
HAL Id: inria-00520270
https://hal.inria.fr/inria-00520270

Submitted on 22 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realistic Hair Simulation: Animation and Rendering
Florence Bertails, Sunil Hadap, Marie-Paule Cani, Ming Lin, Stephen

Marschner, Tae-Yong Kim, Zoran Kacic-Alesic, Kelly Ward

To cite this version:
Florence Bertails, Sunil Hadap, Marie-Paule Cani, Ming Lin, Stephen Marschner, et al.. Realistic
Hair Simulation: Animation and Rendering. ACM SIGGRAPH 2008 Classes, Aug 2008, Los Angeles,
United States. �10.1145/1401132.1401247�. �inria-00520270�

https://hal.inria.fr/inria-00520270
https://hal.archives-ouvertes.fr

REALISTIC HAIR SIMULATION
ANIMATION AND RENDERING

SIGGRAPH 2008 Course Notes

May 19, 2008

Course Organizer:Florence Bertails (INRIA)

Presenters:

Sunil Hadap Marie-Paule Cani Ming Lin
Adobe Systems INP Grenoble University of North Carolina

sunilhadap@acm.org Marie-Paule.Cani@imag.fr lin@cs.unc.edu

Tae-Yong Kim Florence Bertails Steve Marschner
Rhythm&Hues Studio INRIA Rhône-Alpes Cornell University

tae@rhythm.com Florence.Bertails@inrialpes.fr srm@cs.cornell.edu

Kelly Ward Zoran Ka čić-Alesíc
Walt Disney Animation Studios Industrial Light+Magic

Kelly.Ward@disney.com zoran@ilm.com

2

Course Abstract

The last five years have seen a profusion of innovative solutions to one of the most
challenging tasks in character synthesis: hair simulation. This class covers both
recent and novel research ideas in hair animation and rendering, and presents time
tested industrial practices that resulted in spectacular imagery.

The course is aimed at an intermediate level and addresses the special-effects
developers and technical directors who are looking for innovation as well as proven
methodologies in hair simulation. The audience will get a good grasp of the state
of the art in hair simulation and will have plenty of working solutions that they can
readily implement in their production pipelines. The course will also be a boot-
camp for aspiring computer graphics researchers interested in physically based
modeling in computer graphics.

The class addresses the special-effects developers and technical directors who
are looking for innovation as well as proven methodologies in hair simulation.
The audience will get a good grasp of the state of the art in hair simulation and
will have plenty of working solutions that they can readily implement in their
production pipelines. The class will also be a boot-camp foraspiring computer
graphics researchers interested in physically based modeling.

The class covers two crucial tasks in hair simulation: animation and rendering.
For hair animation, we first discuss recent successful models for simulating the dy-
namics of individual hair strands, before presenting viable solutions for complex
hair-hair and hair-body interactions. For rendering, we address issues related to
shading models, multiple scattering, and volumetric shadows. We finally demon-
strate how hair simulation techniques are nowadays developed and applied in the
feature films industry to produce outstanding visual effects.

Prerequisites: Familiarity with fundamentals of computer graphics, physical
simulation and physically based rendering is strongly recommended but not manda-
tory. Understanding of numerical linear algebra, differential equations, numerical

methods, rigid-body dynamics, collision detection and response, physics-based
illumination models, fluid-dynamics would be a plus.

Target audiences include special effects developers, technical directors, game
developers, researchers, or any one interested in physically based modeling for
computer graphics.

Contents

Introduction 5
Virtual Hair: Motivations & Challenges 5
Presentation of the speakers . 7
Course Syllabus . 10

1 Dynamics of Strands 13
1.1 Introduction . 13
1.2 Hair structure and mechanics . 14
1.3 Oriented Strands:a versatile dynamic primitive. 15

1.3.1 Introduction and Related Work 16
1.3.2 Differential Algebraic Equations 18
1.3.3 Recursive Residual Formulation 19
1.3.4 Analytic Constraints . 22
1.3.5 Collision Response . 27
1.3.6 Implementation Details 29
1.3.7 Simulation Parameters and Workflow 29
1.3.8 Stiffness Model and External Forces 30
1.3.9 Accurate Acceleration of Base Joint 31
1.3.10 Time Scale and Local Dynamics 31
1.3.11 Posable Dynamics . 31
1.3.12 Zero-gravity Rest Shape 32
1.3.13 Strand-strand Interaction 32

1.4 Super-Helices:a compact model for thin geometry. 33
1.4.1 The Dynamics of Super-Helices 33
1.4.2 Applications and Validation 40
1.4.3 Conclusion . 45
1.4.4 Parameter values for natural hair 47

1

2 Hair Interactions 49

2.1 Introduction . 49

2.2 Hair animation and interaction processing 51

2.2.1 Continuous versus wisp-based hair models 51

2.2.2 Processing hair interactions with the body 51

2.2.3 The issues raised by hair self-interactions 52

2.3 A volumetric approach for real-time self-interactions 54

2.3.1 A volumetric structure for hair 54

2.3.2 Application to hair interaction 54

2.4 Detecting guide-strand interactions 55

2.4.1 Deformable versus cylindrical hair wisps 56

2.4.2 Handling curly hair and exploiting temporal coherence . . 58

2.5 Response to guide-strand interactions 60

2.5.1 Anisotropic response in wisp-based methods 60

2.5.2 Setting up realistic penalty and friction forces 61

2.6 Conclusion . 63

3 Multi-Resolution Hair Modeling 65

3.1 Geometric Representations . 67

3.1.1 The Base Skeleton . 67

3.1.2 Strips . 68

3.1.3 Clusters . 68

3.1.4 Strands . 69

3.2 Hair Hierarchy . 69

3.2.1 Strip and Cluster Subdivision 70

3.2.2 Strand Group Subdivision 71

3.3 Runtime Selection of Hair . 72

3.3.1 Visibility . 74

3.3.2 Viewing Distance . 74

3.3.3 Hair Motion . 75

3.3.4 Combining Criteria . 76

3.4 Level-of-Detail Transitions . 76

3.4.1 Adaptive Subdivision . 77

3.4.2 Adaptive Merging . 77

3.5 Interactive Dynamic Simulation 78

3.5.1 Implicit Integration . 79

3.5.2 Collision Detection and Response 82

3.5.3 Simulation Localization 87

2

3.5.4 Results and Discussion 90

3.6 Conclusion . 92

4 Hair Rendering 94

4.1 Representing Hair for Rendering 94

4.1.1 Explicit Representation 95

4.1.2 Implicit Representation 95

4.2 Light Scattering in Hair . 96

4.2.1 Hair Optical Properties 96

4.2.2 Notation and Radiometry of Fiber Reflection 97

4.2.3 Reflection and Refraction in Cylinders 99

4.2.4 Measurements of Hair Scattering 99

4.2.5 Models for Hair Scattering 100

4.2.6 Light Scattering on Wet Hair 102

4.3 Hair Self-Shadowing . 103

4.3.1 Ray-casting through a Volumetric Representation 104

4.3.2 Shadow Maps . 104

4.4 Rendering Acceleration Techniques 106

4.4.1 Approximating Hair Geometry 107

4.4.2 Interactive Volumetric Rendering 107

4.4.3 Graphics Hardware . 108

5 Hair in Feature Production 110

5.1 Strand and Hair Simulation at PDI/DreamWorks - Madagas-
car and Shrek The Third 110

5.1.1 Conclusion, Limitations and Future Work 114

5.1.2 Acknowledgments . 115

5.2 Strand and Hair Simulation at ILM 116

5.2.1 Overview . 116

5.2.2 Dynamics of Hair and Strands 117

5.2.3 Challenges . 121

5.2.4 Examples . 124

5.2.5 Conclusions . 129

5.3 Hair Simulation at Rhythm and Hues - Chronicles of Narnia . . . 130

5.3.1 The hair simulator . 131

5.3.2 Layering and mixing simulations 138

5.3.3 Simulating flexible objects for crowd characters 138

Introduction

Virtual Hair: Motivations & Challenges

Hair is an essential element for the plausibility of virtualhumans. It was however
neglected for tenths of years, being considered as almost impossible to animate
both efficiently and with some visual realism. Virtual characters were thus mainly
modelled with short, rigid hair, represented by a plain surface, or sometimes with a
pony-tail represented by a generalized cylinder with around some simple dynamic
skeleton (such as a chain of masses and springs). Recently, modelling, animating,
and rendering realistic hair has drawn a lot of interest, andimpressive new models
were introduced. This course presents these advances and their applications in
recent productions. For a full state of the art on the domain,the reader should
refer to [WBK+07].

1. Nature of hair and challenges

The great difficulty in modelling and animating realistic hair comes from the com-
plexity of this specific mater: human hair is made of typically 100 000 to 200 000
strands, whose multiple interactions produce the volume and the highly damped
and locally coherent motion we observe. Each hair strand is itself an inextensible,
elastic fibre. As such, it tends to recover its rest shape in terms of curvature and
twist when no external force is applied. Hair strands are covers by scales, mak-
ing their frictional behaviour, as well as the way they interact with light, highly
anisotropic. Lastly, the ellipticity of their cross-section – which varies from an
elongated ellipse for African hair to a circular shape for Asian hair – is responsi-
ble for the different kinds of curls, from quasi-uniform curliness to the classical
European locks, quite straight at the top but helicoidal at the bottom.

Reproducing these features in virtual is clearly a challenge. A typical example
is the number of interactions that one would have to process at each time step, if

5

a naive model for hair was used, with the extra difficulty of preventing crossing
between very thin objects. Even if these interactions, though responsible for most
of the emerging behavior of hair, were neglected, a full headof 100 000 hair would
still be difficult to animate in a reasonable computational time [SLF08].

2. From individual strands to a full head of hair: elements of
methodology

Most hair models proposed up to now use a specific methodologyto cope with
the complexity of hair, in terms of the number of strands: they simulate, at each
time step, the motion of a relatively small number ofguide strands(typically, a
few hundreds), and use either interpolation or approximation to add more strands
at the rendering stage. See Figure 1. More precisely, three strategies car be used
for generalizing a set of guide strands to a full head of hair :

1. Using the hypothesis that hair is a continuous set of strands, one can inter-
polate between three guide strands which are neighbours of the scalp; this
works well for straight, regular hair styles;

2. One can on the opposite add extra stands around each guide strand to form
a set of independent wisps; This has proved successful for curly hair for
which hair clustering is more relevant;

3. A hybrid strategy, which consists in interpolating between guide strands
near the scalp while extrapolating to generate wisps at the bottom of hair,
was introduced recently [BAC+06]. This has the advantage of capturing the
aspect of any type of hair.

Using this methodology, the main challenges in terms of animation are to find
good models for animating individual strands, and then modify their dynamics to
take into account the interactions that would take place in the corresponding full
head of hair.

3. Overview

The contents of the course notes is organized as follows: chapter 1 first presents
and compares the models for animating individual strands. Chapter 2 deals with
the generalization to a full head of hair by reviewing the different methods for pro-
cessing hair interactions. Chapter 3 presents recent multiresolution schemes for

6

Figure 1: Animating guide strands (left). More hair strandsare added before
rendering, using methods that range from interpolation to approximation (right,
from [BAC+06]).

computing the geometry and dynamics of hair at interactive frame rates. Chapter 4
is devoted to the important problem of hair rendering. Finally, chapter 5 presents
the current hair models used in the feature film industry to produce outstanding
visual effects.

Presentation of the speakers

Florence Bertails, INRIA Rhône-Alpes, France

Florence Bertails is a young tenured researcher at INRIA Rhˆone-Alpes in Greno-
ble, France. A graduate from the Telecommunication Engineering School of INP
Grenoble, she received in 2002 a MSc in Image, Vision and Robotics, and com-
pleted in 2006 a PhD on hair simulation at INP Grenoble. She worked at the Uni-
versity of British Columbia as a postdoctoral researcher, before joining INRIA in
September 2007 as a permanent researcher. Her research interests deal with the
modeling and the simulation of complex mechanical objects,mainly for graph-
ics applications. She presented her work at international conferences such as the
ACM-EG Symposium of Computer Animation, Eurographics, andSIGGRAPH.

Sunil Hadap, Adobe Systems (formerly at PDI/DreamWorks), USA

Sunil Hadap is Manager at Advanced Technology Labs, Adobe. Formerly, he was
a member of R&D Staff at PDI/DreamWorks, developing next generation dynam-
ics tools for use in film productions. His research interestsinclude wide range of
physically based modeling aspects such as clothes, fluids, rigid body dynamics
and deformable models, and recently computational imaging. Sunil Hadap has

7

completed his PhD in Computer Science from MIRALab, University of Geneva
under the guidance of Prof. Nadia Magnenat-Thalmann. His PhD thesis work is
on Hair Simulation. Sunil further developed strand and hairsimulation techniques
at PDI/DreamWorks. The resulting system is extensively usedin production of
Madagascar, Shrek The ThirdandBee Movie.

Marie-Paule Cani, INP Grenoble, France

Marie-Paule Cani is a Professor at the Institut National Polytechnique de Greno-
ble, France. A graduate from the Ecole Normale Supérieure,she received a PhD
in Computer Science from the University of Paris Sud in 1990.She was awarded
membership of theInstitut Universitaire de Francein 1999. Her main research in-
terest is to explore the use of geometric and physically-based models for designing
complex interactive scenes. Recent applications include the animation of natural
scenes (lava-flows, ocean, meadows, wild animals, human hair) and interactive
sculpting or sketching techniques. Marie-Paule Cani has served in the program
committee of the major CG conferences. She co-chaired IEEE Shape Modelling
& Applications in 2005 and was paper co-chair of EUROGRAPHICS’2004 and
SCA’2006.

Ming Lin, University of North Carolina, USA

Ming Lin received her Ph.D. in EECS from the University of California, Berkeley.
She is currently Beverly Long Distinguished Professor of Computer Science at the
University of North Carolina, Chapel Hill. She received several honors and six
best-paper awards. She has authored over 170 refereed publications in physically-
based-modeling, haptics, robotics, and geometric computing. She has served as
the chair of over 15 conferences and the steering committee member of ACM
SIGGRAPH/EG Symposium on Computer Animation, IEEE VR, and IEEE TC
on Haptics and on Motion Planning. She is also the Associate EIC of IEEE TVCG
and serves on 4 editorial boards. She has given many lecturesat SIGGRAPH and
other international conferences.

Tae-Yong Kim, Rhythm & Hues Studios, USA

Tae-Yong Kim is a software developer in Rhythm and Hues Studios. He actively
develops and manages the company’s proprietary dynamics software, including

8

simulation of cloth, hair, and rigid body. He is also part of fluid dynamics simu-
lation team there and has contributed to the company’s Academy Award winning
fluid system. He holds a Ph.D degree in computer science from the University
of Southern California where he did researches on hair modeling and rendering
techniques. His work was published in SIGGRAPH 2002 as well asother confer-
ences. He has been a lecturer in recent SIGGRAPH courses (2003, 2004, 2006,
2007).

Zoran Kačić-Alesíc, Industrial Light & Magic, USA

Zoran Kačić-Alesić is a principal R&D engineer at Industrial Light & Magic,
leading a team responsible for structural simulation and sculpting/modeling tools.
His movie credits span Jurassic Park, Star Wars, Harry Potter, and the Pirates of
the Caribbean. He received a Scientific and Engineering Academy Award for the
development of the ViewPaint 3D Paint System. Zoran holds a BEng degree in
electrical engineering from the University of Zagreb, Croatia; a MSc in computer
science from the University of Calgary, Canada; and an honorary doctorate in fine
arts from the University of Lethbridge, Canada.

Steve Marschner, Cornell University, USA

Steve Marschner is Assistant Professor of Computer Science at Cornell Univer-
sity, where he is conducting research into how optics and mechanics determine
the appearance of materials. He obtained his Sc.B. from Brown University in
1993 and his Ph.D. from Cornell in 1998. He held research positions at Hewlett-
Packard Labs, Microsoft Research, and Stanford Universitybefore joining Cor-
nell in 2002. He has delivered numerous presentations, including papers at IEEE
Visualization, the Eurographics Rendering Workshop, and SIGGRAPH, and SIG-
GRAPH courses every year from 2000 to 2005. For contributionsin rendering
translucent materials, he is co-recipient with Henrik WannJensen and Pat Hanra-
han of a 2003 Academy Award for technical achievement.

Kelly Ward, Disney Animation, USA

Kelly Ward is currently a senior software engineer at Walt Disney Animation Stu-
dios, where she develops hair simulation tools for animatedfilms. She received
her M.S. and Ph.D. degrees in Computer Science from the University of North
Carolina, Chapel Hill in 2002 and 2005, respectively. She received a B.S. with

9

honors in Computer Science and Physics from Trinity College in Hartford, CT
in 2000, where she was named the President’s Fellow in Physics in 1999-2000.
Her research interests include hair modeling, physically-based simulation, colli-
sion detection, and computer animation. She has given several presentations and
invited lectures on her hair modeling research at international venues.

Course Syllabus

Introduction. Virtual Hair: motivations and challenges (Marie-Paule Cani)
Hair is essential towards realistic virtual humans. However, it can be con-

sidered as one of the most challenging material to be modeled, being made of a
huge number of individual fibers which interact both mechanically and optically.
This talk presents the basic methodology for generating a full head of hair from a
reasonable number of animated strands and introduces the main problems in hair
animation and rendering which will be developed in this class.

Session 1. Dynamics of Strands

Oriented Strands – a versatile dynamic primitive (Sunil Hadap)
The simulation of strand like primitives modeled as dynamics of serial branched

multi-body chain, albeit a potential reduced coordinate formulation, gives rise to
stiff and highly non-linear differential equations. We introduce a recursive, linear
time and fully implicit method to solve the stiff dynamical problem arising from
such a multi-body system. We augment the merits of the proposed scheme by
means of analytical constraints and an elaborate collisionresponse model. We
finally show how this technique was successfully used for animating ears, foliage
and hair in the feature productionsShrek The ThirdandMadagascar.

Super Helices – dynamics of thin geometry (Florence Bertails)
We introduce the mechanical model based on Super Helix. Thismodel is

defined as a piece-wise helical rod, and can represent the essential modes of de-
formation (bending and twisting) of a strand, as well as a complex rest geometry
(straight, wavy, curly) in a very compact form. We develop the kinematics of
the model, as we derive the dynamic equations from the Lagrange equations of
motion. Finally, we provide a rigorous validation for the Super Helix model by
comparing its behavior against experiments performed on real hair wisps.

10

Session 2: Hair-obstacle and Hair-hair Interaction

Strategies for hair interactions (Marie-Paule Cani)
This talk presents the two main approaches developed to tackle hair interac-

tions: the haircontinuum methods, which generate forces that tend to restore the
local density of hair, possibly in real time; and the methodsbased on pair-wise in-
teractions between hair clusters. The latter raise the problem of efficient collision
detection, leading to solutions which either adapt the number of hair clusters over
time or exploit temporal coherence. We also discuss the generation of adequate,
anisotropic response forces between wisp volumes.

Multi-resolution hair-hair and hair-obstacle interactio n (Ming Lin, Kelly
Ward)

We present novel geometric representations, simulation techniques, and nu-
merical methods to significantly improve the performance ofhair dynamics com-
putation, hair-object and hair-hair interactions. These approaches focus on bal-
ancing visual fidelity and performance to achieve realisticappearance of animated
hair at interactive rates. In addition, we discuss application and system require-
ments that govern the selection of appropriate techniques for interactive hair mod-
eling.

Session 3 : Hair Rendering (Steve Marschner)
In this session, we cover the state-of-the-art in hair rendering. We present

a comprehensive yet practical theory behind physically based hair rendering, in-
cluding light scattering through hair volume and self-shadowing, and provide ef-
ficient algorithms for solving these issues.

Session 4 : Hair Simulation in Feature Productions

Hair Simulation at Walt Disney Animation Studios (Kelly Ward)
We present hair simulation techniques and work-flows used inproduction on

the up-coming animated featureBolt.

Hair Simulation at ILM (Zoran Kačić-Alesić)
We provide an overview of hair and strand simulation techniques used in

the production environment at ILM. Examples include highlydynamic long hair

11

(Vampire Brides inVan Helsing), full body medium length fur (werewolves, wolves,
Wookies inVan Helsing, The Day After Tomorrow, andStar Wars Episode 3), dig-
ital doubles (Jordan inThe Islandand Sunny inLemony Snicket’s A Series of Un-
fortunate Events), articulated tentacles simulations (Davy Jones inPirates of the
Caribbean2 and 3), as well as recent examples fromThe Spiderwick Chronicles
andIndiana Jones and the Kingdom of the Crystal Skull. Commonalities between
hair, cloth, flesh, and rigid body simulations are explored,along with situations in
which they can be used together or interchangeably.

Hair Simulation at Rhythm and Hues (Tae-Yong Kim)
Since the old Polar bear commercial, hair simulation techniques at Rhythm

and Hues Studios have experienced dramatic changes and improvements over last
decade. In this presentation, we provide an overview of hairsimulation techniques
used in R&H, including short hair/fur (garfield, alvinandthe chipmunks), medium
hair/fur (The Chronicles of Narnia, The Night at the Museum) and more human-
like long hair (The Incredible Hulk). We also provide a brief description of the
new mass spring simulation system we developed over past couple of years.

Session 5 : Questions and Discussions

12

Chapter 1

Dynamics of Strands

Sunil Hadap, Florence Bertails, Basile Audoly, Marie-Paule Cani

1.1 Introduction

Realistic hair simulation is one of the most difficult issues when animating vir-

tual humans. Human hair is a very complex material, consisting of hundreds of

thousands of very thin, inextensible strands that interact with each other and with

the body. Unlike solids or fluids, which have been studied for over a century and

well modeled by now classical equations, hair remains a largely unsolved problem

described by no well accepted model. Finding a representation that provides an

accurate simulation of hair motion remains a challenge.

Modeling hair dynamics raises a number of difficulties. The very first one is due

to the fact that each individual strand has a complex nonlinear mechanical be-

havior, strongly related to the thinness of its cross section as well as its natural

shape: smooth, wavy, curly or fuzzy. In this chapter, after a brief report about

the mechanical structure and properties of hair strands, we present two innova-

tive models that allow to capture the main dynamic features of thin geometry.

The first model, called Oriented Strands, is based on a stable integration of serial

body dynamics, and nicely incorporates external constraints. The second model,

called Super-Helices, provides a compact high-order representation for a strand

of arbitrary geometry (straight, wavy, curly), and captures the essential modes of

13

deformation of a real fiber; this model was strongly validated against experiments

made on real hair.

The difficult problem of interactions and contacts to be accounted for when simu-

lating a full head of hair, and the question of efficiency, will be adressed in chap-

ter 2 and chapter 3, respectively.

1.2 Hair structure and mechanics

Achieving realistic simulations of hair motion requires some understanding of hair

structure. This section gives a summary of the existing knowledge on individual

hair strands, mostly issued from the field of cosmetics. Further details can be

found in [LFHK88, Rob02].

A human hair fiber is a thin structure (about 0.1 mm in diameter) with either a

circular or oval cross section. The active part, called the follicle, is located under

the skin and produces the keratin proteins that compose the hair material. The

second part, the visible – and dead – part of hair, is called the hair shaft, and

corresponds to the “hair strand” we are seeking to animate.

The hair shaft is entirely synthesized by the associated follicle, which acts as a

mold for shaping the strand [LFHK88]. It thus has almost uniform cross sec-

tion, natural twist and natural curvatures all along. These geometric parameters

are associated with commonsense notions of straight, curly, or fuzzy hair. Their

values are characteristic of the ethnic group from which the hair comes [Rob02].

Africans have follicles with a helical form and an oval cross section, whereas

Asians have follicles that are completely straight with a larger and circular cross

section. As a result, Asian hair is thicker, with no natural curliness. It makes

it look smooth and regular. In contrast, African hair looks frizzy and irregular.

Caucasian hair stands between these two extremes.

The internal structure of the shaft consists of three concentric layers from the

core to the periphery: a central canal called medulla; the cortex, i.e. cells filled

with keratin, contributing 90% of the total weight; and the cuticle, a thin coating

covered by tilted scales. Keratin is a remarkably stiff material, making the shaft

extremely difficult to shear and stretch. However, because its cross section is very

small, it can be easily bent and twisted.

14

Figure 1.1: Left, close view of a hair fiber (root upwards) showing the cuticle

covered by overlapping scales. Right, bending and twisting instabilities observed

when compressing a small wisp.

Deformations of a hair strand involve rotations that are not infinitely small and

so can only be described by nonlinear equations [AP07]. Physical effects arising

from these nonlinearities include instabilities called buckling. For example, when

a thin hair wisp is held between two hands that are brought closer to each other

(see Figure 1.1, right), it reacts by bending in a direction perpendicular to the

applied compression. If the hands are brought even closer, a second instability

occurs and the wisp suddenly starts to coil (the bending deformation is converted

into twist).

1.3 Oriented Strands: a versatile dynamic primitive

The simulation of strand like primitives modeled as dynamics of serial branched

multi-body chain, albeit a potential reduced coordinate formulation, gives rise to

stiff and highly non-linear differential equations. We introduce a recursive, linear

time and fully implicit method to solve the stiff dynamical problem arising from

such a multi-body system. We augment the merits of the proposed scheme by

means of analytical constraints and an elaborate collision response model. We

finally discuss a versatile simulation system based on the strand primitive for

character dynamics and visual effects. We demonstrate dynamics of ears, braid,

long/curly hair and foliage.

15

1.3.1 Introduction and Related Work

The simulation of ears, tails, braids, long wavy/curly hair, foliage, jewelry is pe-

culiar in nature. The flexible shape is characterized by a thin and long geom-

etry, which typically has a non-straight rest configuration. The dynamics pre-

dominantly includes the bend and the torsional components, and very rarely the

length-wise stretch component. Even though being one-dimensional in nature,

the intricate rendering aspects of these primitives, along with potentially highly

anisotropic physical properties, demand a consistent/stable curvilinear coordinate

system all along the geometry. Here, we would like to present a versatile dy-

namic primitive that spans the stated characteristics and applications. We name

the system as Oriented Strands, to clearly convey the picularity to the user.

Cosserat Models discussed in [Rub00] and first introduced to computer graphics

community by [Pai02b] give an elaborate continuum theory behind the dynamics

of thin deformable objects such as strand and shells. The discrete approximation

of the strand model come strikingly close to the strand-as-serial-multi-body-chain

model, first proposed by [HMT01b, Had03]. Since then the paradigm is suc-

cessfully used for hair simulation by [CJY02b, CCK05b]. We too model strand

as serial chain of rigid segments connected by spherical joints. Previously, the

hair was typically modeled using mass-spring-hinge system, as individual hair

strands [RCT91a, AUK92a] or as wisps [PCP01b]. However, these models are

not effective in representing consistent coordinates and the twist dynamics. An

exhaustive overview of various hair simulation techniques is given in [Had03].

[Fea87] developed one of the first multi-body reduced coordinate formulations

that has a linear complexity. [Mir96, Kok04] further developed efficient and com-

prehensive impulse and constraint formulations to it. [RGL05b] extended the for-

mulation to achieve interesting sub-linear complexity, and also gives a thorough

overview of the other reduced coordinate formulations. [Bar96, Sha01] gives max-

imal coordinate formulations which also are known to have linear complexity us-

ing sparse-matrix solution methods. The typical multi-body system resulting from

the strand model, gives rise to “stiff” and highly non-linear differential equations.

The numerical difficulties stem from small rotational inertia along the axis due to

thin geometry, large bend and torsional stiffness-to-mass-ratio and intricate non-

straight rest shape. The non-linearity is due to velocity terms corresponding to

Coriolis forces and the specific choice of the non-linear elastic model in our im-

plementation to limit unrealistic high deformations. These difficulties call for

16

an implicit integration scheme. Even though the reduced coordinate formulation

is efficient for multi-body systems with large number of segments and relatively

small number of DOFs, it is difficult to realize an implicit integration scheme, as

pointed out by [Had03]. Instead, [CCK05b] use a traditional maximal coordinate

formulation with (soft) constraints [Bar96, Sha01], followed by an implicit inte-

gration. Complex collision response models with static and dynamic friction can

be integrated into the maximal coordinate framework, with relative ease, using

impact and contact velocity constraints [CCK05b].

Nevertheless, the reduced coordinate formulation has certain advantages. The

generalized coordinates directly facilitate the parameterization for bending and

torsional stiffness dynamics. Further, they have the exact same form as the pa-

rameterization used in articulated character animation. Thus the rest shape of the

multi-body system can be conveniently defined in terms of some animated local,

e.g. a hairstyle can be defined in terms of the frame associated with the head

joint. Even the dynamics is often expressed in terms of successive local coordi-

nates starting from the base link. One can thus interpret the dynamic motion of the

strand as overall rigid-body transformation of the strand at the base link, followed

by secondary dynamics from the rest shape expressed in terms of successive local

frames. This paradigm gives a tremendous advantage in terms of overall simula-

tion workflow. Typically the base link is constrained to an animation path. Using

the paradigm, it is trivial to kick-start the simulation from an arbitrary starting po-

sition and orientation of the base link. Moreover, certain concepts such as posable

dynamics, local dynamics, time-scale and zero-gravity rest shape make the strand

simulation system versatile. As discussed subsequently, they are often trivial to

realize in the paradigm of reduced coordinate formulation. Ultimately, the choice

of reduced coordinate formulation proved very rewarding for us.

The specific contributions of the methodology are as follows. In Section 1.3.2

and Section 1.3.3 we develop a linear time, implicit and fully recursive scheme

for reduced coordinate formulation of general branched open-chain multi-body

system, using Differential Algebraic Equations (DAE). In Section 1.3.4, we dis-

cuss how to realize external bilateral and unilateral constraints on the formulated

multi-body dynamics. We also discuss the numerical issues associated with the

solution of Linear Complementarity Problem (LCP) arising from the formulation.

In Section 1.3.5, we develop an elaborate collision response model with inelastic

impact and static/dynamic friction, using unilateral constraints. Finally, in Sec-

tion 1.3.6, we introduce the Oriented Strands system, implemented as dynamics

of serial multi-body chain. We develop some novel concepts and give important

17

implementation details that makes the dynamic strand primitive versatile. In Sec-

tion 5.1, we present some illustrative examples of dynamics of ears, braid, hair

and foliage.

1.3.2 Differential Algebraic Equations

Typically, unconstrained dynamical problems such as cloth [BW98b] and general

deformable models are formulated as the following explicit Ordinary Differential

Equation (ODE) of degree two.

q̈ = M−1Q(t,q, q̇) (1.1)

Constrained dynamical problems such as dynamics of multi-body systems [Sha01,

Bar96] are formulated as the following semi-explicit ODE of degree two.

M(q)q̈ = Q(t,q, q̇)−Φq
T λ

Φ(t,q) = 0 (1.2)

where, M is generalized mass matrix. The force function Q and the constraint

function Φ are typically non-linear and “stiff”. In order to integrate the state vector

[q̇T ,qT]Tt , in a traditional way, one can try and solve for the derivatives of the state

vector [q̈T , q̇T]Tt+1, which often turns out to be complex. Fortunately, the direct

computation of derivatives is not the only way, neither it is the most efficient way,

of solving the differential equations. Differential Algebraic Equations solvers are

remarkable, they advance the solution [q̇T ,qT]Tt → [q̇T ,qT]Tt+1, as they estimate

the derivatives [q̈T , q̇T]Tt+1 at the same time.

As far as we can track, Differential Algebraic Equations (DAE) are new to com-

puter graphics. In this section we would like to give a gentle introduction to DAE.

For thorough discussion and associated theory we would like to refer to [BCP96].

DAE solvers work on the system of differential equations in its most implicit form.

Consider the following DAE of degree one.

F(y, ẏ, t) = 0 (1.3)

The implicit function F in differential variables y and free variable t may be non-

linear and “stiff”. Let the set {y, ẏ}t be the solution of the DAE, i.e. it satisfies

18

equation 1.3 at time t. Then the DAE solvers use an extrapolation method, e.g.

Backward Difference Formula (BDF) of an appropriate order, to extrapolate the

solution to y1
t+1 and while making a numerical estimate of the derivative ẏ1

t+1.

The estimates y1
t+1, ẏ

1
t+1 typically would not satisfy equation 1.3. The solver then

successively corrects the solution and associated derivative estimate by number

of Newton-Raphson iterations. Let the residue associated with the estimate of kth

iteration be

rsk
t+1 = F(yk

t+1, ẏ
k
t+1, t +1) (1.4)

The Newton-Rapson iteration takes the following form

yk+1
t+1 = yk

t+1−
∂F

∂y

−1

rsk
t+1

ẏk+1
t+1 = (yk+1

t+1 −yt)/△t (1.5)

Thus, in order to use DAE integrator such as DASPK [BCP96], one has to provide

the integrator with a residual function rs that computes the residue from the esti-

mates of the solution the integrator provides. One may also provide the Jacobian

of the residue function ∂F/∂y, or optionally the integrator can compute the Jaco-

bian numerically. The highlight of the solution method is – the residue function

rs and the Jacobian ∂F/∂y are often simple to evaluate. In the next section, we

formulate a fully recursive method to evaluate the residual function for solution

of a “sitff” multi-body system.

1.3.3 Recursive Residual Formulation

To describe the dynamics of the multi-body system, we use Spatial Algebra and

associated notation developed by [Fea87]. Consider a serial branched multi-body

system (MBS) having n links connected by n single DOF joints as shown in Fig-

ure 1.2. There are no loops in the kinematic chain.

The base link is denoted by link0 and is typically constrained to a motion path.

The other links are numbered in a breadth first manner. The velocity v̂ j, the ac-

celeration â j and the inertia matrix Î j of link j are defined in the frame F̂ j, which

is rigidly attached to the link’s principal inertia axis. The joint variable q j defines

the spatial transformation X̂j that transforms the spatial quantities defined in the

19

Figure 1.2: Strand as multi-body system

parent’s frame F̂i to the frame F̂ j of link j. The derivatives of joint variables q̇ j and

q̈ j relate the velocity and acceleration of the parent to the velocity and acceleration

of linki via the spatial joint axis ŝi.

v̂ j = X̂j v̂i + ŝ j q̇ j

â j = X̂j âi + ŝ j q̈ j + v̂ j×̂ ŝ j q̇ j (1.6)

The set of joint variables qt and their derivative q̇t forms the system state vector

yt = [q̇T ,qT]Tt , at time t. We would like to solve the forward dynamical prob-

lem – given the base velocity v̂0 and the base acceleration â0, integrate the state

from yt to yt+1. In what follows we will develop a recursive residual formulation

based on DAE methodology discussed in the previous section. The discussion is

rather a free physical interpretation, for the rigorous proof refer to [RJFdJ04]. The

procedure is surprisingly simple as compared to the traditional methods such as

Articulated Body Method [Fea87], where one computes the state derivative ẏt+1

explicitly.

The solution set {yt , ẏt} at time t forms the input to the DAE integrator. As high-

lighted in the previous section, the integrator then estimates the new state yk
t+1, and

it’s derivative ẏk
t+1 in succession. It is our responsibility to compute the associated

residue rst+1(y
k, ẏk). Given v̂0 and â0, we first compute the spatial velocities v̂ j

and spatial accelerations â j for each link link j, j = 1..n using forward kinematic

relation, equation 1.6.

The residue associated with accelerations can be computed using the force balance

condition. Starting with the outer most link linkn, the forces acting on linkn are

20

spatial body force În ân, combined spatial centripetal and Coriolis force v̂n×̂ În v̂n,

external spatial force f̂n. The force balance equation for the spatial forces is

r̂sn = În ân + v̂n×̂ În v̂n − f̂n (1.7)

We still have to relate the force residue r̂sn which is a spatial vector to the residue

in joint acceleration which is a scalar. We project the force residue on to the joint’s

motion sub-space defined by the spatial joint axis ŝn.

rsn = ŝS
n r̂sn−Qn (1.8)

where, ŝS
n is spatial transpose of the joint axis and Qn is scalar joint actuation force

associated with the stiffness model. The force residue projected on the joint’s

motion space rsn vanishes when the estimated state and derivative vector is the

solution of DAE.

For simplicity, first consider a multi-body system with no branches. Thus, the

only parent of linkn would be linkn−1. In computing the force balance equation

for linkn−1, along with all the obvious forces described for linkn, we need to add

the residual force from linkn that gets applied via the jointn. In order to do that,

we need to transform the force residue r̂sn into the frame of linkn−1, using inverse

transformation matrix X̂
−1
n . The resulting force balance equation for linkn−1 is

r̂sn−1 = În−1 ân−1 + v̂n−1×̂ În−1 v̂n−1 − f̂n−1

+ X̂
−1
n r̂sn

rsn−1 = ŝs
n−1r̂sn−1−Qn−1 (1.9)

We repeat this process for each linki till we reach the first link link1. The residue

associated with the joint velocities is trivially the difference in joint velocities

q̇k∗
i − q̇k

i , where q̇k
i belongs to yk and q̇k∗

i belongs to ẏk.

Algorithm 1 lists the fully-recursive algorithm for computing the residue, for a

general multi-body system that have branches.

It is possible to compute the analytic Jacobians for the recursive residue formula-

tion [RJFdJ04]. Alternatively, we can let the DAE solver compute the Jacobians

numerically. We particularly commend the efficient and “smart” evaluations of

Jacobians in DASPK, the DAE solver we used for the implementation. The solver

21

uses modified Newton-Rapson iteration, where the Jacobians are evaluated only

when the solver observes a large change in the system’s state. In practice, we

found that the numerical evaluation of Jacobians is not only adequate, but also

versatile. Thus, we can implement any complex stiffness model and associate

general external fields to the multi-body system, as discussed in Section 1.3.6. It

may not be possible to evaluate analytic Jacobians for these.

Algorithm 1 rest+1(y
k, ẏk, v̂0, â0)

Require: yk =

[
qk

q̇k

]

, ẏk =

[
q̇k∗

q̈k

]

1: n← dim(q)
2: for j = 1 to n do

3: i← parent(link j)
4: v̂ j← X̂j v̂i + ŝ j q̇ j

5: â j← X̂j âi + ŝ j q̈ j + v̂ j×̂ ŝ j q̇ j

6: end for

7:

8: r̂s← 0̂ ∈R
6n

9: rs← 0 ∈R
n

10: for i = n to 1 do

11: r̂si← Îi âi + v̂i×̂ Îi v̂i − f̂i

12: for all j← child(linki) do

13: r̂si← r̂si + X̂
−1
j r̂s j

14: end for

15: rsi← ŝs
i r̂si−Qi

16: end for

17:

18: return

[
q̇k∗− q̇k

rs

]

1.3.4 Analytic Constraints

The base joint in the multi-body system in Figure 1.2 is typically constrained

to some prescribed motion path. In practice, we would want to impose some

additional constraints on the system, e.g. constraining a point on some other link

to a motion path, or constraining a joint to an animated value in time. These

22

constraints are transient in nature and often introduce cyclic dependancy in the

system. Thus they are treated as external constraints, as opposed to defining them

implicitly as part of reduced coordinate formulation.

Initially, we enthusiastically tried the DAE’s natural way of defining constraints

via algebraic slack variables. The general form of a DAE with algebraic con-

straints is

F(y, ẏ,x, t) = 0 (1.10)

where x is the set of algebraic variables. For each constraint, we formulated a

scalar valued constraint function φi(y, ẏ, t) and inserted an algebraic variable asso-

ciated with the residue corresponding to the constraint condition x≡ φi(y, ẏ, t) = 0

into the DAE. However, we soon abandoned this line of thinking for the following

reasons

• The constraints are transient in nature. We either have to adjust the dimen-

sion of algebraic variables x according to the number of active constraints,

or represent all the possible constraints and activate or deactivate them al-

gebraically.

• We found the DAE solver’s convergence rate deteriorates rapidly with each

additional algebraic constraint. Further, if the constraint can not be satisfied,

the integrator does not converge.

• The algebraic constraints can only represent bilateral constraints. The con-

straints arising from collisions are unilateral. We would have to extend our

scope to Differential Variational Inequalities [PS03], which are extension

of DAE that handle inequality constraints on differential and algebraic vari-

ables.

Instead, we augment the DAE based multi-body formulation inspired by method-

ologies proposed by [Mir96] and recently by [Kok04] on impulse dynamics and

analytical constraints. We would like to give a brief overview of the methodology,

along with the details on how we integrate it with the DAE framework and some

interesting implementation issues.

Consider a point constraint p j as depicted in Figure 1.3. The trajectory of p j,

starting with the initial conditions, can be uniquely defined by the time varying

acceleration ad
j n j. As discussed in the previous section, we do not directly eval-

uate the state derivative vectors ẏt+1 in order to integrate the system yt → yt+1.

23

Figure 1.3: Constraints

Therefore, we can not simply enforce the acceleration constraint, by directly alter-

ing the state derivatives ẏt+1 as proposed by Kokkevis. We enforce the constraint

by applying an external force instead. However, we don’t use a penalty like force

formulation. Before every DAE integration step, we analytically determine the

precise nature of the force f jn j, using the similar methodology as in [Kok04].

The unit constraint direction n j is treated as constant and is updated for every in-

tegration step. There is a linear relationship between the magnitude of the applied

force f j and the resulting desired acceleration ad
j

ad
j =

∂a j

∂ f j
f j +a0

j (1.11)

where, a0
j is the acceleration in the direction n j before the force is applied. If we

have another constraint point pi with force having magnitude fi in the direction ni,

the resulting accelerations ad
i and ad

j will be given by the following linear system

[
ad

i

ad
j

]

=

[
∂ai/∂ fi ∂ai/∂ f j

∂a j/∂ fi ∂a j/∂ f j

][
fi

f j

]

+

[
a0

i

a0
j

]

(1.12)

Generalizing, for m such constraints we need to determine the vector of f ∈ R
m

unknown force magnitudes by solving the following linear system.

Kf+a0

︸ ︷︷ ︸

a

−ad = 0 (1.13)

The Jacobian K ∈R
m×m can be evaluated by applying unit test force at each con-

straint and evaluating the changes in accelerations at every constraint. An efficient

24

procedure to evaluate the Jacobian using the framework of Featherstone’s Artic-

ulated Body Method is given in [Kok04]. The constraint forces thus determined

are applied to the multi-body system over the next integration step via the external

force term f̂, as discussed in the previous section.

We replace the constraint direction n by a spatial vector n̂ to generalize the type of

the constraint that can be represented, including the joint acceleration constraint.

We further extend the constraint system to include the unilateral constraints such

as collisions, friction and joint limits by posing it as a Linear Complementarity

Problem (LCP).

Kf+a0

︸ ︷︷ ︸

a

−ad ≥ 0 ⇔ f≥ 0 (1.14)

The LCP states that forces f, applied only in positive constraint direction, would

strive to make the resulting constraint accelerations a equal to desired acceleration

ad . However, force fi will be zero if the resulting constraint acceleration ai is

greater than desired acceleration ad
i . We will discuss the significance of the LCP

formulation when we develop the collision response model in the next section.

At first, the solution of a LCP might appear as a daunting task. However, the

iterative LCP methods [CPS92] are surprisingly simple and adequate for our pur-

pose. [Ken04] gives a gentle introduction to the solution methods based on vari-

ous matrix splitting techniques. Apart from the simplicity of the implementation,

the iterative LCP solvers have other advantages as compared to pivoting meth-

ods. As we will discuss in the next section, we often need to apply multiple

constraints on a single link. In this case, the Jacobian K will have linearly depen-

dent columns. The iterative methods try to distribute the required forces evenly on

the link, when multiple solutions exists in this case. Secondly, the LCP may not

have a solution. The LCP problems arising from friction models are often non-

convex [Bar92, PT96], particularly for high friction values. Further, the Jacobian

can be singular or near singular if the limited DOFs of multi-body system does

not allow motion in a constraint directions. In all these cases, we can bailout early

in the solution process and still have a finite and a well distributed solution for the

forces.

We list an iterative LCP solver in Algorithm 2. Apart from the lines 14 and 12 it

is a standard successive-over-relaxation linear system solver. Line 14 ensures the

inequality condition. We add ε to the diagonal term in line 12 to make A positive

definite, from potentially positive semi-definite, and guard against potentially zero

25

Algorithm 2 sor lcp(A,x,b,ω,ε,Kiter)

Require: A is symmetric, positive semi-definite

Ensure: w≡ Ax−b ≥ 0, x≥ 0, xT w = 0

1: x← 0

2: n← dim(x)
3: for k = 1 to Kiter do

4: for i = 1 to n do

5: δ ← 0

6: for j = 1 to i−1 do

7: δ = δ +Ai, j x j

8: end for

9: for j = i+1 to n do

10: δ = δ +Ai, j x j

11: end for

12: δ = (bi−δ)/(Ai,i + ε)
13: xi = (1−ω)xi +ωδ
14: xi = 0 if xi < 0

15: end for

16: end for

26

or near zero diagonal terms in the Jacobian K. Further, instead of any elaborate

convergence check, we simply make fixed number of iterations Kiter, as we know

that the solution may not exist. Using forces for enforcing the constraints has

an advantage here. If the forces are indeterminate, they get projected into the

multi-body’s motion null-space, thus always giving valid configuration, without

any “pops” in the simulation. Further, as the forces are determined analytically, as

compared to, say, penalty based formulation, they are small for most types of the

constraints. Thus they are well within the stability zone of the integrator taking 4-

8 time-steps per frame. The only exception to this is velocity impulse constraint,

we will discuss this case in detail in the next section. As the constraint may not

be satisfied accurately, we augment the constraint acceleration by a proportional-

derivative form. To exemplify, for a positional constraint, the constraint desired

acceleration and the constraint direction be

ad
i = p̈d

i + Kp(p
d
i −pi)+ Kd(ṗ

d
i −vi)

ad
i =‖ad

i ‖, ni = ad
i /ad

i (1.15)

where, p̈d
i , ṗ

d
i ,p

d
i are acceleration, velocity and position of the constraint path, and

pi,vi are the current position and velocity of the constraint.

It is important to remove the effect of the constraint forces applied to multi-body

system from the previous integration step, and adjust the initial constraint accel-

erations â0 accordingly, before we determine the next set of constraint forces. We

can use the same procedure that determines the Jacobian K by method of applying

test forces for this.

1.3.5 Collision Response

We use the unilateral position constraints discussed in the previous section to de-

velop collision response model for the multi-body system. Collision Detection is

a mature subject in computer graphics. For brevity, we only enlist the require-

ments from the collision detection system for our purpose. Between the current

configuration given by the state vector yt and extrapolated configuration using

derivative vector ẏt and next integration time step h, we find all the points on the

multi-body system that would collide with the obstacles. Figure 1.4 shows two

such collision positions – point pi is already penetrated the obstacle and point p j

is about to collide. There may be more than one colliding point for a link. Let ni

27

Figure 1.4: Collision as unilateral constraints

be the collision normal, direction directly away from the obstacle, and ai and vi

be collision accelerations and velocities respectively, relative to the obstacle.

We apply collision response in two steps – contacts and impacts. We first compute

the unilateral constraints that would prevent collision points from accelerating

towards the obstacle. Followed by computation of velocity impulses that would

prevent collision points from moving towards the obstacle.

contacts: We decompose the collision acceleration and the collision velocity into

the normal components ani,vni and tangential components ati,vti. To prevent any

acceleration towards the obstacle, we insert a unilateral constraint along the col-

lision normal direction ni. The unilateral constraint corresponding to the friction

acts in the tangent plane defined by the collision normal. We could sample the

tangent plane into discrete set of tangents to formulate a complex and numerically

expensive friction model based of the discrete frictional cone. Instead, taking

inputs from [Kok04], we formulate a novel technique as follows. We set the uni-

lateral constraint direction corresponding to friction as

ti = unit(ati +vti/h) (1.16)

If both ati and vti is zero, we use previously determined tangent vector for the con-

tact. Finally, the LCP formulation corresponding to the two unilateral constraints

in the direction ni and ti at collision position pi is

ani−ad
ni ≥ 0 ⇔ fni ≥ 0

µi fni− fti ≥ 0 ⇔ λi ≥ 0

(ati−ad
ti)+λi ≥ 0 ⇔ fti ≥ 0 (1.17)

28

We set the desired normal acceleration ad
ni proportional to the penetration depth di

if the point is penetrating, see equation 1.15, or zero if the collision point is outside

the obstacle. The desired tangential acceleration ad
ti is set to (− ‖vti ‖ /h). The

LCP formulation will compute required amount of normal force fni to remove the

normal acceleration ani. The tangential force fti will be at most µi fni, and try to

remove any tangential non-zero velocity component – the dynamic friction case,

or if the tangential velocity is zero it will try to remove any tangential acceleration

– the static friction case.

impacts: We use impulses to arrest the collision normal velocity vni. Only those

contacts are considered that have the normal velocity component vni < 0. For the

impulse computations we can use the same acceleration constraints discussed in

the previous section by setting ad
ni =−(1+ν)vni, where ν is collision restitution.

Instead of applying potentially large forces, we alter the joint velocities q̇t . This

would invalidate the consistent solution set {yt , ẏt}. We should correct q̈ corre-

spondingly. In reality, we found that the solver is tolerant to the error.

1.3.6 Implementation Details

Having developed the theoretical framework in the last three sections, in this sec-

tion we would like to give a brief overview of the Oriented Strands system mod-

eled as dynamics of multi-body system. It is implemented as a plug-in to Maya,

as well as plug-in to our proprietary animation system. We use DASPK [BCP96]

for our implementation.

Along with the robust formulation, any physically based simulation system to be

successful in production environment needs to have an important aspect – to be

able to art direct. In the following subsections, we develop some novel concepts

towards that, along with few important implementation details. In our opinion,

choice of reduced coordinate formulation and dynamics expressed in local frames

makes some of these concept easier to implement.

1.3.7 Simulation Parameters and Workflow

The dynamic strand is composed from a hierarchy of input curves defined in a

local frame, that defines the initial rest shape of the corresponding multi-body

29

system. We provide the user with high-level control over the direct numerical

simulation by means of relevant physical parameters of the dynamic strand, such

as mass per unit length, strand radius, bend stiffness/damping, torsional stiff-

ness/damping, gravity, air drag. The user can animate all the parameters and

specify their length-wise anisotropic variation. The collision parameters collision

restitution and static/dynamic friction are defined per obstacle surface. The strand

may have additional anisotropic weights over collision parameters, along with

their length-wise variation.

1.3.8 Stiffness Model and External Forces

In Section 1.3.3, while developing the DAE based formulation, we assumed single-

DOF joints for the simplicity of discussion. However, we use three-DOF spher-

ical joint in the implementation of Oriented Strands. The joint variable of ith

joint is expressed as a quaternion qi ∈ R
4 and the joint velocity as a vector

wi ∈R
3. [Had03, Fea87] gives details on how to formulate multiple-DOF joints.

We decompose the quaternion defining the relative transformation between two

links into a twist component θt around the local y-axis and a pure bend component

θb around a bend axis b. We provide a nonlinear stiffness model as follows

Qb = Kb(b) b tan((θb−θ 0
b)/2)

Qt = Kt y tan((θt−θ 0
t)/2) (1.18)

where θ 0
b and θ 0

t correspond to the rest configuration. Kt is torsional stiffness

coefficient and Kb(b) is anisotropic bend stiffness coefficient. The response model

is almost linear for small deformations. However, the non-linear response prevents

excessive deformations and potentially joints snapping.

We support general external force fields using the plug-in architecture of Maya

and that of our proprietary animation system. The user can attach any complex

combination of time-varying fields such as wake, turbulence, fluid simulations and

general event driven scripted force fields. The user can further specify length-wise

anisotropic weights for the external force fields. The user can optionally include

these fields in computing the Jacobians numerically discussed in Section 1.3.3.

30

1.3.9 Accurate Acceleration of Base Joint

In the reduced coordinate formulation it is critical to compute and supply the

accurate velocities and accelerations of the base joint’s prescribed motion path.

We could have evaluated them numerically, however that would mean making

repetitive evaluations of motion system at sub-frame interval, which is typically

very expensive. Instead we interpolate the rigid-body transformation from four

successive frames. Constructing a C2 continuous curve that interpolates a number

of prescribed rotations is a well studied problem. We use the method developed

by [PK96], where we construct a piecewise cubic curve whose coefficients ai,bi,ci

are members of so(3). The rotation is evaluated by taking the matrix exponential

of this polynomial.

1.3.10 Time Scale and Local Dynamics

Often the dynamical simulation are encountered with very extreme and brisk an-

imated motions. Although a robust formulations will be able to cope with the

scenario, often the directors would want the motion to be selectively less violent.

We introduce time scale β to control the amount of energy pumped in the system.

It is a factor by which velocity and acceleration of the base joint get scaled and

is typically between zero and one, however the user can set it more than one to

accentuate the motion. The local dynamics γ is another similar parameter which

blends out velocity and acceleration of some local dynamics reference frame.

â0 = β (â0− γ âre f)

v̂0 = β (v̂0− γ v̂re f) (1.19)

One scenario that is frequent is, a braid or long hair that fly away when character

starts running or rides a horse. The local dynamics reference frame is simply set

to the character’s hip joint, and with appropriate local dynamics parameter one

can control the amount of flyaway the user wants.

1.3.11 Posable Dynamics

Ears and tail, often have free secondary dynamic motion when the animator lets

them “loose”. However, animator would want to hit a certain pose at a certain time

31

to make the character expressive. We tried different techniques that are based

on the motion control principle. However, it did not give desired results. For

high values of Kp and Kd in the PID controller (Equation 1.15), the constraint

follows the goal rather exactly. If we reduce Kp and Kd , due to slew rate, the

PID controller gave a large error in achieving pose and the solution oscillated a

lot before coming to rest to the animated pose. Surprisingly a very simple model

worked for this specific application. We insert a spring between the dynamic

strand and the desired animated pose at tip of each segment, to give a penalty

based “soft” constraint. The user can animate the stiffness and damping, namely

pose strength and pose damping to achieve the Posable Dynamics.

1.3.12 Zero-gravity Rest Shape

The rest shapes of the dynamic strands are typically modeled taking the gravity

into account. Intricate hairstyle is a good example of this. Unfortunately, when we

start simulating hair, the strands would sag under the gravity before they finally

settles down. This would change the original art directed hair shape depending

on the stiffness. Increasing the stiffness to preserve the shape would give unre-

alistic motion. One can go back and try to edit the rest shape so as to achieve

desired shape under gravity. However, this would be very laborious and iterative

process. We developed a technique to automatically compute the equivalent rest

shape, without gravity, so that under gravity we would get the desired shape. The

problem is a straight forward inverse dynamics problem in robotics. Given a set

of external forces (gravity) and given the desired configuration of multi-body sys-

tem, inverse dynamics problem finds set of joint forces required to achieve certain

joint accelerations, zero in our case. We refer to [Fea87] for the details. We would

like to highlight that it would be difficult to formulate this in the case of maximal

coordinate formulation.

1.3.13 Strand-strand Interaction

Strand-strand interaction is not important in some simulation scenarios such as

foliage motion, braids and ears, whereas it is critical in certain cases such hair

simulation. We have implemented a modular plug-in field to Maya that computes

the fluid like forces on a continuum, that can be attached to the Oriented Strands

system to realize the strand-strand interactions as introduced by [HMT01b]. The

32

other interesting approaches to handle strand-strand interactions include wisp level

interactions [PCP01b, BKCN03b], layers [LK01b] and strips [CJY02b].

We demonstrate the effectiveness of the proposed Oriented Strand methodology,

through impressive results in production of Madagascar and Shrek The Third at

PDI/DreamWorks, in Section 5.1.

1.4 Super-Helices: a compact model for thin geometry

Figure 1.5: Left, a Super-Helix. Middle and right, dynamic simulation of natural

hair of various types: wavy, curly, straight. These hairstyles were animated using

N = 5 helical elements per guide strand.

The Super-Helix model is a novel mechanical model for hair, dedicated to the ac-

curate simulation of hair dynamics. In the spirit of work by Marschner et al. in the

field of hair rendering [MJC+03a], we rely on the structural and mechanical fea-

tures of real hair to achieve realism. This leads us to use Kirchhoff equations for

dynamic rods. These equations are integrated in time thanks to a new deformable

model that we call Super-Helices: A hair strand is modeled as a C1 continuous,

piecewise helical1 rod, with an oval to circular cross section. We use the degrees

of freedom of this inextensible rod model as generalized coordinates, and derive

the equations of motion by Lagrangian mechanics. As our validations show, the

resulting model accurately captures the nonlinear behavior of hair in motion, while

ensuring both efficiency and robustness of the simulation.

This work was published at SIGGRAPH in 2006 [BAC+06], and results from a

collaboration with Basile Audoly, researcher in mechanics at Universite Pierre et

Marie Curie, Paris 6, France.

1A helix is a curve with constant curvatures and twist. Note that this definition includes straight

lines (zero curvatures and twist), so Super-Helices can be used for representing any kind of hair.

33

1.4.1 The Dynamics of Super-Helices

Figure 1.6: Left, geometry of Super-Helix. Right, animating Super-Helices with

different natural curvatures and twist: a) straight, b) wavy, c) curly, d) strongly

curly. In this example, each Super-Helix is composed of 10 helical elements.

We shall first present the model that we used to animate individual hair strands

(guide strands). This model has a tunable number of degrees of freedom. It is

built upon the Cosserat and Kirchhoff theories of rods. In mechanical engineering

literature, a rod is defined as an elastic material that is effectively one dimensional:

its length is much larger than the size of its cross section.

Kinematics

We consider an inextensible rod of length L. Let s ∈ [0,L] be the curvilinear

abscissa along the rod. The centerline, r(s, t), is the curve passing through the

center of mass of every cross section. This curve describes the shape of the rod at

a particular time t but it does not tell how much the rod twists around its centerline.

In order to keep track of twist, the Cosserat model introduces a material frame

ni(s, t) at every point of the centerline2. By material, we mean that the frame

‘flows’ along with the surrounding material upon deformation. By convention, n0

is the tangent to the centerline:

r′(s, t) = n0(s, t), (1.20a)

2By convention, lowercase Latin indices such as i are used for all spatial directions and run

over i = 0,1,2 while Greek indices such as α are for spatial directions restricted to the plane of

the cross section, α = 1,2.

34

while (nα)α=1,2 span the plane of the cross section, see Figure 1.6, left. We use

primes to denote space derivatives along the center line, f ′ = ∂ f /∂ s, while the

overstruck notation is for time derivatives, ḟ = d f /dt.

The Kirchhoff model for elastic rod starts from this mathematical description of a

Cosserat curve and adds the physical requirement of inextensibility and unsheara-

bility. In this case, the frame (ni(s))i=0,1,2 is orthonormal for all s, and there exists

a vector ΩΩΩ(s, t), called the Darboux vector, such that:

n′i(s, t) = ΩΩΩ(s, t)×ni(s, t) for i = 0,1,2. (1.20b)

Appropriate boundary conditions must be specified: one end of the hair strand,

s = 0, is clamped into the head while the other end, s = L, is free. The position of

the clamped end, together with the orientation of the initial frame, are imposed by

head motion (an input in the simulations):

{
r(0, t) = rc(t)
ni(0, t) = ni,c(t) for i = 0,1,2,

(1.20c)

where subscript ‘c’ refers to the clamped end of the rod, s = 0.

The rod’s material curvatures (κα(s, t))α=1,2 with respect to the two directions of

the cross section and the twist τ(s, t) are defined as the coordinates of the vector

ΩΩΩ(s, t) in the local material frame:

ΩΩΩ(s, t) = τ(s, t)n0(s, t)+κ1(s, t)n1(s, t)+κ2(s, t)n2(s, t). (1.21)

By introducing a redundant notation for the twist, κ0 = τ , we can refer to these

parameters collectively as (κi(s, t))i=0,1,2.

Reconstruction, generalized coordinates

The degrees of freedom of a Kirchhoff rod are its material curvatures and twist

(κi(s, t))i=0,1,2. A continuous model being of little use for computer animation,

we introduce a spatial discretization as follows. Let us divide the strand s ∈ [O,L]
into N segments SQ indexed by Q (1≤Q≤N). These segments may have different

lengths, and N is an arbitrary integer, N ≥ 1. We define the material curvatures

and twist of our deformable model with piecewise constant functions over these

segments. We write qi,Q(t) the constant value of the curvature κi (for i = 1,2)

35

or twist κ0 = τ (for i = 0) over the segment SQ at time t. Therefore, an explicit

formula for the material curvatures and twist reads

κi(s, t) = ∑
N

Q=1
qi,Q(t)χQ(s) (1.22)

where χQ(s) is the characteristic function of segment Q, equal to 1 if s ∈ SQ and

0 otherwise. We collect the numbers qi,Q(t) into a vector q(t) of size 3N, which

we call the generalized coordinates of our model.

These generalized coordinates q(t) can be used to reconstruct the rod shape at any

given time. Indeed, plugging equation (1.22) into equation (1.21), and then equa-

tion (1.21) into equations (1.20a–c) yields a differential equation with respect to

s. By integration of this equation, one obtains the centerline r(s) and the material

frames ni(s) as a function of s and q(t). This process, called the reconstruction,

can be carried out analytically; as explained in Appendix 1.4.3, the integration

with respect to s has a symbolic solution over every segment SQ. By patching

these solutions, we find that our model deforms as a helix over every segment

SQ and, moreover, is C1-smooth (between adjacent helices, both the centerline

and the material frames are continuous). This is why we call this model a Super-

Helix. We write rSH(s,q) and nSH
i (s,q) as the parameterization of the Super-Helix

in terms of its generalized coordinates q. In Appendix 1.4.3, we explain how these

functions rSH and nSH
i can be obtained in symbolic form.

Imposing a uniform value to the material curvatures and twist over the hair length

would make it deform as a plain helix. This is indeed what happens when one

chooses the coarsest possible spatial discretization, that is N = 1. For other values

of N, the rod is made of several helices patched together. Large values of N yield

arbitrarily fine space discretizations.

Dynamic equations for a Super-Helix

Given a deformable body whose configuration depends on generalized coordinates

q(t), Lagrangian mechanics provides a systematic method for deriving its equa-

tions of motion, q̈ = a(q, q̇, t). This is done by feeding the Lagrangian equations

of motion:

d

dt

(
∂T

∂ q̇iQ

)

−
∂T

∂qiQ

+
∂U

∂qiQ

+
∂D

∂ q̇iQ

=
∫ L

0
JiQ(s,q, t) ·F(s, t)ds (1.23)

36

with the expressions for the kinetic energy T (q, q̇, t), for the internal energy U(q, t)
and for the dissipation potential D(q, q̇, t) that describe the physics of the system

at hand. The right-hand side of equation (1.23) is the generalized force fiQ de-

riving from the lineic density F(s, t) of physical force applied on the rod, and JiQ

defines the Jacobian matrix, JiQ = ∂rSH(s,q)/∂qiQ. We consider three force con-

tributions, namely hair weight, viscous drag from ambient air (considered at rest

for simplicity) with coefficient ν , and interaction forces with surrounding strands

and body:

F(s, t) = ρ Sg−ν ṙSH(s,q)+Fi(s, t), (1.24a)

where F(s, t) is the total external force applied to the rod per unit length, ρS is the

mass of the rod per unit length, and g is the acceleration of gravity. The interaction

forces Fi are computed using the model presented shortly in Section 1.4.2.

The three energies in the equations of motion (1.23) that are relevant for an elastic

rod are:

T (q, q̇, t) =
1

2

∫ L

0
ρ S

(
ṙSH(s,q)

)2
ds (1.24b)

U(q, t) =
1

2

∫ L

0
∑

2

i=0
(EI)i (κ

SH
i (s,q)−κn

i (s))2 ds (1.24c)

D(q, q̇, t) =
1

2

∫ L

0
γ∑

2

i=0

(
κ̇SH

i (s,q)
)2

ds. (1.24d)

The kinetic energy T is defined in terms of the rod velocity, ṙ = dr/dt in the

classical way. The internal energy U in equation (1.24c) is the elastic energy of a

rod, as derived, for instance, in [AP07] and used in [BAQ+05]. The coefficients

(EI)i are the principal bending stiffness of the rod in the directions ni (for i = 1,2)

while (EI)0 is the torsional stiffness, classically written µ J (for i = 0). These

parameters are given by textbook formulas in terms of the material properties

(Young’s modulus and Poisson’s ratio) and of the geometry of the cross-section.

The quantities κn
i (s) are called the natural curvatures (i = 1,2) and twist (i = 0) of

the rod. They characterize the shape of the rod in the absence of external force: for

κi(s) = κn
i (s) the elastic energy is vanishing and therefore minimum. Vanishing

natural curvatures (κn
α = 0 for α = 1,2) model straight hair. Nonzero values will

result in wavy, curly or fuzzy hair. In practice, tuning these parameters allows

one to choose for the desired hair style, as explained in Section ??. Overall, the

mechanical properties of the rod are captured by only six entities, the stiffnesses

(EIi)i=0,1,2 and the natural twist and curvatures (κn
i (s))i=0,1,2. We neglect the

dependence of the stiffnesses on s, but not that of the natural twist and curvatures:

37

we found that slight variations of (κn
i (s))i with s allow for more realistic hair

styles. Finally, we choose for the dissipation energy D in equation (1.24d) a simple

heuristic model for capturing visco-elastic effects in hair strands, the coefficient γ
being the internal friction coefficient.

All the terms needed in equation (1.23) have been given in equations (1.24). By

plugging the latter into the former, one arrives at explicit equations of motion

for the generalized coordinate q(t). Although straightforward in principle, this

calculation is involved3. It can nevertheless be worked out easily using a symbolic

calculation language such as Mathematica [Wol99]: the first step is to implement

the reconstruction of Super-Helices as given in Appendix 1.4.3; the second step

is to work out the right-hand sides of equations (1.24), using symbolic integration

whenever necessary; the final step is to plug everything back into equation (1.23).

This leads to the equation of motion of a Super-Helix:

M[s,q] · q̈+K · (q−qn) = A[t,q, q̇]+
∫ L

0
JiQ[s,q, t] ·Fi(s, t)ds. (1.25)

In this equation, the bracket notation is used to emphasize that all functions are

given by explicit formula in terms of their arguments.

In equation (1.25), the inertia matrix M is a dense square matrix of size 3N,

which depends nonlinearly on q. The stiffness matrix K has the same size, is

diagonal, and is filled with the bending and torsional stiffnesses of the rod. The

vector qn defines the rest position in generalized coordinates, and is filled with

the natural twist or curvature κn
i of the rod over element labelled Q. Finally,

the vector A collects all remaining terms, including air drag and visco-elastic

dissipation, which are independent of q̈ and may depend nonlinearly on q and q̇.

Time discretization

The equation of motion (1.25) is discrete in space but continuous in time. For

its time integration, we used a classical Newton semi-implicit scheme with fixed

time step. Both the terms q̈ and q in the left-hand side are implicited. Every

time step involves the solution of a linear system of size 3N. The matrix of this

linear system is square and dense, like M, and is different at every time step: a

3The elements of M, for instance, read MiQ,i′Q′ =
1
2

∫∫
JiQ(s,q) ·Ji′Q′(s

′,q)dsds′ where J is the

gradient of rSH(s,q) with respect to q.

38

conjugate-gradient algorithm is used. The density of M is the price to be paid for

incorporating the inextensibility constraint into the parameterization. It results in

degrees of freedom that are non local in physical space.

Super-Helices for solving the Kirchhoff equations

The equations of motion for dynamic elastic rods were derived by Kirchhoff

in 1859. A modern derivation of these equations can be found, for instance,

in [AP07]: it follows the same principles as the one for a Super-Helix. The main

difference is that we have constrained the material curvatures and twists to be

piecewise constant functions of s in equation (1.22); these functions may depend

arbitrarily on s for regular Kirchhoff rods. Apart from this difference, the Super-

Helix model is based on the same physical assumptions as the Kirchhoff equa-

tions. Therefore, the Super-Helix method provides a discrete model for solving

the Kirchhoff equations.

We derived the Super-Helix model after we extensively tested existing integra-

tion schemes for the Kirchhoff equations, and eventually realized that they were

not well suited for computer graphics applications. We implemented an elegant

algorithm, due to [HKS98], based on a discretization of these equations by fi-

nite differences. In this paper, Hou et al. discuss very clearly the difficulties

associated with the numerical integration of the Kirchhoff equations, which are

numerically very stiff. They propose an attempt for removing this stiffness. It

brings a very significant improvement over previous methods but we found that it

was still insufficient for hair animation purposes: there remain quite strong con-

straints on the time steps compatible with numerical stability of the algorithm.

For instance, simulation of a 10 cm long naturally straight hair strand using the

algorithm given in [HKS98] remained unstable even with 200 nodes and a time

step as low as 10−5 s. The stiffness problems in nodal methods have been ana-

lyzed in depth by [BW92] who promoted the use of Lagrangian deformable mod-

els (sometimes called ‘global models’ as opposed to nodal ones). This is indeed

the approach we used above to derive the Super-Helix model, in the same spirit

as [WW90, BW92, QT96].

We list a few key features of the Super-Helix model which contribute to realis-

tic, stable and efficient hair simulations. All space integrations in the equations

of motion are performed symbolically off-line, leading to a quick and accurate

evaluation of the coefficients in the equation of motion at every time step. The

39

inextensibility constraint, enforced by equations (1.20a–1.20b), is incorporated

into the reconstruction process. As a result, the generalized coordinates are free

of any constraint and the stiff constraint of inextensibility has been effectively re-

moved from the equations. Moreover, the method offers a well-controlled space

discretization based on Lagrangian mechanics, leading to stable simulations even

for small N. For N→ ∞, the Kirchhoff equations are recovered, making the sim-

ulations very accurate. By tuning the parameter N, one can freely choose the

best compromise between accuracy and efficiency, depending on the complexity

of hair motion and on the allowed computational time. We are aware of another

Lagrangian model4 used in computer graphics that provides an adjustable number

of degrees of freedom, namely the Dynamic NURBS model [QT96], studied in

the 1D case by [NR01]. Finally, external forces can have an arbitrary spatial de-

pendence and do not have to be applied at specific points such as nodes, thereby

facilitating the combination with the interaction model.

1.4.2 Applications and Validation

In this section, we provide a validation of our physical model against a series of

experiments on real hair, and demonstrate that the Super-Helix model accurately

simulates the motion of hair. Images and videos showing our set of results are

available at http://www-evasion.imag.fr/Publications/2006/BACQLL06/.

Choosing the parameters of the model

In our model, each Super-Helix stands for an individual hair strand placed into

a set of neighboring hair strands, called hair clump, which is assumed to deform

continuously. To simulate the motion of a given sample of hair, which can either

be a hair wisp or a full head of hair, we first deduce the physical and geometric

parameters of each Super-Helix from the structural and physical properties of the

hair strands composing the clump. Then, we adjust friction parameters of the

model according to the damping observed in real motion of the clump. Finally,

interactions are set up between the Super-Helices to account for contacts occurring

4In this model, geometric parameters, defined by the NURBS control points and the associated

weights, are used as generalized coordinates in the Lagrangian formalism. In contrast, we opt here

for mechanically-based generalized coordinates: they are the values of the material curvatures and

twist, which are the canonical unknowns of the Kirchhoff equations.

40

between the different animated hair groups. In this section, we explain how we set

all the parameters of the Super-Helix model using simple experiments performed

on real hair.

Hair mass and stiffness: We set the density ρ to be equal to a typical value for

hair, 1.3 g · cm−3. The mean radius r and the ellipticity e = rmax

rmin
of the Super-Helix

cross-section are deduced by direct microscopic observation of real hair fibers

(see Figure 1.7, left) whereas Young’s modulus and Poisson’s ratio are taken from

existing tables, which report values for various ethnic origins [Rob02]. These pa-

rameters are then used to compute the bending and torsional stiffnesses (EI)i=0,1,2

of the Super-Helix, as given by textbook formulas.

Natural curliness: The natural curvatures and twist parameters of the Super-

Helix model are set by:

κn
1 = 1/rh κn

2 = 0 τn =
∆h

2π r2
h

,

where rh is the radius and ∆h the step of the approximate helical shape of the

real hair clump, measured near the tips (see Figure 1.7, right). Indeed, the actual

curvatures and twist should be equal to their natural value at the free end of the rod,

where the role of gravity becomes negligible. In practice, we add small random

variations to these values along each Super-Helix to get more natural results. We

have noted that in reality, most hair types have an almost zero natural twist τn,

except African hair (see Appendix 1.4.4).

Internal friction γ: This parameter measures the amount of internal dissipa-

tion within a Super-Helix during motion. It especially accounts for the hair-hair

dissipative interactions occurring inside the hair clump whose motion is guided

by the Super-Helix. We found that, in practice, the internal friction can be easily

adjusted by comparing the amplitude of deformation between the real and the sim-

ulated hair clump when a vertical oscillatory motion is imposed, see Figure 1.8.

Typically, we obtained best results with γ ∈ [5.10−10,5.10−11] kg ·m3 · s−1.

Air-hair friction coefficient: Once parameter γ is chosen, the air-hair friction

parameter can be fitted by comparing the damping duration between the real and

41

Figure 1.7: Left, measuring the mean radius r and the ellipticity e of the model

by observation of real hair fibers with a video-microscope. Right, measuring the

radius rh and the step ∆h of the natural helical shape at the tip of a real hair clump.

the simulated hair clump, for example when imposing a pendulum motion. We

noted the air-hair friction parameter is strongly related to the local alignment of

neighboring hair strands, called the hair discipline in the field of cosmetics. As

one can observe in the real world, fuzzy hair is more subject to air damping than

regular, disciplined hair. In practice, we chose the air-hair friction coefficient ν
between 5.10−6 kg · (m · s)−1 (disciplined hair) and 5.10−5 kg · (m · s)−1 (fuzzy

hair).

Friction with another object: Contacts between hairs, and between our hair

model and external objects (such as the body) are performed through penalty

forces which include a normal elastic response together with a tangential viscous

friction force. For simulating realistic contacts between hair and external objects,

we use an anisotropic friction force, which accounts for the oriented scales cov-

ering individual hair fibers. The friction parameter is directly adjusted from real

observations of sliding contacts between the hair clump and a given material, and

then multiplied by a cosine function to account for the orientation of hair fibers

with respect to their sliding motion over the external object.

Visual comparisons

With simulation we have reproduced a series of real experiments on smooth and

wavy hair clumps to show that our model captures the main dynamic features of

42

Figure 1.8: Fitting γ for a vertical oscillatory motion of a disciplined, curly hair

clump. Left, comparison between the real (top) and virtual (bottom) experiments.

Right, the span ℓA of the hair clump for real data is compared to the simulations

for different values of γ . In this case, γ = 1.10−10 kg ·m3 · s−1 gives qualitatively

similar results.

natural hair. We used the technique presented previously to fit the parameters of

the Super Helix from the real manipulated hair clump. As shown in Figure 1.9,

left, our Super-Helix model adequately captures the typical nonlinear behavior

of hair (buckling, bending-twisting instabilities), as well as the nervousness of

curly hair when submitted to high speed motion (see Figure 1.8, left). Figure 1.9,

right, shows the fast motion of a large hair, which is realistically simulated using

3 interacting Super-Helices. All these experiments also allowed us to check the

stability of the simulation, even for high speed motion.

Finally, Figure 1.10 demonstrates that our model convincingly captures the com-

plex effects occurring in a full head of hair submitted to a high speed shaking

motion.

43

Figure 1.9: Left, buckling effect caused by vertical oscillations of a hair clump.

Right, a more complex hair wisp animated with 3 interacting Super-Helices, dur-

ing fast motion.

Results and simulation performance

Figure 1.5 shows three examples of motion for a full head of hair. Different hair

types were simulated, from long to short and curly to straight. To set up our

simulations, we used typical parameter values for real hair of different ethnic ori-

gins. These parameters are given in Appendix 1.4.4. We used one hundred guide

strands for the wavy and curly hairstyles, and two hundred for the smooth Asian

hairstyle.

For all hair types, even long or curly ones, we found it to be unnecessary to use

more than 5 to 10 helical elements per guide hair strand. For higher values of N,

the increase in accuracy becomes imperceptible.

Our model was tested on a 3 GHz Pentium 4 processor. Up to 10 strands can be

simulated in real-time. When simulating a full head of hair, we obtained a very

reasonable mean computational time of 0.3 s to 3 s per frame. The performance of

our implementation is thus as good as other recent approaches, such as [CCK05a].

This is due to the stability of the Super-Helix model, which allows time steps of

≈ 1/30 s, even during high speed motion, and to the high order of interpolation

provided by the helices, which helps to keep N small while offering a good accu-

racy.

44

Figure 1.10: Comparison between a real full head of hair and our model, on a

head shaking motion (straight and clumpy hair type).

Limitations and future work

The Super-Helix model remains stable for any number N of helical elements in

guide strands. However, the matrix M used in the dynamic computation is dense,

and as a result, the computation time increases quickly with N, as O(N2). This

quadratic time complexity prevents the use of Super-Helices for a very fine sim-

ulation. However, this proves to be a minor concern for hair animation purposes,

as we find N does not have to be very large for generating pleasant visual results.

Moreover, once the number of helical parts is chosen, the complexity of the whole

simulation remains linear with respect to the number of guide strands.

Besides this, constraints are currently treated using penalty methods. Analytical

methods would be very useful, as they would allow solid friction to be handled.

This is one of the planned future extensions of the model.

Although we could advance in the understanding on collective hair behavior, not

enough data were available for us to set up the really strong model we would have

dreamed of. Indeed, processing non-simulated hair strands by a simple interpo-

lating scheme between a fixed set of sparse guide hair strands may lose fine-scale

45

details; moreover, when thin objects interact with such sparse hair strands, the

coarse granularity of hair may become obvious and distracting. Quantifying the

tendency of hair to cluster and separate according to the hair type as well as to the

collisions occurring between hair and external objects would be a very interesting

avenue for future work. The relationship between this and the intuitive notions of

curliness and discipline could be investigated.

1.4.3 Conclusion

We have introduced a deformable model able to simulate hair dynamics for a wide

range of hair types, capturing the complex motions observed in real hair motions.

In particular, the simulation of curly hair, a notoriously difficult problem, has

been demonstrated. Super-Helices are based on Kirchhoff equations for elastic,

inextensible rods and on Lagrangian dynamics, and provide a freely adjustable

number of degrees of freedom. They take into account important hair features

such as the natural curvature and twist of hair strands, as well as the oval shape

of their cross section. To stress on the powerful representation of moving hair by

Super-Helices, we have presented a rigorous validation of this model, supported

by a series of comparative experiments on real hair. We also noted that Super-

Helices are able to achieve realistic motions at a very reasonable computational

cost: this is permitted by the stability of the method, which enables large time

steps, and by the high order of interpolation provided by the helices.

An interesting direction for future research would be to adapt our hair model to

a real-time framework, in order to perform interactive hair-styling operations or

to use it for character animation in video-games. We could think of setting up an

adaptive version of the Super-Helices model, where the number of helical parts

would automatically vary over time according to the current deformation and to

the available computational power, following work in articulated body dynam-

ics [RGL05a].

46

Appendix

Helical solution

We show here that the reconstruction of the rod can be carried out over any particular

element SQ = [sL
Q,sR

Q] of the Super-Helix, over which the functions (κi(s))i are constant

by construction. By equations (1.20), ΩΩΩ′ = ∑iκ
′
i ni +ΩΩΩ×ΩΩΩ = 0, which means that the

Darboux vector is constant along each element. For a given element Q, let us therefore

introduce Ω the norm of the vector ΩΩΩ and ωωω = ΩΩΩ/Ω the unit vector aligned with ΩΩΩ (the

case ΩΩΩ = 0 is considered separately, see below). Finally, we write a‖ = (a ·ωωω)ωωω and

a⊥ = a−a‖ as the projection of an arbitrary vector a parallel to and perpendicular to the

axis spanned by ωωω , respectively.

Since ΩΩΩ is constant, integration of equation (1.20b) over an element is straightforward.

The material frame ‘rotates’ around ωωω with a constant rate of rotation Ω per unit of curvi-

linear length. Therefore, the material frame at coordinate s ∈ SQ is obtained from the

material frame n
Q
i,L = ni(s

L
Q) given on the left-hand side of the interval SQ, by a rotation

with angle Ω(s− sL
Q) and axis parallel to ωωω:

ni(s) = n
Q‖
i,L +n

Q⊥
i,L cos(Ω(s− s

Q
L))+ωωω×n

Q⊥
i,L sin(Ω(s− s

Q
L)). (1.26a)

By equation (1.20a), the centerline r(s) is then found by spatial integration of n0(s):

r(s) = r
Q
L +n

Q‖
0,L (s−s

Q
L) +n

Q⊥
0,L

sin(Ω(s− s
Q
L))

Ω
+ωωω×n

Q⊥
0,L

1− cos(Ω(s− s
Q
L))

Ω
, (1.26b)

where r
Q
L = r(sL

Q) is the prescribed position of the centerline on the left-hand side of the

interval. Equations (1.26) provide the explicit reconstruction of an element. Its centerline

is a helix with axis parallel to ωωω . An equivalent derivation based on Rodrigues’ formula is

given in [Pai02a]. Two degenerate cases are possible and must be considered separately:

the curve is an arc of circle when τ = 0 and κ1 6= 0 or κ2 6= 0; it is a straight line when

κ1 = κ2 = 0, which can be twisted (τ 6= 0) or untwisted (τ = 0, implying ΩΩΩ = 0).

Equations (1.26) can be used to propagate the centerline and the material frame from the

left-hand side sL
Q of the element to its right-hand side sR

Q. The whole rod can then be re-

constructed by applying this procedure over every element successively, starting from the

scalp where r and ni are prescribed by equation (1.20c). This yields explicit formulae for

the functions rSH(s,q) and nSH
i (s,q), which have the form of equation (1.26) over each el-

ement. The integration constants are determined by continuity at the element boundaries.

47

1.4.4 Parameter values for natural hair

Asian Caucasian 1 Caucasian 2 African

(smooth) (wavy) (curly) (fuzzy)

Radius (µm) 50 35 50 50

Ellipticity 1 1.1 1.1 1.2

Helix radius (cm) 0 1 0.6 0.1

Helix step (cm) 0 0.5 0.5 1

Young’s mod.

(GPa)

1 2 1.5 0.5

Poisson’s ratio 0.48 0.48 0.48 0.48

48

Chapter 2

Hair Interactions

Florence Bertails, Basile Audoly, Marie-Paule Cani

2.1 Introduction

Human hair is a composite, deformable material made of more than 100 000 in-

dividual fibers called hair strands. As mentioned in the previous chapter, these

thin tubular structures are elastic: after motion, they tend to come back to a rest

shape, which is related to their individual natural curliness and to the set of exter-

nal forces applied to them.

This chapter deals with the difficult problem of hair interactions, which plays a

major role in the motion of a full head of hair, and even on the shape hair takes

at rest: collisions and contacts between hair strands of different orientations cause

hair to occupy a pretty high volume, especially in the case of irregular, curly or

fuzzy hair. Due to this larger volume, tangled or fuzzy hair in motion is much

more subject to air damping than smooth and disciplined hair.

The nature of interactions between hair strands is very complex. This is largely

due to the surface of individual hair strands, which is not smooth but composed of

tilted scales (see Figure 1.1, left). This irregular surface causes anisotropic fric-

tion inside hair, with an amplitude that strongly depends on the orientation of the

scales and of the direction of motion [Zvi86]. Moreover, hair is very triboelectric,

meaning it can easily release static charges by mere friction. This phenomenon,

49

which has been measured in the case of combed hair, most probably impacts the

hair-hair friction rates.

Because of the extremely large number of strands that compose a full head of hair,

processing hair interactions is known as one of the main challenges in hair anima-

tion. Until the late nineties, most hair animation methods tackled hair collisions

with the body, but were not processing self-interactions at all. This often resulted

into an obvious lack of hair volume. The first methods that detected interactions

between hair wisps spent more than 80% of the simulation time in this process.

More recently, several interesting solutions that make hair interactions much more

practical were developed: some of them mimic the effect of hair interactions glob-

ally, using a structure that stores the volumetric density of hair. Others achieve

more accurate results by developing efficient algorithms for detecting collisions

between hair-wisps and by setting up realistic models for response and friction

forces.

This chapter presents those of these recent advances in which the authors partic-

ipated: Section 2.2 briefly reviews the two main approaches for animating hair,

namely modeling hair as a continuum or as a set of individual hair wisps. The as-

sociated methods for processing hair interactions with the body are presented and

the issues raised by hair self-interactions are introduced. Section 2.3 presents a

practical real-time solution, applicable in any hair animation system, which gives

hair a volumetric behavior without requiring to detect individual interactions be-

tween the animated guide-strands. We then focus on more accurate methods, ap-

plicable for generating high quality animation of long hair: Section 2.4 reviews

some recent methods for efficiently, yet robustly detecting the interactions be-

tween guide-strands. Section 2.5 discusses the anisotropic models that were set

up to model response to these interactions. In particular, we describe a validated

model for friction forces. In conclusion, we emphasize the steps forwards made

in the last few years, but also the issues that were not tackled yet, showing that

improving the efficiency and visual realism of hair animation is going to remain a

hot research topic for a while.

50

2.2 Hair animation and interaction processing

2.2.1 Continuous versus wisp-based hair models

Hair animation was made practical in the early nineties [RCT91b] by the idea

of animating only a sub-set of the hair strands (typically one or two hundreds),

which we will call here the guide-strands. This is made possible by the local

spatial coherence of hair motion. Once the guide-strands have been animated

(using for instance spring and masses, projective dynamics or chains of articulated

rigid bodies), their position is used to generate the remaining hair strands at the

rendering stage.

More precisely, two main families of approaches were developed for modeling

hair: The first ones, more appropriate for smooth, fluid hair, consider hair as

a continuum [AUK92b, DMTKT93, HMT01a, CJY02a, BCN03] and thus use

interpolation between the animated guide-strands for generating a full head of

hair. The second ones, which achieve their best results for wavy of curly hair,

model hair as a set of disjoint wisps [CSDI99, KN00, PCP01a, KH01, BKCN03a,

WL03, CCK05a]. The animated guide-strands are assimilated to wisp skeletons

and extrapolation is used for generating extra hair-strands within each wisp. Re-

cently, Bertails [BAC+06] bridged the gap between the two kinds of approaches

by allowing the guide-strands to be used both for interpolation or approximation

depending on the type of hair and on the current distance between neighboring

guide-strands. This model captures hair that looks like a continuum near the head

while well identified wisps can be observed at the tip.

In the remainder of this chapter, we will discuss hair interactions independently of

the hair model used among the approaches above: hair will be considered as a set

of individual hair guides, each of them more or less explicitly modeling a volume

of hair around it. Interactions will be detected and treated based on the position

and motion of these guide-strands.

2.2.2 Processing hair interactions with the body

The first step towards processing hair interactions is to adequately model hair col-

lisions and contacts with obstacles, starting with the body of the animated char-

acter. Since hair is animated using guide-strands, the latter and the wisp volumes

51

around them (if any) should be prevented from penetrating inside the body. The

latter is often approximated using sets of ellipsoids or stored in a spatial partition-

ing grid to accelerate this detection. Since hair is a very soft material, modeling

a one way response is sufficient: the body can be considered as infinitely rigid

and heavy compared with hair, so the collision has no effect on the subsequent

body shape and motion. Moreover, hair is a very soft and light material: it does

not bounce after collision, but rather experiment a strong static friction with the

parts of the body it is in contact with. Collision response can thus be treated using

methods set up for other very light material, such as clothing: when a penetration

is detected, the guide-strand or the associated wisp volume is re-positioned as to

be in resting contact with the body. The guide-strand is either given the velocity

of this body part, or a static friction force is set up between them.

The remainder of the chapter focuses on the part of interaction processing most

specific to hair and much more difficult to handle than collisions with obstacles:

we are now addressing the challenging problem of self-interactions.

2.2.3 The issues raised by hair self-interactions

The interactions that occur between hair-strands are very difficult to simulate, For

the following reasons:

Firstly, in real hair, the friction between neighboring strands of similar orientation

plays an important part: it dissipates some kinetic energy and damps the overall

motion. This phenomenon cannot be simulated properly in virtual hair, where only

a few guide-hair distributed on the scalp are animated. The only way to capture

this part of self-interaction is to add some internal damping - which should depend

on the type of hair and is quite difficult to tune - on the individual motion of a guide

strand.

Secondly, strands are very thin, so standard collision detection methods based

on penetration cannot be used: strands or even small wisps of hair of different

orientations might cross each other between two simulations steps and go to rest

in the wrong positions, this interaction remaining un-noticed.

Lastly, once a collision between hair guides or hair wisps of different orientation

have been detected, the response model should account for the complex state of

surface of a hair strand: the tilted scales that cover a strand result in strongly

anisotropic static friction. Moreover, these friction forces are dominant: due to

52

the lightness on a hair strand, the colliding strands will most probably remain in

contact. One of the challenges of hair self-interactions it thus to define a response

model that prevents strands from crossing each other while avoiding to generate

any bouncing. The latter, often noticeable in hair animation systems, gives an

overall unstable behavior to the full hair, due to the extremely large number of

local collisions that occur at each time step, even when hair is at rest.

Historically, the continuous and wisp-based approaches have tackled hair self-

interactions in dramatically different ways:

- Volumetric interactions: Continuum approaches such as Hadap’s and Bando’s

methods relied on fluid-like internal viscosity to model hair friction and to

prevent self-intersections is a rather global way [HMT01a, BCN03]: no

collision is detected between individual hair strands, but the latter interact

(as fluid particles would do), depending on the local hair density and on the

relative hair motion around them.

- Guide-strands interactions: In contrast, processing hair self-collision in dis-

continuous, wisp-based approaches has been done through the actual de-

tection of penetration between moving hair wisps [PCP01a]. This allows a

more accurate modeling of the discontinuities that can be observed during

fast motion of long, human hair: in these approaches, wisps of hair defined

around a guide-strand are prevented from crossing each other and two wisps

of different orientations can be in resting contact.

We believe that the general approach chosen for handling hair interactions can be

chosen quite independently from the hair model, would it be a continuum model,

an disjoint set of hair wisps, or something inbetween.

The remainder of this chapter presents the specific solution the authors have de-

veloped for tackling the problem of hair interactions. This chapter is not aimed

as providing a state of the art in the area: the interested reader can find a recent

survey on hair animation and rendering techniques in [WBK+07]. The volumet-

ric method for hair interactions presented in Section 2.3 belongs to the volumetric

interactions approach: it provides a real-time alternative to fluid-like interactions

when a coarser approximation is sufficient. Methods for improving the efficiency

of collision detection and the realism of collision response in the interacting guide-

strands approach are detailed in Sections 2.4 and 2.5.

53

2.3 A volumetric approach for real-time self-interactions

The work presented in this section was first introduced in [BMC05], as a side

application of a method for handling hair self-shadowing in real-time. We detail

here the application of this approach to hair self-interactions.

2.3.1 A volumetric structure for hair

An acceptable approximation of hair self-interaction consists of considering that

internal collisions mainly result into the preservation of hair volume [LK01a].

Starting from this assumption, hair density information is very useful: If the local

density of hair is over a fixed threshold (corresponding to the maximum quan-

tity of hair that can be contained within a cell), the hair strands should undergo

external forces that spread them out.

Bertails et al. [BMC05] use a light-oriented voxel grid to store hair density values.

This enables them to efficiently compute both lighting and mechanical interac-

tions inside the hair volume in real-time. Though very simple, this method yields

convincing interactive results for animated hair, is very simple to implement, effi-

cient and can easily be parallelized to increase performance.

More precisely, the volumetric structure used is based on a 3D light-oriented den-

sity map, which combines an optimized volumetric representation of hair with a

light-oriented partition of space. This voxel structure stores the local hair den-

sity in space, computed from the number of guide-strand segments within a given

cell. It is used to approximate the light attenuation through each cell of the grid:

since the cells are sorted along the light direction, computing the accumulated

translucency for each cell through the hair volume becomes straightforward.

2.3.2 Application to hair interaction

At each animation step, all guide-strand are moved to their new position and the

density map is updated. Then, hair self-collisions are taken into account for the

next simulation step by adding density-based interaction forces where needed:

repulsive forces directed from the center to the border of a grid cell are generated.

54

They are applied to each hair-guide element located in a cell whose density if over

a threshold. This threshold value depends on the desired level of hair fuzziness.

Although this interaction method is extremely simple, it yields convincing results.

In practice, it was tested with an accordingly simple, yet robust algorithm for an-

imating the guide-strands: hair is composed of approximately a hundred wisps,

each of which being simulated using three guide-strands modeled as chains of

rigid links. The latter are animated using a fast and robust but non-accurate

method [Ove91]. The rendering technique is a hybrid between continuum and

wisp-based methods: interpolation between the three guide-strands is used to

generate a continuum of hair inside each deformable wisps. The overall method

results into interactive hair animations that include self-interactions as well as

self-shadowing, and generate visually convincing hair volume (see Figure 4.6).

Furthermore, with this technique, handling hair self-collisions only requires 2.5%

of the whole processing time.

Figure 2.1: Interactive hair self-shadowing processed by accumulating transmit-

tance values through a light-oriented voxel grid [BMC05]. (left) Animated smooth

hair; (right) Animated curly hair.

2.4 Detecting guide-strand interactions

Volumetric methods as the simple solution presented above are not sufficient for

generating high quality animation of non-smooth hair: two hair wisps of different

55

orientations may cross each other during motion despite of the volumetric forces

they undergo. Most hair animation methods have thus relied on the distance be-

tween pairs of guide-strands or on the penetration between wisps of hair defined

around them for accurately detecting hair self-interactions. In this chapter, we call

these more accurate approaches guide-strand interactions.

A naive implementation of guide-strand interactions would lead to O(n2) tests,

where n is the total number of guide-strand segments (or wisp segments) in the

hair model. Following Plante [PCP01a], most methods use a pre-detection based

on a regular 3D grid data structure, built around the character and its hair, to

quickly get rid of most non-intersecting cases. Each grid cell contains a list of

hair-guide elements (or wisp segments) whose bounding box intersects the cell.

At each animation step, the grid is used for quickly determining a shorter list of

segments susceptible to intersect. A mailbox parameter indicates the last time

step when a given pair of such segments has been tested, ensuring that each pair

is tested only once. The 3D grid data structure can also be used for optimizing

collision detection between hair and the character model: to achieve this, each cell

also references the polygons of the character model that intersect it.

2.4.1 Deformable versus cylindrical hair wisps

Figure 2.2: Elements defining a deformable volumetric wisp [PCP01a].

56

To account for the complex interactions observed in real hair during fast mo-

tion, Plante et al. represented hair using a fixed set of deformable, volumetric

wisps [PCP01a, PCP02]. Each wisp is structured into three hierarchical layers:

a skeleton curve (called here guide-strand) that defines its large-scale motion and

deformation, a deformable volumetric envelope that coats the skeleton and ac-

counts for the deformation due to hair interaction within a wisp, and a given num-

ber of hair strands distributed inside the wisp envelope and which are generated

only at the rendering stage (see Figure 2.2). More precisely, the deformable sec-

tions that shape a wisp of hair around its guide-strand are animated using 4 1D

damped springs, attempting to capture the way a wisp of hair deforms when its

moves and most often comes back to its initial size at rest. The wisp volume was

defined as a quadratic surface envelop controlled by these cross-sections.

Using such a complex deformable wisp model for the detection of guide-strand

interactions proved very time consuming: more than 70% of the simulation time

was used in collision detection between hair wisps, despite of the space grid used

to accelerate the process. In total, without taking hair rendering into account,

about 3 hours of computations were required, in 2001, to compute 3 seconds of

animation.

Bertails et al. [BKCN03a] introduced an adaptive animation control structure,

called the Adaptive Wisp Tree (AWT), which enables the dynamic splitting and

merging of hair wisps. The AWT depends on a full hierachical structure for

the hair, which can either be precomputed - for instance using a hierarchical

hairstyle [KN02] - or computed on the fly. The AWT represents at each time

step the wisps segments (or guide-strand segments) of the hierarchy that are ac-

tually simulated (called active segments). Considering that hair should always

be more refined near the tips than near the roots, the AWT dynamically splits or

merges hair wisps while always preserving a tree-like structure, in which the root

coincides with the hair roots and the leaves stand for the hair tips.

In addition to limiting the number of active hair-wisp segments, one of the key

benefits of the AWT for collision detection is that the splitting behavior of the

wisps models their deformation: there is no need for the complex deformable

wisp geometry used in [PCP01a]. For collision processing, active wisp segments

of the AWT are thus represented by cylinders, which greatly simplifies collision

detection tests: detecting interactions simplifies into detecting the local minima of

the distance between guide-strand and comparing its value to the sum of the wisp

radii. With this method, ten seconds of animations could be computed, in 2003,

57

in less than five minutes.

2.4.2 Handling curly hair and exploiting temporal coherence

The Super-Helix model, which was recently introduced at SIGGRAPH [BAC+06],

and presented in chapter 1, is the first model that accurately simulates the dynam-

ics of curly hair: unlike previous approaches, curly hair wisps are not modeled

using a straight mass-spring skeleton around which wavy strands are drawn at the

rendering stage, but are instead accurately modeled using wavy to fuzzy guide-

strands, which have a piece-wise helical shape. Detecting interactions between

such complex helical guide-strands is indeed more costly.

To handle collisions between hair clumps guided by Super-Helices in a both accu-

rate and efficient way, our strategy is based on the two following ideas: 1) the use

of adaptive cylindrical bounding envelopes around each hair wisp, whose number

and size can automatically adapt during motion, depending on the geometry of

the wisp, and 2) the tracking of the closest points between the skeletons (i.e., the

principal axes) of the bounding cylinders.

Figure 2.3: Left: The three different adaptive representations for the bounding volume of

a wisp segment. Right: Tracking the pairs of closest points between the skeletons of guide

volumes (for smooth and curly hair) [Ber06].

1. Adaptive bounding envelopes: the bounding volume of a helical element

Qi of the guide hair strand is composed of a single, large cylinder if the

helix’s spires are tight enough. In other cases (i.e. for straighter strands),

58

we use one or two cylinders, oriented along the mean local tangent of the

element, to approximate the volume of the wisp (see Figure 2.3).

2. Tracking pairs of the closest points: we adapted the algorithm of Raghu-

pathi et al., originally designed for detecting self-collisions in long and thin

deformable objects [RCFC03], to the collision detection between guide hair

volumes. Since guide hair volumes are composed of a set of cylinders, the

method amounts to computing minimal distances between pairs of segments

(the principal axes of the cylinders), as in [RCFC03]. For each pair of guide-

strands, we first initialize a closest point pair near the root. At each time

step, each closest point pair is updated by letting the closest points slide

along the associated wisp, from the positions they had at the last time step.

They stop in a location that locally minimizes the distance between the two

wisp volumes. When this distance is under a threshold, new pairs of points

are created at both sides of the initial pair, to track the possible multiple

local minima. When two closest point pairs slide to the same location, they

are merged together. At each time step, because of temporal coherence,

only very few of these pairs need to be moved, so advancing them is very

fast. Each time the distance between two guide volumes is locally smaller

than the sum of their radii, collision is detected.

This algorithm ensures that at least one pair of closest points is maintained be-

tween two guide volumes, while keeping the number of tracked pairs between

guide volumes low (merging occurs when two different pairs slide towards the

same place). The algorithm has thus a n2 complexity where n is the number of

guide hair strands composing the hairstyle instead of the total number of segments

composing hair, as it would be when using a naive algorithm.

The same adaptive wisp volumes and temporal coherence technique are used for

detecting collisions between the hair and the body of the character. Distance tests

are computed between segments and spheres, as the body is approximated by a

unions of spheres. Using this technique, we obtained a total frame rate of only 3

seconds per frame for a dynamic hair style composed of a hundred of guide hair

strands, including self-interactions and interactions with the body.

59

2.5 Response to guide-strand interactions

As already mentioned hair is a very soft and light material. Seen as a whole, it

deforms rather than bouncing when it collides with a relatively rigid obstacle such

as the character’s body. Indeed, hair self-collisions should be very soft as well,

and result into frictional rather than bouncing behaviors. Therefore, response to

guide-strands interactions have been modeled using soft penalty forces together

with friction forces.

2.5.1 Anisotropic response in wisp-based methods

As noted by Plante et al. [PCP01a, PCP02], accounting for collisions between hair

wisps is fairly different from modelling collisions between standard deformable

bodies. Wisps are highly anisotropic, since they are just a virtual representation

for a group of hair strands. While two perpendicular colliding wisps should be

compressed in order to avoid intersection, interpenetration can be allowed be-

tween neighbouring wisps moving roughly in the same plane. In consequence,

the authors proposed an anisotropic model for the interactions between hair wisps:

Wisps of similar orientations are mostly submitted to viscous friction and pene-

trate each other, whereas wisps of different orientations actually collide in a very

dissipative way.

Figure 2.4: The layered wisp model [PCP01a] (right) captures both continuities

and discontinuities observed in real long hair motion (left).

As illustrated in Figure 2.4, this approach yields convincing results, even for fast

motions: the model adequately captures the discontinuities that can be observed in

60

long, thick hair, preserves hair volume and prevents crossing between hair wisps.

Nevertheless, the high number of contacts that needed to be computed between

the different wisps at rest caused some noticeable artifacts such as unstabilities

when hair comes to rest.

The previous anisotropic collision response model was re-used and improved by

the Adaptive Wisp Tree (AWT) method [BKCN03a]: an AWT implicitly models

some of the mutual hair interactions, since neighboring wisps with similar mo-

tions merge, thus efficiently yet robustly mimicking the static friction in real hair.

This merging behavior also avoids subsequent collision processing between these

wisps, thus increasing efficiency as well as gaining stability from the reduced

number of primitives. Typically, an AWT simulation starts with a reduced num-

ber of hair wisps. While the character moves, these wisps refine where and when

needed (see Figure 2.5), to merge again as soon as they can. When the character

is back at rest, the simulation eventually ends up a single large hair wisps. This

totally avoids the local unstabilities noted in previous approaches.

Figure 2.5: Left: The structure of an AWT at a given animation step. Most of

the parent wisps (in red) have split into medium-size wisps (in green), which

eventually have split into small ones (in white). Right: Rendering of the same

frame [BKCN03a].

2.5.2 Setting up realistic penalty and friction forces

The recent work on Super-Helices tackled the problem of setting up more accu-

rate response forces between interacting guide-strands [BAC+06]. Interactions

between guide-hairs, and between hair and external objects (such as the body)

are performed through penalty forces which include a normal elastic response to-

gether with a tangential friction force.

61

As in [Dur04], the normal penalty force is stabilized thanks to a quadratic reg-

ularization for small penetrations. From a regularization depth δreg (arbitrarily

chosen), the normal reaction force RNRNRN exerted between the two closest points of

interacting guide-strands is computed as follows:

if (gap≤ 0) RNRNRN = 000

if (0≤ gap≤ δreg) RNRNRN = kc gap2

2δreg
ncncnc

else RNRNRN = kc (gap−
δreg

2
)ncncnc

where ncncnc is the unitary vector giving the direction of collision (calculated as the

cross product of the vectors defining the two closest segments), and kc an arbitrary

constant value.

Figure 2.6: Angle θ between the fiber orientation and its relative velocity w.r.t the

external object in contact with the fiber.

To simulated friction between wisps in contact or friction with an obstacle, the

method extends viscous friction law in [CK05], defined as :

RT =−ν (vrel− (vrel.nc)nc)

To account for the oriented scales covering individual hair fibers, the friction coef-

ficient ν is multiplied by a sine function to account for the orientation of hair fibers

with respect to their sliding motion over the external object: ν = ν0 (1+sin(θ/2)),
where angle θ is defined in Figure 2.6.

The parameters of interaction forces, as well as the other parameters of the Super-

Helices model, can be set up using the actual study of real wisps of hair: The

friction parameter ν0 between hair and a given material is directly adjusted from

real observations of sliding contacts between the hair clump and the material.

As Figures 2.7 and 1.10 show, the Super-Helices model results in realistic simu-

lations which can be compared side by side with videos of real hair in motion.

62

Figure 2.7: Validation of the friction model in [BAC+06] on a sliding motion of a smooth

(left) and curly (right) hair clump over different kinds of material (left: wooden surface,

right: cotton).

2.6 Conclusion

As we have shown, processing hair interactions requires a dedicated set of meth-

ods, due to the very specific nature of the hair material. Impressive advances were

made in the last six years, from the first models able to handle hair self-collisions

to efficient, robust and even partly validated methods. This chapter has detailed

several specific solutions that range from the use of a volumetric approach when a

very quick solution is required to realistic models that still keep the computational

load to an acceptable rate.

In spite of all these advances, there still remains very challenging issues in the

modeling of hair self-interactions: these interactions are indeed the origin of the

complex collective behavior of hair. Especially they cause hair to group into clus-

ters during motion; this phenomenon has never been accounted before (except in

very simplified models, such as the AWT), as previous models usually assume

that hair granularity is fixed by the number of simulated guide-strands. Moreover,

hair interactions vary a lot according to external conditions such as moisture (wet

hair being the extreme case), combing, or the use of cosmetic products. Lastly,

hair tribo-electricity has never been modelled in an accurate way.

Future research should include attempts to make volumetric methods such as the

one presented in section 2.3 more accurate at low cost, by taking local hair di-

rectional distribution into account while setting up the response force. The ap-

proaches that seek for realism should probably extract the internal damping inside

a hair wisp from the preliminary study of hair chunks actually modeled using a

full set of interacting hair strands. This study should also bring more accurate

criteria for splitting a wisp into sub-wisps or merging them, and could help char-

63

acterizing the number of hair guides required according to the natural curliness

and smoothness of a given hair type.

64

Chapter 3

Multi-Resolution Hair Modeling

In this chapter, we present the basic framework for level-of-detail hair modeling.

These methods determine on the fly which hairs are of most significance to the

simulation and provide novel techniques to allocate the majority of the computa-

tional resources towards modeling these hairs. This process then accelerates the

simulation of hairs deemed less important, thereby accelerating the overall hair

simulation while maintaining the desired visual quality of the total simulated hair.

Traditional hair modeling techniques have viewed hair in different manners. Hair

is typically seen as individual strands, or one-dimensional curves in three-dimensional

space. Sometimes, hair is modeled as groups of strands, or wisps, where multiple

rendered strands were animated and styled as larger groups. These disjoint hair

groups are also modeled as strips of hair through two-dimensional surfaces. Hair

at times is also perceived as one large volume; animation and styling is controlled

through a continuous medium while either one-dimensional strands or surfaces

can be used to render the volume of hair.

These separate hair modeling representations have typically mandated a choice

between simulation quality and simulation speed. The impetus of this research is

to dynamically create a balance between quality and speed for hair modeling. To

attain this goal, it is necessary to allow the hair model to adapt to the changing

simulation, finding the balance between simulation speed and simulation qual-

ity. In this chapter, we will describe the three representations we use to model

hair. These representations, which we also refer to as the discrete levels-of-detail

for modeling hair include individual strands, clusters, and strips, see Figure 3.1.

65

The individual strands provide the finest level-of-detail, are modeled with one-

dimensional subdivision curves, and can be grouped to follow traditional wisp

animation schemes. The clusters are a new representation formed from general-

ized swept volumes created with subdivision surfaces to model a volume of hair.

The strips are the lowest level-of-detail and are created from flat two-dimensional

subdivision surfaces. These representations were first introduced by Ward et al.

[WLL+03].

Figure 3.1: Level-of-Detail Representations for Hair Modeling. (a) Subdivision

representation of strip with skeleton; (b) Rendered strip; (c) Subdivision representation

of cluster with skeleton; (d) Rendered cluster; (e) Subdivision representation of a strand

with skeleton; (f) Rendered individual strand.

This chapter will also introduce the base skeleton used to control the motion and

shape of each level-of-detail. The base skeleton is the underlying control struc-

ture for each LOD representation and dictates the placement of control vertices

used for subdivision. The base skeleton plays an important role in level-of-detail

transitioning; it is intentionally selected to maintain a global, consistent, macro-

scopic physical behavior as LOD switches take place. Using the same base control

structure for each LOD helps to drastically simplify many transition difficulties

typically present during LOD switching. It automatically reduces a fairly high

degree-of-freedom dynamical system down to a lower degree-of-freedom dynam-

ical system without any extra expensive computations other than performing the

LOD switching tests.

66

Hair simulation is controlled through the use of the base skeleton. We introduce

a collision detection method that efficiently and correctly handles hair-object and

hair-hair interactions.

We will also explain how the different framework entities work together to model

hair and show how the LOD framework can model hair more efficiently than pre-

vious methods, while maintaining a high visual quality. We have developed meth-

ods for choosing the appropriate LOD for modeling a section of hair based on a

number of criteria, including visibility, viewing distance, and hair motion. In this

chapter, we will discuss how these criteria are used together to choose the final

representation for hair, transition between the different representations, and show

results and discuss the performance of these methods.

3.1 Geometric Representations

Using a base skeleton, the three discrete hair representations can then be created.

Each LOD representation has varying simulation complexity and visual fidelity

for modeling hair and they have been chosen to be used together due to these

variations.

3.1.1 The Base Skeleton

The base skeleton controls both the shape and the motion of each hair represen-

tation at any given point during simulation. Based on the idea for modeling each

individual hair strand [AUK92b, KAT93], a structure has been employed for the

base skeleton that forms the ”core” of the proposed set of LOD representations.

This base skeleton is comprised of n control points, or nodes. This value is de-

cided based on criteria involving the length of the hair, the waviness or curliness

specified for the hair, and the desired smoothness for motion. The higher the

number of control points, the higher the complexity of the system and the finer

the detail is. The skeleton is modeled as an open chain of rigid line segments that

connect these nodes. The shape of the skeleton is controlled by polar coordinate

angles between each node. The Eulerian distance between each node is fixed, thus

preventing the length of the hair from changing during simulation.

67

3.1.2 Strips

The strip model in Figure 3.1(a) and (b) uses a single base skeleton model as

its foundation for motion. The structure for this model is inspired by the strips

representation presented by [KH00, KH01]. The skeleton is the center of the strip

and for each node in the skeleton there are two control points that are used to

define the strip. These two strip control points and the skeleton node point are

collinear. A skeleton with n nodes will result in a subdivision surface created

from a control polygon consisting of 2n control points.

A strip is typically used to represent the inner most layers of hair or parts of hair

that are not fully visible to the viewer and, therefore, are often not rendered. It

is the coarsest (lowest) level-of-detail used for modeling hair. It is mainly used

to maintain the global physical behavior and the volume of the hair during the

simulation.

While the strip representation gives better visual results for straight hair, it can

also be used to model wavy and curly hair, but not in as fine a detail as the clusters

or strands. Strips are only used when the viewer cannot observe fine detail, such

as when the hair is at distances far from the viewer, or when the hair is not in

sight. Thus, while the strip cannot depict all hairstyles as accurately as the other

two LODs, it is typically not visible to the viewer. Criteria for choosing an LOD

is discussed in further detail in Section 3.3.

3.1.3 Clusters

The clusters are represented as generalized cylinders created with texture-mapped

subdivision surfaces, as shown in Figure 3.1(c) and (d). Each cluster is formed

from one skeleton that is located at the center of the cluster. A radius is specified

at the top and the bottom of each cluster. The radius is then linearly interpolated

at each skeleton node point; this allows the thickness to vary down the length of

the cluster. At each skeleton node, a circular cross-section, made up of m control

points, is created based on the radius value at that node. Thus, a skeleton made

up of n points will create a cluster of mn control points. Typically having m=4 is

enough detail to define the cross-section.

A cluster is used to model the intermediate layers of hair and often makes up

the majority of the body of semi-visible hair. Whenever appropriate, it is far

68

less costly to represent a group of hair using the cluster model, instead of a large

number of individual strands. The cluster is able to give more detail than the strip

representation because it more accurately represents a given volume of hair since

it is rendered as a textured cylindrical surface. However, the cluster requires more

control points than the strip making the complexity to both simulate and render it

more costly. A single cluster though can approximate a large number of strands,

considerably decreasing the number of base skeletons required for simulation and

the number of control points for rendering in comparison to strands alone.

3.1.4 Strands

Each individual strand is modeled as a subdivision curve using 1D subdivision

with n control points, as shown in Figure 3.1(e) and (f). A single control ver-

tex is created for each node in the skeleton. Strands capture the most detail in

comparison to the other representations; nevertheless they also require the most

computation. Multiple strands are grouped to follow the same skeleton to create

strand groups or wisps. This process captures many realistic behaviors of hair

since real hair tends to group together due to static electricity, oils in the hair, or

other substances in the hair such as water or styling products. The observation that

hair strands near each other behave similarly allow for a more efficient modeling

of individual strands. Still, these groups of strands are more expensive to simulate

than the clusters or strip representations; moreover each strand is still rendered

making the strands more costly for rendering in comparison to clusters and strips.

A strand group containing j strands will then comprise jn control vertices before

subdivision.

3.2 Hair Hierarchy

The previous sections introduced the basic components for level-of-detail hair

modeling. In this section, we introduce the hair hierarchy, a control structure

that provides further refinement to the LOD hair framework. The hair hierarchy

increases control over the resolution as it contains various numbers and sizes of

each discrete representation. The hair hierarchy was first presented by Ward and

Lin [WL03].

69

Using the hair hierarchy the coarsest representation for a given volume of hair is

still a single strip. To gain more resolution, however, the hair hierarchy allows the

volume to transition into multiple smaller strips before reaching the cluster level.

Likewise, in cluster form, the volume of hair can now be represented with various

numbers of clusters that differ in size as well as visual fidelity and performance

speed. As the number of clusters that are used to model a volume of hair increases

so does the visual fidelity of the simulation. Finally, rather than using groups of

strands of static sizes, the hair hierarchy allows these strand groupings to merge

and split on-the-fly, simplifying or adding detail to the simulation in the process.

The hair hierarchy is created through the continual subdivision of strips, clusters,

and strand groups and upon completion, contains varying resolutions of each dis-

crete representation. As a result, near continuous level-of-detail control over the

simulation is provided. A hair hierarchy is traversed on-the-fly during the simula-

tion to not only select the appropriate discrete representations for a section of hair,

but also the appropriate resolutions of the representations.

In addition to providing further level-of-detail control, the hair hierarchy actually

captures a behavior of hair that numerous hair modeling techniques ignore; this

effect is the dynamic clustering of hair strands often exhibited in long hair. While

strands of hair in close proximity with each other do tend to follow similar mo-

tions (an underlying assumption of most hair modeling techniques), strands can

often collect into large disjoint groups of strands that remain separate from the

majority of the hair volume (a property continuum-based approaches often lack).

These large disjoint groups of strands can actually break into smaller groups, or

strands can leave one group and join another group under large motions, a behav-

ior referred to as dynamic clustering, which static wisp-based approaches fail to

capture. The hair hierarchy can simulate dynamic clustering effects as it simulates

groups of hairs split and merge as simulation factors change.

In this section, we explain the construction and storage of the hair hierarchy, which

is performed as a pre-process to the simulation.

3.2.1 Strip and Cluster Subdivision

Before a hierarchy of strips or clusters can be built, the initial top-level strip must

be created. A top-level strip is created by choosing a location on the scalp for the

origin of the skeleton (the first node point of the skeleton). Next, a user-defined

70

width is specified controlling the thickness of the initial strip.

Because the strip is a two-dimensional surface, its subdivision is restricted such

that it may only be split into two equal parts. Strip subdivision is simply the

degenerate case to cluster or strand group subdivision, using a degenerate quad-

tree, or a binary tree, instead of the quad-tree data structure that is used for cluster

and strand group hierarchies. The subdivision ends once the width of the current

strip is below a user-defined threshold; these strips then become the leaves of the

strip hierarchy.

To create the cluster hierarchies, leaf strips are divided into two equal-sized clus-

ters, which become the root clusters of the cluster hierarchies. The cluster subdi-

vision starts with the circular cross-section that defines the cluster. This circular

cross-section is then split into four equal parts. The four sub-clusters have the

same radius value but represent four different quadrants of the original cluster.

The subdivision of a cluster always results in four children, so its information is

held in a quad-tree. Clusters stop subdividing once their radius is below a user-

defined threshold value. At this point, further detail is created in the strand group

hierarchies.

3.2.2 Strand Group Subdivision

A strand group cross-section is illustrated in Figure 3.2a. The individual hair

strands are randomly placed within the group and follow the dynamics of the

skeleton. The circular shape of the strand groups is used for its simplicity in

collision detection.

A quad-tree data structure contains the hierarchy information. It follows therefore,

that each strand group is split into four equal sections, as shown in Figure 3.2b.

The subdivision of a strand group into four sections creates a tight fitting circular

cross-section for each subgroup, as in Figure 3.2c and Figure 3.2d.

Once the strand group is divided, the number of strands in each quadrant is calcu-

lated. If a quadrant has no strands within its boundaries then the child associated

with that quadrant is set to null (see Figure 3.2e). A strand group will have be-

tween zero and four children. A strand group that contains only one strand will

have zero children and becomes a leaf in the tree. It may not be necessary for

the strand hierarchies to reach the individual strands in a simulation if the user

71

Figure 3.2: Strand group subdivision. The subdivision process of a strand group into

multiple strand groups. (a) The cross-section of a single strand group. (b) Strand group

is divided into 4 equal quadrants and the strands are separated by the quadrant in which

they lie (designated by different colors). (c) Circular cross-section is fit around each

quadrant, or child, of original strand grouping. (d) Four new strand groups are created

which are children of the original strand group. (e) Continual subdivision process is

repeated on each child. Tinted squares show empty quadrants that contain no strands,

these quadrants are set to null.

does not desire that much detail. In that case, as an alternative the user can de-

cide a minimum number of strands in a group. When a strand group contains the

minimum number, or less, the subdivision stops.

3.3 Runtime Selection of Hair

Now that the level-of-detail framework for hair has been discussed, this section

will explain how they work together to accelerate the simulation and rendering of

hair. The primary goal of this framework is to measure the importance of a section

of hair to the application and use that importance to determine the appropriate

LOD to model the section of hair. At any given time during the simulation, a

head of hair can be comprised of an assortment of LOD representations, meaning

strands, clusters, and strips are used together to balance the visual quality and

simulation performance for a head of hair. Using this method, the majority of

computational resources are used to model the hair that is most significant to the

application.

The importance of a section of hair is measured based on how much detail there

is for the viewer to observe. The less observable detail there is for a section of

hair, then the less important it is deemed for the viewer and it is then simulated

72

Figure 3.3: Strand group hierarchy. Subdivision process creates a quad-tree contain-

ing strand group information. Strand group hierarchy can extend to individual strands.

and rendered with a coarser LOD. A section of hair, in this context, is defined to

be a given volume of hair that can be modeled using any level of the created hair

hierarchy.

We have developed three criteria that measure the importance of a section of hair

to the application. These criteria include the following:

• Visibility - Measures if the viewer can see the section of hair;

• Viewing distance - Measures how far the section of hair is from the viewer,

which correlates to how much screen space the hair covers;

• Hair motion - Measures the velocity of the section of hair to determine how

much simulation accuracy will be needed to model the hair;

The rest of this section will explain these criteria in more detail including why

they are important to the viewer, how they are measured, and then how they work

together to choose the final hair representation.

73

3.3.1 Visibility

If a viewer cannot see a section of hair, that section does not need to be simulated

or rendered at its highest resolution. The viewer cannot see hair if it is not in the

field of view of the camera or if it is completely occluded by the head or other

objects in the scene.

If a section of hair in strand representation is normally simulated using s number

of skeletons but is occluded by other objects, that section of hair is simulated using

one larger strip, and therefore, one skeleton. When that section of hair comes back

into view, it is important that the placement and action of the hair are consistent

with the case when no levels-of-detail are used at all; therefore, it continues to

be simulated. In addition, when a hair section is occluded, it does not need to be

rendered at all. Therefore, when a section of hair is occluded, the hair that might

normally be represented as either clusters or strands is simulated as strips using

fewer skeletons and these sections are not rendered.

3.3.2 Viewing Distance

Hair that is far from the viewer cannot be seen in great detail. The amount of detail

that will be seen by the viewer can be estimated by computing the screen space

area that the hair covers. As the distance from the viewer to the hair increases, the

amount of pixels covered by the hair gets smaller and less detail is viewable. The

amount of pixels covered by the hair is calculated to choose the appropriate LOD.

Each level in a hair hierarchy is designed to cover a similar amount of world space,

thus the root strip can be used as an estimate to the amount of screen space area a

given hair section occupies.

By calculating the amount of pixel coverage the hair will have at its current dis-

tance, an appropriate LOD can be chosen. The number of pixels of error for the

system is projected into world space to calculate the world space error at the hair’s

location; this conversion is based on the distance of the hair from the viewer using

the following equations:

dPP = 0.5∗max(
wR−wL

W
,
wT −wB

H
)

74

WSE =
d ∗allowedPixelsO f Error ∗dPP

Near

Here, wR, wL, wT , and wB are the right, left, top, and bottom coordinates of the

viewing plane, respectively, and W and H are the width and height of the of the

viewing window in pixels. Near is the distance to the near plane, and d is the

distance from the camera to the hair section that is currently being tested. The

value dPP is the distance per pixel, or amount of object space that a single pixel

represents. It is calculated based on the setup of the viewing camera.

The world space error calculated, WSE, is then tested against the error values

that have been assigned to each LOD. A representation is chosen by finding the

LOD with the maximum error that is still less than the allowable world space error

amount. The pre-determined maximum allowable error for each LOD is decided

experimentally based on the viewer’s preference; it can be easily altered by the

viewer in a linear fashion.

3.3.3 Hair Motion

If the hair is not moving at all, then a large amount of computation is not needed to

animate it and a lower level-of-detail can be used. When the avatar makes sudden

movements, e.g. shaking his or her head, or a large gust of wind blows through

the hair, a higher-detailed simulation is used. When a large force is applied to the

hair, such as wind, often individual strands can be seen even by a person who is

normally too far away to see the individual strands of hair that are not in motion.

A particular LOD is chosen based on hair motion by first determining the skele-

ton node in the current representation that has the largest velocity. This value is

compared to certain thresholds defined for each level of the hierarchy. If the force

acting on the skeleton is not high enough to be represented as either strands or

clusters, then the hair can be modeled as a strip. The threshold values are based

on the thickness of each LOD group. The thicker the group the more easily it

should break into smaller groups.

75

3.3.4 Combining Criteria

At any given time during a simulation, a head of hair is represented by multiple

LODs. Each section of hair uses its own parameter values to trigger a transition.

The sections of hair that have a root location at the top of the head, and therefore

typically more viewable, remain at the strands level longer than the sections of

hair that are located at the base of the neck. Thus, even if these two sections

are at the same distance from the camera and have the same motion, it is more

important that the top layer be represented in more detail since it is in direct view.

When determining an appropriate LOD to use, a section of hair is first tested for

occlusion. If the hair is not visible to the viewer then it is automatically simulated

as a strip and is not rendered. In this case, no other transition tests are needed. If

the section of hair is visible, we perform the motion and distance tests described

above. The LOD representation is chosen based on whichever of these two tests

requires higher detail. The use of different representations for the hair is virtually

unnoticeable to the viewer.

3.4 Level-of-Detail Transitions

The hair hierarchy allows the simulation to choose the appropriate discrete rep-

resentation and resolution for the hair dynamically. The hierarchy is simply tra-

versed selecting the desired hair assemblage. As the simulation moves to a differ-

ent level in the hair hierarchy either a hair group is divided into multiple groups

or several groups are combined into one larger group of hair. The base skeleton

makes these transitions smooth and straightforward. Because each hair represen-

tation uses the same underlying skeleton for positioning and dynamics, the tran-

sitioning algorithm is generalized so that it can be applied at any location in the

hierarchy.

A transition is identified following the criteria explained in the previous section.

When these tests determine a transition is to occur, the hierarchy either performs

adaptive subdivision or adaptive merging of the appropriate hair groups.

76

Figure 3.4: Adaptive Subdivision: Two skeletons (left) are dynamically subdivided

into multiple (right).

3.4.1 Adaptive Subdivision

Using the pre-computed hierarchy, a group of hair can be divided into multiple

groups by moving a level down the hierarchy. This becomes a simple process

through the use of the base skeleton. Each hair group’s skeleton has the same

number of control points as its parent skeleton. Furthermore, all of the style prop-

erties are the same from parent to child. Accordingly, when a transition to a hair

group’s children occurs, the child skeletons inherit the dynamic state of their par-

ent skeleton. Each control point in a child skeleton corresponds to a control point

in its parent skeleton. When the child groups are created from the parent group,

the offset of each child from the parent is stored. When the parent transitions into

its children these offsets are used to position the children accordingly.

Figure 3.4 shows two skeletons dynamically subdivide into multiple skeletons as

a gust of wind blows through the hair.

3.4.2 Adaptive Merging

Merging multiple child skeletons back into their parent skeleton is, again, rather

straightforward. The dynamic states of the children are averaged, including posi-

tion and velocity values, and the average is then assigned to the parent skeleton.

77

In order to alleviate visual artifacts that can appear by merging children into a

parent skeleton, a transition may only occur if all of the children are ready to tran-

sition back into the parent. Furthermore, when merging multiple groups of hair, it

is important to avoid a sudden jump in the position of the hair; thus, a positional

constraint is imposed on the children for the transition, illustrated in Figure 3.5.

First, after the control point positions in the child skeletons are averaged, the dis-

tance of the child control points from their corresponding parent control point is

calculated (see Figure 3.5b). If this distance for any control point is greater than a

certain threshold, the transition will not occur.

It is advantageous to merge groups of hair when possible since it helps to alleviate

excess computations. Therefore, if skeletons are near each other but not close

enough to merge, the skeletons are subtly pulled closer together so the transition

can eventually take place. In this case, control points that fall outside of the first

distance threshold are tested against a second, slightly larger, threshold (see Figure

3.5c). If the control points fall within the second threshold, a spring force is used

to subtly pull the children into place so a smooth transition may occur (see Figure

3.5d).

3.5 Interactive Dynamic Simulation

In this section, we discuss additional simulation acceleration techniques for hair

including an implicit integration scheme, collision detection, and a simulation lo-

calization technique based on spatial decomposition that is used to rapidly locate

the areas of highest activity. These areas, defined based on various conditions

(such as on the user’s interaction with the hair during interactive hairstyling), are

subsequently simulated with high detail while the simulation resolution of the

remaining hair sections is significantly reduced. This process accelerates the dy-

namic simulation of hair by allocating the majority of the computational resources

towards areas of highest importance to the simulation. Simulation and rendering

levels can then be achieved that are fast enough to allow a user to actually interact

with dynamic hair.

78

Figure 3.5: Adaptive Merging. Positional constraints placed on child skeletons merg-

ing into parent (a) Parent skeleton (in red) potential position determined by averaging

position of child skeletons (in yellow). (b) Distance of child nodes measured from parent

node and compared against distance threshold (in blue). (c) Two nodes have greater dis-

tance than first threshold, tested against second distance threshold. (d) Nodes are within

second threshold, spring force placed between nodes and potential parent position to pull

them into place.

3.5.1 Implicit Integration

Although explicit methods such as Euler or fourth-order Runge-Kutter can be used

for this integration, an implicit integration provides greater stability for the simu-

lation. Moreover, many hairstyles, or hair types, require stiff angular springs with

high spring constants, for example due to the application of hairspray. Explicit

integration schemes are inherently poor for such systems because a very low time

step is necessary to avoid instability. The development of this implicit integration

scheme not only offers greater stability, but also provides a generality to mod-

eling more diverse hairstyles over the aforementioned explicit techniques. This

approach is similar to cloth simulations that use implicit integration for greater

stability [BW98a]. This implicit derivation for hair modeling was first presented

in Ward and Lin [WL03].

Starting from the basic dynamics model for simulating hair that was first proposed

by [AUK92b, KAT93], we use the torque equations due to spring forces calculated

by:

79

Mθ i =−kθ (θi−θi0) (3.1)

Mφ i =−kφ (φi−φi0), (3.2)

where kθ and kφ are the spring constants for θ and φ , respectively. Furthermore,

θi0 and φi0 are the specified rest angles and θi and φi are the current angle values.

We will first show how the implicit scheme is derived for the θ -component. Be-

cause the bending motion is measured in polar coordinates, the equations will

display angular positions, θ and φ , angular velocities, ωθ and ωφ , and angular

accelerations, αθ and αφ .

Rewriting Equation 3.1 as a second-order differential equation returns:

θ̈(t) = f (θ(t), θ̈(t)) =−kθ (θi−θi0). (3.3)

This can be rewritten as a first-order differential equation by substituting the vari-

ables αθ = θ̈ and ωθ = θ̇ . The resulting set of first-order differential equations

is:

(
ωθ

αθ

)

=
d

dt

(
θ

θ̇

)

=
d

dt

(
θ

ωθ

)

=

(
ωθ

f (θ ,ωθ)

)

. (3.4)

The following formulations for△θ and△ωθ are derived when using the explicit

forward Euler method, where △θ = θ(t0 + h) - θ(t0) and △ωθ = ωθ (t0 + h) -

ωθ (t0) and h is the time step value:

(
△θ
△ωθ

)

= h

(
ωθ0

−kθ (θ −θ0)

)

. (3.5)

Instead, an implicit step is used, which is often thought of as taking a backwards

Euler step since f (θ ,ωθ) is evaluated at the point being aimed for rather than at

the point it was just at. In this case, the set of differential equations changes to the

form:

(
△θ
△ωθ

)

= h

(
ωθ0 +△ωθ

f (θ0 +△θ ,ωθ0 +△ωθ)

)

. (3.6)

80

A Taylor series expansion is applied to f to obtain the first-order approximation:

f (θ0 +△θ ,ωθ0 +△ωθ)≈ f0 +
∂ f

∂θ
△θ +

∂ f

∂ωθ
△ωθ

≈−kθ (θ −θ0)− kθ△θ +0(△ωθ)≈−kθ (θ −θ0)− kθ△θ (3.7)

Substituting the approximation of f back into the differential equation of Equation

3.6 yields:

(
△θ
△ωθ

)

= h

(
ωθ0 +△ωθ

−kθ (θ −θ0)− kθ△θ

)

. (3.8)

Focusing on the angular velocity △ωθ alone and substituting △θ = h(ωθ0 +

△ωθ) delivers:

△ωθ = h(−kθ (θ −θ0)− kθ h(ωθ0 +△ωθ))

Rearranging this equation gives:

(1+ kθ h2)△ωθ =−hkθ (θ −θ0)− kθ h2ωθ0

△ωθ =
−hkθ (θ −θ0)−h2kθ ωθ0

1+h2kθ
. (3.9)

The change in angular velocity for the θ -component of a skeleton node point,

△ωθ , is thus given in Equation 3.9, where h is the time step, and ωθ0 = ωθ (t0)
is the angular velocity at time t0. Once △ωθ has been calculated, the change

in angular position,△θ , can be calculated from△θ = h(ωθ0 +△ωθ). The same

process is applied to the φ -component of the angular position and angular velocity

for each control point of a skeleton.

Implicit integration allows the use of stiffer springs when warranted, for example,

when simulating the bristles of a brush which have different spring constants than

the hair on a human head. Using stiff springs with explicit integration on the other

hand, requires much smaller time steps to ensure a stable simulation.

81

3.5.2 Collision Detection and Response

Collision detection and response is typically the most time consuming process for

the overall simulation; it can constitute up to 90% of the total animation time. Its

intrinsic ability to accelerate collision detection is one of the most appealing con-

tributions of the level-of-detail hair modeling framework. Using a lower level-of-

detail to model a section of hair entails using fewer and larger geometric objects,

e.g. a single strip versus multiple strands. It is computationally less expensive

to check for and handle collisions between a few large objects in comparison to

many smaller ones. The LOD system provides an automatic method for using

lower LODs whenever possible, thereby accelerating collision detection among

other features. Furthermore, the algorithms developed for computing collisions

are especially designed for the LOD hair representations giving an accurate and

efficient overall collision detection method.

In the rest of this section, we will describe the novel selection of appropriate

bounding volumes for each LOD representation. Then, we will explain the process

for detecting collisions for both hair-object and hair-hair interactions, including

the collision response methods for each type of interaction.

Swept Sphere Volumes

Many techniques have been introduced for collision detection. Common practices

have used bounding volumes (BVs) as a method to encapsulate a complex object

within a simpler approximation of said object.

We have chosen to utilize the family of ”swept sphere volumes” (SSVs) [LGLM00]

to surround the hair. SSVs comprise a family of bounding volumes defined by a

core skeleton grown outward by some offset. The set of core skeletons may in-

clude a point, line, or ngon. Figure 3.6 shows examples of some SSVs, namely

a point swept sphere (PSS), a line swept sphere (LSS), and a rectangular swept

sphere (RSS). To calculate an SSV, let C denote the core skeleton and S be a

sphere of radius r, the resulting SSV is defined as:

B = C⊕S = {c+ r| c ∈C,r ∈ S}. (3.10)

To detect an intersection between a pair of arbitrary SSVs a distance test is per-

82

Figure 3.6: Family of Swept Sphere Volumes. (a) Point swept sphere (PSS); (b) Line

swept sphere (LSS); (c) Rectangle swept sphere (RSS). The core skeleton is shown as a

bold line or point.

formed between their corresponding core skeletons and then the appropriate off-

sets, i.e. the radius of each SSV, are subtracted.

Swept Sphere Volumes for Hair

We have chosen to use the family of SSVs to encapsulate the hair because the

shape of the SSVs closely matches the geometry of the hair representations. The

SSVs that correspond to the three geometric representations for hair are line swept

spheres (LSSs) for the strands and cluster levels, and rectangular swept spheres

(RSSs) for the strip level. These SSVs can be used in combination to detect colli-

sions between different representations of hair.

For each rigid segment of the skeleton model, that is, each line segment between

two nodes, an SSV bounding volume is pre-computed. For a skeleton with n

nodes, there are n−1 segments, and thus n−1 single SSVs. The variable thickness

of each segment defines the radius of the SSV along its length.

In order to compute a BV for a strip, the four control points of the strip that outline

a skeletal segment define the area for a RSS to enclose. This is performed for each

of the n− 1 segments along the skeleton. The geometry of the strip is different

from the other two representations in that the strip is a surface while the clusters

and a collection of strands are volumes. In order to allow the transition from a

strip into multiple clusters remain faithful to the volume of hair being depicted

an RSS is created for a strip section by surrounding each strip section with a box

of certain thickness. Each strip is given a thickness equal to that of its cluster

83

and strand grouping counterparts. While the strip is rendered as a surface, it acts

physically as a volume. Thus, when a transition from a strip into clusters occurs,

the volume of hair being represented remains constant throughout this process.

For the cluster representation, an LSS is created around the 2m control points that

define a segment (m control points, as defined in Section 3.1.3, from the cross-

section at the top of the segment and m control points at the bottom of the seg-

ment). The line segment between the two skeleton control points of each section

is used as the core line segment of the line swept sphere.

For individual strands, collision detection is performed for each strand or group of

strands, depending on implementation, in a manner similar to that of the clusters.

An LSS is computed around the skeleton that defines each segment with a radius

defining the thickness. The radius of each LSS is varied based on the thickness of

the group of strands.

Hair-Hair Interactions

Because hair is in constant contact with surrounding hair, interactions among

hair are important to capture. Ignoring this effect can cause visual disturbances

since the hair will not look as voluminous as it should and observing hair passing

straight through other hairs creates a visual disruption to the simulation. The typi-

cal human head has thousands of hairs. Consequently, testing the n−1 sections of

each hair group against the remaining sections of hair would be too overwhelming

for the simulation even using wisp or LOD techniques. Instead, spatial decompo-

sition is used to create a three-dimensional grid around the area containing the

hair and avatar. The average length of the rigid line segments of the skeletons is

used as the height, width, and depth of each grid cell. Every time a section of hair

moves or the skeleton for simulation is updated, its line swept spheres (LSSs) or

rectangular swept spheres (RSSs) are inserted into the grid. An SSV is inserted

into the grid by determining which cells first contain the core shape of the SSV

(line or rectangle), then the offset of the SSVs are used to determine the remain-

ing inhabited cells. Subsequently, collisions only need to be tested against SSVs

that fall within the same cell, refining the collision tests to SSVs with the highest

potential for collision.

It is possible for a single SSV to fall into multiple cells. As a result, two separate

SSVs can overlap each other in multiple grid cells. To prevent calculating a col-

84

lision response more than once for the same pair of SSVs, each SSV keeps track

of the other SSVs it has encountered in a given time step. Multiple encounters of

the same pair of SSVs are ignored.

Figure 3.7: Overlap of two line swept spheres (LSSs). (left) Compute distance d

between core lines (right) Subtract offsets to determine overlap value.

For each pair of SSVs that falls into the same grid cell the distance between their

corresponding core skeletons, s1 and s2, are determined. This distance, d, is

subtracted from the sum of the radii of the two SSVs, r1 and r2, to determine if

there is an intersection. Let

overlap = d− (r1+ r2) (3.11)

If overlap is positive then the sections of hair do not overlap and no response is

calculated. Figure 3.7 shows the calculation of the overlap of two LSSs. If there

is an intersection, their corresponding velocities are set to the average of their

initial velocities. This minimizes penetration in subsequent time steps because

the sections of hair will start to move together.

Next, following the formulation proposed by [PCP01a], the orientations of the two

hair sections will determine how the collision response is handled. The cross prod-

uct between the core skeletons, s1 and s2, is computed to determine the orientation

of the skeletons in relation to each other. If s1 and s2 are near parallel, the velocity

averaging will be enough to combat their collision, similar to [PCP01a]. Whereas

[PCP01a] solely relies on modifying velocities in different manners based on the

orientation of the hair sections, using the SSVs to compute collisions makes it

straightforward to determine the amount of penetration between corresponding

85

Figure 3.8: Effects of Hair-Hair Collision Detection. Side-by-side comparison (a)

without and (b) with hair-hair collision detection in a sequence of simulation snapshots.

hair sections. As a result, intersecting hair sections that are not of similar orienta-

tions are pushed apart based on their amount of overlap. The extra force exerted

to remove hair penetrations help this system to capture finer collision detail than

other systems, including intricate braiding or twisting details. The direction to

move each hair section is determined by calculating a vector from the closest

point on s1 to the closest point on s2. Each section is moved by half the overlap

value and in opposite directions along the vector from s1 to s2. Figure 3.8 shows

the effects of hair-hair interactions in comparison to no hair-hair interactions.

Hair-Object Interactions

Hair can interact with any object in the scene, such as the head or body of the

character, where the object is a solid body that allows no penetration. Throughout

the rest of this section we will use the terms head and object interchangeably since

the collision detection algorithm used for hair-head interactions is applicable to all

hair-object interactions.

The spatial decomposition scheme that is used for finding hair-hair interactions

is also used to determine potential collisions between the hair and objects in the

scene. Therefore, both the hair and the objects must be represented in the grid.

The polygons of the avatar, or other objects, are placed into the grid to determine

potential collisions with the hair. Object positions only need to be updated within

the grid if the object is moving otherwise the initial insertion is sufficient. Grid-

86

cells that contain both impenetrable triangles and hair geometry are marked to be

checked for hair-object collision; only these cells contain a potentially colliding

pair. A collision is checked by calculating the distance between the SSV core

shape and the triangles and then subtracting the offset of the SSV.

If a section of hair is colliding with the object, the position of the hair section is

adjusted so that it is outside of the object. The amount by which to push the hair

section is determined by calculating the amount of penetration of the hair section

into the object. Then the skeleton is pushed in the direction normal to the object

in the amount of the penetration. The section of hair is now no longer colliding

with the object. In addition, the velocity of the section of hair is set to zero in the

direction towards the object (opposite the direction of the normal), so that the hair

is restricted to only move tangential to and away from, the object.

In the next time step, the hair will still be in close proximity to the object. If there

is no intersection between the object and the hair it is determined whether the hair

is still within a certain distance threshold. If it is within this threshold, then the

hair is still restricted so that its velocity in the direction of the object is zero. If it

is not within this threshold, then the hair can move about freely.

When hair interacts with an object, a frictional force must be applied. The friction

force is calculated by projecting the acceleration of the hair from force onto the

plane tangential to the object at the point of contact. The result is the accelera-

tion component that is tangent to the object. The friction force is applied in the

opposite direction to oppose the motion of the hair. The magnitude of this force

is based on the acceleration of the hair and the frictional coefficient, µ f , which is

dependent upon the surface of the object, where 0 < µ f < 1. The resulting friction

force, Ff , becomes:

Ff =−µ f (F− (F ·N)N) (3.12)

where F is the force on the hair and N is the normal direction.

3.5.3 Simulation Localization

Interactive hair simulation and rendering is necessary for many applications, in-

cluding virtual hairstyling tools. An intuitive virtual hairstyling tool needs to take

into account user interaction with dynamic hair. Until recently, the complexity

87

of animating and rendering hair had been too computationally costly to accurately

model hair’s essential features at desired rates. As a result, many hairstyling meth-

ods ignore dynamic simulation and/or user interaction, which creates an unnatural

styling process in comparison to what would be expected in practice. In this sec-

tion, we discuss a simulation localization technique that was originally introduced

by Ward et al. [WGL06, WGL07] for the creation of an interactive virtual hair sa-

lon system. This interactive styling system supports user interaction with dynamic

hair through several common hair salon applications, such as applying water and

styling products [WGL04].

Spatial decomposition is used to rapidly determine the high activity areas of the

hair; these areas are then simulated with finer detail. A uniform grid consisting

of axis-aligned cells that encompass the area around the hair and human avatar

is employed. This spatial decomposition scheme was previously described for

hair-hair and hair-object collision detection. Here, this process is extended to all

features of hair simulation, not just collision detection.

Insertion into the Grid

The polygons of the avatar, or other objects, are placed into the grid to determine

potential collisions with the hair. Object positions only need to be updated within

the grid if the object is moving otherwise the initial insertion is sufficient. The hair

is represented in the grid by inserting each SSV of the hair; every time a section of

hair moves, or the skeleton for simulation is updated, its line swept spheres (LSSs)

or rectangular swept spheres (RSSs) positions are updated in the grid. An SSV

is inserted into the grid by determining which cells first contain the core shape

of the SSV (line or rectangle), then the offset of the SSVs are used to determine

the remaining inhabited cells. Figure 3.9(a) shows the grid cells that contain hair

geometry.

When dealing with user interaction with virtual hair, as the user employs an appli-

cation (e.g. spraying water, grabbing the hair) the grid is used to indicate which

portions of the hair are potentially affected by the user’s action. As the user moves

his or her attention, such as through the use of a PHANToM stylus, its position

and orientation are updated. Each application has an area of influence that defines

where in space its action will have an effect. This area is defined as a triangle for

the cutting tool and a cone for the remaining tools. The cone of influence is de-

fined by the application’s position, orientation (or direction pointed), length (how

88

Figure 3.9: (a) Shows all of the grid cells that contain hair geometry (b) Highlights

the cells that will be effected by the current application (applying water). (c) Water

is applied to some hair, grid allows us to localize each application

far it can reach), and cutoff angle (determining its radius along its length). These

properties define the cone’s position in the grid. Inserting the cone becomes simi-

lar to inserting an LSS, but the offset becomes a variable of distance along the core

line (an SSV has a constant offset along its core shape). The triangle for cutting is

defined by the space between the open blades of a pair of scissors.

Retrieval from the Grid

Once information has been inserted or updated in the grid, it is retrieved to deter-

mine where to check for potential collisions and user interaction. To locate user

interactions, the grid maintains a list of grid-cells where the user interaction cone

or triangle has been inserted. Any of these grid cells that contain hair geometry are

returned and the sections of hair within the cell are independently checked to see

if they fall within the area of influence, see Figure 3.9. Using the grid, much fewer

sections of hair have to be checked than without it, but the exact hair positions are

still checked against the cone or triangle to maintain accuracy.

Multi-Resolution Simulation with the Grid

The grid aids the system to localize the simulation towards the areas of high-

est importance to the model. Following the criteria discussed earlier, a section

of hair’s significance is measured by its visibility, motion and viewing distance.

89

These factors are used to choose the resolution and representation of a section of

hair via the hair hierarchy. The simulation localization technique expands upon

the motion criterion and adds the user’s interaction with the hair to further refine

the simulation.

The motion of a section of hair is highly pertinent to the amount of detail needed

to simulate it. In the case of interactive styling, most applications performed on

hair are localized to a small portion of the hair; the majority of hair thus lies

dormant. The sections of hair that are dormant are modeled with a lower LOD

representation and resolution, determined by comparison against velocity thresh-

olds as discussed earlier, but here we go a step further by effectively ”turning-off”

simulation for areas where there is no activity.

Each grid cell keeps track of the activity within the cell, tracking the hair sections

that enter and exit the cell. When the action in a given cell has ceased and the

hair sections in the cell have a zero velocity, there is no need to compute dynamic

simulation due to gravity, spring forces, or collisions. The positions of the hair

sections are thus frozen until they are re-activated. The cell is labeled as dormant

and does not become active again until either the user interacts with the cell or

until a new hair section enters the cell. When a hair section is active, full simula-

tion is performed on it including dynamics of spring forces, gravity, and collision

detection and response. Rapid determination of the active cells and hair sections

allows the system to allocate the computational resources towards dynamic simu-

lation for the hairs of highest interest to the user.

3.5.4 Results and Discussion

To test the interactive dynamic simulation process described in this section, a vir-

tual hair salon system was implemented, which allows a user to create a hairstyle

by directly manipulating dynamic virtual hair. The system allows for a user to

dynamically alter the properties through several common hair salon applications

(such as cutting, wetting, drying). Further implementation details can be found in

Ward et al. [WGL07].

Figure 3.10 shows a comparison of real hair under the influence of common hair

modeling applications with the virtual salon results under the same conditions.

Level-of-detail representations coupled with the simulation localization scheme

have accelerated the animation of hair so that a user can actually interact with it.

90

Figure 3.10: Comparison between real (top) and virtual (bottom) use of common

hair salon activities (from top to bottom) (1) normal, dry hair (2) applying water (3)

some wet, some dry hair (4) blow-drying hair.

Dynamic simulation, including implicit integration, LOD selection, hair appli-

cations (wetting, cutting, etc.), and collision detection, to create a hairstyle ran

at an average of 0.092 seconds per frame. This figure comprised between 37 to

296 skeleton models, determined on-the-fly throughout the simulation, with an

average of 20 control points each. At the finest resolution, the model contained

8,128 rendered strands; throughout the simulation the rendering LOD contained

between 6K and 1,311K rendered vertices. Lighting and shadow computations on

the GPU were performed in 0.058 seconds/frame on average. The user applica-

tions performed to create this style included wetting, cutting and blow-drying. The

benchmarks were measured on a desktop PC equipped with an Intel R© XeonTM

2.8 Ghz processor with 2.0 GB RAM and an NVIDIA R© GeForceTM 6800 graph-

ics card.

Figure 3.11 shows a detailed performance comparison over the course of an entire

simulation between wisps (which are used as the baseline of comparison), LODS

alone, and our LODs coupled with simulation localization. The performance of

the LODs with simulation localization varies over time due to the user perform-

ing different applications on the hair. However, it is clear that the LODs with

simulation localization are able to outperform wisps alone as well as LODs alone.

91

Figure 3.11: Simulation Performance Comparison. Shows the factor of speed-up

for LODs with simulati on localization and LODs over wisps alone. Here, the average

runtime of the wisps is used as the baseline for comparison (value of 1 on this chart). Over

the course of this simulation, the camera remained at a consistent distance from the figure

and the viewer primarily faced the back of the avatar - making distance and occlusion

tests have a small overall impact on the LOD choice. Note the LODs with simulation

localization overall outperforms both wisps and LODs alone, though the simulation varies

over time as the user employs different applications.

3.6 Conclusion

In this chapter, we have presented the basic features of level-of-detail hair mod-

eling and simulation. These techniques can dynamically change a hair model, al-

lowing a simulation to balance between the visual fidelity and performance speed

of the animated hair. To illustrate the effectiveness of the level-of-detail frame-

work for modeling hair, an interactive system for styling hair was implemented

using these techniques. The interactive virtual hair salon provides a user interface

that obtains 3D input from the user for direct manipulation of dynamic hair and

allocates the majority of computational powers towards the hairs that are most

significant towards the application. As a result, the hair is simulated at a speed

that actually allows a user to directly interact with it.

92

Kelly Ward, Ming Lin

93

Chapter 4

Hair Rendering

Steve Marchner

Realistic rendering of human hair requires the handling of both local and global

hair properties. To render a full hairstyle, it is necessary to choose an appropriate

global representation for hair. Implicit and explicit representations are presented

and discussed in Section 4.1. Local hair properties define the way individual hair

fibers are illuminated. Section 4.2 describes the scattering properties of hair and

reviews the different models that have been proposed to account for those proper-

ties. Global hair properties also include the way hair fibers cast shadows on each

other; this issue of self-shadowing, handled in Section 4.3, plays a crucial role

in volumetric hair appearance. Rendering hair typically requires time-consuming

computations, Section 4.4 reviews various rendering acceleration techniques.

4.1 Representing Hair for Rendering

Choices of hair rendering algorithms largely depend on the underlying represen-

tations for modeling hair geometry. For example, explicit models require line or

triangle-based renderers, whereas volumetric models need volume renderers, or

rendering algorithms that work on implicit geometry.

94

4.1.1 Explicit Representation

With an explicit representation, one has to draw each hair fiber. A hair fiber is nat-

urally represented with a curved cylinder. The early work by Watanabe and Sue-

naga [WS92] adopted a trigonal prism representation, where each hair strand is

represented as connected prisms with three sides. This method assumes that varia-

tion in color along the hair radius can be well approximated by a single color. Oth-

ers use ribbon-like connected triangle strips to represent hair, where each triangle

always faces towards the camera. Ivan Neulander [NdP98] introduced a technique

that adaptively tessellates a curved hair geometry into polygons depending on the

distance to the camera, curvature of hair geometry, etc. At large distances, a hair

strand often resembles many hairs. Kong and Nakajima [KN99] exploited this

property to reduce the number of rendered hairs by adaptively creating more hairs

at the boundary.

Difficulties arise with explicit rendering of tesselated hair geometry due to the

unique nature of hair – a hair strand is extremely thin in diameter (0.1 mm). In a

normal viewing condition, the projected thickness of a hair strand is much smaller

than the size of a pixel. This property causes severe undersampling problems for

rendering algorithms for polygonal geometry. Any point sample-based renderer

determines a pixel’s color (or depth) by a limited number of discrete samples.

Undersampling creates abrupt changes in color or noisy edges around the hair.

Increasing the number of samples alleviates the problem, but only at slow conver-

gence rates [Mit96] and consequently at increased rendering costs.

LeBlanc et al. [LTT91] addressed this issue by properly blending each hair’s color

using a pixel blending buffer technique. In this method, each hair strand is drawn

as connected lines and the shaded color is blended into a pixel buffer. When using

alpha-blending, one should be careful with the drawing order. Kim and Neu-

mann [KN02] also use an approximate visibility ordering method to interactively

draw hairs with OpenGL’s alpha blending.

4.1.2 Implicit Representation

Volumetric textures (or texels) [KK89, Ney98] avoid the aliasing problem with

pre-filtered shading functions. The smallest primitive is a volumetric cell that can

be easily mip-mapped to be used at multiple scales. The cost of ray traversal

95

is relatively low for short hairs, but can be high for long hairs. Also when hair

animates, such volumes should be updated for every frame, making pre-filtering

inefficient.

The rendering method of the cluster hair model [YXYW00] also exploits implicit

geometry. Each cluster is first approximated by a polygonal boundary. When

a ray hits the polygonal surface, predefined density functions are used to accu-

mulate density. By approximating the high frequency detail with volume density

functions, the method produces antialiased images of hair clusters. However, this

method does not allow changes in the density functions, making hairs appear as if

they always stay together.

4.2 Light Scattering in Hair

The first requirement for any hair rendering system is a model for the scattering of

light by individual fibers of hair. This model plays the same role in hair rendering

as a surface reflection, or local illumination, model does in conventional surface

rendering.

4.2.1 Hair Optical Properties

The composition and microscopic structure of hair are important to its appearance.

A hair fiber is composed of three structures: the cortex, which is the core of the

fiber and provides its physical strength, the cuticle, a coating of protective scales

that completely covers the cortex several layers thick (see Figure 1.1 in chapter 1),

and the medulla, a structure of unknown function that sometimes appears near the

axis of the fiber. As already mentioned in chapter 1, the cross sectional shape

varies from circular to elliptical to irregular [Rob94].

Much is known about the chemistry of hair, but for the purposes of optics it suf-

fices to know that it is composed of amorphous proteins that act as a transparent

medium with an index of refraction η = 1.55 [Rob94, SGF77]. The cortex and

medulla contain pigments that absorb light, often in a wavelength-dependent way;

these pigments are the cause of the color of hair.

96

4.2.2 Notation and Radiometry of Fiber Reflection

Our notation for scattering geometry is summarized in Figure 4.1. We refer to the

plane perpendicular to the fiber as the normal plane. The direction of illumination

is ωi, and the direction in which scattered light is being computed or measured

is ωr; both direction vectors point away from the center. We express ωi and ωr

in spherical coordinates. The inclinations with respect to the normal plane are

denoted θi and θr (measured so that 0 degree is perpendicular to the hair). The

azimuths around the hair are denoted φi and φr, and the relative azimuth φr−φi,

which is sufficient for circular fibers, is denoted ∆φ .

Figure 4.1: Notation for scattering geometry

Because fibers are usually treated as one-dimensional entities, light reflection from

fibers needs to be described somewhat differently from the more familiar surface

reflection. Light scattering at a surface is conventionally described using the bidi-

rectional reflectance distribution function (BRDF), fr(ωi,ωr). The BRDF gives

the density with respect to the projected solid angle of the scattered flux that re-

sults from a narrow incident beam from the direction ωi. It is defined as the ratio

of surface radiance (intensity per unit projected area) exiting the surface in di-

rection ωr to surface irradiance (flux per unit area) falling on the surface from a

97

differential solid angle in the direction ωi:

fr(ωi,ωr) =
dLr(ωr)

dEi(ωi)
.

Under this definition, the radiance due to an incoming radiance distribution Li(ωi)
is

Lr(ωr) =
∫

H2
fr(ωi,ωr)Li(ωi)cosθidωi

where H2 is the hemisphere of directions above the surface.

Light scattering from fibers is described similarly, but the units for measuring the

incident and reflected light are different because the light is being reflected from

a one-dimensional curve [MJC+03b]. If we replace “surface” with “curve” and

“area” with “length” in the definition above we obtain a definition of the scattering

function fs for a fiber: “the ratio of curve radiance (intensity per unit projected

length) exiting the curve in direction ωr to curve irradiance (flux per unit length)

falling on the curve from a differential solid angle in the direction ωi.” The curve

radiance due to illumination from an incoming radiance distribution Li is

Lc
r(ωr) = D

∫

H2
fs(ωi,ωr)Li(ωi)cosθidωi

where D is the diameter of the hair as seen from the illumination direction.

This transformation motivated Marschner et al. [MJC+03b] to introduce curve

radiance and curve irradiance. Curve radiance is in some sense halfway between

the concepts of radiance and intensity, and it describes the contribution of a thin

fiber to an image independent of its width. Curve irradiance measures the radiant

power intercepted per unit length of fiber and therefore increases with the fiber’s

width. Thus, given two fibers with identical properties but different widths, both

will have the same scattering function but the wider fiber will produce a brighter

curve in a rendered image because the wider fiber intercepts more incident light.

This definition is consistent with the behavior of real fibers: very fine hairs do

appear fainter when viewed in isolation.

Most of the hair scattering literature does not discuss radiometry, but the above

definitions formalize the common practice, except that the diameter of the hair is

normally omitted since it is just a constant factor. The factor of cosθi is often

included in the model, as was common in early presentations of surface shading

models.

98

4.2.3 Reflection and Refraction in Cylinders

For specular reflection, a hair can be modeled, to a first approximation, as a trans-

parent (if lightly pigmented) or purely reflecting (if highly pigmented) dielectric

cylinder. The light-scattering properties of cylinders have been extensively stud-

ied in order to inversely determine the properties of optical fibers by examining

their scattering [ALS98, Mar74, MTM98].

As first presented in graphics by Kajiya and Kay [KK89] (their scattering model is

presented in Section 4.2.5), if we consider a bundle of parallel rays that illuminates

a smooth cylinder, each ray will reflect across the local surface normal at the point

where it strikes the surface. These surface normals are all perpendicular to the

fiber axis–they lie in the normal plane. Because the direction of each reflected

ray is symmetric to the incident direction across the local normal, all the reflected

rays will make the same angle with the normal plane. This means that the reflected

distribution from a parallel beam due to specular reflection from the surface lies

in a cone at the same inclination as the incident beam.

For hairs that are not darkly pigmented, the component of light that is refracted

and enters the interior of the hair is also important. As a consequence of Bravais’s

Law [Tri70], a corrolary of Snell’s Law that is often used to describe refractions

through crystals with a cylinder-like structure, the directions of the rays that are

refracted through the cylinder surface also fall on a cone centered on the cylinder

axis. The same holds for the refractions as the rays exit the cylinder. Therefore all

specularly reflected light from a smooth cylinder will emit on the same cone as the

surface reflection, no matter what sequence of refractions and internal reflections

it may have taken.

4.2.4 Measurements of Hair Scattering

In cosmetics literature, some measurements of incidence-plane scattering from

fibers have been published. Stamm et al. [SGF77] made measurements of reflec-

tion from an array of parallel fibers. They observed several remarkable departures

from the expected reflection into the specular cone: there are two specular peaks,

one on either side of the specular direction, and there is a sharp true specular peak

that emerges at grazing angles. The authors explained the presence of the two

peaks using an incidence-plane analysis of light reflecting from the tilted scales

99

that cover the fiber, with the surface reflection and the first-order internal reflection

explaining the two specular peaks.

A later paper by Bustard and Smith [BS91] reported additional measurements of

single fibers, including measuring the four combinations of incident and scattered

linear polarization states. They found that one of the specular peaks was mainly

depolarized while the other preserved the polarization. This discovery provided

additional evidence for the explanation of one lobe from the surface reflection and

one from the internal reflection.

Bustard and Smith also discussed preliminary results of an azimuthal measure-

ment, performed with illumination and viewing perpendicular to the fiber. They

reported finding bright peaks in the azimuthal distribution and speculated that they

were due to caustic formation, but they did not report any data.

Marschner et al. [MJC+03b] reported measurements of single fibers in more gen-

eral geometries. In addition to incidence plane measurements, they presented

normal plane measurements that show in detail the peaks that Bustard and Smith

discussed and how they evolve as a strand of hair is rotated around its axis. The

authors referred to these peaks as “glints” and showed a simulation of scattering

from an elliptical cylinder that predicts the evolution of the glints; this clearly con-

firmed that the glints are caused by caustic formation in internal reflection paths.

They also reported some higher-dimensional measurements that show the evolu-

tion of the peaks with the angle of incidence, which showed the full scattered

distribution for a particular angle of incidence.

4.2.5 Models for Hair Scattering

The earliest and most widely used model for hair scattering is Kajiya and Kay’s

model which was developed for rendering fur [KK89]. This model includes a

diffuse component and a specular component:

S(θi,φi,θr,φr) = kd + ks
cosp(θr +θi)

cos(θi)
.

Kajiya and Kay derived the diffuse component by integrating reflected radiance

across the width of an opaque, diffuse cylinder. Their specular component is sim-

ply motivated by the argument from the preceding section that the ideal specular

reflection from the surface will be confined to a cone and therefore the reflection

100

Figure 4.2: Comparison between Kajiya’s model (left), Marschner’s model (mid-

dle) and real hair (right).

from a non-ideal fiber should be a lobe concentrated near that cone. Note that

neither the peak value nor the width of the specular lobe changes with θ or φ .

Banks [Ban94] later re-explained the same model based on more minimal geo-

metric arguments. For diffuse reflection, a differential piece of fiber is illuminated

by a beam with a cross section proportional to cosθi and the diffusely reflected

power emits uniformly to all directions.1 For specular reflection, Fermat’s princi-

ple requires that the projection of the incident and reflected rays onto the fiber be

the same.

In another paper on rendering fur, Goldman [Gol97], among a number of other

refinements to the aggregate shading model, proposed a refinement to introduce

azimuthal dependence into the fiber scattering model. He multiplied both terms

of the model by a factor fdir that can be expressed in the current notation as:

fdir = 1+acos∆φ .

Setting a > 0 serves to bias the model toward backward scattering, while setting

a < 0 biases the model towards forward scattering.2

Tae-Yong Kim [Kim02] proposed another model for azimuthal dependence, which

accounts for surface reflection and transmission using two cosine lobes. The sur-

1Banks does not discuss why uniform curve radiance is the appropriate sense in which the

scattered light should be uniform.
2In Goldman’s original notation a = (ρre f lect − ρtransmit)/(ρre f lect + ρtransmit). A factor of

1
2
(ρre f lect +ρtransmit) can be absorbed into the diffuse and specular coefficients.

101

face reflection lobe derives from the assumption of mirror reflection with con-

stant reflectance (that is, ignoring the Fresnel factor), and the transmission lobe

is designed empirically to give a forward-focused lobe. The model is built on

Kajiya-Kay in the same way Goldman’s is, defining:

g(φ) =

{

cosφ −π
2

< φ < π
2

0 otherwise

This model is Kajiya and Kay’s model multiplied by:

fdir = ag(∆φ/2)+g(k(∆φ −π))

where a is used to balance forward and backward scattering and k is a parameter

to control how focused the forward scattering is. The first term is for backward

(surface) scattering and the second term is for forward (transmitted) scattering.

Marschner et al. [MJC+03b] proposed the most complete physically based hair

scattering model to date. Their model makes two improvements to Kajiya and

Kay’s model: it predicts the azimuthal variation in scattered light based on the

ray optics of a cylinder, and it accounts for the longitudinal separation of the

highlight into surface-reflection, transmission, and internal-reflection components

that emerge at different angles. The azimuthal component of the model is based on

a ray analysis that accounts for focusing and dispersion of light, absorption in the

interior, and Fresnel reflection at each interaction. The longitudinal component

models the shifts of the first three orders of reflection empirically using lobes that

are displaced from the specular cone by specific angles.

4.2.6 Light Scattering on Wet Hair

The way light scatters on hair is changed when hair becomes wet. Jensen et

al. [JLD99] noted that when objects become wet they typically appear darker and

shinier; hair behaves the same way. Bruderlin [Bru99] and Ward et al. [WGL04]

altered previous light scattering models to capture the effects of wet fur and wet

hair, respectively.

As hair becomes wet, a thin film of water is formed around the fibers, forming a

smooth, mirror-like surface on the hair. In contrast to the naturally rough, tiled

surface of dry hair, this smoother surface creates a shinier appearance of the hair

102

due to increased specular reflections. Furthermore, light rays are subject to total

internal reflection inside the film of water around the hair strands, contributing to

the darker appearance wet hair has over dry hair. Moreover, water is absorbed

into the hair fiber, increasing the opacity value of each strand leading to more

aggressive self-shadowing (see Section 4.3).

Bruderlin [Bru99] and Ward et al. [WGL04] modeled wet strands by increasing

the amount of specular reflection. Furthermore, by increasing the opacity value of

the hair, the fibers attain a darker and shinier look, resembling the appearance of

wet hair.

4.3 Hair Self-Shadowing

Figure 4.3: Importance of self-shadowing on hair appearance. (left) No shadows

compared to (right) Shadows computed using a light-oriented map [BMC05].

Hair fibers cast shadows onto each other, as well as receiving and casting shad-

ows from and to other objects in the scene. Self-shadowing creates crucial visual

patterns that distinguish one hairstyle from another, see Figure 4.3. Unlike solid

objects, a dense volume of hair exhibits complex light propagation patterns. Each

hair fiber transmits and scatters rather than fully blocks the incoming lights. The

strong forward scattering properties as well as the complex underlying geometry

make the shadow computation difficult.

103

One can ray trace hair geometry to compute shadow, whether hair is represented

by implicit models [KK89] or explicit models [MJC+03b]. For complex geom-

etry, the cost of ray traversal can be expensive and many authors turn to caching

schemes for efficiency. Two main techniques are generally used to cast self-

shadows into volumetric objects: ray casting through volumetric densities and

shadow maps.

4.3.1 Ray-casting through a Volumetric Representation

With implicit hair representations, one can directly ray trace volume density [YXYW00],

or use two-pass shadowing schemes for volume density [KK89]; the first pass fills

volume density with shadow information and the second pass renders the volume

density.

4.3.2 Shadow Maps

LeBlanc [LTT91] introduced the use of the shadow map, a depth image of hair

rendered from the light’s point of view. In this technique, hair and other objects

are rendered from the light’s point of view and the depth values are stored. Each

point to be shadowed is projected onto the light’s camera and the point’s depth

is checked against the depth in the shadow map. Kong and Nakijima [KN99] ex-

tended the principle of shadow caching to the visible volume buffer, where shadow

information is stored in a 3D grid.

In complex hair volumes, depths can vary radically over small changes in image

space. The discrete nature of depth sampling limits shadow buffers in handling

hair. Moreover, lights tend to gradually attenuate through hair fibers due to for-

ward scattering. The binary decision in depth testing inherently precludes such

light transmission phenomena. Thus, shadow buffers are unsuitable for volumet-

ric hair.

The transmittance τ(p) of a light to a point p can be written as:

τ(p) = exp(−Ω), where Ω =
∫ l

0
σt(l

′)dl′.

l is the length of a path from the light to p, σt is the extinction (or density) function

along the path. Ω is the opacity thickness (or accumulated extinction function).

104

Figure 4.4: Top: a beam of light starting at the shadow camera origin (i.e., the

light source) and passing through a single pixel of the deep shadow map. Bottom:

the corresponding transmittance (or visibility) function τ , stored as a piecewise

linear function.

In the deep shadow maps technique [LV00], each pixel stores a piecewise linear

approximation of the transmittance function instead of a single depth, yielding

more precise shadow computations than shadow maps, see Figure 4.4 for an il-

lustration. The transmittance function accounts for two important properties of

hair.

Fractional Visibility: In the context of hair rendering, the transmittance function

can be regarded as a fractional visibility function from the light’s point of view. If

more hair fibers are seen along the path from the light, the light gets more attenu-

ated (occluded), resulting in less illumination (shadow). As noted earlier, visibil-

ity can change drastically over the pixel’s extent. To handle this partial visibility

problem, one should accurately compute the transmission function by correctly

integrating and filtering all the contributions from the underlying geometry.

Translucency: A hair fiber not only absorbs, but also scatters and transmits the

incoming light. Assuming that the hair fiber transmits the incoming light only in a

forward direction, the translucency is also handled by the transmittance function.

105

Noting that the transmittance function typically varies radically over image space,

but gradually along the light direction, one can accurately approximate the trans-

mittance function with a compact representation. Deep shadow maps [LV00] use

a compressed piecewise linear function for each pixel, along with special han-

dling for discontinuities in transmittance. Figure 4.3 shows a comparison of hair

geometry with and without shadows using the deep shadow maps algorithm.

Figure 4.5: Opacity Shadow Maps. Hair volume is uniformly sliced perpendicular

to the light direction into a set of planar maps storing alpha values (top). The

resulting shadowed hair (bottom).

Opacity shadow maps [KN01] further assume that such transmittance functions

always vary smoothly, and can thus be approximated with a set of fixed image

caches perpendicular to the lighting direction (see Figure 4.5). By approximating

the transmittance function with discrete planar maps, opacity maps can be effi-

ciently generated with graphics hardware (see Section 4.4.3). Linear interpolation

from such maps facilitates fast approximation to hair self-shadows.

4.4 Rendering Acceleration Techniques

Accurately rendering complex hairstyles can take several minutes for one frame.

Many applications, such as games or virtual reality, require real-time rendering

106

of hair. These demands have initiated recent work to accelerate precise rendering

algorithms by simplifying the geometric representation of hair, by developing fast

volumetric rendering, or by utilizing recent advances in graphics hardware.

4.4.1 Approximating Hair Geometry

Section 4.2 explained the structure of hair and showed that hair fibers are actually

quite complex. Simplifying this geometry, using fewer vertices and rendering

fewer strands, is one strategy for accelerating hair rendering. Removing large

portions of hair strands can be distracting and unrealistic, therefore surfaces and

strips have been used for approximating large numbers of hair strands [KH00,

KH01, GZ02, KHS04].

These two-dimensional representations resemble hair by texture mapping the sur-

faces with hair images and using alpha mapping to give the illusion of individual

hair strands. Curly wisps can be generated by projecting the hair patch onto a

cylindrical surface [KHS04].

Level of detail (LOD) representations used by Ward et al. [WLL+03, WL03]

(see chapter 3) for accelerating the dynamic simulation of hair, also accelerates

hair rendering. Using a coarse LOD to model hair that cannot be seen well by

the viewer requires rendering fewer vertices with little loss in visual fidelity. As

a result, the time required to calculate light scattering and shadowing effects is

diminished by an order of magnitude.

4.4.2 Interactive Volumetric Rendering

Bando et al. [BCN03] modeled hair as a set of connected particles, where particles

represent hair volume density. Their rendering method was inspired by fast cloud

rendering techniques [DKY+00] where each particle is rendered by splatting a

textured billboard, both for self-shadowing computation and final rendering. This

method runs interactively, but it does not cast very accurate shadows inside hair.

Bertails et al. [BMC05] use a light-oriented voxel grid to store hair density values,

which enables them to efficiently compute accumulative transmittance inside the

hair volume. Transmittance values are then filtered and combined with diffuse and

specular components to calculate the final color of each hair segment. Though

107

very simple, this method yields convincing interactive results for animated hair

(see Figure 4.6). Moreover, it can easily be parallelized to increase performance.

Figure 4.6: Interactive hair self-shadowing processed by accumulating transmit-

tance values through a light-oriented voxel grid [BMC05]. (left) Animated hair

without self-shadows; (right) Animated hair with self-shadows.

4.4.3 Graphics Hardware

Many impressive advances have been made recently in programmable graphics

hardware. Graphics processor units (GPUs) now allow programming of more and

more complex operations through dedicated languages, such as Cg. For exam-

ple, various shaders can directly be implemented on the hardware, which greatly

improves performance. Currently, the major drawback of advanced GPU pro-

gramming is that new features are neither easy to implement nor portable across

different graphics cards.

Heidrich and Seidel [HS98] efficiently render anisotropic surfaces by using OpenGL

texture mapping. Anisotropic reflections of individual hair fibers have also been

implemented with this method for straightforward efficiency.

As for hair self-shadowing, some approaches have recently focused on the ac-

celeration of the opacity shadow maps algorithm (presented in Section 4.3.2), by

using the recent capabilities of GPUs. Koster et al. [KHS04] exploited graph-

ics hardware by storing all the opacity maps in a 3D texture, to have the hair

self-shadow computation done purely in graphics hardware. Using textured strips

108

to simplify hair geometry (as seen in Section 4.4.1), they achieve real-time per-

formance. Mertens et al. [MKBR04] explored efficient hair density clustering

schemes suited for graphics hardware, achieving interactive rates for high quality

shadow generation in dynamically changing hair geometry. Finally, a real-time

demonstration showing long hair moving in the sea was presented by NVidia in

2004 [ZFWH04] to illustrate the new capabilities of their latest graphics cards

(see http://www.nzone.com/object/nzone nalu home.html).

109

Chapter 5

Hair in Feature Production

Sunil Hadap, Zoran Kačić-Alesić, Tae-Yong Kim

5.1 Strand and Hair Simulation at PDI/DreamWorks

- Madagascar and Shrek The Third

In this section, we would like to exemplify the versatile use of the dynamic strand

primitive, introduced in section 1.3, for character dynamics and visual effects. The

proposed methodology is extensively used in the production of Madagascar and

Shrek The Third. With each example, we would like to highlight the aspects of

the formulation that is most relevant. The methodology and the tools based on it

are continually being effective for simulation of strands and long hair in upcoming

productions at DreamWorks Animation such as Bee Movie.

The example of lemurs dancing with fancy flower lanterns in (Figure 5.1), high-

lights the importance of stable and consistent coordinate frame along the strand.

The tip of the strand is made heavy by using the length-wise variation of mass per

unit length parameter, and the flower geometry is simply parented to the coordi-

nate frame at the tip of the strand. Subtle twist dynamics adds to the realism.

The foliage simulation is a great example of branched dynamics. The individual

trees are composed of hierarchy of strands, some of the segments being very stiff

towards the trunk. One can follow the physically believable motion of trees under

110

Figure 5.1: Lemurs dancing with the lanterns (Madagascar) - consistent coordi-

nates, twist dynamics

Figure 5.2: Moving Jungle (Madagascar) - branched dynamics, stiff articulation,

strong external force fields, scalability

111

Figure 5.3: Donkey’s Ears (Shrek The Third) - posable dynamics

the influence of (strong) external force field such as wake and turbulence. It is

also evident that the strand system is very scalable. Each tree typically has 50-100

segments and there are around 1000 trees in the “Blown by Horn” shot (video 3).

Donkey’s ear exemplifies posable dynamics. Animators precisely control the sub-

tle secondary dynamic motion around the animated poses, using time-varing pose

strength parameter.

The bun followed by the long braid is composed of a single strand. The very stiff

intial section gives the subtle interesting bounce and twist to the bun. The flexible

section corresponds to the braid. The local dynamics parameter is used to control

the amount of “floppyness” the braid exibits.

The simulation of curly bangs illustrate the ability of the system to handle “stiff”

equations arising from the intricate rest shape. The rest shape is adjusted to ac-

count for the shape change due to gravity.

The long hair simulations highlight the effectiveness of the collision response

model. The accurate computation of velocity and acceleration of the base joint

results in highly realistic hair motion, where as time scale parameter gives con-

trol.

We have not done a comprehensive performance analysis and optimization of the

112

Figure 5.4: Rapunzel’s Braid (Shrek The Third) - “stiff” equations, local dynamics

Figure 5.5: Guinevere’s Curly Bangs (Shrek The Third) - intricate and zero-

gravity rest shape

113

Figure 5.6: Sleeping Beauty’s Long Hair (Shrek The Third) - accurate base accel-

eration, elaborate collision response, time scale

Oriented Strands system yet. Nevertheless, we would like to state the typical

performance numbers for the hair simulations, as they represent the most of the

dynamic complexities. The simulation of curly bangs uses 9 strands having an

average 15 segments, each. The simulation runs at interactive rate of 2-4 Hz. The

long hair simulations use 190 strands with 20-25 segments each. The simulations

take less than 20 seconds per animation frame. The complexity of the strand dy-

namics is linear time in the total number of segments n. Whereas, the collision

response is O(m2) in m number of collision points. Recently, we tried to analyze

the convergence characteristics of the solver. We found that the solver uses so-

phisticated error control and heuristics, which result in a very wide variation in

the number of non-linear iteration the solver takes. For the long hair simulations,

the number varies from 2 to 213 iterations, with mean at 18.3 iterations. In the

advent of multi-core and multi-cpu workstations, we would like to note that the

computations of individual strands are embarrassingly parallel.

5.1.1 Conclusion, Limitations and Future Work

The simulation system of Oriented Strands has found widespread applications in

feature animation and visual effects. We would like to attribute the successful

114

usage of Oriented Strands to the robustness coming from the implicit formulation

and the comprehensive collision response model, the intuitive workflow coming

from local space formulation, physically based stiffness and collision models. In

addition, innovative concepts such as time scale, local dynamics, posable dynam-

ics, zero-gravity rest shape make Oriented Strands system “art directable”.

In this methodology, our focus has been “stiff” dynamics of serial open-chain

multi-body systems with constraints and collision response. Fortunately, the DAE

based formulation can be extended to include closed-loops [RJFdJ04]. Unfortu-

nately, the analytical constraints and collision response model discussed so far do

not readily fit the framework of closed-loops. Thus, in future we would like to

extend, or develop new, methodologies to include closed-loops. Intricate jewelry

on animated characters is our main motivation.

Other limitations of the proposed methodology are

• The approach is computationally expensive as compared to previous meth-

ods in [Had03, CCK05b]. It would not scale well to do e.g. fur dynamics.

• Although one can incorporate stretch in the strand system by animating

lengths of rigid segments, the system does not handle stretch dynamically.

• Developing and implementing constraints and collision response model is

not as straightforward as compared to maximal coordinate formulation [CCK05b].

5.1.2 Acknowledgments

I would like to take this opportunity to acknowledge the great teamwork at PDI/DreamWorks.

I would like to thank Dave Eberle and Deepak Tolani for their great collaboration

during the development of the system, Scott Singer, Arnauld Lamorlette, Scott

Peterson, Francois Antoine, Larry Cutler, Lucia Modesto, Terran Boylan, Jeffrey

Jay, Daniel Dawson, Lee Graft, Damon Riesberg, David Caeiro Cebrian, Alain De

Hoe and everyone who directly influenced the development and tirelessly worked

towards the successful use of the system in production, my supervisors Lisa Mary-

Lamb, Andrew Pearce and Sanjay Das for supporting me all along, and anyone I

forgot to mention.

115

5.2 Strand and Hair Simulation at ILM

The quest for ever increasing realism in visual effects has reached a point where

many viewers, including experts, frequently cannot tell what aspects of a live ac-

tion movie were created using computer graphics techniques. Often, only the im-

probability that a scene was shot using practical means provides a clue. It is now

commonly expected that hair, skin, muscles, clothing, jewelry, and accessories of

digital characters look and move in a way indistinguishable from real ones. And

without exceptions, these aspects of digital characters are not supposed to attract

attention unless intended so by the movie maker.

Dynamics simulations are a significant contributor to this apparent success. At

Industrial Light & Magic we use them extensively to achieve believable motion of

digital characters. Simulation of hair and strands is an integral part of a collection

of techniques that we commonly refer to as structural dynamics.

As much as we like to celebrate our achievements in the area of simulation, the

other main point that we hope to convey is that we still have a long way to go in this

field. In many ways, recent successes have just opened the door to a widespread

use of simulations. We want to describe not only what has been done, but also

what we would like to do but have not been able, so far. There are many interesting

and challenging problems left to be solved. We hope this presentation provides

motivation to tackle some of these issues.

5.2.1 Overview

The survey paper [WBK+07] provides a very good overview of many techniques

used in our hair pipeline at ILM. Typically, we think of our pipeline as consisting

of four distinct stages:

• Hair placement and styling: an artist driven, interactive modeling task done

in our proprietary 3D application called Zeno. Our general free-form sur-

face sculpting tools were augmented to satisfy hair specific needs such

as hair length and rooting preservation, twisting and curling, interpolated

placement, hair extension and clipping. These tools are used to create a set

of “guide” hairs (B-spline curves) representative of the overall hair style,

and are also very useful for touching up simulation results. The number

116

of guide hairs can vary widely, depending on the complexity and coverage,

from several hundred to many thousands.

Although still subject to modifications, this is a mature and well established

component of our pipeline, with nearly a decade of production use.

• Simulation: interactive tools and scripts for creation and editing of simu-

lation meshes/rigs, tuning simulation controls and parameters, and running

simulations in Zeno. This is among the most complex parts of our pipeline

and is the main topic of our discussion.

• Hair generation: a procedural technique for creating a complete set of hair

strands (a full body of hair) from a relatively small number of guide hairs.

The number of generated hairs typically ranges from mid tens of thousands

to several million. Finer details of hair tufting and wisping, jitter, and irreg-

ularities are almost exclusively handled at this level.

This is the oldest component of our pipeline, having roots in the techniques

developed for “Jumanji” in 1995. It still undergoes frequent show and crea-

ture specific modifications, and has recently been completely overhauled.

• Lighting and rendering. We used to render hair using our own in-house

particle and hair renderer called Prender, but for several years now we have

relied on RenderMan exclusively to render hairs as B-spline curves. Setting

up the lighting is done using our proprietary tools inside Zeno.

5.2.2 Dynamics of Hair and Strands

Animation of hair and strands can be achieved using the same combination of

keyframe techniques, inverse kinematics, procedural deformation, and motion

capture that is applied to the body and skin of a digital character. As long as

hair follows along and remains properly oriented and rooted on the underlying

surface, the results may look convincing. This is often sufficient for short hair and

fur, and for background characters.

In other cases, particularly when appearance of compliance with the laws of physics

is desired, traditional and manual animation techniques fall short or are at best te-

dious. To a degree this is also true for other aspects of digital character animation,

but it is particularly problematic for fast moving long and medium length hair.

117

Figure 5.7: Wookies. How many are not CG? Star Wars: Episode III - Revenge of

the Sith (2005)

Physically based simulations have provided a solution that we increasingly de-

pend on at ILM.

We have traditionally relied on our own proprietary simulation tools, although

our artists have access to and use when appropriate dynamics tools inside vendor

packages such as Maya. Over the years we have made several major revisions

to our software - our hair and cloth simulation tools are currently in their third

generation, and rigid body and flesh/skin tools are in their second. Over the past

several years we have collaborated closely with Ron Fedkiw and his graduate

students at Stanford, and have migrated our simulation engines to use PhysBAM,

which is also our fluid simulation engine.

With regard to a physical model used as representative of hair dynamics, we have

been firmly in the mass-spring camp. This is also true for our cloth, skin, and flesh

simulation systems. Rigid body dynamics has also been one of the mainstays of

our pipeline - simulations of ropes, chains, and accessories that dangle from digital

characters and mechanical structures have long been employed in production. In

[OBKA03] we describe how our rigid body dynamics system was used to create

extremely complex, convincing character performances for The Hulk (2003). And

in [KANB03] we describe how fundamentally similar or identical techniques can

be used for deformable and rigid body simulations.

Sometimes, it is not obvious what types of simulation would be the most appro-

priate or the most cost effective for a particular character. For digital doubles and

118

furry creatures simulation of thin strands of hair is often the obvious choice. But

when the hair is braided, as it is for some Wookies (figure 5.7), or made of kelp and

other types of seaweed (figure 5.9), as it is for some pirates of the Caribbean, or

the strands are actually octopus-like tentacles, as they are on the Davy Jones char-

acter (figures 5.8 and 5.17), techniques commonly associated with cloth, flesh,

and articulated rigid body simulations become equally or more attractive.

Figure 5.8: Davy Jones

Figure 5.9: When hair is kelp and clothing is layered, tattered, and encrusted in

sea-life. Pirates of the Caribbean: Dead Man’s Chest (2006)

Treating all these types of simulation as just different flavors of structural dynam-

ics is useful from both the developer’s and the artist’s perspective. Algorithms,

data structures, and workflows developed for one type of simulation are often

directly applicable to the others. Similarly, an artist’s expertise in one area of

119

structural simulations is useful for most of them. Over the years we have suc-

cessfully blurred the distinction between the flavors of structural simulations at

every level, from the simulation engine, to the UI, setup, and workflows used by

the production. Simulations that were once incompatible can now be used inter-

changeably, or can be layered upon each other with one way interactions, or can

be used together.

The survey paper [WBK+07] describes many options when it comes to the choice

of a dynamic mesh/rig, that is, the configuration of point-masses and springs that

best represents the motion of hair and strands. Similarly, we do not have a single

answer as well. A simple 1D rig was used with great success in 1998 for the hair

on the Mighty Joe Young. Although lacking sophisticated collision and hair-hair

interaction handling, and despite the fact that today we can simulate thousands of

hairs like that at interactive speeds, the visual impact of those particular shots has

not been significantly surpassed to date.

2D strips of cloth have also been used successfully to represent tufts of hair. While

still the best solution for hair made of kelp, cloth strips cannot support their weight

or resist wind equally in all directions and are, thus, not a good general solution.

We now commonly use 3D meshes of various configurations and complexities to

surround and support the guide hairs during simulation. Given that we simulate

only a subset of final hairs, mainly just the guide hairs, it is important to note

that these meshes are more representative of a tuft of hair than of a single strand.

In this context, hair-body and hair-hair interactions are closer to tuft-body and

tuft-tuft interactions. As mentioned before, fine details of tufting and wisping are

handled procedurally at the hair generation stage.

Finally, if absolute control and support is needed because strands become a part

of and artistically driven performance, as it is the case with Davy Jones tentacles,

articulated rigs with rigid constraints and motorized torque joints are used.

With regard to the choice of numerical integration technique, the common wisdom

seems to point towards implicit methods. Their unconditional stability is greatly

appreciated when simulations must not fail, as is the case in the games industry

and real time systems, or when, for whatever reason, taking small timesteps is not

an option. Still, implicit methods come at a very significant cost, as discussed in

the next section. For many years we have relied exclusively on explicit integration

methods, such as Verlet or Newmark central differencing [KANB03]. The visual

quality of simulations that ILM has achieved using strictly explicit methods is

120

still unsurpassed in each category: hair, cloth, flesh, and rigid dynamics. For our

deformable simulations, we now use a hybrid method that is still explicit in nature

but uses full implicit integration of damping forces [BMF03]. Finite elements

methods are also available to our users with a switch of a button. Their promise

is in more accurate modeling of physical material properties. But they are still

significantly slower than other methods and are rarely used in production.

Our lack of commitment to any particular solution is most evident in handling

collisions and interactions between dynamic objects. Collisions are often the most

expensive part of simulation. Our users often need the cheapest method that does

the job for any particular shot or effect. We therefore offer:

• Force based point-point and point-face repulsions, including self repulsion.

They are reasonably cheap (with a judicious use of bounding box trees and

k-d trees) but not robust.

• Collisions of points against discretized level set volumes, with the option to

handle stacking of rigid bodies [GBF03]. They are fairly robust and very

fast once the volumes are computed. But computation of collision volumes

can be arbitrarily slow, depending on the desired level of detail.

• Geometric collisions between moving points and moving faces, and be-

tween moving edges, with iterations to resolve multiple collisions. This

is the most robust and by far the slowest option.

Each of these methods presents its own implementation challenges, particularly

when it comes to achieving robustness and efficiency, but also in dealing with

static friction and the details of the time differencing method. This topic could fill

a course on its own and is, sadly, beyond the scope of this presentation.

Any combination of the above methods can be used in our system to handle inter-

actions of hair meshes with other objects in the scene, including other hair meshes.

5.2.3 Challenges

The main consideration in feature production is whether the results look good. No

matter how physically correct a simulation is, if it falls short of a specific artistic

goal, it is not good enough. Fortunately, this does not imply that the results always

have to be perfect. It means that the artists need a variety of tools and that some

combination of these tools can be used to achieve the desired effect. It is actually

121

quite rare that the results of a simulation end up in the movie theater without being

touched in some way by the artist.

An equally important consideration is that of the economy: whether the benefits

of using a particular technique outweigh the costs. In an ever more competitive

environment movies are done on very tight schedules and budgets. Our ability to

meet the time and resource constraints depends on tools that are not only capable

of achieving a variety of desired results but can do it in a predictable, reliable, and

controllable fashion.

Most of our tools are designed for a long term use - they are supposed to outlive

any particular production and work on the next movie, and the one after. When

we are fortunate to work on effects that have never been done before, for which no

tools exist, our initial attempts can be somewhat raw, requiring unusual amounts

of “manual” labor from the artists, and still be useful to production. But to remain

viable, the use of these new tools has to become more or less routine by the next

production cycle.

Our dynamics, hair styling, and lighting tools are modes inside Zeno, ILM’s large

3D application framework. There are great benefits to having such an integrated

applications, from code sharing to the commonality of the UI and the workflows.

Fitting our solutions into this large framework and making them work nicely with

the other components also requires great care.

Here are some of the problems related to our hair simulation pipeline, but not

limited to it, that we face daily:

• Control: Animators need tools to take the animation in any desired direction

without destroying the illusion of physical correctness. When on occasion

they are asked to do the physically impossible, it is a toolmaker’s job as

much as artist’s to make the impossible look good. This is a control issue

and is as important as the physical and numerical soundness of algorithms

at the core of our engine.

As described in [KANB03], control is ideally achieved with spring-like

forces. “Ideally” because our system is already very well tuned to deal

with such forces. However, when precise control is needed or when we

know the desired simulation outcome, forces are often insufficient as they

are balanced by the solver against all other events in the scene. In such cases

we need to adjust the state of the system (positions, velocities, orientations,

and angular momenta) directly. And in doing so we need to preserve the

122

stability of the system and as much of physical correctness as possible. It

is really “interesting” when multiple controls want to modify the state si-

multaneously - this usually conflicts with our other strong desire to keep

controls modular and independent from each other.

• Robustness: This is primarily about stability and accuracy. While a dis-

tinction between these two terms is extremely important for the developers,

it is completely lost on the users. Whether the simulation fails because of

a numerical overflow (stability of explicit integration methods) or it looks

completely erratic or overdamped because of large errors (accuracy of im-

plicit methods) is not nearly as important to the users as is the fact that they

have nothing to show in the dailies.

This problem is compounded by our need to provide simulation controls.

Stability of our integration methods holds only as long as we do not violate

the premises on which it is based. Stability analysis is difficult enough for

a well formulated set of differential equations. How do we analyze stability

of 10 lines of C++ code?

• Workflow and setup issues: Structural dynamics is just a subset of tools that

artists responsible for creature development use daily. It is common that

a creature requires several layers of cloth simulations, hair simulation, skin

and flesh simulation, and rigid simulations for all the accessories. And there

could be a dozen of them in a shot. All this in an environment where models

and animation are developed concurrently and change daily.

Zeno, our 3D application, provides a framework that makes this possible. It

is by no means easy.

• Simulation time: No one has yet complained that simulations run too fast.

Quick turnaround is extremely important to our users’ productivity and to

their ability to deliver a desired effect. Simulation speeds ranging from in-

teractive to several seconds per frame are ideal. Several minutes per frame is

near the limit of tolerance. Structural simulations that fail to finish overnight

for the entire length of the shot are not acceptable.

• Cost of development and support: Algorithms that are very difficult to get

right or that work only under very specific hard to meet conditions are usu-

ally less than ideal for a production environment. We do not take this ar-

gument too far because it would disqualify all of dynamics - it is a balance

that we strive for. Systems based on implicit integration methods tend to be

123

considerably more expensive in this regard.

• Requirement for very specialized knowledge or experience, limiting the

pool of available artists and developers.

Many of the above issues could motivate a Siggraph course on their own. It is not

without regret that we touch upon them so lightly in this presentation.

Obviously, dynamics systems also provide great benefits by enabling creation of

a physically believable animation that would be difficult, tedious, or impractical

to do otherwise.

This cost-benefit analysis may put us on a somewhat different course from the

purely research and academic community. A proof of concept, a functional pro-

totype, a research paper is often just a starting point for us. Majority of our effort

is spent on building upon proven techniques and turning them into production

worthy tools - on bridging the gap between successful technology and the arts.

Practical and engineering challenges of doing that easily match those of inventing

the techniques in the first place. Working on these issues in a production envi-

ronment, continuously balancing the needs and the abilities, has been a humbling

experience for everyone involved.

5.2.4 Examples

The extreme motion of the creatures and the transformations between human and

fantastic forms, e.g. werewolves tearing out from inside the skin of their human

characters and vice versa, were the two biggest challenges for digital hair in the

making of Van Helsing (2004). It was also the first time that we modeled very long

curly human hair (figure 5.10) and simulated it through a full range of motion and

well into the realm of humanly impossible (figures 5.11 and 5.12).

Modeling (styling) and simulation of hair was done on a smaller number of “guide”

hairs – up to several hundred on a human head and almost nine thousand on the

Werewolves. Before rendering, the full body of hair was created by a complex

interpolation technique that also added irregularities and took care of tufting and

fine wisping. These generated hairs, numbering in the mid tens of thousands for

human hair and up to several million for the wolves (figure 5.13), were then passed

to RenderMan for rendering as B-spline curves.

124

Figure 5.10: Aleera, one of the Vampire Brides from the Van Helsing (2004)

We relied heavily on numerical simulations to achieve a believable motion of hair.

Slow-moving creatures and motion-captured humans presented very few prob-

lems. Fast moving werewolves and vampire brides were more difficult, particu-

larly for long hair. The creatures were often animated to the camera and did not

necessarily follow physically plausible 3D trajectories. In many cases the script

just asked for the physically improbable. Consequently, our simulations also em-

ployed controls that were not based on physics. Particularly useful were those

for matching the animation velocities in a simulation. Still, the animation some-

times had to be slowed down, re-timed, or edited to remove sharp accelerations.

Wind sources with fractal variation were also invaluable for achieving realistic

fast motion of hair and for matching live action footage.

Our proprietary hair pipeline was reimplemented for “Van Helsing” to allow for

close integration of interactive hair placement and styling tools, hair simulation

tools, and hair interpolation algorithms. The hair and (tearing) cloth dynamics

systems were merged for the needs of Werewolf transformation shots in which

the hair was simulated either on top of violently tearing skin, or just under it.

125

Figure 5.11: OpenGL rendering of a vampire bride hair simulation from the Van

Helsing (2004)

Figure 5.12: Final composite of the simulation in figure 5.11

This integration enabled the artists to style the hair, set up and run skin and hair

simulations, and sculpt post-simulation corrective shapes in a single application

framework.

These same tools were simultaneously used in the making of The Day After To-

morrow (2004) for the CG wolves (figures 5.14, 5.15) and have since been used

on many other shows for digital doubles (for example figure 5.16), a CG baby,

hairy and grassy creatures, lose threads of clothing, etc.

Pirates of the Caribbean: Dead Man’s Chest features Davy Jones (figures 5.8 and

5.17), an all CG character, whose most outstanding feature is his beard, designed

to look like an octopus with dozens of tentacles. The beard presented multiple

126

Figure 5.13: A Werewolf from Van Helsing (2004)

challenges for animation, simulation, and deformation.

To make this character believable, it was critical that the tentacle behaved like

that of an octopus, but still presented the dynamic motion of the character’s per-

formance. ILM utilized Stanford’s PhysBAM simulation system as a base for

the articulated rigid body simulation that drives the performance of the tentacles.

Along with Stanford’s solver, ILM created animation controllers that allowed the

artists to direct the performance of the simulation. By incorporating the Stanford

solver into our proprietary animation package, Zeno, we made it possible for a

team of artists to quickly produce the animation for the 200+ shots required by

production.

An articulated rigid body dynamics engine was utilized to achieve the desired

look. Each tentacle was built as a chain of rigid bodies, and articulated point

joints served as a connection between the rigid bodies. This simulation was per-

formed independently of all other simulations, and the results were placed back

on an animation rig that would eventually drive a separate flesh simulation. Since

Davy’s beard had 46 tentacles with a total of 492 rigid bodies and 446 point joints,

a controller system was needed in order to make the simulation manageable for an

artist. Each tentacle had a controller to define parameters to achieve the desired

dynamic behavior, which was mainly influenced by the head motion and any col-

liding objects. Another controller, which served as a multiplier for all individual

127

Figure 5.14: A test run cycle with full motion blur from The Day After Tomorrow

(2004).

controllers, helped the artist to influence the behavior of the whole beard at once.

To make the tentacles curl, the connecting point joints were motorized using a

sine wave that was controlled by attributes like amplitude, frequency and time.

Most dynamic parameters were set along the length of the tentacle. So, in order to

automate the setting of these parameters, a 2D curve represented the length of the

tentacle on the x-axis and the value of the parameter on the y-axis. Periodically

some tentacles required key framed animation in order to manipulate objects in

the scene. When specific interactions were required from the animation pipeline,

the rigid bodies were set to follow the animation and used as collision geometry

for the simulated tentacles.

The control for each joint on a tentacle was accomplished using a force-based

targeting system. The targeting system calculated torques between rigid objects

constrained by a joint. The goal of the targeting system was to minimize the differ-

ence between the joint’s target angle and its current angle. During the progression

of the simulation, the target angles for the joints were modified by the animation

controller. For each joint, the targeting system calculated the difference between

the target orientation and current orientation. The resulting difference produced

an axis of rotation that defined a torque around which the connected rigid objects

rotated. The final step was to apply the calculated torque back onto the connected

rigid objects.

128

Figure 5.15: Final composite of the CG wolves fromThe Day After Tomorrow
(2004).

Figure 5.16: Jordan digital double fromThe Island(2005)

A real tentacle has numerous suction cups that allow the tentacle to momen-
tarily grab onto surfaces and let go at any time. A functionality was required,
termedStiction, which would automatically create connecting springs between
rigid bodies, to correctly mimic this momentary grab and release. The Stiction-
spring interface was implemented through a set of area maps on the underside
of the tentacle, defining regions on the tentacle where springs could be created.
Properties of the Stiction interface defined distances at which springs could be
created or destroyed, thus displaying the correct motion ofthe grab and release.

129

Figure 5.17: Davy Jones

5.2.5 Conclusions

Simulation of hair and strands, and dynamics in general, hasbeen very successful
but is far from a solved problem. Many of the remaining challenges are not as
much about possibility but more about practicality. How do we make simulations
more controllable, more intuitive, more robust, more detailed but less expensive,
much faster but no less accurate? UsingPirates of the Caribbean: Dead Man’s
Chestas a point of reference, the amount of detail that we can modeland render
today exceeds what can be simulated by an order of magnitude.And modeling
and rendering are far from solved problems on their own. As computers get more
powerful and our techniques get better, the demand for simulations seems to in-
crease with the increased possibilities - or at least, that has been our experience
over the past decade. We see no indication of this changing any time soon. The
prospect of solving some of the remaining practical problems should be wonder-
fully exciting to the industry practitioners and researchers alike.

5.2.6 Acknowledgments

The ILM hair pipeline and the examples presented in this session are a result
of collaboration of many people across several departments. The ILM R&D De-
partmentand particularly David Bullock, Stephen Bowline, Brice Criswell, Don
Hatch, Rachel Weinstein, Charlie Kilpatrick, Christophe Hery, and Ron Fedkiw;
the ILM Creature Development Departmentand particularly Karin Cooper, Renita
Taylor, Eric Wong, Keiji Yamaguchi, Tim McLaughlin, Andy Anderson, Vijay
Myneni, Greg Killmaster, Aaron Ferguson, Jason Smith, Nigel Sumner, Steve
Sauers, Sunny Lee, Greg Weiner, James Tooley, and Scott Jones; ILM Model-

130

ers Ken Bryan, Mark Siegel, Lana Lan, Frank Gravatt, Andrew Cawrse, Corey
Rosen, Michael Koperwas, Sunny Li-Hsien Wei, Jung-Seung Hong, Geoff Camp-
bell, and Giovanni Nakpil;ILM Technical DirectorsPat Conran, Craig Hammack,
Doug Smythe, and Tim Fortenberry.

5.3 Hair Simulation at Rhythm and Hues - Chroni-
cles of Narnia

Rhythm and Hues have been well known for various works on animal characters
dating back to the Babe movie. Along with each show, the wholehair pipeline
have been constantly revised, enhanced, and sometimes completely rewritten, to
meet the ever increasing demand of production in dealing with hair. For the movie,
The Chronicles of Narnia, the Lion, the Witch and the Wardrobe, the whole hair
pipeline had to be revamped in many aspects. The movie had many talking animal
characters, including the majestic lion, aslan. Dealing with fur of each character
presented enormous challenges on every side of pipeline. Animating fur - espe-
cially longer hairs like the mane of a lion - presented a challenge that the studio
had not dealt with before. A new hair dynamics solution as well as many other
tools had to be developed and the tools were extensively usedto simulate motion
of the hair of many such mythological characters.

When the crews had a chance to see and interact with wild animals (such as a
real lion!), two things were pointed out.

• Most animal fur is very stiff.

• Animal fur almost always move in clumps, apparently due to hair-hair in-
teraction

This meant that we needed to have a stiff hair dynamics systemwith full con-
trol over hair-hair interaction. As any experienced simulation software developer
would find, this is not a particularly pleasant situation to be in to hear something
is stiff in a simulation.

5.3.1 The hair simulator

From the literature, one would find a number of choices for dealing with hair-like
objects. Among those are articulated rigid body method, mass-spring (lumped
particle), and continuum approach, as surveyed throughoutthis course note. Each
method has pros and cons and one could argue one method’s advantages over
others.

131

We decided to start with the mass-spring system since we had a working code from

the in-house cloth simulator. There we started by adapting the existing particle-

based simulator to hair.

mass-spring structure for hair

Figure 5.18: Mass spring structure for hair simulation

In our simulator, each hair would be represented by a number of nodes, each node

representing the (lumped) mass of certain portion of hair. In practice, each CV

of guide hairs (created at the grooming stage) was used as the mass node. Such

nodes are connected by two types of springs - linear and angular springs. Linear

132

springs maintain the length of each hair segment and angular springs maintain the

relative orientation between hair segments.

Linear spring was simply taken from the standard model used for cloth simulator,

but a new spring force had to be developed for the angular springs. We considered

the use of so-called flexion springs that are widely used in cloth simulation. With

this scheme, each spring connects nodes that are two (or more) nodes apart.

However, after initial tests, it was apparent that this spring would not serve our

purpose since there are a lot of ambiguities in this model and angles are not always

preserved. This ambiguity would result in some unwanted wrinkles in the results

(in the images below, all three configurations are considered the same from linear

springś point of view).

Figure 5.19: ambiguity of linear springs

Eventually, the hair angle preservation had to be modeled directly from angles.

We derived the angle preservation force by first defining an energy term defined on

two relative angles between hair segments, and then by taking variational deriva-

tives to derive forces. A matching damping force was added as well.

Figure 5.20: angular springs

133

Derivation on angles are usually far more difficult than working on positions, and

it would also require additional data such as anchor points attached to the root

such that angles could be computed at the root point as well. To compute a full

angle around each node, each node would have an attached axis that was gener-

ated at the root and propagated to each node . We simulated the motion of each

hair along with external forces such as gravity, wind forces. The time integra-

tion was performed with a full implicit integration scheme. As a consequence, the

simulator was very stable dealing with the stiff hair problem. Extremely stiff hairs

(such as wire) needed some numerical treatment such as modification of jacobian

matrices, etc., but in general, this new approach was made very stable and could

handle very stiff hairs (almost like a wire) in a fixed time stepping scheme.

In the absence of collision and hair- hair interaction, each hair could be solved

independently, and solved very fast if a direct numerical method was employed

(thousands of guide hairs could be simulated in less than a second per frame). In

practice, the simulation time was dominated by collision detection and hair hair

interaction. Overall integrator time was only a small fraction (less than 3%).

Figure 5.21: This CG lion test was performed before the production started, as

verification on many aspects such as simulation of hair-hair interaction, collision

handling, grooming of hair, rendering, and compositing.

134

Collision Handling

There are two types of collision in hair simulation - Hair would collide against the

character body, but would also collide against other hairs. These two cases were

separately handled, and each case presented challenges and issues.

Collision handling between hair and characters.

For collision handling, each character was assigned as a collision object and col-

lision of each hair against the collision object was performed using the standard

collision detection techniques (such as AABB, Hashing, OBB, etc.) with some

speed optimizations (e.g. limiting distance query to the length of hair, etc.) added.

If a CV was found to be penetrating the collision object, it was pushed out by

a projection scheme that was tied to our implicit integrator. For most cases, the

simple scheme worked very well, even in some situations where collision objects

are pinched between themselves.

However, in character animation, some amount of pinching is unavoidable (es-

pecially when characters are rolling or being dragged on the ground), and the

simulator had to be constantly augmented and modified to handle such special

case handling of user error in collision handling.

For example, in some scenes, hair roots often lie deep under the ground. In such

cases, applying standard collision handler would push things out to the surface,

but hair had to be pulled back since the root had to lie under the ground.

This would eventually result in oscillations and jumps in the simulation. Our

simulator had additional routines to detect such cases and provided options to

freeze the simulation for the spot or to blend in simulation results. In addition,

animations were adjusted (mostly for aesthetical reasons) and other deformation

tools were also employed to sculpt out the problem area in collision.

Hair-hair interaction

Early on, it was determined that the ability to simulate hair-hair interaction was

a key feature that we wanted to have. Without hair-hair interaction, hairs would

135

simply penetrate through each other, and one would lose the sense of volume in

hair simulation.

This was especially important since our hair simulation was run on guide hairs,

and each guide hair could represent a certain amount of volumes around it. So, the

sense of two volumes interacting with each other was as important as simulating

each guide hair accurately.

Having based our simulator on a mass-spring model, we added the hair interaction

effect as additional spring force acting on hair segments. Whenever a hair is close

to another hair, a spring force was temporarily added to prevent nearby hairs from

further approaching each other, and also to repel too close ones away from each

other. The amount of spring force was scaled by such factors as distance, relative

velocity, and user-specified strength of hair interaction.

Adding wind effect

In the movie, many scenes were shot in extremely windy environment. There was

almost always some amount of wind in the scene, whether it was a mild breeze

or gusty wind. Once we had a working simulator, the next challenge was to add

these wind effects with full control.

In general, hair simulation was first run on (only) thousands of guide hairs and

then the guide hairs would drive motion of millions of hairs that were finally

rendered. Correspondingly, there were two controls over the wind effects.

136

Figure 5.22: Simulating hair hair interaction for mermaid.

First, dynamics had a wind force that applies random and directional noise-driven

force that would move guide hairs.

Second, a tool called pelt wind was developed and added on top of the dynamics

motion, providing subtle control over motion in every rendered hair

Bad inputs / user errors

Throughout the production, we would battle issues with bad inputs to the simu-

lator. In practice, inputs to simulation are never perfect sometimes there would

be two hairs stemming from exactly the same root position, sometimes hair shape

was too crooked. In some cases, hairs were too tangled to begin with, and hair

interaction alone could not handle the situation.

Additional hair model processing tools were then used to tame the input such as

untangling hair orientation more evenly or straightening out crooked hairs. In the

end, the simulator was also used as a draping tool that users could use to process

and clean up some of the hand modeled hair geometry.

137

5.3.2 Layering and mixing simulations

Often, digital counterpart of real actors were used and mixed into the real scenes.

Simulations were also used for clothing of such characters (such as cape, skirt,

etc.) and even skins of winged characters.

At times, cloth simulation and hair simulation had to work together. Cloth would

collide against hairs, but hair would in turn collide with cloth. In such cases, a

proxy geometry was built to represent the outer surface of hair volume. Cloth

would then collide against the proxy geometry and then served as collision object

for hair simulation.

This concept of simulation layering was used all over. For some hair simulation,

cloth was first simulated as the proxy geometry for hair, and then hair simulation

was run, roughly following the overall motion driven by the proxy geometry, and

then individual hair motion and hair interaction was added.

5.3.3 Simulating flexible objects for crowd characters

In addition to hero characters that had 2-3 hair / cloth simulations per character,

the whole army of characters had to be animated, and consequently their cloth,

hair, and anything soft had to be simulated. As an example, the scene in Figure

5.23 shows 20+ hero characters, and all the background (crowd) characters were

138

given another pass of simulation, to give their banner, armor, flag, and hair flowing

looks.

Figure 5.23: Battle scene.

The simulator used for crowd characters was adapted from our in-house cloth

simulator, and modified to meet the new requirements. For distance characters,

geometry used for crowd simulation was of relatively low resolution (¡200 polys).

The simulator had to not only run fast, but also had to give convincing results on

such low resolution geometry.

Many characters in crowd shots are not visible until certain moments in frames,

and also change its visual importance as they move in and out of the camera. This

fact was extensively exploited in our simulation level of detail system.

In contrast to conventional simulation system where a simulator computes an end-

to-end frame calculation, we simulated all the characters at each frame, and con-

stantly examined whether some characters were moving out of the camera frus-

trum. For such invisible characters, the lowest level of detail of used in simulation

. On the other hand, as characters move closer to the camera, the detail was pro-

moted and more time was spent on simulating higher resolution version of the

geometry. This way, we could keep the desired fidelity in motion, while minimiz-

ing the requirements for computational resources.

The framework required that simulation had to be interchangeable between dif-

ferent resolutions, so special attention and care had to be paid to ensure that the

139

solverś state carries over from lower resolution to higher resolution without no-

ticeable jump or discontinuity in motion.

Typically, several cloth simulations were run per each character, some cloth patches

representing a strip of hair (we did not run hair simulator directly on any crowd

character) that actual hair geometry would be attached at the render time. About 3

to 4 different resolutions were used and switched during simulation. For example,

a characterś hair would be simulated as a simple polygon strip at the lowest level,

and then refined all the way up to 20-100 strips representing the same geometry

in much higher detail.

140

Bibliography

[ALS98] C. Adler, J. Lock, and B. Stone. Rainbow scattering by a cylinder

with a nearly elliptical cross section. Applied Optics, 37(9):1540–

1550, 1998.

[AP07] B. Audoly and Y. Pomeau. Elasticity and Geometry: from hair

curls to the nonlinear response of shells. Oxford University Press,

À paraı̂tre en 2007.

[AUK92a] K. Anjyo, Y. Usami, and T. Kurihara. A simple method for extract-

ing the natural beauty of hair. In Proceedings of the 19th annual

conference on Computer graphics and interactive techniques (SIG-

GRAPH). ACM SIGGRAPH, 1992.

[AUK92b] K. Anjyo, Y. Usami, and T. Kurihara. A simple method for extract-

ing the natural beauty of hair. In Computer Graphics Proceedings

(Proceedings of the ACM SIGGRAPH’92 conference), pages 111–

120, August 1992.

[BAC+06] F. Bertails, B. Audoly, M.-P. Cani, B. Querleux, F. Leroy, and J.-

L. Lévêque. Super-helices for predicting the dynamics of natural

hair. In ACM Transactions on Graphics (Proceedings of the ACM

SIGGRAPH’06 conference), pages 1180–1187, August 2006.

[Ban94] David C. Banks. Illumination in diverse codimensions. Proc. of

ACM SIGGRAPH, 1994.

[BAQ+05] F. Bertails, B. Audoly, B. Querleux, F. Leroy, J.-L. Lévêque, and

M.-P. Cani. Predicting natural hair shapes by solving the statics of

flexible rods. In J. Dingliana and F. Ganovelli, editors, Eurograph-

141

ics’05 (short papers). Eurographics, August 2005. Eurographics’05

(short papers).

[Bar92] David Baraff. Dynamic simulation of non-penetrating rigid bodies.

PhD thesis, Department of Computer Science, Cornell University,

March 1992.

[Bar96] David Baraff. Linear-time dynamics using lagrange multipliers.

Proceedings of SIGGRAPH 96, pages 137–146, August 1996.

[BCN03] Y. Bando, B-Y. Chen, and T. Nishita. Animating hair with loosely

connected particles. Computer Graphics Forum, 22(3):411–418,

2003. Proceedings of Eurographics’03.

[BCP96] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solu-

tion of Initial-Value Problems in Differential-Algebraic Equations.

Classics in Applied Mathematics. SIAM, 1996.

[Ber06] F. Bertails. Simulation de chevelures naturelles. PhD thesis, Institut

National Polytechnique de Grenoble, 2006.

[BKCN03a] F. Bertails, T-Y. Kim, M-P. Cani, and U. Neumann. Adaptive wisp

tree - a multiresolution control structure for simulating dynamic

clustering in hair motion. In ACM SIGGRAPH - EG Symposium

on Computer Animation, pages 207–213, July 2003.

[BKCN03b] F. Bertails, T-Y. Kim, M-P. Cani, and U. Neumann. Adaptive wisp

tree: a multiresolution control structure for simulating dynamic

clustering in hair motion. In 2003 ACM SIGGRAPH / Eurographics

Symposium on Computer Animation, aug 2003.

[BMC05] F. Bertails, C. Ménier, and M-P. Cani. A practical self-shadowing

algorithm for interactive hair animation. In Proc. Graphics Inter-

face, pages 71–78, May 2005.

[BMF03] R. Bridson, S. Marino, and R. Fedkiw. Simulation of clothing with

folds and wrinkles. In Eurographics/SIGGRAPH Symposium on

Computer Animation, San Diego, California, 2003.

[Bru99] A. Bruderlin. A method to generate wet and broken-up animal fur.

In Computer Graphics and Applications, 1999. Proceedings. Sev-

enth Pacific Conference, pages 242–249, October 1999.

142

[BS91] H. Bustard and R. Smith. Investigation into the scattering of light

by human hair. Applied Optics, 24(30):3485–3491, 1991.

[BW92] D. Baraff and A. Witkin. Dynamic simulation of non-penetrating

flexible bodies. In Computer Graphics Proceedings (Proceedings

of the ACM SIGGRAPH’92 conference), pages 303–308, 1992.

[BW98a] David Baraff and Andrew Witkin. Large steps in cloth simulation.

Proc. of ACM SIGGRAPH, pages 43–54, 1998.

[BW98b] David Baraff and Andrew P. Witkin. Large steps in cloth simulation.

In Proceedings of SIGGRAPH 98, Computer Graphics Proceedings,

Annual Conference Series, pages 43–54, July 1998.

[CCK05a] B. Choe, M. Choi, and H-S. Ko. Simulating complex hair with

robust collision handling. In ACM SIGGRAPH - EG Symposium on

Computer Animation, pages 153–160, August 2005.

[CCK05b] Byoungwon Choe, Min Gyu Choi, and Hyeong-Seok Ko. Simu-

lating complex hair with robust collision handling. In 2005 ACM

SIGGRAPH / Eurographics Symposium on Computer Animation,

pages 153–160, 2005.

[CJY02a] J. Chang, J. Jin, and Y. Yu. A practical model for hair mutual inter-

actions. In ACM SIGGRAPH - EG Symposium on Computer Ani-

mation, pages 73–80, July 2002.

[CJY02b] Johnny Chang, Jingyi Jin, and Yizhou Yu. A practical model for

mutual hair inteactions. In Proceedings of Symposium on Computer

Animation. ACM SIGGRAPH, San Antonio, USA, July 2002.

[CK05] B. Choe and H-S. Ko. A statiscal wisp model and pseudophysical

approaches for interactive hairstyle generation. IEEE Transactions

on Visualization and Computer Graphics, 11(2):153–160, March

2005.

[CPS92] R.W. Cottle, J. S. Pang, and R.E. Stone. The linear complementarity

problem. Academic Press, 1992.

[CSDI99] L. Chen, S. Saeyor, H. Dohi, and M. Ishizuka. A system of 3d

hairstyle synthesis based on the wisp model. The Visual Computer,

15(4):159–170, 1999.

143

[DKY+00] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita.

A simple, efficient method for realistic animation of clouds. In

Computer Graphics Proceedings (Proceedings of the ACM SIG-

GRAPH’00 conference), pages 19–28. ACM Press/Addison-Wesley

Publishing Co., 2000.

[DMTKT93] A. Daldegan, N. Magnenat-Thalmann, T. Kurihara, and D. Thal-

mann. An integrated system for modeling, animating and rendering

hair. Computer Graphics Forum, 12(3):211–221, 1993.

[Dur04] D. Durville. Modelling of contact-friction interactions in entangled

fibrous materials. In Procs of the Sixth World Congress on Compu-

tational Mechanics (WCCM VI), September 2004.

[Fea87] Roy Featherstone. Robot Dynamics Algorithms. Kluwer Academic

Publishers, 1987.

[GBF03] E. Guendelman, R. Bridson, and R. Fedkiw. Nonconvex rigid bod-

ies with stacking. ACM Transactions on Graphics (SIGGRAPH

Proceedings), 2003.

[Gol97] D. Goldman. Fake fur rendering. In Proceedings of ACM SIG-

GRAPH’97, Computer Graphics Proceedings, Annual Conference

Series, pages 127–134, 1997.

[GZ02] Y. Guang and H. Zhiyong. A method of human short hair modeling

and real time animation. In Proceedings of Pacific Graphics’02,

pages 435–438, September 2002.

[Had03] Sunil Hadap. Hair Simulation. PhD thesis, MIRALab, CUI, Uni-

versity of Geneva, January 2003.

[HKS98] T. Hou, I. Klapper, and H. Si. Removing the stiffness of curvature in

computing 3-d filaments. J. Comput. Phys., 143(2):628–664, 1998.

[HMT01a] S. Hadap and N. Magnenat-Thalmann. Modeling dynamic hair as

a continuum. Computer Graphics Forum, 20(3):329–338, 2001.

Proceedings of Eurographics’01.

[HMT01b] Sunil Hadap and Nadia Magnenat-Thalmann. Modeling dynamic

hair as a continuum. Computer Graphics Forum, 20(3):329–338,

2001.

144

[HS98] W. Heidrich and H.-P. Seidel. Efficient rendering of anisotropic

surfaces using computer graphics hardware. Proc. of Image and

Multi-dimensional Digital Signal Processing Workshop (IMDSP),

pages 315–318, 1998.

[JLD99] H. Jensen, J. Legakis, and J. Dorsey. Rendering of wet material.

Rendering Techniques, pages 273–282, 1999.

[KANB03] Z. Kačić-Alesić, M. Nordenstam, and D. Bullock. A practical dy-

namics system. In SCA ’03: Proceedings of the 2003 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages

7–16. Eurographics Association, 2003.

[KAT93] T. Kurihara, K. Anjyo, and D. Thalmann. Hair animation with col-

lision detection. In Proceedings of Computer Animation’93, pages

128–138. Springer, 1993.

[Ken04] Erleben Kenny. Stable, Robust, and Versatile Multibody Dynamics

Animation. PhD thesis, Department of Computer Science, Univer-

sity of Copenhagen, November 2004.

[KH00] C. Koh and Z. Huang. Real-time animation of human hair modeled

in strips. In EG workshop on Computer Animation and Simulation

(EG CAS’00), pages 101–112, September 2000.

[KH01] C. Koh and Z. Huang. A simple physics model to animate hu-

man hair modeled in 2D strips in real time. In EG workshop on

Computer Animation and Simulation (EG CAS’01), pages 127–138,

September 2001.

[KHS04] M. Koster, J. Haber, and H-P. Seidel. Real-time rendering of human

hair using programmable graphics hardware. In Computer Graph-

ics International (CGI’04), pages 248–256, June 2004.

[Kim02] Tae-Yong Kim. Modeling, Rendering, and Animating Human Hair.

PhD thesis, University of Southern California, 2002.

[KK89] J. Kajiya and T. Kay. Rendering fur with three dimensional textures.

In Computer Graphics Proceedings (Proceedings of the ACM SIG-

GRAPH’89 conference), Computer Graphics Proceedings, Annual

Conference Series, pages 271–280, New York, NY, USA, 1989.

ACM Press.

145

[KN99] W. Kong and M. Nakajima. Visible volume buffer for efficient hair

expression and shadow generation. In Computer Animation, pages

58–65. IEEE, 1999.

[KN00] T.-Y. Kim and U. Neumann. A thin shell volume for modeling

human hair. In Computer Animation 2000, IEEE Computer Society,

pages 121–128, 2000.

[KN01] T-Y. Kim and U. Neumann. Opacity shadow maps. In Rendering

Techniques 2001, Springer, pages 177–182, July 2001.

[KN02] T-Y. Kim and U. Neumann. Interactive multiresolution hair mod-

eling and editing. ACM Transactions on Graphics (Proceedings of

the ACM SIGGRAPH’02 conference), 21(3):620–629, July 2002.

[Kok04] Evangelos Kokkevis. Practical physics for articulated characters. In

Proceedings of Game Developers Conference 2004, 2004.

[LFHK88] B. Lindelof, B. Forslind, MA. Hedblad, and U. Kaveus. Human

hair form. morphology revealed by light and scanning electron

microscopy and computer aided three-dimensional reconstruction.

Arch. Dermatol., 124(9):1359–1363, 1988.

[LGLM00] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Distance queries

with rectangular swept sphere volumes. Proc. of IEEE Int. Confer-

ence on Robotics and Automation, pages 24–48, 2000.

[LK01a] D-W. Lee and H-S. Ko. Natural hairstyle modeling and animation.

Graphical Models, 63(2):67–85, March 2001.

[LK01b] Doo-Won Lee and Hyeong-Seok Ko. Natural hairstyle modeling

and animation. Graphical Models, 63(2):67–85, March 2001.

[LTT91] A. M. LeBlanc, R. Turner, and D. Thalmann. Rendering hair using

pixel blending and shadow buffers. The Journal of Visualization

and Computer Animation, 2(3):92–97, – 1991.

[LV00] T. Lokovic and E. Veach. Deep shadow maps. In Computer

Graphics Proceedings (Proceedings of the ACM SIGGRAPH’00

conference), pages 385–392. ACM Press/Addison-Wesley Publish-

ing Co., 2000.

146

[Mar74] D. Marcuse. Light scattering from elliptical fibers. Applied Optics,

13:1903–1905, 1974.

[Mir96] Brian Mirtich. Impulse-based Dynamic Simulation of Rigid Body

Systems. PhD thesis, University of California, Berkeley, December

1996.

[Mit96] D. Mitchell. Consequences of stratified sampling in graphics. In

Computer Graphics Proceedings (Proceedings of the ACM SIG-

GRAPH’96 conference), pages 277–280, 1996.

[MJC+03a] S. Marschner, H. Jensen, M. Cammarano, S. Worley, and P. Hanra-

han. Light scattering from human hair fibers. ACM Transactions

on Graphics (Proceedings of the ACM SIGGRAPH’03 conference),

22(3):281–290, July 2003.

[MJC+03b] S. Marschner, H. W. Jensen, M. Cammarano, S. Worley, and P. Han-

rahan. Light scattering from human hair fibers. ACM Transactions

on Graphics, 22(3):780–791, July 2003. Proceedings of ACM SIG-

GRAPH 2003.

[MKBR04] T. Mertens, J. Kautz, P. Bekaert, and F. Van Reeth. A self-shadow

algorithm for dynamic hair using density clustering. In Proceedings

of Eurographics Symposium on Rendering, pages 173–178, 2004.

[MTM98] C. Mount, D. Thiessen, and P. Marston. Scattering observations for

tilted transparent fibers. Applied Optics, 37(9):1534–1539, 1998.

[NdP98] I. Neulander and M. Van de Panne. Rendering generalized cylinders

with paintstrokes. In Graphics Interface, pages 233–242, 1998.

[Ney98] F. Neyret. Modeling animating and rendering complex scenes using

volumetric textures. IEEE Transaction on Visualization and Com-

puter Graphics, 4(1):55–70, Jan-Mar 1998.

[NR01] O. Nocent and Y. Remion. Continuous deformation energy for dy-

namic material splines subject to finite displacements. In EG work-

shop on Computer Animation and Simulation (EG CAS’01), pages

88–97, September 2001.

[OBKA03] H. Ono, S. Benza, and Z. Kačić-Alesić. Bringing digital crash dum-

mies to life for ‘the hulk’. In SIGGRAPH Sketches and Applica-

tions, San Diego, California, 2003. ACM SIGGRAPH.

147

[Ove91] C. Van Overveld. An iterative approach to dynamic simulation of 3-

D rigid-body motions for real-time interactive computer animation.

The Visual Computer, 7:29–38, 1991.

[Pai02a] D. Pai. Strands: Interactive simulation of thin solids using cosserat

models. Computer Graphics Forum, 21(3):347–352, 2002. Pro-

ceedings of Eurographics’02.

[Pai02b] D. K. Pai. Strands: Interactive simulation of thin solids using

cosserat models. Computer Graphics Forum, 21(3):347–352, 2002.

[PCP01a] E. Plante, M-P. Cani, and P. Poulin. A layered wisp model for sim-

ulating interactions inside long hair. In EG workshop on Computer

Animation and Simulation (EG CAS’01), Computer Science, pages

139–148. Springer, September 2001.

[PCP01b] Eric Plante, Marie-Paule Cani, and Pierre Poulin. A layered wisp

model for simulating interactions inside long hair. In Proceedings

of Eurographics Workshop, Computer Animation and Simulation.

EUROGRAPHICS, Manchester, UK, September 2001.

[PCP02] E. Plante, M-P. Cani, and P. Poulin. Capturing the complexity of

hair motion. Graphical Models (Academic press), 64(1):40–58, jan-

uary 2002. submitted Nov. 2001, accepted, June 2002.

[PK96] F. C. Park and I. G. Kang. Cubic interpolation on the rotation group

using cayley parameters. In Proceedings of the ASME 24th Biennial

Mechanisms Conference, Irvine, CA, 1996.

[PS03] Jong-Shi Pang and David E. Stewart. Differ-

ential variational inequalities. Technical report,

http://www.cis.upenn.edu/davinci/publications, 2003.

[PT96] J. S. Pang and J. C. Trinkle. Complementarity formulations and ex-

istence of solutions of dynamic multi-rigid-body contact problems

with coulomb friction. Mathematical Programming, 73:199–226,

1996.

[QT96] H. Qin and D. Terzopoulos. D-nurbs: A physics-based frame-

work for geometric design. IEEE Transactions on Visualization

and Computer Graphics, 2(1):85–96, 1996.

148

[RCFC03] L. Raghupathi, V. Cantin, F. Faure, and M.-P. Cani. Real-time sim-

ulation of self-collisions for virtual intestinal surgery. In Nicholas

Ayache and Hervé Delingette, editors, Proceedings of the Interna-

tional Symposium on Surgery Simulation and Soft Tissue Modeling,

number 2673 in Lecture Notes in Computer Science, pages 15–26.

Springer-Verlag, 2003.

[RCT91a] R. Rosenblum, W. Carlson, and E. Tripp. Simulating the structure

and dynamics of human hair: Modeling, rendering and animation.

The Journal of Visualization and Computer Animation, 2(4):141–

148, October-December 1991.

[RCT91b] R. Rosenblum, W. Carlson, and E. Tripp. Simulating the structure

and dynamics of human hair: Modeling, rendering, and animation.

The Journal of Visualization and Computer Animation, 2(4):141–

148, 1991.

[RGL05a] S. Redon, N. Galoppo, and M. Lin. Adaptive dynamics of articu-

lated bodies. ACM Transactions on Graphics (Proceedings of the

ACM SIGGRAPH’05 conference), 24(3):936–945, 2005.

[RGL05b] Stephane Redon, Nico Galoppo, and Ming C. Lin. Adaptive dy-

namics of articulated bodies. ACM Transactions on Graphics,

24(3):936–945, aug 2005.

[RJFdJ04] José Ignacio Rodrı́guez, José Manuel Jiménez, Francisco Javier Fu-

nes, and Javier Garcı́a de Jalón. Recursive and residual algorithms

for the efficient numerical integration of multi-body systems. Multi-

body System Dynamics, 11(4):295–320, May 2004.

[Rob94] Clarence R. Robbins. Chemical and Physical Behavior of Human

Hair. Springer-Verlag, New York, third edition, 1994.

[Rob02] C. Robbins. Chemical and Physical Behavior of Human Hair. 4th

ed. Springer, 2002.

[Rub00] M.B. Rubin. Cosserat Theories: Shells, Rods and Points. Springer,

2000.

[SGF77] Robert F. Stamm, Mario L. Garcia, and Judith J. Fuchs. The optical

properties of human hair i. fundamental considerations and gonio-

photometer curves. J. Soc. Cosmet. Chem., 28:571–600, 1977.

149

[Sha01] Ahmed A. Shabana. Computational Dynamics. Wiley-Interscience,

2001.

[Tri70] R. Tricker. Introduction to Meteorological Optics. Mills & Boon,

London, 1970.

[WBK+07] K. Ward, F. Bertails, T.-Y. Kim, S. Marschner, M.-P. Cani, and

M. Lin. A survey on hair modeling: styling, simulation, and render-

ing. IEEE Transactions on Visualization and Computer Graphics,

13(2):213–234, Mar/Apr. 2007.

[WGL04] K. Ward, N. Galoppo, and M. Lin. Modeling hair influenced by

water and styling products. In Proceedings of Computer Animation

and Social Agents (CASA’04), pages 207–214, May 2004.

[WGL06] K. Ward, N. Galoppo, and M. Lin. A simulation-based vr system

for interactive hairstyling. In IEEE Virtual Reality - Application

and Research Sketches, pages 257–260, 2006.

[WGL07] K. Ward, N. Galoppo, and M. Lin. Interactive virtual hair salon. In

PRESENCE to appear (June 2007), 2007.

[WL03] K. Ward and M. Lin. Adaptive grouping and subdivision for simu-

lating hair dynamics. In Proceedings of Pacific Graphics’03, pages

234–243, September 2003.

[WLL+03] K. Ward, M. Lin, J. Lee, S. Fisher, and D. Macri. Modeling hair

using level-of-detail representations. In Proceedings of Computer

Animation and Social Agents (CASA’03), pages 41–47, May 2003.

[Wol99] S. Wolfram. The Mathematica book (4th edition). Cambridge Uni-

versity Press, New York, NY, USA, 1999.

[WS92] Y. Watanabe and Y. Suenaga. A trigonal prism-based method for

hair image generation. IEEE Computer Graphics and Applications,

12(1):47–53, 1992.

[WW90] A. Witkin and W. Welch. Fast animation and control of non-rigid

structures. In Computer Graphics Proceedings (Proceedings of the

ACM SIGGRAPH’90 conference), pages 243–252, 1990.

150

[YXYW00] X. Yang, Z. Xu, J. Yang, and T. Wang. The cluster hair model.

Graphics Models and Image Processing, 62(2):85–103, March

2000.

[ZFWH04] C. Zeller, R. Fernando, M. Wloka, and M. Harris. Programming

graphics hardware. In Eurographics - Tutorials, September 2004.

[Zvi86] C. Zviak. The Science of Hair Care. Marcel Dekker, 1986.

151

