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Abstract

This thesis examines muscle function through the process of making computer ani-
mation and developing interactive graphics applications. Muscle is the fundamental

"motor" that drives all animal motion and so is an appropriate place to begin inves-

tigations relevant to the goal of modeling human characters. The major supposition

of the thesis is that the shape changes generated by a contracting muscle will be

reproduced by accurately simulating the forces involved. To examine the hypoth-

esis, a novel computational model of skeletal muscle is presented. The geometry

and underlying material properties of muscle are captured using the finite element

method (FEM). A biomechanical model of muscle action is used to apply non-linear

forces to the finite element mesh nodes. The techniques that are developed for fast

graphical display and interactive manipulation of finite element simulations can be

used both to design computer animations and directly incorporated into new kinds

of applications-such as surgery simulation systems-made possible by the ever in-

creasing power of computer workstations. Results presented indicate that the twin

goals of realistic computer animation and valid biomechanical simulation of mus-

cle can be met using the methods presented herein and can be a foundation both

for animators wishing to create anatomically based characters and biomechanical
engineers interested in studying muscle function.
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Chapter 1

Introduction

The specific goal of this thesis is to construct a biomechanical model for simulating the

changes in shape that a muscle undergoes during contraction. Posed in this way, the thesis

topic falls roughly into the domain of physically-based modeling for generating computer

animation. The analysis of the problem is formulated using the displacement-based finite

element method (FEM) from mechanical engineering. Thus, a large part of our work will

involve developing and codifing techniques to apply the FEM to making animation, and in

the dual case, to working out computer graphics methods that allow the effective visualiza-

tion of the results of finite element simulation. Lastly, in the role of media technologist, an

effort will be made to evolve computer tools that are highly integrated and interactive; that

is, tools to enable one to easily design specific instances of structures to be simulated, to set

simulation parameters in a straightforward way, and that accommodate quick viewing of

the results that are obtained. In this light, the ultimate goal for the biomechanical muscle

model becomes not only computer animation, but to have it "take on a life of its own" and

become an autonomous tool for clinicians and physiologists interested in studying muscle

function as well as computer animators wishing to make anatomically accurate animations

IntroductionPump It Up
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of muscled characters.

The general problem, as stated, is to model elements of the human body through

physical simulation. Modeling and animation of the human form has long been considered

a significant research area in the computer graphics field. In natural communication, our

bodies transmit information about ourselves and we take cues, both narrative and physical,

from what is seen of others. The human shape is an important and ubiquitous expressive

tool that we would like to use in computer animations. This is also a hard problem. The

human body is the antithesis of shapes that is easy to model with computer graphics. The

body does not have a rigid form that can be treated in the same way as "flying logos". The

skeletal motions of the body are subtly complex and well coordinated. Next to the skeleton

are muscles that change shape due to the complex dynamic interactions of contraction and

contact. On the surface, realistic modeling of soft, living layers of skin and the ways in

which it interfaces to the outside world is also daunting.

Komatsu [Kom86] has put forth a minimum set of conditions for a computer graphics

based human figure model,

1. The shape of the model must be smooth everywhere.

2. The three-dimensional form of the body is defined by the skeleton, which must change

flexibly at the connecting angles between bones.

3. The shape must reflect the motions of the skeleton in accord with action, and the

shape must always keep its smoothness.

4. A local change in the skeleton must affect only a small part of the shape.

5. Change of shape like the swelling of muscles must be expressed.

To meet the goals of character animation, many people have designed systems that

IntroductionPump It Up
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greatly simplify the complete problem to make it possible to represent entire moving figures.

Typically, the geometry is modeled to achieve the effect of how the underlying anatomy

looks at the surface. The difference in this thesis is that we take a detailed look at the

anatomy by modeling the important underlying structures (ie. muscles and bone), rather

than stressing the ability to represent at the current time, a whole figure. The immediate

goal of the thesis is to accurately model individual three-dimensional muscles. This is a

"bottom up" approach, but because a physical model is created, our results can be ap-

plied both to produce realistic-looking animations of human characters and to help create

new bioengineering applications in which computer graphics display is vital. As computer

workstations become more powerful, and rendering and computation times drop, it will be

possible to extend the results from the thesis in a straightforward way. The eventual goal

then is not just character animation but to take a step towards the creation of an artificial

person that can repond convincingly as its simulated muscles are activated.

1.1 Previous Work

The approaches taken to computer modeling the shape of the human figure include,

1. geometric-rigid limbs, like bones, in which only the static geometry is specified

2. kinematic-geometry of whole limb changes due to kinematic position of underlying

skeleton

3. elastic-modeling parts of the body as non-linear visco-elastic-plastic composite ma-

terials that change shape due to the action of forces

For the geometric case, the three methods most commonly used to represent the

geometry are polygonal meshes, volume primitives and surface patches. Fetter [Fet82] used

1.1 Previous WorkPump It Up
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contours derived from bioster ometric data to generate the polygons in his "Fourth Man

and Woman". Human forms f -om standard volume primitives include Badler's Bubbleman

[BOT79], made from spheres. or Ginsberg and Maxwell's "cloud" figure [Max83], based

on ellipsoids. In these exampes, the shape of the limbs does not change as the character

moves.

Examples of kinematic nodels include that of Komatsu, who parameterized spline

patch control points to simul;,te a contracting biceps as the elbow is bent [Kom86]. Ko-

matsu used four major spline patch surfaces to cover the head, chest, abdomen and legs

of a skeleton. Chadwick et.al. in [CHP89], generalized this approach by using a "layered"

technique based on free-form deformations (FFDs) to apply muscle effects onto a skeleton.

His model derives the shape f a whole limb from the kinematic skeletal state. Abstract

muscles are parameterized as wo sets of FFDs. These FFDs are controlled by the skeleton

position to simulate the gross effects of muscle contraction at the body's surface. A simple

elastic model based on discret zed mass points joined by Hookean springs can be added on

top of this to allow for autom Ltic squash and stretch of the face or whole limbs.

Elastici models compriE e one form or another of displacement analysis of an elastic

continuum. This analysis can be characterized as static or dynamic, linear or non-linear,

isotropic or anisotropic, and s> on. The particular shape of a deformation is a function of

both the internal stresses and I trains within the elastic object and the external forces applied

to it. Examples of computer 1;raphics researchers modeling parts of the human body with

elastic analysis include Gourre t [GMTT89], who described a system for modeling the human

hand with a finite element voume meshed around bone. He formulates and solves a set of

statics equations for skin defc rmation based on bone kinematics and hand/object contact

points in a grasping task. WI ile bending and flexing of the hand flesh is nicely simulated,

1.1 Previous Work

'ie. visco-elastic-plastic models
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no muscle effects or changes in the underlying shape are calculated. Pieper [Pie92], has

developed a surgical simulation system that can be used both to create animation of the

face and to simulate surgical reconstructions of the face. He performs a finite element

analysis of the skin arranged as three different layers of material.

1.2 Elastic objects

Here, single muscle masses will be modeled as visco-elastic, deformable bodies that are

subjected to non-linear forces calculated from what is known about the biomechanics of the

situation. The hope is that if these forces are simulated correctly, then the correct changes

in the muscle shape will be automatically produced and propagated to the surface. The

shape of muscle groups will be found through the constrained interaction of an ensemble of

individual muscles.

The technique used to define the dynamics of deformation for an elastic object is the

FEM. More specifically, stiffness and mass matrices derived from finite element meshes of

twenty-node brick elements will be developed to yield differential equations that control

the displacement of the mesh nodal points. The resulting second-order matrix equations

are decoupled using the modal technique so that dynamic simulations can be run relatively

rapidly on a workstation-size computer.

Because the focus of the thesis is centered around computer graphics-based applica-

tions, the geometric shape of an elastic object will be described in a standard polyhedral

format that is well suited to rendering by a graphics workstations. This emphasis leads to

the following particular problems that will need to be addressed in the course of the thesis

work. First, is to show how a FEM mesh can be used to approximate the elastic volume

defined by an input set of polyhedral geometric data. This is a discretization process. Sec-

1.2 Elastic objectsPump It Up
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ond is to show how the FEM mesh is used to derive the dynamic equilibrium equations

from both the shape and the material properties of the elastic volume. Third, for com-

puter graphics, is to show how the FEM mesh defines a free-form deformation2 that can

appropriately warp the computer graphic models as the mesh changes shape in response

to external forces. This can aid in visualizing the simulated deformations. Lastly, forces

will be developed and applied to the FEM mesh that model muscle contraction, and other

effects appropriate to computer animation such as gravity, point-to-point attachment, and

collisions between objects.

1.3 Goals and Contributions

To sum up, the goals and contributions of the thesis are

1. To make a 3D, dynamic, biomechanically valid model of muscle that can simulate

both muscle force and muscle shape.

2. Develop techniques that will allow the finite element method to be used for mak-

ing computer animation of elastically deforming objects, while not compromising its

ability to approximate the dynamics of real physical structures.

3. To engineer a software testbed system that will be a useful, simple, interactive design

tool for creating new simulations and animations.

While the idea of using computer graphics techniques to produce animations of moving

human figures is not novel, the approach taken to the problem is. The development of an

accurate force based computational model to simulate muscle shape has not been attempted

in the past. The desire is to make a physically realistic model of muscle and muscle function.

1.3 Goals and Contributions

2based on twenty-node brick elements
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Why go to all this trouble? The primary application area is making computer animation,

but, if the simulation is done with a sufficient degree of accuracy, then we also have a

tool that can be applied in other areas. Suppose a medical researcher wants to compute

the effects of a tendon transfer surgery on a muscle's ability to generate force to drive the

skeleton. He needs to have a physical model of the structures in question in order to make a

clinical analysis. The model developed in the thesis should be able to make such predictions,

while also providing a way for the clinician to visualize the results of a simulated procedure.

1.4 Thesis Organization

The rest of the thesis is organized as follows, Chapter 2 discusses muscle anatomy and the

sources of force generation within a whole muscle. Chapter 3 goes over aspects of using finite

elements to simulate elastic materials. Chapter 4 concerns the complications introduced by

considering the musculoskeletal system rather than isolated muscles. Chapter 5 discusses

the 3d software system implemented to do the thesis work. Chapter 6 develops a force-

based finite element model of muscle that simulates both muscle force and muscle shape,

and describes experiments performed using the model.
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Chapter 2

Modeling a Single Muscle

This chapter contains a quick overview of skeletal muscle anatomy and dynamics [Kel7l]

[McM84] [VSL75] [CW74], presents a method from Zajac [ZTS86] [Zaj89] for computing

the amount of force generated in a muscle and discusses sources of input data that will be

used for defining the rest shapes of muscle masses. Skeletal muscle makes up from 40 to

45 percent of the total human body weight, so we expect that our emphasis on modeling

muscle will allow us to simulate shape throughout most of the body.

2.1 Basic Muscle Anatomy

Muscle connects to bone through tendons, which are bundles of connective tissue. These

connective tissues are composed largely of collagen, a fibrous protein found throughout the

body. The center part of the muscle can be called the "belly", which is surrounded by a

connective tissue sheath called the epimysium. The tendons are actually continuations of

these connective tissue sheaths that hold the muscle together. The whole muscle is held in

place within the body by extensive connective tissue layers called fascia.

Modeling a Single MusclePump It Up
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Muscle Belly

Figure 2.1: A whole muscle adapted from [Ke171]

The connective tissue also penetrates the muscle and divides it longitudinally into

groups of muscle fibers known as fasciculi. It is at this level of differentiation that the

muscle is supported by capillaries, veins and nerve fibers. Muscle fibers come in a wide

variety of lengths-sometimes stretching the whole length of a muscle-and are usually 10

to 100 microns in diameter. The muscle fibers are composed of still smaller elements called

myofibrils that run the whole length of the fiber. Each myofibril is about 1 to 2 microns

thick. A single muscle fiber contains on the order of hundreds to thousands of myofibrils.

It is at the level of myofibril that a discussion of the contractile mechanism for a

muscle usually begins. The myofibril is made up of sarcomeres arranged in a repeating

pattern along its length. This repeating pattern is responsible for the striations or banding

pattern often observed on skeletal muscles. The sarcomere is the actual functional unit of

contraction for the muscle. Sarcomeres are short sections-only about 1 to 2 microns long-

that contract upon suitable excitation, developing tension along their longitudinal axis. The
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Figure 2.2: Section of muscle [Kel7l]
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shortening of a single muscle fiber then is due to the effect of many sarcomeres shortening

in series. A bundle of muscle fibers can be thought to be many of these force generators

arranged in parallel. Finally, the combined tension produced by bundles of muscle fibers is

transmitted to the bones through the network of connective tissue and muscle tendons.

Z membrane

Relaxed myofibril

Sarcomere

Contracted myofibril

A band

Figure 2.3: The myofibril in relaxed and contracted states [Kel7l]

2.2 Muscle Force

For a given muscle, the arrangement of muscle fibers relative to its tendon attachments

will determine the amount of shortening during contraction and thus the amount of force

generated. In general, there are two different kinds of fiber arrangements, longitudinal and

penniform. The fibers in a longitudinal muscle run parallel to each other along the entire

length of the muscle. In a penniform muscle the fibers terminate at an angle relative to the

tendon. There are several variations of penniform muscles. Unipennate muscles have their

fibers arranged obliquely to a tendon only on one side. In a bipennate configuration, the

fibers converge onto the tendon from both sides. Multipennate muscles are a combination

of both unipennate and bipennate fiber arrangements.
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Figure 2.4: Longitudinal muscles [Kel7l]

U nipennote Bipennate

Figure 2.5: Peniform muscles [Kel7l]
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When the fibers of a longitudinal muscle shorten by an amount F,, the muscle as

a whole shortens an amount M, = F,. For a penniform muscle, the amount of muscle

shortening depends on F, and the pennation angle a. From Figure 2.6 it is clear that M, =

F, cos a. This relationship also shows that the penniform fiber arrangement approaches the

longitudinal as a approaches zero.

Ms
mimmuminiiniinuuum

7A- MS-

Figure 2.6: Comparison of longitudinal
contraction. adapted from [Kel7l]

and penniform shortening. McO, is the length after

The amount of force developed by a shortening muscle depends on, among many

factors, the number of contracting muscle fibers, the size of each fiber and the internal

fiber arrangement. The product of the number of fibers and the fiber size is itself an

important measure and is called the physiological cross section, which, for a longitudinal

muscle, can be determined by making a transverse cut through the belly of the muscle.

For a pennate muscle, the results of such a cut would depend on the length of the muscle

and a. From Figure 2.7 it can be seen that the area defined by a cut at X determines the

physiological cross section for the muscle on the left, but would not include all the fibers

2.2 Muscle ForcePump It Up



David T. Chen 24

for the unipennate muscle on the right. To determine the cross section for the unipennate

muscle requires summing the area from cuts at A, B and C.

C

B

A

Figure 2.7: Physiological cross section adapted from [Kel7l]

In general then, a penniform fiber arrangement trades off a lesser amount of muscle

shortening for a greater number of fibers that can be involved in contraction. But pennation

angle effects the final force that a muscle can develop in yet another way. Figure 2.6 also

shows that if a muscle fiber generates a force in the direction of F, the amount of force

produced along the muscle's line of action must again be scaled by cos a.

2.2.1 Sliding Filament Theory of Contraction

The discussion above has concerned the more or less macroscopic properties of muscle

force generation. Here we will briefly touch upon the contractile mechanism within a single

sarcomere. Muscles have been differentiated into at least eight separate protein structures, of

which four play a role in contraction. The two most important of these are actin and myosin.
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These two contractile proteins form filaments within the sarcomere, and, when viewed in

cross section, can be seen to be packed hexagonally with six thin filaments surrounding

each thick filament. The thick myofilaments are made of myosin, the thin myofilaments are

made of actin.

Z line H zone I band A band Z line

sarcomere
thin thick

myofilament myofilament

Figure 2.8: Electron micrograph showing three myofibrils in a single muscle fiber [VSL75]

The idea behind the sliding filament theory of muscle contraction is that as a muscle

fiber shortens, the thin and thick myofilaments do not themselves get shorter, rather they

slide across each other. This idea was presented concurrently in the same issue of Nature

by A. F. Huxley and H. E. Huxley in 1954 [HN54] [HH54]. A. F. Huxley developed an
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interference microscope that allowed him to watch changes in the banding pattern of isolated

frog muscle fibers under various circumstances. As the fiber was subjected to a purely

passive stretch or shortening, the I-bands became either longer or shorter, but the length of

the A-bands remained about the same. Under an isometric contraction with both fiber ends

fixed, the banding was essentially invariant. Under isotonic contraction, it was again the

I-bands that took up the resulting change in length. Because it was known at the time from

electron microscope studies by H. E. Huxley that the A-bands were defined by birefringent

rodlets of myosin and that the thin actin myofilaments extended through the I-bands into

the A-bands, A. F. Huxley was able to conclude that during a muscle fiber contraction, the

actin filaments were drawn into the A-bands, between the myosin rods. Furthermore, he

proposed that the known dependence of the isometric tension produced in a muscle fiber

to the fiber length is caused by the change in overlap between actin and myosin within a

sarcomere.

H zone I band A band
Z line Z line

thin thick
myofilament myofilament

Figure 2.9: Changes in fiber banding pattern due to contraction [VSL75]
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2.2.2 Hill's Force Model

One of the simplest kinds of experiments that can be done to a prepared, isolated whole

muscle is to measure the force output as the muscle is stretched through a number of

constant lengths. If this is done with no stimulation, then the resulting plot of force or

tension to length is said to represent the passive elastic properties of the muscle. This

passive tension-length curve has an exponential shape in which the curve gets steeper and

steeper the more the muscle is elongated. This behavior is very similar to a rubber band

in which the material can be pulled very easily until it is all "stretched out", and then the

rubber band can feel very stiff.

If the same kind of tension-length plot is then made with the muscle fully stimulated,

then a different curve is produced that has components from both active and passive force

components. This curve, of course, should always be greater than the passive force-length

plot by itself and is called the total tension-length curve. Finally, the tension-length curve

that represents only the active muscle force is found by subtracting the passive curve from

the total curve as in Figure 2.10. The length dependence of the developed force is wholly

consistent with the sliding filament theory of muscle contraction.

Futhermore, from measurements on human subjects, A. V. Hill proposed that there

is also a velocity dependent force component that counteracts the contraction force. That

is, the force exerted by the muscle decreases as the speed of shortening increases [GH24]. It

was thought at first that this phenomenon depended on an automatic regulatory mecha-

nism within the central nervous system, but Gasser and Hill showed through quick-release

experiments on isolated frog muscle that this damping effect was part of the "fundamental

character" of the muscle itself. Two experiments point out this result.

First, a muscle held isometrically was suddenly allowed to shorten to a new length

against no applied load. The force that was recorded fell below the amount that corre-
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Figure 2.10: Tension-length curves. The dotted line shows the length-tension curve of the

resting muscle. The total force recorded on tetanizing the muscle is shown by the solid line.

The extra force developed on stimulation is shown by the dashed line. The progression from

(a) to (c) results from muscles with progressively less connective tissue. [CW74]
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sponded to the isometric equilibrium point of the new length and only slowly developed

tension back up to that point. The apparatus to perform this experiment is shown in Fig-

ure 2.11 where the knot at K determines the final amount of shortening. Schematic versions

of the curves obtained from their quick-release experiment are shown in Figure 2.12.

ADASTABLE
JAW

K

MUSCLE

LEVER

S

Figure 2.11: Gasser and Hill quick-release apparatus [GH24]

The observation that the measured muscle force did not instantaneously reach the level

predicted by the new length indicated a damping effect within the contractile machinery.

In the second experiment, a muscle was allowed to shorten at constant velocities, and a

series of plots were made of the force required to produce that speed and the amount of

shortening that was finally experienced. The area under these tension-shortening curves

was then integrated to yield a relationship between work (force * distance) and velocity.

The work-velocity curve has a decreasing slope, which is also consistent with the idea of a
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Figure 2.12: Quick-release curves, plotting tension versus time [GH24]

velocity-dependent force within the muscle. These curves are illustrated in Figure 2.13.

RELATIVE SPEED OF
SHORTENING

At 1-47
A2 4-5
A3 5-1

Figure 2.13: Muscles shortening at 5 constant speeds [GH24]

Quick-release experiments also play a role in determining the so-called series elastic

element of a muscle. The series elastic component was originally proposed by Levin and

Wyman in [LW27]. They built a device that allowed them to alternately stretch and release

a muscle stimulated at a short rest length such that the passive parallel component does not

enter the picture. The tension-length curves they obtained from trials at different speeds

on the jaw muscle of a Dog-Fish is shown in Figure 2.14.

2.2 Muscle Force
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Figure 2.14: Tension-length curves from the jaw muscle of the Dog-Fish [LW27]

The fastest release is the curve on the far left, the quickest stretch is on the far right.

If there were no series elastic component, the Dog-Fish plots would not have the exponential

shape that is observed, rather, the lines of stretch and release would be straight. Levin and

Wyman proposed the visco-elastic muscle model II on the right in Figure 2.15 to explain

their findings. Their model is an extension of Hill's original visco-elastic model (I in the

same figure) that included only the damping effects deduced from his measurements of the

relationship between force and velocity.

Wilkie in [Wil56] made very direct measurements of the series elastic component

with a quick-release type experiment. A schematic of his device is shown in Figure 2.16.

The muscle is stimulated and develops force isometrically, stretching out its series elastic

component. On release by the electromagnet at (e), the muscle is subjected to an isotonic

load defined by the weight at (c). The stop at (d) insures that the load is applied only after

release. The damping system at (f) removes mechanical vibrations in the lever system that

would otherwise upset the muscle length measurements.

Wilkie found that immediately after the release, the previously stretched series elastic
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Figure 2.15: Visco-elastic muscle models [LW27]

Figure 2.16: Wilkie's quick-release machinery [Wil56]

2.2 Muscle Force
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element shortens very rapidly to a length consistent with the isotonic load that is used. Then

the contractile component shortens with a much lower velocity corresponding to the load.

These two phases of shortening are shown in Figure 2.17. The initial perpendicular drop

of length provides direct evidence for an elastic component in series with the contractile

machinery of the muscle.

2mm

g wt.

SO/Sec

Figure 2.17: Shortening due to quick-release for various isotonic loads [Wil56]

A simple mechanical model of muscle that takes into account the effects described

above is shown in Figure 2.18. This model is commonly attributed to A. V. Hill. The

active state force To is found, as discussed above, by subtracting the total force measured

at different lengths for a stimulated muscle from that found to be due to passive effects

alone. The notation To(x1, t) indicates that this force is a function of the muscle length

and time-varying activation. The passive parallel stiffness KPE has contributions due to

the penetration of connective tissue through the muscle body resulting in the fasciculus
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divisions and also interfiber elasticity. The parallel damping component B is most likely

due to the rate of the biochemical reactions that are responsible for contraction at the

myofilament level. The series stiffness KSE is primarily from the effect of tendon at the

muscle attachment points, but is also probably partially due to the details of myofilament

attachment within a sarcomere. The series element is very important in its ability to buffer

the rapid change from inactive to active state and also provides a mechanical energy storage

mechanism for the body in motion.

Controctile component

T T

KSE

KPE

Sx, - - x2

x

Figure 2.18: Hill's muscle model [McM84]

The Hill model while very simple, has proven enormously useful in practice in making

calculations of the force generation of muscles working against different kinds of loads.

2.2.3 Zajac's Force Model

Zajac [ZTS86] [Zaj89] has developed a "dimensionless" lumped model of a complete mus-

culotendon actuator that can be easily scaled to model particular whole muscles. Zajac's

model is a refinement of the Hill model, and the normalized force curves that are presented

directly reflect the non-linearities that result from the action of sliding filaments. The curves

2.2 Muscle ForcePump It Up



David T. Chen 35

for the active and passive muscle force components are taken from measurements of single

muscle fibers to ensure that tendon effects are not superimposed. Furthermore, pennation

effects are directly included, while the series elastic element not associated with tendon is

removed.

The isometric force generated in a particular actuator depends on one set of param-

eters that is considered constant over all actuators and another set that is musculotendon

specific. The four specific parameters are,

a pennation angle

FO maximum isometric force of active muscle

lM optimal muscle length at which FO is developed

lT tendon rest length

Tendon

Tendon

LTlu

Figure 2.19: Musculotendon architecture [ZTS86]

The active muscle is represented in Figure 2.19 by the contractile element CE. Force

2.2 Muscle ForcePump It Up



David T. Chen 36

developed by passive muscle is from kPE and is summed with the force from CE. The effect

of the series elastic element kSE is lumped with the tendon model kT. The dimensional

units of interest are force and length. F0 and i" are the normalizing factors for these units.

A tilde above a symbol denotes that it is a normalized quantity, for example,

m normalized muscle fiber length

Other quantities and relationships used are,

iMT

IT

musculotendon length

tendon length

IMT _IT + lM cos a

Zajac gives the non-specific, dimensionless functions to model a musculotendon actu-

ator in Figure 2.20 and Figure 2.21.

FORCE kw

active force f4(jM)
1.1 ___ -. passiwv force )FPE(iAU)

1.0 - - - - - - - -

0.E

LENGTH jTm

Figure 2.20: Active and passive muscle models. Normalized active muscle force FCE (1M)

and passive force PPE(M) vs. normalized muscle fiber length IM. [ZTS86]
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Figure 2.21: Tendon model. Normalized tendon force FT(JT) vs. tendon strain eT. [ZTS86]

The isometric muscle force functions can be written,

Fio (IM t) - PCE( M

PM(iM, t, a) = (T(, t) + PPE(TM)) cos a

where a(t) is the time-varying normalized muscle activation function. For tendon, the

normalized force is PT(eT) where eT is the tendon strain defined by,

iT _ l-Tlcos )- _ (lMTfMo Cs a)-1T
~~ IT 11. i

To use Zajac's muscle model, the functions FfE(M), FPE(M) and PT(ET) and their

derivatives need to be approximated. The active muscle function FCE(iM) is implemented

as an interpolating cubic spline through twelve control points from Delp [De190]. The

dpCE
derivative function -/- is simply the derivative of the interpolating spline. The passive

parallel force FPE(lM) is estimated with the quadratic function,

PPE(M) = 4 (M 1)2 if TM > 1 else 0

dFPE if M> 1 else 0
dl M
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Plots of these two approximating functions are presented in Figure 2.22 for comparison

with Zajac's curves. The tendon model F(eT), is implemented as an order 50 Chebyshev

Figure 2.22: Solid line is spline approximated active force function. Dashed line is quadrat-
ically approximated passive component.

polynomial. Evaluating and finding the derivatives of such polynomial functions is very

straightforward [PFTV88]. The shape of the Chebyshev approximated tendon force is

plotted in Figure 2.23.

To characterize the dynamic properties of a musculotendon actuator, it is also neces-

sary to consider the velocity dependent nature of the muscle forces. These damping forces

are represented by the dashpot element B in Hill's model of the previous section. Zajac

depicts the velocity-force relationship as in Figure 2.24 with the dimensionless form of the

velocity ~CE. This muscle velocity is normalized with respect to the fiber rest length laM

and the maximum normalized velocity iBCE, which is a fifth parameter specific to modeling

the dynamics of a particular muscle.

For our purposes, it is necessary to find force as a function of velocity, rather than
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Figure 2.23: Chebyshev approximated tendon model.

vELOwrY - ;,"

FORCE ?CfEI |

Figure 2.24: Velocity-force function of active muscle. Dimensionless velocity obCE vs amount

of normalized force relative to isometric force. [ZTS86]

2.2 Muscle ForcePump It Up



David T. Chen 40

the velocity as a function of force, as in [AD85]. Thus, Zajac's curve is turned on its side

and approximated with,

f(jCE) _ 1.65 arctan(3.1 * (~,bE + .32774)) - arctan(3.1 * .32774) + 1

which is plotted in Figure 2.25. Negative velocity is for muscle contraction, while lengthen-

ing muscle will have positive velocity. The constants are set so that the normalized force will

be 1 when the velocity is 0, the force will be 0 when the velocity is -1, and the asymptotes

are as in Figure 2.24.

Figure 2.25: Force-velocity function approximated with arctan.

Finally, in the dynamic case, the total active force from the contractile element is

seen to be a function of the activation a(t), the force function FCE(IM),and the normalized

muscle velocity ~,CE

pCE _ f3CE (M _ ~CE)a(t) CE ( M
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and the force in the whole muscle is

PM = ( PCE + pPE([M)) cosa

As an example application of Zajac's model, lets calculate the maximum force that

can be generated by an isometric musculotendon actuator in steady state. First, observe

for this case that the force in the tendon should equal the force in the muscle and that

velocity effects will not come into play, so

#T(e) - PM(lM ) = 0

and writing the tendon strain in terms of IM,

FT ( -MT Mls) - (M)= G(IM ) 

Thus, to find the isometric muscle force, it is necessary only to find the zeros of G(M).

This is easily done using a one-dimensional root finder like Newton-Raphson [PFTV88] as

long as G(IM) and the derivative G'(IM) can be evaluated for arbitrary normalized muscle

lengths IM. Writing for G'(I),

, = dT deT d(io+ dFPE
dET diM diM diM cs

And finally in terms of the dimensionless, consistent functions as implemented in

Figure 2.22 and Figure 2.23

G(I M ) FT + - (a(t)PCE (M ± PPE(M) Cosa

G'(IM) = dFt)2S + d-P -o 
-f (\ dim± dim) o

To illustrate the effect of the tendon slack length on the behavior of Zajac's model,

the zeros of G(IM) were calculated as above for varying values of IT. Plots are presented
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of normalized muscle force versus length for these different values of tendon rest length

in Figure 2.26. The good correspondence between the curves of this figure and the ones

presented in [ZTS86) (see Figure 2.27), we use as validation for our implementation.

Figure 2.26: Isometric normalized muscle force vs. IMT - lI. Solid line is IT = 1 dashed

line is 1T = 8, and dotted line is l' = 16.

2.3 Muscle Shape

This thesis will test the hypothesis that to make a good simulation of the changes in

shape that a contracting muscle experiences, it is sufficient to characterize both the resting

material and the changes in force known to be important to the contractile process. The

primary benefit of this approach is that if the forces are calculated properly, then not only

will it be possible to visualize a muscle in action, but that a valid biomechanical model

will also be developed that can be used in further experimentation. For the purposes of

visualization, however, it is important to obtain accurate geometric representations of the
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Figure 2.27: Isometric normalized muscle force vs. IMT - IT. [ZTS86]

rest shapes of muscle masses upon which the dynamic simulation techniques developed in

the next chapter will be run. The emphasis of the thesis is on dynamics and not geometric

modeling, so this section will serve only to point to sources from which input data has been

obtained.

Because the interest here is primarily in computer graphics based applications, the

goal in this section is to construct polygonal models that can be easily treated with stan-

dard rendering and animation routines. It will be shown in Section 3.2 how a free-form

deformation based on twenty-node isoparametric cubes can be developed to govern both

the dynamics formulation and the visualization process by defining a space that controls

how the points of these polygonal models can be warped as the simulation demands that

objects change shape. It will also be shown in Section 5.6 how these polygonal models will

be used to define the initial geometries for finite element meshes made from isoparametric

cubes.

Geometric models that have served the purposes of the dynamic simulation programs

2.3 Muscle ShapePump It Up



David T. Chen 44

have been prepared from a variety of sources. The first experiments were made with range

data of human heads from a CyberwareTM 3D digitizing system. Muscle rest shapes were

constructed from both the Swivel 3DTM Professional [MhLH90] modeling program on the

Macintosh and from contour stacks derived from magnetic resonance imaging (MRI) sys-

tems.

2.3.1 Range Camera Data

Range data such as that from the Cyberware camera is very simple to transform into a

polyhedral representation. Two output files are produced by the scanning system. The

first is an 8-bit range picture that represents a cylindrical arrangement of points from the

source object, the second is a 24-bit image picture that can be used to texture-map color

information back onto the scanned geometry. Two such data files from a human head' are

shown in Figure 2.28 and Figure 2.29.

The Cartesian x, y location for each pixel in the range picture encodes the cylindrical

0 and z coordinates for each sampled point, while the grayscale pixel value at each location

is the radius r for that 0 and z. The image picture is the RGB color value at each of these

digitized points. The cylindrical samples are simply transformed into 3' by

x = r cos9; y = r sin 0; z = z

To convert range data into polyhedral form, the total number of points and polygons

is printed, a point list is made from the range picture, and then connectivity information for

each (quadrilateral) polygon is written out. This we call an OSU file after the polyhedral

data standard created at Ohio State University. Finally, a subsidiary vertex color file is

made from the 24-bit image picture. This is illustrated by a simple C language program,

'Thanks to David Sturman for the use of his head
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Figure 2.28: Range camera picture from Cyberware TM 3D system

Figure 2.29: Point color picture
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range2osu, that makes an OSU file from range data.

#include <stdio.h>
#include <math.h>

#define PI (3.14159265359)

typedef unsigned char byte;
typedef byte PIXEL[3];

range2osu( range, color, width, height, gamma, osufp, vclfp ) 10
byte *range;

PIXEL * color;
int width, height;
double gamma;
FILE *osufp, *vclfp;

{
int no-pts, no-polys;

no-pts = height * width; no-polys = (height-1) * width;

fprintf(osufp, "Xd %d\n", no-pts, no-polys); 20

range2pts( range, width, height, osufp );
range2quads( range, width, height, osufp );
range2vcl( color, width, height, gamma, vclfp );
fflush(osufp); fflush(vclfp);

}

To generate the point list, range2pts first finds 6, z and r corresponding to pixel i, j.

The space is arranged so that 6 begins at 90* and increments positively in a full circle, r

is in the range [0,1] and z is [-1,1] where +z is up. The result is then transformed into R'

and printed.

range2pts( range, width, height, osufp )
byte *range;

int width, height;
FILE *osufp;

{
int i, j;
double x, y, z, r, theta, thetainc;

thetainc = 2 * PI / (double)width; 10

for (i=0; i<height; i++)
{ z = (-2. / (double)(height - 1) * i) + 1.; /* Find z from current row indx */

for (j=O, theta = PI/2.; j<width; j++, theta += thetainc)
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{ r = ((double)(range[i*width + j])) / 255.; /* Find r from grayscale*/
x = r * cos(theta);

y = r * sin(theta);

fprintf(osufp, "%g Xg %g\n", (float)x, (float)y, (float)z);

}
} 20

}

Polygons for the OSU file are tessellated into quadrilaterals by range2quads. The

polygons are arranged along rows of points where the last polygon in each row is made to

wrap around and join with the points from the first polygon in that row. This prevents any

shading seams from the renderer.

range2quads( width, height, osufp )
int width, height;
FILE *osufp;

{
int i, j, k;

for (i=O; i<height-1; i++)
{ k = i*width;

for (j=O; j<width-1; j++)
{ k++; fprintf(osufp, "4 %d %d %d %d\n", k, k+1, k+width+1, k+width); 10

}
k++; fprintf(osufp, "4 %d %d %d %d\n", k, i*width+1, (i+1)*width + 1, k+width);

}

The vertex color file is made from the 24-bit image picture associated with the range

picture. Gamma control is given to set the contrast of the output vertex colors.

range2vcl( color, width, height, gamma, vclfp )
PIXEL *color;

int width, height;
double gamma;
FILE *vclfp;

{
int i, j;
double r, g, b;

10

for (i=O; i<height; i++)
{ for (j=O; j<width; j++)

{ r = ((double)(color[i*width + j][0])) / 255.;
g = ((double)(color[i*width + j][1])) / 255.;
b = ((double)(color[i*width + j][2])) / 255.;
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gamma = 1./gamma;
r = pow(r, gamma); g = pow(g, gamma); b = pow(b, gamma);

r = clamp(r, 0., 1.); g = clamp(g, 0., 1.); b = clamp(b, 0., 1.);

fprintf(vclfp, "Xg Xg %g\n", (float)r, (float)g, (float)b); 20

}
}

Typically, the data sets acquired from the Cyberware process are quite large, making

full resolution models unwieldy. For example, a 512x256 size range picture will generate

an OSU file with over 130,000 polygons. To make lower resolution, more conveniently

sized geometric models, a downsampling operation is first performed to the range and color

images, then OSU files are made using the range2osu program on the resulting smaller

pictures. Downsampling in the image-space is much simpler than trying to do the equivalent

filtering in world-space in order to make models with fewer polygons. It should be noted

that with appropriate filtering, very nice lo-res geometric models can be achieved. In fact,

for this kind of data many 2D paint and filtering operations have been found to be very

effective [Wil90]. The Adobe PhotoshopTM paint program on the Macintosh has proven

invaluable in performing the operations mentioned above, as well as allowing interactive

repair of noisy range data.

2.3.2 Manual Shape Input

Not surprisingly, often the easiest way to make a computer graphics object is to use an

interactive program such as Swivel 3 DTM Professional that can create 3D geometries through

extrusion, lathing, and skinning operations 2. The first muscle object that was created in

the course of the thesis work was a human biceps from an anatomically accurate plastic

model. Points were digitized from the plastic model for both TOP and SIDE views. The

biceps was then "lathed" using a circular cross section. The resulting computer graphics

2Thanks to Steve Drucker for writing the program to convert Swivel output files into OSU format
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Figure 2.30: Reconstructed "Sturman" heads with 1984, 32512 and 8064 polygons

model is shown in Figure 2.31.

Since much of the experimental work involving muscle biomechanics is done using

frog muscles, the gastrocnemius muscle from a prepared frog was digitized for use in the

computer simulated biomechanical experiments discussed in Section 6.1. Some time was

spent observing Dr. Simon Gitzer at MIT in the "frog lab" making force-length measure-

ments from the gastrocnemins of an actual animal. After these were done, the muscle was

fully dissected and measured for input into Swivel. The procedure used was much like that

for the plastic biceps, and a lathed object was created. This is shown in Figure 2.32.
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Figure 2.31: Human biceps, 342 polygons

2.3.3 Contour Data

Imaging from CAT and MRI scanning systems is a relatively new but very important source

of clinical data. These systems acquire three-dimensional objects as a series of 2D slices

arranged along an axis in space. The "skinning" facility in Swivel can be used to operate

on data sets of this kind, where anatomical forms are defined by varying the shape of

the cross section along the length of the body. More sophisticated techniques such as the

marching cubes algorithm [LC87] can automatically create polygonal models of constant

density surfaces from 3D data arrays of this type.

One of the practical drawbacks of CAT and MRI systems is that they are very expen-

sive and so access to them is limited. For this reason, an effort was made by Dr. Gitzer to

reconstruct a set of frog musculature by, in essence, making the stack of contour informa-
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Figure 2.32: Frog gastrocnemius, 576 polygons

tion by hand. A frog leg was embedded in epoxy and sliced into two-dimensional sections.

Slides were made of these sections and enlargements made for digitization as a precursor to

making a 3D model. The slides were scanned into the computer and the individual muscles

differentiated by flood-filling their regions with different grayscale values. Figure 2.33 shows

one such slice.

The idea behind trying to digitize the frog musculature as described is to obtain data

for a whole musculoskeletal system, with the muscles and bones in their correct relative

in vivo positions. Many interesting problems are introduced by considering the whole

system. Forces must be calculated for modeling contact between bone, muscles and skin.

A simulated skeleton can be driven by muscle forces calculated at the tendon attachment

points. Higher-level coordination and reflexes can be modeled. Chapter 4 will touch upon

some of these topics.
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Figure 2.33: Hand-derived slice through frog leg

The effort with the frog leg was subsequently put on hold when a polygonal data

set from an entire human left calf became available through Dr. Alan Garfinkel at UCLA.

The source for the calf model was a long sequence of MRI scans, that were carefully hand

segmented into the individual, anatomical muscle masses and then "skinned" into triangles.

Ten muscles, including the medial-gastrocnemius, the lateral-gastrocnemius, and the soleus,

and one muscle group make up the data. The tibia and fibula bones are also included.

Figure 2.34, from Dr. Garfinkel shows how the MRI scans were anatomically carved up.

The image is shown with its colormap inverted for clarity.

Because the leg data was received as files of triangle meshes, no further processing had

to be done to ready them for simulation or display. Figure 2.35 shows three different views

of the reconstructed leg. The entire data set is shown in the middle view. In the left view,

the overlying gastrocnemius muscles and the soleus are removed to show the underlying
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Figure 2.34: MRI slice through human calf
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structures, and the tibia and fibula are shown on the right.

Figure 2.35: Reconstructed legs

The experiments done in Section 6.1.4 using this data will be centered around the

medial-gastrocnemius. This muscle was chosen both because of its large size, and because

it is on the outside, closest to the skin. Thus it should play a large part in determining the

shape of the whole leg. Figure 2.36 shows three views of the medial-gastrocnemius.

2.4 Simulating a Muscle

This section has discussed two different aspects of muscle that are essential to making a

simulation -the first topic was muscle models, the second concerned the acquisition of

muscle data. We have shown how the Hill model was developed and discussed how Zajac's

model is a refinement. We have also described an implementation of the Zajac model. Our
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Figure 2.36: Medial-gastrocnemius

data sources are Cyberware scans, hand-made slices, MRI slices and direct geometric output

from Swivel. All these are turned into a standard polyhedral representation for display.

To simulate the action of muscle for a computer graphics application, the model and

data must be synthesized, and for this the finite element method is used (see Figure 2.37).

The FEM will be the vehicle for our muscle model. The polyhedral data is used to define

meshes of finite elements. Dynamic equilibrium equations are derived from the mesh. Za-

jac's model is used to apply forces to the mesh node points. The FEM model will then

be dynamically simulated forwards and the mesh will automatically deform in response. A

free-form deformation defined by the mesh will help us visualize the resulting changes in

shape due to the contraction.

There are many things known about muscle that a computationally based muscle

should be able to predict. For the model to be interesting biomechanically, we should be
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Muscle Model

Figure 2.37: Muscle model and muscle data after [Zaj89] and [LC87]

able to the calculate the timevarying course of the force that a muscle generates at different

lengths, and with different tendon rest lengths. The model should also be able to predict the

effect of velocity dependent forces. Thus, as a way of validating the final implementation,

an effort will be made to reproduce some of the experiments on whole muscle that lead to

the development of Hill's biomechanical model.

Besides generating force to move the bones, a 3D model of muscle should conserve

volume as its shape changes. Because of the enclosing tendon sheath, muscle preserves

its volume as it elongates and contracts. In fact, one of the earliest recorded experiments

performed on a single prepared muscle demonstrated this effect [McM84]. Jan Swammerdam

performed the experiment illustrated in Figure 2.38 on a muscle removed from a frog in the

early 1600's. Later, the constant volume finding was extended to human muscles by Glisson

who had subjects place their arms in a water filled tube sealed at the elbow.
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The experiment of Jan Swammer-
dam, circa 1663, showing that a muscle does
not increase in volume as it contracts. A frog's
muscle (b) is placed in an air-filled tube closed
at the bottom (a). When the fine wire (c) is
pulled, the nerve is pinched against the support
(d), causing the muscle to contract. The drop
of water in the capillary tube (e) does not move
up when the muscle contracts. From Needham
(1971).

Figure 2.38: Muscles contract with constant volume. [McM84]
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Chapter 3

The Finite Element Method

The displacement based finite element method (FEM) has been widely used to model elastic,

deformable materials in engineering analysis. It is particularly well suited to a computer

implementation and can be used effectively to model real world physical situations with

real world boundary conditions and forces. For the purposes of simulating a muscle, the

approach will be to formulate the dynamics of a volume preserving elastic object with

material properties to be found in the literature. The rest shape for a muscle will be

determined from either hand derived or machine scanned histological data. The important

input forces will come from Zajac's biomechanical model discussed in the previous section.

When considering a musculoskeletal system, other forces need also be considered. These

include forces from the fascia sheath drawing the muscle to the bone and muscle-bone and

muscle-muscle contact.

To complete the thesis project, a system that performs FEM dynamics on an HP

graphics workstation based on the modal formulation has been implemented. The rest of

this chapter will discuss the finite element foundations for the resulting computer program

and point out the tradeoffs that are made to make solving the dynamics of deformation
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tractable for this hardware platform.

For computer animation, the steps taken to perform dynamic simulations of elastic

objects using the finite element are,

1. Begin with polyhedral model

2. Interactively specify FEM mesh

3. Solve for equilibrium equations, do modal transformation, etc.

4. Simulate dynamics by calculating forces and finding mesh displacements

5. Warp points of polyhedral model into deformed mesh space

6. Render new shape

The polyhedral model represents the shape of the elastic body to be simulated and is

considered the input data. A FEM mesh is constructed that approximates the volume

of the data with some number of finite elements. From the FEM mesh and the material

properties of the object under investigation, dynamic equilibrium equations are found, the

modal transformation is performed, and other preprocessing steps are taken. A standard

numerical differential equation solver is then used to advance the state of the mesh one time

step forwards. This results in displacements for the nodal points of the FEM mesh that are

then used to warp the points of the original polyhedral model with a free-form deformation

technique. The new shape is then rendered and the next simulation step taken. While

steps 1-3 are considered part of a preprocessing procedure, steps 4-6 happen over and over

throughout an interactive simulation application and is called the simulation loop.

Much of the discussion to follow concerning the finite element method is from Bathe

[Bat82] and is presented here as a way of introducing the FEM to computer graphics re-

searchers. Because one of our goals is to use the FEM within interactive graphics applica-
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tions, it was decided to implement a custom finite element package that could be tightly

coupled to graphics output, rather than using a commercially available system. An em-

phasis carried throughout our implementation is to speed up the steps of the simulation

loop whenever possible. One of the key technical contributions of the thesis is to define the

free-form deformation of step 5 that "links" the FEM with computer graphics output, in

Section 3.2.2.

3.1 Equilibrium Equations

To model the elastic properties of deformable objects, sets of differential equations can be

defined that govern the dynamics of their deformation. There are a variety of techniques for

deriving these equations-Terzopolis and Fleisher discuss in [TF88] a method based on an

analysis of the energy of deformation for an elastic material, while Pentland and Williams

in [PW89] discuss the method of finite elements. This thesis models elastic objects as

collections of twenty-node isoparametric brick elements. For a body having n nodal points,

the finite element equations have the form

Mi +Cit+ Ku = R

Where u is an 3n vector of nodal displacements, M, C and K are 3n x 3n matrices describing

the mass, damping and stiffness between points within the body, and R is a 3n vector of

forces applied to each node.

3.1.1 Stiffness Matrix K

The stiffness matrix K can be found by choosing a specific interpolating function for dis-

placement throughout the body and using a linear approximation for elasticity. Though

twenty-node isoparametric elements will be used in the subsequent muscle analysis, the
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discussion that follows is based on a four-node tetrahedron element for simplicity. It will

be shown how the stiffness matrix for a twenty-node element can be found in a similar

way. Following a development for linear planar elements from [Roc83], K is derived for the

special case of the tetrahedral finite element in Figure 3.1 as follows.

.3

Figure 3.1: Four node tetrahedron element

At each of the four nodes of the tetrahedron, define a three-vector for the displacement,

and for the force.

{U} {
{F} =
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The tetrahedron has three displacement degrees of freedom for each of the four nodes,

for a total of twelve DOFs. For the tetrahedral element these are,

}( T T{U} { I 0 U ,, Ul 2 U3 =T {O V0 W0 U0 V1 W

and the nodal forces acting on the element are written,

F1 F2 FAIF F'{ F*} = oF 2 3 = F0 z Fx1 Fy, Fzj-

Now, choose a displacement function f(x, y, z) that defines the displacement U(x, y, z)

at any point in the element. For the tetrahedron it is natural to choose the linear functions,

u(x, y, z) = ai + a 2x + a 3y + a 4z

v(x, y, z) = a 5 + a6 X + a7 y + a8 z

w(x, y, z) = as + aiox + a1 1 y + a1 2z

So the internal displacement is,

U(x, y, z)
{U(x, y, Z)} = v(x, yz)

Fw(x, y, z)

0

0

z

al

a 2

a3

C12

or more compactly,

{U(x, y, z)} = [f(x, y, z)]{a} (3.1)
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The next step is to express the state of displacement U(x, y, z) within the element in

terms of the nodal displacements {Ue}. Looking at node 1,

{U 1 } = {U(Xi,y1, zi)} = [f(Xi, y1, zi)]{a}

or,

{U1 } = {a}

For the whole element,

{Uo}

{Ue} = {U1}

{U 2 }

{U 3 }

Finally, solving for the vector a,

[f(Xo1 YO, zo)]

[f(Xi, y1, zi)]

[f(x 2 , Y2, z2 )]

{a} = [A]{a}

{a} = [A]~1{Ue} (3.2)

And substituting for {a} in Equation 3.1

{U(x, y, z)} = [f(x, y, z)][A]-l{Ue} = [H]{Ue}

Now, lets relate the strains {e(x, y, z)} at any point within the tetrahedral element to

the displacements {U(x, y, z)}, and hence to the nodal displacements {Ue}. The standard
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first-order approximation to the strain-displacement relationship is, from elasticity theory,

{E(x,y,z)}= < > =-<

8v 8w

7yz -z ay

8w +u
'YzXax z

Refering back to the linear interpolating functions, the strains can be written,

e = a2

Ez a 12

7Ixy

7yz

= a 3 ±a 6

= 8 + a11

zx= alo a4

Or in matrix form,

0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 C
{E(x, y, z)} =

0 0 1 0 0 1 0 0 0 0 C

0 0 0 0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 0 0 1

And making the substitution for {a} from Equation 3.2,

ai

a 2

a3

a 4

a 12

{e (x, y, z)} = [D][A]-1{Ue} = [BII{U'}
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The next step in solving for the tetrahedron's stiffness matrix is relating the internal

stresses {o-(x, y, z)} to strains {e(x, y, z)} and to the nodal displacements {U'}. For the

special case of a linear, isotropic, elastic material,

{o-(x, y, z)} = [C]{e(x, y, z)} (3.3)

1 V V 0 0 0

1 V 0 0 0

E(1-v) 1 0 0 0

(1+v)(1-2v) 1-2" 0 02(1-v)

1-2v 02(1-v)

1-2v
2(1-v)

where

C is a symmetric matrix

E is Young's modulus of elasticity

v is Poisson's ratio

By replacing the internal stresses {a(x, y, z)} with statically equivalent nodal forces

{Fe}, nodal forces can be related to nodal displacements {Ue} to obtain the element stiffness

matrix K. This is a well known application of the principle of virtual work.

Lets choose an arbitrary set of nodal displacements

{uO e
ju *e {U*e}

{U**} = {U1*e}

{U2*e)

{U3*e}

The total external work represented by this displacement is given by

Wext = {Uge}{F } + - -- + {U*e}{F} =e
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If the chosen arbitrary displacements cause a strain {e(x, y, z)*}, the internal work is

Wrnt = {E(x, y, z)*}T{O-(X, y, z)}

Integrating through the element volume to get the total internal work,

WintdV = IV{tE(z, y, 2 )*}To-(, Y, z)}dV

From the relationships derived above it is known

{Wx, y, z)*}

{-(x, y, z)}

= [B]{U**}

= [C)[B]{Ue}

And substituting into the internal work integral

WintdV = J{U**e}T [B)T[C] [B]{U}dV

Finally, equating the total internal and external work, and dividing through by {U*e}T,

{Fe} = [B]T[C][B]dV] {U}

= [K]{Ue}

Thus, the stiffness matrix for a single tetrahedral element, is the integral

[K] = IV[B]T[C][B]dV

Where B is the nodal-displacement to internal-strain matrix and C is the strain to stress

(constitutive) matrix. If the material comprising the tetrahedron is homogeneous, the

matrices under the integral will be constant and so,

[K] = (volume of tetrahedron) * [B)T[C][B]
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3.1.2 Mass Matrix M

While the derivation for the stiffness matrix is relatively involved, the mass matrix M is

often represented by a simple diagonal matrix. Physically this corresponds to the total

mass of the element being evenly concentrated at each of the nodes. The approximation

inherent in a lumped mass model tends to lessen as more and more elements are used to

represent a given physical system. However, because our FEM implementation is geared

towards workstation size computers, the tendency will be towards using as few elements as

possible. Thus, the consistent mass matrix is used rather than the diagonal lumped mass

matrix.

The consistent mass matrix is found in a way much like the stiffness matrix. First,

note that the internal force per unit volume due to the acceleration of gravity is

Fgravity(x, y, z) = p[H]{Ue}

where p is the (usually constant) mass density, Ue is the acceleration at each node, and

[H]{Ue} is the internal acceleration within the element at point x, y, z. Applying the prin-

ciple of virtual work as in the derivation of K, the total external work can be written

Wext = {U*e}{ F}ravit I

And integrating for the total internal work

VWindV = J {U*[e}T [H]TP[H]{ e}dV

Equating the total internal and external work functions and dividing through by

{U*e}T

{Fravity} = [HIp[H]dv {0e}

= [M]{Ue}
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And so the mass matrix for a single element is the integral

[M]= p[H]T[H]dV
JV

A discussion concerning the damping matrix C will be put off for Section 3.4 covering

modal analysis.

3.2 Isoparametric Interpolation

3.2.1 Stiffness Matrix

In deriving K for the four-node tetrahedron, the element displacements u(x, y, z), v(x y, z),

and w(x, y, z) were written as linear functions of x, y, and z with undetermined coefficients

{a}. The matrix A was then found from the nodal positions and the matrix H calculated

from A 1 to express the state of internal displacement within the tetrahedral element as a

function of nodal point displacement. The key to the isoparametric finite element formu-

lation is to establish a direct relationship between the element nodal point displacements

and the internal displacements through the use of interpolating functions. Finding K and

M for an isoparametric finite element then does not require building the A matrix for a

particular set of nodal positions, rather H and B are obtained directly.

In general, for an isoparametric element defined by q nodes, the expression for a local

point defined by the element is written as in [Bat82],

q

x(r, s, t) = Z h(r, s, t)xi
i=O

q

y(r, s, t) = [ h;(r, s, t)y; (3.4)
i'=0

q

z(r, s, t) = Zhi(r, s, t)z,
i=o
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where hi are the q interpolating functions defined in the natural coordinates r, s and t of

the isoparametric element, each of which span -1 to +1. The q nodal positions are given

by x;, yi and zi.

In matrix notation

{X(r, s, t)} = [hi(r, s, t)]{X"}

Similarly, the function relating nodal displacements to internal displacement within

the element is

q

u(r, s, t) = Z hi(r, s, t)ui
i=0

q

v(r, s, t) = Z hi(r, s, t)vi (3.5)
i=O

q

w(r, s, t) = Z hi(r, s, t)wi
i=o

where the q nodal displacements are given by ui, vi and w;.

This is also more easily written in the matrix form,

{U(r, s, t)} = [hi(r, s, t)]{Ue}

The interpolation functions h; are defined in such a way that the value of hi at r, s

and t corresponding to node i is 1 and is 0 at all the other nodes. This property allows

the interpolating functions to be determined in a systematic way for any predefined nodal

point layout. The specific isoparametric element used in the thesis to model muscle is the

twenty-node brick which defines a parabolic interpolation along each of its twelve edges.

Refering to Figure 3.2, the twenty nodes are arranged as in Table 3.1.

The interpolation functions hi for a brick element with from eight to twenty nodes

are given in [Bat82],

h = 90 - (g8 + g 1 1 + 916)/2
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/

Figure 3.2: Twenty-node isoparametric brick, C numbering. adapted from [Bathe]
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Table 3.1: Local space node coordinates for isoparametric brick

hi= gi - (gs + 99 +- 917)/2

h2 = 2 - (9 + gio + 918)/2

ha = 93 - (gio+911 +g19)/2

h4 = g4 - (912 + g15 + g16)/2

h5 = g5 - (912 + g13 + g17)/2

h6  = g6 - (914 + gi4 + 919)/2

h7  = 97 - (g14 + 9115 ± g19)/2

h g =y for j=8,...,19

where,

gi = 0 if node i is not included, otherwise

gi = G(r, ri)G(s, si)G(t, ti)

and # = r,s,t

G(,i ) = }(1 + #i#) for #= i1

G(# #oz) = (1 - #2) for i =0

Pump It Up 3.2 Isoparametric Interpolation

node rst node rat

0 111 10 0-11
1 -111 11 101
2 -1-11 12 01-1
3 1-11 13 -10-1
4 11-1 14 0-1-1
5 -11-1 15 10-1
6 -1-1-1 16 110
7 1-1-1 17 -110
8 0 1 1 18 -1-10
9 -101 19 1-10
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The twenty interpolation functions were implemented in the C language as formulated

above. In addition, C routines were written for the partial derivatives of hi with respect to

r, s and t. These derivative functions will be used presently. A source listing for this code

is given in Appendix A. An example program using this subroutine library is presented in

c20_Natural2Local that does the coordinate transformation of Equation 3.4 to an array

of input points given twenty nodal positions {Xe}.

typedef float Vector[3];

c20_Natural2Local( node-points, natural, local, num )
Vector *node-points; /* twenty nodal positions */
Vector *natural; /* input natural points */
Vector *local; /* output local points */
int num; /* number of points */

{
int i, j; 10
double r, s, t, x, y, z, h, c20_h(;

for (i=O; i<num; i++)

{
r = natural[i][0]; s = natural[i][1]; t = natural[i][2];
X= y = z = 0.;

for (j=0; J<20; j++)
{ h = c20_h( r, s, t, j );

x += h * node-points~j[0]; 20
y += h * node-pointsuj][1];
z += h * nodepointsj][2];

}
local[i][0] = x; local[i][1] = y; local[i][2] = z;

}

Now, to find the stiffness matrix K for a twenty-node isoparametric element, the prin-

ciple of virtual work is applied as for the four-node tetrahedron [Bat82]. From Section 3.1.1,

[K] = [B]T[C][B]dV

where B is the matrix that relates nodal displacements to internal strains, that is
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From the

Equation 3.5, it

au/ax

e(Xy, z)} = <= [B]{Ue}au av
ay + ax
av aw
az +ay
aw au

general expression for the displacement interpolating functions given in

is easy to see that the matrix form for H is, as a function of r, s and t,

ho(r, s, t) 0 0 ... hiw(r, s, t) 0 0

{U(r, s, t)} = 0 ho(r, s, t) 0 ... 0 his(r, s, t) 0 {U'}

0 0 ho(r, s, t) ... 0 0 h 1 (r, s, t)

The functions hi are formulated in terms of the natural coordinates r, s, and t. Hence,

the partial derivatives of the interpolation functions in terms of the natural coordinates are

straightforward to find. The B matrix, however, relates quantities in terms of the local

coordinate system x, y and z. Thus, the 3 x 3 Jacobian matrix that expresses the chain

rule is constructed from Equation 3.4,

a 1 x ay az a
Dr 5r r ar ax

a - ax Oy az _9
as as as as B y[
a I ax ay az Ia
at at at at 5 z)

or, in matrix form,

- = [J) -

and, for the derivatives with respect to the local coordinate system,

{-}= [J-1){--
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In practice, the approach taken to calculate B is to first fill a 3 x 20 matrix with the

partials of the interpolating functions

[Dr] =

ah-
Dr

aho
as

aht
at

ah, ahi9
ar --- ar

ah1  ahi9
as --- as

ah aht
at .. at

then to multiply by the inverse Jacobian to get the partials with respect to x, y, and z

[Dx] =
ay

ax

ahL
ay
ah,
az

ahig
.. ax

ah19.. ay

ah19.. az

= [J'][Dr]

and the 6 x 20 B matrix is found, according to the strain-displacement relationship, by

filling in from Dx

[B] =
C

0
ax

0 ah
ay

0 0

-l a
ay ax

0 ahaz

)h 0Dz

0

0

ah1
az

0

ah1
ay

aDh
ax

Now, to obtain the stiffness matrix K requires evaluating the volume integral

[K] = IV[B]T[C][B]dxdydz

Note that a change of variables in B has been performed from the local coordinate

system to the natural coordinate system and so

[K] Iv[B]T[C][B] det Jdrdsdt
JV

where det J is the determinant of the Jacobian matrix.
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The last problem to be faced before K can be found for the twenty node isoparametric

element is that both the matrix B and det J are complex functions of r, s, t, and so the

volume integral can not in general be explicitly calculated. Instead, a numerical Gauss

integration is done to find K [Bat82]. Writing the integral as a sum,

3 3 3

[K] = [ [ F(ri, sj, tk)ai'k
i=0 j=O k=0

where F = BTCB det J, and aisJ is a weighting factor that depends on the sample ri, Sj, tk

under consideration. This summation process is illustrated in the C routine c20_findK

that finds K for a material defined by Young's modulus, Poisson's ratio, and an input set

of twenty node points.

#include < local/ matrix2.h>

typedef float Vector[3];

c20-findK( node-points, youngs-mod, poisson-ratio, K )
Vector *node-points; /* twenty nodal positions */
double youngs-mod, poisson-ratio; /* material properties */
Matrix2-D *K; /* output stiffness matrix */
{
int i, j, k;
Matrix2-D *B, *C, *mtmp;
double r, s, t, detJ;

B = m2dcreate(6,60);
C = m2d-create(6,6);
mtmp = m2dcreate(0,0);
m2dseLrc( K, 60 , 60 );

/* C matrix contains material properties */
fe-strain2stress-LinearIsotropicElastic( C, youngs-mod, poisson-ratio );
m2dzero( K );

for (i=0; i<3; i++)
{ for (j=O; j<3; j++)

{ for (k=0; k<3; k++)
{ Gauss-rst( i, j, k, &r, &s, &t ); /* determine sample points */

/* Find B(r,s,t) and det[J(r,s,t)] */
c20-jind-B( node-points, r, s, t, &detJ, B );
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m2d-transpose( B, Bt );
m2d-multiply( Bt, C, mtmp );
m2dmultiply( mtmp, B, mtmp );
m2d-scale( mtmp, Gauss-weight(i,j,k) * detJ );
m2d-plus( K, mtmp, K );

}
}

}
m2dfree( B ); m2d-free( C ); m2d-free( m2d-tmp ); 40

}

The routines to obtain the Gauss sample points and weighting factors are,

static double gauss-weights[3] =
{ .555555555555556, .888888888888889, .555555555555556

};
static double gauss-sample-points[3] =
{ -. 774596669241483, 0., .774596669241483

};

double Gauss-weight( i, j, k )
int i, j, k; 10
{ return( gauss-weights[i] * gauss-weights[j] * gauss-weights[k] );
}

Gauss-rst( i, J, k, r, s, t)
int i, j, k;
double *r, *s, *t;
{ *r = gauss-sample.points[i];

*s = gauss-sample-pointsj];
et = gauss-samplepoints[k];

} 20

Futhermore, the consistent mass matrix M for the twenty-node element can also be

found through Gauss integration

3 3 3

[M] = F(r;, s3, itk)oY3k
i=0 J=0 k=0

In this case, F = pHTH and the Gauss sample points and weighting factors are as before.

This whole process is explained in much greater detail in Bathe's excellent text [Bat82].

3.2 Isoparametric InterpolationPump It Up



David T. Chen

3.2.2 Computer Graphics

We have seen how the interpolation functions hi for the twenty-node brick element can

be used to build the K and M matrices that define the finite element dynamics equilib-

rium equations. As forces are applied to the finite element model, the nodal points of the

isoparametric cube deform dynamically in response. For the purposes of computer graphics,

one goal of the thesis was to find a way to use familiar geometric representations, such as

polygon and spline based patch descriptions, to define objects but to also have them warp

and deform as can the twenty-node brick. This is conceptually very easy to accomplish

if the points of a computer graphics object-be they points from a polyhedral or patch

representation-are treated as natural coordinates r, s and t that sample an isoparametric

space. In this way the twenty-node brick can define a free-form deformation as Sederburg

describes for trivariate Bernstein polynomials in [SP861.

To describe the effect of a free-form deformation, Sederburg makes the analogy of

a parallelepiped of clear, flexible plastic into which is embedded objects that are to be

deformed. As the plastic is stretched and twisted, so too are the objects inside. This effect

is illustrated in Figures 3.3 and 3.4.

Returning to Equation 3.4, the interpolation functions hi can be seen to define a

mapping from the natural coordinate system to the local coordinate system where the

twenty nodal positions x;, y-, z- are considered control points that determine the particular

shape of a deformation.

q

x(r, s, t) = Z hi(r, s, t)xi
i=O

q

y(r, s, t) = 1 hi(r, s, t)y;
i=O

q

z(r, s, t) = Z hi(r, s, t)zi
i=O
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Figure 3.3: Undeformed plastic

Figure 3.4: Stretched and twisted plastic
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So, to dynamically simulate an object, whose geometry is described by point samples

connected by polygons or spline patches, as a deformable object that can respond to external

forces, three steps must be taken. First, its space is subdivided into some (preferably small)

number of adjacent isoparametric finite elements. Then the stiffness and mass matrices are

found as has been discussed, and the equilibrium equations solved for a given set of input

forces to find the resulting nodal displacements of the isoparametric elements. Finally, using

the new nodal positions as control points defining a free-form deformation, the now warped

geometric objects embedded in the isoparametric space are rendered to the framebuffer.

The underlying assumption made above is that the points of the object to be drawn are

in the natural coordinate system r, s, t of the isoparametric element defining the deformation.

In general, of course, this is not the case. The nodes of the isoparametric element and

the points describing the object geometry are both, in fact, usually defined in the local

coordinate system x, y, z. So, given a computer graphics object and a bounding set of

isoparametric elements, it must be determined for each point which containing element

to use and then a mapping from local to natural coordinates for that element should be

performed. That is, the inverse mapping to Equation 3.4 needs to be found for a given set

of nodal points and an input point Lo = {xo Yo zo}T.

Finding this inverse function is relatively straight forward and comes down to a three-

dimensional root finding problem which was solved using the Newton-Raphson method as

described in [PFTV88]. That is, the problem is to find r, s and t such that

[hi(r, s, t)]{Xe} - {Lo} = 0

The key to this is again the Jacobian matrix J that relates partial derivatives of the coor-

dinate transformation function with respect to x, y and z, to the derivatives with respect

to r, s and t.

The basic procedure is as follows. Given a local space point Lo, and twenty nodal
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positions that define an isoparametric space {Xe}, make an initial guess for the natural

coordinates of point Lo, call this point N' = {r' s' t'}T. For this first guess, take the

natural coordinates of the Euclidean nearest nodal point of the twenty-node brick from

Table 3.1. To find out how close this guess is, calculate

{#} = {Lo} - [hi(r', s', t')]{X*}

Now, construct the Jacobian J(r', s', t'). To find a correction for N', multiply # by

the inverse Jacobian to obtain the step to take in the natural coordinate system

{6N} = [J)~1{0}

and 6N is added to the previous solution vector

{New} = {N'} + {6N}

The process is then repeated with Nn,, until convergence is obtained. A final check

must be made to verify that the r, s and t ultimately found is in the interval [0 - 1]. If not,

then the input local point LO is not actually a member of the twenty-node isoparametric

finite element defined by {Xe}.

This iterative technique for performing the local to natural coordinate mapping is

illustrated in the routine c20-Local2Natural that, for a given twenty node element, will

do the inverse transformation for an array of input points. The maximum number of trials

allowed is 50, but typically the iteration stops after 5 or fewer repetitions. The convergence

check is made by summing the absolute values of the elements of # both before and after the

multiplication by J and comparing the result against a predefined tolerance. The tolerance

used is 10~ which is approximately the machine accuracy of a single precision float.

#include <math.h>
#include <local/matrix2.h>
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typedef float Vector[3];

#define NTRIAL (50)
#define TOLF (le-8)
#define TOLX (le-8)

c20_Local2Natural( node-points, local, natural, num )
Vector *node-points; /* twenty nodal positions
Vector *local; /* input local points */
Vector *natural; /* output natural points
int num; /* number of points

{
int i, j, k;
Vector N, L, LO;
VectorNI *index = vni-create(3);
VectorND *beta = vnd-create(3);

Matrix2-D *Jac = m2dcreate(3,3);
double d, errf, errx;

for (i=0; i<num; i++)
{

LO[0] = local[i][0]; LO[1] = local[i][1]; LO[2] = local[i][2];
make_1stLguess-for-natural( node-points, LO, N );

for (j=0; j<NTRIAL; j++)
{ c20-Natural2Local(node-points, &N, &L, 1);

vnd-set( beta, 0, LO[O] - L[0] );
vnd-set( beta, 1, LO[1] - L[1] );
vnd-set( beta, 2, LO[2] - L[2] );

for (k=0, errf = 0.; k<3; k++)
errf += fabs( vnd-get(beta,k) );

/* Do coordinate mapping to guess */ 30
/* Calculate beta */

Check for convergence */

if (errf <= TOLF) break;

c20_make-jacobian( node-points, r, s,
m2ddecompose( Jac, index, &d
m2d-solve( beta, Jac, index, beta );

for (k=0, errx = 0.; k<3; k++)
errx += fabs( vnd-get(beta,k) );

N[0] += vnd-get( beta, 0 );
N[1] += vnd-get( beta, 1 );
N[2] += vnd-get( beta, 2 );

if (errx <= TOLX) break;

= N[0]; s = N[1]; t = N[2];

t, Jac );
/* Solve linear eqns using LU decomp */

/* Check for convergence again */

/* Update solution */
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if (!(r > 1. |1 r < -1. 1| 8 > 1 Il < - 1. || t > 1. ||t < -1)
{ natural[i][O] = r; natural[i][1] = s; natural[i][2] = t;

m2d-free( Jac ); vnd-free( beta ); vni-free( index );

The first guess is made by finding the node point closest to Lo, as in the following C

code

static
{ {1.,

{1.,
{0.,
{0.,

{1.,

};

Vector UNITNODES[20] =

1 , 1.} { -1. 1., 1.},
1., -1 }, { -1 , 1., - 1.},

1., 0.}, {-1., 1., 0.}1,

static make-1lstLguess-for-natural( node-points, L, N )
Vector *node-points;
Vector L, N;

{
int j, minnode;
float cur-min, tmp;
float VVdistO; /* find Euclidean distance between two Vectors */

min-node = 0;
cur-min = VVdist( L, node-points[0] );

for (j=1; j<20; j++)
{ if ((tmp = VVdist( L, node-points[j] )) < cur-min)

{ cur-min = tmp;
min-node = ;

}
N[0] = UNITNODES[min-node][0] );
N[1] = UNITNODES[min-node][1] );
N[2] = UNITNODES[min-node][2] );

This section has introduced the isoparametric finite element formulation and shown

how it can be used to construct the dynamic equilibrium equations that are used for the

purposes of modeling deformable objects. It has also been demonstrated how the twenty-
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{ -1., -1., 1.}1,
{-1., -1., - 1.},
{0., -1., 1.},
{0., -1., -1.},
{-1., -1., 0.},

{1, 0., 1.}
{1. 0., - 1.}
{1., - 1., 0.}
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node brick element can be used to define a free-form deformation which is used to produce

graphical output that visualizes simulation results. For both of these purposes, the interpo-

lating functions hi were used extensively. In the first case to calculate the Jacobian matrix

which was used in the Gauss integration of the stiffness matrix K, and in the second to do

the coordinate mapping from r, s, t space to x, y, z, as coded in c20_Natural2Local. Be-

cause this transformation is used so much, and especially since it is a part of the simulation

loop, it is worthwhile to think of a way to speed up the process.

The way this was accomplished was to use the symbolic math capability of Mathe-

matica to expand the summation in Equation 3.4 by premultipling the effect of the node

points, collecting like terms of the resulting polynomial, and simplifying. For the twenty-

node brick element this results in a polynomial expression for each of the three primary

directions. These polynomial functions are each characterized by twenty coefficients that

are in terms of the element nodal positions {Xe}. Using this formulation, it is easy to

rewrite the natural to local coordinate mapping routine to be much faster than before.

typedef float Vector[3];

c20_Natural2Local-fast( node-points, natural, local, num )
Vector *node-points; /* twenty nodal positions */
Vector *natural; /* input natural points */
Vector *local; /* output local points */
int num; /* number of points */

{
int i; 10
double r, s, t, CX[20], CY[20], CZ[20], c20_XO;

c20-make-polynomial( node-points, 0, CX );
c20-make-polynomial( node-points, 1, CY );
c20-make-polynomial( node-points, 2, CZ );

for (i=0; i<num; i++)
{ r = natural[i][0]; s = natural[i][1]; t = natural[i][2);

local[i][0] = c20-X( CX, r, s, t );
local[i][1] = c20-X( CY, r, s, t ); 20
local[i][2] = c20-X( CZ, r, s, t );

}
}
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Where c20_X evaluates a given input polynomial at a particular r, s, t.

double c20_X( C, r, s, t )
double * C, r, s, t;

d
double r2, s2, t2, ans;

r2 = r*r; s2 = s*s; t2

ans= C[O]
+ C[2] * s * t2

+ C[4] * r * t2
+ C[6] * t2
+ C[8] * r2 * s
+ C[10] * r2

+ C[12] * s
+ C[14] * s2 * t

+ C[16] * s2
+ C[18] * r * s2

return( ans );

= t*t;

+ C[1]
+ C[3]
+ C[5]
+ C[7]
+ C[9]
+ C[11]
+ C[13]
+ C[15]
+ C[17]
+ C[19]

* r * s *t
Sr s t2

* r* s* t

* r2 * t
* r2 * s * t

8 ~t
*r t
Sr

* r * s2 * t
* t;

The routine to construct the polynomial coefficients,

long and so is left for Appendix B. Thanks to Steve Pieper

functions in Mathematica and simplifying them.

while straightforward is quite

for implementing the blending

For an interactive graphics application, an objective is to stay rendering bound when-

ever possible. This means avoiding calculations in the simulation loop that are slower than

the time needed to render the final pixels to the display. Comparisons were made using

the fast interpolation scheme for objects with different numbers of points both against the

straightforward interpolation method and against the rendering time required on an HP

graphics workstation using HP's built-in Starbase graphics library in Table 3.2. All times

are in seconds.

It is easy to see from Table 3.2 that the fast isoparametric interpolation technique

developed in this section is over 13 times faster than the standard interpolation method
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no. of
points

386
1352
8192

rendering
time

.17

.46
3.5

standard fast
interpolation interpolation

.56 .042
2.0 .14
12.0 .9

Table 3.2: Run-time in seconds for two isoparametric interpolation implementations

and about 3 times faster than the rendering times recorded.

Figure 3.5: A bent fork

3.3 Global Matrix Assembling

In performing a finite element analysis of a muscle, or any kind of real physical structure, it

should always be kept in mind the inherent mechanical idealizations that are being made.
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Essentially, the displacement based FEM formulation that is used here approximates a

given elastic deformable material by discretizing its volume into a collection of elements

that can take on certain predefined shapes known as constant strain states. Ideally, a good

finite element model will converge to the analytic solution-when one is available-as the

number of elements increases. For convergence to this "true" solution to happen, there

are two criteria that must be met, that is, the elements must be complete and compatible

[Bat82}. Completeness means that the displacement functions of the elements used in the

model must be able to represent rigid body motions as well as the constant strain states.

It will be seen that these fundamental shapes are determined by the eigenvectors of the

stiffness matrix in the next section covering modal methods. Compatibility means that

displacement within an element as well as displacement between element boundaries must

be continuous. Because the twenty-node brick that is used here describes only the three

translational degrees of freedom at each node, compatibility is easily ensured by explicitly

joining the nodes of adjacent elements to guarantee that the elements can never separate.

This requirement of sharing nodes between individual finite elements naturally leads

to the topic of global matrix assembling, which is perhaps most easily explained in terms of

a simple example. Given the structure in Figure 3.6 made from two four-node tetrahedron

elements, the nodes comprising element one are {0 1 2 3} and those for element two are

{O 1 2 4}. The relationship between nodal displacements and nodal forces for the whole

assemblage is as before

{F} = [K]{U}

where K is now the global stiffness matrix that has, in this case, dimension 15 x 15 and the

nodal displacements and forces are

{U} = Uo U1 U2 U3 U4
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- Y

Figure 3.6: Structure made from two tetrahedron elements

{F} = { F0 F1 F2 F3 F4 }
With this element and node numbering in place, the local stiffness matrices for each

element are first constructed individually. For element one

{Fil} = [KIL1]{UL1}

and for element two

{FL2 } = [KL2]{UL2}

These local stiffness matrices are made exactly as described earlier in the chapter and

each have dimension 12 x 12 for the four-node tetrahedron element. Care must be taken,

however, to keep track of the node numbering for the local K matrices

{UL1 u0 U1 U2 U3
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{UL2} = UO U1 U2 U4

Now to construct the global stiffness matrix that determines the equilibrium equations

for the whole structure, the principle of superposition is applied to the forces acting at each

of the nodes. Looking at node 0, it can be seen that there are relevant forces acting from

both finite elements, encoded in the top row of each of the local stiffness matrices. Writing

the matrix multiplications out, and remembering that each node actually has three degrees

of freedom,

{Ffl} = {koJ}{Uo} + {ko'}{U1 } + {ko}{U 2 } + {k f}{U3}

{Fo2 } = {koo}{Uo} + {ko}{U1 } + {kO}{U 2} + {kO}{U 4}

The total force acting at node 0 is then the vector sum

{Fo} = ({ko} +{koL}) {U0} + ({ko} + {k L}) {U1}

+ ({ko} + {ko9}) {U2 } + {k }{U 3 } + {ko}{U 4 }

Which defines the first three rows of the global stiffness matrix. The other twelve

rows are obtained with an identical procedure by summing the force components acting on

the remaining nodes. The global mass matrix needed for dynamics is derived in a wholly

analogous fashion by correctly summing the local element mass matrices.

3.4 Modal Analysis

3.4.1 Solving the Equilibrium Equations

We have discussed the construction of a set of equilibrium equations that determines the

dynamic behavior of a finite element idealization of a given physical structure, by first
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applying the principle of virtual work to obtain local element matrices and then assembling

these into a single set of global matrices that governs the structure as a whole. For the

dynamic case, these are written as before

Mii + Cit + Ku = R (3.6)

Where M, C and K are the mass, damping and stiffness matrices; R is the external load

vector; and u, it and ii are the nodal displacement, velocity and acceleration vectors that all

have the same rank n. This system can be characterized as a coupled set of second-order

differential equations for the displacements u.

It is well known that any problem involving ordinary differential equations can always

be reduced to an equivalent system of first order differential equations. Equation 3.6 is

rewritten,

it v(t) (3.7)

= M 1 (R - Ku - Cv) (3.8)

In this form, the time-varying nodal displacements can be solved by specifying a set of initial

conditions and using a suitable numerical integrator such as Runge-Kutta or a predictor-

corrector [PFTV88]. The way these equations are typically expressed to a standard differ-

ential equation solver is through a user supplied derivs function that calculates dydt at

t.

derivs( t, y, dydt )
double t;
double y[m], dydt[m];

Note that m in this case is two times the number of nodal degrees of freedom, or 2n.

The numerical complexity of derivs for this kind of solution is order n2 for doing the three

matrix multiplies necessary to calculate b.
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The time spent performing a dynamic analysis is typically dominated by the number

of calls to derivs. It is possible to take advantage of the block structure of the globally

assembled FEM matrices by using a sparse matrix package to speed up the matrix multiplies,

but it is possible to do better by first transforming the equilibrium equations into the modal

displacement basis. The modal transformation is easy to develop and the discussion here

follows [Bat82] and [PW89].

First re-write the nodal displacement vector in the following way

u(t) = Px(t) (3.9)

where P is a square matrix that represents an as yet undetermined transformation and x

is a vector with the same rank as u. The elements of the vector x are called generalized

displacements and are analogous to the generalized degrees of freedom that Schr6der writes

about in [SZ90].

Substituting this into Equation 3.6 and premultipling by pT yields,

M+C + Kx =1

where

S= PTMP; C PTCP; K PTKP; R = PTR

3.4.2 The Modal Transformation

Now, to obtain the modal transformation, consider the homogeneous equilibrium equations

without damping

Mii + Ku = 0 (3.10)

To solve this equation, assume a solution of the form

u = #es"W
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where 4 is a vector of rank n. This yields upon substitution

-w 2 Mo'ei"' + Kej"'t = 0

KO = AM4 (3.11)

where A = w

Equation 3.11 has the form of a generalized eigenvalue problem. To be able to use the

available numerical solvers to find the n eigenvalues A; and eigenvectors 41, this equation

needs to be reduced to the standard form K4 = A4. This is done by first finding the

Cholesky factorization (matrix square root) of the mass matrix

M = SST

Substituting for M in Equation 3.11 gives

K4= ASST4

and premultipling by S-1

S-1 K4 = AST4

Finally, define the vector

$/ = ST$

which yields the standard eigenvalue problem

K'4' = A4'

where K' = S-1KS-T

3.4 Modal Analysis

(3.12)
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The eigenvalues and eigenvectors of Equation 3.12 can then be determined and # is

found to be # = S-I'. Lets write the n eigensolutions in the following matrix form

2

Win

where the columns of ( are the eigenvectors #i and Q2 is a diagonal matrix filled with the

corresponding eigenvalues Ai = wt?.

The eigenvectors obtained in this way have a special property known as M-orthogonality.

This means that

M = I

Where I is the identity matrix. To show this, expand the multiplication for two eigenvectors

-, using the expressions for M and # from before

#$M# = #'TS-1SSTS-IT#

Because the eigenvectors #' span an orthonormal basis,

#70#' = 6;.3 3

Where bi is the Kronecker delta which is 1, if i = j, and 0 otherwise. Now write the

n solutions to the generalized eigenproblem in Equation 3.11 as

K = M4Q 2

Premultipling by bT and using the M-orthogonality of the eigenvectors gives

KP = Q2
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Now it becomes clear that the matrix (b is a good choice for P in Equation 3.9. That

is, using

u(t) = 4x(t)

which relates the mesh nodal point displacements u to generalized displacements x through

the eigenvector matrix 4 , the modally transformed equilibrium equations take the form

S+,pT Ci + QIx = qj R (3.13)

where the eigenvector 4; is called the mode-shape vector for the generalized displacement xi

and w, is the corresponding natural frequency of vibration. That is, a single displacement

x; effects the shape of the entire mesh through the action of the vector #i at all the node

points.

These equations totally decouple as long as the modally transformed damping matrix

bTC4p is also diagonal. What is often done in practice is to assume Rayleigh damping for

a structure, so that

C = aM +K

where a and # are constants determined either through experiment or to satisfy predefined

time decay characteristics. Equation 3.13 can then be written as 3n independent second-

order differential equations

Zi + 7i; + WJ X; =r; (3.14)

where -;, is the damping factor for mode shape i, which in the Rayleigh case has the form

yi=a + o3w 2

So the modal transformation completely diagonalizes the coupled set of differential

equations in Equation 3.6. These equations can now actually be solved completely sepa-

rately from each other, but because of the way forces are calculated it is more convenient to

3.4 Modal AnalysisPump It Up



David T. Chen 94

formulate them in a single derivs function. Furthermore, the time complexity for derivs

has been reduced from O(n2 ) to O(n) for finding i from a given set of input forces. Unfor-

tunately, for the kinds of forces we are interested in simulating, the overall complexity will

return to O(n 2), but more about this in Section 3.4.4.

3.4.3 Computer Graphics

As generalized displacements x; are computed, the mesh undergoes changes in shape defined

by the eigenvectors #;. These vibration mode shape vectors define the constant strain states

for the finite element idealization of a structure to be modeled. That is, any new shape

that the structure can assume will be a superposition of some number of the eigenvectors

# . Thus, the modal transformation procedure also analyzes a structure by revealing the

natural shape changes that it can undergo. For an assemblage of complete elements this

will also include the rigid body motion of the structure [Bat82]. For a three-dimensional

element, like the twenty-node isoparametric brick that has been discussed, there are six

rigid body modes-three translational and three rotational. Since there are 3n = 60 total

degrees of freedom for the twenty-node element, the 54 remaining modes each represent a

different deformation of some kind.

The rigid body modes for a three-dimensional structure are encoded in the first six

eigenvectors 0,... , 05 where the corresponding eigenvalues A0,.. . , A5 all have value zero.

For the purposes of computer graphics and animation, an additional change of basis is

performed for the rigid body modes by replacing these six eigenvectors with the standard

translations in the x, y, and z directions and rigid body rotations around the three coordi-

nate axes. This is tantamount to choosing the right control knobs as described in [PW89]

so that the dynamic, deformable models can be more easily positioned and controlled. In

our case, however, the remaining constant strain modes will be left intact to govern the
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deformation response due to input forces.

More importantly perhaps, by performing this replacement of the first six eigenvectors

by simple rigid body translations and rotations, it is straightforward to achieve the effect of a

Total Lagrangian analysis as discussed in [Bat82]. The Total Lagrangian is important when

the element bodies undergo large displacements or large rotations, as is typical in computer

graphic animations. This is because the global K matrix, as developed above, only properly

expresses the nodal relationships in the configuration in which the Gauss integration is

performed. Intuitively, we can realize that the Jacobian matrix that relates the natural

coordinate system of an isoparametric finite element to the local reference frame, and which

plays a primary role in the construction of the stiffness matrix, changes dramatically as

the element assemblage undergoes large rotations. For an analysis that takes care of such

rotations, the equations of motion are arranged so that external forces always act in the

original space of the body, thus obviating the need to recalculate K. By separating the

effects of rigid body motion from elastic deformation the required force transformation is

simple to compute. This subject will be dealt with in greater detail in Section 3.4.4.

Section 3.2.2 discussed how the points of a polygonal or spline based object em-

bedded in the isoparametric space of a finite element mesh can be warped. The modal

transformations change this operation little. The only differences are that since generalized

displacements are now being solved for, the nodal displacements must be calculated before

the rendering step as
3n

i=6

Furthermore, the rigid body position and orientation can be simply determined from

the first six generalized displacements as a series of standard 4 x 4 affine matrix operations

where the three rotations accept angular radians

Rz(x 5 ) - Ry(x 4 ) - Rx(x 3 ) - T(xo, x 1 , x 2) = Mrot - Mtrans = Mrigid
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The first five eigenvector mode shapes #6,... , #10 are illustrated for a single twenty-

node brick element and for the Cyberware head model made from three twenty-node bricks

in Figure 3.7 and Figure 3.8.

Figure 3.7: Mode shapes for twenty-node brick

3.4.4 Deriving Modal Forces

To find the forces necessary to drive the modal form of the equilibrium equations, two

steps are taken. First the external world space forces, R, acting on the node points of the

finite element mesh are found. Then the modal equivalent forces, Rmojal are resolved by

performing the transformation discussed above,

Rmda = jT R

However, because the rigid body translations and rotations are not treated in the
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Figure 3.8: Mode shapes for Cyberware head

matrix i, two further complications are introduced. The world space force R must first

be rotated into the original coordinate system (local space) of the dynamic body before

the eigenvector multiplication is carried out, and the explicit world space rigid body forces

must be computed.

The components of the world space force vector R are comprised from a variety of

sources-force fields such as gravity, spring/damper systems acting at the mesh node points,

constraint goal positions, muscle fiber or tendon forces, and collision/contact forces. The

translational part of the rigid body force is found simply by summing the forces acting at

the n node points,
n

Rtrans = Z Ri
i=0

Assuming the center of mass of the finite element mesh is at the origin, the rigid

body torques can be calculated with an element-wise cross product operation to R and the
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current world space location of each of the nodal points P,
n

Rrot = Pi O Ri
i=0

To calculate the modal elastic forces that will govern the deformation of the finite

element mesh, the elements of R must first be transformed into the body's local space using

the inverse of the rotation matrix Mrt defined in Section 3.4.3,

Ri,[i] = Ri- M t

It is these local space forces that are finally multiplied by the transposed eigenvector matrix

to yield the modal equivalent forces,

Rmodal = <> R18p

Note that because the first six modes have been replaced by explicit rigid body translations

and rotations, only elements 6 through n of Rmodal are used.

The arrows in Figure 3.9 show the magnitude and direction of world space forces, Ri,

acting at the twenty mesh nodal points of a simple cube element. The main force component

is from a constraint that drags node 0 of the mesh upwards and to the right to meet the

soccer ball (Ro). Forces at the other mesh points are from collisions with the floor and

gravity. Note that even though the gravity acceleration is always directed downwards, the

force to produce this acceleration points upwards at the corner nodes. This is due to a non-

uniform distribution of the cube's mass and is a direct consequence of using the consistent

mass matrix discussed in Section 3.1.2.

3.4.5 Mode Truncation

The development of the modal transformation, as presented here, was motivated by a desire

to speed up calculations within the derivs function called by the differential equation solver
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Figure 3.9: World space mesh forces for twenty-node brick

that is used to integrate the finite element equilibrium equations. The form of Equation 3.8,

indicates that solving the standard form of these equations is at least O(3n2 ) for the three

matrix multiplies. By determining the answer to the generalized eigenvalue problem and

constructing the matrix 4 as a preprocessing step to solving the ODE's, the matrices M,

C and K are diagonalized and so it would seem that derivs now has complexity 0(3n).

However, because of the way the force vector R is calculated, the solution complexity returns

to O(n2 ). That is, finding the modal equivalent force, Rmdaai, to a time-varying external

world space forcing function requires the matrix multiply from above,

Rmodal = IT Risp

Furthermore, to enforce the kinds of constraints desirable for computer animation,

the current world space mesh nodal point locations must be updated within derivs as well.
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One such constraint would be the attachment of a mesh point to a world space location, as

in Figure 3.9. The mesh displacements, u(t), are then calculated within derivs from the

generalized displacements, x(t),

u(t) = Ix(t)

At first glance then, it may appear that the modal transformation has done little

except change the complexity of derivs from 0(3n 2) to 0(2n 2). In practice, however, there

can be considerable savings with this method. In [Bat82], Bathe states that frequently a

good approximate solution to the actual response of a real physical system can be gotten

by considering only a small fraction of the total number of decoupled equations. That

is, by considering only equations i = 1,...,p of Equation 3.14 where p << n, a good

approximation to the physical response of a system can still often be obtained.

By truncating the decoupled set of equations to include only the first p modes yields

three advantages. First, only the first p eigenvalues and eigenvectors need to be found.

Second, the two matrix multiplies with D that are now calculated by derivs can instead be

written as the sparser summations,

P

u(t) = (ixi(t)
i=6

Most importantly in terms of computational efficiency, however, mode truncation can lead

to many, many fewer calls to the derivs function by the differential equation solver. The

eigenvalues Ai = w? found from the stiffness matrix K determine the frequency of vibration

for the associated mode shape vector 41. Depending on the frequency content of the input

forcing function, different combinations of modes will be excited. A standard ODE solver

with adaptive stepsize control will automatically subdivide its interval to capture the highest

frequency changes. Thus, by bandlimiting the impulse response of the system through mode

truncation, fewer calls to derivs will result.
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The tradeoff inherent in mode truncation is computational speed versus the accuracy

of the final solution. One way to estimate the effect of mode truncation on the quality of

a simulation is to consider that for modes larger than p, the effective force will be zero, so

that the mode shapes 4; for i > p will not have any effect. From the previous section, it

was seen that for our modal formulation, the input vector R contributes to both rigid body

and deformation force quantities,
R

Rtrans Rrot Risp Rm i = C DRisp

So the effect of truncating modes will not produce any error in the important rigid

body response of a system, but could lead to underestimating the maximum deflections

generated. Futhermore, because modes are deleted, the result is always to remove force

from the system. Hence the solution found in this way will be an upper bound to the

solution expected by making p = n.

From [Bat82], it is known that the number of modes to be used to model a system de-

pends on the characteristics of the structure itself and the spatial distribution and frequency

content of the loading. Bathe gives the example of earthquake loading where in some cases

only the ten lowest modes need to be analyzed, although the order of the modeled system n

may be larger than 1000. On the other hand, for high frequency blast loading, p may need

to be as large as 2n/3. For the frog gastrocnemius discussed in Section 6.1, the mode shape

vector corresponding to the simple longitudinal extension and shortening expected upon

isotonic muscle activation was found, and p set to be 2-3 times this value. For the example

of Section 6.1, 014 corresponds to this mode and p is set to 40. The forces developed upon

contraction have a relatively smooth characteristic as seen in the plots of Section 2.2.3.

Bathe has developed an error measure for mode truncation that uses UP, the displace-
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ment response predicted by mode superposition when only p modes are included,

| R(t) - [MUP(t) + KUP(t)]

|| R(t) ||

Unfortunately, this is difficult to compute given the details of the modal analysis programs

developed here. First, EP(t) does not include the effects of damping. Damping is a part

of our analysis, but not through the explicit construction of a global damping matrix C.

Second, the forces corresponding to rigid body motion would have to be summed in some

way with the MUP(t) terms in order to take care of all inertia components. Futhermore,

though EP(t) measures how well the nodal point loads are balanced by inertia and elastic

forces, it is still not entirely clear where the line should be drawn to be able to say that

EP(t) should be below some prescribed value.

Hence, the approach taken is to provide a simple interactive method, based on the

techniques of Section 5.5, to allow the user to set p for a given simulation. Relevant engi-

neering quantities, such as the natural frequency for a mode, the resonant frequency, and

mean decay lifetime are also presented so that the user can make an informed decision for p

based on what is known about the loading conditions to be used. A dialog box that provides

this functionality is shown in Figure 3.10.
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Figure 3.10: Modal popup menu
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Chapter 4

Musculoskeletal Structure

The idea of capturing the complete internal anatomy of frog and human legs through MRI

or other digitizing processes was discussed in Section 2.3. The important information to

be preserved was the relative in vivo geometry of distinct muscle masses and bone. To

dynamically simulate a whole musculoskeletal structure, however, is certainly not a simple

task. Many problems are introduced by considering the whole system. Besides the highly

non-linear internal muscle forces discussed in Section 2.2.3, new forces must be calculated

for the fascia attachments modeling contact between bone, muscles and skin. A simulated

skeleton can be driven by muscle forces calculated at the tendon attachment points. Higher-

level coordination and reflexes can be modeled through a computational central nervous

system. Though much of the implementation of these problems will be left as "future

work", this chapter will try to point out some useful representations and present a framework

around which the musculoskeletal structure can be captured by extending the techniques

heretofore developed.

Musculoskeletal Structure
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4.1 Skeleton Kinematics

4.1.1 Denavit and Hartenberg Joints

Using the formalism developed by mechanical engineers and robotics researchers, jointed

figures generally are considered to be networks of linked manipulators. The legs and arms

of a human skeleton, for instance, can be described as manipulators attached to a common

fixed reference frame centered on the body. The hands and feet in this case play the role of

end effectors.

A very common coordinate frame representation in use is that of Denavit and Harten-

berg [Pau8l]. The DH notation represents each of serially linked joints with four real num-

bers that specify a new position and orientation relative to the previous coordinate frame.

Paul establishes the relationship between joints n - 1 and n with the following series of

rotations and translations,

1. rotate about zn_ 1, an angle, O,

2. translate along z,_1, a distance d

3. translate along rotated X-1 = Xz a length an

4. rotate about Xn, the twist angle an

The DH representation explicitly defines joints that are either revolute or prismatic.

To model a spherical joint, a system of three coincident revolute joints, oriented so that

any two of the defined axes of rotation are not parallel, is used. The treatment here, as the

emphasis is on approximating human anatomical systems, will deal almost exclusively with

revolute joints. The movement of genuine biological joints, of course, is much more com-

plicated and is defined by the contact of shapen articular cartilage bone ends held together
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Joint n
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Figure 4.1: Denavit and Hartenberg link parameters [Pau8i]

by ligaments [Kel7l]. A single DH quadruple is used to represent each degree of freedom

of the manipulator. A simple lever arm can be described with one DH quadruple, while a

spherical joint requires three. The human upper arm can be idealized as a kinematic system

composed of five links and eleven degrees of freedom, and so requires eleven DH quadruples

to represent the joint coordinate frames. These eleven degrees of freedom correspond to

three DOFs each at the clavicle, scapula and humerous and one DOF at both the ulna and

radius.

A further complication is admitted because it is not always possible to rotate the

subsequent (n + 1) coordinate frame to line up as desired since the twist angle a produces

a rotation only around x,. Thus, it is sometimes necessary to introduce "dummy" joints

that do not move, but only serve to modify the coordinate frame orientation. The Denavit-

Hartenberg parameters used for the left arm model are presented in Table 4.1. The dummy
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joints are indicated in the frozen column.

Table 4.1: DH parameters for human left arm

While these kind of joint systems do not inherently contain any muscle or dynamics

information, they are particularly convenient vehicles on which to perform kinematic simu-

lations. Methods that have been proposed to perform locomotive control of such articulated

systems include the use of finite state machines arranged in a hierarchal control structure

by Zeltzer, Jacobian control and dynamic simulation.

Zeltzer in his PhD thesis [Zel84] talks about the task of controlling a multilink biolog-

ical motor system as a degrees of freedom problem. That is, there are many more degrees of

freedom that need to be specified than can be comfortably conceptualized. His solution is

to use a form of functional abstraction by introducing "local motor programs" (LMP's) that

directly control specific classes of motions for a particular set of joints. These LMP's, can

be viewed physiologically as low-level "reflex processes" which are regulated by higher-level

4.1 Skeleton Kinematics

joint [name I d a a frozen
0 clavicle 0 0 0 90 0
1 100090 0
2 00 5.30 0
3 scapula 60 0 0 90 0
4 1000090 0
5 0 0 2.30 0
6 humerous 00 0-90 0
7 800090 0
8 500090 0
9 900100 1

10 ulna 10000 90 0
11 radius -90 0 0 90 0
12 90 0 8.6 90 1
13 wrist 0 0 0 90 0
14 0 0 6.6 0 0

107David T. Chen

Pump It Up



controllers, or skills. At the highest level is a task manager, that takes goal descriptions

from the user-"Go to the door and open it", and decomposes them into lists of component

skills. In addition to the work of Zeltzer, this kind of system has been implemented in

[Str9l] and [Joh9l].

4.1.2 Inverse Kinematics

One way of implementing LMP's is with inverse kinematics, a well-known technique devel-

oped by robotics researchers that solves the degrees of freedom problem for a manipulator

arm by requiring only the specification of the end effector's position and orientation. The

essential component of this method is the Jacobian matrix, which directly relates the end

effector linear and angular velocities - to rotary joint velocities !. In his thesis, Ribbledtdt steiRbl

[Rib82] uses inverse kinematics to control a walking human skeleton, and specifies hardware

to perform the needed computations quickly.

The shape of the Jacobian is n by m where n is the number of known end effector

velocities and m is the number of free joints in a single manipulator. The number of knowns

is usually six, if both end effector linear and angular velocities are specified, or three if only

linear velocities are available. As was seen before, a typical manipulator has between four

and twenty degrees of freedom.

So, Jacobian Control of a robot arm implies finding rotary joint velocities from goal

end effector velocities, that is, inverting the Jacobian to find L from L. But, as the

Jacobian is not generally a square matrix, the Moore-Penrose pseudoinverse of the Jacobian

matrix is typically used. The pseudoinverse leads to the minimum norm solution for a

particular under or over-constrained linear system. To model an entire skeleton, a separate

Jacobian is needed for each end effector that will be independently motile. Thus, specifying

skeleton motion becomes a problem of correctly solving for the paths that each of the hands
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and feet will follow. Because the system of equations defined in this way is in most cases

underconstrained, a further degree of control over the motion can be obtained by specifying

a secondary goal vector that controls the relative values of the final velocities computed for

each DH joint.

For example, Figure 4.2 shows the skeleton arm swinging from back to front. The

motion was defined by using the soccer balls as beginning and ending constraint points for

the fingertip end effector.

Figure 4.2: Inverse kinematically controlled skeleton motion

Finally, dynamic simulations of articulated bodies have been done in the computer

graphics community by Armstrong and Green [AG85], Wilhelms [Wil87], Bruderlin [BC89]

and McKenna [McK90]. Forward dynamics can be done if the limb inertias can be calculated

and relevant external forces are known. Featherstone [Fea87] writes the equations of motion
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for an articulated robot as,

Q = I(q)j + C(4, q, x)

where Q is the vector of torques acting at the joints, q, 4, and 4 are the joint variables

and derivatives for the robot and C is a vector of forces not dependent on the robot's

acceleration, including gravity and other externally applied forces. In general, dynamic

simulations produce more realistic, but harder to control motions than purely kinematic

simulations.

4.2 Muscle Coordination

Dynamic biomechanic models of musculoskeletal structures have been made in [AD85],

[Hat76], [McM84]. With these models, the modus is usually to study individual limbs such

as the leg, rather than examining the body in toto. One important topic of such research

is to examine how muscles can be controlled to produce specific motions. For example,

Audu [AD85] discusses a simple lower limb linkage with one degree of freedom at the hip

and another at the knee. He compares the effect of different lumped muscle models, most

variations of Hill's, that control the leg in performing a minimum time kick, illustrated in

Figure 4.3. The minimum time kicking problem was posed in [Hat76]. The leg initially

hangs free and is then kicked forward as quickly as possible to a predetermined position. At

the end, both 01 and 02 are specified and the knee velocity 62 is zero. The solution to this

problem lays out control histories for the five muscle actuators so that the kicking time is

at a minimum and the final joint angles are met within some tolerance. The strategy that

Audu outlines is based on techniques from optimal control theory for finding the best way

to activate the muscles.

Another approach to producing coordinated muscle group action has been suggested
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5
61

Figure 4.3: Lower limb model for minmum time kicking problem. The angle 01 defines the
hip. The single DOF 02 is at the knee. Lines 1 through 5 define muscle groups acting on
the limb. [AD85]

by Wood [WMJ89] [Woo76]. His method seems more easily modularized and extensible to

modeling an entire 3D musculoskeletal system than that from Audu, and so is presented

here. Wood develops anatomy matrices for musculature that relate muscle forces to torques

about specific joints. This can be written for the j-th joint and k-th muscle as,

Am(jk)= ((Xk - Z3 ) 0 Lk) - U3

where from Figure 4.4 it can be seen that Am(jk) is the (time-dependent) scalar lever arm

which converts muscle force Fm(k) into a scalar torque Mm(j) about joint (Uj, Zj). The

line-of-action for the muscle force Fm(k) is defined by the unit vector Lk, and the point of

attachment is Xk. If there are several muscle forces acting about joint j, then the total net

moment for musculature Mm(j) about j is given by the summation over k,

Mm(j) = Am(jk)Fm(k) (4.1)
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Figure 4.4: Muscle acting about the revolute joint defined by unit vector U3 passing through
point Zj. [Woo76]

This relationship can be extended to handle the effects of gravitational and ligament

forces in an analogous fashion by constructing additional matrices. Wood, in his research

of prosthetic control, estimated muscle forces from EMG signals collected by electrodes

connected to the skin. A linear recruitment relationship, as well as a Hill-type muscle

model were used to find these forces. These are then transformed into joint torques by the

anatomy matrix, and the torque value used to control the joint actuators of an artificial

limb.

By inverting the matrix in Equation 4.1, values for muscle force Fm(k) can be found

simply from known joint torques. Thus the anatomy matrix can also be used as part of

a muscle control mechanism in which a higher-level planning system first estimates the

joint moments needed to produce a desired movement. Because the number of joints is

typically much less than the number of muscles, Am(jk) is underconstrained, and so the

same pseudoinverse techniques that are described by Ribble to perform skeleton control
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can then be used to find the vector of muscle forces necessary to produce the specified

action. Patriarco [PMSM81] has discussed some of the physiological issues behind different

optimization functions (secondary goals) for the determination of muscle forces in this way.

4.3 Attachments, Collisions and Constraints

Besides skeleton representation and muscle coordination, a realistic 3D musculoskeletal

model must have a mechanism for enforcing contacts between colliding muscle masses and

between muscle and bone through fascia attachments. To meet the goals of computer anima-

tion, easy-to-create sequences of complex deformable objects are possible only if techniques

for automatically simulating the effects of real physical objects are provided. In Chapter 3,

the finite element method was developed so that it could be used to make computer an-

imations of a multitude of visco-elastic models. Here the discussion concerns calculation

of the nodal point force vector R(t) so that attachments, collisions and contacts can be

realistically simulated.

Platt [PB88], [Pla89] describes many different methods that can be used to constrain

the solution of systems of differential equations by calculating constraint forces. One such

technique, appropriate for deformable models, is reaction constraints (RC's). Reaction

constraints are applied to single mass points of a discretized body. RC's work by first

calculating the net force active at a point due to physics or other kinds of constraints, call

this Fin. The RC then projects out the component of Fin in the direction of the constraint,

yielding Funconstrained. Next, Fconstrained in the direction of the constraint is calculated to

yield a critically damped motion that satisfies the constraint. The resultant force to be

applied to the point, Fo0 t is simply the sum Funconstrained + Fconstrained. The concept is

illustrated for a single mass point in Figure 4.5.
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Fnonnal 
FiC

Funconstrained

Ftangent

Fconstrained F

constraint manifold

Figure 4.5: The constraint goal is to place the mass point on the line. Fin pushes the
point up and right. The component Fnor,nal is undesirable, Fangent is acceptable. The
force Fconstrained is created by the constraint and sums with Funconstrained to produce Foot.

adapted from [Pla89]

There are two advantages to this technique. First, it is simple to implement. To

attach a node of the finite element mesh to a point in space, Fconstrained is found simply as

a spring force. Second, unlike a spring, the desired constraint can be met exactly without

using a high stiffness value. The reaction constraints executed in the thesis can attach

a nodal point to a world space location, and model collisions of the finite element mesh

against algebraic surfaces or against arbitrary polyhedral objects. This is done within the

derivs function by updating the mesh displacements for the current time and measuring

how far the constraint is from being satisfied. The nodal force vector R(t) is then calculated

to move the mesh points closer to the constraint manifold as discussed above.

The collision analysis software developed for the thesis is a modified version of the

algorithm presented in [MW88]. Because a vector normal to the constraint surface is re-

quired to generate forces in the proper direction, collisions are always calculated using the

mesh edges. An edge-polygon intersection routine from a raytracer is used to determine

the polygons that define the collision. The force Fconstrained is in the direction of the inter-

sected polygon and is scaled by the depth of penetration. Example animations using these
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constraints are presented in Section 6.2.
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Chapter 5

Implementation

5.1 The 3d Animation/Dynamic Simulation System

One goal of the thesis work is to make a "testbed" system to help script procedures for

computer animation, develop algorithms that control dynamic simulation, and that will

help us build interactive applications. The software for the resulting program, 3d, is being

developed on an HP TurboSRX graphics workstation running UNIXTM. The approach is to

make a simplified version of an interactive command interpreter like BASIC or LISP, that

has many special purpose rendering, dynamics, numerical math, and user-interface functions

all integrated at a relatively "high-level". The entire 3d program has a binary image size

of only 2.6M which includes the RenderMatic software A-buffer renderer. However, it

is the workstation's ability to draw pictures quickly with its special purpose hardware

that is the key to the approach taken here in designing the system. The hope is that

3d will allow simple design of new animations, improved dynamics algorithms and rapid

interface prototyping. The work in this area is inspired by bolio [ZPS89] [Pie9O] and corpus

[McK90], two other command interpreter programs written for the HP workstation here in
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the Computer Graphics and Animation Group.

The 3d program is based on the Tcl embedable, application-independent, "tool com-

mand language" from U.C. Berkeley [Ous9O]. Tcl is distributed as a C library package and

is designed to be used in many different programs. Included with the library is a parser

for a simple but fully programmable command language as well as a small collection of

built-in functions that support general-purpose language features such as variables, lists,

expressions, conditionals, looping and procedure definition. An instance of an application

program based on Tcl, such as 3d, extends the basic set of Tcl commands with any num-

ber of application-specific commands. The Tcl library also provides a set of utilities that

simplify defining these application-specific commands.

The application-specific code for 3d has been developed on top of the RenderMatic C

library of graphics and rendering software. The command interpreter has over 700 built-in

and application-specific functions. There are primitives for rendering and graphics, math,

matrix and vector operations, general data structure manipulation, Denavitt and Harten-

burg joint description, finite element dynamics and X/Motif interface building. The intent

of combining this functionality into a single program is to allow easy prototyping of different

graphics-based interactive applications.

There is a two-tiered approach to developing software using 3d. First, because Tcl

allows procedure definition, it is easy to make collections of useful subroutines in the inter-

preted language that can control object, light and camera motion. One of the main benefits

of creating an interpreted layer of language is that development of animation scripts can

be very rapid. Second, pieces of code that must run rapidly or interactively can be writ-

ten in C and then easily imported as new application-specific functions for the command

interpreter. It is important to note that these functions can usually be prototyped first

as Tcl procedures (tclprocs) before implementation in C. In this way a "top down" pro-
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Figure 5.1: The 3d Animation/Simulation System

gramming style is encouraged. The rest of this chapter will briefly describe the syntax

of the Tcl language, the data structures that are used in 3d, and quickly go over some

of the application-specific commands that are available. Lastly, we will describe a simple

interactive application defined using the system.

5.1.1 Tcl Language Syntax

This section is largely from [Ous9O] and is included so that later examples will make more

sense to those unfamiliar with Tcl programming. The Tcl syntax is similar to that of the

UNIX shell. A command is simply one or more fields separated by blanks. The first field is

the name of the command, which can be either a built-in or application-specific command,

or a tciproc constructed from a sequence of other commands. Subsequent fields are passed

to the command as arguments. A newline (\n) separates commands as do semi-colons (;).

Every Tcl command returns a string result upon evaluation or the empty string if no return
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is appropriate.

Additional constructs give Tcl a LISP-like feel. Comments are delineated by a pound

sign (#). The backslash character (\) denotes line continuation, or escapes special characters

for insertion as arguments. Curly braces ({}) can be used to group complex list arguments.

For example, the command

set a {leo cga {sprockets cheeba} hoot}

has two arguments, "a", and "leo cga {sprockets cheeba} hoot". This command sets

the variable a to the string defined by the second argument.

Square brackets ([1) are used to invoke command substitution. Everything inside of

square brackets is treated as a command and evaluated recursively by the interpreter. The

result of the command is then substituted as the argument in place of the original square

bracketed string. For example

mult [plus 1 2] 2

returns 6 because the command "plus 1 2" returns 3.

Finally, the dollar sign ($) is used for variable substitution. If the dollar appears in an

argument string, the subsequent characters are treated as a variable name, and the contents

of that variable are then substituted as the argument, in the place of the dollar sign and

variable name. For example

set a [plus 1 2]
mult $a 2

returns 6 as in the previous example because the variable a has the value 3.
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5.1.2 3d Data Types

There are eight primary types built into 3d. These types are polyhedral objects (obj s) used

primarily as rendering geometries, texture-maps (maps) that can be applied to obj s, De-

navitt and Hartenberg joint chains (dhc), two-dimensional matrices (m2d), one-dimensional

vectors of double precision numbers (vnd), vectors of integers (vni), dynamic objects

(dynobjs), and strings (str). Many of the application-specific 3d commands operate di-

rectly on these types.

For each of these primitive data types, there is a constructor command that creates

the C data structures that are needed and a special searchlist file (sif ile) that is flagged

to indicate its type. The sif ile name can be used later to refer back to the newly created

structures. To illustrate, the constructor command to instance a polyhedral object is

io file.name o -- instance object

where "file-name" is the name of an OSU file, and "o" is the name of the obj sif ile to

create in 3d. When this is invoked at the 3d prompt

3d> io /u/dead/data/cutcube cc
cc

an obj named cc is created from the OSU file "/u/dead/data/cutcube". To examine the

names of available sif iles, the listing command is can be used

3d> is
- object cc

The intent was to make the sif ile commands look as much like the UNIX filesystem

calls as possible. Directory trees can be made using the mkdir command. The animation

state can be stored in a hierarchally organized way. Arbitrary combinations of the 3d types
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can be created and stored for easy access in directories. This is the way 3d implements data

structures made from one or more of the primary types. The dynamic object, dynobj, is

created as a directory and makes extensive use of this idea as will be seen.

5.2 Graphics and Rendering

The rendering and graphics application-specific 3d commands are written using the Ren-

derMatic C library, written by myself, Brian Croll and Alex Seiden. Using RenderMatic, it

is very easy to setup a scene and control the objects, view, lights and rendering style. For

example, to make a "cutcube" object spin, the C program is

#include <local/3d.h>

main()

{
int i;
OBJECT *obj;

obj = Instance Object("/u/dead/data/cutcube");
View(-7., 20., -10., 0.); 10

for (i=0; i<30; i++)
{ obj-rotate(obj, 'z', 5.);

RenderMaticO;

}

To do the same thing using 3d is even simplier because the commands can be typed

directly into the interpreter with no need for ancillary compilation and linking phases.

io /u/dead/data/cutcube cc
view -7 20 -10 0

for {set i 0} {$i<30} {set i [plus $i 1]} {
ro z 5 cc
render

}
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5.2.1 Objects

Polyhedral objects are instanced from OSU files by the io command as seen above. An

obj is made that other commands can easily access to change the color, shading, position,

shape, and other graphical attributes of the underlying polyhedral object. Some of these

commands follow

io file-name o
to x y z obj
ro axis a obj

so x y z 01

reo 01 ...
co Er g b] o

shadowo [01l] o

shade [d s e a] o

facet 01 ...

smooth 01 ...

centroid obj

dumpo [file] o

matrix [ml ... m16] o

phong 01 ...

gouraud ol ...

harden ol ...

pt i Ex y zI o

instance object
translate object
rotate object

scale object

reorigin object
color object

turn shadows [onloff] for object

object shading parameters

facet object

smooth object

object wsp-centroid

dump point/polygons of object

local object matrix

phong shading

gouraud shading

harden object with local matrix

object vertex

5.2.2 Camera

The virtual camera used in RenderMatic and 3d is that described by Alvy Ray Smith in

[Smi84]. The world space coordinates are right-handed with x to the right, y into the screen

and z up. Direct control is given to allow manipulation of the viewpoint, view-normal and

view-up vectors. Convenience commands are provided to set these view vectors, the field

of view, and the view window shear. Because, there is always a single active view, no

constructor command is required to implement the synthetic camera. A partial listing of

the view commands follows

Pump It Up 
5.2 Graphics and Rendering

David T. Chen 122

5.2 Graphics and RenderingPump It Up



David T. Chen 123

view d a p r
fullview x y z a p r
lookat EoIx y z] roll

vheading

vp Ex y zI

vn Ex y z]
vu [x y z]

vdepth [near far]

fov [val]

vdist [dist]

vwin [cu cv su sz]

vpersp [01]

vsave

vrestore

-- set view with ''dist azimuth pitch roll''

-- vp = (x y z), vn = f(azimuth, pitch, roll)

-- look at point or object

-- current azimuth, pitch and roll

-- view point

-- view normal

-- view up

-- view depth

-- field of view

-- view distance

-- view window

-- perspective or orthographic view

-- save current view

-- restore to current view

5.2.3 Lights

Arbitrary numbers of point or spot lights can be created to illuminate a scene. Control is

available to set lighting parameters such as light position and light color. For spot lights,

the shade angle can be set, and the light made to cast a shadow in the software renderer.

Like the view, lights are considered a global scene property and so no slf ile is made when

new lights are created. Multiple lights are differentiated by their names.

lcreate 1

lclose 1
llights
lon 1
loff 1
lcolor Er g b] 1
lpos [x y zI 1

ldir Ex y z] 1
lpointat Eolxyzl 1

1spot 1
lpoint 1
lshadeangle [a] 1

1shadow [name] 1

lshadowdim Ew hI 1

-- create global light

-- delete light

-- list all lights

-- turn light on

-- turn light off
-- light color

-- light position

-- light direction

-- point light at xyz or object

-- make light a spotlight

-- make light a pointlight

-- light shade angle

-- light shadow file name

-- light shadow file dimensions
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1shadowden [d] 1 -- light shadow density

5.2.4 Rendering

There are two different rendering modes built into 3d. The hardware renderer is written on

top of the HP Starbase Graphics Library, and is used for quick visualization and interactive

scene design. The software renderer is the A-buffer scan converter in RenderMatic and is

used to draw final versions of scenes to videotape. The render command invokes one or the

other of these options depending on the state set by the hardware command. The extra

features of the software renderer include phong shading, anti-aliasing, transparency, haze,

shadows, and texture and reflection mapping.

render
hardware [110]
doublebuffer [110]

antialias [110]

nopasses [num]
quick [val]
dither [amplitude]
screensize [x y x1 yl]
render2file [im al z]
bg [r g b]
hazelevel [hl]
hazedist [hd]

render scene

hardware render

render doublebuffered

antialiased render

number of passes to render scene

render with obj bboxes if nopolys > val
anti-contouring dither amplitude

screen min and max

files to create for software render

background rgb

haze level [0-1]
haze distance [near-far]

5.3 Numerical Math

Much of the power of 3d comes from the numerical math capability that it has. There are

simple commands that operate on lists of numbers, like

3d> sqrt [plus [mult 3 31 [mult 4 4]]
5
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Or, to make sure the cutcube object cc is centered at the world space origin,

to [mult -1 [centroid cc]] cc

Additionally, there is a 4x4 matrix stack (ctm) that can be used to define affine

transformations for obj s and three slf ile types that implement a matrix math package.

5.3.1 Matrix Functions

Because most of the finite element equations developed in Chapter 3 are expressed as matrix

relationships, it is important that 3d include some method for handling two-dimensional

arrays. To accomplish this, three new types are introduced. The m2d is a 2D array of

double precision numbers, a vnd is a one-dimensional vector of double precision numbers,

and a vni is a vector of integers. Most of the commands that follow can accept various

combinations of these three types as input. The exact operation performed will depend on

the organization of the input string. For example, m2copy can accept either two m2ds, two

vnds, or two vnis as input. Other combinations will generate a syntax error.

m2create [r c] m
vncreate [n] v
vnicreate [n] vi
m2dim Er cn] my
m2dump mv
m2load {e1... } my
m2write file my
m2read file my

-- create m[r][c] of doubles

-- create v[n] of doubles

-- create v[n] of ints

-- matrix/vec dimensions

-- print all elements of matrix/vec
-- load all elements of matrix/vec

-- write binary image of my to file

-- read binary image of my from file

m2ele {{r1 r2 rs} {cl c2 cs}} Ex] my
-- elements of matrix/vec

m2copy mvl mv2
m2equal mvl mv2

m2scale [mv] sca mvr

m2mult mvl [mv] mvr

-- copy mvl to mv2

-- mvl == mv2

-- mv[r] * sca = mvr

-- mv1 * mv[r] = mvr
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m2plus mv1 [mv] mvr

m2minus mv1 [mv] mvr

m2transpose [m] mr

vnlength v

vnsum v

vnnorm [v] vr

vndot vi v2

vncross vi v2 v3

m2invert Em] m2

m2lud b A x

m2pinsg b A x

m2pisg b A z x

m2decompose m vi

m2solve b LU vi x

m2improv b A LU vi no

mvi + mv[r] = mvr

mvi - mv[r] = mvr

transpose( m[r] ) = mr
return length of v

return sum of elements of v

vr = |v[r] |
vi dot v2

vi cross v2 = v3

m2 = inv( m[21 )

find vector x such that b = Ax
find vector x such that Ax - b is minimized

find vector x such that, (b-Az) = A(x-z)
LU form of m, vi is new row order

find x given b using LU form of A, ie. b=Ax

iteratively improve x from solve no times

5.3.2 Netlib Functions

Because C does not have any explicit facility for defining two-dimensional arrays, the two-

dimensional matrix functions were implemented as a subroutine library called libm2.a.

For the harder numerical problems, it is advantageous to turn to the more established

FORTRAN programs available through netlib. Code from eispack is used to find the real

and imaginary eigenvalues and eigenvectors of general matrices, or the real eigenvalues and

eigenvectors of symmetric matrices. Code for choelsky factorization is taken from linpack

to solve the generalized eigenvalue problem as discussed in Section 3.4.2.

m2eig-rg m vr vi mr

m2eig.rs m vr mr

m2chdc Em] mr

-- eigenvals of m in vr/i, eigenvecs in mr

-- eigenvals/eigenvecs of symmetric matrix m

-- cholesky-decomposition( mEr ) = mr
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5.4 Dynamic Objects

The system of ordinary differential equations that results from a finite element analysis

can be effectively solved using a numerical integrator as discussed in Section 3.4.1. Rather

than writing a custom ODE solver, the LSODE code available through netlib is employed

for this purpose. LSODE solves the initial value problem for stiff or nonstiff systems of

first-order ODE's, of size neq, of the form

dy

= f;= f(i, t, y1, - -,yneq)

The function f is the user-defined derivs function that characterizes the exact nature of

the ODE system. The FORTRAN interface to this call is

subroutine f (neq, t, y, ydot)
dimension y(neq), ydot(neq)

in which the vector function f loads ydot(i) with f(i).

LSODE, written by Alan Hindmarsh, contains an implementation of the Adams-

Bashforth predictor-corrector, which is the LSODE method that is primarily used here.

The mechanism that 3d uses to access the numerical integrator is the dynamic object

dynobj. A dynobj is created by the constructor command

dyncreate noeqns d -- make a dynamic object

where in this case, noeqns is the number of second-order differential equations to be solved.

One point worth noting is that the predictor-corrector, while relatively fast, does not handle

discontinuous input forces very well. In practice, the integrator must be reinitialized before

such forces can be applied [Lot84].

The command dyncreate makes a directory named d and fills it with m2ds, vnds,

and strs that define the dynamic state. For example, a rigid body can be described as a
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system of six second-order differential equations. To create a dynobj that can handle simple

rigid body dynamics, one would type at the 3d prompt,

3d> dyncreate 6 rigidbody
rigidbody

3d> 1s rigidbody
- string .dyn-xddot
s vector x
s vector xddot
s vector xdot

where .dyn.xddot is a str that contains the name of the Tcl derivs function that evalu-

ates xddot for rigidbody. The command defined by .dyn-xddot is in essence a Callback

function (as used extensively in the X Window System) that defines the second-order ODE

system for the dynamic object, and is automatically invoked as many times as required

by LSODE when a simulation step is taken by the command dynstep. It is important to

note that the vectors x, xdot and xddot are easily accessed by the matrix commands of the

previous section.

Because a dynobj is created as a directory structure, it is easy to augment with data

types specific to a dynamic situation to be simulated. For example, the solution to the

FEM equilibrium equations can be written

. = M-'(R - Kx - C.)

which indicates that m2ds for the stiffness matrix K, the damping matrix C and for the

mass matrix M must be added to the directory rigidbody in addition to another vnd for

the external force. Of course the .dyn-xddot Callback must also be modified to solve the

FEM equations.

A partial listing of the dynamic object commands follows,
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dyncreate noeqns d make a dynamic object

dyninit d [sparse] flag integrator for restart

dynstep stepsize d forward simulate

dyntime [new-t] d current simulation time

dyntol [rtol atoll d relative and absolute error tolerance

dynmethod [meth] d 10 is Adams-Basthforth [see lsode srcl

dyneqs [no.eqs] d get/set number of equations to be solved

lsodedebug [level] -- set/get lsode debug level

5.5 User Interface

The Tcl language was originally written to be integrated with the widget library of a window

system, and can serve two purposes in such a context. These are to configure the actions

of an application's interface, and to design the appearance of that interface. Tcl is used for

both purposes by 3d. The widget set used is OSF/Motifrm and the windowing system is

HP's port of X. The user interface is currently defined by three kinds of dialog - through

the keyboard, through interactive Dialog Boxes or direct mouse manipulation of objects

inside the graphics window. Figure 5.2 shows the primary Motif dialog box used in 3d.

5.5.1 Motif Widgets

Most of the Motif constructors have been imported as application-specific commands into

3d. These commands have a very uniform calling sequence as in

XmCreateScale parent name args no -- returns new widget

which creates a slider widget. When such a widget is constructed, a hexadecimal pointer

address is returned that can be parsed by the other X/Motif interpreter commands. Motif

resources can be accessed as documented in [Fou90] and [You90]. Actions are defined

through the X Callback mechanism. A Callback can be any 3d command or tclproc. As
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Figure 5.2: 3d dialog box
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a simple example, a small program that creates a PushButton with a simple Callback is

presented. This code relies on the tciproc Xmap that allows simple list passing of up to 32

arguments to a widget constructor.

proc Xmap { func parent name arglist } {
set args [argcreate 32]

set no 0

foreach i $arglist {
XtSetArg $no [index $i 0] [index $i 1] $args

set no [plus 1 $no]
}
set widget [$func $parent $name $args $no]
free $args
return $widget

}

As with all Xt programs, the Toolkit must be initialized before widgets can be created. A

RowColumn widget is made as a child of the Toplevel shell, and a PushButton is made that

reads "Push Me". The string "Yow!" is echoed when the button is pushed.

set top [XtInit Test {}]
set widget [XmCreateRowColumn $top {} {} 0]

Xmap XmCreatePushButtonGadget $widget {} {
{labelString { Push Me }}
{activateCallback {echo Yow!}}

}
XtRealize $top

5.5.2 X Events

The X mouse and window events are also available to 3d. Callbacks can be setup on a

window to listen for mouse clicks, keyboard presses, cursor motion and resize events. The

Callback function is handed a list that contains the event information as its argument. In
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the following example, a window is made and mouse button pushes are requested. In this

case, the Callback simply echos the EventList as it is received.

set top [XtInit Test {}]
set widget [Xmap XmCreateForm $top {} {{width 250} {height 250}}]
XtRealize $top

set win [XtWindow $widget]
EventCallback $win 5 { echo }

5.6 User-Assisted Finite Element Mesh Construction

An example interactive application written using the 3d system is a user-assisted FEM mesh

generator. Totally automatic mesh generation is non-trivial, and is especially hard for a full

3D case [Cha88] [CB89]. Here, the approach taken to this problem is to provide the user

with an interactive tool that allows simple construction of finite element meshes that fill a

volume defined by polyhedral objects. No effort was made to calculate error indicators that

could quantify the quality of the generated mesh as done in [CB89], but in general, a better

mesh is produced by using more elements and adaptively fitting the elements to capture

the details of the goal geometry. A mesh constructed with the technique implemented in

the thesis can be of arbitrary size, but the larger the number of elements used, the slower

the dynamics will run. These kind of tradeoffs are discussed in Chapter 3. In fact, it is easy

to design a mesh too big for the current simulation system. The dialog box created for the

mesh generation process is shown in Figure 5.3.

The steps to make a finite element mesh for the polyhedral Cyberware head model

from Section 2.3.1 will be presented. The element used is the twenty-node brick discussed

in Section 3.2. For the purposes of computer animation, it is sufficient to coarsely sample

the head with only three isoparametric cubes, one for the shoulders, one for the neck and
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one for the rest of the head. In this arrangement, two element faces are shared, so the

number of degrees of freedom to be simulated will be 3* (3*20 - 2*8) = 132. The starting

point for the mesh generation process is to fill the volume defined by the bounding box of

the Cyberware model with the number of elements set in the Mesh text area of the dialog

box, see Figure 5.4.

Figure 5.4: Mesh filing Cyberware head bounding box

The z axis is chosen to represent the natural orientation of the object. In this direction,

there are seven contour levels defined by the nodal point z values. These contour levels can

be easily adjusted through the interface of Figure 5.3. For the Cyberware head, levels two

and four are moved so that the middle isoparametric brick encompasses the neck area. The

Snap push-button recenters the edge midpoints after the element corners are shifted. This

intermediate mesh is shown in Figure 5.5.

The points of the mesh are then cylindrically shrinkwrapped around the z axis to
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Figure 5.5: Mesh boundaries interactively shifted

intersect the polygonal object. This is done by calculating a contour from the points of the

polyhedral data for each z level and drawing the outside mesh points in to intersect the

contour. This produces the finite element approximation to the Cyberware head. Because

the mesh points can initially be relatively distant from the polyhedral model, the procedure

is done in two stages. First, the mesh is shrunken only to the bounding boxes defined by the

local contours with the toBbox push-button. Then the intersection with the contour defined

by the geometry data is done. The mesh after shrinkwrapping to the local bounding boxes

is shown in Figure 5.6. After shrinking, it is necessary to recenter those element midpoints

that make a concave edge with SnapConcave, or else a malformed stiffness matrix K may

be found as described in [Bat82].

After the finite element approximation has been completed, the mesh information

can either be saved to disk, or simulation parameters can be set for running dynamic trials.
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Figure 5.6: Mesh shrunken to head

The parameters Young's modulus E, Poison's ratio v, and the mass density p can be fixed

identically for each of the constituent elements, or else set individually to model an inho-

mogeneous composite material. A dynobj is then constructed by calculating the matrices

K and M and by performing the modal transformation as in Chapter 3. Furthermore, the

polyhedral head is embedded in the isoparametric mesh by performing the local to natural

coordinate transformation described in Section 3.2.2. To test the behavior of the finite

element model, the Modal dialog box of Figure 3.10 is used to examine the mode-shape

deformations defined by the eigenvectors 4; as in Figure 5.7.

This simple mesh construction tool was written in approximately 320 lines of Tcl

code. An additional 550 lines were needed for the X interface. Application-specific routines

written in C were also added to 3d to calculate the shrinkwrapping contours from the input

obj and to shrink the mesh points as required, and to do the element midpoint recentering
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Figure 5.7: Head warped through mode-shape deformation

operations described. In total, with the existing C libraries, these routines took only about

600 new lines to implement.

5.7 Validating the FEM Implementation

Before proceeding further, an attempt is made to validate the FEM implementation by

comparing simulation results to the analytic solution for an idealized beam. In the next

chapter, a similar set of trials will be run to validate the biomechanical implementation by

reproducing some of the experiments done on whole muscle that lead to the development

of Zajac's muscle model.

The problem to be considered is a simple beam subjected to a uniform gravity force.

The beam is 6 inches long, 2 inches high and 2 inches wide. The beam is made to have the
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density of water, which in the English units is .00112287 slugs/in3 , and so weighs .868 lbs

on Earth. The acceleration of the Earth's gravity is -386 in/s 2 .

The other physical parameters to set are the mechanical material properties of the

beam. For a linear, homogeneous, isotropic material, this is done in terms of E and v. E is

Young's modulus and is simply the ratio of stress to strain. The Young's modulus chosen

here is 435.11 psi, which approximates some kinds of rubber. For comparison, steel has

modulus of elasticity E = 3 x 107 psi. Poisson's ratio, v, is the ratio of lateral contraction

to longitudinal extension and so is a dimensionless quantity. A value of v = .5 is used

for materials that are volume preserving. The Poisson's ratio for steel ranges from 0.25 to

0.33, for rubber it is slightly less than 0.50 [Har49]. Note that a look back to Equation 3.3

indicates that a Poisson's ratio of exactly 0.50 will cause a divide by zero and so is not

possible. Volume preserving materials are then approximated with v close to, but not equal

to 0.50.

Initially, the beam is undeflected with no loading. At time 0, gravity is turned on and

the beam deforms in response. The solutions for the deflection of cantilever beams under

various loading conditions are well known. Analytic formulations from [Har49] are used

as the control for this experiment. These solutions are based on the assumption that the

cross-sectional dimensions are small compared with the beam's length. Consider the beam

in Figure 5.8 subjected to a uniform load w all along its length 1. At a point x, which is

distance I - x from the free end, the bending moment is w(l - x)2 /2. The deflection at the

free end is written,

= Y=l = W14
8E1

For a beam with rectangular cross-section, I is given by

I bh 
3

12

where b is the width and h the height of the cross-section. In this case, b = h = 2 and so
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i 4

Figure 5.8: Uniformly loaded cantilever beam. adapted from [Den Hartog]

The load w is simply the force per cross-sectional slice of the beam, and is found by

calculating the total force due to gravity and dividing by the length of the beam. The total

mass is 24 x .00112287 = .02694888 slugs,

w = -386 x .02694888/6 = 1.73371128 lb

And so the analytic solution for the amount of deflection at the tip of the beam is,

1.73371128 * 64 .
6= - .484121076 in

8 * 435.11 * 1.3333

For experiment, two different finite element discretizations of the beam are simulated,

one with three elements and the second with six elements. The particular element used is

the twenty-node isoparametric brick discussed in Section 3.2. After matrix assembling,

the three element beam has 44 nodes and 132 degrees of freedom. The six element beam

has 80 nodes and 240 degrees of freedom. The effect of mode truncation is examined by

performing a number of trials with different numbers of modes for each beam. Figure 5.9

plots the eigenvalues for the two beams.
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Figure 5.9: Plot of eigenvalues for 3 and 6 element beams.
element plot is solid

3 element plot is dashed, 6

For the three element beam, three separate simulation trials are run for the deflection,

once with 30 modes, once with 100 modes, and finally with all 132 modes. The tabulated

statistics are, the total number of steps taken by the LSODE integrator for half a second

of total simulation, the number of derivs function evaluations needed, the total real time

required for the simulation, and the beam deflection at time .5 seconds.

no. of frac. of LSODE func. evals. simulation deflection percent
modes total steps evals. per step time (inches) error

(mins)

30 .227 16791 30356 1.81 45 .3046 37
100 .758 16904 30681 1.82 63 .4351 10
132 1. 16695 30244 1.81 70 .4493 7.2

Table 5.1: Runtime and tip deflection for 3 element beam.

As expected, the error for the deflection goes down as the number of modes increases.

Also note that the FEM results are all stiffer, or represent an upper-bound to the analytically

predicted results. The time course of the tip deflection is plotted in Figure 5.10.

For the second trial, a six element beam is used instead of the three element beam.
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Figure 5.10: Deflection for 3 element beam. Length vs. time. 30 mode plot is dotted, 100
mode plot is dashed and 132 mode plot is solid.

The same behavior as regards the number of modes is expected, but the final results should

better approximate the analytic deflection values.

no. of frac. of LSODE func. evals. simulation deflection percent
modes total steps evals. per step time (inches) error

(mins)

30 .125 16073 28996 1.80 56 .3304 32
54 .225 15716 28311 1.80 61 .4035 17

100 .417 17047 30996 1.82 90 .4525 6.5
182 .758 17191 31306 1.82 119 .4792 1.0
240 1. 23142 24635 1.06 117 .4881 .82

Table 5.2: Runtime and tip deflection for 6 element beam.

Again, the final deflection is better approximated by the simulation with the most

modes. The deflection for this case is plotted in Figure 5.11.

The cost in calculating the derivs function for this problem is dominated by the ma-

trix multiplications for the modal forces, Rmodal = qTR, and updating the nodal positions,

u = 4x, as discussed in Section 3.4.4. For the three element beam, 4 has rank 132 and the
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Figure 5.11: Deflection for 6 element beam. Length vs. time. 54 mode plot is dotted, 182
mode plot is dashed and 240 mode plot is solid.

matrix multiplies take about .023 seconds each. For the six element beam, <P has rank 240

and the large matrix multiplies take roughly .081 seconds each. The initial and final states

for the 6 element beam used in the experiment are shown in Figure 5.12 and Figure 5.13.
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Figure 5.12: Beam made from 6 twenty-node elements, initial state

Figure 5.13: Beam made from 6 twenty-node elements, final state
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Chapter 6

Methods and Results

6.1 Frog Gastrocnemius Simulation

Models that simulate the action of muscle on a wide variety of levels have been proposed for

a wide variety of purposes; the model that is implemented clearly depends on the desired

objective. For instance, much research is being done to investigate the fundamental physical

and chemical mechanisms of the actin-myosin crossbridge attachments within muscle fibers.

Individual fibers can be extracted from frogs, subjected to periodic displacement changes

and the visco-elastic properties measured as in [CGT86] and [JBDT88]. For this research,

Blang6 and Stienen have proposed a model of single muscle fibers as an infinitesimally thin

rod composed of a repeating sequence of springs and damping elements, see Figure 6.1.

Alternately, engineers who design artificial limbs to improve or replace lost motor function

often make calculations of muscle force based on kinematic body movements and on mea-

sured EMG activity. This kind of muscle model was discussed in Section 4.2 in reference to

the work of Wood.

Zajac in [ZTS86] and [Zaj89] discusses a dimensionless musculotendon model that
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sarcomeres

Figure 6.1: Model of single muscle fiber

is a refinement of the classic Hill model, appropriate for studies of intermuscular coordi-

nation. Details of my implementation of this model can be found in Section 2.2.3. Delp

in [De190] -uses Zajac's muscle functions in a surgical simulation system that calculates the

static effects of tendon transfer surgery. When human limbs are impaired, motor function

can sometimes be recovered through surgical reconstruction. These reconstructions, how-

ever, often compromise the capacity of muscles to generate the amount of force needed to

coordinate natural body activity. Surgeons typically rely on experience to make decisions

about a given procedure. Delp has created a tool that can pre-operatively evaluate the

effect of a procedure on muscle function. The result is that the computer model can assist

in understanding the biomechanics of a reconstructive surgery. Computer graphics is an

essential part of computer models for surgery simulation or BioCAD systems--both to vi-

sualize the 3D musculoskelatal geometry and to facilitate communication between engineer

and surgeon.
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When doing computer animation, we are primarily interested in simulation for the

purpose of automatically generating changes in shape and position. A major supposition of

this thesis is that in the case of graphically simulating a contracting muscle, it is possible

to produce convincing shape changes by accurately simulating the forces involved. Further-

more, through simulation we will be able to analyze which elements of the muscle model are

important factors in determining the shape. A natural application for such a model would

be in a surgical simulator such as the one developed by Delp.

A major difference between the muscle model proposed here and the ones discussed

above is that our's must be truly 3-dimensional to make computer animations of human

characters. Other muscle models are essentially one-dimensional-Delp used simple straight

lines to visualize the muscle origin and insertion points. Clearly a 3D model is a requirement

for computer graphics, but we will also see that there may be biomechanical advantages

because of the extra complexity and realism of the model.

Because our goal requires us to model a complex, dynamic, irregular, elastic volume,

the underlying formulation is based on the finite element method discussed at length in

Chapter 3. In that chapter, we discussed how to make linear deformable visco-elastic

models from data represented polyhedrally, how forces can be applied to the node points

of the resulting FEM mesh, and how to forward simulate these models through the use of

numerical differential equation solvers. In this way, we argue that we have met the twin

goals of computer animation and creating a biomechanically valid simulation of muscle.

6.1.1 Force-based Finite Element Muscle Model

The muscle model was constructed by dissecting the gastrocnemius from an anesthetized

frog, measuring the top and side dimensions, then Swivel was used to make a polyhedral

model with 576 polygons, see Section 2.3. The user-assisted finite element mesh generator
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described in Section 5.6 was then used to interactively construct the mesh shown in Fig-

ure 6.2. Four twenty-node isoparametric bricks are used to approximate the gastrocnemius.

The exact number of elements used represents a tradeoff of the quality of the simulation

versus simulation time as discussed in Section 5.6. The model then has 56 nodes or 168

total degrees of freedom.

Figure 6.2: Finite element mesh used for frog gastrocnemius

To simulate a contraction, force generators are added to the node points of the finite

element mesh that act along the longitudinal direction of the muscle. Wired in this way,

there are eight generators per twenty-node brick, for a total of 32 for the whole muscle.

Tendons are constructed in a similar fashion, see Figure 6.3.

To facilitate the simulation, the dynobj data structure from Section 5.4 is augmented

with information for the muscle state. Using the notation of Section 5.4, for the muscle

fibers, we add
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Figure 6.3: Force generators for muscle and tendon
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1. fibers, integer vector vni, of length (nofibers*2): encodes which nodes are attached

2. f iber-lenO, double vector vnd, of length (nofibers): fiber rest length

3. fiberilen, double vector vnd, of length (nofibers): current fiber length

4. f iber-time, string str: simulation time for which f iber-len was calculated

In addition, three other str parameters define the muscle, as per Zajac's dimension-

less model. The maximum isometric active force is f iber.-FOa, the passive force scalar is

f iberFOp and the maximum normalized fiber velocity is f iberVmax.

To calculate the force within each of the muscle fibers to be applied to the fi-

nite element mesh nodal points in the derivs function, an application-specific routine

muscle-zajacF was added to 3d,

muscle-zajacF F0a FOp Vmax wspF d
-- Add active and passive muscle force to 'wspF' using Zajac model

which accepts the maximum active and passive forces and the maximum normalized fiber

velocity as inputs. The world space force vector wspF (R(t) from Section 3.4.4) for the dy-

namic object d is accumulated with the muscle fiber forces. These fiber forces are calculated

by muscle.zajacF as follows.

For the four element approximation to the frog gastrocnemius in Figure 6.2, named

gastroc, the fibers are numbered,

3d> m2dump /gastroc/fibers

0 16 1 17 2 18 3 19 16 4 17 5 18 6 19 7 20 28 21 29 22 30 23 31 28 0

29 1 30 2 3 1 3 32 40 33 41 34 42 35 43 40 20 41 21 42 22 43 23 44 52

45 53 46 54 47 55 52 3 2 53 33 54 34 55 35

where nodes {0 16} define the first muscle fiber, {1 17} the second, and so on.
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The current world space mesh nodal positions are found for each fiber. These are

subtracted to yield a world space length. From this the normalized fiber length IM is,

lm = len / vnd-get( fiber-lenO, i );

The normalized length is used to find the isometric active and passive force functions, and

their derivatives, as discussed in Section 2.2.3,

zajac.passiveforce( lm, &Fmp, &dFm );
zajac-activeforce( lm, &Fma, &dFm );

The fiber velocity is determined through the following first-order approximation. Be-

fore the next call to dynstep, the lengths for each of the muscle fibers are found and saved

in f iber-len. The simulation time before the next call to dynstep is stored in f iber-time.

When dynstep is then used to take the next step, the instantaneous simulation time is

accessed by muscle-zajacF as

DynObjectGetTime( d, &time );

and the normalized velocity i; computed,

if (time == fibertime) velocity = 0.;
else
{ velocity = (len - vnd-get(fiber-len,i)) / (time - fiber-time);

velocity /= vndget( fiber-len0, i );
velocity / Vmax;

from which the scale factor from the force-velocity curve is looked-up,

zajac-forcevelocity( velocity, &Fvc );

and the force generated by the fiber from the normalized quantities is,
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force = Fmp * FOp;

force += Fma * FOa * Fvc;

force *= .5;

The final scale by .5 is done because half the force is applied to the first node point

of the fiber, and the other half of the force is summed with the second fiber node point. If

the world space vector that defines the fiber orientation is dl, and inl and in2 are the two

fiber indices, then the world space fiber force is accumulated into wspF as,

VVAscale( dl, force );

vnd-setplus( wspF, in1*3 + 0, d1[O] );
vnd.setplus( wspF, in1*3 + 1, d1[1] );

vnd-setplus( wspF, in1*3 + 2, d1[2] );

vnd-setplus( wspF, in2*3 + 0, -d1[O] );

vnd.setplus( wspF, in2*3 + 1, -d1[1] );

vnd-setplus( wspF, in2*3 + 2, -dl[2] );

The tendon fibers are modeled in much the same way as the muscle fibers, the main

difference being that tendons connect mesh node points to external world space locations.

For tendon, the dynobj data structure is further augmented with,

1. tendons, integer vector vni, of length (notendons): encodes which nodes are tendon

attached

2. tendon-lenO, double vector vnd, of length (notendons): the tendon rest length

3. tendon-wsppt, double vector vnd, of length (notendons*3): the world space attach-

ment points

4. tendon-force, double vector vnd, of length (notendons*3): the amount of force gen-

erated by the tendon fibers
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There is also a str that scales the normalized tendon force, tendonFO. The force gen-

erated by each of the tendon fibers, is found by the application-specific routine tendon-zaj acF.

tendon-zajacF FO wspF d -- Add tendon force to 'wspF' using Zajac model

which accumulates the tendon fiber forces into the world space force vector wspF. These

forces are calculated by tendon-zajacF as below.

For the four element approximation, gastroc, the tendon fibers are placed at the

edge midpoints of the bottom and top faces of the mesh assemblage,

3d> m2dump /gastroc/tendons
49 51 48 50 13 15 12 14 0 3 11 20 23 27 32 35 39

To calculate the tendon force, begin with the world space location of the node to

which the tendon fiber is fixed. Subtract the position of the external attachment point

defined by tendonwsppt, and find the length len and direction of the resulting vector dl.

Using the rest length of the current tendon fiber, the strain ET is,

strain = (len - lenO) / lenO;

Then the strain is used to look up the normalized tendon force. The vector dl is scaled by

the force,

zajac-tendonforce( strain, &Ft, &dFt );
force = Ft * FOt;

This is repeated for each tendon fiber and again the computed force is summed into

the world space external force vector wspF for the finite element mesh. In addition, the

force generated by each of the tendon fibers is saved in the vector tendon-force. This is

because the total force generated by the muscle is the sum of the reaction forces created

6.1 Frog Gastrocnemius Simulation

152David T. Chen

Pump It Up



David T. Chen 153

by the tendon attachments. This total force is, of course, an important measure and is one

the quantities plotted in the subsequent experiments.

The two application-specific routines muscle-zajacF and tendon-zajacF are invoked

by the standard derivs function in 3d for the modally transformed finite element equations.

The name of the Callback function that defines the effect of the muscle and tendon fibers

is set within the gastroc structure,

sset $d/.dyn-forces muscle-contract

and the .dynforces Callback is invoked within derivs as

foreach f [sset $d/.dyn.forces] { eval $f $wspF $d }

where the Tcl procedure muscle-contract is

proc muscle-contract { wspF d } {
set Foa [mult [sset $d/fiberFOa] [sset $d/.activation]]

set FOp Esset $d/fiberFOp]
set Vmax [sset $d/fiberVmax]
set FOt [sset $d/tendonFO]

muscle-zajacF $Fa $FOp $Vmax $wspF $d

tendon-zajacF $FOt $wspF $d

}

The effects of the muscle activation function a(t), directly scales the maximum active fiber

force f iberFOa. This is the mechanism used to turn the muscle on and off.

To test the biomechanical validity of the muscle model developed here, two well-known

experiments are simulated. First, tension-length curves will be plotted of both active and

relaxed muscle. Second, Gasser and Hill's quick-release experiment will be simulated to

reveal the dynamic time course of the forces generated by the finite element muscle model.
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6.1.2 Tension-Length Experiment

The first experiment plots the characteristic tension-length relationship produced by the

FEM muscle model. This is easy to do by attaching the top set of tendons to various

positions to control the overall muscle length, measuring the amount of force generated by

the whole muscle, then fully activating the muscle and measuring the force again. The

setup for this experiment is illustrated in Figure 6.4. The muscle is attached with tendon

to both the bone and the horseshoe shaped "clamp" in the figure.

Figure 6.4: Setup for tension-length experiment

Up to now, most of the development has concerned computing the non-linear muscle

force functions defined by biomechanical models to apply at the finite element mesh nodal

points. To fully specify the FEM model, however, the passive mechanical characteristics

of muscle must also be set. Grieve and Armstrong in [GA88] publish stress-strain curves
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derived from compressing plugs taken from pig muscle. These curves are also non-linear,

the plugs becoming stiffer the more they are compressed. The range of values for Young's

modulus they present are from close to 0 up to 2.745 x 103 Pa at a strain of 40%. Or, in

cgs units, 2.745 x 104 dyne/cm2

A major assumption made in the thesis, is that in terms of these passive elastic

properties, muscle can be approximated as a linear, homogeneous, isotropic material. This

assumption is necessary because of simplifications inherent in the derivation of the stiffness

matrix in Section 3.1.1, but could be easily relaxed by implementing better constitutive

models [Bat82]. In any case, I feel this simplification is justified when examining muscle

contraction because the contraction forces are orders of magnitude larger than the passive

mechanical forces, and these non-linear, anisotropic forces are indeed modeled. An inter-

mediate, convenient value is then chosen for E. Poisson's ratio, v, is set to approximate

a volume preserving material. The density, p, of muscle was found by Grieve and Arm-

strong through careful weighing. Gravity, g, is turned off so as not to confound the force

measurements. The physical constants for the simulation are as follows,

E = 1000 dyne/cm2  v = .49 p = 1.04 g/cm3  g = 0 cm/s 2

The frog muscle rest length is 6 cm long. The maximum isometric force generated by the

gastrocnemius measured in the frog lab (Section 2.3), was 2.77 N or 2.77 x 105 dynes. This

force is distributed evenly among the 32 fibers and so the fiber force is 8656.2 dynes.

The tension-length experiment is performed by first measuring the force for the passive

muscle. This is done by examining the force generated in the tendons attached to the clamp

through the tendon-force vector. The muscle is activated and the force measured again.

The whole process is repeated for the muscle set to different initial lengths. The resulting

tension-length curves are presented in Figure 6.5.

An examination of this plot shows a good correspondence to the published biological
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Figure 6.5: Simulation results for tension-length experiment. Isometric muscle force vs.
normalized length. Dotted line is total isometric force, dashed line is the force from passive
muscle and the solid line is the developed force.

observations (see Figure 2.10), with a local maximum for the muscle at its rest length.

The other result taken from this simulation, interesting from the point of view of computer

graphics, is that very little changes in shape are produced by a muscle undergoing purely

isometric contraction. Another of the simplifying assumptions made in the muscle model is

that all the fibers are homogeneous both in terms of the amount of force they can develop,

and in their response to stimulus from the neural controller (u(t) in Figure 2.37). The small

observed shape change is then expected since the actions of all the series and parallel fibers

should produce a net zero resultant force at the internal mesh faces, while producing a large

force at the origin and insertion ends which is then cancelled by the tendon forces. Hence,

to produce larger shape changes for the purposes of computer animation requires either the

muscle to lengthen or shorten, or for the contraction to work against shape changes due to

external forces such as gravity.
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6.1.3 Quick Release Experiment

The second experiment simulated is the quick release procedure carried out by Gasser and

Hill to examine the velocity dependent effects within the muscle. The muscle is stimulated

and made to work isometrically. Then the muscle is suddenly released and hits a 'knot'

or new position constraint after a certain amount of time. A plot of force versus time for

this experiment is presented in Figure 6.6. The muscle begins at the rest length, 6 cm or

IM = 1. The amount of shortening that takes place is 1.3 cm so that the final normalized

muscle length is IM 0 7833.

Force

6

4-

2-

50 100 150

-2-

-4 -

Figure 6.6: Simulation results for Gasser-Hill quick release experiment. Force vs. time.
Force is scaled to match plot of Figure 2.12.

Figure 6.6 shows a good correspondence with Gasser and Hill's plots of Section 2.2.2.

In that section, the conclusion drawn from the shape of the curves is that the slow rise in the

force both when the muscle is activated, and after the quick release, indicate that it is caused

by a biochemical damping effect, rather than a central nervous system control mechanism.

Furthermore, I feel the shape of this force function justifies another of the simplifying

assumptions made in the model, namely that the effects of excitation-contraction dynamics

(see Figure 2.37) are negligible for this application because they occur on a much shorter

time scale than what is being simulated.
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The original intent was to model the velocity-dependent damping characteristics of

muscle through setting the Rayleigh parameters of the FEM equations as in Section 3.4.1.

However, because the fiber forces are so much larger than the internal forces produced by

the passive visco-elastic material, this approach caused the numerical integrator (LSODE

from Section 5.4) to fail. The importance of including this damping is illustrated by the

following example.

As discussed above, a change of shape in the simulated muscle is only predicted for a

situation in which the contraction works against shape changes produced by external forces.

Such a case is presented in Figure 6.7, in which the relaxed frog muscle bows downwards

due to gravity. Upon contraction, the muscle pulls taut between its attachment points. If

however, velocity dependent effects are not included, or the maximum velocity, ~4E, is set

too high, the muscle will oscillate back and forth, much as a plucked string, in an amusing,

albeit unrealistic manner. The arrows in the figure show the direction, but not the scale, of

the world space forces acting at the finite element mesh node points.

6.1.4 Human Gastrocnemius Simulation

The FEM based muscle model is used in a similar way to simulate contraction of the

medial gastrocnemius from a human subject, the polyhedral data for which is presented in

Section 2.3. This muscle is approximated with a four element mesh made of twenty-node

bricks as in the frog simulations. The medial gastrocnemius model is 24 cm long. The

maximum isometric force used is 1113 N from Delp. Each of the 32 fibers generates 34.78 N

or 3.48 x 106 dynes. The passive mechanical parameters for the FEM mesh are set as before,

E = 2000 dyne/cm 2  v = .49 p = 1.04 g/cm 3  g = -980 cm/s 2

To model fascia attachments to the rest of the leg, tendons are defined for nodes on
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Figure 6.7: Relaxed muscle deforms due to gravity. Active muscle pulled taut.
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the backside of the muscle. These are set so that the muscle can move freely, but not by

a large amount. Furthermore, a reaction constraint (see Section 4.3) is defined so that the

muscle will not penetrate the soleus. For the animation, the leg is rotated 45 degrees to

horizontal and the relaxed muscle deforms due to gravity. Figure 6.8 shows that muscle

contraction causes the gastrocnemius to pull taut as expected. Again, the arrows only show

the direction in which the world space forces are acting.
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Figure 6.8: Human gastrocnemius deformed due to gravity, then pulled taut.
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6.1.5 Future Work

Besides net force, the second quantity measured in both frog experiments was the volume of

the finite element mesh throughout the stages of the simulation. For a twenty-node isopara-

metric cube, the volume is easy to compute by performing a numerical gauss integration of

the determinant of the Jacobian matrix as discussed in Section 3.2. Plots are presented of

the normalized volume, equal to the current volume divided by the rest volume in Figure 6.9

for the tension-length experiment, and in Figure 6.10 for the quick-release experiment. The

rest volume of the gastrocnemius is 1.054 cm3 .
Vol

0.6- -
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0.6 0.8 1.2 1.4 1.6

Figure 6.9: Simulation results for tension-length experiment. Normalized element volume
vs. length. Solid line is volume for passive stretch, dashed line is for active muscle.

Even though Poisson's ratio was specified to approximate a volume preserving mate-

rial, Figure 6.9 indicates this criterion for a muscle was not met; the likely reason being the

small-strain approximation that was made in solving for the stiffness matrix K (see Sec-

tion 3.1.1). To do a large-strain analysis requires both more complicated strain measures

and more complicated constitutive relationships than those developed here [Bat82]. As a

temporary workaround to this problem, a simple volume constraint was implemented that

applies an instantaneous first-order correction to the mesh volume. Figure 6.11 shows the

effect of this correction for the tension-length experiment.
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Figure 6.10:
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Simulation results for quick-release experiment. Normalized element volume
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Figure 6.11: Simulation results for tension-length experiment with volume constraint. Nor-
malized element volume vs. length. Solid line is volume for passive stretch with constraint.

Dashed line is passive stretch without constraint.
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We mentioned that another of the simplifying assumptions made in the muscle model

is that all of the fibers are homogeneous in terms of the amount of force they can de-

velop. The final experiment done using the frog gastrocnemius model examines the effect

of simulated fiber force inhomogeneities on the total force produced. Here the force exerted

by an individual fiber is scaled by the local volume measured by the containing finite el-

ement. Thus, the wider elements, which represent local volumes with greater physiologic

cross-section (see Section 2.2) will produce more force than the fibers within the thinner

elements at the tendon ends. The tension-length experiment was then repeated and the

results plotted in Figure 6.12. The shape of the plot indicates inefficiencies of muscle func-

tion caused by uneven fiber lengths. The fibers within the thinner elements become overly

stretched and are not able to produce as much force as they otherwise would. The resulting

tension-length curve also does not exhibit the local maximum predicted by Zajac's model.

This force inefficiency manifested itself in an interesting redistribution of the muscle mass

in which a change of shape is produced even for an isometric case.

Though I am convinced that the results from this simulation are accurate in terms of

the forces and changes in shape produced, at this time, no claim is made that real muscles

exhibit this behavior. But, it does seem like a reasonable phenomena that might bear

looking into. What this experiment does reveal is the kinds of investigations involving non-

uniform fiber effects that can be performed with the FEM model developed in the thesis.

Other experiments to try include staggering the activation pattern across the muscle, or

varying the fiber length and orientation through the muscle.
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Figure 6.12: Simulation results for tension-length experiment with fiber inhomogeneities.
Isometric muscle force vs. normalized length. Dotted line is total isometric force, dashed

line is the force from passive muscle and the solid line is the developed force.
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6.2 Computer Animation

6.2.1 Using the FEM for Computer Animation

Physical simulation has only in the past four or five years been utilized as a way of generating

computer animation. As a form of engineering analysis, however, it has had a long and

varied history. The displacement based finite element method that we have been exploring

here at the Computer Graphics and Animation Group to simulate the physics of deformable

objects has its beginnings in the early 1950's. Since then there has been a large amount of

cross-disciplinary research and a very large number of publications on the subject.

While it is possible to create very realistic looking keyframe animations by using

splines [Las87], this is often hard and tedious. To meet the goals of computer animation,

physical simulation can provide a mechanism for automatically generating complex motions

and changes in shape. The reason the FEM was chosen as the underlying formulation

for the muscle model is that our goals include not only geometric visualization, but also

building computational models that can be simulated and used to predict the behavior of

real structures. In this way, the methods developed to allow fast graphical visualization

and forms of interactive manipulation can carry over to interesting applications such as the

surgery simulation systems presented by Delp [De190] and Pieper [Pie92].

To do the thesis work, a software system 2d (see Chapter 5) was written that can

dynamically model elastically deformable objects based on the finite element method. The

effects that can be employed include simulation of rigid body motion, simulation of defor-

mation, collision with arbitrary polyhedrally represented objects, friction, and constraint

satisfaction. An effort has been made to find solutions algorithmically and numerically

suitable for graphics workstations.

Both for computer animation and simulation environments, we would like to be able
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to use familiar geometric representations-polygon and spline based patch descriptions-as

rendering vehicles. On the other hand, the dynamic simulations that have been discussed

are calculated based on a finite element mesh. A finite element implementation built on

isoparametric elements can be used to target both of these functions. Like the free-form

deformations described by Sederburg [SP86], a method has been developed in which the

twenty-node isoparametric brick defines a free-form deformation that can be used to warp

the points of polyhedral or patch objects very easily. Furthermore, the twenty-node brick

is an extremely effective element on which to build a 3D finite element implementation and

is widely used in engineering analysis.

To define assemblies of meshes based on polyhedral data, a user-assisted mesh gen-

erator has been written. The principle of virtual work is used to derive the stiffness and

mass matrices that govern the dynamic behavior of the mesh. The modal transformation is

performed to the matrix equations so that the differential equations defining the dynamic

response can be more quickly and effectively solved. Mode truncation bandlimits the fre-

quency response of the dynamic system resulting in fewer problems with stiff input forces.

Reaction constraints as presented by Platt [PB88] have been extended for use in the FEM

framework so that forces that match the goals of computer animators can be easily defined.

Two example computer animations are presented to illustrate using the finite element

method to make animations of elastically deformable objects with controlled motions.

6.2.2 Jell-O @ Dynamics

An animation is created of a visco-elastic cube of "Jello" discretized by eight twenty-node

brick elements. The Jello has length 2 cm on a side. The geometric polyhedral model is

a cube made with 100 polygons per face. All told, the geometry is defined by 602 points

and 600 polygons. Though papers have been published regarding the optical properties of
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Jello [Hec87], no one has yet examined its material properties (other than to say it wiggles).

Jello is made mostly of water and so is assumed to be largely incompressible, and to have

the density of water. For now, Young's modulus is chosen solely on the basis of the final

appearance of the animation.

E = 1000 dyne/cm2  v = .49 p = 1 g/cm 3  g = -980 cm/s 2

The other objects in the scene are a funnel, a grid floor and a cutcube "rock". The

initial conditions are such that the Jello begins off screen, above the funnel with zero velocity.

The simulation begins, gravity causes the Jello to fall into the funnel, hit the cutcube rocks

and drop off the grid floor. The funnel opening is set so that the Jello will have to squeeze

and wiggle its way out. Collision constraints for the Jello are set for the grid and cutcube.

The funnel rendered in the final animation is double-sided and so is inappropriate for the

collision analysis algorithm implemented here. Thus a collision "stand-in" object is used to

define the constraint for the funnel. Figure 6.13 shows the Jello falling through the funnel

stand-in. Figure 6.14 is a finished software rendered scene, complete with transparency,

lighting, and shadow effects.
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Figure 6.13: Jello motion

Figure 6.14: Scene from finished Jello animation
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6.2.3 GED Puff

A computer animation is made of a "Puff" character bouncing across the floor. The poly-

hedral Puff object was created by Steve Strassman and made its first appearance in the

award-winning short Grinning Evil Death by Mikey McKenna and Bob Sabiston. The Puff

is discretized with three twenty-node brick elements. The Puff motion is created through

the action of constraints. A small (30 line) program was written to kinematically control

the up, down, and twisting motion of a rigid skeleton. The Puff is tied to the skeleton by

reaction constraints at four of the mesh nodal points. A constraint is also used to make a

collision with the grid floor. In this case, all simulation parameters are chosen for the sake

of the final animation, and so that the computation time is minimized.

E = 20 dyne/cm2 v = .3 p = .1 g/cm 3 g = -1 cm/s 2
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Figure 6.15: Blooby Puff bounce
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Chapter 7

Conclusions

For computer animation, the next step beyond kinematic simulations of skeleton movement

must include realistic modeling and rendering of the muscle and skin. A finite element

model of muscle has been developed that can be used both to simulate muscle forces and to

visualize the dynamics of muscle contraction. Biomechanically, we have taken an existing

model of muscle function from Zajac, added complexity by making it 3D, and shown that

under certain circumstances it still behaves like a muscle. We have tried to validate the

model by doing biomechanical experiments and plotting out key quantities.

It is much harder to validate the shape changes produced by the force-based FEM

muscle model. Videos of live frog and human subjects have been made to serve as check-

points for the simulations, but these can do so only qualitatively. The clearest way to verify

the shape changes produced by the muscle model would be to make a whole series of MRI

reconstructions, with the limb held in different states of isometric tension while measuring

the muscle force wherever possible. A series of reconstructions made in this way would be

appropriate data against which to compare simulation results. This would be a big project,

and just barely doable with the current MRI technology.
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However, by emphasizing the physical model, I think we have taken a step beyond

the original computer graphics goal of making a virtual actor, up to the goal of making an

artificial person. By studying the anatomy, the form will be revealed through the function.
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Appendix A

Isoparametric Interpolation

The following is a C implementation of the blending functions for a 20 node isoparametric

cube element.

* c20-map.c dead~media-lab 02/20/90
*

* c20_nodes array added by stevie 9/13/90

*include <stdio.h>
#include <math.h>

#ifndef lint 10

static char copyright[] =
"Copyright (c) 1989, 1990 by David T. Chen. All rights reserved.";

#endif

typedef int VectorI[3];
typedef float Vector[3];
typedef float Matrix[4][4];

typedef double (*PFD)();
20

static VectorI UNIT-NODES[20] =

{0, 1, 1}, {-1, 0, 1}, {0, -1, 1}, {1, 0, 1},
{0, 1, -1}, {-1, 0, -11, {0, -1, -1}, {1, 0, -1},
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{1, 1, 0}, {-1, 1, 0},

* c20_nodes: Pointer to an array of node pointers.
* If the node pointer is null, correponding interpolation
* functions will not be included. -Stevie 9/13/90

static char **c20-nodes = NULL;
#define c20_node-exists(i) ((c20-nodes) ? (c20nodes[(i)]) : ((char *)1))

c20_node-seLarray(nodes)
char **nodes;
{ c20_nodes = nodes;
}

Interpolation functions

G(, dGO

static double G( beta, beta-i )

double beta;

int beta.i;

{

double ans;

if (beta.i == 0) ans = 1. - (beta * beta);

else if (beta-i == 1) ans = .5 * (1 + beta);

else if (beta.i == -1) ans = .5 * (1 - beta);

else

{ fprintf( stderr, "G: bad beta-i <Xd>\n", betai );

ans = 0.;

return( ans );

static double dG( beta, beta_i )
double beta;
int beta..i;
{
double ans;

if (beta-i == 0) ans = -2. * beta;

else if (betai == 1) ans = .5;

else if (beta-i == -1) ans = -. 5;
else
{ fprintf( stderr, "dG: bad beta-i

ans = 0.;

<%d>\n", beta-i );
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return( ans

}
80

Function g and the partials with respect to r, s, t

go, dgdr(), dgds(, dgdt(

static double g( r, s, t, i )
double r, s, t;
int i;

{
double ans; 90

if (i > 19 i < 0) return( 0. );
if ( !c20_node-exists(i) ) return( 0. );

ans =G( r, UNIT-NODES[i][0] );
ans =G( s, UNITNODES[i][1] );
ans *= G( t, UNITNODES[i][2] );
return( ans

}
100

static double dgdr( r, s, t, i )
double r, s, t;
int i;

{
double ans;

if (i > 19 || i < 0) return( 0. );
if ( !c20_node-exists(i) ) return( 0. );

ans= dG( r, UNIT-NODES[i][0] ); 110

ans G( s, UNIT-NODES[i][1] );
ans *= G( t, UNIT-NODES[i][2] );
return( ans

}

static double dgds( r, s, t, i )
double r, s, t;
int i;

{
double ans; 120

if (i > 19 || i < 0) return( 0. );
if ( !c20_node-exists(i) ) return( 0. );

ans = G( r, UNITNODES[i][0] );
ans dG( s, UNITNODES[][1] );
ans G( t, UNITNODES[i][2] );
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return( ans );

static double dgdt( r, s, t, i )
double r, s, t;
int i;
{
double ans;

if (i > 19 || i < 0) return( 0. );
if ( !c20-node-exists(i) ) return( 0. );

ans =
ans *=

ans *=

return(

G( r, UNITNODES[i][0] );
G( s, UNIT-NODES[i][1] );

dG( t, UNIT-NODES[i][2] );
ans );

Function h and the partials with respect to r, s, t

c20_h(, c20_dhdro, c20_dhdso, c20_dhdt()

static double c20_h-BLEND( r, s, t, i, name, g )

double r, s, t;

int i;

char *name;

PFD g;

{

double ans;

(i. > 19 || Zi < 0)
fpri'ntf( stderr, "Xs: bad i <Xd>\n", name, i )

return( 0. );
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ans = (*g)(r,s,t,i');

if (i, = = 0)
{ans += -. 5 *

else if (iZ=' 1
{ans += -. 5 *

else if (i == 2)

{ans += -. 5 *

else if (==3)
{ans += -. 5 *

else if (i == 4)

((*g)(r, s, t,8) + (*g)(r, s, t,11) + (*g)(r, s, t,16));

((*g)(r,s,t,8) + (*g)(r,s,t,9) + (*g)(r,s,t,17));

((*g)(r, s, t,9) + (*g)(r, s, t,10) + (*g)(r,, t,18));

((*g)(r,s, t,10) + (*g)(r,s, t,11) + (*g)(r,s, t,19));
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{ ans += -. 5 * ((*g)(r,s,t,12) + (*g)(r,s,t,15) + (*g)(r,s,t,16));

I
else if (i == 5)
{ ans += -. 5 * ((*g)(r,s,t,12)

}
else if (i == 6)
{ ans += -. 5 * ((*g)(r,s,t,13)

}
else if (i == 7)

{ ans += -. 5 * ((*g)(r,s,t,14)

+ (*g)(r,s,t,13) + (*g)(r,s,t,17));

+ (*g)(r,s,t,14) + (*g)(r,s,t,18));

+ (*g)(r,s,t,15) + (*g)(r,s,t,19));

double c20_h( r, s, t, i )
double r, s, t;
int i;
{ return( c20_h-BLEND(r, s,

}

double c20_dhdr( r, s, t, i )
double r, s, t;
int i;
{ return( c20_h-BLEND(r, s,

}

double c20-dhds( r, s, t, i)
double r, s, t;

int i;
{ return( c20_hBLEND(r, s,

double c20_dhdt( r, s, t, i )
double r, s, t;

int i;
{ return( c20-hBLEND(r, s,
}

t, i, "c20_h", g) );
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t, i, "c20_dhdr", dgdr) );

t, i, "c20_dhds", dgds) );

t, i, "c20_dhdt", dgdt) );

Coordinate transformation from natural to local space.

Input twenty nodal points and an array of natural coordinate points.

Output points in local space. 'num' is array length.

c20_Natural2Local( node-points, natural, local, num )
Vector *node-points, *natural, *local;

int num;
{
int i, j;
double r, s, t, Z, y, z, h;

Pump It Up Isoparametric Interpolation
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(i=O; i<num; i++)

r = natural[i][0]; s = natural[i][1]; t = natural[i][2];

x = y = z = 0.;

for (j=0; j<20; j++)
{ h = c20-h( r, s, t,j);

x += h * node-points[j[0);

y += h * node-points[j][1];
z += h * node-points[j][2];

local[i][0] = x; local[i][1] = y; local[i][2] = z;
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Appendix B

Fast Interpolation

The following is a C implementation of the blending functions for a 20 node isoparametric

cube element.

* c20-fast.c deadqmedia-lab 02/20/90
*

* Interpolate through a 20 node isoparametric cube.
* Math from stevie and Mathematica

typedef float Vector[3];

c20_X()

double c20_X( C, r, s, t )
double *C, r, s, t;

{
double r2, s2, t2, ans;

r2 = r*r; s2 = s*s; t2 = t*t;

ans= C[O] + C[1] * r * s

+ C[2] * s * t2 + C[3] * r * s * t2
+ C[4] * r * t2 + C[5] * r * s * t

Pump It Up 
Fast Interpolation

David T. Chen 186

Pump It Up Fast Interpolation



David T. Chen

C[6]
C[8]
C[1o]
C[12]
C[14]
C[16]
C[18]

* t2

* r2 * s

* r2

* s2 * t

* s2

* r * s2

+ C[7] * r2 * t

+ C[9] * r2 * s * t
+ C[11] * s * t

+ C[13] * r * t

+ C[15] * r
+ C[17] * r * s2 * t

+ C[19] * t;

return( ans );

double c20_dXdr( C, r, s, t
double * C, r, s, t;

I
double r2, s2, t2, ans;

r2 = 2 * r; r = 1.;

s2 = s * s; t2 = t * t;

ans = C[1]
+ C(4]
+ C[7]
+ C[9]
+ C[13]
+ C[17]

r *8
* r * t2

* r2 * t

* r2 * s * t

*r t
* r * s2 * t

* r * s * t2

Sr s t

* r2 * s

* r2

* r

*r *s2; 50

return( ans );

double c20-dXds( C, r, s, t )
double * C, r, s, t;

{
double r2, s2, t2, ans;

s2 = 2 * s; s = 1.;

r2 = r * r; t2 = t t;

ans = C[1]

+ C[3]
+ C[8]
+ C[11]
+ C[14]
+ C[17]

* r * s * t2

* r2 * s

*S t

* s2 * t
* r * s2 * t

return( ans );

double c20_dXdt( C, r, 8, t )
double *C, r, s, t;

d
double r2, 82, 12, ans;
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+ C[3]
+ C[5]
+ C[8]
+ C[10]
+ C[15]
+ C[18]

+ C[2]
+ C[5]
+ C[9]
+ C[12]
+ C[16]
+ C[18]

* s * t2

Sr S s* t
* r2 *s * t

* s2

* r * s2;
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t2 = 2 * t; t = 1.;
r2 = r * r; s2 = s * s;

ans = C[2]
+ C[4]
+ C[6]
+ C[9]
+ C[13]
+ C[17]

s * t2
r * t2
t2
r2 * s * t
r t
r * s2 * t

C[3]
C[5]
C[7]
C[11]
C[14]
C[19]

* r * s * t2

r s * t
* r2 * t
*s t
* s2 * t
* t;

return( ans );

c20_make-polynomial()

c20-make-polynomial( nodes, index, C )
Vector *nodes;
int index;
double C[];

C[o] =
- 0.25*nodes[0][index] -

- 0.25*nodes[2][index] -

- 0.25*nodes[4][index] -

- 0.25*nodes[6][index] -

+ 0.25*nodes[8][index]
+ 0.25*nodes[10] [index]
+ 0.25*nodes[12][index]
+ 0.25*nodes[14][index]
+ 0.25*nodes[16][index]
+ 0.25*nodes[18][index]

C[1] =
0.25*nodes[16][index] -
+ 0.25*nodes[18][index]

C[2] =
0.125*nodes[0][index] +
- 0.125*nodes[2][index]

+ 0.125*nodes[4][index]
- 0.125*nodes[6][index]
- 0.25*nodes[16][index]

+ 0.25*nodes[18][index]

C[3] =
0.125*nodes[0][index] -
+ 0.125*nodes[21[index]

- 0.25*nodes[1][index]

- 0.25*nodes[3][index]
- 0.25*nodes[5][index]

- 0.25*nodes[7][index]

F 0.25*nodes[9][index]
+ 0.25*nodes[11][index]
+ 0.25*nodes[13][index]
+ 0.25*nodes[15] [index]
+ 0.25*nodes[17][index]
+ 0.25*nodes[19][index];

0.25*nodes[11][index]
- 0.25*nodes[19][index];

0.125* nodes [1] [index]
- 0.125*nodes[3][index]

+ 0.125*nodes [5] [index]
- 0.125*nodes[71[index]
- 0.25*nodes[17][index]

+ 0.25*nodes[19][index];

0.125*nodes [1][index]
- 0.125*nodes[3][index]
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0.125*nodes[4][index]
0.125*nodes[6][index]
0.25*nodes[16][index]
0.25* nodes [18] [index]

C[4] =
0.125*nodes[0][index] -
- 0.25*nodes[16][index]

+ 0.25*nodes[18][index]
- 0.125*nodes[2][index]

+ 0.125*nodes[4][index]
- 0.125*nodes[6][index]

C[5] =
0.125*nodes[0][index] -
+ 0.125*nodes[2][index]
- 0.125*nodes[4][index]

- 0.125*nodes[6][index]

C[6] =
0.125*nodes[0][index] +
- 0.25*nodes[16][index]

- 0.25*nodes[18][index]

+ 0.125*nodes[2][index]
+ 0.125*nodes[4][index]
+ 0.125*nodes[6][index]

C[7] =
0.125*nodes[0][index] +
- 0.25*nodes[10][index]
+ 0.25*nodes[14][index]
+ 0.125*nodes[3][index]
- 0.125*nodes[5][index]
- 0.125*nodes[7][index]

C[8] =
0.125*nodes[0][index] +
+ 0.25*nodes[10][index]
+ 0.25*nodes[14][index]
- 0.125*nodes[3][index]

+ 0.125*nodes[5][index]
- 0.125* nodes[7][index]

C[9] =
0.125*nodes[0][index] +
+ 0.25*nodes[10][index]
- 0.25*nodes[14][index]

- 0.125*nodes[3][index]
- 0.125*nodes[5][index]

+ 0.125*nodes[7][index]

- 0.125*nodes[5][index]
- 0.125*nodes[7][index]

+ 0.25*nodes[17][index]
+ 0.25*nodes[19][index];

0.125*nodes[1][index]
+ 0.25*nodes[17][index]
- 0.25*nodes[19][index]

+ 0.125*nodes[3][index]
- 0.125*nodes[5][index]
+ 0.125*nodes[7][index];

0.125*nodes[1][index]
- 0.125*nodes[3][index]

+ 0.125*nodes[5][index]
+ 0.125*nodes[7][index];

0.125*nodes[1][index]
- 0.25*nodes[17][index]

- 0.25*nodes[19][index]

+ 0.125*nodes[3][index]
+ 0.125*nodes[5][index]
+ 0.125*nodes[7][index];

0. 125*nodes[1][index]
+ 0.25*nodes[12][index]
+ 0.125*nodes[2][index]
- 0.125*nodes[4][index]

- 0.125*nodes[6][index]
- 0.25*nodes[8][index];

0.125*nodes[1][index]
- 0.25*nodes[12][index]
- 0.125*nodes[2][index]
+ 0.125*nodes[4][index]
- 0.125*nodes[6][index]

- 0.25*nodes[8][index];

0.125*nodes[1][index]
+ 0.25*nodes[12][index]
- 0.125*nodes[2][index]
- 0.125*nodes[4][index]

+ 0.125*nodes[6][index]
- 0.25*nodes[8][index];
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C[10] =
0.125*nodes[0][index] +
- 0.25*nodes[10][index]
- 0.25*nodes[14][index]

+ 0.125*nodes[3][index]
+ 0.125*nodes[5][index]
+ 0.125*nodes[7][index]

0.125*nodes[1][index]
- 0.25*nodes[12][index]
+ 0.125*nodes[2][index]
+ 0.125*nodes[4][index]
+ 0.125*nodes[6][index]
- 0.25*nodes[8][index];

C[11] =
-0.25*nodes[10][index] - 0.25*nodes[12][index]
+ 0.25*nodes[14][index] + 0.25*nodes[8][index];

C[12] =
-0.125*nodes[0][index] - 0.125*nodes[1][index]
- 0.25*nodes[10][index] + 0.25*nodes[12][index]
- 0.25*nodes[14][index] + 0.25*nodes[16][index]
+ 0.25*nodes[17][index] - 0.25*nodes[18][index]
- 0.25*nodes[19][index] + 0.125*nodes[2][index]
+ 0. 125*nodes[3][index] - 0.125*nodes[4][index]
- 0. 125*nodes[5][index] + 0.125*nodes[6][index]
+ 0.125*nodes[7][index] + 0.25*nodes[8][index];

C[13] =
0.25*nodes[11][index] +
- 0.25*nodes[15][index]

C[14] =
0.125*nodes[0][index] +
- 0.25*nodes[11][index]

+ 0.25*nodes[15][index|
+ 0.125*nodes[3][index]
- 0.125*nodes[5][index]
- 0.125*nodes[7][index]

0.25*nodes[13][index]
- 0.25*nodes[9][index];

0.125*nodes[1][index]
+ 0.25*nodes[13][index]
+ 0.125* nodes[2][index]
- 0.125*nodes[4][index]
- 0.125*nodes[6][index]

- 0.25*nodes[9][index);

C[15] =
-0. 125*nodes[0][index] + 0.125*nodes[1][Index]
+ 0.25*nodes[11][index] - 0.25*nodes[13][index]
+ 0.25*nodes[15][index] + 0.25*nodes[1611:ndex]
- 0.25*nodes[17][index] - 0.25*nodes[18][index]
+ 0.25*nodes[19][index] + 0.125*nodes[2][index]
- 0. 125*nodes[3][index] - 0.125*nodes[4][index]
+ 0.125*nodes[5][index] + 0. 125*nodes [6][index]
- 0. 125*nodes[7][index] - 0.25*nodes[9][index];

C[16] =
0.125*nodes[0][index] +
- 0.25*nodes[11|[index]

- 0.25*nodes[15][index]

+ 0.125*nodes[3][index]
+ 0.125*nodes[5][index]
+ 0.125*nodes[7][index]

0.125*nodes[1][index]
- 0.25*nodes[13][index]
+ 0.125*nodes[2][index]
+ 0.125*nodes[4][index]
+ 0. 125*nodes[6][index]
- 0.25*nodes[9][index];
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C[17] =
0.125*nodes[0][index] -
- 0.25*nodes[11][index]

+ 0.25*nodes[15][index]
+ 0.125*nodes[3][index]
+ 0.125*nodes[5][index]
- 0.125*nodes[7][index]

C[18| =
0.125*nodes[0][index] -
- 0.25*nodes[11][index]

- 0.25*nodes[15][index]

+ 0.125*nodes[3][index]
- 0.125*nodes[5][index]

+ 0.125*nodes[7][index]

0. 125*nodes[1][index]
- 0.25*nodes[13][index]
- 0.125*nodes[2][index]

- 0.125*nodes[4][index]
+ 0.125*nodes[6][index]
+ 0.25*nodes[9][index];

0. 125*nodes[1][index]
+ 0.25*nodes[13][index]
- 0.125*nodes[2][index]

+ 0.125*nodes[4][index]
- 0.125*nodes[6][index]
+ 0.25*nodes[9][index];

C[19] =
-0.125*nodes [0][index] - 0.125*nodes[1][index]
+ 0.25*nodes[10][index] + 0.25*nodes[11][index]
- 0.25*nodes[12][index| - 0.25*nodes[13][index]

- 0.25*nodes[14][index] - 0.25*nodes[15][index]

- 0.125*nodes[2][index] - 0.125*nodes[3][index]

+ 0.125*nodes[4][index] + 0. 125*nodes[5][index]
+ 0.125*nodes[6][index] + 0.125*nodes[7][index]
+ 0.25*nodes[8][index] + 0.25*nodes[9][index];
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