A moderate assistance cannot compensate for this undesirable effect but a link between the hip assistance and the ankle trajectory could be established. This is of major importance as the elderly tend to compensate for their weak ankle muscles with their hips

    DESIGN AND DEVELOPMENT OF 3D PRINTED MYOELECTRIC ROBOTIC EXOSKELETON FOR HAND REHABILITATION

    Get PDF
    The development of dynamic rehabilitation devices can be evaluated as a research fast-growing field. Indeed, robot-assisted therapy is an advanced new technology mainly in stroke rehabilitation. Although patients benefit from this enormous development of technology, including the presence of rehabilitation robots, the therapeutic field still suffering a lack in hand robotic rehabilitation devices. In this context, this work proposes a new design of a 3D printed hand exoskeleton for the stroke rehabilitation. Based on the EMG signals measured from the muscles responsible for the hand motion, the designed mechatronic system detects the intention of hand opening or hand closing from the stroked subject. Based on an embedded controller and five servomotors, the low cost robotic system is able to drive in real time three degrees of freedom (DOFs) for each finger. The real tests with stroked subjects showed that the designed hand exoskeleton architecture has a positive effect on the motion finger range and mainly in the hand ability to perform some simple tasks. The case studies showed a good recovery of the motor functions and consequently the developed system efficiency
    corecore