
Cumhur Ozan Çetinaslan
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Position Manipulation Techniques
for Facial Animation

Thesis submitted to Faculdade de Ciências da Universidade do Porto

Orientador: Verónica Orvalho

Co-orientador:

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

July 2016



Acknowledgments

First and foremost, I would like to express my gratitude to my advisor Verónica

Orvalho for accepting me as a PhD student and giving me her consistent motivation

and support during my research in the field of computer graphics. I also would like to

thank J.P. Lewis for his help during this research.

Furthermore, I would like to thank my colleagues José Serra, Pedro Mendes and all
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Abstract

Computer generated 3D facial animation, where humanoid or cartoon character faces

are animated to express emotions, plays a tremendous role to enrich entertainment,

perception, education and communication. Despite notable advances in the field

of computer graphics addressing the 3D character animation, the evolution of the

current tools and workflows of professional studios are still cumbersome to create the

content for games and movies. As a result, producing high quality facial animation

is a laborious, difficult and time-consuming process which requires both technical

expertise and artistic talent. Animators widely focus on a set of control structure,

which is called rig, to create the appealing expressions by manipulating the 3D virtual

face. However, constructing facial animation using the rig requires deep understanding

of the mechanics beneath that control structure and it involves long training periods

and hard manual effort to carefully locate and manipulate the rig elements to create

believable results. This dissertation describes novel methods to ease the facial anima-

tion workflow by proposing a set of rig-focused algorithms that are designed to create

desired facial expressions practically.

Instead of considering the rig as a set of control structure, we approach the facial rig as

an artistically designed deformation space to create the required facial deformations

for each pose. Therefore, three topics, which lie in the rig deformation space, are

investigated. The first method explored in this research addresses the direct manip-

ulation of the facial rig structure using a sketch-based interface. The method allows

to manipulate a large number of blendshapes, which is a widely adapted technique

for high-quality rigging, simultaneously through a simple stroke in the form of free-

hand drawing. Although there have been recent efforts on direct manipulation of

blendshape models, the final results do not fully satisfy the artists. This is due to

the fact that the mathematical frameworks of direct manipulation cause unintuitive

and unexpected results with a global deformation impact. Our solution reduces the

deformation impact to the local facial geometry by employing the geodesic circles,
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which allows to gain intuitive and satisfactory results. To this end, we have analyzed

the blendshape input data, which includes the vertex coordinates of the target shapes,

and reconfigured the content of the input data according to the desired manipulation

area. Our method is generic and responds automatically without any manual editing.

Inspired by artists’ brush painting on canvas, the method provides drawing strokes

directly on the 3D model.

The second method proposed in the scope of this research is a novel transposition

based approach for blendshape direct manipulation. The existing direct manipulation

methods employ the pseudo-inverses for the underlying mathematical frameworks.

Nevertheless, pseudo-inverse based approaches have a well known instability which

causes unexpected facial movements during the artistic editing. Therefore, we present

a novel and stable method, inspired by the Jacobian Transpose Method, to overcome

the general instability problem of the blendshape direct manipulation with a pin-and-

drag interface.

The third method deployed in this dissertation provides a novel Verlet integration

framework which allows a local physically-based deformation on the arbitrary selected

area of the facial model by using position-based constraints. Traditional frameworks

deform the models as a whole. The proposed framework allows an interactive selection

of the deformation influence area over the model, which improves computational

performance for the position manipulation during the simulation. To this end, we

take advantage of a geodesic distance computation technique based on heat kernel

to determine the selected area. This approach allows producing life-like deformation

effects by enhancing the animation especially during the collision handling phase.

The applications of the proposed methods to actual data are showcased by executing

them to the production quality facial models. We validate our results by comparing

them with the results of the existing methods. The comparisons are performed

qualitatively and quantitatively that are demonstrated on graphical charts and side

by side visual figures. Consequently, the proposed methods in this dissertation aim to

reduce time and human effort during facial animation process by preserving the high

quality results with stable and practical solutions.
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Resumo

A animação facial 3D de personagens realistas e não realistas, gerada por computador,

tem um papel crucial para enriquecer a experiência tanto a ńıvel do entretenimento

como da percepção, educação e comunicação, pois é através de movimentos faciais

que as personagens exprimem emoções. Apesar dos avanços notáveis no campo de

computação gráfica no que toca a animação de personagens 3D, o fluxo de trabalho

é ainda moroso na fase da criação de conteúdo para jogos e filmes. Como resultado,

criar animação facial de alta qualidade é um processo árduo, dif́ıcil e muito demorado

que requer conhecimentos técnicos e art́ısticos. Os animadores tendem a focar-se

na estrutura de controlo, chamada de rig, que é usada para manipular faces 3D,

permitindo assim a criação de expressões apelativas. No entanto, criar uma animação

utilizando o rig requer um conhecimento profundo das mecânicas da estrutura de

controlo, o que envolve não só um longo peŕıodo de formação, como de esforço manual

sobre o modelo, para conseguir localizar e manipular os controlos do rig e assim criar

resultados cred́ıveis. Esta dissertação descreve métodos inovadores que facilitam a

animação facial através de algoritmos focados no rig e que foram desenhados para

permitir a criação de expressões faciais de forma prática.

Em vez de considerar o rig como uma parte da estrutura de controlo, nós abordamos

o rig facial como um espaço de deformação para a criação das deformações necessárias

à obtenção de cada pose. Assim sendo, foram investigados três tópicos ligados aos

espaços de deformação de rigs. O primeiro método explorado aborda a manipulação

directa da estrutura do rig facial através de uma interface baseada em esboços. Este

método permite manipular um número elevado de blendshapes, técnica muito usada

em rigs de alta qualidade, simultaneamente através do desenho de uma simples curva,

tal como é feito em desenho livre. Embora existam esforços recentes no campo da

manipulação directa de modelos com blendshapes, os resultados finais não satisfazem

os artistas. Isto deve-se ao facto da framework matemática da manipulação directa

causar resultados não intuitivos e inesperados com impacto global no modelo. A nossa
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solução reduz o impacto da deformação a uma escala local através da utilização de

ćırculos geodésicos, permitindo assim produzir resultados intuitivos e satisfatórios.

Para tal, analisamos os dados da matriz de blendshapes que incluem as coordenadas

dos vértices das poses alvo e reconfiguramos o seu conteúdo de acordo com a área de

manipulação. O nosso método é genérico e responde automaticamente sem qualquer

tipo de edição manual. Este método foi inspirado na forma como os artistas desenham

numa tela, permitindo desenhar curvas directamente no modelo 3D.

O segundo método proposto no âmbito deste estudo é uma abordagem original baseada

na transposição para a manipulação directa de blendshapes. Os métodos existentes

usam a pseudo-inversa nas respectivas frameworks matemáticas. No entanto, aborda-

gens baseadas na pseudo-inversa são reconhecidamente instáveis, pois causam movi-

mentos faciais inesperados aquando da edição art́ıstica. Consequentemente, apre-

sentamos um método novo e estável inspirado no método de transposição Jacobiano,

superando assim este problema geral de instabilidade associado à manipulação directa

de blendshapes que usam uma interface de ”pin and drag”.

A terceira método proposta nesta dissertação é uma framework inovadora de inte-

gração de verlets, que permite deformações locais, baseadas em leis f́ısicas, sobre

uma área arbitrariamente seleccionada de um modelo facial, através da utilização

de restrições point-based. Frameworks tradicionais deformam o modelo como um

todo. A framework proposta permite a selecção interactiva da zona de influência

da deformação no modelo, permitindo assim ganhos significativos a ńıvel da eficiência

computacional na manipulação das posições seleccionadas dos componentes primitivos

da mesh. Para seleccionar a área utilizada do modelo, tiramos proveito da técnica de

cálculo de distâncias geodésicas obtidas através de um heat kernel. Esta abordagem

produz efeitos realistas, melhorando a animação especialmente na fase de colisões.

Os métodos propostos são demonstrados através da sua aplicação em modelos faciais

com qualidade de produção. Os resultados são validados através da comparação com

métodos existentes. As comparações são qualitativas e quantitativas, podendo ser

visualizadas em gráficos e em imagens lado-a-lado. Os métodos propostos nesta

dissertação têm como objectivo reduzir o tempo e o esforço associados ao processo

de animação facial e permitir ao mesmo tempo manter os resultados de alta qualidade

com soluções práticas e estáveis.
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Chapter 1

Introduction

Computer generated characters have recently become ubiquitous in movies, cartoons,

advertisements and computer games. With the advances of technology and computer

graphics techniques, it is currently possible to create lifelike characters. During the

process of creating character animation, facial animation plays a key role to carry

emotions and personality to the spectators. Especially, the increasing demand of the

entertainment industry for high quality results drives the researchers to investigate new

techniques to automate the animation workflow for realistic 3D characters. Despite

the extensive use of 3D facial animation, the evolution of animation packages and

workflows has been rather slow, because the adaptation of advanced methods to the

current animation pipelines requires a long time period. Since production companies

have their in-house tools and pipelines that are very well established over many years,

accepting novel tools to be part of their pipelines requires a long term verification and

training process. As a result, creating high-quality facial animation is still a labor

intensive and time-consuming process. The goal of this dissertation is to propose a

set of methods that speed up the human effort in the facial animation pipelines. We

propose, firstly, a blendshape direct manipulation method localized on facial geometry

with a user friendly sketch-based interface; secondly, a stable transposition based blend-

shape direct manipulation method; and finally, a novel solution to local deformation of

the facial surface with position-based constraints. This chapter describes the general

motivation, presents a brief summary of the proposed methods and contributions of

this dissertation.

1
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1.1 Motivation

Traditionally, facial animation pipeline is divided into three main stages: modeling,

rigging and animation (see Figure 1.1). During the modeling stage, 3D facial models

are created with a neutral pose as a static object. A skilled artist can create the 3D

model with software packages or alternatively the model can be obtained by scanning

an actor’s face. 3D models are represented by well-organized surface mesh which

consists of large number of primitive faces in the form of connected vertices. The facial

mesh, as an end result of the modeling stage, is passed to the rigging stage to be set

up with a series of controllers such as articulated joints, blendshapes and deformation

elements to form the desired expression or deformation. This stage is crucial since the

purpose of rigging controls is to change facial poses and create desired deformations

on the mesh. These controls are, thereby, conducted directly with input parameters to

determine the range of deformations and allow the user to create facial poses intuitively

with high-level settings. This whole process is called ”rigging” [OBP+12]. After

the rigging stage, the mesh with rig is passed to the last stage which is animation.

Animators perform prolonged movements by using the rig to pose the face over time

according to the scope of the animation. This process is called keyframe animation.

The whole movement of the face is broken into key poses over a certain amount

of time to represent the sequence of the overall expression. All these three stages

require artistic skills, technical knowledge and challenging human effort to gain the

final animation output.

Techniques to create animation are focused on the interpolation of the vertex positions

of the mesh for each time frame. The main purpose of the rig is to define the meaningful

deformation space to create appealing facial expressions by altering the rig parameters

for the keyframe animation process. The configuration of the rig and the geometric

complexity of the mesh are other factors which directly affect the performance of the

animators. When the details of the facial geometry and the rig complexity increase,

manually creating facial poses for each frame of the animation sequence becomes

impractical. Thereby, manipulating rig elements to gain the desired facial pose in

the production environment is a difficult task for the animator. Nevertheless, there

exist practical user interfaces, which provide rig manipulation with their high-level

controls. The user interfaces associated to rig parameters partially ease the workload

of the animators. For example, blendshape is a widely adopted technique for high-

quality facial rigging [LAR+14]. Blendshape model forms a specific facial expression

as a sum of linear combination of target faces that are obtained by either a skilled
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artist manually sculpts from a neutral facial mesh or scanning a human face with

various expressions. Most commercial animation and modeling software packages

support blendshape models with their weight editing interfaces. These interfaces,

nevertheless, allow the animators to perform the pose editing process only on external

modules, where each pose is represented by a slider. Although many advanced tech-

niques and tools exist for facial deformation and animation, meanwhile animators are

surprisingly creating the appealing facial expressions by using the traditional slider

based interfaces. The major reason can be explained as the proposed state-of-the-art

techniques are difficult to adapt on the regularly used processes.

In this dissertation, we aim to overcome the considerable human effort in the animation

stage of the production pipeline by simplifying the mesh deformation in three different

perspectives. First, we explore a direct manipulation technique embedded in a sketch-

based interface to control and manipulate the blendshapes intuitively. Second, we

propose our novel and stable transposition based blendshape direct manipulation

technique. Third, we present a localized physics-based facial surface deformation

framework which provides the position based geometric constraints. Our main objec-

tive is:

to design practical tools and interfaces that provide high-level rig manipulation for

model deformation in the scope of facial animation.

Figure 1.1: An overview of the main stages of facial animation pipeline. All stages are strictly

connected to each other. Any possible alteration in one stage automatically affects the other stages.

For example, a slight change of model geometry may cause a reprocess in rigging stage, or an

additional facial pose request in animation stage may cause a significant change in both rigging

and modeling stages. The scope of this dissertation targets the animation stage.
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1.2 Overview and Challenges

This section summarizes the challenges and gives an overview of the three proposed

methods that have been implemented to demonstrate the animation results. Since the

foundations of the methods differ, the overall motivation shares the same goal that is

to build user friendly animation tools.

1.2.1 Direct Manipulation of Blendshapes Using a Sketch-

based Interface

In cartoon or classical animation, the process begins with artist’s hand drawings of

character’ each pose on paper. This traditional ”pen-paper” approach is considered

as a powerful key element that allows the artists to design and control the pose of the

character for each time-frame directly. Inspired from ”artist’s hand drawing” context,

we propose a novel facial sketching control method that provides the rig manipulation

of 3D facial models.

Recently, sketching tools have gained a significant value for creating, deforming or

controlling the 3D models in computer animation. Most of the sketching methods

have brought solutions to the problems which lie in vertex deformation space of the

model. Our solution, nevertheless, targets the rig deformation space to manipulate the

rig’s structure beneath the model. Traditionally, animators determine the expression

of the face indirectly by assigning values to each of the rig parameters individually.

In order to gain a fully expressive deformation, animators have to handle hundreds of

different rig parameters in a discontinuous approach. Our work attempts to bring the

direct manipulation of blendshapes by using a sketch-based interface into animation

work-flow for controlling the blendshapes in a continuous approach. The animator

can manipulate several blendshape targets at the same time by using a simple stroke.

This speeds up the creation of complex facial poses from multiple target shapes by

only using simple hand movements. Despite the loss of precision, which is usually

associated to the sketching interfaces, our method incorporates the common pin-and-

drag interaction alongside the sketching for required fine-tuning.

Our method allows the animator to control a significant amount of blendshape targets

without any training or understanding of the 3D model’s inner mechanics in terms

of rig. As a result, the animator can perform expeditious animation in real time by

sketching strokes directly onto the 3D facial model.
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1.2.2 Transposition Based Blendshape Direct Manipulation

The ability to directly manipulate the underlying rig of the facial model improves the

controllability and reduces the animation production time by allowing the animator to

alter multiple blendshapes simultaneously with a pin-and-drag operation on the surface

of the model. This concept was originally inspired by inverse kinematics approach,

and first formulated by Lewis and Anjyo [LA10] for the blendshape models. Their

mathematical framework and the contiguous methods involve mostly pseudo-inverse

based solutions. The major reason of pseudo-inverse usage is to compute a ”best-

fit” solution by following a least square approach. Especially in inverse kinematics

applications, pseudo-inverses are heavily employed to find a solution of the end effector

which moves a robot arm (in robotics) or a cartoon character leg (in animation),

etc. As a matter of fact, there exists a close pseudo-inverse relationship between

the manipulated points and blendshape weights in direct manipulation. However,

pseudo-inverse is expensive to compute and has numerical instabilities [Wel93] due to

spreading effect of matrix multiplication. The pseudo-inverse matrix columns, thereby,

tend to have many non-zero values which produce many non-zero weights. Therefore,

this instability of the pseudo-inverse causes to parametrize the least useful blendshape

weights during the artistic editing of the facial model.

To this end, we develop a novel and stable transposition based blendshape direct

manipulation method inspired by the Jacobian Transpose Method. We keep the

classic pin-and-drag interface [LA10] to drive our proposed method. Our new method

provides the artistic facial editing within the deformation directions and directly maps

the pinned points’ movements to the corresponding deformation directions. Our exper-

iments show that our transposition based method produces more smooth and reliable

facial poses than the existing pseudo-inverse based formulations. Besides, our method

intuitively provides localized artistic editing without any additional parametrization

or pre-computation.

1.2.3 Localized Verlet Integration Framework For Facial Mod-

els

Creating lifelike effects on the computer generated characters is a stand-alone challenge

in animation movies or computer games. Besides posing the character by using the

complex rig elements, preparing the virtual characters for the secondary motion effects

such as collision, jiggling or bulging is also a vital problem. Physical phenomena is a
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common approach to simulate the visco-elastic soft surface effects based on Newton’s

second law of motion (F=ma). The main purpose of the physics simulation is the

integration of the 3D character to a virtual environment where external contacts

are applicable. The most known technique for physics-based simulation is the mass-

spring method with a proper time-integration scheme based on the networks of point

masses on the mesh. However, geometric constraints based methods have proven their

potential as an alternative to stiff springs with their stable time-integration. ”Position

Based Dynamics (PBD)” [MHHR07] and ”Nucleus” [Sta09] are the popular works for

the geometric constraints based methods.

Despite the advances in hardware performance, simulating soft surfaces is yet too

expensive for complex models such as a face. Simulating 3D facial model’s flesh by

solving the equations of physics generates the behavior of real world elastic materials.

However, achieving the result of one simulation step may take longer time than

excepted. Existing frameworks and methods enable to perform the physics based

simulations over the whole model. This approach is acceptable for the geometrically

non-complex models or objects. However, performing a physics-based simulation on

the surface of a facial model with thousands of vertices and edges demands a notable

computing cost. In some particular cases, the animator is required to preview the

result from simulation to control and fine-tune, hence the acceleration of the simulation

process is inevitable. To this end, we present a framework which reduces the soft

surface simulation from the whole model to an arbitrary selected area. The solver

uses the Verlet time-integration scheme with a computation of the projected position

constraints similar to PBD approach. Furthermore, we take advantage of the ”heat

method” [CWW13] for computing the geodesic distances to determine the desired

deformation area. The framework is specifically designed for facial models. However,

it can be easily integrated to other applications.

1.3 Main Contributions

The main contributions of this dissertation to the field of Computer Graphics are as

follows:

• a blendshape manipulator placing algorithm to address the manipulator

locating problem which is an open-ended and slightly unnatural task for the an-

imators. In this novel algorithm, the animator simply sketches directly onto the
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3D model the positions of the manipulators that they feel are needed to produce

a particular facial expression. The manipulators activate the blendshapes in the

model and allow the user to interactively create the desired facial poses by a

dragging operation in screen coordinates.

• a facial sketch-based control method to manipulate multiple blendshape

targets at the same time through drawing simple strokes directly onto the 3D

model. The method allows the blendshape manipulation in a continuous way

to create complex 3D facial deformations by using one single surface spline.

The method employs the theoretical foundations of ”Horizontal Curves” [Lev07]

approach.

• a localized blendshape direct manipulation to give a solution to the global

deformation impact of the original ”direct manipulation blendshapes” method

[LA10]. The problem lies in the ”localization” of the pin-and-drag operations

onto a 3D face model. According to the original formulation of [LA10], the

operations affect the whole vertices of the face model. An efficient and effective

localized operation is therefore desired to gain intuitive results. Our solution

allows computing geodesic circles around the constraint points and limiting the

edits to occur only within the circle.

• a transposition based direct manipulation to give a novel and stable so-

lution to the instable pose editing of the original ”direct manipulation blend-

shapes” method [LA10]. Our solution uses transposition based formulation

instead of traditional pseudo-inverse based formulations. Besides, we provide an

intuitive localized artistic editing during the facial pose production for keyframe

animation.

• a localized physics solver for facial animation to enable the soft surface

simulation on the arbitrary selected area of the 3D facial model. Traditional

frameworks deform the models as a whole, however our Verlet integration frame-

work takes the advantage of a state-of-the-art geodesic distance computation

technique, heat method [CWW13], for the interactive selection of the deforma-

tion influence area over the model. Our solution gives a notable benefit in terms

of performance for the position manipulation during the simulation process.

Although the framework is specifically designed for the facial surfaces of the

cartoon characters in 3D computer animation, it can be easily integrated to the

existing frameworks.
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1.4 Thesis Outline

The remaining chapters of this dissertation are organized as follows:

• Chapter 2: Describes the related work on blendshape models, facial deforma-

tion, sketch-based interfaces and posing, position-based dynamics approaches

and soft surface simulation methods.

• Chapter 3: Describes the Direct Manipulation of Blendshapes Using a Sketch-

based Interface method in detail. It presents the major problems faced and

challenges to overcome during each stage of the method. After, it introduces the

details of our solution to blendshape direct manipulation and the novel sketching

interface algorithm developed for this research. The experimental results and

analysis are further demonstrated in this chapter.

• Chapter 4: Describes the Transposition Based Blendshape Direct Manipulation

method in detail. It presents the motivation of the main problem and describes

the details of the proposed method. The comparisons and error analysis are

further reported in this chapter.

• Chapter 5: Describes the Localized Verlet Integration Framework For Facial

Models for simulating the deformation of soft surfaces on the arbitrary selected

area of the 3D facial model in detail. It describes the algorithm we have

developed to integrate the 3D face model into the virtual environment where

external contacts can be applicable. Inspired by the position-based dynamics

approach, the mathematical aspects of the position constraints are explained in

this chapter. The deformation results are demonstrated on the various produc-

tion quality facial models.

• Chapter 6: Concludes the thesis with a summary of our conclusions and

discusses the potential future directions.



Chapter 2

Related Work

Creating appealing facial expressions is one of the most crucial steps in the character

animation workflow. Animator’s major goal is to manipulate the model’s rig to create

complex 3D deformations for bringing the character to life. When we consider that

an individual character may contain several rig controls through the whole body, dif-

ferent deformation methods are required to create the proper animation. For example,

the deformations for facial movements can be controlled by various techniques such

as articulated joints, blendshapes or physics-based functions. Computer graphics’

researchers have been working on these character deformation methods over many

years. In this chapter, we present an overview of various deformation techniques that

have been already in use for the facial animation process. Afterwards, we summarize

the research about the sketch-based user interfaces that govern the hierarchy of the

connected deformers and control parametrization. Next, the previous work on position-

based dynamics methods will be reported. The chapter ends with a brief discussion on

some open issues related to facial animation. The main purpose of this chapter is

to give an overall understanding of the context that is related with the scope of the

proposed dissertation.

9
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2.1 Rig Based Deformation

Facial animation is a challenging problem for the computer graphics field over many

years. In this section, we focus on the existing related work, which explored the rig

based facial deformation to animate the digital face.

2.1.1 Skeleton Based Deformation

One of the most popular methods for facial deformation is to move the control handles

of a skeleton hierarchy that is defined beneath the model. The working principle of this

method starts in the rigging phase. A skilled artist locates the hierarchical skeleton

graph beneath the rest pose of the model. This process has to be executed carefully,

because the movements of the model vertices are dependent to the correspondent

skeleton handles. Komatsu [Kom88] and Magnenat-Thalmann et. al. [MTPT88a] are

prior examples of full body deformation controlled by articulated joints.

Figure 2.1: An example to facial rig based on skeleton hierarchy to control the facial movements

and skin deformation [OMA09]

The connection of the articulated joints and the model geometry is a mandatory

operation to animate the model. The general name of this connection is skinning. The

deformation is controlled directly through joint-vertex influence weights (see figure
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2.1). Easy usage and flexible adaptability throughout the softwares and hardwares

make skinning beneficial in practice [WPP07]. There exist two types of skinning

approaches: smooth skinning [YZ06] and rigid skinning [LCA05]. Defining weight is

a crucial task for deformation of the skin because the influence impact of the vertex is

highly dependent on weight definition [WP02]. Mohr and Gleicher [MG03] proposed

an interactive authoring skin deformation by addressing the limitation of collapsing

elbows. Lewis et al. [LCF00] introduced the pose space deformation approach that

combines skeleton hierarchy and shape morphing. After, Kry et al. [KJP02] followed

the pose space deformation by correcting the skeleton subspace deformation with

vertex displacements. Additionally, James and Twigg [JT05] and Der et al. [DSP06]

proposed another powerful approach that alternates to skeleton subspace deformation,

which is called reduced deformable model. [JT05] proposed automatic algorithm to

generate progressive skinning for articulated motion and [DSP06] offered a manipula-

tion method, which provides direct control for the reduced deformable models. Baran

and Popovic [BP07] offered an optimization method for the skeleton and skin weights

coupling. Kavan et al. [KCZO07] offered another powerful optimization technique

that blends the skin linearly using dual quaternions.

The general process starts to create sensitive skeleton hierarchies. The strategies on

locating the skeleton structures beneath the model are reported in [McK06], [MS07],

[MCC11a]. After the rigger fine tunes the bones for precise translation during move-

ments of joints. As a third step, skinning process is prepared with the proper weight

parametrization. Finally, testing of the manipulation is performed, this process ex-

plained in [RCB05] and [O’N08]. Besides, Orvalho et al. [OBP+12] reported the facial

rigging techniques with deformation methods and recent trends. McLaughlin et al

[MCC11b] surveyed an overview of many challenges that are involved in this area.

2.1.2 Blendshape Deformation

Blendshape is a popular approach for realistic facial animation and defined as ”the

simple linear model of facial expression” [LAR+14]. The known earlier works were

realized by Fred Parke [Par72], [Par74], he experimented the linear interpolations

between faces. With the work of Berggeron and Lachapelle [BL85], shape interpolation

became popular. Similar to skeleton based approaches, blendshape animation starts

with the creation of the blendshape. There are several methods exist in the literature.

Blendshapes can be created by directly scanning the actor’s face or a skilled artist

sculpts the poses on a neutral model. There are several approaches for registering the
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applied scans such as [LDSS99], [ARV07], [WAT+11], [ACP03] and [ASK+05]. Besides

these methods, Pighin et al. [PHL+98] offered a method for fast creation of blendshape

targets from multiple pictures of an actor. Blanz and Vetter [BV99] presented an

approach on fitting a PCA model into a single picture and turning into actors face

with close geometry and texture. Ma et al. [MJC+08] and Bickel et al. [BLB+08]

presented their methods to create the fine details of the mesh such as wrinkles besides

traditional normal and bump map methods. Finally, the most employed technique

to create blendshape model is from a skilled artist manually deform a static neutral

mesh into various target shapes according to the needs [LAR+14].

Producing animation with blendshapes requires defining weight values to blend the

target shapes for each frame of animation (see figure 2.2). The techniques used to

create animation can be briefly separated into keyframe, performance driven and

direct manipulation. Blendshape models are conventionally animated by using the

keyframe technique with the advanced support of the commercial software packages.

Osipa [Osi07] proposed a manual for this broad technique. The performance driven

methods focus on the motion of the actor for driving the facial model [Wil90], [CDB02],

[BBPV03]. Although the keyframe animation methods are popular in animation

movies, the performance driven technique are commonly employed in the visual effects

of the movies [PF05], [PF06]. Beeler et al. [BHB+11] proposed a performance

driven facial capture system by using geometry acquisition based on stereoscopic

reconstruction. Huang et al. [HCTW11] introduced a blendshape interpolation frame-

work, which reconstructs 3D facial performances by combining captured data with a

minimum facial scans. Weise et al. [WBLP11] presented a practical method for

animating face based on a tracking algorithm, which combines three dimensional

geometry and two dimensional texture to gain motion to blendshapes. The major

classification of the performance driven methods lies on the use of 3D motion captured

data as an input [DCFN06], [CLK01]. Besides another classification includes methods

that execute a model-based tracking of the particular video [BBPV03], [CXH03],

[RHKK11], [BGY+13], [CWLZ13]. Performance driven methods often report the

comparisons of PCA based approaches [BBPV03] and blendshape based approaches

[CLK01], [CDB02], [CK05a].

Besides traditional keyframe and performance driven techniques, inverse kinematics

based approaches [Wel93] have been employed to deform or pose character faces. These

types of methods are also called direct manipulation methods. In these approaches,

instead of editting the weight parameters individually, animator moves points or

particular handles to control the model by solving an inverse problem to determine
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Figure 2.2: An example for different target shapes blend to create appealing facial expressions.

Schleifer et al. [SSMCP02]

the underlying weights. However, solving the inverse problem is a challenging task

for the direct manipulation blendshapes, because the number of constraints is high.

In a production quality facial model, the number of blendshape targets can reach to

hundreds. Therefore, finding a solution to the inverse problem of direct manipulation

of blendshapes requires to find a discrete function, which satisfies all these constraints

by touching and moving points on the surface of the model. At the same time, solver

has to find the beneath weights that are most appropriate for that motion. Pighin

et al. [PHL+98] presented a set of techniques, which allows to construct the textured

target shapes rapidly from pictures of an actor with a painterly interface to blend the

parts of the target shapes. Joshi et al. [JTDP03] proposed an automatic segmentation

for localized blendshapes with a direct manipulation technique. Lewis et al. [LA10]

developed a solution to this problem by formulating direct manipulation as a soft

constrained inverse problem of finding the weights of blendshape for the selected point

movements. The solution includes a regularizer for the most optimum results during

interactive editing (see figure 2.3).

Seo et al. [SILN11] proposed an improved version of the regularizer term of the

inverse problem and presented a new matrix compression scheme for complex models

based on hierarchically semi-separable representations with an interactive GPU-based

animation. Tena et al. [TDlTM11] offered to handle more local modification by

dividing the PCA based facial model into independently trained regions, which share

the boundaries with each other. This method also allows the user to directly interact
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Figure 2.3: An example for direct manipulation blendshapes method to pin and drag the point on

the surface of the facial model to determine the corresponding weights. Lewis and Anjyo. [LA10]

and Lewis et al. [LAR+14]

with the model by pinning and dragging. Anjyo and Lewis [ATL12] presented an algo-

rithm, which allows rapid and better edits that learned from the previous animation.

In more recent work, Neumann et al. [NVW+13] introduced a method about localized

deformation, which decomposes the global deformations to localized components from

the performance capture sequences using a variant of sparse PCA. Yu et al. [YL14]

proposed a method to reproduce the facial poses based on blendshape regression, which

uses an optimization procedure to improve the quality of the facial expressions. Holden

et al. [HSK15] developed a real-time solution to the inverse problem of rig function,

which enables mapping of the animation data from character rig to the skeleton of the

character. That method can be applicable to whole character animation as well as

facial bone based animation. Our preliminary mathematical framework has followed

the direction of [LA10] and we have performed the blendshape direct manipulation

with an approach to locate the manipulators onto the facial model intuitively by

using a sketch-based interface and apply the dragging operation after the sketching

procedure (see figure 2.4). We refer to Lewis et al. [LAR+14] as a comprehensive

report about practical and theoretical aspects of blendshape facial models.

Before the direct manipulation applied on blendshape models, it had been executed on

the PCA based models. One of the first application in this field was seen in the work

of Zhang et al. [ZSCS04]. They offered a method that obtains the target shapes from

a high quality stereoscopic data on a template mesh and enable direct editing by using
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Figure 2.4: An example facial pose that is created by using our sketch-based controllers method.

The results are promising in the early stage of the proposed research. [COL15]

adaptive local radial basis blends. Zhang et al. [ZLG+06] proposed a geometry-driven

facial expression synthesis system, which supports hierarchical segmented PCA model

during the point manipulation all hierarchy is effected from the movement. Meyer

and Anderson [MA07] presented a key point subspace acceleration and soft caching

method to use examples to compute a subspace and set critical points and then focus

only these points during further computations. Li and Deng [LD08] extended the

method of [ZLG+06] by using local and hierarchical PCA facial model to edit on basis

of constrained weight propagation. Although the theory behind PCA and blendshape

models are similar, the practical applications for direct manipulation show differences

in terms of the level of detail to reach during the production. Direct manipulation

approaches are practical for both experienced and novice users to reduce the intensive

human effort to create facial poses [LA10].

2.1.3 Physics-based Deformation

Physics-based deformation techniques simulate the flesh, skin surface or muscles to

gain life-like deformation. Simulating 3D facial model’s flesh and tissues allows to
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achieve more realistic animations and expressions by solving the equations of physics.

The methods for simulating physics can be listed as mass-spring network systems,

vector representations and layered spring meshes.

The early work was from Badler and Platt [BP81] which used mass-spring system

to create a physics-based model. Waters [Wat87] proposed several muscle models

consist of linear, sphincter and sheet effects independent from the skeleton hierarchy

to drive the skin deformations. After, Waters and Terzopoulos [WT92] improved the

previous work by adding three layers structure such as cutaneous tissue, subcutaneous

tissue and muscle to create a realistic behavior with various spring parametrization.

Magnenat-Thalmann et al. [MTPT88b] presented an abstract procedure for muscle

activations in facial models. Lee et al. [LTW95] scanned the human face and used

the data to simulate the muscle contractions. Waters and Frisbee [WF95] presented

a speech engine based on simulation of muscles that shows effect only on the surface

of the face.

Regrading the performance captured data extraction, Essa et al. [EBDP96], [EP97]

proposed a system, which analyzes the facial motions with optical flow and combines

them with geometric information and physics-based models to extract a parametric

muscle group representation. Basu et al. [BOP98] explained a method based on

tracking the human lip motions from a video sequence. The offered physically-based

lip model was trained lip motions and PCA was employed to reduce the degrees of

freedom, which allows to match human lip motions automatically. Choe and Ko

[CK05a] simulated the actuation of muscles underneath the skin by using 2D linear

quasi-static finite elements method and synthesize the facial expressions by a captured

data.

With the hardware advances, the real-time physics-based muscle animation was inves-

tigated by Kahler et al. [KHS01], [KHYS02]. The proposed method was developed

to demonstrate skin deformations based on muscle contractions and three layer model

was built to simulate bulging caused by elastic behavior of muscles. In their model,

mass-spring system, which used for muscles simulations connects the skull, muscle

and other skin layers. Sifakis et al. [SNF05], [SSRMF06] presented an accurate

and precise muscle-based facial animation system, which is using a non-linear finite

elements approach. In their system, muscles are activated by sparse markers and

serve as actuators over the skin surface. The system computes the environmental

interactions such as collusion handling and modifies the animation behavior. Aina

and Zhang [AZ10] proposed automatic rig-builder that generates soft-tissue layers

and bone structure. (see figure 2.5)



2.1. RIG BASED DEFORMATION 17

Figure 2.5: Examples of physics-based approaches for rigging and deformation. (a) prior mass-spring

network for the facial muscles [BP81]; (b) facial muscle model with several layers [KHS01]; (c) Facial

muscle and flesh simulation using finite elements approach [SNF05]

Besides the muscle simulations, physics-based skinning has increased its popularity

for creating secondary motion effects during continuous movements of the characters.

Although physics-based skinning approaches create a life-like visual results with an

automatic calculation, the cost of the computations is considerably expensive, which

limits the usage in interactive applications. However, the results of the recent re-

searches in this subject are promising. Sueda et al. [SKP08] proposed a method

for hand and forearm simulation by adding complex routing constraints on muscles

and tendons. Kim and James [KJ11] proposed a domain-decomposition method for

simulating the skin deformation within a subspace framework. The method works in

interactive rates by supporting quasi-static and dynamic deformation with nonlinear

kinematics. McAdams et al. [MZS+11] presented a novel algorithm for the skeleton

driven, high resolution elasticity simulation. Algorithm performs near-interactive

rates, which is designed for soft tissue deformation for virtual characters. Theory

behind their algorithm is based on uniform hexahedral lattice, one point quadrature

scheme and multi-grid method. One of the most efficient use of multi-grid method

can be seen in Zhu et al. [ZSTB10]. They introduced a multi-grid framework for the

simulation of elastic deformable models with an efficient parallel computation. Sin et
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al. [SSB13] developed Vega non-linear finite element library, which supports several

finite element methods to deform the models with different integration schemes. The

library offers an efficient solution for physically-based simulation of the soft surfaces

with its highly optimized algorithm and it can be extended to the existing frameworks

easily. Cong et al [CBE+15] offered a fast and fully automatic morphing algorithm for

generating physically based rig for human and humanoid faces. This algorithm is the

most advanced physically based rigging to simulate flesh and muscle models. It only

accepts a target surface mesh as input and the rest of the whole operation is executed

without any user interaction. The final model can generate several expressions, which

can be applied on different characters using the same muscle stimulation.

Hahn et al. [HMT+12], [HTC+13] presented secondary skin effects inside the span of

the rig space, which allows the simulation of flesh and muscles in a nonlinear space.

Besides, Lie et al. [LYWG13] offered a framework that enables coupling of skeleton and

soft tissue dynamics for control and simulation of soft-body characters (see figure 2.6).

Gao et al. [GMS14] introduced an efficient method that simulates flesh and supports

an ex-rotated elasticity material model. This model offers a plausible approximation

to corotational elasticity with a force model and pose-dependent coefficients. We

refer to [RF16] as a comprehensive report about skinning techniques for articulated

deformable characters.

Figure 2.6: Example of a physics-based skinning with a skeleton and skin geometry coupling and

allows collision handling. Liu et al. [LYWG13]
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2.1.4 Geometric Deformation

Geometric deformation in rigging is a practical operation for the manipulation of the

geometrically complex models. The operators used for geometric deformation provide

simple and efficient interfaces to realize the deformation.

Free Form deformation (FFD) is considered as one of the prior work on geometric

manipulation. It was first introduced by Sederberg and Parry [SP86] and is a com-

monly used operator, which deforms the volumetric object models with manipulation

points that provided in a 3D cubic lattice. Chadwick et al. [CHP89] used FFD for

the animation of hierarchically multi-layered character to provide more control to the

animators. The layers in the hierarchy are listed as behavior, skeleton, muscle, fat

layers with a surface description. Coquillart [Coq90] proposed extended FFD (EFFD)

to provide more general lattices. Kalra et al. [KMMTT92] presented Rational Free-

Form Deformers (RFFD) by extending FFD to control the animation. This method

incorporates weight parameters for each control point, which provides better control

over the geometry. Another important point in this method, Abstract Muscle Action

(AMA) procedure is used for controling the facial animation. AMA procedure was

introduced by Magnenat-Thalmann et al. [MTPT88a], which simulates the specific

action of a face muscle. Each AMA procedure represents a group of muscle that are

used to form the facial expressions. Noh et al. [NFN00] used RFFD for creating

smooth animation procedure on facial models. Luo and Gabrilova [LG06] improved

FFD by using Dirichlet-Voronoi diagrams based data interpolation, which removes

constrains on lattice control. This method is called Dirichlet Free-Form Deformers

(DFFD) and is practical to model facial models from using a pair of input images by

using control points.(see figure 2.7)

Besides FFD, Signh and Fiume [SF98a] proposed to shape the model using wires. The

wires are taken as parametric curves and control the appearance of a region of the

model. This method can be used to create various poses with its parameters. Later,

Singh and Kokkevis [SK00] offered a skinning technique in combination of FFD for

3D character animation.

D.O.G.M.A. model (Deformation Of Geometrical Model Animated) was proposed by

Dubreuil and Bechmann [DB96] for facial animation. This method allows to define

displacement constrains for space deformations and deformation can be governed over

time. Finally, Sumner et al. [SZGP05] introduced mesh-based inverse kinematics

(MeshIK), which offers a novel algorithm for posing meshes without any rig control

or parameter. This method allows to manipulate complex models by using a few
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Figure 2.7: Examples of geometric deformations. (a) facial animation with D.O.G.M.A. model

Dubreuil and Bechmann [DB96]; (b) Rational Free-Form Deformers (RFFD) for face model Noh et

al. [NFN00]; (c) Dirichlet Free-Form Deformers (DFFD) applied on face [LG06]

points and method produces plausible deformation automatically. Later, Sumner et al.

[SSP07] proposed another method for wide range of shape representations and editing

scenarios using a collection of affine transformation organized in a graph structure.

2.2 Sketch-based User Interfaces

3D modeling and animation is a laborious and time consuming task for animators

because of its geometrical complexity, huge number of various shapes involvement

and their relationship in the scene. Current professional software packages feature

powerful and fast tools with advanced solvers for detailed modeling and manipulation.

However, these packages only offer standard interfaces such as window, icon, menu,

pointer (WIMP) [OSSJ08] to perform the operations. Researchers, thereby, have been

investigating on sketching interfaces as an alternative to simplify the cumbersome

interaction procedure. Inspired from cartoon drawings, the main purpose of the

sketching interfaces is to speed up the process of creating or manipulating 3D models

in the animation workflow. This concept is also called as Sketch-Based Interfaces for

Modeling (SBIM), which allows to converge various modeling modules and create a

stable integration with the traditional external interfaces in a natural way.

The early research on sketching was realized by Sutherland [Sut64]. The proposed

system was named as SketchPad, which provided the direct manipulation of the objects

from the screen by using a light-pen. After, sketch-based methods used in a wide

range of applications such as 3D design and modeling [DJW+06], [ASSJ06], animation
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[CON05], engineering [VMS05], deformation [ESA07] etc. We refer to Olsen et al.

[OSSJ08] as a comprehensive report about the modeling techniques using sketch-based

interfaces.

According to the report of Olsen et al. [OSSJ08], the pipeline of general sketch-based

systems are divided into 3 subsequent stages. Sketch acquisition from the user’s action,

is the first stage and followed by sketch filtering, which transforms the raw sketch to

a usable state and last stage is sketch interpretation, which enables to operate on 3D

model with the sketch. In our sketch-based interface, we have taken the advantage

of the general pipeline and applied all the stages to our interface in the order of

acquisition, filtering and interpretation. The following subsections detail the stages of

the sketching pipeline.

2.2.1 Acquisition

The concept of sketching starts by obtaining the drawn stroke from the user. With the

advances on the tablet and mobile devices in the last decade, current technology allows

us to directly interact with the displays. For example user can draw, play or write on

the display just using the finger tips. In past, nevertheless, this type of interaction

was possible only by using special purpose input devices such as wire connected

pens. Although the advanced mobile devices allows natural direct interaction, the

desktop computers are still acquiring the input through standard keyboards and

mouses. However, traditional mouse is a sufficient device to mimic the natural free-

hand drawing on the screen of desktop computer through high-end software packages.

There are several methods that exist to transfer the pen and paper drawing context

to digital environment. Haptic equipments are effective in terms of providing accurate

feedback through their special tools. Hayward et al. [HACH+04] reported the practical

usage of haptic devices with their interfaces in detail. Besides haptics, responsive

workbenches or interactive tabletop displays are valuable alternatives. Schmidt et

al. [SWSJ06] introduced ShapeShop sketch-based modeling system, which works in a

responsive workbench by using BlobTree framework. This framework allows to create

complex, detailed solid models with arbitrary topology. Fleisch et al. [FBSS04] showed

that sketch-based techniques are also compatible with 3D virtual tools.

Recognition of user drawn stroke is the main challenge to operate with the limited

information provided by sketching. Sezgin et al. [SSD06] implemented a system,

which is a combination of several sources of knowledge to provide the early processing
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Figure 2.8: Example of the transformation of a given 2D stroke to 3D curve by using the canvas.

[COL15]

for freehand strokes. In the proposed system, they defined the pixels from the drawn

stroke and created low level geometric simple objects such as lines, curves, rectangles,

ovals, polylines etc.

Another style of recognition is the concept of ”drawing on canvas”. Das. et al.

[DDGG05] used the canvas to transform the sketch from a 2D drawing plane to 3D

world coordinates. They proposed to interpret 2D curve to be the projection of 3D

curve. The canvas is also popular in facial modeling and animation, which will be

discussed later in this chapter. Tsang et al. [TBSR04] presented a sketching tool

for 3D wireframe models, which has an image guided pen-based interface. In this

tool, canvas replaced by images to guide the user. Yang et al. [YSvdP05] offered a

sketching system for modeling with its novel algorithm that searches to match the

points and curves of a set of given 2D templates to the sketches. The system employs

an optimization metric for the matching process. In our sketching user-interface, we

employ the canvas concept. The freehand stroke is applied to the imaginary canvas,

which is aligned to the screen space. Afterwards, 2D stroke is transformed to the 3D
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spline curve (see figure 2.8). Further details of our sketching algorithm is presented in

Chapter 3.

2.2.2 Filtering

Filtering is a necessary step before performing an interpretation of the sketch to clean

the noise from the given stroke. Sezgin and Davis [SD07] proposed a method for

threshold-free feature point detection using scale-space theory, which focuses on the

user’s poor drawing skills and device errors. Biermann et al. [BMZB02] introduced

a sketching method for generating sharp features and trim regions on subdivision

surfaces. Araujo and Jorge [AAJ03] developed a software called BlobMaker for free

form surface modeling, which defines various implicit surfaces geometrically to edit

objects using sketches. Kara and Shimada [KS06] offered another software that is

based on sketching for designing 3D objects. Their tool works in 2 stages: at first stage,

user designs a wireframe model and in second stage user builds surface interpolation

on the wireframe to gain the final solid model. Olsen et al. [OSS07] presented a

new optimization approach to angle quantization for stroke’s each point elements.

All aforementioned methods can be categorized as resampling filtering against the

drawing speed of the user. The extreme type of resampling is polyline approximation,

which is an efficient way to reduce the noise of the given stroke. Igarashi et al.

[IMT99] used the polyline approximation in their software package, called Teddy,

which creates plausible 3D polygonal surfaces from drawn 2D freehand strokes (see

figure 2.9). Kurozumi and Davis [KD81] presented the minimax method, which

minimizes maximum distance between an arbitrary point and the approximated line for

the problem of approximating digitized picture by polygons. Saykol et al. [SGsGU02]

used another polygonal approximation approach with a kinematics based method.

They simplify the polygon vertices according to their velocity and accelerations with

respect to the center of the polygon.

Curve fitting is another powerful approach to reduce the approximation errors. There

are several methods used such as polynomial fitting with least square approximation,

which was explained in [Koe98], Bézier forms [Pie87] and B-splines [KS06]. Further-

more, Alexe et al. [AGB04] presented an interactive modeling technique, which uses

Haar wavelet transformation to obtain the strokes. Cherlin et al. [CSSJ05] applied

revers subdivision to raw stroke samples for fitting a curve to a stroke. Sketched curve

may include linear and smooth sections, thereby segmentation is another alternative

for fitting the curve to the stroke [SMA99], [KGG02], [SSD06], [SMA99].
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Figure 2.9: The screen shot of Teddy software package for modeling objects through sketching

interface. Igarashi et al. [IMT99]

User can always miss the drawing, so redo operation for sketching is inevitable. It

is beneficial to expect the over drawing updates from the sketching systems. This

concept is called oversketching and can be seen in [FRSS04], [AAJ03], [SSD06]. Besides

in some other systems such as [CSSJ05], [KS06], [KDS06], [NISA07], [WPP07], the

original sketch is kept and they allow for oversketching at a later time. On the other

hand, some systems blend multi strokes together. Pusch et al. [PSNW07] analyzed

multiple strokes and replaced them with a single stroke that is the most appropriate

estimation for the artist. Kara and Stahovic [KS05] proposed an approach for stroke

blending targeting the images. Aesthetic is an important factor during modeling

and beautification [IMKT97] is expected from the sketch based system. Igarashi et

al. [IMKT97] first revealed the beautification and applied interactively. Igarashi

and Hughes [IH01] introduced an interface for 3D modeling, which also contains the

interactive beautification. Contero et al. [CNJC03] developed the CIGRO system,

which provides a simple calligraphic interface for generating polyhedral objects.

2.2.3 Interpretation

After the given sketch is filtered, the system interprets the sketch according to the

target operation. In Olsen et al. [OSSJ08], several operations are categorized for

sketching interpretation. These operations are listed as automatic 3D model creation,

augmenting the existing models, deforming the models, representing the surfaces and
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designing the interface.

Creating 3D models using a sketch based system requires identifying 3D object from

a 2D drawing area. According to Olsen et al. [OSSJ08], creation of 3D models can be

considered in two contexts: suggestive and constructive. There 2 phases in suggestive

systems, first is the recognition of the sketching template and after using that template

for generating the model. Contrary to suggestive systems, constructive systems skip

the recognition and directly perform the object modeling. Suggestive sketching is

limited with the memory capacity because of the recognition phase. Zeleznik et

al. [ZHH06] proposed an interface called SKETCH, which uses non-photorealistic

rendering and gestural interface for simple line drawings of primitives. Pereira et al.

[PJBF00] introduced another gesture based modeling system called GIDeS with an

advanced memory features to allow the user to draw on the previous modeling work.

Both systems extrapolate the final model based on strokes. Igarashi and Hughes [IH01]

also takes the advantage of extrapolation. Funkhouser et al. [FMK+03] offered a

search engine based on shape-based search methods. This web-based system supports

queries based on 2D-3D sketches with 3D models and text based keywords. Shin

and Igarashi [SI07] proposed a system with a model database called Magic Canvas,

which takes simple 2D strokes as input and performs an automatic identification for

the corresponding matches in the database (see figure 2.10). Constructive sketching

is another alternative for creating 3D models without recognition step. Pugh [Pug92]

introduced a mechanical solid modeling system called Viking, which is an interactive

sketching interpretation and provides a 3D reference with geometric constraint defi-

nition explicitly. Other systems such as [PJBF00] and [CNJC03] are also compatible

for interactive mechanical solid design with their visual feedback feature. Varley et

al. [VMS05] proposed a method that inflates a drawn sketch to generate the frontal

geometry and determines the existence of T-junction. Masry and Lipson [ML07]

presented a computer aided design interface, which performs an optimized algorithm

to reconstruct sketches of 3D objects from lines and planar curves. Varley et al.

[VTMS04] proposed a system, which enables to draw the structures with straight

lines and the system converts the drawing with curved segments.

According to Hoffman [D.D00], human visual system can interpret the line drawings

as 3D contours since it is possible. Interpreting drawn strokes as contour lines is a

common idea in sketching research. Eggli et al. [EHBE97] described a pen based quick

sketching approach for 2D and 3D modeling, which uses the sketch to define exact

shape’s geometry by using sketch input. This approach is one of the first examples of

contour lines. After, [SC04], [SWSJ06] and [WPP07] applied the concept of contour
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Figure 2.10: Magic Canvas system is an example for the suggestive sketching with its automatic

recognition feature from its database. Shin and Igarashi [SI07]

lines in their methods to create object surfaces with linear sweep technique. For

obtaining smoother cross-sections of the object surfaces Cherlin et al. [CSSJ05] used

the medial axis of two strokes to create a generalized surface. Besides, Teddy system

from Igarashi et al. [IMT99] computes the Delaunay triangulation [DB00], creates

polygon approximation, extracts chordal axis, inflates the objects by pushing vertices

for inflating closed contours. Another valuable approach is the skeleton of the closed

contour, Alexe et al. [AGB04] used a spherical implicit primitives for each skeleton

vertex. During the blend of primitives, it generates a smooth surface. Karpenko and

Hughes [KH06] introduced SmoothSketch system, which uses again visible contour

sketches to obtain visually plausible 3D objects. Cordier and Seo [CS07] offered an

algorithm, which understands the hidden parts of the contour and generates a smooth

3D object from these contours by giving a solution to a set of optimization problems.

Nealen et al. [NISA07] also used a nonlinear optimization technique for smoother

surfaces and sharp edges (see figure 2.11).

The object boundaries are another important factor for interpretation. Das et al.

[DDGG05] defined the boundaries by using 3D network of curves and used a smooth

interpolation for building the objects. Rose et al. [RSW+07] developed an algorithm

that generates developable surfaces by using a given 3D polyline boundary sketches.

Giving details to an existing 3D object is relatively an easier task compared to

creating 3D objects by using 2D sketches, since the model serves in the scene with

3D destination coordinates for mapping the given stroke into the 3D coordinates (see
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Figure 2.11: Example image of result from FiberMesh for smooth surface creation with strokes.

Nealen et al. [NISA07]

figure 2.8). There are several techniques for mapping the stroke onto the 3D model

such as [OSSJ05], however the most common technique is ray casting (rays shoot from

the stroke directly to the 3D model). According to Olsen et al. [OSSJ08] augmentation

can be grouped into two sets: surficial and additive. The surficial augmentation is

used to sketch features to give arbitrary details to the model’s surface. The examples

can be seen in [BMZB02] or [OSSJ05]. Besides, given strokes may add new geometric

constraints to the surfaces [NISA07]. Beneath surface representation remains often

same in surficial augmentation [NISA07], [OSSJ05]. The additive augmentation is

used to define new parts to the model such as limb by using constructive strokes. Some

approaches use additional strokes for the connection of the new parts to the main model

[NISA07], [IMT99]. Schmidt et al [SWSJ06] enabled the additive augmentation by

using easy blending with an implicit surface representation and their system executes

a parametrization for controlling the smoothness at connection region.

Surface deformation is another popular approach in sketch-based systems because of

its intuitive and simple interpretation. Cutting the model was applied in [WFJ+05],

[JLCW06]. Wywill et al. [WFJ+05] implemented the cutting as an additional feature

to their shape editing tool and allows the user to create holes or removing volumes

directly with the cutting feature (see figure 2.12). Ji et al. [JLCW06] proposed

an intuitive tool called Easy Mesh Cutting, which allows the user to cut arbitrary

components from the object by using freehand sketches on the mesh. Bending and

Twisting deformations can be applied by using the oversketching concept [NSACO05],

[ZNA07].

In oversketching the main idea is using 2 strokes, one is for reference and the other is
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Figure 2.12: Example results for cutting the mesh for creating an aesthetic hole or removing volume

from the mesh. Wywill et al. [WFJ+05]

for target shape. Free form deformation can also applicable to sketch-based systems.

Draper and Egbert [DE03] proposed a gesture based interface for free form deforma-

tion, which allows the user to twist, bend, stretch or squash the model without dealing

the technical details of the free form deformation. Severn et al. [SSS06] presented a

sketching technique for defining the transformations to models with single stroke. The

desired transformations for the model are obtained by using a principle component

analysis approach. Sketch-based deformation has been in use for giving poses to

characters in animation sequence. Davis et al. [DAC+03] introduced an sketch-based

interface for rapidly creating 3D stick figure animation. They first reconstruct the

possible 3D configuration and then present the most likely 3D pose for each frame by

applying a set of constraints and assumptions. Thorne et al. [TBvdP04] presented

another sketching system for character animation, which allows to sketch the motion of

the character and after this sketch is mapped to the previously defined motions. Chen

et al. [CON05] used the sketching in their animation method, which allows the user

sketch the character movements for each animation frame with texture mapping. We

will discuss the details of sketching for facial and character animation in the following

section.

Selecting the suitable surface representation is a significant factor to determine the

quality of the results. Applications are designed according to the selected surface

properties because each surface type shows different reactions to the performed op-

erations. For example, parametric surfaces are a known representation and their

integration is an easy process during implementations. They are parametrized over 2D

coordinates and include spline patches, rotational blending and surface of revolution.

This type of surfaces exist in [EHBE97], [CSSJ05]. Mesh based surfaces are widely used

representation over years and support arbitrary geometric topologies. Applications

developed in [IMT99], [DDGG05], [NSACO05] supported the mesh surfaces. The

other common surface type is implicit surfaces, which support blending, boolean

operations and hierarchical modeling [AAJ03], [AGB04], [SWSJ06]. Another type
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is fair surfaces used in [NISA07], [RSW+07] which is the result of the constrained

optimization problem solution where the definition of new constraints causes a re-

computation for the result.

The sketch-based interfaces can be designed in either suggestive approach or gestu-

ral approach. In suggestive interfaces, the system is implemented with all possible

interpretations and user determines the desired interpretation to perform [EHBE97],

[IMKT97], [IH01], [TBSR04], [SWSJ06]. In gestural interfaces, an individual stroke

determines the operation with a specified sketch recognition method [PJBF00], [DE03],

[TBvdP04], [KS06], [OSS07]. The sketching interface proposed in this dissertation

has been designed in gestural approach for its practical and simple usage for both

experienced and novice users.

2.2.4 Sketching for Facial and Character Animation

The sketch-based interface to manipulate the rigged 3D models is a natural, useful

and practical tool for artists and animators. Constructing a sketch-based platform

with a significant accuracy gives successful results. Singh et al. [SF98b] presented the

wire curves to deform the shape of an object and domain curves to define the domain

of the deformation. Pyun et al. [PSS04] formulated wire curves for deformation based

on vertices displacements. Nealen et al. [NSACO05] developed a sketching interface,

which allows the user to directly sketch on the 3D model incorporating with the

Laplacian surface editing techniques for determining the new silhouettes. Nataneli

and Faloutsos [NF06] presented a sketching interface for animating blendshape facial

models. Zimmermann et al. [ZNA07] proposed an over-sketching interface that finds

the nearest silhouette on the model to the sketched line and automatically deforms

that particular sub-region of the model by fitting to the line again by using Laplacian

deformation components. Chang and Jenkins [CJ08] offered a method, which uses

reference and target curves to create articulation and posing of 3D facial models

for finding optimum pose within these sketched input curves. Sucontphunt et al.

[SMND08] introduced an interactive posing system, which enables manipulation of 3D

facial model through control points located on predefined curves on the corresponding

2D portrait. Lau et al. [LCXS09] developed another interactive system for posing 3D

facial models that enables the artist to model or edit the face by using free-form strokes

with an underlying formulation, which eliminates user given facial poses by comparing

with a set of facial expression data. Gunnarsson and Maddock [GM10] proposed a

sketching system without any manipulation feature, which allows the artists sketch a
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Figure 2.13: The interface and results from Sketching Interface Control System, which allows to

sketch both 2D predefined canvas (left) and directly on 3D model (right). Miranda et al. [MAO+12]

desired facial pose and the system builds 3D model by fitting already sketched strokes.

Miranda et al. [MAO+11] introduced the external canvas concept, 2D drawing area,

which allows the artist rapidly manipulate the facial rig in real-time by drawing simple

strokes on the region based external canvas. Once more, same authors [MAO+12]

subsequently improved their previous method to allow manipulation of the facial rig

directly in 3D space (see figure 2.13).

Oztireli et al. [OBP+13] offered a differential blending algorithm, which works under

a sketching interface for curving the bones of whole body rigs to generate poses and

animation. Recently, Hahn et al. [HMC+15] proposed a sketched-based system to

manipulate whole body rigs for characters animation with an optimized approach,

which minimizes nonlinear iterative closest point energy to determine rig components

that fit the character’s sketch abstraction to an input sketch (see figure 2.14).

Guay et al. [GCR13] developed a mathematical model for line of action, which enables

3D character posing by using single input curves. Moreover, Guay et al. [GRGC15a],

[GRGC15b] improved the previous method by adding physically based model and

space-time abstraction in the sketching framework.

2.3 Position Based Dynamics Approaches

Almost three decades, physically-based methods have been an active research topic

for solid deformations in the field of computer graphics. There exist valuable state

of the art reports and courses on this subject such as [WB97], [NMK+06], [MSJT08],

[BETC12]. Besides, Bender et al. [BMOT13] presented a detailed state of the art

report on position-based methods for solid simulations. Moreover, a notable tutorial

from Bender et al. [BMM15] exists on position-based methods.
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Figure 2.14: Example result of posing the face with multiple stroke pairs. In the stroke pairs, the

blue stroke represents the reference curve and red one represents the target curve for the desired

manipulation. Hahn et al. [HMC+15]

Foundations of the position based dynamics method are proposed in [Jak01], [MHHR07]

and [Sta09]. Jakobsen [Jak01] presented the main idea behind rigid and soft body

simulations in Hitman: Codename 47 game engine. He described Verlet integration

scheme and direct position manipulation for deforming the rigid and soft bodies in

detail based on constraints for interactive gaming. Müller et al. [MHHR07] offered

the position based dynamics method, which updates the velocities explicitly instead

of an implicit velocity calculation and presented a fully general approach for projected

constraints (see figure 2.15). Besides, Stam [Sta09] explained the theory on projection

of constraints in Nucleus system similar to position based dynamics method.

The earlier research work on deformable models dating back to the 80’s, Terzopoulos

Figure 2.15: Example of a cloth character deformation under pressure by using position based

dynamics approach. Müller et al. [MHHR07]
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[TPBF87] introduced the simulation of deformable solids by using the elasticity theory.

Provot [Pro96] offered to constrain the length of the spring in a mass-spring cloth simu-

lation for preventing the over-stretching of the springs. Baraff and Witkin [BW98] used

implicit Euler method and defined general constraints by a function. Faure [Fau98]

presented the linearized displacement constraints, which incorporate an iterative solver

to find the new positions. James and Pai [JP99] presented an algorithm for real time

animation in their system called ArtDefo with a boundary element method (BEM)

for discretization. Desbrun et al. [DSB99] used the constraints projection approach

with an implicit integration method to handle stable and robust mass-spring system

for virtual reality.

In following years, the research in the field was accelerated, Bridson et al. [BMF03]

used projection of constraints with an implicit/explicit time integration scheme and

a novel contact collision method. Grinspun et al. [GHDS03] used the constraints for

the simulation of a variety of curved objects ranging from paper to metal. Irving et

al. [ITF04] presented an algorithm for large deformations on elasto-plastic solids by

using a finite element simulation approach. Müller and Gross [MG04] offered a fast

approach in real time applications for simulating elasto-plastic materials and fracture

by combining the extended stiffness finite element approach with strain based plasticity

model. Teschner et al. [THMG04] demonstrated a versatile and robust model for

elastic and plastic deformations of the geometrically complex objects, which can handle

a significant variety of materialistic properties from rigid to fluid state. Choi and Ko

[CK05b] proposed a method, which identifies the rotations from the small deformations

and extend the base modal analysis formula to accommodate the identified rotations.

Teschner et al. [TKZ+05] presented a notable state of the art report on collision

detection for deformable objects. Müller et al. [MHTG05] offered the shape matching

concept for elastic and plastic deformations in a meshless approach, which does not

need any connectivity information such as point-based models (see figure 2.16).

Figure 2.16: Example test scene of shape matching to demonstrate user interaction on a deformable

head model and collision handling with other deformable objects. Müller et al. [MHTG05]
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Hong et al. [HJCW06] proposed the fast volume preservation in a mass-spring sys-

tem for realistic deformation effects in animations with a low computational cost.

Funck et al. [vFTS06] defined shape deformations by divergence free vector fields for

realistic looking results with volume conservation and deformations do not include

self-intersections. Wang et al. [WXX+06] proposed a mass-spring model for virtual

reality systems based on shape matching, which connects the surface with a rigid core

using the spring forces. Irving et al. [ISF07] presented a numerical method, which

conserves the volume locally in a finite element mesh.

Figure 2.17: Hierarchical position based dynamics approach offers a multi grid solver, which enables

high resolution cloth simulation in real time. Müller [M.08]

The geometric constraint projections gave a notable impact to the research, such as

Bergou et al. [BMWG07] presented the Tracking process, which uses the constraints

to enhance the surface deformations with physically simulated details. Goldenthal

et al. [GHF+07] offered a novel fast constraint projection method to gain low strain

in warp and weft directions. Kubiak et al. [KPGF07] offered a real time thread

simulation, which computes the stretching, bending, torsion and provides output forces

for haptic feedback. Müller [M.08] proposed to speed up the traditional position

based dynamics method with a multi-grid based approach by keeping the origins

of constraint projections (see figure 2.17). Steinemann et al. [SOG08] presented

a method for shape matching deformation model on many overlapping regions to

handle topological changes by using an octree-based hierarchical sampling. Stumpp

et al. [SSBT08] proposed an adaptive shape matching approach for cloth simulation,

which uses two different type of clusters for high stretching, shearing and low bending

resistance. Schmedding et al. [SGT08] improved the damping approach of iterative

spring damping concept for stability improvement, which can be used on any arbitrary
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Figure 2.18: Example simulation test scene for the character animation with additional physics and

oriented particles. Müller and Chentanez [MC11]

position-based deformation models.

In recent years, various techniques have focused on the quality and efficiency, for

example, Kelager et al. [KNE10] offered a novel bending approach for high quality

and faster simulation, which is an alternative to dihedral bending method. Müller

and Chentanez [MC10] presented the wrinkle meshes for important details in cloth or

skin surface of a character by attaching a higher resolution wrinkle mesh to the coarse

mesh. Wang et al. [WOR10] described a strain-limiting approach, which acts on strain

tensors in a constant coordinate form, which allows fast efficient simulation. Diziol

et al. [DBB11] introduced GPU based real-time approach to simulate incompressible

objects with huge number of elements by using a shape matching method, which in-

cludes an extended version fast summation technique for triangulated meshes. Müller

and Chentanez [MC11] proposed a method for rapidly simulate different types of

objects by using oriented particles, which include the rotation and spin as an additional

information for traditional particle approaches (see figure 2.18).

Kim et al. [KCMF12] introduced the long range attachment approach, which attaches

the character cloth to the kinematics parts of the character to prevent the inappropri-

ate stretching. Zurdo et al. [ZBO13] offered a fast example-based algorithm for cloth

wrinkles, which defines wrinkles as a function of low-resolution cloth and example

poses set. Bender et al. [BWD13] proposed a method for the deformation of complex

stiff cloth models by using a novel shape matching method and only focus to stretch

and shear stiffness. Deul and Bender [DB13] introduced the multi-layer model for

physically-based skinning application by using oriented particles concept incorporating

with the position-based constraint projection. Bender et al. [BKCW14] offered a

simulation method based on continuum mechanics for solid deformation, which focuses
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Figure 2.19: Continuous materials simulated with a position-based approach. The visual results

obtained from the simulation are consistent with behavior of real world materials. Bender et al.

[BKCW14]

on physical effects such as elasto-plasticity, anisotropy or lateral contraction (see figure

2.19). Deul et al. [DCB14] presented a position-based method for rigid bodies by

solving the position constraints between rigid bodies. Müller et al. [MCKM14]

introduced the new constraints to position based dynamics method, which all the

control of the strain directions independent from the edge directions. Fratarcangeli and

Pellacini [FP15] parallelize the position based dynamics method by using a practical

partitioning technique with a graph coloring algorithm.

2.4 Summary and Discussion

In this chapter we have summarized the popular and relevant works, which have been

presented by the authors in the area of facial animation, sketching interaction and

dynamically deforming solids. Despite taking the advantage of the all work mentioned

in this chapter, the core of our research is inspired by Lewis and Anjyo’s blendshape

direct manipulation [LA10], Miranda et al.’s sketch express [MAO+12], Jakobsen’s

advanced character physics [Jak01], Müller et al.’s position based dynamics [MHHR07]

and Stam’s Nucleus [Sta09].

In the scope of this dissertation, we have proposed a set of solutions and additional

features for the open issues, which have been required further development. For

example, creating blendshape facial animations using traditional weight editing tools

requires either memorizing the function of a large number of parameters, or a trial-
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and-error search in a high-dimensional space. Direct manipulation technique [LA10]

addresses this problem, allowing the artist to directly pin and move manipulators

placed on the surface of the face. However, this technique gives an unintuitive global

deformation impact to the face. In our solution, we propose a novel method, which

overcomes this problem and keeps the deformation in local basis as intended. Besides,

we introduce a sketch-based interface as an application to our solution inspired by

sketch express [MAO+12]. Although sketch express was focused to manipulate the

facial articulated joints, our sketching interface manipulates the desired blendshapes.

Nevertheless, we have also followed continuous manipulation principle of the sketch

express. This principle means generating complex deformations with only one con-

tinuous sketched curve. Besides our sketched based direct manipulation method, we

introduce another novel method called transposition based direct manipulation which

addresses the instability of the pseudo-inverse based mathematical formulations of the

blendshape direct manipulation techniques.

Furthermore, position based approaches vary according to its geometric constraints

and time integration scheme. [Jak01] used verlet integration by calculating the ve-

locities implicitly. [MHHR07], nevertheless, calculated the velocity explicitly and the

following research sustained explicit velocity calculation. In our research, we have

developed a new framework, which is focused on simulation of the deformable surfaces

with verlet integration by combining geodesic circles and position-based dynamics

fashion projected geometric constraints. However, the existing research applications

deform the models as a whole. Our work allows an interactive selection of the

deformation influence area over the model by computing the geodesic distances from

an arbitrary point to a desired range. This selection keeps the surface deformation

inside the boundaries of the area and outside of the boundaries the model conserves

its rigid behavior. Our solution allows applying the position-based dynamics method

to highly complex objects such as face efficiently.

To sum up, the main research goal of this dissertation is to offer practical solutions

to create complex deformations on facial models to obtain high quality results with a

simple and intuitive interaction model.



Chapter 3

Direct Manipulation of

Blendshapes Using a Sketch-Based

Interface

We introduce a method that localizes the direct manipulation of blendshape models for

facial animation with a customized sketch-based interface. Direct manipulation meth-

ods address the problem of cumbersome weight editing process using the traditional tools

with a practical ”pin-and-drag” operation directly on the 3D facial models. However,

most of the direct manipulation methods have a global deformation impact, which give

unintuitive and unexpected results to the artists. To this end, we propose a new way to

provide local control the theory of direct manipulation method by using geodesic circles

for confining the edits to the local geometry. Inspired by artists’ brush painting on

canvas, we introduce a sketch-based interface as an application that supports direct

manipulation and produces expressive facial poses efficiently and intuitively. Our

method allows the artists to simply sketch directly onto the 3D facial model and

automatically produces the expeditious manipulation until the desired facial pose is

obtained. We show that localized blendshape direct manipulation has the potential

to reduce the time-consuming blendshape editing process to an easy freehand stroke

drawing. Finally, we present a wide range of facial poses on various models that are

created rapidly using our method.

37



3.1. MOTIVATION 38

3.1 Motivation

Facial animation in movies and video games remains a challenging problem for the

area of computer graphics. The major reason is the complexity of authoring the rig

underneath the face to create convincing and meaningful facial expressions. Blend-

shape is a widely adopted technique for high-quality facial rigging. Conceptually,

the technique of blendshape is the simple linear model of facial expression. Despite

its simplicity, producing facial animation using blendshapes requires a serious effort

and time to achieve realistic high quality facial models that includes hundreds of

blendshape targets.

Blendshape model forms a specific facial expression as a sum of linear combination of

target faces that are obtained either by scanning a human face with various expressions

or by a skilled artist sculpts each expression manually. Once all expressions are

assembled, facial poses can be expressed with an insignificant computational effort by

altering the weights of the linear combination. Traditionally, these weights have been

edited directly by the artists, using an interface in which each weight is presented as a

slider. However, creating blendshape facial animation using traditional weight editing

tools requires either memorizing the function of a large number of parameters, or a

trial-and-error search in a high-dimensional space. Direct manipulation blendshapes

[LA10] addressed this problem using a mathematical framework that allows the artist

to perform ”pin and drag” operations on the surface of the 3D model. Pinning is the

selection of an arbitrary point from the model surface, and Drag is the movement of

the pinned point on the surface of the model. During this pin and drag operation,

the underlying method solves an inverse problem of finding the corresponding weights.

The mathematical framework of direct manipulation aims to change the shape of an

arbitrary area of the face. However, it may cause slight possible alterations in the

remainder of the face. During the drag, if the point movements are applied in a short

range, the change in the remainder of the face is negligible. However, if the artist

applies a long range drag, the resulting facial expression is unpredictable, and can

even reach a unstable and noisy state. This peculiarity limits the freedom of the

artists during the process of preparing facial poses for keyframe animation.

In this chapter, we propose a new method which optimizes the mathematical frame-

work of blendshape direct manipulation by localizing the desired facial deformation

during the artistic pose editing. During the pin and drag operation of the direct

manipulation technique, we observe that altering the blendshape weights through the

pin drag gives a slight deformation impact to almost all vertices of the model. For
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example, while a pin movement attempts to raise one of the eyebrows, the mouth

or jaw slightly moves unexpectedly. The proposed method focuses on confining the

artistic edits to the local facial geometry by using geodesic circles. We rebuild the pre-

defined deformation elements (here, blendshape targets) to overcome this unexpected

global deformation impact which arises from the mathematical framework of direct

manipulation. This operation is performed by computing the heat kernel [CWW13]

to create geodesic circles around each constraint point and limit the edits according to

the existing targets within the circle. The method analyzes all target shapes over the

selected vertex and modifies the input data according to the position of the vertex.

This operation is done automatically without any manual intervention.

We also present a sketch-based interface which incorporates our localized direct ma-

nipulation. Recently, the tendency for sketch-based interfaces has increased as a way

of creating animation sequences, deforming shapes or controlling objects. With sketch-

based interfaces, artists work with natural movements, analogous to charcoal drawings,

instead of having to deal with hundreds of different rigging and deformation control

parameters using the external interfaces. Most of the facial sketching methods (such as

[MAO+11] or [MAO+12]) work on bone-based rigs and allow the direct manipulation

with sketched curves. However, in our case, the model is rigged with blendshapes

which include more details for each target pose and excessive parametric combinations

to gain semantically meaningful poses. In our sketching procedure, the user can draw

a simple freehand stroke onto the 3D facial model at any angle and point of view

independently. After, the method transforms this simple stroke into a ”pilot” curve

automatically. Pilot curve not only determines the positions of the manipulators to

the desired locations on the 3D model but also creates a blendshape deformation to

the model. We mimic the drag operation of direct manipulation under the horizontal

curves concept [Lev07] by using curve’s own entities such as curvature depth, radius,

angle, etc. This sketching process can be repeated until the desired facial expression

is obtained for each frame of the animation sequence.

We present our method’s flexibility and easy usage over different models demonstrating

the creation of several facial poses in Autodesk Maya [Aut]. Our method can be used

on any blendshape facial model without any preceding operation. The whole pipeline

is automated just to keep the user away from the technical details of the method. Even

though in this work we target the experienced users, the novice users can adapt to our

system without any difficulty and easily learn the details of the facial rig concept by

using our approach. As a result, our work offers a fast, powerful and easy to implement

approach for blendshape animation by creating a bridge between 2D curves and 3D
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model.

3.2 Method

The proposed method operates under a sketch-based interface, which has been created

in Maya. Our approach includes 4 discrete steps: first, a freehand stroke is applied

the on the imaginary canvas, which is a 2D drawing region aligned to the image

plane. This stroke is converted to a NURBS curve, and mapped on the 3D facial

model. Second, the knots of NURBS curve are intersected with the closest points that

belong to the model mesh. Thereby, the manipulators (pins) are constructed on these

points. Third, fuzzy support fields with geodesic circles are created around each pin

for localization. Finally, the blendshapes of the model are manipulated by using the

curve’s entities. This whole process can be repeated until the desired expression is

realized. Figure 3.1 demonstrates a brief overview of our method.

Figure 3.1: A Brief Method Overview.

3.2.1 Sketching Representation

The free-form stroke (S ) can be defined as a set of ordered points {s0, ..., sn−1}, which

represents the stroke in screen space. Drawing is originally applied on a dynamically
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created virtual canvas that is oriented orthogonal to the view direction.The direction

of S is determined by the user during drawing. S is projected from the virtual canvas

onto the closest visible surface of the 3D model by a ray tracing operation (see Figure

3.2).After the projection, a Nurbs curve (N ) is generated on the surface of the model

with the same length of the projected stroke. N plays a critical role in our method,

because it determines the exact positions of the pins.Therefore, we restrict its shape

to a spline space for simplicity, which protects the user from the undesired details due

to the processing load of the computer during recording of the mouse movements. A

cubic spline is selected as the best choice, because its simplicity and easy to obtain a

close approximation to the surface of the 3D facial model. A lower degree curve would

not lie on the surface, while a higher degree curve may incorporate unintended details

of the artist’s gesture. Although the cubic spline generally does not lie exactly on the

surface of the model, this approximation is not obvious or obtrusive for the artist.

Figure 3.2: Application of the mapping of free-form stroke from 2D display plane onto the visible

surface of the 3D model.
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3.2.2 Curve Knots and Mesh Vertices Intersection

We create a physical connection between the Nurbs curve N and the 3D model in

the scene, where these objects are geometrically different and independent from each

other. After the Sketching Representation phase, N with the degree D = 3 is located

onto the surface of the model and parametrized with k knots, where k corresponds to

D. The method creates N by selecting the knots over the total number of points of the

original S. These knots have two main attributes: they are homogeneous and located

at the beginning, middle and end points of N. To create a direct correlation between

N and the 3D model, we have implemented algorithm 1, which intersects each knot

with the closest vertex of the 3D model by using Maya’s optimized octree method.

The most significant consideration in this algorithm should be noted that it avoids to

give any unintended noise to the model by changing any component’s attribute during

the process. Figure 3.3 illustrates the visual result of this direct correlation between

N and the 3D model.

foreach knot in N do
intersectPoint← 0;

Intersector ←MeshIntersector();

matrix← TransformationMatrix();

objectNode← DirectedAcyclicGraphNode();

stat← Intersector.create(objectNode,matrix);

if stat 6= 0 then
stat← getClosestPoint(knotr, pointInfo); k ← pointInfo.FaceID();

end

foreach vertex in Model do
vertexID ←Model.V ertexID();

faceID ←Model.FaceID();

if faceID = k then
intersectPoint←Model.V ertexPosition(); knotr ← intersectPoint;

end

else continue ;

end

end

Algorithm 1: Points Intersection Algorithm
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Figure 3.3: Representation of our intersection algorithm. (left) A general view of 3D model with

pins and curve. (right) A close X-ray view for the details about the curve, pins and mesh vertices.

The algorithm does not violate the originality of the model by altering the position of any component

of the 3D model.

3.2.3 Blendshape Direct Manipulation and Localized Defor-

mation

Manipulators (pins), which are represented as small sphere units, are created on

the locations of intersected points over the model automatically by our method.

In blendshape direct manipulation, the pin behaves as the inverse kinematics (IK)

end-effector for determining the values of the position parameters. However, there

exists a significant difference between blendshapes and IK handles regarding the

parametrization. For example, moving a human arm by using inverse kinematics

roughly requires 7 degrees of freedom for the angles of the joints [TB96] but in a

realistic blendshape model, the relevant weights can be more than 100. Therefore, we

have to explore a discrete function to solve the inverse problem for direct manipulation.

The solution of the defined function determines the final weights with the constraints,

given by ”pin and drag” operation.

According to algebraic perspective, blendshape is a simple vector sum as illustrated

in equation (3.1):

f =
∑
k

bkwk (3.1)

In order to make equation (3.1) simpler, it can be denoted as f=Bw. f is the produced

final face and also a vector which contains all vertex coordinates of the mesh in the
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order of xyzxyz..., B is a matrix whose column vectors, bk, include the coordinates of

individual blendshape targets, w consists of the blendshape weights. However, one

face model, f0, is special because all individual blendshape targets are offsets from

f0, which is called the neutral face shape. It has to be added to equation (3.1):

f = Bw + f0 (see equation (3.2) for details). This formulation is called as delta

blendshape formulation and is widely used in commercial modeling and animation

packages, and in this chapter we use this equation as a base.
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By recalling equation (3.2) for reviewing the background [ATL12], we assume a facial

pose is created by using direct manipulation. Pins, thereby, are located on the mesh

and dragged by the user. The resultant face can be called as f = Bw + f0. After

applying pinning to the arbitrary vertices on the face model, some of them are fixed,

some are dragged and the rest of the vertices remain the same. Then, we can call

the resultant face also f = m + f0. Here, m denotes for the moved pins. After all,

we determine the final weights of the resultant face model by minimizing the residual

between Bw and m: ‖B̄w−m‖ where B̄ represents the corresponding rows from the B

matrix in equation (3.2). We use the least squares with a regularization term to solve

this direct manipulation problem for finding the final weights (see equation (3.3)).

min
w
‖B̄w −m‖2 + α‖w‖2 (3.3)

where α is a user defined regularization parameter which has to be selected carefully

for the most optimal fit. Equation (3.3) is a soft constraint linear system which is

easy to solve and implement. The final weights of the blendshape model are obtained

by taking the gradient of equation (3.3) with respect to w and set it to zero. If we

denote equation (3.3) as E(w), then we seek to find ∇wE = 0 (see equation (3.4)).
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∇wE = 2B̄T B̄w − 2B̄Tm+ 2αw = 0 (3.4)

We reorganize the equation (3.4) to obtain ”Ax=B” form linear system for computing

the blendshape weights (see equation (3.5)) which is the core of our approach.

w = (B̄T B̄ + αI)−1B̄Tm (3.5)

Figure 3.4: (a) shows the pinned vertex behavior under the influence of all individual weights. (b)

shows the invisible support field obtained from the heat method. The ranges are assigned to cover

the closest neighbors of the selected vertex with a custom range unit, therefore in our test models we

set rmin = 0.1 and rmax = 0.5. (c) shows vertex behaviors in the support field. (d) shows how we

eliminate the undesired weights.

The major limitation of direct manipulation is the fact that editing a certain part of

the model causes minor changes on the other parts of the face. While the weights are

computed during the pin movements, equation (3.5) produces non-zero weights for all

target shapes. For example, moving a pin in the right corner of the mouth can cause a

small deformation in the left eye-brow. However, if the drag is performed with slight

movements, this ”side effect” is not that obvious. Nevertheless, if the artist prefers to
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work with gross gestures, then the resultant pose can be unintuitive. Briefly, this is

because of the almost non-zero content of the B̄T B̄ in equation 3.5. In direct manipu-

lation, weights have a pseudo-inverse relationship with the dragged pins, and columns

of the pseudo-inverse tend to have non-zero entities. Even though the regularization

term in equation (3.3) can be improved by using different parametrization techniques,

the resultant method may not produce meaningful poses because of this instability.

Therefore, we iteratively analyze each column of B̄ from equation 3.2 to observe the

deformation impact of each blendshape target. Without any exception, each column

of B̄ produce a deformation impact on the pinned vertex. Some targets have a notable

deformation effect on the pinned vertex and some have very little (almost negligible)

according to the influence area of the target shapes. As a consequence, we create

a fuzzy support field around these pinned vertices in run time by using the heat

method from [CWW13]. The purpose is to eliminate the targets, which give the least

deformation to the area of the pinned vertices (see figure 3.4).

The support field is created by computing the geodesic circles from the pinned vertex

to its neighbor vertices (see figure 3.5). The pinned vertex stays in the center of the

circular support field. We calculate the geodesic distance for the radius of the fields as

short as possible without losing all the deformation on the pinned vertex. We define

the size of this field in a range of [rmin, rmax] shown in figure 3.4. rmin is the radius

of the inner circle, and rmax is the the radius of the outer circle. Further, we set

an intermediate radius that is the actual radius ract, as a certain limit to eliminate

weights which have the least deformation impact on the pinned vertices. For the

models shown in this chapter, ract is calculated as the linear average of the distances

rmin and rmax (ract = rmin+rmax

2
). The conditional relationship between B̄ and ract is

created iteratively during the pin generation (equation (3.6)).

bi
k =

0, if |bik| < ract

(bix, biy, biz)
k, if |bik| ≥ ract

(3.6)

where bi is the column vector of B̄ that is (B̄ = [b1, b2, ..., bn]) with n blendshape

targets. Each triplet (bi = (bix, biy, biz)
k) originally corresponds to the x, y, and

z displacements of the pinned vertex k under the influence of blendshape target i.

In summary, the range of the geodesic circles determines the desired deformation

space for the arbitrary part of the facial model. Our method takes rmin and rmax as

tunable user-specified parameters for the range of the geodesic circles. Users of our

method, thereby, have to determine the most optimal values according to the facial
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Figure 3.5: Effect of the heat method illustrated on the blendshape face model. In both images, the

heat method provides the boundaries of the inner and outer circles (rmin, rmax) to obtain the closest

neighbor vertices of the pinned vertices (the ones in center of each yellow point group) by calculating

the geodesic distances. Fuzzy support regions cover these neighbor vertices for localization.

model. For example, in our tests we observe two conditions: If we keep ract = rmin,

some weights, which have the least influence on the pinned vertex, remains in B̄ and

causes unexpected movements during the pin drag. On the other hand, if we keep

ract = rmax, the essential weights for the pinned vertex can be excluded from B̄ and

the pin movements may not give the desired deformations. These boundaries can

be re-parametrized easily according to the size and blendshape target density of the

model.

The optimized B̄ serves as the input matrix in equation (3.5) for determining the

final weights of the blendshape model. This process confines the weights within the

boundaries of the defined geodesic circles, and therefore keeps the deformations in

local facial geometry without any global impact during the artistic pose editing with

pin movements. For the details of the heat method, we refer the reader to [CWW13].
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3.2.4 Deformation with Curve Entities

Drag is the movement of a pin from its rest position to any desired location on

the surface of the 3D model. However, we offer this drag operation by using the

curve entities which are already sketched on the model. The major challenge of using

one single curve to create the deformation is the unknown parameters for the initial

and final positions. Either direct manipulation or sketch-based deformation methods

require the definition of initial and final position parameters from the user or the

system. To overcome this problem, we propose a fundamental estimation to accept

the curve as a bended wire from its straight state (see figure 3.6). This estimation

defines a movement path, which mimics the pin drag with its initial and final positions.

Figure 3.6: Transition from the stroke to Nurbs curve with the bended wire estimation. (a) shows

the applied stroke as an input. (b) shows bended wire estimation. (c) shows the final state of the

Nurbs curve with pins.

A good example for our approach is the horizontal curves concept [Lev07] which are

widely employed in the field of transportation engineering for curving the highways

with a smooth transition. The horizontal curves are, by definition, circular curves with

a certain radius. We take the advantage of the key elements of horizontal curves for

our calculations such as radius (r), middle ordinate (M), and central angle (θ) (Figure

3.7). These elements provide an intuitive deformation transfer between the projected

spline and the pins. The initial positions of the pins are the positions of the actual

intersected vertices on the model, which is explained in section 3.2. Our main goal is to

obtain the middle ordinate (M ) of the curve and the stretching of the side pins (figure

3.6b and 3.7) for finding an approximated deformation displacement path. Moreover,

we employ Maya’s own tools to obtain the radius of the curve. With the curve angle

(θ) and radius (r), we calculate M with an easy formula, M = r × (1 − cos( θ
2
)). M

is only used for the middle pin, nevertheless there exist two more pins on the same

curve. For increasing the visual impact, we stretch the side pins using the value of M.

We allow both pins to move in the range of M × cos( θ
2
)) for x and M × sin( θ

2
)) for y

directions (see figure 3.7). The spline curves frequently do not align on a perfect form
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of horizontal curve as shown in figure 3.7, however they have the tendency to keep the

shape as close as possible to the horizontal curve. After the deformation obtained by

the curve, the user can fine tune the manipulation by selecting one of the pins on the

curve and drag it until the desired deformation is obtained.

Figure 3.7: Simple demonstration of the Horizontal Curve approach for deformation with curve

entities.

Model size is a major dependency regarding the sketched curve manipulation. Curve

length, curve radius, curvature size and middle ordinate inherently change according to

the size of model. Therefore, curve entities should be adjusted for the most optimal fit

to the model size. Although the curve size is determined by the user during the stroke

drawing, in some cases the curvature depth may not be enough for the expected result

on a large size model or the stretching of the side pin may result wider than expected

for a small size model. For that reason, we assign user-specified scaling multipliers (β,

ω) to middle ordinate (M ) and stretching of the side pins that is illustrated in figure

3.7. These multipliers can be determined or modified easily by the user according to

the model size.

The deformation direction is another issue to determine. Although the curve lies on

the surface of the model and calculates the displacements, the interface needs the

proper manipulation direction collinear with M. Therefore, after each time the curve

is generated on the model, we explore its curvature direction from the middle point.

If the normal in y direction of the middle point of curve is negative, the concavity

is downward. On the other hand, if the normal in y direction of the middle point of

curve is positive, the concavity is upward (see figure 3.8).
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Figure 3.8: (a) shows the neutral pose of the eyes. (b) shows the curve applied with downward

concavity. (c) shows the curve applied with upward concavity.

3.3 Validation and Experimental Results

Our method and its interface have been implemented as a plugin for Maya 2016 [Aut]

using C++ and Python. Numpy, Scipy and Scikits.sparse packages have been used for

matrix calculations. In our method, all steps respond in real time and rapidly produce

the interactive visual feedbacks to the user, so there is not any involvement of a specific

operation before or after the execution. Our main motivation has been keeping the

user away from the technical aspects of the method during the implementation. For

that reason except the mouse, the interface does not include any control component

which may create some confusion to the user. All the tests and validations were

performed on 4-core Intel Core i7-2600 3.4 GHz machine with 8 GB of RAM and an

nVidia GTX 570 GPU.

3.3.1 Regularization Parameter

Although our major focus has been the input matrix B̄ in the proposed method, α in

the regularization term of equation (3.3) plays a critical role in our approach. Most

importantly, α keeps the equilibrium by fitting the new weight values according to the

desired pose during the weight update. If the value of α is set to zero (α = 0), the

method shifts to an unsteady state and inevitable haphazard shapes occur. On the
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other hand, setting α to higher values (α > 1), then the regularization term completely

dominates the equation (3.3) and the user never gets any respond from the system.

The selection of alpha parameter is done according to the most optimal fit between

the pin movement and corresponding deformation. We set the value of α to a small

number (α = 0.0001) according to the meaningful visual responses from the models.

The deformation results with different α values for the same pin movements are shown

in figure 3.9.

Figure 3.9: Example of mouth movements when the middle pin moves to the same location under

different α values (a) α = 1.0 (b) α = 0.1 (c) α = 0.01 (d) α = 0.0001

3.3.2 Localization

In our experiments, the major facial model includes 40 blendshape targets. If the user

applies the blendshape direct manipulation without our localization improvement, the

results may include some peculiarities. Figure 3.10 exemplifies this problem. When the

operator drags the pin in the mouth region for the first time, the system may respond

with an expected pose. However, at the same time, the system automatically assigns

undesired weight parameters to the beneath blendshape targets. Therefore, after the

user applies another pinning operation to the eyebrow area, the model responds with
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unexpected visual results. Figure 3.9 shows the manipulation area is on the right

eyebrow, however, both mouth and left eyebrow deforms from the drag operation in

that right eyebrow. The slider interface, thereby, clearly shows almost all weights are

parametrized without any user intention.

Figure 3.10: An example pose created without localization. In left image, sketching is applied to the

mouth region, and a desired deformation is obtained according to the sketch alignment. However,

after this sketch, almost all blendshapes are parametrized unintendently. Therefore, after sketching

to the right eye-brow, the left eye, left eye-brow and mouth is deformed unexpectedly. Besides, the

unintended parametrization is obvious in the slider interface. Almost all blendshapes are assigned to

a weight value, which causes unintuitive and unexpected resultant pose..

In figure 3.11, we mimic the same scenario as shown in figure 3.10 to show how

our localized method reacts under the same conditions. The system does not give a

global deformation impact. Each pin is totally dedicated to the confined regions which

enables intuitive manipulations without any undesired effects. As shown in figure 3.11,

when the pin drag is applied to the right eye brow of the model, the rest of the model

remains same as before. Slider interface is another proof to show the difference of our

localized approach. Most of the weight values remains zero and only the corresponding

weights are parametrized according to the pin drag. The images in figure 3.10 and

figure 3.11 have been composed with extremity not only to demonstrate the superiority

of our approach but also to analyze the resultant weight values. One significant point

is to note that, equation (3.5) tends to produce negative weights or overdose weights

with or without localization. Negative weights occur only in the reverse direction

of the deformation and overdose weights simply mean the deformation is more than
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it should be. This result mostly depends on the drag range of the manipulator. In

figures 3.10 and 3.11, we set the weight range between [-10,10] only to present this

effect, however most of the resultant weights stay in the range of [0,1], which the

professional packages offer in their slider interface. Some of the weights, nevertheless,

stay as negative and one weight stays overdose, which is shown in the comparison

chart in figure 3.12.

Figure 3.11: The same example pose with the previous image with localization. The same scenario

is sketched as in figure 3.10. In left image, mouth area is sketched, and a desired deformation is

obtained according to the sketch alignment. After the right eye-brow is sketched in the right image,

the rest of the face remains the same. With our localization method, sketching only deforms the right

eye-brow. Besides, it can be seen clearly in the slider interface, only the relevant blendshapes weights

are parametrized. The resultant pose is more intuitive and expressive than the previous example.

Although the professional tools, such as Maya, allow to apply negative or overdose

weights, the common slider interface of Maya provides the deformation space for

blendshape models in the range of [0,1]. To provide a compatibility with Maya’s

blendshape sliders, a clipping operation is applied to the resultant weights from

equation (3.5) for keeping the weights between [0,1]. The clipped weight values of

the previous example are revealed in another comparison chart shown in figure 3.13.

As a result, our localized technique keeps irrelevant weight values in their initial

state. However the direct manipulation method without localization parametrizes

these undesirable weights with random values. When the weight values given in figure

3.13 are applied to the slider interface manually, the values which are obtained from

the ”without localization” give hazardous and undesired results, but the values from



3.3. VALIDATION AND EXPERIMENTAL RESULTS 54

Figure 3.12: Comparison chart of the weight values for the direct manipulation with and without

localization. In this chart weight range is set between [-10,10]. Direct manipulation without

localization produces many non-zero weights in irrelevant blendshape targets (blue colored bars). On

the contrary, our localized method just produce non-zero weights in the blendshape targets that are

meant to be manipulated. In both cases, direct manipulation produces many non-negative weights,

few negative weights and overdose weights.

our method give a meaningful expression to the model (see figure 3.14).

3.3.3 Manipulation with Horizontal Curves

Instead of ”pin and drag” operation for the blendshape manipulation, our horizontal

curve technique undertakes the manipulation in a more practical and intuitive per-

spective. In our interface, when the user locates the pins by sketching, they are

all generated with green color. After a user selection applies to the pin for fine

tuning, it immediately turns to red color. Figure 3.15 demonstrates example facial

poses automatically generated by using our sketched curves. All pins remain in green

color which proves that pin-and-drag operation are not applied manually. However,

manual drag is inevitable to obtain the desired pose and our system allows the user

to select any pin and drag it until the desired expression obtained. In addition, our

system incorporates blendshape sliders if particular details are required. Figure 3.16

demonstrates the whole operation from the neutral pose to the final result on different

models.
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Figure 3.13: The same comparison chart of the weight values for the direct manipulation with and

without localization that is illustrated in figure 3.12. In this chart weight range is set between [0,1],

and the comparison is more obvious. Our localized method completely clears the irrelevant weight

values that are produced by mathematical framework of direct manipulation.

3.3.4 Performance

In general, performance is a key factor in sketching systems. The user’s tendency is to

obtain the visual results immediately after the sketch drawing is completed. In bone-

based rig models, performance is not considered as a difficulty, because the deformation

space is relatively low when compared to the blendshape models. Although the main

concentration of this chapter is not about speed optimization, the efficiency of our

system is remarkable. Primarily the complete system has been built as a plugin

for Maya, therefore our system’s response time directly depends on Maya’s process

efficiency. Besides, mainly two factors affect the overall efficiency of our system: size of

the input matrix B̄ from equation (3.3) and the heat method for localized deformation.

Size of B̄ is directly related with the number of the target shapes of the model. Since

we consider B̄ matrix is created during the generation of each individual pin, the facial

model structure is a critical element which directly affects the response time of our

system. For the best performance, the model has to be cleared out from the redundant

elements, which are used for creating the model during the modeling operations such

as smoothing, merging, triangulation, etc. After modeling, these elements are not

needed but usually retained in the model’s hierarchy and seriously affect the sketching

performance. Table 3.1 summarizes the differences of pin generation timings between
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Figure 3.14: Comparison of the images with the clipped weight values. (a) shows the results which

comes from ”without localization”, (b) shows the results which comes from ”with localization”

a clean model and the same model which includes these redundant attributes. On the

other hand, performance of the heat method is independent from the model structure

and mostly depends on the surface components of the model (vertices, edges and faces).

During the experiments, the timings for computing short range geodesic circles with

heat method are steady for each individual pin generation (figure 3.4 and 3.5). For

example, the heat method computes the geodesic circles around 0.02 seconds for both

models: Face 1 (the model without texture) with 6720 vertices, 19984 edges and 13264

faces and Face 2 (the model with texture) with 9562 vertices, 28416 edges and 18848

faces. Finally, the timing for pose editing is around 0.01 seconds for both models.

This timing is same for pose editing with either pin drag or curve entities, and it

should be noted that our technique guarantees to give an interactive visual feedback

by solving equation (3.5) within 0.01 seconds. The processed data, models, the method

parameters and computation timings are summarized in table 3.1.

3.3.5 Animator Feedback

We have performed several informal qualitative tests with professional animators.

These tests are not meant to be an exhaustive and formal evaluation, nevertheless

it exposes a general information about the usability of our system. In general, the

feedback has been positive. After spending some time to gain familiarity with the

system, they all agreed that generating a facial pose by using our method is easier

and faster than using the traditional slider interfaces. Further, one comment was
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Model #V ertex #Edge #Face #Targets α rmin rmax Theat Tpin Tedit

Face 1 6720 19984 13264 40 0.0001 0.1 0.5 0.015 0.06 0.0099

Face 2 9562 28416 18848 18 0.0001 0.1 0.5 0.02 0.015 0.0099

Face 1* 6720 19984 13264 40 0.0001 0.1 0.5 0.015 2.70 0.0099

Face 2* 9562 28416 18848 18 0.0001 0.1 0.5 0.02 1.678 0.0099

Table 3.1: Summary of the processed datasets. From left to right, columns show in order, the

model used, number of vertices, number of edges, number of faces, number of blendshape targets, α

value used in regularization term in equation 3.3, rmin and rmax for the range of the support region

computed by the heat method, Theat is average timing for heat method, Tpin is average timing for pin

generation, Tedit is exact timing for pose editting. (*) means the model with ”redundant attributes”.

All computation times are in seconds.

that using a sketch-based interface on a blendshape model allows to produce visually

more plausible poses than joint-based models in [MAO+12]. Another comment was

that our localization approach is intuitive and practical in terms of editing only the

desired area of the face without using a confusing user-interface. Another comment

stated that synchronized control of the blendshape slides has a potential to reduce the

labor intensive production times. Negative comments were mostly about the detailed

editing. One comment cautioned that the slider interface may still be useful in some

cases to fine tune the resultant pose. A final comment emphasized that the horizontal

curves are useful to rapidly create the abstract poses, but to obtain a highly precise

pose requires both pin editing and slider editing together. Fortunately, our method

and its interface provides the individual pin drags incorporates the underlying slider

interface.

Limitations: Our method works well with blendshaped facial models however it has

some limitations. At this stage the implementation of the heat method is realized only

for the triangulated mesh models. The model should be constructed very accurately

and carefully for obtaining the high quality visual results, because the facial poses

are intrinsically limited to the span of the blendshape basis. For example, in our

experiments one of the models showed a slight movement in the mouth when the edge

of the eyebrow is moved (this coupling is unexpected but not necessarily unrealistic).

The strokes shall not overflow to the outside of the boundaries of the model and we

assume that the operator has basic artistic skills.
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3.4 Summary

In this chapter, we have presented the localized blendshape direct manipulation us-

ing a sketch-based interface. Our system has primarily focused on both localized

deformation and precise interconnection between the sketching and manipulators on

the surface of the facial model. Our system’s intuitive interface provides the user an

easy and interactive approach not only to locate the pins onto the model but also to

manipulate the relevant underlying blendshapes by using horizontal curves approach.

When compared with other techniques, our method enables the user to create general

facial expressions without using the traditional slider-based editing interface while

nevertheless keeping the semantics of the blendshape model. Our localized direct

manipulation method satisfies the users with its intuitive, efficient, and precise control

without giving any global deformation impact to the model.
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Figure 3.15: Facial pose editing on a blendshape model by using the proposed localized direct

manipulation method using the sketching operations.
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Figure 3.16: Sample sequence to create a facial pose on 2 different facial models by using our system.



Chapter 4

Transposition Based Blendshape

Direct Manipulation

The mathematical frameworks of the direct manipulation techniques are mostly based

on pseudo-inverses of the blendshape matrices which include all target shape’s vertex

positions. However, the pseudo-inverse approaches often give unexpected results during

the facial pose editing process because of their unstable behavior. To this end, we

propose the transposition method to enhance the direct manipulation by reducing the

unexpected movements during weight editing. Our method extracts the deformation

directions from the blendshape matrix and directly maps the sparse constrained point

movements to the extracted directions. Our experiments show that, instead of psuedo-

inverse based formulations, transposition based framework gives more smooth and

reliable facial poses during the weight editing process. The proposed method improves

the fidelity of the generated facial expressions by keeping the hazardous movements

in a minimum level. It is robust, efficient, easy to implement and operate on any

blendshape model.

61
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4.1 Motivation

According to blendshape direct manipulation [LA10], moved points determine the

resultant face as a simple linear combination of predefined target shapes,

m = Bw (4.1)

where m is the vector of resulting vertex positions that are already moved, w is the

corresponding weight vector and B is the blendshape matrix which includes vertex

coordinates of all target shapes at its columns. The solution of equation (4.1) shows

that there is an obvious pseudo-inverse relationship between the blendshape weights

and manipulated points. The general pseudo-inverse approach gives the best possible

approximated solution to w by minimizing the moved point to its correspondent target

shapes (minw ‖Bw −m‖2). However, pseudo-inverse based mathematical frameworks

are known with their unstable and unintuitive results. Altering an arbitrary side

of the face model causes unexpected little changes in the remaining parts of the

model. The reason for this instability is the fact that pseudo-inverse tends to assign

non-zero values to its columns which cause unintended moved point projections for

the irrelevant weights. To prevent the weight editing system from the unexpected

movements, we offer the transposition based direct manipulation for the blendshape

models. Our method is inspired from the Jacobian Transpose method and provides

the direct projection of the moved points onto B which avoids the instability of the

pseudo-inverse approach. During weight updates, keeping BT with its original values

allows us to manipulate desired part of the face without any little alterations in the

remaining parts of the 3D model (see Figure 4.1).

In terms of computing the weight updates directly using the transpose of B, we ana-

lyzed the deformation (vertex displacements) directions to prove that our transposition

based direct manipulation is a modified version of the classic pseudo-inverse approach.

By considering each column of B is a deformation vector for the base neutral pose,

we extract the deformation directions from the columns of B by using Gram-Schmidt

process and store these columns as a new orthonormal matrix which shares the same

deformation directions as B. After applying the pseudo-inverse algorithm to the new

matrix, the resultant mathematical framework has appeared similar to the proposed

transposition based framework with an additional step-size matrix.

In our experiments, we compare the proposed method with two different pseudo-inverse

based algorithms for blendshape weight updates. The first version is the classic pseudo-
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Figure 4.1: Face posing with our novel transposition based blendshape direct manipulation method.

Unlike the pseudo-inverse based techniques, our method generates the facial poses without any artifact

or unexpected movements. Our method provides the artistic editing with a simple, efficient and easy-

to-implement mathematical framework which is inspired by Jacobian Transposes.

inverse method and the other one is the commonly used pseudo-inverse with Tikhonov

regularization [LA10]. Against both methods, our method produce more intuitive and

reliable posing results. Further, we discuss the advantages and disadvantages of both

approaches and present a hybrid approximation by using only powerful sides of pseudo-

inverse based approach and our transposition based method. Finally, the resulting

approach is simple to implement, efficient (based on solving only linear systems) and

can be adapted easily to the existing blendshape deformation frameworks.

4.2 Method

In this section, we first explain the algebraic perspective of blendshape models and

pseudo-inverse approaches and then describe about the details of the proposed trans-

position based direct manipulation.

4.2.1 Blendshape Direct Manipulation and Pseudo-Inverses

According to direct manipulation scheme, the weight updates can be simply approxi-

mated as in equation 4.2:

w = B+m (4.2)

where B+ denotes for the pseudo inverse of B. B+ is thereby defined as (BTB)−1BT .

However, in some cases the inverse operation in equation 4.2 may fail because of the

singularity of BTB. In these cases, blendshape matrix may not provide a full rank.
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Lewis and Anjyo [LA10] addressed this problem with the Tikhonov regularization term

to update the weights with the most optimal fit to the point movements. Another

advantage of applying regularization term is keeping the equilibrium of the system

by fitting the new weight values according to the desired pose during point move-

ments. According to [LA10], equation 4.3 shows the weight update after applying

regularization to the system defined in equation 4.2.

w = (BTB + αI)−1(BTm+ αw0) (4.3)

where α is the regularization term which is defined by user. As mentioned in the

previous chapter, α term is a small number such as 0.0001. After setting the α term

to a small value, the term αw0 in equation 4.3 does not have a noticeable effect

to determine the final weights. If the regularization term is selected as zero, then

equation 4.3 transforms to the classic pseudo-inverse form which is shown in equation

4.2. While dragging the constraint points on the surface of the model, equation 4.2 or

4.3 constantly updates the weight values for each coordinate unit. This approach has

been widely employed for the last decade.

4.2.2 Transposition Method

Direct manipulation formulation is based on pseudo-inverse of B with or without

regulation term. However, pseudo-inverse approaches have a well-known instability

problem. Therefore, unexpected and unintuitive movements can be observed during

the pin drag. For example, while the user drags a pin in the mouth region of the face,

eye brows may move reluctantly. One view of the underlying cause of this instability

is the fact that pseudo-inverses tend to apply non-zero values in its columns. Since

we consider the column space of pseudo-inverse is the major deformation space of the

linear system, each movement of pin, thereby, gives a global deformation impact to

the facial model.

Inspired from the Jacobian transpose approach of differential inverse kinematics [LD10],

we reformulate the blendshape direct manipulation in a more stable and efficient

perspective. The inverse kinematics problem is explained as minq ‖p − f(q)|2 which

was solved by [ZB94] by using a nonlinear programming. According to their approach,

nonlinear f() turns into a linear function about the current position with an update

equation:
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Figure 4.2: (a) Neutral pose of the model with the located pin. (b) Pin moved down and right

by using our ”Transposition Method”. (c) Pin moved to the same position as (b) by using the

”Pseudo-Inverse Approach”.

ṗ = Jq̇ (4.4)

where ṗ is the vector from the point on the inverse kinematic handle to the target

point, J is the Jacobian of f(). Equation 4.4 has to be solved for the parameter

update q̇ with the most optimal approximation. The resultant system is nothing but

q̇ = J+ṗ. The problem in equations 4.1 and 4.4 nicely fits to each other. However,

Welman [Wel93] offers the Jacobian Transpose algorithm for differential inverse kine-

matics to avoid the unstable behavior of pseudo-inverse approach. According to this

algorithm, the parameter update can be defined q̇ = JT ṗ instead of q̇ = J+ṗ. In

our transposition method, we adapt Jacobian Transpose algorithm to the blendshape

direct manipulation in an elegant way to reduce the global deformation impact to a

minimal level. Therefore, the weight updates are defined as:

w = BTm (4.5)

The transition from pseudo-inverse based weight updates to our transposition based

method is given in Appendix C. From an intuitive perspective, equation 4.5 provides a

direct projection of the point movements onto the B. Therefore, point displacements

directly determine the exact deformation with the correcting rows of BT . This type

of approach prevents the unexpected and unintuitive deformation effects on the facial

model. We accomplish this by appending the constrained points to m and correspond-

ing rows to B. Thereby, each pinned points adds three columns to BT and rows to m.
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Figure 4.3: The screen-shots of the slider interface according to the pin movements that is shown in

figure 4.2. (a) is for our ”Transposition Method”. (b) is for the ”Pseudo-Inverse Approach”.

For example, while ”n” arbitrary number of pins are located on the 3D facial model

with ”k” number of blendshape targets, the system described in equation 4.5 can be

represented in the matrix form in equation 4.6:


w1

w2

w3

...

wk

 =



x y z · · · z

x y z · · · z
...

...
...

...
...

bT
1 bT

2 bT
3 · · · bT

3n
...

...
...

...
...





m1x

m1y

m1z

m2x

m2y

m2z

...

m3nz


(4.6)

It should be noted that in equation 4.6, BT is k×3n matrix consists of the coordinates

of blendshape targets over the selected vertex and w vector which consists of all weight

values that form the resultant face. It is clear that wi = bi · m from equation 4.6.

Therefore, this proves each pin displacement is only projected on its corresponding

blendshape targets and this behavior keeps the system stable, intuitive and prevents

the unexpected movements.
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Figure 4.4: Blendshape direct manipulation comparison example on a model with 40 blendshape

targets. (a) is the target pose which was created in maya slider interface. An experienced user

generated the most closer pose to (a) by using our transposition method (b), classic pseudo-inverse

approach (c) and the method of Lewis and Anjyo [LA10]. Below, the weight values are reported

for each above corresponded pose. Our transposition based approach clearly gives the most close

approximation to the target pose.

4.2.3 Pseudo-Inverse with Transposition Method

The pseudo-inverse and blendshape transpose approaches have their own complemen-

tary advantages and disadvantages. Therefore, it would be desirable to combine them

and obtain a smooth and promising hybrid approach. The instability problem of

pseudo-inverse approaches are already mentioned in the previous section. However,

this negative effect can be used as an advantage during the pin movements. Because

in some particular cases, the movements of shapes naturally requires the movements

of other shapes. For example, the specific movement of inner eyebrow for the ”anger

expression” can only be possible with the slight movement of the mouth. During pose

editing, this type of coupling may seem unexpected but not necessarily unrealistic.

Besides, the gross pin movements may overshoot the pose with the transposition

method. By taking these possibilities into account, we define a simple parametric

representation for the weight updates that is shown in equation 4.7:

w = (γB+ + (1− γ)BT )m (4.7)
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where γ is an arbitrary scalar which keeps the balance of the system. The value of γ

would be varies between [0,1] where error stay in a minimal state. Unfortunately, in

this context there is no exact definition of error, since pseudo-inverse part of equation

4.7 already produces a slight error. The error, nevertheless, can be considered as the

unexpected movements of the face that are beyond the tolerable limit. For the most

optimal fit, we suggest to keep the value of γ as a small number such as 0.1. The

further details of equation 4.7 and the γ value will be discussed in the next section.

4.3 Validation and Experimental Results

Our method and its interface have been implemented as a plugin for Maya 2016 using

Python. Numpy package has been used for matrix calculations. We demonstrate the

comparison of our transposition method with the other existing techniques on the

various blendshape facial models to validate the stability of our method. All direct

manipulation techniques including our transposition method respond in real time and

rapidly produce the interactive visual feedbacks to the user. Our main motivation

has been keeping the user away from the technical aspects of the method during the

implementation. For that reason except the mouse, the interface does not include any

control components. All the tests and validations were performed on 4-core Intel Core

i7-2600 3.4 GHz machine with 8 GB of RAM and an nVidia GTX 570 GPU.

Comparison to pseudo-inverse based approaches

Despite the instability problem of pseudo-inverse based approaches, over years they

have dominated the research on direct manipulation. However, our experiments show

that our transposition method deforms the desired area of the face with a more smooth

blending. Besides, the unexpected movements are almost completely eliminated. The

figure 4.2 visually compares our method with the pseudo-inverse technique under the

single pin editing scenario. The model consists of 18 blendshape targets and the same

pin movements produce thoroughly different facial pose. The slider interface of figure

4.2 is shown in figure 4.3. The pseudo-inverse approach clearly updates the least

corresponding weights more than it should be, and the resultant pose stays far away

from the expected pose. On the other hand, our transposition method directly maps

the displacement of the pin movement onto the corresponding blendshape targets.

The resultant pose is in the direction of the expectations. Besides, it should be noted
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Figure 4.5: Comparison of our proposed method with other pseudo-inverse based techniques on a

production quality blendshape model with more than 100 target shapes. Our transposition based

method (a) generates visually plausible and desired results with same pin drag direction. The other

methods (b and c) produce unintuitive results with many unexpected global deformation.

that both approaches operate in the deformation space defined by the predefined

blendshape targets. Therefore, it is not possible to express poses beyond the limits of

what blendshapes allow to the user.

Further, we created an experimental pose (figure 4.4a) for an experienced user and

asked briefly produce the same pose using our transposition based method, pseudo-

inverse based approach and method of Lewis and Anjoy [LA10]. The test model

consists of 40 blendshape targets and we measured each target shape value as shown

in figure 4.4 below. The most correct pose was intuitively obtained by our transposition

method. However, all 3 approaches produce errors. These errors are reported using

the root mean square deviation per weight:
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Model #V ertex #Edge #Face #Targets Tpin Tedit

Face 1 6720 19984 13264 40 0.15 0.0099

Face 2 9562 28416 18848 18 0.03 0.0099

Face 3 11926 35576 23648 36 0.13 0.0099

Face 4 5692 11282 5584 127 1.75 0.015

Face 5 5792 11625 5834 136 1.46 0.019

Table 4.1: Summary of the processed datasets. The face model order follows the order in figure 4.1

(from left to right). For example, Face 1 is the left most model, Face 3 is the cartoon model in the

middle, Face 5 is the right most model. In the table from left to right, columns show in order, the

model used, number of vertices, number of edges, number of faces, number of blendshape targets,

Tpin is average timing for pin generation, Tedit is exact timing for pose editing. All computation

times are in seconds.

ERMS =

√√√√ 1

N

N∑
i=1

|wi − w̄i|2 (4.8)

where N is the number of target shapes, wi is the weight value of the ith target shape,

and w̄i is the corresponding weight value of the ith target shape of the experimental

pose (figure 4.4a). The error values for each target shape is compared in figure 4.6.

According to the error analysis, the pseudo-inverse approach and the method of Lewis

and Anjyo [LA10] produce several irrelevant weight values during the pose generation.

Besides, both approaches generate error values on the relevant weights which causes

unintuitive end results. On the other hand, our transposition based method produce

very few error values which mostly occur on the relevant weight values. This difference

is due to precise hand gestures and almost not observable on the model. Figure 4.6

demonstrates these error differences in scatter and line graph styles.

We compare all three approaches for posing with a production quality model (number

of blendshapes > 100) in figure 4.5 which is a more realistic scenario for the artists

to create facial expressions during the animation process. We observe that method of

Lewis and Anjyo [LA10] (figure 4.5c) produces visually more plausible poses that

the classic pseudo-inverse approach (figure 4.5b), nevertheless they both produce

unexpected movements on the other parts of the desired parts of the face. Our

transposition based method (figure 4.5a) provides almost fully local deformation which

allows the artists to edit only the desired manipulation area without any visible global

deformation impact. It should be noted that in figure 4.5, all columns are aimed to

produce the same pose with the same number of pins. Besides, figure 4.8 illustrates

the application of our transposition based method on different facial models. Table
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1 summarizes the processed data, model details and computation timings for the

proposed approach.

Parametrization of the Hybrid Approach

Assigning a parameter to γ value in equation 4.7 is the most straight forward approach.

It would be most likely to choose a small heuristic value (such as 0.1) and allow the

transposition method to dominate the equation 4.7. Instead, we apply the singular

value decomposition to BT where BT = V SUT and choose the smallest singular value

σ1. The singular values smoothly approaches to zero when the number of pins on

the model increase. On the other hand, since B+ = V S+UT , the singular values of

pseudo-inverses grow toward infinity.

As the user applies few number of pins to the model (such as 1 or 2), the pseudo-

inverse side of the equation 4.7 will be intrinsically effective. Besides, by intuition few

number pins denotes that the user does not fully constrain the model and execute

only a simple weight update. Another possibility can be an unstable pose needed for

a particular case. Nevertheless, the general practice is based on applying the high

number of pins to the model (such as 5 to 15) and controlling all of them without

any artifact. In these cases, our transposition method dominates the equation 4.7

and provides smooth results. Figure 4.7 demonstrates an example case to the usage

of equation 4.7. Some poses are necessary for irregular expressions and possible to

create with 1 or 2 pins similar to first and second column of figure 4.7. In these

cases, pseudo-inverse approach can be considered to generate the desired irregular

pose. However, when the number of pins increase on the model, transposition based

method dominates the equation 4.7 (last column of figure 4.7).

4.4 Summary

In this chapter, we present a practical transposition based blendshape direct manipu-

lation method for 3D facial models. Our method has focused on the precise projection

of the pin displacements onto the corresponding deformation vectors. Unlike the

previous pseudo-inverse based methods, our method allows direct control of the defor-

mation space by purely sticking its dimensions. This behavior reduces the unexpected

movements during the artistic editing and almost completely reduces the deformation

influence area to the local geometry where the pins are located. Besides, we offer
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a hybrid approach which incorporates our proposed method with the pseudo-inverse

solution. In the results, we demonstrate how our method provides intuitive and artistic

edits on blendshape models almost without any artifacts. Our method is original,

simple and general that can be easily adapted to the existing direct manipulation

frameworks.
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Figure 4.6: The error analysis of the weight deviation from figure 4.4. The error values are calculated

by using equation 4.8. The scatter plot of error values are presented in the top graph and the

comparison of error values are shown in the bottom graph. Our transposition method produces the

minimum error during the pose generation.
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Figure 4.7: The example illustration of our hybrid approach from equation 4.7. The parametrization

is calculated according to singular values of SVD. When the user locates few number of pins on the

model, SVD produce a high value for the gamma parameter and pseudo-inverse side of equation 4.7

dominates. On the other hand, with high number of pins on the model, SVD produces a very small

number and transposition part of equation 4.7 dominates. In some rare cases, our hybrid can be

useful.
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Figure 4.8: Sequential posing using our transposition based blendshape direct manipulation method.

Our method can be applicable to all blendshape models without any problem and it took less than 3

minutes to create the final expression from the neutral pose. The details of the models are reported

in table 1.
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Chapter 5

Localized Verlet Integration

Framework For Facial Models

Traditional Verlet integration frameworks have been successful with their robustness

and efficiency to simulate deformable bodies ranging from simple cloth to geometrically

complex solids. However, the existing frameworks deform the models as a whole. We

present a Verlet integration framework, which provides local surface deformation on the

selected area of the mesh without giving any global deformation impact to the whole

model. The framework is specifically designed for the facial surfaces of the cartoon

characters in 3D computer animation. Our framework allows an interactive selection

of the deformation influence area over the model, which gives a notable benefit in terms

of efficiency for the position manipulation during the simulation process. To this end,

we take advantage of a geodesic distance computation technique based on heat kernel

for the determination of the selected surface on the model. In addition, the framework

exploits the projected position constraints for stretching, shearing and bending to handle

the environmental interactions such as collision. The proposed framework is robust and

easy to implement since it is based on highly accurate geodesic distance computation

and solving the projected geometric constraints. We demonstrate the benefits of our

framework with the results obtained from various facial models to present its potential

in terms of practicability and effectiveness.

77
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5.1 Motivation

Creating appealing surface deformation of rigid and soft bodies has been always a

challenging problem for the area of computer graphics. The major reason is the

increase of the expectations for more realistic effects. In parallel to that theoretical

approaches to create these effects have become complicated over many years for gaining

the life-like components. Although there exists sophisticated theories, which define

physical laws for animation, the tendency of seeking the efficiency, easy implementation

and robustness is always the main goal during research. Notable examples are Position-

Based Dynamics (PBD) [MHHR07] and Nucleus [Sta09], which define objects as a

particle system and particles in the system are related with each other by geometrical

constraints. During the simulations, each constraint is solved iteratively in a non-linear

Gauss-Seidel form.

The proposed framework in this chapter follows the similar approach as PBD. However,

our framework is focused on the facial applications so we use the Verlet integration

scheme from [Jak01]. The velocities are stored in an implicit fashion instead of explicit

and our main focus is more centered on the direct position manipulation.

PBD approaches are quite common for cloth, deformable solids and rigid body sim-

ulations. In these particular cases, the dynamic solvers give a global deformation to

the object, because the forces or environmental impacts (such as collision) naturally

influence the object as a whole. The most important feature of our framework is

to create a local deformation area on the model according to the needs instead of

running the simulation over the whole model (or object). For that reason, we pre-

compute the geodesic distance from a selected center (vertex) to a desired range by

using the heat method [CWW13] and set-up a deformable soft area within the defined

boundaries. After this operation, the specified deformable area has the geometric

constraint properties from PBD and outside of the boundaries the model conserves

its rigid behavior (see figure 5.1). This feature gives a significant benefit in terms of

flexibility and control for deforming a desired region of a complex model such as face

with a minor computational cost.

Our solution used in this framework provides an expeditious approach for facial surface

deformation, which combines the projected geometric constraints from PBD and the

heat method for the geodesic distance computation. In general, the physically-based

facial rigging for deformation is a complicated and highly demanding process, which is

not the focus of this chapter. We address the previously mentioned drawback of global
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Figure 5.1: Demonstration of a simple sequence of the proposed framework on a humanoid character.

The model includes 6798 vertices. After the collision detection only the assigned area from the heat

method (blue painted) is deformed and the rest of the model remains same.

deformation of the complex objects by allowing the determination of the deformable

surface arbitrarily on the target model. Similar to the traditional PBD systems, our

framework is controllable and retains the simplicity in terms of implementation.

5.2 Position Verlet Integration

Verlet integration scheme is a refined numerical integration method for defining the

equations of motion. Unlike the Euler’s method [NMK+06], the main idea of this

integration model is to exploit the central difference approximation to the second

order differential equation shown as in equation (5.1):

∆2qn
∆t2

=
qn+1−qn

∆t
− qn−qn−1

∆t

∆t
(5.1)

where ∆t is the discrete time step, qn is the position vector at tn. Equation (5.1) is also

the definition of acceleration (an = ∆2qn
∆t2

). According to Störmer-Verlet representation,

the position updates are expressed as in equation (5.2):

qn+1 = 2qn − qn−1 + an∆t2 (5.2)

In equation (5.2), right-hand side can be expressed as qn + (qn − qn−1) + an∆t2

which shows for the previous positions, velocities are stored implicitly [Jak01]. We

additionally introduce a simple damping parametrization to equation (5.2) to ensure

our framework converge to a stable and plausible state. The modified version of Verlet

integration in our framework can be written as in equation (5.3):
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Figure 5.2: Illustrations of the constraint projections: (a) represents the stretching constraint defined

in equation (5.8), (b) represents the shearing constraint defined in equation (5.9), (c) represents the

bending constraint defined in equation (5.10)

qn+1 = qn + (qn − qn−1)(1− kdamp) + an∆t2 (5.3)

where kdamp is a damping parameter kdamp ∈ [0, 1]. This slight modification to the

original Verlet integration shown in equation (5.2) is a necessary step, which adds

an overall aesthetics to our framework. Although damping parameter causes our

framework an insignificant payoff, it is important to note that to handle more stability,

damping is a required factor for the smooth and pleasing responses in our framework

especially during the collision response stage.

5.3 Description of Deformation Constraints

In this section, we would like to explain the system of interconnected components

of the triangulated mesh (input model), which acts like particles in position-based

dynamics approach [MHHR07]. Accepting the input model as a particle system can

be considered as a set points, which are connected with each other by links with an

arbitrary order. This approach facilitates to operate on each component (such as

vertices, edges, faces, etc.) of the input model in the proposed framework.

According to the basics of the position-based dynamics [MHHR07], [BMOT13] and

[BMM15], after the predicted positions of the particles are computed in the time

integration scheme, these positions are altered by a technique to match up to a group

of constraints Ci. The system of constraints is iterated by a Gauss-Siedel form, which

updates the positions one after another until all constraints are satisfied. During these
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updates, conservation of linear and angular momentum is a significant matter, which is

provided implicitly. The displacements of the particles are calculated with the solution

of the following equation (5.4):

C(q + ∆q) = 0 (5.4)

where q is the concatenation of vectors, which includes the particle positions q =

[q1, q2, ..., qn]T and ∆q is the correction displacements. Solving the constraint function,

a 1st order Taylor-expansion is employed to approximate, which is shown in equation

(5.5):

C(q + ∆q) ≈ C(q) +∇qC(q) ·∆q = 0 (5.5)

Equation (5.5) is considered as an undetermined equation. Thus, the directions of the

∆q is limited to the directions of the ∇qC(q) to conserve both momentums, so with

the consideration of the masses (m) of the particles, ∆q becomes as in equation (5.6):

∆qi = wiλ∇qiC(q) (5.6)

where wi = 1
mi

and λ stands for the Lagrange multiplier, which obtained by substi-

tuting equation (5.6) in equation (5.5):

λ = − C(q)

Σjwj|∇qjC(q)|2
(5.7)

With the equations (5.6) and (5.7), the positions of the particles (or points) are

updated after each constraint is computed. In our framework, 3 position constraints

are chosen by following [Sta09] : stretching (C1), shearing (C2) and bending (C3)(see

figure 5.2). The mathematical expressions of these constraints in the same order listed

as follows:

C1(qi,j) = |qj − qi| − lij (5.8)

C2(qi,j,k) = cos−1(Mij ·Mik)− γijk (5.9)
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C3(qi,j,k,l) = cos−1(Nijk ·Nijl)− θijkl (5.10)

where lij is the rest length of each edge between the points, γijk is the rest angle

between edges and θijkl is the rest angle between each face primitives. Besides, M and

N values are computed as follows:

Mij =
qj − qi
|qj − qi|

Mik =
qk − qi
|qk − qi|

(5.11)

Nijk =
(qj − qi)× (qk − qi)
|(qj − qi)× (qk − qi)|

Nijl =
(qj − qi)× (ql − qi)
|(qj − qi)× (ql − qi)|

(5.12)

The types of constraints may be increased depending on the requirements. In appendix

A, we derived all the constraint from equations (5.8), (5.9) and (5.10) for the gradients,

Lagrange multiplier (λ) and the position corrections.

We would like to briefly mention about another constraint, which is the easy collision

response realization in the proposed framework. Collision handling is a key factor

for the demonstration purposes of the position constraint behaviors (see figure 5.3).

We have used the advantage of generic collision handling principles in [MHHR07] and

[Jak01] because of their stable comportment and smooth adaptation in our framework.

Collision constraint is an inequality constraint [Sta09], [MHHR07], which makes it dif-

ferent from the aforementioned constraints. This unilateral behavior can be expressed

as C(q) ≥ 0. In our particular proposed case, we restricted the collision object as a

simple sphere, which can be considered as a small ball. According to [MHHR07], the

constraint function for static collision is defined as in equation (5.13):

C(q) = (q − scol) · ncol (5.13)

where scol is the surface penetration (or entry) point and ncol is the surface normal.

Immediately after the intersection phase, the positions and velocities are updated

along the direction of contact point normal at each time frame accordingly. Another
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Figure 5.3: Illustration of the collision constraint: Left: Before the contact, the straight line

represents mesh surface with contact point. Middle: The moment of the contact, after dragging

the collision object to the surface, . Right: After the contact, the response of the surface with the

continuous time.

interesting point is, the appropriate velocity updates are computed automatically

during Verlet integration iterations. In our framework, collision constraint is also

computed within the deformation loop of other mentioned position constraints unlike

[MHHR07].

5.4 Geodesic Distance Computation

Before applying the operations mentioned in sections 4.2 and 4.3, our framework allows

the selection of the desired area of mesh, which is influenced from the deformation.

This gives a significant advantage in terms of locality, scalability and control (see

figure 5.4). Because the direct position manipulation aspect of PBD approach occurs

only inside the boundaries of the selected zone instead of the whole object. In this

framework, we have chosen to compute the geodesic distances with the ”Heat Method”,

which was presented in [CWW13]. The heat method is an elegant approach to compute

the geodesic distances, which is based on Varadhan’s formula from 1967:

d(x, y)2 = lim
t→0

[−4t log kt,x(y)] (5.14)
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Figure 5.4: The heat method allows us to select any part of the mesh to apply the simulation. It

can be scaled easily according to the desired selection. Upper Left: An arbitrary vertex in the cheek

part selected with larger boundary. Upper Right: Same selection applied in the jaw with a slight

narrow boundary. Down: The area selected with more narrow boundary in the forehead.

where kt,x(y) is the heat kernel. This formula basically explains the geodesic distance

(d(x,y)) can be recovered by the heat transfer from point x to point y in a short

time. The basic algorithm to the solution of finding the geodesic distances by using

equation (5.14) is summarized as follows: at the beginning user-specified actions can

be defined as giving the input as a triangulated facial mesh (Mf ) to the framework and

selecting any arbitrary vertex on the mesh (v ∈Mf ). After the vertex selection, heat

method integrates the heat-flow u̇ = ∆u for a fixed time. After that, it evaluates the

normalized gradient field X = − ∇u|∇u| . At last, it solves the Poisson equation to find the

geodesic distance field (d) in equation (5.14) ∆d = ∇·X. Appendix B summarizes the

derivations, which have been used during the implementation of the ”Heat Method”.

Using the heat method for computing the geodesic distances gives some advantages.

One advantage, it is highly flexible to be applied on various types of geometric

discretization such as point clouds, polygonal surfaces, simplicial mesh, etc. Other

advantage, heat method works with sparse linear systems, which can be prefactored

once and solved subsequently many times with a notable speed.
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Figure 5.5: The surface responds after collision under different projected constraints. (a) the target

surface with stretching constraint. (b) the target surface with stretching and shearing constraints.

(c) the target surface with stretching, shearing and bending constraints.

5.5 General Algorithm and Implementation

The proposed framework is specialized to operate on 3D facial models (triangulated

mesh), which can be considered as mesh of particles. Each particle (or vertex) on the

mesh has been assigned to some physical properties such as mass (m) and position

(q). Velocities are omitted because they are already calculated implicitly. The other

important data sets are acceleration (a) from the assigned force and time step size

(∆t).

Based on the explanations in the previous sections and data sets, the overall procedure,

which performs the simulation underneath of our framework can be described by

algorithm 1.

Our framework has been implemented as a plugin for Maya 2016 [Aut] using Python.

Third party packages such as Scipy, Numpy and Scikits.sparse have been used for

matrix operations. During the implementation, it should be noted that the cotangent

computation of the heat method shown at the beginning of algorithm 1 is performed

independent from the cosine calculations in position constraints in the end of algorithm

1. Another important parameter, which we have not discussed yet, is the stiffness

(kcons) of the constraint. According to Müller et al. [MHHR07], a smooth alternative

to apply stiffness parameter is to multiply the displacements by kcons. We have followed

the same direction and applied the stiffness parameter only to the bending constraint.

This straightforward calculation has been performed implicitly inside the bending

constraint ∆qbe ← ∆qbe(1 − kcons) so it has not been reflected in algorithm 1 just to

prevent confusion.
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input : A triangle mesh Mf = (V,E, F ) and a selected vertex vi ∈ V
output: 2 step output: First, geodesic distances d(vi, vj). Second, performing the

simulation inside the boundaries of the geodesic distances

assignBoundaries(vi, Distancemin, Distancemax);

foreach face (F) in Mf do

foreach edge (E) in F do
Compute the cotangent of the angles for Laplacian coordinates and areas of

the faces by using: cotα← E1·E2

|E1×E2| ;

end

Ai ← computeFaceArea(α);

end

/* integrate the heat flow */

u̇ = ∆u;

/* evaluate the normalized gradient field */

X = − ∇u|∇u| ;
/* solve the Poisson equation */

∆d = ∇ ·X;

/* simulate points(or vertices) (q) of the mesh inside the boundaries

of the heat area */

foreach q ∈ d(vi, vj) do

qn+1 ← qn + (qn − qn−1)(1− k) + an∆t2;

foreach specifiedIterations do

∆qcol ← collisionConstraint(qn+1);

qn+1 ← qn+1 + ∆qcol;

∆qst ← stretchingConstraint(qn+1);

qn+1 ← qn+1 + ∆qst;

∆qsh ← shearingConstraint(qn+1);

qn+1 ← qn+1 + ∆qsh;

∆qbe ← bendingConstraint(qn+1);

qn+1 ← qn+1 + ∆qbe;

end

updateOutputGeometry(qn+1)

end

Algorithm 1: General Algorithm for the Proposed Verlet Framework
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Figure 5.6: ”Cat Girl” was tested with different damping parameter. (a) kdamp = 0.3. (b) kdamp =

0.6. (c) kdamp = 0.9.

5.6 Validation and Experimental Results

The examples in this section were performed on a 4-core Intel i7-2600 3.4 GHz machine

with 8 GB of RAM and an nVidia GTX 570 GPU. We tested and validated the

proposed framework with different facial models using single threaded CPU implemen-

tation for Autodesk Maya 2016. In our experimental validations, the main purpose was

the observation of how the surface responds during collision under different constraint

types and to verify the adaptation of the heat method for the developers who already

use position-based dynamics.

Figure 5.7 and table 5.1 present the timings to create the soft area on the surface of

the mesh. Both complexity of the mesh and the size of the area are the key factors for

the run-time. In figure 5.8, the desired size of the area is illustrated in different ranges

according to the provided chart in figure 5.7. The values clearly show the benefit of

exact area selection with the heat method. Therefore in our experiments, we have

kept the selection of the target area according to its natural size. Each region of the

face is assigned to different size control parameters according to the proportions of the

model structure. For example cheek region is slightly wider than chin but narrower

than forehead.

Moreover, the performance of the simulation is strictly dependent on the size of the

selected area. Graph from figure 5.9 and table 5.2 summarize the average timings

according to the range of the selected area. During measuring these timings, we

performed 2 iterations to the projected constraints and handled a single collision
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Figure 5.7: Comparison chart of the heat method speed between the example facial models. ”Bald

Boy” model includes 9562 vertices, ”Cat Girl” model includes 6798 vertices and ”Grey Model”

includes 6720 vertices.

contact for the same scenario to all three models. An example case can be seen in

figure 5.1. For our other experiments, we kept the range of the size control parameter

for the selected area distancemax ≤ 3 for better performance. The main advantage of

the heat method can be observed clearly from the figure 5.9. If the simulation scenario

does not require the deformation of the whole mesh, selection of the particular area

on the mesh definitely increases the performance of the simulation.

Figure 5.5 shows the surface responds after the collision. Each constraint computation

is handled independently but the attachment of these constraints in the simulation

loop of algorithm 1 has increased the quality and smoothness of the surface. In figures

5.1 and 5.5 the damping parameter from equation 5.3 was kept as 0. However, in

Model #V ertices #Edges #Faces dist=1 dist=3 dist=6 dist=9 dist=12

Bald Boy 9562 28416 18848 0.0239 0.0299 0.0799 0.1589 0.241

Cat Girl 6798 20213 13412 0.018 0.02 0.0629 0.072 0.1419

Grey Model 6720 19984 13264 0.019 0.0239 0.069 0.167 0.2059

Table 5.1: Summary of the processed datasets during the heat method computation. dist represents

the radius range of the arbitrary selected geodesic circle. The cost increases according to the size

arbitrary selected area. All computation times are in seconds.
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Figure 5.8: Example illustration of the selected area by using the heat method with different ranges.

(a) shows the area with 1 unit range on the ”Cat Girl” (b) shows the area with 6 units range on the

”Grey Model”. (c) shows the area with 12 units range on the ”Bald Boy”

figure 5.6 the damping parameter varies between [0.3,0.9]. The relationship between

damping value and vertex movements is inverse. Assigning the damping parameter to

extreme high values causes the selected surface to react like a rigid body.

The proposed framework intrinsically operates over the surface of the mesh inde-

pendent from the prearranged mechanics, which lie beneath the model. Figure 5.10

demonstrates another case with a blendshape model, which consists of 40 blendshape

targets. We created a sample pose, which corresponds to ”pain” expression. Our

framework performed a collision handling test over the surface of the same model.

The existence of the rig elements does not interrupt the computations of the heat

method and the position constraints. Figure 5.11 illustrates the whole process of the

framework. It is important to note that while the collision object contacts with the

model, deformations are limited only inside of the soft area boundaries. Outside of

the boundaries, model conserves its rigid behavior.

Model #V ertices #Edges #Faces dist=1 dist=3 dist=6 dist=9 dist=12 Whole Model

Bald Boy 9562 28416 18848 0.37 0.9 6.66 15.36 21.22 29.6

Cat Girl 6798 20213 13412 0.24 0.44 3.54 8.52 11.76 18.31

Grey Model 6720 19984 13264 0.25 1.15 6.41 12.44 16.08 19.94

Table 5.2: Summary of the processed datasets for each simulation step. dist represents the radius

range of the arbitrary selected geodesic circle. The cost increases according to the size arbitrary

selected area. All computation times are in seconds.
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Figure 5.9: Comparison chart of the deformation speeds between the example facial models. ”Bald

Boy” model includes 9562 vertices, ”Cat Girl” model includes 6798 vertices and ”Grey Model”

includes 6720 vertices.

5.7 Summary

Our Verlet framework allows for the simulation of deformable surfaces on the selected

area of the 3D mesh with a desired range. Underneath the framework, we used the

recent heat method for the geodesic distance computations and Verlet integration

scheme with the position based constraints projections. We have summarized in detail

the foundations of position based dynamics and heat method. We have presented its

practical usage with different facial models under several conditions. The proposed

framework has been specifically designed for the facial models while nevertheless it is

particularly suited for the background characters in 3D animation. Furthermore, it is

flexible not only to extend it to other application domains easily, but also it can nicely

incorporate with the other existing position based dynamics frameworks.
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Figure 5.10: ”Grey Model” consists of 40 blendshape targets. After creating the pose, the interaction

test was performed by using the proposed framework.

Figure 5.11: An example demonstration of our framework on the ”Bald Boy” model, which is posed

with blendshapes. The collision object is indicated with the red sphere, which is created by selecting

an arbitrary vertex from the model. Immediately after this selection, automatically a soft deformable

area occurs in the range of the assigned size control parameter. The area of the soft surface is painted

with blue. Since the collision is handled within the boundaries, expected deformation occurs. During

the same simulation session, if the red sphere contacts with the model outside of the mentioned

boundaries, deformation does not occur.
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Chapter 6

Conclusion

In this dissertation, we have proposed three efficient facial animation approaches that

are designed to facilitate the artist’s pose editing process for creating high-quality facial

animation. Our first approach describes the direct manipulation of blendshape models

with a sketching interface. We have enhanced the mathematical framework of the

original direct manipulation method [LA10] by confining the weight edits to the local

geometry of the model. This is done by computing the geodesic circle around the

constraint point and limiting the edits to occur only within the circle. Our method’s

intuitive sketching interface provides the user an easy and interactive manipulation of

the relevant blendshapes by using the horizontal curves concept. Our second approach

presents the novel transposition based blendshape direct manipulation which eliminates

the instability of the pseudo-inverses from the mathematical formulation of the direct

manipulation. We, thereby, provide a plain projection of the pin movements to the

blendshape deformation directions. Our solution proves that the proposed method keeps

the unexpected movements of the face in a minimum level which is almost not observ-

able. Our third approach presents a physics-based deformation framework by combining

verlet integration with position based dynamics. Locally constrained deformation is

enabled by geodesic distance computation based on heat kernel. The work addressed

in this dissertation eases the animation process and can be easily integrated into the

existing animation workflows. This chapter concludes this dissertation by summarizing

the presented methods and discusses the future directions.
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6.1 Conclusion

Producing a detailed facial expression requires a refined character rig and a user

interface that is designed to ease the rig manipulation. Blendshape is a predominant

technique for high quality facial rigging. In blendshape facial animation, artist defines

the morph targets with their corresponding weights and blends them together to obtain

a plausible facial poses for each keyframe. Traditionally, the corresponding target

weights have been edited directly by the artists, using an interface in which each

weight is presented as a slider. Creating all the facial poses of each character by using

a slider interface is a slow and manual process and takes a significant human effort

for production quality models that may include hundreds of blendshape targets. For

example, Gollum character had 946 blendshape targets in the Lord of the Rings movie

[Rai04].

In chapter 3, we present a generic facial sketching direct manipulation approach that

provides easy, rapid and interactive editing of blendshape models with simple freehand

stroke drawings. Our approach allows the artists to work directly on the surface of

the model and keeps them away from the technical details of the approach. The

strokes can be drawn directly on the 3D facial model. The method proposed in this

dissertation drives the underlying blendshape targets and works with any character

style from realistic to cartoon models. The theoretical background of the approach

is based on the mathematical framework of direct manipulation blendshape method

[LA10]. Although the original framework is a significant advance, the formulation

causes a global deformation impact during editing a particular part of the face. We

have improved the original formulation and confined the weight edits to the local

geometry of the model. This is an important concept as artists prefer to see the edits

are applied only in the local geometry. To this end, we have employed the heat method

[CWW13] to calculate the geodesic circles around each constraint point and allow the

edit of the target weights, which occur only within the circle. Furthermore, we have

presented the horizontal curves approach for our sketching interface that provides an

intuitive editing by using curve entities.

In film and video-game production, artists often create new facial poses from a neutral

face model. For each pose, artists should directly modify the geometry by altering the

a set of vertices manually or edit the multiple control parameters of the rig elements

to obtain a new expression. This process requires individual manipulation of the rig

controls in a discontinuous way, which means that each rig element has to be altered

one by one. Our solution allows to manipulate several blendshape targets at the same
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time via a single curve sketched directly on the model. We allow to create complex

deformations on the face with a single and continuous gesture of the hand. Our

intuitive user interface tends to reduce the production of facial poses from hours to

minutes.

Our approach works with blendshaped polygonal facial models. We performed the

implementation of the heat method on the triangulated facial meshes, because of their

common usage in production environment. Since our system directly incorporates

the blendshape structure of the model, all deformations generated with the curve and

manipulators are always constrained by the beneath target shapes. Although the

system targets to the experienced artists, the only expected artistic skill is defined as

the interface accepts the input stroke inside the boundaries of the 3D model. Therefore,

this allows the user to sketch inside the boundaries of the 3D model and create the

desired facial poses freely and easily.

In chapter 4, we present a novel and stable transposition based blendshape direct

manipulation method which is inspired from the Jacobian Transpose Method. During

the last decade, the pseudo-inverse based formulations have dominated the direct

manipulation frameworks. However, pseudo-inverse is well known with its instability.

Therefore, the pseudo-inverse based frameworks cause unstable and unintuitive results

during the artistic facial pose editing for keyframe animation. To this end, we present

a transposition based mathematical framework for blendshape direct manipulation to

enhance the stability of the final results. We provide a simple pin-and-drag interface

similar to [LA10]. The deformation directions are extracted from the blendshape input

matrix and we provide a plain projection of the pin movements onto the deformation

directions. The obtained results are more stable and intuitive than the existing pseudo-

inverse based mathematical frameworks.

Physically based deformable models have been a dominant subject in the field of

computer animation. Physics-based simulation is an interdisciplinary area, which

combines Newtonian dynamics, continuum mechanics, kinematics, numerical methods,

differential geometry, etc. Deformable solid simulation has been widely employed to

generate realistic visual effects of the soft bodies. However, most of the existing

frameworks have applied the deformation to the whole model based on mass-spring

networks or classic elasticity theory. Besides, applying sophisticated theories to the

whole model reduces the efficiency of the computation. To this end, in chapter 5, we

present a physics-based framework to simulate surface deformation of the 3D cartoon

models. Our framework combines the verlet integration with position based dynamics.

Furthermore, we provide an interactive selection of the deformation influence area
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with an arbitrary range. Therefore the physical deformation occurs inside the defined

boundaries of the desired area of the model. We have performed the geodesic distance

of the surface from an arbitrary selected point to a desired range based on heat kernel.

Outside of the selected boundaries, we allow the model to conserve its rigid behavior.

By following the position-based dynamics method [MHHR07], we have applied the

position manipulations by computing the geometric constraints such as stretch, shear

and bend to the surface components for collision handling. Our approach is more

efficient than applying the physical deformation to the whole model in terms of

performance (around 30 times faster by keeping the circle range in 3 units). For

the same deformation results on the facial mesh, our solution significantly reduces the

cost of computation and provides physically plausible deformation under collision and

contact.

In parallel to the position-based approaches, our framework provides the direct posi-

tion manipulation of the model during the simulation with an implicit velocity updates.

Our solution in the framework keeps a smooth balance in terms of simplicity, generality

and performance. Furthermore, the framework holds a considerable potential to

complement the facial animation systems and it can nicely incorporate the other

existing position-based dynamics frameworks such as [BKCW14], [DCB14], [MC11],

etc.

6.2 Future Directions

The focus of this dissertation has been reducing the human efforts in the facial

animation creation process. However, many challenges still remain open for research

and development. We conclude this dissertation by suggesting some potential future

research directions.

6.2.1 Blendshape Facial Animation

During blendshape editing, animators are limited with the deformation space of the

blendshape targets. An interactive method could be useful to detect the existing target

shapes, and automatically produce new target shapes arbitrarily to the desired area

of the model to increase the smoothness of the poses without violating the existing

blendshape targets. Further, another direction can be considered as an automatic

interaction model between the blendshape targets and articulated joints. Therefore,
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both rig elements can be used together as a unified rig structure and this coupling

increases the visual quality of the poses and expressiveness. Besides, the interpolation

of the target shapes composes the desired expressions with a rigid transition. However,

this rigidity is not fully natural according to the artist’s perspective. Recent research

from Barrielle et al. [BSC16] addressed this problem by combining blendshapes

with physics-based techniques to obtain almost life-like facial expressions. Further

developments are still required to gain fully natural facial expression effects.

6.2.2 Sketch-Based Interfaces

Using strokes and curves is a natural and continuous way to obtain plausible de-

formations for models. The application domain of sketch based interfaces is still

rather limited in animation pipelines. One possible future direction can be adding

the time as a constraint to the sketch based frameworks, which provides interactive

editing during the execution of the animation. Guay et al. [GRGC15b] explored the

space-time curve to animate the body skeleton with smooth transitions between poses.

It would be interesting to transfer the concept of space-time curve from the whole

body skeleton animation to facial animation. Another extension can be considered

as creating keyframe poses for hands and feet with the sketched curves. Controlling

the crowd simulations with sketches would be a significant development for future by

mapping the individual character motions to the crowd with the drawn strokes.

6.2.3 Physics for Face Animation

Combining the traditional rig elements with physical laws is a required step to obtain

fully natural facial expressions with secondary effects. Hahn et al. [HTC+13] offered

to combine rig parameters with a physically-based volumetric skinning method. In

parallel to their approach, it would be interesting to directly couple the rig controls

with position-based dynamics approach. New geometric constraints are required to

define the elastic and visco-elastic behavior of the skin tissue by considering the skin

aging. The facial hair such as beard, eyebrow or eyelash remains open for research.

The existing techniques for hair can be extended to the facial hair. Finally, we would

like to explore new techniques on geodesic distance computations, which fit to only

character face models for calculating more accurate distance measures on facial regions.

This would be a significant complement for facial physical simulations to gain realistic

results.
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Appendix A

Derivation of Geometric

Constraints

The constraint function for stretching from equation 5.8 is C1(qi,j) = |D| − lij where

D = |qj − qi|. The corresponding gradients are ∇qiC = −n and ∇qjC = n where

n =
qj−qi
|qj−qi| . After substituting the gradients to equation 5.7, the Lagrange multiplier

becomes λ =
|qj−qi|−l
|wj+wi| where wi = wj = 1. and final corrections are [MHHR07]:

∆qi = −1

2
(|qj − qi| − l)(

qj − qi
|qj − qi|

) (A.1)

∆qj = +
1

2
(|qj − qi| − l)(

qj − qi
|qj − qi|

) (A.2)

The constraint function for shearing from equation 5.9 is defined as C(qi,j,k) =

cos−1(D)−γijk, where D = Mij ·Mik from equation 5.11. With d
dx
cos−1(x) = − 1√

1−x2 ,

the corresponding gradients are obtained as follows:

∇qiC = − 1√
1−D2

(
∂Mij

∂qi
·Mik +Mij ·

∂Mik

∂qi
) (A.3)

∇qjC = − 1√
1−D2

(
∂Mij

∂qj
·Mik +Mij ·

∂Mik

∂qj
) (A.4)

∇qkC = − 1√
1−D2

(
∂Mij

∂qk
·Mik +Mij ·

∂Mik

∂qk
) (A.5)
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After substituting the gradients to equation 5.7, the Lagrange multiplier becomes:

λ = − cos−1(Mij ·Mik)− γijk
|∇qiC|2 + |∇qjC|2 + |∇qkC|2

(A.6)

where wi = wj = wk = 1. The corrections can be computed easily for the shearing

constraint by substituting the gradients and Lagrange multiplier in equation 5.6. We

use a middle step to demonstrate the calculations:

r1 = −r2 − r3 (A.7)

r2 = − qi − qk
|qj − qi||qk − qi|

(A.8)

r3 = − qi − qj
|qj − qi||qk − qi|

(A.9)

The general final correction for shearing constraint is:

∆qi = −(
√

1−D2)(cos−1(D)− γijk)
|r1|2 + |r2|2 + |r3|2

r1 (A.10)

∆qj = −(
√

1−D2)(cos−1(D)− γijk)
|r1|2 + |r2|2 + |r3|2

r2 (A.11)

∆qk = −(
√

1−D2(cos−1(D)− γijk))
|r1|2 + |r2|2 + |r3|2

r3 (A.12)

The constraint function for bending from equation 5.10 is defined as C(qi,j,k,l) =

cos−1(D) − θijkl, where D = Nijk · Nijl from equation 5.12. According to [MHHR07]

qi is set to 0 (qi = 0), with d
dx
cos−1(x) = − 1√

1−x2 , the corresponding gradients are

obtained as follows:

∇qiC = −∇qjC −∇qkC −∇qlC (A.13)

∇qjC = − 1√
1−D2

((
∂Nijk

∂qj
)TNijl + (

∂Nijl

∂qj
)TNijk) (A.14)
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∇qkC = − 1√
1−D2

((
∂Nijk

∂qk
)TNijl) (A.15)

∇qlC = − 1√
1−D2

((
∂Nijl

∂ql
)TNijk) (A.16)

After substituting the gradients to equation 5.7, the Lagrange multiplier becomes:

λ = − cos−1(Nijk ·Nijl)− θijkl
|∇qiC|2 + |∇qjC|2 + |∇qkC|2 + |∇qlC|2

(A.17)

where wi = wj = wk = wl = 1. By following the form mentioned in [MHHR07], as a

middle step, we take advantage of the following computations before finding the final

corrections:

r1 = −r2 − r3 − r4 (A.18)

r2 = −qk ×Nijl + (Nijk × qk)D
|qj × qk|

− ql ×Nijk + (Nijl × ql)D
|qj × ql|

(A.19)

r3 =
qj ×Nijl + (Nijk × qj)D

|qj × qk|
(A.20)

r4 =
qj ×Nijk + (Nijl × qj)D

|qj × ql|
(A.21)

The general final correction for bending constraint is:

∆qi = −(
√

1−D2)(cos−1(D)− θijkl)
|r1|2 + |r2|2 + |r3|2 + |r4|2

r1 (A.22)

∆qj = −(
√

1−D2)(cos−1(D)− θijkl)
|r1|2 + |r2|2 + |r3|2 + |r4|2

r2 (A.23)

∆qk = −(
√

1−D2(cos−1(D)− θijkl))
|r1|2 + |r2|2 + |r3|2 + |r4|2

r3 (A.24)
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∆ql = −(
√

1−D2)(cos−1(D)− θijkl)
|r1|2 + |r2|2 + |r3|2 + |r4|2

r4 (A.25)



Appendix B

Overview of Heat Method

The heat method of [CWW13] can be applied to wide variety of model surfaces like

triangulated meshes, quadrangulated meshes, point clouds, etc. In this thesis, the heat

method is applied on the triangulated models. However, adapting the heat method

on other surfaces is just an implementation issue which will be undertaken in future.

For the triangular meshes, the Laplacian discretization [Sor06] for an arbitrary vertex

”i” is defined as:

(Lu)i =
1

2Ai

∑
j

(cotαij + cot βij)(uj − ui) (B.1)

where Ai is the area of the Voronoi cell of i, αij and βij are the angles of the opposite

edges. As the second step of the heat method, the vector field should be evaluated.

Before evaluating the vector field, the gradients of the given triangle is computed as:

∇u =
1

2Af

∑
i

ui(N × ei) (B.2)

where Af is the primitive face area, N is the unit normal corresponding to the face

and ei is the edge vector. After, the vertex ”i” integrated divergence is computed as:

∇ ·X =
1

2

∑
j

cot θ1(e1 ·Xj) + cot θ2(e2 ·Xj) (B.3)

where the sum is computed over primitive triangles j with Xj vector, e1 and e2 are

the edge vectors of the corresponding triangle j which has the i, θ1 and θ2 are the
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opposite angles. If b ∈ R|V | is the vector divergences of X, after as the last step, the

final geodesic distance is computed by solving the Poisson problem:

Lcd = b (B.4)

where Lc is the cotan operator for the remaining sum and d is the function of geodesic

distance approximations. For further details on the heat method, we refer the reader

to [CWW13].



Appendix C

Transition from Pseudo-Inverse to

Transposition

First, we orthonormalize the BT matrix and extract the deformation directions from

the blendshape matrix because both share the same vector spans. Therefore, we apply

the Gram-Schmidt process and store the extracted orthonormal matrix in Q. After,

we substitute the new Q matrix instead of BT in equation 4.2 with a scaling step-size

matrix R for the point movements. The new equation becomes:

w = (QQT )−1Q(Rm) (C.1)

In equation C.1, Q is an orthonormal matrix. Thereby, QQT becomes an identity

matrix. The new update function turns into w = Q(Rm). According to Jacobian

Transpose suggestion [Wel93], weight update can be represented as w = BTm. To

minimize the scaling step-size of the point movements we apply the following:

min
R
‖BT −QR‖2 (C.2)

The solution of equation C.2 shows us R = QTBT . Alternatively, the least square

process can be replaced with a simple qr factorization. Then, R is substituted to

equation C.1 and the weight update function becomes:

w = BTm (C.3)
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