735 research outputs found

    Muscle activation mapping of skeletal hand motion: an evolutionary approach.

    Get PDF
    Creating controlled dynamic character animation consists of mathe- matical modelling of muscles and solving the activation dynamics that form the key to coordination. But biomechanical simulation and control is com- putationally expensive involving complex di erential equations and is not suitable for real-time platforms like games. Performing such computations at every time-step reduces frame rate. Modern games use generic soft- ware packages called physics engines to perform a wide variety of in-game physical e ects. The physics engines are optimized for gaming platforms. Therefore, a physics engine compatible model of anatomical muscles and an alternative control architecture is essential to create biomechanical charac- ters in games. This thesis presents a system that generates muscle activations from captured motion by borrowing principles from biomechanics and neural con- trol. A generic physics engine compliant muscle model primitive is also de- veloped. The muscle model primitive forms the motion actuator and is an integral part of the physical model used in the simulation. This thesis investigates a stochastic solution to create a controller that mimics the neural control system employed in the human body. The control system uses evolutionary neural networks that evolve its weights using genetic algorithms. Examples and guidance often act as templates in muscle training during all stages of human life. Similarly, the neural con- troller attempts to learn muscle coordination through input motion samples. The thesis also explores the objective functions developed that aids in the genetic evolution of the neural network. Character interaction with the game world is still a pre-animated behaviour in most current games. Physically-based procedural hand ani- mation is a step towards autonomous interaction of game characters with the game world. The neural controller and the muscle primitive developed are used to animate a dynamic model of a human hand within a real-time physics engine environment

    Skin deformation and animation of character models based on static and dynamic ordinary differential equations.

    Get PDF
    Animated characters play an important role in the field of computer animation, simulation and games. The basic criterion of good character animation is that the animated characters should appear realistic. This can be achieve through proper skin deformations for characters. Although various skin deformation approaches (Joint-based, Example-based, Physics-based, Curve-based and PDE-based) have been developed, the problem of generating realistic skin deformations efficiently with a small data set is a big challenge. In order to address the limitations of skin deformation, this thesis presents a workflow consisting of three main steps. First, the research has developed a new statistical method to determine the positions of joints based on available X-ray images. Second, an effective method for transferring the deformations of the curves to the polygonal model with high accuracy has been developed. Lastly, the research has produced a simple and efficient method to animate skin deformations by introducing a curved-based surface manipulation method combined with physics and data-driven approaches. The novelty of this method depends on a new model of dynamic deformations and an efficient finite difference solution of the model. The application examples indicate that the curve-based dynamic method developed in this thesis can achieve good realism and high computational efficiency with small data sets in the creation of skin deformations

    Real-time simulation and visualisation of cloth using edge-based adaptive meshes

    Get PDF
    Real-time rendering and the animation of realistic virtual environments and characters has progressed at a great pace, following advances in computer graphics hardware in the last decade. The role of cloth simulation is becoming ever more important in the quest to improve the realism of virtual environments. The real-time simulation of cloth and clothing is important for many applications such as virtual reality, crowd simulation, games and software for online clothes shopping. A large number of polygons are necessary to depict the highly exible nature of cloth with wrinkling and frequent changes in its curvature. In combination with the physical calculations which model the deformations, the effort required to simulate cloth in detail is very computationally expensive resulting in much diffculty for its realistic simulation at interactive frame rates. Real-time cloth simulations can lack quality and realism compared to their offline counterparts, since coarse meshes must often be employed for performance reasons. The focus of this thesis is to develop techniques to allow the real-time simulation of realistic cloth and clothing. Adaptive meshes have previously been developed to act as a bridge between low and high polygon meshes, aiming to adaptively exploit variations in the shape of the cloth. The mesh complexity is dynamically increased or refined to balance quality against computational cost during a simulation. A limitation of many approaches is they do not often consider the decimation or coarsening of previously refined areas, or otherwise are not fast enough for real-time applications. A novel edge-based adaptive mesh is developed for the fast incremental refinement and coarsening of a triangular mesh. A mass-spring network is integrated into the mesh permitting the real-time adaptive simulation of cloth, and techniques are developed for the simulation of clothing on an animated character

    Realistic Hair Simulation: Animation and Rendering

    Get PDF
    International audienceThe last five years have seen a profusion of innovative solutions to one of the most challenging tasks in character synthesis: hair simulation. This class covers both recent and novel research ideas in hair animation and rendering, and presents time tested industrial practices that resulted in spectacular imagery

    Animation, Simulation, and Control of Soft Characters using Layered Representations and Simplified Physics-based Methods

    Get PDF
    Realistic behavior of computer generated characters is key to bringing virtual environments, computer games, and other interactive applications to life. The plausibility of a virtual scene is strongly influenced by the way objects move around and interact with each other. Traditionally, actions are limited to motion capture driven or pre-scripted motion of the characters. Physics enhance the sense of realism: physical simulation is required to make objects act as expected in real life. To make gaming and virtual environments truly immersive,it is crucial to simulate the response of characters to collisions and to produce secondary effects such as skin wrinkling and muscle bulging. Unfortunately, existing techniques cannot generally achieve these effects in real time, do not address the coupled response of a character's skeleton and skin to collisions nor do they support artistic control. In this dissertation, I present interactive algorithms that enable physical simulation of deformable characters with high surface detail and support for intuitive deformation control. I propose a novel unified framework for real-time modeling of soft objects with skeletal deformations and surface deformation due to contact, and their interplay for object surfaces with up to tens of thousands of degrees of freedom.I make use of layered models to reduce computational complexity. I introduce dynamic deformation textures, which map three dimensional deformations in the deformable skin layer to a two dimensional domain for extremely efficient parallel computation of the dynamic elasticity equations and optimized hierarchical collision detection. I also enhance layered models with responsive contact handling, to support the interplay between skeletal motion and surface contact and the resulting two-way coupling effects. Finally, I present dynamic morph targets, which enable intuitive control of dynamic skin deformations at run-time by simply sculpting pose-specific surface shapes. The resulting framework enables real-time and directable simulation of soft articulated characters with frictional contact response, capturing the interplay between skeletal dynamics and complex,non-linear skin deformations

    Pump it up : computer animation of a biomechanically based model of muscle using the finite element method

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Architecture, 1992.Includes bibliographical references (leaves 175-179).by David Tzu-Wei Chen.Ph.D

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    A review of computer vision-based approaches for physical rehabilitation and assessment

    Get PDF
    The computer vision community has extensively researched the area of human motion analysis, which primarily focuses on pose estimation, activity recognition, pose or gesture recognition and so on. However for many applications, like monitoring of functional rehabilitation of patients with musculo skeletal or physical impairments, the requirement is to comparatively evaluate human motion. In this survey, we capture important literature on vision-based monitoring and physical rehabilitation that focuses on comparative evaluation of human motion during the past two decades and discuss the state of current research in this area. Unlike other reviews in this area, which are written from a clinical objective, this article presents research in this area from a computer vision application perspective. We propose our own taxonomy of computer vision-based rehabilitation and assessment research which are further divided into sub-categories to capture novelties of each research. The review discusses the challenges of this domain due to the wide ranging human motion abnormalities and difficulty in automatically assessing those abnormalities. Finally, suggestions on the future direction of research are offered

    Differential equation-based shape interpolation for surface blending and facial blendshapes.

    Get PDF
    Differential equation-based shape interpolation has been widely applied in geometric modelling and computer animation. It has the advantages of physics-based, good realism, easy obtaining of high- order continuity, strong ability in describing complicated shapes, and small data of geometric models. Among various applications of differential equation-based shape interpolation, surface blending and facial blendshapes are two active and important topics. Differential equation-based surface blending can be time-independent and time-dependent. Existing differential equation-based surface blending only tackles time-dependen
    • …
    corecore