16,327 research outputs found

    Surface microhardening studies on steels after high feed milling

    Get PDF
    The paper deals with the impact of high-speed machining production methods on the integrity of component surfaces. One has to point out that cutting conditions during machining have a significant impact on the final properties of surface and subsurface layers of the workpiece. The conclusion summarizes and analyzes the achieved results of experimental activities on stainless austenitic steel 1.4301, hardened tool steel 1.2343 and high-speed steel 1.3344 (ASP 2023). The results of the work experimental parts demonstrate the influence of cutting parameters on selected surface integrity ones, specifically strengthening the surface and subsurface layers. The performed experiments show that microhardness of a surface layer of the machined material can be influenced by suitable cutting conditions and other cutting process parameters.Web of Science12223022

    Design of ultraprecision machine tools with application to manufacturing of miniature and micro components

    Get PDF
    Currently the underlying necessities for predictability, producibility and productivity remain big issues in ultraprecision machining of miniature/microproducts. The demand on rapid and economic fabrication of miniature/microproducts with complex shapes has also made new challenges for ultraprecision machine tool design. In this paper the design for an ultraprecision machine tool is introduced by describing its key machine elements and machine tool design procedures. The focus is on the review and assessment of the state-of-the-art ultraprecision machining tools. It also illustrates the application promise of miniature/microproducts. The trends on machine tool development, tooling, workpiece material and machining processes are pointed out

    Photoelastic Stress Analysis

    Get PDF

    Finite Element Modeling of Microstructural Changes in Turning of AA7075-T651 Alloy and Validation

    Get PDF
    The surface characteristics of a machined product strongly influence its functional performance. During machining, the grain size of the surface is frequently modified, thus the properties of the machined surface are different to that of the original bulk material. These changes must be taken into account when modeling the surface integrity effects resulting from machining. In the present work, grain size changes induced during turning of AA 7075-T651 (160 HV) alloy are modeled using the Finite Element (FE) method and a user subroutine is implemented in the FE code to describe the microstructural change and to simulate the dynamic recrystallization, with the consequent formation of new grains. In particular, a procedure utilizing the Zener-Hollomon and Hall-Petch equations is implemented in the user subroutine to predict the evolution of the material grain size and the surface hardness when varying the cutting speeds (180 - 720 m/min) and tool nose radii (0.4 - 1.2 mm). All simulations were performed for dry cutting conditions using uncoated carbide tools. The effectiveness of the proposed FE model was demonstrated through its capability to predict grain size evolution and hardness modification from the bulk material to machined surface. The model is validated by comparing the predicted results with those experimentally observed

    Methods of measuring residual stresses in components

    Get PDF
    Residual stresses occur in many manufactured structures and components. Large number of investigations have been carried out to study this phenomenon and its effect on the mechanical characteristics of these components. Over the years, different methods have been developed to measure residual stress for different types of components in order to obtain reliable assessment. The various specific methods have evolved over several decades and their practical applications have greatly benefited from the development of complementary technologies, notably in material cutting, full-field deformation measurement techniques, numerical methods and computing power. These complementary technologies have stimulated advances not only in measurement accuracy and reliability, but also in range of application; much greater detail in residual stresses measurement is now available. This paper aims to classify the different residual stresses measurement methods and to provide an overview of some of the recent advances in this area to help researchers on selecting their techniques among destructive, semi destructive and non destructive techniques depends on their application and the availabilities of those techniques. For each method scope, physical limitation, advantages and disadvantages are summarized. In the end this paper indicates some promising directions for future developments

    Development of optimum clamp combinations for strap-down inertial measuring units with field replaceable sensors

    Get PDF
    Optimum clamp combinations for strap down inertial measuring units with field replaceable sensor
    corecore