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Abstract
Creating controlled dynamic character animation consists of mathe-

matical modelling of muscles and solving the activation dynamics that form
the key to coordination. But biomechanical simulation and control is com-
putationally expensive involving complex differential equations and is not
suitable for real-time platforms like games. Performing such computations
at every time-step reduces frame rate. Modern games use generic soft-
ware packages called physics engines to perform a wide variety of in-game
physical effects. The physics engines are optimized for gaming platforms.
Therefore, a physics engine compatible model of anatomical muscles and an
alternative control architecture is essential to create biomechanical charac-
ters in games.

This thesis presents a system that generates muscle activations from
captured motion by borrowing principles from biomechanics and neural con-
trol. A generic physics engine compliant muscle model primitive is also de-
veloped. The muscle model primitive forms the motion actuator and is an
integral part of the physical model used in the simulation.

This thesis investigates a stochastic solution to create a controller
that mimics the neural control system employed in the human body. The
control system uses evolutionary neural networks that evolve its weights
using genetic algorithms. Examples and guidance often act as templates in
muscle training during all stages of human life. Similarly, the neural con-
troller attempts to learn muscle coordination through input motion samples.
The thesis also explores the objective functions developed that aids in the
genetic evolution of the neural network.

Character interaction with the game world is still a pre-animated
behaviour in most current games. Physically-based procedural hand ani-
mation is a step towards autonomous interaction of game characters with
the game world. The neural controller and the muscle primitive developed
are used to animate a dynamic model of a human hand within a real-time
physics engine environment.
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1
OVERVIEW

1.1 Introduction

Virtual human modelling aims to create computer generated human characters in

various applications of computer graphics and animation. It involves the rendering

of the anatomical musculature as realistically as possible along with the simulation

of muscle functions and control. The virtual humans thus modelled are very

useful in a variety of applications like visual effects in films, games, biomechanical

analysis, virtual reality and medicine. Depending on end-user application, there

are numerous hurdles to be overcome. But from a distinctly biomechanical point-

of-view, the challenge is in creating a methodology by which the complex dynamics

of muscle simulation can be effectively implemented in real-time applications like

computer games.

This thesis proposes a machine learning approach that defines a functional

mapping between a motion envelope (surface motion) and muscle activations to

produce the same motion. The research presented in this thesis is primarily ap-

plicable to physically-based animation of characters in computer games.

Modern games are complex in design. There are multiple sub-systems

working in unison to create that sense of immersion. The sub-systems form a

framework termed as a game engine. The sub-systems are generally in the fol-

lowing categories: User interaction/User Interfaces, Artificial Intelligence (AI),

Physics, Networking, Rendering. But sometimes the core systems are sufficiently

complex to exist as a standalone pluggable middle-ware system. Examples in-

clude AI middle-ware and physics engines. With the help of current hardware

technology and middle-ware systems, games can make use of simplified or opti-
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mized biomechanical skeletal muscle models that mimic anatomical structure and

function.

Virtual humans in current computer games are animated using data driven

approaches like motion capture and key-frame animation. The data driven meth-

ods produce motion through direct manipulation of positions and orientations over

time, allowing precise pose control of the characters. These data driven methods

are termed as kinematic. In contrast, physically-based methods require muscle

models or actuators to move the character limbs. But optimization methods are

necessary to deal with the inherent redundancy problem in the human muscular

system (number of muscles are greater than the number of degrees of freedom).

And these optimization methods are classified into two categories: static and

dynamic optimization techniques (Lee et al., 2009). Static optimization meth-

ods (inverse dynamics) use kinematic information of motion to calculate muscle

forces, while dynamic optimization methods (forward dynamics) accept muscle ex-

citations as input and determine muscle forces to produce skeletal body dynamics

(Lee et al., 2009). Both the static and dynamic optimization methods are deter-

ministic where future states of the system are precisely defined from the previous

states through mathematical relationships.

But in the absence of the required data to form clear mathematical rela-

tionships, deterministic approaches fall short of giving problem solutions. The

problems associated with deterministic approaches for muscle dynamics and acti-

vation when used in games are:

• Proportional Derivative (PD) controllers are limited in scope. PD controllers

cannot simulate the complex physiological effects of a multi-muscled anatom-

ical skeletal structure.

• Biomechanical muscle models for generating human motion have sub-models

like activation dynamics, contraction dynamics and skeleton dynamics that

involve solving complex differential equations at every time step (Lee et al.,

2009). Therefore, in a game, since solutions of dynamic equations change

with varying input, they have to be re-calculated every frame creating a

large computational overhead that may hinder frame rates.

• A majority of dynamic optimization algorithms used in muscle-based hu-

man motion simulation use customised simulation environments that often

compromise their compatibility with generic physics engine simulators often

found in games.

• Muscle activation reference data is difficult to obtain without using expensive

medical equipment and invasive procedures.
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A skeletal muscle fibre is activated by an action potential travelling along

the innervating motor neuron axon and the activation causes the muscle to con-

tract. It is possible to record the action potential during the contraction of the

muscle This biomedical signal measure of muscle activations is called an Elec-

tromyogram (EMG) (Ahsan and Ibrahimy, 2009) (Ohnishi et al., 2007). In order

to capture an EMG, sensors are required. The sensors detect the activation signals

that innervate the motor neuron. There are two types of commonly used sensors.

They are:

• Surface EMG sensors: Surface EMG sensors are non-invasive and take the

form of electrodes or conductive elements placed directly on the surface

area of the skin from where muscle activity is to be recorded (Ahsan and

Ibrahimy, 2009).

• Intramuscular EMG sensors: Intramuscular EMG utilizes a needle and

ne wire, which are inserted through the skin into the muscle and then the

activity is recorded (Ahsan and Ibrahimy, 2009).

In addition to requiring specialised medical equipment and trained person-

nel, the measurement of surface EMG is dependent on certain factors, as given in

Day (2002):

• The timing and intensity of muscle contraction.

• The distance of the electrode from the active muscle area.

• The properties of the overlying tissue like tissue thickness.

• The quality of contact between the electrode and the skin.

Thus, it can be seen that there are a numerous specialised conditions that

have to be met before a useful EMG recording can be extracted. The above

mentioned complications make it difficult for graphics companies to use EMG on

a daily basis. Hence there is the need for a simulated activation controller that

can generate activations that a muscle model can use in a timely fashion.

The middle-ware packages used for simulating a wide variety of physical ef-

fects in current games are called physics engines. Thus, it is logical to use the same

physical simulator to implement a simplified muscle model that can be adapted

to game characters. A generic physics engine compliant muscle system and a

motor control system capable of generating muscle activations in real-time can

prove to be invaluable in creating physically-based animation of game characters.

Such a system would be able to produce localised damages on game characters by
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Figure 1.1: A dataflow that combines the properties of static and dynamic opti-
mization methods.

Figure 1.2: An architecture schematic showing the different frameworks and in-
formation flow between them.

de-activating the muscles in the proximity of the damaged area creating anima-

tion that progresses from natural to handicapped motion. This type of effect is

impossible with traditional PD controllers.

A stochastic approach is adopted in this thesis to circumvent the control is-

sues related to the redundancy problem in virtual human animation. The method

combines relevant properties of both static and dynamic optimization by hybridiz-

ing two popular models in machine learning, namely, artificial neural networks

(ANN) and genetic algorithms (GA) (see Figure 1.1).

Coordinated muscle activations are produced through an artificial neural

network-based controller that drive a real-time physics engine compatible muscle

model (see Figure 1.2). The ANN is based on a time series prediction technique

that predicts patterns in a dynamic system. During the training stage, samples

of motion capture data is given as input to the ANN. The motion data is format-

ted into 3D pose vectors which are set as input to the neurons. An evolutionary

technique is used to evolve the weights of the ANN due to operational difficulties

in using a gradient learning model. The neural network weights are encoded as

chromosomes and subjected to simulated evolution using relevant genetic opera-

tors. Chromosome fitness is calculated using objective functions that compare the

physical motion generated with the input motion. Chromosomes with high fitness

are selected using an elitist selection technique. The converged network correctly
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identifies the time series pattern of the input and produces the corresponding mus-

cle activations. The trained ANN is also capable of generalising to unknown input

motions.

A physics engine compatible muscle model is developed that uses a unique

force scaling method to apply the muscle activations on the rigid body linkages.

The developed muscle model is suitably light weight to function effectively in a

real-time environment. The light weight nature also allows for complex muscle

layouts on multi-linked rigid bodies.

The application of machine learning techniques in muscle dynamics and

animation has certain advantages, as given below:

• Using machine learning methods that adopt parallel processing nodes, like

the artificial neurons of ANNs, with simple computational functions.

• Machine learning methods using stochastic optimization, like the genetic

algorithm, are efficient in exploring vast search spaces that result from a

large number of control variables. The muscle activation space is explored

indirectly using GAs.

• Generalising ability of machine learning methods allow for re-usability and

solving for unknown inputs.

The research given draws inspiration from a range of interdisciplinary fields

like neuroscience, robotics, machine learning and computer animation. Hence, the

results of the study is applicable both in computer animation and other fields.

Below given are a few possible practical applications of the system:

• Converting kinematic animation to dynamic animation enabling characters

to react to the game environment in a physically plausible manner.

• Adding a layer of secondary dynamic animation on top of a pre-animated

motion.

• Medical uses by simulating neural dysfunction in motor control by adding

noise.

• A controller for artificially muscled robotic limbs.

The human hand is used as a test bed for creating gestural animations

using the concepts explained in this research. Humans use their hands for a

variety of purposes - manipulating tools, communicating, interacting with the

surroundings. The human hand is chosen for demonstrating the concepts explained

in this research, due to the following reasons:
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• The human hand is a complex organ with multiple skeletal segments and a

well defined musculotendon structure that makes it ideal for applying the

muscle model develped in this research and to test interactive performance

in the physics engine environment.

• Problems of balance that arise when simulating bipedal characters do not

arise in the simulation of hand movements.

• Virtual characters are ubiquitous in games and they form the medium through

which the user interacts with the game world. So animating the characters’

appendages procedurally makes the job of the animator easier.

1.2 Motivations and Contributions

Neuroscience states that motor learning and memory have behaviours that are

genetically encoded and these behaviours can be modified to different levels based

on new experiences (Shadmehr and Wise, 2005). And motion generation and

control in the natural world is a complex process involving multiple dependent

systems like biological neural networks and organic muscle actuators. So the im-

portant question that arose out of these facts was whether it was feasible to encode

adaptiveness of muscle actuation with varying inputs as a long term memory. A

key inspiration for the processes described in this thesis was the techniques used

in Artificial Life (A-Life) that simulated evolutionary processes to find solutions

in movement and locomotion. This paved way to devise a method that mimics

biological methods to create a multi-part system capable of creating controlled

animation of characters with fixed morphologies.

Human beings are adept at imitating a particular movement through obser-

vation. This is crucial in skill acquisition tasks like dancing. This demonstrates the

ability of the human neuromuscular system to adapt to new movements through

training. A biological description of adaptability and neural encoding can be found

in section 5.2 in Chapter 5. This ability can also be attributed to the morpholog-

ical similarity in skeletal, muscular and motor neural structure between different

persons. Similarly, the system outlined in this thesis learns to reproduce an ob-

served motion by training the muscles to activate in a coordinated fashion. This

is achieved in the absence of knowledge about the underlying neural and muscular

processes that originally created the sample motion.

Thus, the contributions of this thesis are as follows:

• An artificial neural network that predicts muscle activations which corre-

spond to the direction of movement in motion data. Dynamic learning is
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achieved by treating motion as a time series problem.

• A force scaling method that is used by the muscle model in the simulation

which allows for timing control in physical animation.

• A simplified linear piece-wise line segment-based muscle model that is opti-

mized for a generic commercial quality real-time game physics engine. From

a real-time perspective, this simplified model is very important.

• A training model for the artificial neural network that is based on an evo-

lutionary model using suitable objective functions that selects the fittest

controller network from a population of networks. The objective function is

also capable of extremely fast retrieval of a pose from a motion sample.

1.3 Publications

Below are the publications that resulted during the course of this research:

• A. Somasekharan, H. N. Charif, J. J. Zhang, Generating Real-time Muscle

Activations for Skeletal Hand Motion: An Evolutionary Approach, In the

Proceedings of CGI 2012.

• A. Somasekharan, To grab or not to grab: a viable framework for physically-

based hand animation in game characters, Future Play ’08 Proceedings of

the 2008 Conference on Future Play: Research, Play, Share, pp. 254-255

• X. Yang, A. Somasekharan, J. J. Zhang, Curve Skeleton skinning for human

and creature characters, Computer Animation and Virtual Worlds 2006,

Volume 17 Issue 3-4, July 2006, pp. 281-292.

The author contributed to the third publication by writing the content and

also wrote code to implement the concepts in the commercial 3D modelling and

animation package, Autodesk Maya. The concepts in the paper are not directly

relevant to this thesis, but is useful in creating deformable skin for the physical

model of the hand. A quadratic b-spline is used as a guide to create better

deformations on the skin mesh, than conventional smooth binding techniques.

The method is also suitable for porting to the GPU for real-time applications.

This technique is a viable option, in the future, for creating realistic appearances

of the skin of the hand during animation.
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1.4 Summary of Chapters

This thesis comprises of seven chapters, with three associated appendices and

a comprehensive reference section. The first two chapters provide some level of

theoretical knowledge of the various related matter touched upon in the course of

this research. The rest of the chapters explain the system developed as part of

this research. Below are given the summary of the respective chapters.

Chapter 1, titled “ OVERVIEW”, is a detailed introduction that briefly

explains the core idea.

Chapter 2, titled “ SURVEY OF PREVIOUS WORK”, is an exhaustive

literature review, which looks into existing research that is “out there”, pertain-

ing to the same and related subject matter, which this thesis deals with. The

chapter is broken into different sections depending on functionality. The chapter

surveys literature related to physically-based actuators, control and learning in

simulated motion, grasp psychology and planning that relating to the decision

making processes involved in grasping objects.

Chapter 3, titled “ HAND ANATOMY”, is a brief and vital look into the

anatomical structures of the hand. This is essential in understanding how various

hand movements are executed and which muscles in turn cause those movements.

Anatomical diagrams are also provided for clarity.

Chapter 4, titled “ SYSTEM DESIGN”, presents the three frameworks

used in this research and the system implementation. The chapter provides a brief

background into real-time physics engines and detailed description of the physics

engine compliant muscle model and the force scaling method used to simulate

muscle function. A brief introduction to the neural controller is also given.

Chapter 5, titled “ SIMULATING BIOLOGICAL COMPUTING ELE-

MENTS IN DYNAMICAL SYSTEMS”, presents detailed description of the Arti-

ficial Neural Network architecture, activation functions, Genetic Algorithms and

objective functions used and how these computational techniques can be combined

with a physics engine-based muscle system.

Chapter 6, titled “ RESULTS AND ANALYSIS”, provides the results of

a Proportional Derivative controller-based hand animation and a grasp contact

determination test. Following that, the chapter presents the results of the neural

controller, with sample frames from the hand animation generated and analyses

the how introducing noise and de-activating muscles affect the generated motion.

The chapter also provides the fitness-time graph of the convergence.

Chapter 7, titled “ CONCLUSIONS AND FUTURE WORK”concludes

the thesis by summarising the findings of the research presented and also provides

venues for potential future research.
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Appendix A, is a descriptive write-up on few of the common numerical

methods used in physics engines for simulation.

Appendix B, lists the inertia tensor equations for basic geometry primitives

that are found in modern physics engines.

Appendix C, describes the tagged file format designed to export muscle

data and mesh information from Autodesk Maya into the physics engine in order

to create physical models of the muscles and convex hulls. The tagged file format

is also used to store the evolved neural network for later use.

Appendix D, provides screenshots of the Maya Embedded Language (MEL)

user interfaces.

Appendix E, is purely exploratory and exists to inform the reader on how

the existing system can be improved upon and how possible animator friendly

interfaces can be created to fit it into current production pipelines.

Bibliography, lists the references.
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2
SURVEY OF PREVIOUS WORK

2.1 Introduction

An understanding of existing research is essential for its own advancement. This

chapter lays a groundwork in the field of haptic research, grasp psychology, neural

control, physics-based animation, stochastic techniques and controller design. The

strategy to create physically-based controlled character animation followed in this

thesis, borrows from various areas of the computer graphics research spectrum.

The core areas relevant to this research are actuators that form the medium of force

generation in physically-based animation, control and control learning strategies

for efficiently directing physically-based motion and hand animation that incor-

porates the results from the former two areas.

Movement generation in biology is an extremely complex process involving

conversion of visual goal acquisition into neural excitation levels that causes mus-

cular contraction to physically create the motion. Simulating the same systems

through deterministic optimization methods (static or dynamic) is computation-

ally expensive. Using machine learning methods it is possible to create re-usable

computational modules that use a totally different paradigm mimicking the neu-

ral systems found in the human brain and the central nervous system. Using

connectionist machine learning architecture, motor learning patterns are learned

through training and the system retains and generalises the learned patterns. The

generalised motor patterns are transformed into the required motion via the ac-

tion of forces transmitted through actuators. PD controllers are a common type

of actuators employed by physically-based animation systems mainly due to the

simple and linear formulation and the inherent closed-loop nature. In spite of the
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popularity of PD controllers, the PD controllers have a few notable flaws, namely,

lack of a biological basis for the functionality, stability of generated motion, per-

form tracking of a motion without coordination between controllers and difficulty

in tuning the variables as complexity in character increases. Biologically similar

muscle actuators employ a more direct form of control through neural excitations

and muscle synergies that execute intricate motions. Sensory systems also play an

important role for training neural systems to adapt to environmental perturbations

(Shadmehr and Wise, 2005).

Section 2.2 examines existing literature on the different types of actuators

used in synthesising physically-based character animation. Based on the function-

ality, this research classifies the actuators into two broad categories: implicit and

explicit actuators, which are explained in the sub-sections. Section 2.3 reviews the

research on control of movement of characters and incorporating control learning

so that characters can automatically execute directed motions. Section 2.4 is an

introduction to the psychology of hand grasping and a survey of the research done

in creating grasping systems. This is included to inform the reader regarding

various aspects of grasp planning and standard animation techniques used to cre-

ate the grasping animation. The section also touches upon robotics literature as

grasp planning is an important problem often encountered in the field. In the end,

the chapter summarises the information in the previous sections and provides a

rationale for the methodology followed in this thesis.

2.2 Actuated Motion

Motion generated on a segmented body with the aid of active force generators can

be termed as actuated motion and the structures that perform this task are called

actuators. Depending on implementation and functionality, this thesis classifies

actuators as implicit or explicit. Contrary to the notion of interactive speeds,

games require extremely fast refresh rates. It is perfectly normal for modern

games to render scenes at 30 or 60 frames per second (fps) NTSC and 25 or 50

fps PAL (Gregory et al., 2009). But a physics simulation system might require

a much higher update rate in order to maintain stability. Normally performance

overheads for explicit actuators are higher than implicit actuators. Taking update

requirement into account, Table 2.1 lists some actuator simulation methods and

corresponding game compatibility.
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Table 2.1: Actuator methods

Actuators Biological ba-
sis

Computational
costs

Game com-
patibility

Hill model Good approxi-
mation

Varies with
number of
muscles

Maybe

PD controllers No similarity Very little Yes
Strand models Very accurate Expensive No
Finite Element
Meshes

Accurate Expensive No

2.2.1 Implicit Actuators

One of the most common methods of animating a jointed structure physically is

through the application of joint torques. The torques can be applied directly via

angular springs within the joint. These types of springs, which exist implicitly in

the joint, can be termed as implicit actuators. Animating linked structures physi-

cally not only requires applying forces on the joints, either directly or via external

actuators, but also requires tracking or control of the movement. So basically,

it breaks down into a control problem. In physics-based animation techniques,

Proportional Derivative controllers have gained a lot of popularity for effective

control (Van de Panne et al., 1994)(Van de Panne and Fiume, 1993)(Gritz and

Hahn, 1995). They are a type of feedback controllers, where the output is fed back

into the control variable. Thus, a target state is achieved given the current state

as input. The output varies with tasks, as does the control variable. In the case

of physics-based animation controllers, normally the output is control torques on

the joints of articulate structures. PD controllers often require a joint mapping to

the linked structure, as well as the specification of target angles for goal.

Often PD controllers are used in conjunction with other data oriented tech-

niques. Van de Panne et al. (1994) utilizes PD controllers for generating periodic

motion often found in gaits and locomotion. Van de Panne et al. (1994) com-

bines PDs with pose control graphs, which are essentially state machines whose

states are associated with specific poses. Van de Panne et al. (1994) applies this

combination of PD and pose control graphs to three different kinds of segmented

“creatures”, namely, the Luxo lamp, a cheetah and a hopper. Each node in the

graph is a state and hence comprises a pose, which signifies the “desired internal

configuration”(Van de Panne et al., 1994). The connections between the nodes

have time intervals associated with it that denotes the transition time to the next

state/node occur. Pose control graphs used in Van de Panne et al. (1994) are

cyclic for generation of periodic motion and hence “reduces the search space for
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possible control strategies” (Van de Panne et al., 1994). Due to the segmented

nature of the entities, each segment pair (connected by the joint) has a torque for

each pose. The PD controllers calculate the required torques,

τi = kp(θd − θ)− kd
.

θ (2.1)

where θd is the desired angle and kp and kd are the proportional derivative

constants and
.

θ is the angular velocity.

Van de Panne et al. (1994) does not utilize any type of sensory information

as a way of optimization for generating the controllers and hence since there is no

feedback involved, it becomes an “open loop” controller and relies mostly on the

interactions with the environment to reach a steady state. In order to get optimal

performance from the pose control graphs, the PD controllers are tuned by varying

the spring constants. Though Van de Panne et al. (1994) uses cyclic pose control

graphs for generating periodic motion, Van de Panne et al. (1994) maintains that

cyclic pose control graphs do not always produce periodic motion. Van de Panne

et al. (1994) goes on to demonstrate the claim that non-linear dynamical systems

are susceptible to bifurcations and chaotic motions, by taking the Luxo lamp

creature and using the transition time between two states in a pose control graph

as a bifurcation parameter. By varying the time of transition, new “styles” appear

within the periodic motion, such as limping. Fattal and Lischinski (2006) on the

other hand uses feedback controllers for full-body motion of articulated characters.

For the mechanism of motion, it is similar to Van de Panne et al. (1994) in that

each articulate joint has a PD controller attached to it and for the control aspect

of the motion, animators specify target poses for the character. The PD controller

automatically calculates the joint torques necessary to reach the target poses.

Fattal and Lischinski (2006) also uses the feedback controllers to synthesize simple

behaviours by constructing what is termed as autonomous objective controllers.

In order to facilitate the animator with the ability of explicitly setting kinematic

constraints (for some actions like jumping to a certain height) Fattal and Lischinski

(2006) uses a shooting strategy. The shooting strategy relies on the application of

minute quantities of stabilizing torques to match the kinematic constraints without

compromising on the physical realism. Re-using the external torques used for

balancing the character is not possible since it would violate the conservation of

angular momentum and thus create physically implausible motion. The approach

given in Fattal and Lischinski (2006) was first utilized in Popovi et al. (2000)

where the animator could kinematically modify physical simulations providing a

way for animators to interact with a simulation. Popovi et al. (2000) maintains

the motion of the body in the normal physical property variables like positions and
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velocities, but when the animator performs kinematic modifications, the system

does a fast differential update to get the new physical parameters that comply

with the updated motion. The fast differential update allows real-time interaction.

Simulation variables (such as changing collision normals with a different polygonal

facet) can cause motion discontinuities, which are taken care of by a local search

to retrieve, that which closely matches the given modifications.

Neff and Fiume (2002) takes a more intuitive and biomechanical approach,

though still using a modified PD control. Neff and Fiume (2002) bases its approach

on the fact that in the human body smooth and controlled motion arises out of

excitation of agonist and antagonist muscles (as defined in Hogan (1984)). The

model described in Neff and Fiume (2002) follows the equilibrium point hypothesis,

which is popular among biomechanical researchers. Anatol Feldman put forward

this theory in 1966 and according to it; the agonist and antagonist muscles both

generate torques around the joint with the equilibrium position of the torques

defining the position of the limbs. There is also an opposing theory called the

impulse timing model which states that motor neurons generate timed impulses

to control joint movement directly (Neff and Fiume, 2002). Traditional PD control

neglects the effects of external forces like gravity. According to Neff and Fiume

(2002), the equilibrium point is the angle at which the proportional term in the PD

equation equals the torque generated by gravity. Antagonistic control in Neff and

Fiume (2002) is implemented using two angular springs on a joint acting in the

opposite directions along with a damper. The modified control equation followed

in Neff and Fiume (2002) is :

τ = kL(θL − θ) + kH(θH − θ)− kd
.

θ (2.2)

where τ is the torque generated, kL and kH are the spring gains, H and L denote

the high and low limits.
.

θ is the current angular velocity.

The sum of the two spring gains provides the tension of the joint. Repre-

senting the tension as a summation of the gain variables allows the use of simple

transition functions to vary the shape (how the motion varies over time denoting

the speed of the motion) of the motion purely through tension changes. This is

important because timing is crucial in animation of any form to create physical

realism. But unlike Fattal and Lischinski (2006) which generates autonomous be-

haviours, Neff and Fiume (2002) details a technique by which the animator can

animate a character using a physics-based control system. The stiffness of a joint

is an indication of how quickly or slowly the joint achieves a desired target angle

and increasing the gain to overcome external forces creates stiff motion. Weinstein

et al. (2008) modifies the PD controller using impulses and velocities instead of

forces and accelerations in order to minimize drift which otherwise occurs. Wein-
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stein et al. (2008) also takes into consideration global forces like gravity so that

the controller can overcome it and reach the desired target. Weinstein et al. (2008)

terms the technique described as a “inverse dynamics tracking of PD smoothed

input motion”. In order to achieve tracking, Weinstein et al. (2008) uses a second

order system, which is physically compatible with PD control. Inverse dynamics is

used in Weinstein et al. (2008) to alleviate the problem of influence of torques from

other joints in a multi-jointed articulate system. So Weinstein et al. (2008) prac-

tices post stabilization technique for the entire articulate body instead of iterating

over all joints sequentially. Weinstein et al. (2008) also applies the techniques to

line segment muscles, in which the operational method is different from PD con-

trol. Line segment muscles are line-of action based actuators (or linear springs).

When simulating anatomical muscle effects using line segment muscles, anatomi-

cal arrangements of muscles need to be taken into consideration. Weinstein et al.

(2008) uses a Hill-type model and applies the post-stabilization method to in-

clude muscle activations. Coupled with different control structures, like in Van de

Panne et al. (1994)Fattal and Lischinski (2006)Van de Panne and Fiume (1993),

these proportional derivative mechanisms become a powerful technique to gener-

ate physically compliant motions. Gritz and Hahn (1995) introduces a control

mechanism for articulated figure motion. Though the paper mainly deals with the

evolutionary aspect of generating coordinated motion, the underlying mechanism

implemented is PD control.

Another example of effective PD-based animation is detailed in Laszlo et al.

(2000), where planar articulate figures, like a two dimensional Luxo Jr lamp with

two actuated joints, are controlled through traditional human-computer interfaces

like the mouse. Laszlo et al. (2000) defines a linear mapping between the two

dimensional mouse coordinates and the desired angles of the two joints in the lamp

figure. So the movement of the mouse creates time related motion in the figure.

Laszlo et al. (2000) also makes use of check points inserted at specific points in the

motion. These check points facilitate reversal or rewind of the motion to rectify

mistakes. Laszlo et al. (2000) maintains that mapping the mouse coordinates to

the joints create a continuous control while key-stroke based animations (used for

articulate figures of higher complexity like a planar cat and bipedal figure) gives

rise to discrete control. It is also stated that continuous control is often effective

if the mapping of joints is made with continuously varying parameters normally

coinciding with the number of degrees of freedom (DOF) in the articulate figure.

Artificial Life (A-Life) research investigates the theory of evolution and

adaptiveness of organisms in their environment and simulates the processes on

computers. Implicit application of torques in the joints of articulate structures is

one of the most common techniques of physics-based character animation, and is
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used by Karl Sims A-Life work. Sims’ pioneering paper (Sims, 1994) on evolving

organisms within a simulated physical world proved that adaptive animation was

possible through a convergence of machine learning algorithms and physics sim-

ulation. While Sims (1994) refrains from a PD implementation, it uses evolved

control structures to modulate joint torques through effectors. The force output

of effectors are limited proportionally by the cross sectional area of the segments

they join (Sims, 1994). Unlike PD where there is a constant feedback of the cur-

rent deviation from the desired target, the effectors in Sims (1994) are modulated

and adjusted only through each generation of evolution. So during one specific

period of simulation, effectors produce a specific envelope or shape of motion.

2.2.2 Explicit Actuators

Articulate body animation can also be done through external application of con-

trolled forces on the linkages. These types of actuators can be termed as explicit

actuators. Physically-based anatomical methods of animation, often use this type

of actuation. The two goals of muscle simulation can be termed as morpholog-

ical or surface behaviour modelling for enhancing an existing animation and a

physiological goal where biomechanical parameters of muscle function is studied

to generate animation (Lee et al., 2009). A morphological behaviour attempts

to model the deformations of the muscle volume in accordance with the skeletal

movements (purely based on animation with no biological basis), like bulging and

stretching. These internal muscle deformations are key references to simulating

the deformations occurring on the overlying skin. Modelling the physiological

behaviour requires the understanding of the biomechanics of muscle contractions

and force generation related to muscle length. This is a true anatomical approach

whereby muscle activations cause skeletal motion and hence is classified under

explicit actuators.

The most popular biomechanical model of a muscle is the Hill model. A. V.

Hill in 1938 measured shortening velocities of stimulated frog muscles and defined

force-length relationship equations (Lee et al., 2009)(Holmes, 2006). Since Hill’s

relationship equations have been observed in most types of biological muscles, it

has become a standard simulation method.

When a muscle contracts under activation, active force is generated. The

total force is the sum of both active and passive forces (see Figure 2.1). The

velocity with which the muscle contract is also an indication of the amount of

force it produces. This relationship in muscle contraction is also shown in Fig-

ure 2.1. This property of the muscle is attributed to the sliding filament theory

and cross-bridges (IvyRose, 2010). Hill created a mechanical model that exhibits
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Figure 2.1: Force-Length and Force-Velocity Relationship graphs

this behaviour, having three major components: a series element, parallel element

and the contractile element. The series element replicates the elastic nature of

tendons and also the elasticity prevalent in the sarcomere. The passive elasticity

of the muscle is simulated using the parallel element and finally the contractile

element takes into account the muscle length and time dependent neural signal to

calculate the generation of active force (Lee et al., 2009). The Hill model, though

biomechanically accurate, is not a convenient form for replicating any musculo-

tendon unit. So the Hill model was modified in Zajac (1989) in order to achieve

that goal. Zajac (1989) developed a model that is dimensionless, where the series

element is combined with the tendon modeling and thus removed and pennation

effects are intrinsically modelled. It models muscle fibres directly. The Hill model

describes macroscopic behaviour of skeletal muscles. Another model called the

Huxley model, describes microscopic contractile elements, the sliding filaments

and the cross-bridges (Huxley, 1957). Cross-bridges are modelled using Hookean

springs and the total force exerted by the muscle is computed by taking the sum

of all the forces of the connected bridges (Lee et al., 2009).

Muscle simulation can be classified into three groups depending on the na-

ture of the simulation. They are: Geometry-based, Physically-based and Data

driven (Lee et al., 2009). Geometry-based approaches, as the name suggests, sim-

ulate muscle animation and related deformation effects, rather than true biome-

chanical behaviour. Physically-based approaches, in order to bring greater realism

and accuracy, rely on the physical principles of muscle contraction and deforma-

tion. Data driven approaches are relatively new and involves extraction of skin

deformation directly from the skin surface using markers and using mathematical

methods create new deformation effects for new poses (Lee et al., 2009). Thal-

mann et al. (1996) is an example of a geometry-based method of creating realistic

deformations during animation. An interactive system for human character mod-

elling called “Body Builder” is created. It implements implicit surface technique
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using metaballs and ellipsoids to represent the bones, muscles and fat tissue (Thal-

mann et al., 1996). The implicit primitives are defined in the local joint coordinate

system of the underlying skeleton system. Using the implicit system of modelling

allows for an additive methodology in modelling for creating realistic muscles.

Also, during animation, the use of deformable implicit primitives provides for a

convenient and visually accurate deformation. The underlying skeletal joint acts

as a reference joint that adjusts a variable that drives the centre, orientation and

shape of the implicit surface attached (Thalmann et al., 1996). There are var-

ious other space deformation methods used for recreating the effects of muscle

deformations, like Free Form Deformations (FFD), Dirichlet Free Form Deforma-

tion (DFFD), Skeleton-Subspace Deformation (SSD) and Pose Space Deformation

(PSD) (Lee et al., 2009). FFD makes use of a lattice to deform the shape of the

muscle. The shape of the lattice in turn is deformed when the underlying skeleton

moves. Parametric solids or composite tri-cubic bezier-based hyperpatches form

the FFD basis for deformation (Chadwick et al., 1989). The muscles, in this case,

are represented by pairs of FFDs. SSD and its derivative, PSD are defined in

(Lewis et al., 2000). SSD is a skeletal-based deformation with obvious drawbacks

like lack of interpolated blending. The movement of the skeleton underneath the

skin deforms the skin surface.

PSD improves the SSD algorithm through iterative-layered refinement (Lewis

et al., 2000). PSD uses abstract manipulators or data points that control whole

or part of the deformation. These data points are set by the artists and then for a

particular pose they sculpt deformations and also a falloff that defines how the set

points change when the pose changes (Lewis et al., 2000). Parametric and cubic

surfaces are also used in the geometric simulation of muscles. Komatsu (1988) uses

Bezier surfaces to model human skin over skeletal structures. Implicit surfaces,

blending graph, weighted blending with proximity, parametric ellipsoids etc are

other techniques used by researchers to model muscle deformations. Physically-

based approaches target two problems, namely, representing and determination

of muscle contraction forces and computing the subsequent deformation of the

muscle geometry (Lee et al., 2009). Some of the computational techniques used

for this purpose are mass-spring systems, Finite Element Method (FEM), Finite

Volume Method (FVM) (Lee et al., 2009). Since accurate geometric and physical

musculoskeletal models are beneficial in a wide area of research, researchers are

always looking for methods to create them using different techniques.

A promising method is volumetric methods. To extract precise volumetric

data of muscles, one needs a good source and the visible human data set is one such

source. Teran et al. (2005) uses a segmented version of the visible human data set

to create muscle, tendon and skeleton geometry. The segmented volumetric data is
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not perfect and hence consists of disparities. A level set-based smoothing method

is used to repair the imperfect data (Teran et al., 2005). The volumetric data

is converted to the respective meshes using implicit surface meshing. After the

geometry creation process, additional data like temporally varying muscle fibre

direction vectors and skeleton structure to create skeletal motion (Teran et al.,

2005). The FVM is used to integrate the equations of motion (force computation)

with the generated musculoskeletal model. Mass-spring systems are a common

way of representing muscle deformations. Chadwick et al. (1989) connects the

FFD lattice control points to a mass-spring system to give visco-elastic dynamics

to the deformation. Mass-spring system combined with action lines and force

fields for joint wrapping is implemented in (Aubel and Thalmann, 2001). The

insertion and origin nodes are constrained on the skeletal structure and driven

by the skeletal motion. The intermediate nodes are calculated using an elastic

relaxation method (Aubel and Thalmann, 2001).

Data-driven approaches ignore the anatomical mechanisms involved in mus-

cle shape determination and instead model the surface of the skin directly. The

skin surface is modelled for specific poses using data acquisition techniques like

range scanning device and markers in a motion capture system. Generation of new

skin surfaces for differing poses is done by interpolation (Lee et al., 2009). Allen

et al. (2003) creates a shape-fitting method to fit high resolution meshes to range

scan data with sparse markers. Allen et al. (2003) explores the space of human

shapes using morphing. During the scanning process, sparse white markers are

placed on the body at specified landmark points (where the bone pushes through

the skin). Allen et al. (2003) creates a correspondence between surfaces having

the same global structure but with sufficient local variability. Capturing and an-

imating dynamic deformation of the human skin surface is explored in Park and

Hodgins (2006). Optical motion capture using approximately 350 markers and 12

cameras is used to capture the motion and then the deformation of the skin is

computed from the fiducial data. Computation is done with the help of quadratic

transformation and radial basis functions (Park and Hodgins, 2006). The marker

data is cleaned and damaged marker data is reconstructed using a local reference

framing defined at each marker and also using spatial information relationship

between the markers (Park and Hodgins, 2006). Treating the marker data as a

scatter data interpolation problem and deforming the vertices, performs the skin

animation. Tsang et al. (2005) presents an inverse dynamic musculotendon model

of the hand and forearm. It also integrates a forward simulation model, which

takes muscle activation values as inputs and outputs rotation values and angular

velocities for the joints. Thus Tsang et al. (2005) considers forward simulation

as a function that maps muscle activation values to angles and angular velocities.
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The inverse dynamics computation takes as input joint rotations or finger config-

urations. The Hill’s three-element model is used for the simulation with direction

computed along the line of action. The tendons are represented by piece-wise

linear segments (Tsang et al., 2005).

Machine learning techniques are useful in teaching a system highly non-

linear functions and where the problem space is vast. Lee and Terzopoulos (2006)

models a neuromuscular controller capable of animating the human neck. The

muscle model is anatomically relevant and comprises of linear actuators. The

anatomical muscle activations are emulated by an off-line trained neural network.

The linear muscle actuator is based on the Hill model with parallel and contractile

elements.

A new modelling primitive called strand is implemented in Sueda et al.

(2008) making it possible to model the complex interactions of muscle-tendon and

bones. Levin et al. (2008) describes a method using diffusion tensor data to model

the strands from MRI scan data. Energy minimizing curves are used to fit the

muscle fibre field. The strand primitive is a biomechanical element that can incor-

porate complex routing constraints (Sueda et al., 2008). It uses a cubic B-Spline

path curve with dynamic control points. For contacts with the skeletal structure,

the system uses pre-calculated potential contact points, which are, updated ev-

ery time-step. The strand primitive has three types of constraints that can be

attached to it. They are: Fixed constraints (which are locally stationary and

is used to create the origin and insertion points of muscles), Surface constraints

(constrained to be on the surface of the bones) and sliding constraints (constraints

that allow the strand to move along its axis). Formulation of these constraints

allows the primitive to model the interactions between muscles and bones accu-

rately (Sueda et al., 2008). Sueda et al. (2008) also implements an algorithmic

controller that computes activation levels given a target motion. Even though the

strands are capable of modelling accurate tendon routing dynamics and produce

high quality biomechanical motion, it is impractical to use in a game character.

This is due to the high cost of computing motion equations of a dynamic b-spline

and constraints and the inability to develop a customised strand primitive using

a generic physics engine.

Another popular method of creating musculotendon units that wrap around

joints and skeletal structure is known as the Obstacle Set Method. In biomechan-

ical simulation, defining muscle paths is very important, as the arrangement of

muscles is a key element in establishing the direction and behaviour of motion

generated. In the obstacle set method, muscle path is represented by a series of

line segments (Brian and Marcus, 2000). These line segments are connected using

via points. At points where the muscle path curves around a joint, a rigid body
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Figure 2.2: Obstacle set method. Image courtesy Brian and Marcus (2000)

primitive (spheres, cylinders) is used as an obstacle upon which the via points

are laid (see Figure 2.2) (Brian and Marcus, 2000). The via points can have two

reference frames depending on which underlying structure they are attached to.

Bone reference frames are attached to bones while obstacle reference frames are

attached to obstacles (Brian and Marcus, 2000). The via points lying on the ob-

stacle surface are constrained to move on its surface, while the via points on the

bones are fixed. A problem with the obstacle set method is the necessity of the

collision primitives to facilitate joint wrapping. This is an additional overhead in

the context of a game character.

To compute muscle functions is challenging because of the high complexity

and number of constraint equations and also due to the high redundancy of the

muscle system (Lee et al., 2009). The redundancy exists because the number of

muscles is greater than the number of DoFs available for skeletal motion. Thus

the problem is highly under-determined. Static (inverse dynamic) and dynamic

(forward dynamics) optimization techniques are commonly used to solve this prob-

lem. But these often require large amounts of differential equations as the number

of participating rigid bodies and DoFs increase. Optimization approaches like in

Thelen et al. (2003) implements state feedback and static optimization techniques

to reduce this increase in computations.

2.3 Control and Learning

In physically-based animation, control is an essential element by which the anima-

tor can directly or indirectly affect motion in order to achieve a specific physical

action. Target oriented motion is impossible without a finite control guiding and

activating the actuators at precise moments. Graphical interface-based control

systems and motion tracking are examples of two different ways by which desired

animation is created or applied on virtual characters (Parent, 2007). The former
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is the most common type found in standard 3D animation packages and includes

the normal key frame controls, kinematic “handlers” (like IK tools), spline-based

animation tools etc. The latter is a more complicated form of control of the body

where the character executes the desired animation by following a pre-generated

motion sample, usually motion capture. A prime example of a controlled dynam-

ical system would be an articulate rigid body rag doll1 tracking the motion of

a running humanoid, through the application of forces via actuators. Exacting

precise control in physics-based characters is necessary to create motion that is

comparable to kinematic methods. Due to such control issues, physically-based

character animation was seldom used to drive performance of characters. In games,

physically-based character animation is normally used for portraying character

death using a physically-based puppet called rag doll. There are two notable

pieces of software that use biomechanical principles to generate motion, with one

used in the entertainment industry and the other used in analysing motion, En-

dorphin and OpenSim.

Natural Motion’s Endorphin software applies machine learning techniques

to create physically-based realistic full body motion of characters using biomechan-

ical muscles and neural controllers modelled after the central pattern generators

found in the human CNS. Endorphin terms the rag dolls as active rag dolls as

opposed to passive rag dolls often found in games. Though the exact methods

implemented in Endorphin are not disclosed, the original research the technology

is based,relies on recurrent neural network architectures for the controller and PD

controllers as actuators for the physically-based characters (Reil and Husbands,

2002). Endorphin evolves motion behaviours based on customised objective func-

tions and these evolved behaviours are provided as a list for the animator to choose

and apply to the characters. The behaviours can be modified in-software using a

variety of parameters that control the simulation. Endorphin also allows to inte-

grate motion captured animation to blend between simulations. From observed

workings of the software, the muscular system seems like a simplified model that

does not model the muscle dynamics in its entirety (Motion, 2011a).

OpenSim is an open source software using deterministic methods that helps

users to create and analyse the biomechanics of human movement (OpenSim,

1990). It fits recorded marker data to musculoskeletal model computes inverse

dynamics and also muscle-based forward dynamics simulations using gait data. It

allows for model scaling to fit any subject and uses linear muscles based on the

Hill model and joint wrapping using via points.

For understanding controlled motion generation on anatomical models, re-

1A rag doll is a physical simulation of a humanoid body consisting of constrained rigid bodies.
It is normally used to simulate an unconscious or dead character in a game.
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searchers look into neuromechanics. “Neuromechanics seeks to understand how

muscles, sense organs, motor pattern generators, and brain interact to produce co-

ordinated movement, not only in complex terrain but also when confronted with

unexpected perturbations.” (Nishikawa et al., 2007). The mechanical behaviour of

muscles is a direct result of neural activity produced by conscious or unconscious

thought. But the pattern of neural activity is still relatively unknown barring

some educated guesses. The process of taking visual cues or conscious stimuli and

converting it to mechanical motion consists of a series of transformations of the

information available - from the brain to the central nervous system (spinal cord)

to the muscles and then back again during feedback (Nishikawa et al., 2007). This

control problem is represented in the form of a transform function, which takes

place at each stage of the information transference (Nishikawa et al., 2007). The

activation pattern of skeletal muscles contribute to the force output of the muscle,

single stimulus causes twitches in the muscle, while multiple low frequency stimuli

causes greater force output and contractions like tetanic contraction is caused by

high frequency stimuli and thereby have the maximum force output (Nishikawa

et al., 2007). Muscles serve a variety of functions other than cause movement

(Nishikawa et al., 2007). Muscles are instrumental in stabilizing joint motion and

storing elastic energy in the fibres. A single nerve signal can cause different me-

chanical output in different muscles as well as different muscle segments in a single

fascicle (Nishikawa et al., 2007). Thus muscles act as devices that convert a neural

signal into mechanical output.

And yet, according to Nishikawa et al. (2007), there are functions of skeletal

muscle which are still unclear, some of them being, inter-filament spacing, muscle

architecture and protein isoforms. Muscles exhibit self-stabilizing behaviour also,

the self-stabilizing arising from the inverse force velocity relationship exhibited by

striated muscles (Nishikawa et al., 2007). The speed of a movement is not merely

dependent on how fast a muscle contracts (in fact, contraction contribution of a

muscle to movement speed is less when compared to elastic recoil), but depends

on the muscles, tendons and skeletal elements, together forming a mass-spring

system. Sensory feedback in the muscles from the various feedback sensors in the

same, contribute to the variances in muscle activation and force control, which

in turn helps in stability and coordinated motion (Nishikawa et al., 2007) (Eccles

et al., 1957). Feedback comes from various sensory inputs like proprioception,

vision, auditory etc. There are two principles of neuromechanics that affects the

control of movement, being, structural properties of the sensory and neural net-

works influence the timing and frequency of muscle activations and secondly, that

these properties themselves introduce timing delays (Nishikawa et al., 2007). An

efficient controller must encapsulate these principles in order to create coordinated
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motion. According to Nishikawa et al. (2007), the factors that play a role in the

generation of coordinated motion are: command delegation and interaction in the

central nervous system, biomechanics of the human body, the environment and

sensory feedback. Nishikawa et al. (2007) formulates three key points to empha-

sise the importance of timing in neural stimulation. The first being that delays

occur either due to neural processing or due to the properties of the mechanical

system. Second, timing delays cause a reactive resonant like behaviour. Thirdly,

the dynamic nature of a system is fully understood only when the time delays

in the signals are considered. Nishikawa et al. (2007) further theorizes that de-

riving a control model from these observations, especially for a system that has

many-input-many-output parts, requires a full knowledge of the delays in the neu-

ral processing in the mapping between these parts. Nishikawa et al. (2007) also

explores the neuromechanics problem in the context of locomotion using Central

Patterns Generators (CPG) for periodic motion, use of Genetic Algorithms to

evolve timing of neural activation patterns.

Just as Karl Sims in Sims (1994), showed that the physical environment

plays a role in how the morphology and locomotion pattern of the creature evolves,

Nishikawa et al. (2007) also delves into the functional dependencies of an organ-

ism on its ecological morphology and tries to throw light on determining muscu-

loskeletal performance in its natural environment. Temporal information plays

an important role in ecological morphology. It has been found that similarity in

the design of an organism can produce differing performance levels and at the

same time, different morphological design produces comparable performance lev-

els when suitably controlled (Enoka, 2008). This unique nature in musculoskeletal

performance is attributed to a tight interaction between the neural system, the

mechanical system of the organism and the environment or the ecology. Mechan-

ical attributes consist of shape, structure and dimensions. Motor control requires

highly complex muscle activations and studies suggest that the central nervous

system uses muscle synergies to create various types of movements (Ting and

McKay, 2007). Ting and McKay (2007) defines muscle synergy as “a vector spec-

ifying a pattern of relative levels of muscle activation”. Ting and McKay (2007)

proposes that the central nervous system executes task level commands through

the use of muscle synergies. The muscle synergies are the solution to convert

the commands into a complex set of spatio-temporal activation patterns (Ting

and McKay, 2007). Perturbations happen frequently causing instability during

a task execution (like balancing or locomotion or reaching). Using one or more

combination of synergies, the central nervous system is able to counteract the

perturbations. The combined effect of the synergies defines the complex muscle

activation patterns (Ting and McKay, 2007). (Ting and McKay, 2007) proposes
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that muscle synergy is an emergent consequence of the interactions between the

nervous and musculoskeletal systems and that the existence of synergies helps the

nervous system to encode task-level variables and better adaptation to environ-

mental changes and perturbations. Bernstein formulated the degrees of freedom

problem in motor control (Macpherson, 1991). The musculoskeletal system is com-

prised of many linked segments, joints and muscle actuators. The task of moving

an arm to a target point offers many solutions, with a variable amount of parame-

ters (DoFs). There is no unique solution. So how does the nervous system produce

the required muscle activation patterns to achieve the task? Bernstein proposed

that the nervous system pooled the parameters into functional units. Combining

individual muscles in groups causes a reduction in the number of parameters and

the central nervous system can create various synergestic units for different tasks

(Macpherson, 1991).

For posture control and locomotion, neural-based foundations have been

theorized (Deliagina et al., 2008). It is termed as a “closed-loop” control system

(Deliagina et al., 2008). Maintaining balance or up-right posture is essential for

a variety of physical activities and forms a basic and vital motor function in the

human body (Deliagina et al., 2008). In order to achieve this with the ability to

change postural functions, the central nervous system distributes the functions in

different parts within itself. Locomotion using limbs is well-worn research bed in

robotics and simulation. Artificial neural networks have been used to generate

muscle activation patterns for locomotion (Prentice et al., 1998). In order to gen-

erate the correct timing of activation, simple sine and cosine wave forms were used

to represent the duration of a gait and then the waves were moulded into mus-

cle activation patterns for limb-based locomotion using a back-propagating neural

network (Prentice et al., 1998). The neural network used in this research is time

independent (unlike spiking neural network which are time dependent), instead

using secondary functions (sine and cosine) to modulate the time. The shape or

envelope of the function is modulated using the neural network (Prentice et al.,

1998). Gradient learning is performed using actual muscle activation recordings

(EMG).

For dynamical systems without control, muscle actuators would produce

random motions. The control problem in dynamic characters often necessitates

principles from control theory, like the research detailed in Section 2.2.1. Bringing

about autonomous behaviour in virtual characters requires the implementation

of procedural techniques or machine learning techniques. Procedural techniques

often use higher order mathematical principles to direct motion into the desired

trajectories. Some examples in procedural techniques are (Van de Panne et al.,

1994)(Witkin and Kass, 1988)(Sifakis et al., 2005). The space-time constraint
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system described in Witkin and Kass (1988) is a form of directed character ani-

mation control that preserves the principles of animation like squash and stretch

and anticipation. The technique is used to animate, again, a Luxo. Jr lamp. The

objective of the technique is to treat the character animation problem as a con-

strained optimization problem, the constraints being the start and end positions

of the motion and the time within which to execute the motion.

Many procedural control techniques in physics-based animation employs

some form of PD control as described in Section 2.2.1. But adaptive learning

is performed by tuning the control parameters, often through machine learning

techniques. Faloutsos et al. (2001) synthesizes controllers for physics-based char-

acter animation, which are highly procedural with relationships and constraints

involving several parameters called “pre-conditions”. The individual controllers

are generated through manual intervention and later composed into single complex

controllers. This particular design process is automated as well, using machine-

learning techniques. The technique used in this case is support vector machine

(SVM), which is a linear classifier. The SVM used utilizes kernel functions to

map non-linear support vectors to higher dimensional spaces in order to linearly

separate them. The SVM is trained to determine the controller pre-conditions

and the training is performed off-line. The transitions between the controllers are

achieved through state machines. Due to the high non-linearity and complexity,

design of controllers for multi-limbed characters is often very difficult and for this

reason, self-evolving controllers are used.

Genetic programming is used to evolve control expressions for articulated

characters. Gritz and Hahn (1995) implements genetic programming to evolve

expression for a dynamic Luxo. Jr lamp. PD control generates torque at the

joints of the Luxo lamp. The torques produced is a resultant of LISP expressions

that the genetic program outputs. Constraints are imposed as optimizing or ob-

jective functions for the genetic programming algorithm. Evolutionary methods

are commonly used in A-Life research to automatically generate means of loco-

motion for virtual entities. Sims evolved both the control system as well as the

morphology of the virtual entities using genetic algorithms (Sims, 1994). Other

researchers have either reproduced or modified Sims’ work and most of them use

PD controllers as actuators (Lassabe et al., 2007)(Ruebsamen, 2002)(Miconi and

Channon, 2006)(Smith, 1998a). But from a practical production pipeline point of

view, A-Life on its own has little value. There are two reasons:

• Random morphology - Most A-Life research focuses on evolving the structure

of characters and also on evolution of locomotion suited for that particular

structure. The evolved structure might have no correlation with any plau-

40



sible character morphology. In real life production, character morphology is

fixed, based on concept designs.

• Specificity of objective function - The objective functions that guide the

evolution in A-Life are often simple target-based (distance travelled) and

used for locomotion generation. These functions do not specify the shape

of the motion. On the contrary in character animation, motion styles are

required.

A-Life entities exist in isolated physical (or non-physical) environments

interacting with each other and evolving behaviours based on simplistic objective

functions. Evolving motion behaviours that emulate human motion require more

complex objective functions. But the A-Life techniques proved inspirational in

evolving the system developed in this thesis.

Grasp animation is an area of research, which is gaining interest. It provides

avenues for automatic control both in planning and animation. Recent research

has indicated that though grasping is a generalized movement, there are individual

coordinated controllers that perform the reaching and curling of fingers around the

object (Oztop et al., 2004)(Jeannerod et al., 1998). In fact the development and

coordination of fingertip forces for manipulation of objects, arise from indepen-

dent neural networks controlling each of the digit involved in the task (Burstedt

et al., 1997). The neural system coordinating the manipulation was found to be

independent of the number of manipulators used (two handed) by a single subject

or two subjects. This suggests that the neural mechanisms and the effectors can

be anatomically independent for controlled manipulative grasping tasks (Burstedt

et al., 1997). There are two main areas that the research in Burstedt et al. (1997)

helps clarify regarding independent neural control during manipulation of objects.

They are: digit specific control of the normal-tangential force ratios, temporal

coordination (Burstedt et al., 1997). In the first case, experimental subjects co-

ordinated the fingertip forces compensating for changes in local friction. Testing

with various grasp configurations also yielded the same result, with evident ad-

justments of the normal-tangential fingertip force ratios to balance frictional slips.

A decrease in the rate of increase of finger tip tangential forces was also observed

prior to lifting tasks indicating anticipatory systems, which again operate via inde-

pendent neural networks separately controlling the digits (Burstedt et al., 1997).

Even though lifting tasks can have independent neural mechanisms controlling

and modulating force development, higher-level control mechanisms are required

to coordinate the digits for various other tasks. This is where temporal coordina-

tion becomes important (Burstedt et al., 1997). In this case, coordination showed

an increase in the single subject case than the two subject case, mainly because
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neural systems function better with self-contained sensory feedbacks than when

the neural systems belong to completely independent subjects and have to rely

mainly on visual cues (Burstedt et al., 1997). Grasping with hands and manipula-

tion undergoes training from infancy to adulthood. Oztop et al. (2004) looks into

how grasping is a learned process in infancy and goes deeper into the behaviour of

grasping. In that process, a neural network-based learning model is investigated

and implemented.

The main objective of the research in Oztop et al. (2004) is exploring the

effects of the environment and grasp constraints in the development of grasping

skill in infants. Two main points are suggested as being important for an infant to

learn an efficient grasp: the ability of the infants to sense the effects of their motor

action and interpreting feedback sensations to adjust their grasping parameters

(Oztop et al., 2004). According to (Oztop et al., 2004), basic motor requirements

for reach to grasp are firmly established quite early in the developmental stages.

Sensorimotor skills rapidly develop as motor learning takes place. Infants have a

very basic and crudely coordinated grasping skills at birth, which later on develops

into reaching and grasping by 4-5 months. By 9 months, their grasping strategy

is sufficiently advanced for reaching and grasping and by the time the baby is

a year old, manipulatory and precision grasping skills comparable to adults are

developed (Oztop et al., 2004). The model developed, named Infant Learning to

Grasp Model (ILGM), learns to grasp by interacting with the environment, adjusts

parameters based on feedback and selectively modifies neural parameters to fine

tune grasp action and patterns (Oztop et al., 2004).

Robotics is a field where learning algorithms and mechanical control of

articulate rigid bodies, grasp planning and execution are priority research goals.

Inverse kinematics (IK) is a common problem and roboticists are looking for bet-

ter and faster ways to solve it. Oyama et al. (2005) implements modular neural

networks to learn IK. Using neural networks for learning IK has been done pre-

viously (Kuperstein, 1988)(Jordan, 1988). IK being a multi-valued discontinuous

function, is perfect for a modular neural network rather than conventional neural

network design using single valued function. By breaking down the IK function

into a finite number of IK function groups and then allow individual neural net-

work “experts” to find a solution for each of the groups. By approximating a

region of the IK function with each module, a viable solution to the function as a

whole is calculated (Oyama et al., 2005).

The multi-fingered gripper is a very common robotic body part. Robots

require grippers to perform many of the dexterous tasks. And the key problem

faced by roboticists is force optimization (Xia et al., 2004). The force transferred

by the robotic gripper on the object being grasped has to carefully modulated.
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The object might collapse under excessive force or slip from the gripper if the force

applied is too little. Therefore, optimal control of the forces is essential. Xia et al.

(2004) investigates this particular problem and uses recurrent neural networks to

learn the force optimization.

In grasp planning, if a neural model can encapsulate a better object fea-

ture set and affordances in grasp, then the generalizing ability of the network

for a wider range of features is enhanced (Molina-Vilaplana et al., 2007). Molina-

Vilaplana et al. (2007) proposed a multi-part neural network that learned grasping

tasks. The model was designed as a controller for robotic grippers. For accuracy

comparison, the neural activity in the different parts of the network is compared

to biological neurons that are involved in visual guidance for grasping (Molina-

Vilaplana et al., 2007).

Advanced prosthetics is robotics in part (replacing lost limbs with robotic

limbs), but retaining biological control rather than being completely autonomous.

One of the shared goals of robotics and prosthetics is to create a manipulator as

dexterous as human hands. Electronically enhanced devices like robots or even

computer graphic software receives input directly from the user’s brain by ex-

tracting or sensing biomedical signals such as Electromyogram (EMG), Electroen-

cephalogram (EEG), or Electrooculogram (EOG) (Ahsan and Ibrahimy, 2009).

Most neural prosthetic devices use EMG as a control signal. In the human body,

muscles are the actuators, which translate electrical impulses from the brain into

motion. As described in IvyRose (2010), a skeletal muscle fibre is activated by

an action potential travelling along the innervating motor neuron axon and the

activation causes the muscle to contract. By placing sensors to pick up the activa-

tion signals of muscles, the prosthetic device is able to coordinate the activation

of the mechanical motors through complex pattern classification techniques (self-

organizing maps, genetic algorithms, fuzzy logic, wavelet analysis). But a majority

of the classification is performed using classifiers that are based on neural networks

(Ahsan and Ibrahimy, 2009).

Surface EMG sensors are non-invasive and take the form of electrodes

placed directly on the surface area of the skin from where muscle activity is to

be recorded. Intramuscular EMG utilizes a needle and fine wire, which are in-

serted through the skin into the muscle and then activity recorded (Ahsan and

Ibrahimy, 2009) (Ohnishi et al., 2007). Todd Kuiken, a physician and biomedical

engineer at the Rehabilitation Institute of Chicago (RIC), developed a technique

called “targeted re-innervation” to amplify nerve signals on an amputee’s stump,

so that sensors could pick up the signals in a non-invasive manner (Kuiken et al.,

2009). This improves the myoelectric prosthesis function. Amputated nerves still

carry action potentials from the motor cortex in the brain. Kuiken’s technique
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involves a surgical procedure by which amputated nerves are transferred to new

muscle and skin in unused areas such as the chest or to the unused muscles on the

arm stump, if it was remaining. The transplanted nerves grow into the muscles

and skin and the patient is able to feel parts of the amputated arm through the

muscles of the chest or stump accordingly. The amputee could practically feel

the amputated hand just by touching various parts of the chest/stump. She was

actually touching the “phantom arm”. At this stage, the patient is fitted with the

customized myoelectric arm. The nerve signals are picked up by the electrodes

of the arm and fed in to a computer, which is programmed to differentiate the

activation signals. The decoded signals are used to drive the servomotors in the

arm to give a semblance of the same DoFs experienced with the biological one

(Ohnishi et al., 2007) (Kuiken et al., 2009). Thus in Kuiken’s method, the key

factor for driving the prosthetic arm is the amplification of the EMG signals.

The model developed in Rezzoug and Gorce (2003) is termed as a “biocy-

bernetic method” that learns hand grasping posture. The model consists of two

parts. The first part deals with learning the IK of the fingers, given the finger-

tip position. And the second part, deals with optimization of the configuration

space of the hand through direct associative learning (Rezzoug and Gorce, 2003).

The learning algorithm used in the networks is back-propagation. The hand pose

configuration network consists of two hidden layers and an output layer. Another

example of neural network-based animation is Kim et al. (2000), where the neural

network controls the hand movements to play the violin. Since a lot of finger

dynamics is involved in animating a hand playing a violin, it is difficult to ani-

mate it by hand. So a neural network takes care of each hand configuration. In

addition to that, a finger positioning algorithm is used to convert musical scores

and decide the finger that touches specific violin strings to play specific notes.

The system comprises of three modules, which are: active finger determination

module, optimization module and passive finger determination module. A mu-

sical score has beats, duration the note has to be played and intensity. So the

active finger determination module analyses the state and finger tip position of

each of the fingers on the frets for each beat. The optimization module takes as

input the fingertip position calculated from the active finger module and outputs

the wrist state. The passive finger determination module uses the optimization

module with a decreased search space and a spring-damper model to position the

fingers (Kim et al., 2000).

Controller synthesis is computationally demanding. The NeuroAnimator

in Grzeszczuk (1998) uses neural networks to bypass the common computational

burden of complex dynamic equations, and attempts to approximate the perceived

reality of conventional physical models. The emulators in Grzeszczuk (1998) use
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neural networks using back-propagation algorithm and the networks are trained

using samples generated by actual simulations of the model. Sampling the simu-

lation at random points along the length of the simulation generates the training

data. The input vector is extracted from the sample data and consists of the

state of the model, the external forces and the control inputs at a specific time

(Grzeszczuk, 1998). The neuromuscular network of the human body is the key to

understanding the dynamics of the human body. Murai et al. (2008) combines a

neural model with a physically accurate biomechanical system. There are different

types of feedback and feedforward loops in the neuromuscular system. Murai et al.

(2008) uses the neural network to model these loops. The physiological properties

of the muscles are considered in this research. Murai et al. (2008) models the

patellar tendon reflex (the reflex induced when the knee is tapped) by simulating

the nerve signals. This neuromusculoskeletal model converts muscle tension out-

put to muscle activations and works on a reduced model in terms of the number

of muscles and nerves. The model also incorporates a muscle spindle system to

feed back the length and velocity of the muscle to the nerve. Optical motion cap-

ture is analysed and muscular tension is calculated. The motion capture data is

dimensionally reduced using Independent Component Analysis (ICA).

Pollard and Zordan (2005) creates a physically-based animation of hands

that is comparable in quality with motion capture using modified forms of PD

control implementing both passive and active control of the hand. Motion capture

is used to extract parameters (limits and positions) for both passive and active

control. Pollard and Zordan (2005) uses three tuning parameters in the equation

which are set by the animator for the simulation. Active control is achieved via a

finite state machine (FSM) system that activates states depending on proximity

of the hand to objects to trigger directed grasp animation. Joint angles and

angular velocities are linearly blended between setpoints, as distance to the object

decreases (Pollard and Zordan, 2005). The motion library is used to extract the

parameters and the set of linear equations, generated from each frame of the

motion capture, is used to solve for the unknown position and velocity of the

setpoints. Thus Pollard and Zordan (2005) demonstrates a layered approach to

passive and active control in a physically-based manner. The hand animations

are created using the popular real-time physics engine, Open Dynamics Engine

(ODE) Pollard and Zordan (2005)

2.4 Grasp Psychology and Learning: A Primer

Grasping is as much a mental task as it is physical. The human brain performs

numerous calculations subconsciously right from the time of subject acquisition to

45



approach to the actual execution of the grasp. Grasping psychology mainly deals

with the higher level task-based instructions (decision making) which internally

is translated to low level motor neuron functions to navigate space through the

motion of limbs caused by the activation of muscles. So there are many different

aspects that have to be considered when understanding a seemingly trivial task

of reach and grasp, both from a physical as well as psychological point of view.

Weiss and Jeannerod (1998) is a survey paper that looks into a few of the problems

and research that fall in the category of neurophysiology, anatomy and related

mathematical formulation for simulation. Weiss and Jeannerod (1998) tries to

understand the motor coordination of limb movements during the execution of

different tasks. The limbs have a wide range of degrees of freedom (DoF) and

this flexibility comes with a computational load on the motor control system of

the brain. Weiss and Jeannerod (1998) specifies that this computational load can

be simplified by the command signatures of the movements and selected based

on optimality rules that induces the limb to move as a single unit rather than

as muscle and joint groups. This idea is derived from the Bernstein concept of

“muscle synergies” and “coordinative structures” (Macpherson, 1991). The end

effector of the limb is a good candidate for the optimization of DoFs in space.

Hogan and Flash (1987) cited in Weiss and Jeannerod (1998) demonstrated this

in the “minimum jerk” model, where the jerk is defined as the “fourth derivative of

position” and went on to predict that the central nervous system uses the spatial

path of the hand as a control variable, implying that movements are planned in

Cartesian coordinates (Weiss and Jeannerod, 1998). This theory directly conflicts

with the other theories that propose that movements occur in the joint space

of limbs. In this alternate theory, the controlling parameter is the individual

joint position and it predicts curved trajectories. The concluding theory, that

combines the two disparate theories, as stated in Weiss and Jeannerod (1998),

suggests that the control system in the human brain resorts to different control

strategies depending on the type of tasks at hand. There is a concept termed

as “postural coding” which states that different muscle synergies (activation of

different muscles at the same time) cause some of the DoFs in the limb to “freeze”

(Weiss and Jeannerod, 1998). This is a way by which the motor control system

manages redundancies in DoFs, by freeing them when a change in a grasping task

or change in the object shape demands it.

In reaching and grasping tasks, even changing the orientation of the object

during grasp reach produces corrective movements to ensure an efficient limb pos-

ture. Weiss and Jeannerod (1998) states that these results fall into “the general

framework of the equilibrium-point hypothesis”. The equilibrium-point hypothe-

sis states “the motor system specifies goal positions for the limbs, not movements
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between position” (Weiss and Jeannerod, 1998). In theory, it works like a PD

controller, where the motor system presets the stiffness of the muscles and the

spring-like nature of the muscles attain the equilibrium position for the particular

stiffness. Weiss and Jeannerod (1998) cites research whose findings contradicts the

equilibrium-point hypothesis, where computed velocity of the limb trajectory dur-

ing a pointing action does not correlate with the stiffness and the corresponding

torque.

Proprioception, or the ability of the brain to map the position of the body’s

external organs/limbs in relation to each other in space is the outcome of the con-

tradicting theory. Weiss and Jeannerod (1998) suggests that this structural map

of the body in the brain is an offshoot of sensory information feedback, from the

body’s interaction with the environment. Weiss and Jeannerod (1998) continues

by giving the example of a grasping task, where observations on grasping behaviour

has shown that “spontaneous hand positions tends to tolerate initial discomfort

for the sake of final comfort”, whereby the end-state comfort shows that the sys-

tem is planning for future task demands. According to further research cited in

Weiss and Jeannerod (1998), the cerebellum plays an active and important role in

executing the feed-forward control mechanism. In a related research, Miall et al.

(1993) describes the cerebellum as a “Smith predictor”, which means that the

cerebellum retains a prediction of the sensory results of a movement in order to

compare it with actual sensory feedbacks. This enables the cerebellum to provide

corrections and adapt to the actual goal at hand. Hogan and Flash (1987) also

provides a hypothesis that the existence of twin Smith predictors in the cerebellum

cannot be discounted, as it can provide an explanation of how a visual sensory

cue is translated into actual motor commands that can move the limbs to the

intended target. The Smith predictors would be situated in the lateral cerebellum

(working in a visual and peripersonal - the space within the reach of a limb -

coordinate space) and in the intermediate cerebellum (using motor coordinates).

It has been observed in cerebellar patients, their inability to produce a sustained

limb trajectory, due to the occurrence of uncoordinated muscle activations. This

is suggestive of corrupted or complete erasure of the internal limb representation

(Weiss and Jeannerod, 1998). Research has also shown that proprioceptive infor-

mation is necessary for updating the inertial properties of the limbs (Weiss and

Jeannerod, 1998). This is essential for a feed-forward control mechanism.

Motor coordination in the temporal domain is another concept that Weiss

and Jeannerod (1998) looks into, where it was found that for a goal oriented

pointing task involving the eye, head and arm movements, the motor commands

were all fired simultaneously. The areas of the brain found to be affecting temporal

coordination of limb movements include the cortical areas like the premotor cortex,
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the parietal cortex, the mesial motor cortices and also the supplementary motor

area (Weiss and Jeannerod, 1998). The observation of patients with severely

disrupted parietal area (a condition called parietal lesion) provides verification

in the research. Parietal lesions cause inhibition in the coordination required in

reaching and grasping and also finger movements during tactile exploration of an

object. Parietal patients have also been found to lack the ability to synchronize the

movements for manipulation required for the correct contact between the object

and skin receptors, during an exploration task.

Finger movements comprise a majority of the DoFs of the human hand.

Research, such as in Nakamura et al. (1998), has been done to study finger move-

ments in detail during grasping tasks. Nakamura et al. (1998) investigates the

movements of the fingers during simple flexion and hyperflexion and then com-

pares the results with a grasping task and analyzes the ability of the hand to

adjust its phalangeal orientation to suit the shape of a wide variety of objects.

Nakamura et al. (1998) uses a two dimensional motion analyzer which analyzes

motion from video sampled at 1/60 frames. The finger has three joints, namely,

the metacarpo-phalangeal (MP), proximal inter-phalangeal (PIP) and distal inter-

phalangeal (DIP) joint. For generating smooth, versatile and practical movements,

all these joints move in a coordinated manner. In the case of simple finger ex-

tension movement, the experiment was able to deduce that the initial movement

started from the proximal joint to the distal joint and the end of the action started

from the distal and ended in the proximal joint. In deliberate actions like grasping

a disc and during the planning stages (prehension), the end-effector joint initiated

the movement, and termination initiated from proximal to distal. The muscles

for the MP joint movements in the extension are the extensor digitorum and the

extensor indices, which are the extrinsic muscles of the hand. It is theorized in

Nakamura et al. (1998) that for during the sequence of activation for extension,

the extrinsic muscles of extension activate earlier than the interosseous and lum-

bricalis which are intrinsic muscles. For grasping an object (disc), it was found

in Nakamura et al. (1998), that end-effector movements are more prominent and

are initiated by the intrinsic muscles of the hand and starts from the distal to the

proximal joints. According to Nakamura et al. (1998), even though the intrinsic

muscles initiate the grasp movement, it is the extrinsic muscles, the finger flexors,

which play a role during the actual act of grasping the disc. In spite of that,

distinct intrinsic muscle activity is detected in the grasping part of the movement.

Nakamura et al. (1998) suggests that this is indicative of co-activation of both

sets of muscles in order to perform minute adjustments of the fingers to the size

and shape of the disc. The MP and DIP joints accomplish the adjustment of

the fingers to different sizes of discs in a coordinated manner during the grasping
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movement.

As quoted in Smeets and Brenner (1999), “Grasping is a complex move-

ment involving rotations of several joints and one end-effector”. Interpretation of

grasps involves selecting variables that would define choice (Smeets and Brenner,

1999). Research in Jeannerod (1981) written by Jeannerod, cited in Smeets and

Brenner (1999), proposed a selection. He theorized that two channels, one con-

trolling the transport of the hand and the other the size of the grip. This is the

“classical approach” (Smeets and Brenner, 1999). The popularity of this approach

is due to the fact that the two channels correspond to two anatomical structures

and to two distinct types of perceptual information (Smeets and Brenner, 1999).

From an anatomical perspective, the transport component moves the wrist to the

target object irrespective of the pre-shaping of the fingers by the grip component.

From an informational perspective, the transport component is based on extrinsic

properties (position and orientation) while the grip component is based on intrinsic

properties (size, mass, shape, color). Thus perceived size of the object is assumed

to be the deciding factor on the grip size. But the ambiguous classification of

orientation (originally classified as extrinsic but sometimes as intrinsic) creates

problems. Objects change orientation, so grasp orientation remaining stationary;

the size of the grip changes to accommodate the object with its new orientation.

This is also true if the grasp orientation is changed keeping object orientation

stationary. Thus it is seen that grip size is depending on both extrinsic and in-

trinsic properties of the object. Thus the originally proposed independence of the

visuo-motor channels no longer applies and shows where the classical approach

fail.

Smeets and Brenner (1999) also elaborates on the failure of the anatomical

perspective in the classical approach. The first contradiction provided by Smeets

and Brenner (1999) is that there is a difference when using the terms proximal

and distal at the level of muscles and at the level of joints. Proximal or extrinsic

hand muscles affect the pre-shaping of the fingers and also orienting while the

distal or intrinsic hand muscles activate affect the distal joints when the object is

touched. The classical approach emphasizes that the activation of the distal mus-

cles define the grip and the proximal muscles influence the movement of the arm.

Transport of the arm from an anatomical point of view, is the other problem in

the classical approach, given in Smeets and Brenner (1999). Suffice it to say that

Smeets and Brenner (1999) refutes the “classical approach” claims that the move-

ment variables “transport” and “grip” in grasp control can be directly mapped

to the anatomical attributes of “proximal” and “distal”. The classical approach

is a model that is based on parameters or variables derived from experimental

results. The alternative approach taken by Smeets and Brenner (1999) to avoid
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the discrepancies of the classical approach is by taking into consideration purely

the requirements of a stable grasp than variables such as “grip” and “transport”.

The stability of a grasp, according to Smeets and Brenner (1999), depends on the

positioning of the fingers on the surface of the object. This is achieved by looking

at the perpendicularity of the lines connecting the fingers to the surface of the

object. The lines go through the object and through the center of gravity of the

object. Suitable grasp positions are determined by the central nervous system

before actual grasping takes place and how it decides the position is still little

known and highly debatable.

Smeets and Brenner (1999) approaches a grasp as merely the positioning

of the thumb and the other fingers into these positions and does not consider any

extraneous factors like object size determination. The trajectory of the finger in a

pointing task is a straight line, but not so during prehension as the grip begins to

close around the object. There is strong curvature in the trajectory (Smeets and

Brenner, 1999). The aim of Smeets and Brenner (1999) is to model the straight line

and curved trajectory behaviour using the same principles. Smeets and Brenner

(1999) later explains that “slow curvatures of slow pointing movements depend

on the orientation of the surface to which the movement s are directed such that

the trajectories tend to end perpendicular to the surface” and that the curved

path is due to constraints imposed on the movement. Smeets and Brenner (1999)

uses an existing model called the “minimum-jerk” model, as it is a simple model

with optimized constraints at the beginning and end of the movement, to build

on and implement a generic principle that adheres to the straight line and curved

trajectory behaviour.

It is vital to place the fingers on strategic locations on the surface of the

object to have good grasp control during manipulation tasks. The research in

Jeannerod (1981) ventures out to prove this above stated fact. Jeannerod (1981)

looks deeper into how the center of mass (CoM) of objects govern the decision for

optimal grasping locations on the object surface. The experiment in Jeannerod

(1981) consisted of test subjects who were provided the CoM of the objects they

were to grasp, a priori. They were also made to grasp objects whose CoM were not

known. One of the preconditions of the grasp test was to minimize the object roll.

It was seen that, when the subjects experienced the same CoM over many trials,

they were able to anticipate the digit forces necessary to achieve the optimization

criteria. And this was for objects whose CoM was not known at the beginning and

also when the subjects did not have the freedom to choose digit placements on

the object. Jeannerod (1981) successfully demonstrated that “when the subjects

can choose contact points and can anticipate object properties, they implement

anticipatory force mechanisms in parallel with careful selection of digit place-
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ment”. Jeannerod (1981) also proved that a priori knowledge of object attributes

like shape and size plays an important role in the choosing of digit placements

in grasping. Jeannerod (1981) was able to study the interaction between the an-

ticipatory control mechanisms and digit placement control during the process of

CoM prediction. Humans seem to have a bias towards a center CoM location on

objects. This could be because of our daily interaction with symmetrical objects.

So for an off-center CoM, the subjects tend to use digit placements as if for a

centered CoM location. According to Jeannerod (1981) this strategy is successful

in minimizing the roll of the object. It was also found that subjects adapted to the

changes in CoM location by varying the thumb and index finger contact points.

Jeannerod (1981) conjectures that this is related to the larger force production

abilities of the two digits compared to the rest. And so, strategic placement of

these two fingers plays a crucial role in minimizing the roll.

In a similar wake, Lukos et al. (2007) also delves into the physicality of the

grasping process. Fingers act as agonists and antagonists during the application

of forces for a grip. To prevent an object from slipping, fingers act as agonists

contributing to the net grip force, but the fingers with the exception of the thumb

exert moments of force or torque which is opposite in direction about the pivot

point created by the thumb. Thus these two pairs form torque antagonists. There

is a minimization of total finger force required. In order to achieve that, the fingers

involved in torque generation should not produce any force. But at the same time,

in order to prevent the object from slipping, a contribution to the total grip force

from the very same fingers is required. So these are conflicting requirements and

the central nervous system (CNS) has to find a balance between the two. Lukos

et al. (2007) investigates the different strategies the CNS undertakes to achieve

the two contradicting force and torque requirements. The study in Zatsiorsky

et al. (2002a) is used to develop a neural model of torque control in Zatsiorsky

et al. (2002b) and it is detailed in Section 2.3 of this chapter. Another study Shim

et al. (2005) also investigates the synergistic activity of hand muscles, especially

in the digits, while an external torque is applied on the object that is grasped.

The study evaluates the digit forces/moments required to cancel out the external

torque and keep the object steady. The data recorded from the subjects proved

that forces were applied in all three dimensions, even though the external torque

was applied only along one axis on the object. Shim et al. (2005) explains the

cause of this as the “chain effects prompted by the non-collinearity of the normal

forces of the thumb and the four fingers”. The observations in Shim et al. (2005)

support that the CNS applies the normal and tangential forces through the fingers

on the object and that this is hierarchical.

Research like in Miller et al. (2003) investigated algorithms that would
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help in automating the grasp planning, given arbitrary shapes. Daily use objects

come in a variety of shapes and sizes. But due to human design, they can be

more or less fitted into a shape primitive group, like spheres, cylinders, cuboids

etc (Miller et al., 2003). Miller et al. (2003) uses these shape primitives to figure

out stable grasps on an object. The system developed by the research is called

GraspIt!. It works in two stages, the first being to generate sets of initial grasp

locations on the surface of the primitive that represents the object. The second

part deals with a qualitative analysis of the generated grasps. Miller et al. (2003)

defines certain heuristic grasp strategies to generate grasps, in order to reduce the

grasp search space. These strategies act as constraints to narrow down a grasp.

The primary constraint being, the start position of a grasp includes the position,

orientation in 3D space and a grasp preshape (Miller et al., 2003). Orientation is

subdivided into the palm approach direction and thumb orientation. The grasp

preshapes are defined for the set of primitives in order to constrain the positions

and orientations of the grasp starting locations (Miller et al., 2003). Evaluating the

generated grasps is based on an algorithm outlined in Ferrari and Canny (1992).

The quality of a grasp is often analysed in terms of the wrench space, which is the

set of all possible wrenches. A wrench is a vector of vectors consisting of the force

vector and the torque vector on the object (Ferrari and Canny, 1992). Building

on the use of quantitative Steinitz’s Theorem2 in grasp generation, as detailed in

Kirkpatrick et al. (1992), Ferrari and Canny (1992) examines the efficiency of a

grasp given as “the value of the radius of the largest closed ball, centered in the

origin of the wrench space, contained in the set of all the possible wrenches that

can be resisted by applying at most unit forces at contact points” (Ferrari and

Canny, 1992, p. 2291). From this set Miller et al. (2003) computes the convex

hull of wrenches, which represents a grasp wrench space called L1 wrench space

(Ferrari and Canny, 1992). This wrench space has the property that the sum

total of all finger contact normal forces is one. If the origin (of the wrench space

containing the contact wrenches) is not situated in the convex hull of the contact

wrenches then it means that external wrenches (force and torque) exists which the

finger forces cannot counteract or balance (Miller et al., 2003).

A much more detailed description of the GraspIt! System is given in Miller

et al. (2005). Miller et al. (2005) looks deeper into the dynamics simulation as-

2Steinitz’s Theorem : Classical Steinitz theorem as stated in Kirkpatrick et al. (1992) : If
the convex hull of a subset S of Euclidean d-space contains a unit ball centered on the origin
then there is a subset of S with at most m points whose convex hull contains a solid ball also
centered on the origin and having residual radius,

r = 3d(2d2/m)2(d−1)

and m being sufficiently large.
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pects of the system and in addition to looking at robotic grippers also looks into

simulation of the human hand and tendon actuation. Miller et al. (2005) also

discusses the SVM regression used to create a mapping between the shape of the

object, grasping parameters and the quality of the grasp. The regression system

accepts a vector consisting of shape and grasping parameters and returns a single

scalar value indicative of the grasp quality (Miller et al., 2005). The researchers

who were a part of Miller et al. (2003)Miller et al. (2005) explains their efforts

in performing grasp analysis for human hands through Ciocarlie et al. (2005). In

Ciocarlie et al. (2005) contact models are investigated, especially deformable con-

tact models as found on human fingertips. Contact with objects cause exchange

of forces between the object and the hand. Rigid contacts, like the contacts of

robotic grippers, are easier to process as forces can be calculated using a single

contact (Ciocarlie et al., 2005). In the case of human hands, the contact point on

the fingers change the shape (becomes a contact area) depending on the amount

of force applied (Ciocarlie et al., 2005). The deformable fingertips are modelled

using the Finite Element method (Ciocarlie et al., 2005). Using Computed To-

mography (CT) scans to create anatomically accurate model of a thumb, Ciocarlie

et al. (2005) uses the Finite Element method to simulate the forces applied on the

thumb during the contact with a rigid body. Unlike mathematical algorithms that

analyses grasps, there are data driven methods also (Li and Pollard, 2005)(Rijp-

kema and Girard, 1991). Li and Pollard (2005) uses a shape matching algorithm

to synthesize grasps. The algorithm used in Li and Pollard (2005) analyses the

shape of the palmar surface of the hand during contact to extract the shape prop-

erty of the object. If a similar distribution of features is found on another object,

then the grasp is reused for that particular object. Li and Pollard (2005) describes

it as extracting “probabilistic samples of a global shape function from the hand

shape”. Rijpkema and Girard (1991) adopts a three-phased approach, namely the

task initialization phase and the target approach phase and the grasp execution

phase.

Grasping is perfected through the experiences that human beings go through

in the different stages of growth period (Li and Pollard, 2005). This knowledge

is stored in a database, in the form of “pre-calculated strategies for different cat-

egories of situations” (Li and Pollard, 2005). A knowledge base like this helps

in the reduction of the huge search spaces possible in a grasp (Li and Pollard,

2005). The efficiency and quality of a grasp increases with the number of contact

points between the hand/gripper and the object (Pollard, 2004). With this in

view, Pollard (2004) describes a method that synthesizes many-contact (eight or

more frictionless contacts or five or more contacts with friction) grasps. Through

the method, force-closure grasps, partial force-closure grasps and grasps that go

53



beyond a given quality threshold are synthesized (Pollard, 2004). Pollard (2004)

constructs a family of grasps from a single example grasp. The example grasp is

used for grasp optimization where it is used as a template to synthesize grasps that

has the same attributes as the example (Pollard, 2004). Rather than implement a

global optimization, which requires a high order of complexity when the number of

contacts increases, the method described in Pollard (2004) allows the synthesis of

many-contact grasps. Optimization methods provide alternatives and extensions

to synthesize many-contact grasps (Pollard, 2004). But since the optimization

takes place in “space exponential in the number of contacts, each contact can be

placed anywhere on the object surface” (Pollard, 2004, p. 599). In order to solve

the optimization problem using non-linear equations, N contacts are assumed to

be on N surfaces (Pollard, 2004). Thus, according to Pollard (2004), the com-

plexity is O(N) in a force/torque space, being exponential in N. The algorithm

in Pollard (2004) converts an example grasp into an equal set or class of grasps,

which is projected onto any arbitrary geometry. Given a geometric model of the

object to be grasped, a grasp prototype and a task as inputs, Pollard (1996) syn-

thesizes a suitable grasp starting from the grasp prototype. The grasp prototype

is represented as contact wrenches and contact point coordinates on the surface

of the object (Pollard, 1996).

Most of the research investigated thus far in this section, concentrate on

how hands conform to objects and mechanisms by which pre-shaping and planning

of grasps can be performed by keeping this view in mind. But the objects sub-

jected to grasps themselves can embody interaction information. These objects

are termed as smart objects (Kallmann, 2001)(Francik and Szarowicz, 2005). The

three main engineering design features, namely, functional features, design fea-

tures and manufacturing features given in Parry-Barwick and Bowyer (1993), are

used as an inspiration by the research in Kallmann (2001) to develop a new type of

feature called interaction features that defines a feature as “all parts, movements

and descriptions of an object that have some important role when interacting

with an actor” (Kallmann, 2001, p. 51). Interaction features can be classified into

four groups: properties that are inherent to the object design, like parts, center of

mass (intrinsic properties), properties that aid the virtual hand or character in an-

imation like approach direction, surface points (interaction information), reactive

properties that deal with how the object react to interaction (object behaviour),

reactive properties for the hand or character (expected character behaviour) (Kall-

mann, 2001). Thus animation of the hand, when using smart objects, takes on a

degree of autonomy and is a derivative of the interaction feature of the object.
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2.5 Summary

Having reviewed a substantial amount of previous research, it can be concluded

that game systems require computationally lightweight muscle actuator and con-

trol systems to maintain the high frame rates. The control methods for muscle

dynamics can be broadly classified as in Table 2.2.

Table 2.2: Control methods in Muscle dynamics

Type Methods
Mathematical/Algorithmic
(deterministic)

Static optimization (in-
verse dynamics) Dynamic
optimization(forward dy-
namics)

Machine learning (stochas-
tic)

Artificial Neural Networks,
Genetic Algorithms, Ge-
netic Programming

The deterministic methods require intensive computations to model the

complexities of muscle dynamics. These methods are not compatible with a game

physics environment. The simplistic PD control is ideal for game purposes but are

limited in the scope of effects possible and cause tuning problems as the number

of articulate joints increase.

Gestural and grasping capability is pre-animated with very little autonomous

behaviour (state-based motion blending). This lacking ability hampers the man-

ner by which the game characters interact with game objects. Physics-based and

procedural grasping like in Pollard and Zordan (2005) is a step towards better

interaction. Grasp psychology defines a set of rules that humans follow subcon-

sciously. The end animation of grasping can be created using a wide variety of

techniques like inverse kinematics, forward kinematics, PD controllers or biome-

chanical muscles. The important point to note is whether the methods are viable

within the simulation capabilities of a real-time physics engine. Grasping objects

without slippage require the application of opposing torques on the object by the

fingers Zatsiorsky et al. (2002b). Control mechanisms borrowing principles from

neuroscience adapt to environmental perturbations and perform complex coordi-

nation. Such neural models can be used to develop grasping systems with torque

control. The methods proposed in this thesis are generic in nature and are suitable

for a wide spectrum of character animation including full-body animation.

Research done in fields like physics-based animation, musculoskeletal coor-

dination and neural dynamics is extensive, as is evident in the literature examined.

A large amount of progress has been made in biomechanics and computer graph-

ics with a tighter interaction between the two fields. It is evident that better and
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more unified models with advanced control systems will make way into production

pipelines and real-time applications and into completely different real-world fields

like robotics. It is only a matter of time.
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3
HAND ANATOMY

3.1 Introduction

The human body is a prime example of a compact and highly advanced organic

machinery. It constitutes an array of sub-systems endowed with efficient back-

ground processing capabilities (like the cardiac and smooth muscle types) that

are required for task completion. For simulating the physiological functions of the

human body that generate motion, myological study is crucial and in addition to

that osteological study is essential to understand the structure of the bones and

joints and how the action of the superficial and deep muscles on them influence

articulated motion. The hand being a complex articulated organ, such a study

is invaluable in replicating the functionality. This chapter provides a brief look

into the anatomical structure of the hand. For detailed anatomical reference, see

(Gray, 2006).

3.2 Hand Bones and Joints

The skeletal framework of the human hand is by far the complex segmented dy-

namic structure (other than the spinal column) in the human body, containing 27

bones (see Figure 3.1). The skeletal structure, in addition to providing rigidity

and form, also aids in providing resistance to external forces during physical ac-

tion. The presence of skeletal joints give rise to the linked structure of the hand.

The movements capable and incapable by the individual segments of the hand,

due to the constraints imposed by the skeletal structure, arises from the shape

and arrangement of the separate bone segments.
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Figure 3.1: Skeletal Structure of the Human Hand. Image courtesy (Goldfinger,
1991)

The bones of the hand are divided into the carpal and metacarpal bones

and the finger bones called as phalanges (Figure 3.1). The phalanges are small,

short and tubular. There are three phalanges for each finger, with the exception

of the thumb, which has two. The carpus is a collection of eight bones, which are

short, spongy and arranged in two rows having four bones each. The proximal,

which is the nearest to the radius and the ulna bones of the forearm (Figure 3.1),

consists of the following bone segments, which are named from the thumb: the

scaphoid bone, the lunate bone, the triquetral (triangular) bone and the pisiform

bone. The first three of the above aid in the articulation of the hand at the radius

bone by forming an ellipsoid convex surface with the forearm (Prives et al., 1989).

The pisiform bone on the other hand articulates only in conjunction with the

triqueral and is a sesamoid bone 1. Sesamoid bones are recurring bones in the

1A sesamoid bone is a bone, which is embedded within a tendon, and is commonly found at
skeletal joints. The primary purpose of the sesamoid bone is to displace the tendon from the
centre of the joint in order to increase the moment arm of the joint (Gray, 2006).
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metacarpophalangeal and interphalangeal joints of the thumb and less so with the

other finger joints The distal, farthest from the radius and ulna, consists of the

trapezium otherwise known as the larger multangular bone, the trapezoid (smaller

multangular bone), the capitate bone and the hamate bone (Prives et al., 1989).

The bones are shaped in a manner that helps in articulation with the neighbouring

bone.

Figure 3.2: The ligaments binding the metacarpal and phalanges, Image courtesy
(Gray, 2006).

Joints form the connection between bone segments to help in articulation

between the linked segments. The ligaments, in the skeleton of the hand, hold

the carpus, metacarpus and phalanges together (see Figure 3.2). Joints, in the

simplest terms are a combination of the ligament binding and the concave and

convex surfaces of the participating bones. The manner in which the connection

surfaces are constructed is of extreme importance to the mobility of the joint.

The wrist, with its eight carpal bones has a complex networking arrange-

ment of ligaments (Figure 3.3) due to its fragmented structure. A condyloid joint

is a type of synovial joint in which a ball-like articular surface is placed within a

concave or elliptical cavity, allowing movement in two planes. This type of joint

allows for movements like flexion, extension, adduction and abduction. There are

various types of synovial joints often classified depending on the type of move-

ment allowed by them. Except for the pivot and ball-and-socket joint, all the

other joint types are present in the human hand (Napier and Tuttle, 1993). The

phalanges articulate with each other using hinge joints (having a single axis of

movement). They articulate with the metacarpals using a bi-axial joint. Adjacent
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Figure 3.3: Complex ligament network on the wrist Left, Anterior or palmar view
Right, Posterior or dorsal view. Image courtesy (Gray, 2006).

carpal bones articulate using the arthrodial joint or plane joint, due to sliding

action. The thumb metacarpal articulates with the trapezium using the saddle

joint, which combines the properties of a bi-axial joint and a ball-and-socket joint

(Napier and Tuttle, 1993). This joint is crucial for the opposability of the thumb.

The wrist-joint proper is a condyloid joint (Gray, 2006). All movements with the

exception of rotation are possible. A limited amount of ulnar flexion (adduction)

and radial flexion (abduction) is also allowed. Rotational effect is made possible

by the pronation and supination of the radius on the ulna (Gray, 2006). Cir-

cumduction is achieved through the consecutive actions of adduction, extension,

abduction and flexion (Gray, 2006). For the mid-carpal joint, the main move-

ments are flexion, extension and a low degree of rotation (Gray, 2006). Rotation

is made possible with the head of the capitate rotating around a central vertical

axis through it along with a small gliding movement laterally and medially. The

greater and lesser multangulars on the radial side and the hamate on the ulnar

side slide forward and backward on the scaphoid and the triangular creating flex-

ion and extension (Gray, 2006). The metacarpophalangeal joints are made of one

volar and two collateral ligaments (see Figure 3.2). The joint allows for bi-axial

movement and hence are condyloid joints. The movements possible are flexion,

extension, abduction, adduction and circumduction. Adduction and abduction

are limited and circumduction is executed through a combination of adduction,

flexion, abduction and extension.
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3.3 Hand Muscles and Tendons

Combined movements of joints allow for various trajectories of the limb. This

is made possible because long muscles cross over multiple joints and create an-

tagonistic behaviour. The movements of the fingers are multifarious. They can

be flexed and extended at the metacarpo-phalangeal, inter and distal phalangeal

joints. They can be abducted and adducted and combined with the flexion and

extension, a certain degree of circumduction is also possible. The movements away

from the middle finger are called as abduction and movements towards the middle

finger are termed as adduction and circumduction is a rotational movement (Gray,

2006). Circumduction is very important in enabling opposability.

The human hand has most of its muscles situated externally on the forearm

(with the exception of interosseius and lumbricalis) and hence are called as ex-

trinsic muscles. The forearm muscles are divided into the volar and dorsal group

(Gray, 2006). The flexors and extensors are mostly classified depending on the

type of action. There are flexor and extensor muscles for the fingers as well as the

wrist. In addition, there are pronators and supinators that move the radius bone

of the arm. These muscles are separated based on the position into two groups,

namely, the anterior group consisting of flexors and pronators and the posterior

group consisting of extensors and supinators (Prives et al., 1989). Flexion and

extension is made possible by muscles with proximal attachment near the elbow

and also with the help of small muscles within the metacarpophalanges named as

the interroseius and lumbricalis (Napier and Tuttle, 1993).

3.3.1 Hand Muscles and Respective Actions

As stated earlier, most of the muscles instrumental in the complex flexing and

extension of the fingers are situated in the fore arm. The action of the mus-

cles is distributed to the fingers through tendons. Below given are the various

muscle/tendon groups associated with the hand/finger actions. Note that not all

anatomical sub-structures are given as the primary purpose is to give the reader

a general idea of tendon layout and related action. In addition to maintaining

brevity, providing information on every tendon on each finger would be repetitive

due to structural similarity.

Flexor Digitorum Profundus: This is the largest of the forearm mus-

cles with the largest contribution of volume to the flexor muscle mass (see Fig-

ure 3.4). It helps in powerfully flexing the distal phalanges of four fingers (exclud-

ing thumb) and by continued action, flexes the other phalanges and also the wrist

(Goldfinger, 1991).
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Figure 3.4: The Flexor Digitorum Profundus muscle and branching tendons
that flex the distal phalanges of the four fingers of the hand. Image courtesy
(Goldfinger, 1991).

Flexor Pollicis Longus : This muscle resides deep in the forearm and

helps in the flexion of the distal phalanx of the thumb (see Figure 3.5).

Flexor Pollicis Brevis : One of the two muscles of the thumb that reside

in the hand collectively called the thenar eminence (see Figure 3.6). This muscle

flexes the proximal phalanx of the thumb and assists in the opposition of the thumb

with the other fingers and also in the medial rotation of the thumb metacarpal at

the carpometacarpal joint (Goldfinger, 1991).

Extensor Digitorum : The extensor digitorum and its tendons extends

all the joints of the fingers excluding the thumb (see Figure 3.7). By continued

action, it extends the wrist.

Extensor Pollicis Brevis and Abductor Pollicis Longus: The Ex-

tensor Pollicis Brevis muscle extends the proximal phalanx of the thumb and

through continued action extends the thumb metacarpal bone (see Figure 3.8).

The Abductor Pollicis Longus on the other hand abducts and extends the metacarpal

of the thumb (see Figure 3.8). It also flexes the hand at the wrist.
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Figure 3.5: The Flexor Pollicis Longus muscle flexes the distal phalanx of the
thumb. Image courtesy (Goldfinger, 1991).

Extensor Pollicis Longus : This muscle extends the distal phalanx and

through continued action extends its proximal phalanx and metacarpal bone (see

Figure 3.9).

Palmar and Dorsal Interossei Muscles:

The muscles that handle abduction and adduction of the three fingers of

the hand are the palmar and dorsal interossei. The palmar interosseous muscles

adduct the fingers towards the middle finger while the dorsal interosseous muscles

abduct the fingers away from the middle finger.

The thumb has a separate set of muscles that performs the abduction and

adduction.

Adductor Pollicis : This muscle adducts and flexes the thumb at the

carpometacarpal joint (see Figure 3.10).

63



Figure 3.6: The Flexor Pollicis Brevis flexes the proximal phalanx of the thumb.
Image courtesy (Goldfinger, 1991).

Figure 3.7: The Extensor Digitorum extends all the fingers with the exception of
the thumb. Image courtesy (Goldfinger, 1991).
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Figure 3.8: The Abductor Pollicis Longus (AbPL) and the Extensor Pollicis Brevis
(EPB) of the thumb. The respective origin (O) and insertion (I) points on the
bones are also shown. Image courtesy (Goldfinger, 1991).

3.4 Summary

The human body as it exists today is the result of many million years of evolution.

The imitation or repair of the versatility and endurance of that evolved product

resulted in the exhaustive study of the inner mechanism of the same and that is

anatomy. Artists study anatomy to bring realism to poses by way of incorporating

the body deformations and torque effects in the character sculpture or painting.

Animators study anatomy to get a better estimate of the constraints of the motion

possible with the given anatomy and how the physics of the constraints affect the

character motion. Irrespective of the tools used, theoretical knowledge of anatomy

helps in developing practical models (animation, robots, prosthetics) that are close

to the biological counterparts in both form and function. Each muscle when

taken individually and its layout (origin and insertion) studied provides a clear

picture of the movement possible with that muscle under contraction. Hence,

synergestic activity of muscles explores the complex motions produced due to the
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Figure 3.9: The Extensor Pollicis Longus extends the distal phalanx, proximal
phalanx and metacarpal bone. Image courtesy (Goldfinger, 1991).

Figure 3.10: The Adductor Pollicis adducts the thumb. Image courtesy (Goldfin-
ger, 1991).
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contraction of individual muscles simultaneously. A detailed structural analysis

and anatomical description is outside the purpose of this thesis, as such a study

would provide the content for an entire book in itself. The purpose of this chapter

is to clarify to the reader how the various interactions of bones, ligaments, tendons

and muscles play a role in creating the wide variety of movements capable by the

human hand, though the anatomical principles remain the same for any other part

of the human body.
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4
SYSTEM DESIGN

4.1 Introduction

Recreating biological motion using dynamics is non-trivial. Generating muscle

excitation patterns or activation patterns for specific recorded motions is com-

putationally intensive and falls under the category of forward dynamic solutions.

Though there are dynamic optimization methods that perform this particular

task, where normally the objective is to minimize the global error between the

simulation output and recorded data, most of them are computationally intensive

involving complex differential calculations (Thelen et al., 2003).

The key problem is control and coordination that would keep the motion

within realistic limits. In view of this, the two interdependent aims of this research

are as follows:

• To create the physical medium by which motion could be generated on dy-

namic rigid body linkages.

• To create the framework that would solve the coordination problem and

achieve the motion using the physical medium.

The two aims constitute a multi-part system and the proper working of a multi-

part system, with interdependent modules, depends on a viable architecture. The

multi-part system combines three different technologies to produce generalised

physical motion - controllers based on evolutionary neural networks, physically-

based muscle actuators that actually generate the motion and motion capture

training data to teach the controller. The muscle locator-based linear piece-wise
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tendon unit applies forces according to the layout of the tendon unit on the rigid

body skeleton. Thus the proposed animation system consists of three main frame-

works, namely, the simulation framework, the AI framework and the modelling

and user interface framework (see Figure 4.1).

Figure 4.1: Flow diagram of the system

Development in terms of computer code was done in three stages, namely,

Maya related plug-in (custom locator nodes, contexts) development and related

MEL scripts for user interfaces and data export functions, PhysX and OpenGL

development for the simulation application (constraint specification, muscle gen-

eration) and rendering (meshes and rigid bodies) and lastly, the motor control

system (an evolutionary neural network using genetic algorithms as a learning

model) that controls the muscle activations (see Figure 4.18).

The contribution in this chapter is two fold, which can be termed as follows:

• Theoretical: A simplified real-time friendly representation of a thin muscle

structure is formulated that models contact points and force transfer, which

also integrates an interface for the artist to specify muscle vectors.

• Developmental: A practical framework that connects together various proven

technologies to create a working proof-of-concept.

This chapter examines each of these frameworks and attempts to explain the

information flow between them.

4.2 Physics Engines: A Simulation Platform

Physics is a vast subject with a vast array of sub-fields. Physics engines are

normally associated with games. And especially for that reason, it is built for

efficiency and fast simulation. Physics simulations in games occupied a narrow
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niche, before the concept of physics engines came into the picture. Simulations

were hard coded into the game code. Due to increasing complexity of game design,

processing power, game assets and demands in creating complicated effects, game

developers found it necessary to create generic code modules that would simulate

Newtonian laws in general rather than specific effects of physical laws on game

objects. This reusable object oriented code base is collectively called as a physics

engine.

Most biomechanical and anatomical simulations use customised code bases

that are specific to the simulation job at hand (Sueda et al., 2008) (Weinstein et al.,

2008). Moreover, these types of scientific simulations, due to the high amount of

complex mathematical calculations, are not real-time in the actual sense of the

word. Many of them can take anywhere from a few seconds to a few hours to

simulate the phenomenon. Hence the secondary goal of this research is to use a

fast, efficient and general-purpose game physics engine to create biomechanical

simulations and to explore the challenges involved in fine-tuning the engine to the

needs of the simulation.

4.2.1 Broad classification of Physics Engines

Physics engines can be broadly classified based on the type of objects being sim-

ulated, the method of contact processing and the method of contact resolution

(Millington, 2007).

The first classification deals with full rigid body simulation and a system

called the mass-aggregate engine (Millington, 2007). Mass-aggregate engines on

the other hand, discretize the body into particle masses. A rigid body engine on the

other hand takes into account the rotation of bodies (angular velocity of bodies)

with the help of a mathematical construct called the inertia tensor, allowing an

accurate simulation of how solid bodies react to external forces (Millington, 2007).

There is also a sub-class of physical simulations called soft body simulation, which

is distinct in its own right. Soft body simulations deals with the simulation of

non-rigid objects like gelatinous masses, fluids, goo like substances etc.

The second classification, deals with contact processing. Contacts form the

basic foundation of a physics engine. Contacts are the way forces propagate during

various interactions. Contact detection, contact generation and contact processing

together form the most exhaustive part of a physics engine. The simplest method

is an “iterative approach” (Millington, 2007, p. 6). It is fast and cheap with

regards to the processor. Commercial quality physics engines utilize a different

approach by processing all contacts simultaneously or by batch processing the

contacts (Millington, 2007). This method is called a “Jacobian-based” approach,
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which calculates the exact interaction between different contacts and calculates

a complete set of corrections to all the contacts in a single iteration (Millington,

2007, p. 6). The mathematics involved is often tedious and processor intensive.

There are numerous occasions when the system cannot resolve the contacts using

the primary collision resolving code and additional code is required to correct

the ensuing errors. Another option often used in simulation software is called

a “reduced coordinate approach”. An entirely new set of motion equations are

derived based on which coordinate frame the changes are required. This is a non

real-time technique and is seldom used in games where speed is of the essence.

The third classification is based on how the contacts are actually resolved.

In the real world, forces are at play with every passing moment of time. And

a majority of these forces go unobserved. Forces acting on static objects are a

prime example. A glass resting on a table has continuous force acting on it by the

table against the force of the gravity, just as the ground is exerting a continuous

force on the table opposite to the force of gravity. Simpler physics engines use

a variation of this force to keep objects from interpenetrating. These physics

engines use force acting for minute fractions of time to keep objects apart. These

forces are called “impulses” and hence the physics engines using this technique

are called impulse-based engines. There are force-based engines also. Force-based

engines are those that use a Jacobian approach or reduced coordinate approach

for contact resolution (Millington, 2007, p. 7). These tend to be more complex

than the former type of engines.

4.2.2 The Simulation Loop

Physics deals with quantities that vary with time, like velocities and accelera-

tions. And for that reason, physical simulation often deals with the solving of

differential equations. On a computer, differential equations are solved using nu-

merical methods. From a computer code point of view, the simulation loop is the

most important part of the physics engine. It is the per-frame processing function

that performs the simulation calculations. The simulation loop is the point in

the code where numerical solvers are called. There are many numerical solvers at

disposal. A comprehensive examination of all the methods is beyond the scope

of this thesis and also falls outside the goals of this research. But three methods

deserve a mention for the popularity and usage in game physics, namely, Eulers

Method, Runge-Kutta Methods and a method that gained fast popularity in the

game development arena called Verlet Integration. Refer to Appendix A for a

more descriptive piece on these numerical methods.
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4.2.3 Choosing the right Physics Engine

Since this research relied heavily on a robust and stable physics engine for imple-

mentation of the various concepts described, choosing the correct engine became

a highly important task. The following options were available during the initial

stages of the research:

(1) Create a custom physics engine

(2) Opt for an open source engine like the Open Dynamics Engine

(3) Opt for commercial level engines like Havok or PhysX from NVIDIA (previ-

ously from Ageia)

Serious consideration was given to the first option and the task of creating

a custom physics engine was undertaken in the initial stages of the research. It

was essential to understand how a physics engine worked in order to expand on

it and suit it for the purposes of this research. Study was undertaken to develop

a physics engine, which if proved robust, could be used for the simulation tasks

necessary. The idea was to create a generic physics engine simulating the basic

motion laws and constraints (as that was a secondary goal and instrument of this

research) rather than create a specific biomechanical simulator. Care was taken to

adhere the design to object oriented programming principles. The exercise proved

to be beneficial in unravelling the functional complexities of a physics engine and

helped in working around technical roadblocks in the later stages of the research.

It also proved instrumental in understanding the complexity and effort required

to design a generic physics simulation engine.

The developed physics engine uses Eulers method for numerical integration

and supports cuboid, sphere and plane rigid body primitives. The engine used

sequential contact resolution. The engine had stability issues with resting contact

and was susceptible to vibrations and so objects at rest vibrated. The physics

engine developed henceforth was the simplest of its kind and was far from being

suitable for a biomechanical simulator.

The second option was to use an open source engine like the Open Dynamics

Engine (ODE). ODE was developed by Russell Smith as part of his doctorate

research and later made open source (Smith, 1998b). ODE has evolved into a

bigger project since then with developers adding features over the years. The

biggest attraction was that being released under the open source license, the source

code was available for modification. ODE is used by many developers/hobbyists

in many projects. ODE is stable and favours speed over accuracy. It is also not

multi-threaded (Smith, 1998b).
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The third option of using a commercial level physics engine proved to be

attractive due to several reasons. They have a proven track record in large and

successful game projects. Havok is extensively used by a lot of game companies

(Havok, 2012). PhysX is also another physics simulation engine that has seen in-

credible successful in commercial games (NVidia, 2012). At the time of initiating

this research, PhysX was the only commercial quality physics engine freely avail-

able. PhysX was a product bought by Ageia Technologies from Novodex and was

popularly known as Ageia PhysX (Ageia, 2006). Since then, Nvidia acquired Ageia

and PhysX is now released under the Nvidia banner. Ageia was the only company

to bring forth a microprocessor called a Physics Processing Unit (PPU), which was

dedicated to performing physics calculations directly on hardware as required by

the PhysX engine (Ageia, 2006). Currently the PPU support is discontinued and

hardware physics acceleration is performed directly on the Graphics Processing

Unit (GPU). The non-commercial version of PhysX is available for hobbyists and

academic research and is free of cost. Havok was available only to game devel-

oping companies. After Intel later acquired Havok a free non-commercial version

was released for academic and hobbyist purposes (Havok, 2011). In comparing

the PhysX and Havok engines, PhysX simulations were far more accurate and

stable for the task undertaken, with a comprehensive documentation and sample

code. Also the API structuring was clear to understand and better organized. An

important aspect of using a commercial level physics engine was conforming to

standards allowing easier compatibility with legacy game engine code. Thus the

PhysX physics engine was chosen for implementing the ideas in this research.

4.2.4 The Physical Hand Model

The human hand is a highly articulated model having 27 degrees of freedom (Lin

et al., 2000). To emulate the motion of the hand, in a physically realistic manner,

it is necessary to create a physical model, which can function very close to the

biological counterpart.

The 3D model (see Figure 4.14) is polygon-based with every single bone

segment modelled as a polygonal mesh. It can be rigid skinned or parented to an

underlying joint skeleton to be animated using forward or inverse kinematics, if

the need arises. The model is the skeletal base for the muscle path laying and

for constraint (joint) specification between the bone segments that define a linked

structure, specifically, the phalanges and the metacarpals.

As stated in Section 4.2.1, collision detection is by far the most complicated

part of physics engine. This part of the physics engine provides maximum load

on the processor. And for this reason, real-time game engines provide basic prim-
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Figure 4.2: PhysX dynamic model of the hand. Model imported from Maya.

itives like cuboids, spheres, cylinders, capsules as collision objects. These object

primitives due to fixed topological definition have pre-calculated inertia tensors

and due to simplified geometry allows for linear algebraic intersection tests like

the Separation Axis Theorem. There are methods to calculate the inertia tensors

of arbitrary meshes. One such algorithm is detailed in Appendix B along with

inertia tensors of standard primitives. Arbitrary meshes are therefore simplified

to perform collision tests. The most common mechanism used in real-time physics

engines for achieving this is through the use of convex hulls. There are various

algorithms to calculate the convex hull of a point cloud. The Quickhull algorithm

and Andrews algorithms are two such algorithms (Barber et al., 1996)(Ericson,

2005). Andrews algorithm is a 2D algorithm while the Quickhull algorithm is

extended to 3D (Ericson, 2005). PhysX creates convex hulls from a given point

cloud. If the point cloud is the vertex array of a polygonal mesh, then it calculates

a convex hull for the polygonal mesh. The object exporter from Maya exports the

vertices of the bone meshes (see Appendix C). For this purpose, a utility function

created specifically for this project performs the convex hull generation operation,

which reads the object file and uses the vertex array to generate convex hulls (see

Figure 4.3) for the corresponding bone surface meshes.

4.2.4.1 Types of Joints

Game physics engines like Havok and Nvidia PhysX support a wide variety of joint

types, which are highly suitable for modelling a physically-based hand avatar with

the required DOFs. The PhysX engine employs joints of various types to create

articulated rigid bodies (some of which is listed in Table 4.2). The skeletal human

hand consists of twenty-seven elements. Fourteen of them are phalanges or finger

bones, five are metacarpal or palm bones, and eight are carpals or wrist bones. The
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Figure 4.3: The convex hull rigid body overlay of the mesh model. The red cube is
another PhysX rigid body. The cylinder is another convex hull rigid body placed
for scale reference. The convex hull rigid bodies are the collision objects.

Table 4.1: Anatomical joints in the hand and associated DoFs

Degrees of
Freedom
(DoFs)

Joint Type Anatomical Features us-
ing the Joint Type

One Hinge/Pivot Joints Phalanges articulating with
each other

Two Bi-axial/Condyloid
joints

Phalanges acrticulating
with metacarpals

Multiple Poly-axial joints, sad-
dle joints

Thumb metacarpal with
carpal bone (wrist)

One Plane joints Carpal bones (wrist)

articulation mechanism for all these bones is a synovial joint (Napier and Tuttle,

1993, p. 45-46). The synovial joint, which has mobility as its primary feature, is

the most common joint in the body. There are a total of 15 joints (including the

wrist) in each hand. The types of synovial joints are classified according to the

type of movement provided (see Table 4.1) (Napier and Tuttle, 1993).

By comparing the anatomical joints with the PhysX joints available, it

is possible to create a mapping between the two so as to functionally mirror

the joints in the PhysX-based hand model (see Table 4.2). This user interface

options for joint types is based on this mapping (see Appendix D). The joints are

automatically created (based on export data from Maya) between the rigid bodies

(see Figure 4.4).

The 6 DOF joint is an advanced joint model capable of emulating the

behaviours of all the other standard PhysX joints (revolute, spherical and fixed

joints). It is used in creating realistic rag dolls for games. The key to setting vary-
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Figure 4.4: The blue cubes depict the joints between the rigid body bones in the
hand.

Table 4.2: Joint Mapping

Synovial
Joints

NVIDIA PhysX joints Corresponding PhysX
class

Hinge joint Revolute joint NxRevoluteJoint
Bi-axial
joint

Spherical joint NxSphericalJoint

Saddle
joint

6 DoF joint NxD6Joint

ing behaviours is specifying limits for the DoFs. This is made possible through

the NxD6JointDesc structure and its member variables (Ageia, 2006). The rev-

olute and spherical joints also implements limit structures to specify angle limits

to restrict movements. This is explored in the next section.

4.2.4.2 PhysX Joint Limits

Being part of the real world and forming a major anatomical feature, the human

hand is bound to certain constraints, which prevent movements that could be

perceived as unnatural. Lin et al. (2000) states the importance of constraint

modelling, as it helps in the reduction of search spaces (which in the case of

hand animation is large considering the large number of the degrees of freedom)

and hence crucial in creating realistic animation. At the same time, Lin et al.

(2000) states that: “Even though constraints help reduce the size of the search

space, too many or too complicated constraints would also add to computational

complexity. Which constraints to adopt becomes an important issue”. Lin et al.

(2000) divides the constraints into 3 types, namely, Type I definition quote :

“limits of finger motions as a result of hand anatomy which is usually referred to
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as static constraints”, Type II definition quote: “limits imposed on joints during

motion, which is usually referred to as dynamic constraints in previous work” and

Type III definition quote: “constraints which are applied in performing natural

motion, which has not yet been explored”. Practically, it is Type I and Type II

constraints that are important from an implementation point-of-view.

Figure 4.5: Revolute joint limit schematic (Ageia, 2006)

PhysX imposes joint limits through the use of data structures. Figure 4.5

shows the visualisation of the limits of the revolute joint. In Figure 4.5, the

white region is the swing limit of the joint. As mentioned in Lin et al. (2000),

imposing constraints would reduce the search space of available motion. Using the

constraint specifying structures available in the PhysX engine, the physical hand

model can be configured to behave like a biological hand. The angular constraints

given below are reproduced from Lin et al. (2000).

0◦ ≤ θMCP ≤ 90◦ (4.1)

0◦ ≤ θPIP ≤ 110◦ (4.2)

0◦ ≤ θDIP ≤ 90◦ (4.3)

−15◦ ≤ θMCP µ ≤ 15◦ (4.4)

θMCP µ = 0 (4.5)

θTM µ = 0 (4.6)

θDIP =
2

3
θPIP (4.7)
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θ denotes the angle of the various joints on the phalanges and metacarpals

and the subscripts MCP, PIP, DIP, µ and TM stands for the metacarpo pha-

langeal joint, the proximal inter-phalangeal joint, the distal inter-phalangeal joint,

the abduction/adduction angle and the trapezio metacarpal joint respectively.

Equations 4.2 and 4.3 are the abduction/adduction states for the metacarpo pha-

langeal joint of the middle finger and the trapezio metacarpal joint. Setting these

constraints reduces the DoFs. Equation 4.4 is a Type II constraint imposed on

the DIP joint that relates the angle of the DIP to the angle of the PIP, because

in order for the DIP joint to bend, the PIP joint must also bend.

4.3 Muscle actuators

Thin muscle structures in the human body help in the transmission of forces to

that part of the body where it is impractical for the placement of the full volume

of skeletal muscle due to space constraints. Tendons are prime examples of thin

muscle structures.

A large part of the motion space, specifically, flexion and extension, of

the digits of the hands is attributed to the tendons of the digitorum superficialis

and digitorum profundus (Prives et al., 1989). Muscles of the forearm, namely,

flexor digitorum superficialis and flexor digitorum profundus, transmit contraction

forces along their tendons enabling the flexion and extension of the digits of the

hand. Tendons are non-rigid, non-elastic and are highly flexible allowing routing

over bones and joints and can transmit muscle forces even though there is no

direct line of action between the origin and insertion points. Tendon routing is an

important factor in the functioning of human hands (Sueda et al., 2008).

4.3.1 Nature of the Problem

In the context of real-time interaction in games, performance is an absolute re-

quirement. Herein lies a two fold problem with respect to physically-based ani-

mation in games. They are:

• Simulation complexity - Biomechanical simulation dealing with muscles is

mathematically complex and extremely processor intensive. Controlling the

movement of rigid linkages through muscles requires the calculation of the

motion state equations using Newton’s Laws of Motion. The motion equa-

tions are dependent on the number of muscles and on the forces produced

by the muscles in aggregate (Thelen et al., 2003). Simulations like in Sueda

et al. (2008), and Lee and Terzopoulos (2006) take anywhere from a few
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seconds to minutes to solve the complex calculations involved. These long

simulation times make it unusable for games which normally run between

30-60 frames per second.

• Reliance on physics packages - Middleware physics engines are widely

used in current games for a wide range of physical effects, but extremely

rarely used in character animation other than ragdolls. This is possibly due

to the requirement of physically-based character animation for a fine level

force control of rigid body linkages, which generic physics engines do not

provide.

Thus a solution that allows for easy application of forces at multiple points

on a linkage is required.

The physics engine encapsulates the rigid bodies and the force applicators.

The inherent problem arising in creating an entirely new dynamic primitive is that

it would be difficult or near impossible to achieve it without core modification of

the engine. With the use of a commercially available physics engine, this becomes

impractical, as a source level access is granted only to commercially licensed de-

velopers. An alternative is to create the required primitive using the higher-level

functionalities of the physics engine. It is imperative to look into previously done

research on dynamic primitives and anatomical knowledge of muscles in order to

create an abstraction that would suit the needs of this implementation.

4.3.2 A Comparison Study of Actuators

Linear force actuators or line of action-based actuators work perfectly on a concave

arrangement of rigid links. Concavity in this context means that there has to be

a “line of sight” between the insertion and origin points of the muscle on the rigid

body. Any break in the line of action due to the presence of joints or other links

disrupts the functioning of these types of actuators (see Figure 4.6).

With implicit actuators (Chapter 2, Section 2.2.1), it is possible to generate

the kind of motion required as seen in Figure 4.7. The joint connecting the links

applies the force. Proportional-Derivative (PD) controllers for dynamic motion

have been the subject of various research papers over the years (Van de Panne

et al., 1994) (Fattal and Lischinski, 2006) (Van de Panne and Fiume, 1993) (We-

instein et al., 2008). PD control is a feedback system used in physical animation,

where feedback is used to achieve the target joint angle. But from a force genera-

tion perspective this type of joint-based torque generation has no basis in anatomy

and precisely for that reason lacks the kind of flexibility seen in the muscles and
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Figure 4.6: : In the top image, the directional line (C) joining the rigid links
(A and B) is the line of action force actuator. The arrow shows the direction in
which force acts, bringing it closer to the horizontal link on the right. The dot
between the links denotes the joint constraint with a single degree of freedom. In
the bottom image, the rigid link A has to move away from the horizontal link B,
but the line of action actuator is incapable of producing the force to achieve the
task (unless its property deviates from anatomical functioning).

tendon systems of the human body. Also PD control normally works best with a

single degree of freedom (DOF) (Weinstein et al., 2008).

But while using explicit actuators (Chapter 2, Section 2.2.2), this creates

difficulties. An explicit actuator requires a dynamic muscle vector capable of

wrapping around joints, so that force application does not require line of action

between insertion and origin points of the muscle (see Figure 4.8).

In the case of skeletal muscles, mechanical impedance is defined as the

resistance to mechanical motion, due to antagonistic muscle coactivation (Hogan,

1984). This impedance is controlled by the brain (Hogan, 1984). Torsional stiffness

required to counteract gravitational destabilization can be attributed to feedback
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Figure 4.7: The angular force in the given direction D by the joint provides the
required movement for the rigid link A to move in the direction C.

Figure 4.8: An explicit actuator, which wraps around the joint bringing it closer
to real-world anatomical mechanics. The pole (in red) features act as via points.
The red arrows show the direction in which muscle force acts. This is an example
of an extensor muscle.

systems in the body or an effect of the coactivation of antagonistic muscles or

a combination of both. According to Hogan (1984) there are marked differences

in their limitations and this difference would prefer one method to the other.

Feedback control suffers from neural transmission delays reducing the gain and

lowering stiffness while coactivation suffers from consumption of energy as the

opposing muscles expend energy without doing mechanical work. In spite of that,

coactivation is not impeded by neural transmission delays Hogan (1984). Hogan

(1984) uses dynamic optimisation to predict the neural activations to modulate

the impedance via coactivation. A key limitation of motion capture is that the

81



captured motion fails to capture the underlying physical processes that generates

the motion. Kry and Pai (2006) tries to solve this limitation and preserving the

essence of motion by capturing the compliance of the joints. According to Kry

and Pai (2006) compliant joints are essential to model the behaviour of tendons

muscles and activation. In the human musculo-skeletal system the compliance is a

direct effect of contractile elements of muscle creating spring-like properties. Kry

and Pai (2006) models compliance using a set of torsion springs to produce joint

torques.

Figure 4.9: Schematic of the combinatorial muscle system in the physics engine.

Compliance can be modelled in the physics engine through the use of joint

springs. The model in this research uses a combinatorial approach to create the

muscle system (see Figure 4.9).

4.3.3 Use of Muscle layouts

The muscles and tendon layout of the hand is very complex. Simulating every

muscle fibre would be very heavy on the system resources, particularly for perfor-

mances required in games. Hence it is logical to simplify the layout for physical or

virtual functional emulation. Through an examination of the anatomy and muscle

layout in a real hand, it is possible to develop a simplified representation of the

musculotendon mechanics. Robotics literature also provides functional simplifica-

tions that work very well (Pollard and Gilbert, 2002). The origin and insertion

points of the muscle models are points. In real muscles the origins are patches (see

Figure 4.10).

So in the model used, the muscle volume is represented using a single strand

rather than a set of strands. Using multiple strands would help in getting more
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Figure 4.10: The origin (O) and the insertion (I) of the Abductor Indicis that
abducts the index finger away from the middle finger. The origin is a set of
two patches on the metacarpals of the thumb and index fingers. Image courtesy
(Goldfinger, 1991).

accurate muscle behaviour (see Figure 4.11) and also shows a closer approximation

of the muscle volume . Internally during muscle contraction, the muscle fibres

contract in different amounts at different locations within the muscle volume.

Therefore, representing the muscle volume using multiple strands would simulate

differential contraction within the strand group.

As seen in Figure 3.4 in Chapter 3, there are muscles that branch into mul-

tiple tendons. One way to achieve this effect is to use a dynamic weighting factor

(see Figure 4.12). The weighting factor depends on the angle between the primary

muscle fibre and the branching fibres that can be described mathematically,

W =

(
1

Ang

)
Sf (4.8)

af = Wao (4.9)

where W is the weighting factor, Ang is the angle between the primary muscle

fibre and the branching fibres (angle of deviation) and Sf is a scaling factor. The

final activation, af is a product of the weighting factor and the original activation,

ao. ao is the activation for the entire muscle which is distributed among the muscle

fibres based on the weighting factors.

The branching muscle model is not implemented in the current system.
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Figure 4.11: Simplified muscle model of the Abductor Indicis, represented by lines
(blue) and intermediate origin points/locators (green) between the Origin (O) and
Insertion (I). Image from (Goldfinger, 1991) modified by the author.

Figure 4.12: A branched muscle model with four branching fibres and associated
dynamic weights w1, w2, w3, w4 and angles of deviation, a1, a1, a3, a4
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4.3.4 Force Scaling Muscle Model

Pai and Sueda, in Sueda et al. (2008), have described a simulation technique

they named as strands. Strands are a form of spline curves that are dynamic

and responsive to collision and other external forces. Musculo-tendon dynamics is

simulated using strands by incorporating the control points of the strand (being

spline curve) into the motion equations. The system in Sueda et al. (2008) uses an

algorithmic controller. Though accurate, the results take a few minutes to compute

and every new target motion requires computation of activation levels for the

strands. In Sueda et al. (2008), the simulator is implemented in Java. Additionally,

even though the algorithmic controller is portable to any end simulation engine,

the dynamic strand primitive is not easily suitable for conversion to physics engine

formats, which means games cannot take advantage of the functionality. In order

to achieve game friendliness, a kinematic tendon is created.

Tendons, enclosed in the sheaths, are in constant contact with the under-

lying bones. And the motion of the rigid linkage is governed by these contact

interactions. The algorithm for a physics-engine compliant thin structure muscle

actuator is based on the above fact. The feature set for the model are as follows:

• The muscle should behave in a manner befitting anatomical muscles. Anatom-

ical muscles produce forces only upon contraction.

• It should have a suitable representation of muscle activation levels for easy

activation.

• Robust to function within a real-time simulation environment irrepsective

of the number of muscles.

Figure 4.13: Muscle thin structure schematic showing specific contact points, force
vectors and components. The grey boxes denote the muscle locators placed on the
rigid body bone surface. The muscle locators define the tendon path along which
the forces act.
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The force application points and direction are calculated from the attach-

ment points, surface normals and the order and arrangement of the attachment

points (see Figure 4.13). The path of the tendon structure is defined by the most

important component of the muscle system, the muscle locator.

During collision between two objects, forces act on the two objects in two

directions: force along the collision normal and force along the opposite direction

of approach. The tendons in the human body constantly interact with the bones

through contact. And hence there are forces along the normal of contact and along

the tendon towards the origin. The model constructed in this project adheres to

this principle and applies normal forces at all the muscle locator positions and a

tangential force from a muscle locator to the preceding locator all the way to the

origin.

Standard vector mathematics decomposes a vector into the normal and

tangential components. In Fig. 4.13, the normal and tangential components are

shown, along with the actual force vectors. Thus, generalising for all the vectors,

V = t̂+ n̂ (4.10)

These components are essential to model the contact forces prevalent at

each muscle locator along the thin structure, on the rigid body linkage.

Deviating from existing controllers that solve the inverse dynamics problem

by calculating the torque around the joints, this implementation accepts the mag-

nitude of force as a user-specified quantity, and the direction of the force vector

is dependent on the layout of the muscle thin structure on the rigid body linkage.

By making force an input quantity, control is not completely abstracted from the

animator.

Each muscle strand is associated with an activation level, a, where 0 ≤ a ≤ 1

A simplified interpretation of the D’Alembert’s Principle states that a set

of forces or torques acting on an object can be replaced by the sum of the same

forces or torques Millington (2007, p. 78, 220). In a physics engine, at every frame

or time step, the forces acting on an object is accumulated and applied to the

object at the end of the frame. Every muscle group has a force associated with

it. This force is modulated using the activation level of each structure, thereby

producing different scaled forces per thin muscle structure. Thus the magnitude

of the force on the rigid linkage is distributed among the involved muscles. The

total force magnitude
∣∣Fm

∣∣ of the muscle group is defined as,

∣∣Fm

∣∣ = a1F + a2F + a3F + a4F + ....anF (4.11)

where F is the user defined scalar magnitude of the force input by the user and

a1, a2, a3...an are the respective activations for each thin muscle structure. Thus,
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using Equation 4.10, we can represent force scaling as

F s = a
∣∣Fm

∣∣ (n̂+ t̂) (4.12)

where F s is the scaled force vector.

In neuroscience, muscle synergy is a well-accepted theory that helps in

solving the redundancy problem in the human motor system (Gazzaniga, 2004).

In order to reduce control signals, the central nervous system groups the muscles

and dynamically reconfigures the set of muscle groups depending on the task, pro-

viding for a wide range of motion behaviours (Gazzaniga, 2004). End-point or

end-effector coordinate representation of a motion plan is performed by approxi-

mating it as force fields corresponding to muscle synergies (Gazzaniga, 2004). The

important fact arising out of this methodology of motor processing, as stated in

(Gazzaniga, 2004), is: “When multiple synergies are induced by a pattern of mo-

tor commands, their net effect is a field of torque vectors: for each configuration

and state of motion of the joints there is one and only one corresponding torque

vector.” The linear muscle vectors generated from the multiple muscle locators

placed on the bone segment act as a linear vector field along which muscle force is

applied. Thus, a set of muscle vectors collectively becomes a force field affecting

the insertion point of the muscles, which is at the end-effector.

Figure 4.14: The skeletal hand model with joint locators, muscle locators (blue)
and the resulting musculo-tendon unit that extends from the distal phalanx of the
forefinger down to the arm bone (yellow). The joint locators are in orange and
blue, between the bones of the phalanges and between the carpal bones at the
wrist. The blue coloured joint locators represent fixed joints with zero DoF and
the orange joint locators represent revolute joints with single DoF.

In Maya, the muscle locators are placed on the bone surface meshes (see

Figure 4.14). So when the locators are exported, the world space position of

the locator is a point on the mesh. But in the PhysX engine, the meshes are
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merely render objects. The actual rigid body is the underlying convex mesh (which

is generated from the surface mesh) and the surface meshes are bound to the

convex rigid bodies via the rigid body transformation matrix (see Figure 4.3).

Convex meshes, otherwise known as convex hulls, are simplified polygonal shells

that encompass the surface mesh, discarding any concavity (see Section 4.2.4).

In the simulation environment, forces are applied directly on the rigid bodies;

therefore it is essential to shift the point of locator attachment to the convex rigid

body hulls of the corresponding bone surface mesh. A computer graphics method

called ray-casting can be used to find the updated position of the locator on the

convex mesh. The ray would need a point of origin and a direction to propagate,

both of which can be calculated easily.

If Mloc is the transformation matrix of the muscle locator, Vy is the y-axis

vector and Fp is the global placement position (footer) of the muscle locator, then

Vy = (0.0, y, 0.0) (4.13)

Hp = MlocVy (4.14)

V dir = Hp − Fp (4.15)

where Hp is the calculated head or tip of the muscle locator. Construct a ray

from normalized V dir and locator placement position, Fp. Since the convex hull is

created from the underlying mesh and it always encloses the mesh, the ray would

need to always radiate towards the exterior of the mesh. Thus,

Pnew = Fp + Prayhit (4.16)

Here Pnew is the offset position of the muscle locator and Prayhit is the ray inter-

section point on the convex hull.

The ray-intersection algorithm is a standard algorithm in geometry. PhysX

provides the functionality to create and shoot rays into a simulation scene and

collect information regarding the point of contact of the ray and any objects that

lie in its path.

The direction and the movement are dependent on the muscle attachment

points, and the arrangement of the thin fibre (see Figure 4.16). Multiple muscles

are entirely possible and the type of movement, in which case, would be governed

by the amount of activation of each muscle and its layout on the rigid body linkage.

The linear piece-wise locator-based muscle system is configurable so that each

segment can have a different activation (if the need arises). Also, by increasing
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Figure 4.15: Due to the offset, the locator (encircled in green) appears to be
floating above the bone surface mesh (shown in wire frame here). The offset
places them on the convex hull (not shown here) that encompasses the mesh. The
remaining two locators are also floating above the bone surface mesh, but the
viewing angle makes it appear otherwise.

Figure 4.16: The exported muscle locators from Maya and the muscle fibre visu-
alization in the PhysX simulation application.

the number of intermediate muscle locators, the muscle would attain a curve like

form very much like the tendons. Functionally, this would mean additional force

application points to produce smoother motion at the expense of simulation speed.

4.4 Neural Control Structures

The human body has an extremely complex neural system, which controls the

many muscles that performs different actions depending on tasks at hand. This

neural system is at a nascent state during human infancy. Neural development is

crucial in all stages of a human life, especially where cognition and motor skills

are concerned. The exact process of neural development is a popular subject of

research. Self-organizing systems form a part of this ongoing research (Camazine,

2003). What is self-organization? According to (Camazine, 2003):
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“Self-organization is a process whereby pattern at the global level

of a system emerges solely from interactions among the lower-level

components of the system. The rules specifying the interactions among

the systems components are executed using only local information,

without reference to the global pattern.”

The last part in the quote highlights the reason why self-organization is an

important factor in neurobiology. The human brain constitutes about 10 billion

neurons with approximately 60 trillion synapses (neural connections) (Negnevit-

sky, 2005, p. 166). This connectivity attributes to the enormous complexity of

the brain, but taken singularly the biological computing element is just a neu-

ron, which has certain behavioural properties. Each neuron processes only its

own local information. But the dense connections between the large amount of

neurons gives rise to self-organizing behaviour and contributes to the evolution

of temporally bound systems like pattern generators (for locomotion) , cognition

and behaviour (Kelso, 1995, p. 239-246). Camazine (2003) defines emergence as

“a process by which a system of interacting elements acquires qualitatively new

pattern and structure that cannot be understood simply as the superposition of

the individual contributions”. Even though self-organizing patterns can “emerge”

in internal neurology, emergence is often governed by external stimulus (from the

containing environment) and tendency for goal acquisition (Konczak, 2004). This

is clearly apparent in human infants. Voluntary motor behaviour does not emerge

by itself, but arises as a consequence of constant interaction of the infant with its

environment (Konczak, 2004). There is a high dependency on sensory inputs for

advancing neural development, though it varies with organisms. Due to high neu-

ral complexity in humans and certain primates, sensory stimulation is imperative

for activating the neural development processes which in turn leads to the devel-

opment of motor control (Konczak, 2004). This is evident from comparisons of

different organisms at infant stages to humans at their infancy. The human brain

has various neurological sub-systems to take care of the many functions like mo-

tor capability, memory, vision, and most importantly the high level of intelligence

and association. Due to high complexity, humans are rarely born with locomotion

skills or speech capability. All these higher order skills are acquired skills, taking

a certain amount of training time leading to neural development that perfects

motor behaviour (Konczak, 2004). Animals have rudimentary brains with base

level intelligence with the rest of the processing space utilised for survival quali-

ties like motor skills and sensory skills. All these skills are more or less in-built.

Hence in the case of humans, environmental feedback plays a more important

role in learning motor behaviour than in other organisms, largely due to the need
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for neural development for learning motor skills (Konczak, 2004). Through an

inference from observational analysis, it is safe to say that pre-conceived motion

templates handed down generations form the basis of human training for tool ma-

nipulation and other motor skills. Examples range from holding a pencil or tea

cup to attaining skill in dancing or sports.

Figure 4.17: Control flow schematic of the neural motor controller

Targeted motion, in physical terms requires precise control. In the human

body, this is achieved by a complex motor neuron system. Temporally coordinated

action, like locomotion and precision tasks, is generated by sophisticated timing

and activation mechanisms. The timing of activation is an important aspect in

performing a specific movement. Neural signals (activating muscle synergies) are

transmitted by the central nervous system (CNS) to the corresponding muscle

units, which contract creating the required motion, thereby converting a perceived

goal into mechanical motion. In the system described as part of this thesis, muscle

actuators are the motion generators, similar in function to the biological muscles.

The muscle actuator system is described in section 4.3.4.

In order to create goal-oriented motion, the muscle actuator system re-

quires a control system to be plugged into. The neural control system consists

of two main sub-components, namely, the artificial neural network comprising

of “motor” neurons that uses an evolutionary learning model and an activation

scheduler, which acts as the bridge between the neurons and the physics engine-

based muscle system (See Figure 4.17). Below is given the class diagram of the

controller architecture.

4.4.1 Artificial Neural Network

There are many successful implementations of neural networks for a wide variety

of tasks ranging from locomotion to neck and arm movements (Sims, 1994)(Afshar

and Matsuoka, 2004)(Oztop et al., 2004)(Lee and Terzopoulos, 2006). Karl Sims in

Sims (1994) uses genetic algorithms to evolve neural network models that output

muscle forces and also to evolve the morphology of the digital organisms. Sims’s

research is important in the artificial life field and also has implication in evolu-
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Figure 4.18: Class diagram of the various object classes in the virtual motor control
system.

tionary biology and species propagation. But from an actual production pipeline

point of view, Sims work is of little value. Character designs in production are

driven by the needs of the story and the manner of movement of the characters

are locked down only after a thorough iterative study that examines the anatomy

and limitations of the character morphology. Also, there is no autonomous be-

haviour attributed to the character motion. They are animated specific to a shot

or generalised within limits in the case of games. This research differentiates itself

from Sims’s work in the following ways:

• The goal of Sims’s work is to evolve artificial life creatures that commute

in a simulated environment, whereas this research concentrates on creating

neural controllers capable of mimicking captured motion.

• Morphology of the character is fixed.

• Objective functions are of higher complexity than the simple target and

distance objective of Sims’s work.

• Architecture of the neural network is fixed.

• A detailed muscle system in contrast to Sims’s simple PD actuators.

Robotics has many applications that use neural networks to learn adap-

tive control. Holmes et al. (2006) is a comprehensive paper that explores the

dynamics of legged locomotion and the neural bases in the sensing, planning and
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learning evolved in the process. Central pattern generators (CPG), which are key

components in locomotion generation, is also neural based, as is proprioception.

As mentioned in the previous section, a complex interaction between the envi-

ronment and the physiology of the organism is essential for goal directed active

force generation and control. A large part of the control is through feedback and

the ability of the neural models of the motor system to adapt through synaptic

learning (Holmes et al., 2006).

A light weight neural network library catered specifically for the task at

hand was developed. A few key points that were considered during the creation

of the library were as follows:

• Easy-to-use, lightweight library and rapid prototyping of a neural network

using minimal configuration steps is a primary aim.

• Use object oriented programming and design principles to embed scalable

architecture.

• The library should provide support for loading and saving a neural network

from and to a file.

• A generic learning model class with which different models can be imple-

mented depending on requirements.

• Plugs in to the physical simulation framework smoothly.

There are three main base class structures in the network model that encap-

sulates the neural network properties. They are: BaseNeuron, Layer and Network.

Object oriented design allows for extending the functionality of the base classes by

having a class derive from the base class and have extra functions written into the

derived classes. The base classes have functions or methods whose functionality

can be overwritten in the derived classes. These functions are called as virtual

functions. The BaseNeuron class simulates the single computing unit in a neu-

ral network, the neuron and has a re-programmable virtual activation function.

The default behaviour of the function is the step function that output only bi-

nary values. Muscle activations are analogue in nature with a range of floating

point values. The function suited for analogue output is the sigmoid function.

The Layer base class represents the different layers in a neural network. After a

layer is initialised, neurons can be added to it. Though representing the network

internally with a layer abstraction brings with it a storage redundancy, the layer

class helps in bringing neural network concepts to the library in a structured man-

ner. For efficiency, it is entirely possible to bypass the layer storage structure and
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perform direct neural connections, but for this project, the structured approach

is utilised. Adding the layer structure also brings a complexity (from an imple-

mentation point of view) to the neuron connection representation. Finally, the

Network class organises all the sub-components into the semblance of a networked

model. The Network class has a Connect method, which is a virtual function that

can be overridden in the derived classes. The Connect method specifies how the

neurons between two consecutive layers connect to each other. It basically defines

the network architecture or topology.

4.4.2 Activation Scheduler

Muscle contraction occurs due to the action of motor nerve impulses on muscle

fibres and generally, as a principle, one motor neuron cell activates many muscle

fibres. The collection of muscle fibres innervated is called as a motor unit (Chaitow

and DeLany, 2000, p. 33). The number of muscle fibres innervated can range

from 10 to the several hundreds (like in the major limbs used for locomotion and

grasping, and other manipulation tasks) (Chaitow and DeLany, 2000, p. 33). So

it can be seen that a single nerve cell has a varying influence on the muscle.

Similarly in the virtual neural control system, the activation scheduler

maintains the relation between the neural network output and the simulated “mus-

cle fibres” (locator-based muscles). It acts as an interface (between the artificial

neural network and the muscles) that transmits the activations produced by the

network to the muscles. The scheduler was created with future expansion in mind

in order to support muscle fibre-based volume muscles.

4.5 Modelling and User Interface

The difficulty in getting accurate results in a graphical simulation is compounded

by two factors, namely, proper models and the lack of a good user interface (UI) to

integrate the modelling and simulation framework. Schniderman in Schneiderman

and Plaisant (1998) defines three principles or pillars of user interface design,

namely:

(1) Guideline documents

(2) User interface software tools

(3) Expert review and usability testing

These pillars of design are followed in the design of user interfaces of most conven-

tional software, Autodesk Maya included. Therefore extending the functionality
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for the Maya workflow, using Mayas own intrinsic API, ensures the usage of Mayas

design features.

It is always wise to keep in mind that no matter how intuitive the UI design

of the animation system, the artist ultimately using it is restricted to work on a

two-dimensional screen interacting with another two-dimensional hardware tool

like the mouse that lacks the ability to determine its spatial position in 3D space.

The loss in dimensionality can be compensated through the use of unconventional

hardware interfaces like those used in animatronic effects. This would allow the a

closer mapping between the interface and 3D space and allow the artist a better

navigation of 3D space. But such interfaces are experimental and not cost effective

due to electronic component overheads and training time. And hence mainstream

animation houses refrain from using such interfaces.

This makes it imperative for functional friendliness of software user inter-

faces. Even complex interfaces like in Pixologic’s Zbrush (3D sculpting software)

provide advanced intuitiveness and configurability, but still allow the artist to cre-

ate a wide range of effects with the default settings (Pixologic, 2010). Similarly,

with the exception of interfaces using hardware add-ons (such as motion detec-

tion sensors or Microsoft Kinect-based software hacks), a good animation software

interface should work within the restriction posed by the most conventional hard-

ware interaction tools the mouse and the keyboard.

Good user interface design is highly subjective to the software in question

and the intended use of the software and often requires multiple iterations to lock

down on a practical design. For 3D animation, it often means creating a mapping

interface between 3D transforms and 2D user controls, eg: facial animation rigs

and the slider controls that drive the rig. Full body animation, on the other hand,

requires animation rigs that exist in the same 3D space as the character.

Simulation set-up is made easier if the actual graphical elements involved in

the simulation are constructed in the proper manner and also properly spatially

arranged in the simulation environment. Alternatively the graphical elements

could be created in a professional 3D modelling and animation package like Maya,

as exemplified in Tsang et al. (2005), Sueda et al. (2008). In the case of human

musculo-skeletal modelling and animation described in this thesis, this attributes

to a good skeletal model, easy interface to specify constraints in the model and an

intuitive interface to layout muscle paths. Providing the artist with the feature

to lay muscle paths, is crucial for the simulation aspects because the animation is

dependent on the muscle vectors.

Autodesk Maya is becoming the de-facto graphics industry standard. It is

used primarily in the visual effects industry and is capable of dealing with heavy

duty graphical requirements in modelling, animation, simulation and rendering.
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Therefore, as a manner of future proofing the concept to fit into conventional

animation pipelines in the games or visual effects industry, Maya was chosen as

an integral part of the system framework.

It was decided during the initial stages of the research to include Maya

as the primary test bed for tool development. But as the research evolved and

the system re-designed due to technical reasons, the decision was made to sepa-

rate simulation and content generation. Thus Maya became primarily a content

generation platform for the external simulation application.

Maya implements a graphical three-dimensional place-holder element called

locator (see Figure 4.19) for various tasks. The standard locators shipped with

Maya are typically visualised in Maya like a three-dimensional cross hair which

can be placed anywhere in 3D space. Locators basically specify a location in space.

But they can also be used intuitively for manipulation of objects in 3D space.

Figure 4.19: Maya locator in the 3D view port.

Custom locators, manipulators and interactive contexts can be easily de-

veloped through the Maya C++ API.

The ideal interface for laying muscle paths and origin and insertion points

on skeletal segments is direct interaction with the segments in the 3D view port

where the artist would use the mouse to click on the surface of the segments to

specify the attachment points (see Figure 4.20).

As given in Section 2.2.2 of Chapter 2, the obstacle set method in muscle

simulation uses via points placed on rigid bones and obstacle objects to denote the

wrapping of muscles around joints. The inclusion of obstacle objects to hold the

via points and facilitate collision detection burdens the processor. The alternative

approach taken in this research is to use specialised locators having some intrinsic
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Figure 4.20: Schematic showing custom context and interactive elements tied to
it.

properties that would specify points of contact of muscular tendons and thereby

define the path of the tendons (see Figure 4.21).

Figure 4.21: The muscle locators in blue and the path defined by them in green,
laid on the surface of a sphere.

Each muscle locator along with the attributes (see Table 4.3) is created

automatically as the user clicks the mouse cursor at the point of insertion on

the bone surface. The attributes are essential in encapsulating certain muscle

properties, which are essential in recreating the physical muscle during simulation.

The context responds to user clicks only when a bone mesh surface is selected.

Using a Maya C++ API method, the context fires a ray into the scene from the

mouse pointer and finds the point of intersection of the ray with the mesh surface.

The normal at that point is retrieved and using the transformation matrix of the
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Table 4.3: Muscle locator attributes

Attribute Name Description
Locator 1 or 0 depending on whether

to use the head or the foot
of the locator as the control
point of a linear curve.

Height A floating point value rep-
resenting the height of the
locator. A single muscle
group can have a constant
height for all its locators or
have varying height.

Locator Type 0,1 or 2 depending on
whether the locator is an
origin, insertion or interme-
diate point.

Muscle Grp Id A unique identifier for the
muscle group or tendon.

Muscle order A consecutive integer num-
ber to denote the locator or-
der in the muscle group.

Normal X Normal at the locators posi-
tion X component

Normal Y Y component
Normal Z Z component
Measure X Stores the actual calculated

point (head or foot) af-
ter performing the neces-
sary transforms X compo-
nent.

Measure Y Y component
Measure Z Z component

bone mesh, the locator is transformed and drawn at the point of intersection.

Each subsequent muscle locator in the muscle group is stored into a list. The user

action of switching off the context utilises the stored locators to act as input to

control points of a linear Nurbs curve. The generated curve is the visualization

of the muscle tendon path (Figure 4.21). The muscle tendon path is important

because each linear segment of the path (the part between two consecutive muscle

locators) is used to construct the vector linkage chain in the simulation application.

The vector chain forms the guideline for the application of contraction forces for

the muscle. The height attribute of the muscle locator is of extreme importance

as it affects the amount of moment arm or torque generation in the simulated

muscle. It also affects on how effectively the muscle segment wraps over a joint.
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The displacement of the tendon from the joint center is essential to increase the

moment arm. The sesamoid bones near the joints achieve this in the human

musculo-skeletal system (Gray, 2006). They protect the tendons as well as help in

wrapping the tendons over the joints. In obstacle set methods, joint wrapping is

done with the help of geometric collision primitives, whereas in the system under

discussion, this is achieved through the height attribute of the muscle locator.

Once the muscle locators and path are laid out on the hand model and the

joint locators placed between bone segments (see Figure 4.14), exporting process

is performed “under the hood” using custom MEL scripts (see Figure 4.22).

Figure 4.22: Schematic that shows the export system and how it ties in with the
simulation and rendering framework.

The screen shots of the MEL interfaces are given in Appendix D. The

exporting functions write out the data required in a text format, which loosely

follows an XML style (details of which are given in Appendix C). In order to

maintain co-relation between the models generated in Maya and the PhysX, the

Maya names of the models and joint locators are set into the information structures

of the physics rigid bodies and joints. So there is direct one-to-one mapping

between the names in Maya and the names in PhysX. The mapping is important

for the working of the system. The design choice of a locator-based muscle system

with a point and click interface that interacts directly with 3D meshes allows for

easily editable muscle system. Laying out the muscle on a surface is as easy as

selecting the muscle locator context and clicking and creating the locators directly

on the mesh.
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4.6 Summary

The system outlined in this chapter combines three different technologies to create

a usable interface for generalised physical motion using controllers based on evolu-

tionary neural networks, physically-based muscle actuators that actually generate

the motion and motion capture training data to teach the controller. The muscle

locator-based linear piece-wise tendon unit applies forces according to the layout

of the tendon unit on the rigid body skeleton.

Physical system modelling requires intuitive modelling tools for the end

user to set up the simulation environment. The most difficult aspect of the system

is the controller design due to lack of a priori information related to the number

of neurons and network architecture (details of which are given in Chapter 5).
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5
SIMULATING BIOLOGICAL

COMPUTING ELEMENTS IN

DYNAMICAL SYSTEMS

5.1 Introduction

The previous chapter examined the physics engine compliant musculotendon model

that generates skeletal motion. But in order to generate goal oriented motion, the

muscles must activate in a specific sequence . The redundancy problem in the

musculo-skeletal system makes this coordination sequence a complex problem.

Since the research emphasises on a real-time application of biomechanical motion

generation using muscles and also due to computational overhead, deterministic

solutions are not ideal for the required performance. Instead, a machine learning

approach based on evolutionary neural networks is adopted and understanding

the control system in the human body is crucial to simulate a similar system.

In the human body, motion is the result of coordinated effort of various

synergistic activations of muscle groups. Similarly, in order to generate simulated

motion, the simulated muscles have to activate in a coordinated fashion. In hu-

mans, the motor learning process involved in training this coordination is complex

and motion behaviours that are instinctive collect over many generations genet-

ically even contributing to biological fitness (Shadmehr and Wise, 2005). It is

also dependent on key factors like prediction, error signals signifying prediction

accuracy and also error correction (Shadmehr and Wise, 2005). The motor con-

trol system of the central nervous system (CNS) that helps produce coordinated

101



motion continues to be a field of active research. The results or interpretations of

the research can be categorised under the following two approaches of predicting

muscle activations, namely,

• Algorithmic or mathematical techniques: Optimization techniques

are used to calculate muscle activations for goal-oriented articulate move-

ments. These techniques try to solve the inverse dynamics and forward

dynamics problems and are part of biomechanical muscle simulation. These

mathematical techniques often integrate biomechanical simulation of mus-

cles along with activation coordination. Examples include biomechanical

research works in Tsang et al. (2005), Thelen et al. (2003), Sueda et al.

(2008), Sifakis et al. (2005).

• Machine learning techniques: Previous research on generating muscle

activations used neural networks with gradient learning models that used

electromyographic (EMG) data recorded for calculating the error (Murai

et al., 2008), (Prentice et al., 1998), (Adamczyk and Crago, 2000).

This chapter delves deeper into the hybrid machine learning techniques

implemented as part of the system developed for the research and also the na-

ture and construction of the objective functions that enable the machine learning

algorithms to narrow down the correct solution. Section 5.2 examines the move-

ment encoding in the human central nervous system and how the CNS uses basis

functions to generalize and adapt to motion. Section 5.3 presents the algorithm

used in creating the control system. Section 5.4 is an introduction to genetic al-

gorithms and the various objective functions developed. The genetic algorithm is

used as a learning model by evolving the weights of the artificial neural network.

Section 5.5 looks in-depth into the core of the neural controller. The section also

examines the time series prediction technique and evolutionary neural networks.

Finally Section 5.7 provides the standalone test results of the objective functions

used by the genetic algorithm.

5.2 Movement Encoding in the Central

Nervous System

The problem of mapping a motion shape to an internal muscle activation state is

complex mathematically in the deterministic domain. It requires finding aggregate

joint torques taking into account all the muscles that are responsible. The com-

plexity arises due to the force computation for the number of muscles participating
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in the desired motion. There is another influencing factor which is the force gen-

eration properties of the muscle which is dependent on the muscle length and the

rate of change of length. Also, in the CNS, there is no inverse mapping between an

end-point force (muscle contractions) and the neural firing in the primary motor

cortex that is responsible for motor control (Todorov, 2000). Research suggests

that there are numerous neurons firing for the generation of single force outcome.

This redundancy causes a many-to-one mapping which makes the determination

of properties at the individual neural cell, very difficult or impossible (Todorov,

2000).

Experimental results in Shadmehr and Wise (2005, p. 436) confirms that

training the motor system to perform motions result in adaptation that is encoded

in long term memory. Basically, in order to perform motor learning and adapt to

changes, the CNS relies on error correction based on previous motions (Shadmehr

and Wise, 2005). The CNS requires an internal model for the dynamics involved

in controlling limbs. The internal model is actually a mapping between estimates

of limb configuration and forces required for the movement.

The variables for muscle control is embedded within the neurons. This idea

of using a population of neurons to encode required variables is called population

coding which is a widely used model in neural computation (Shadmehr and Wise,

2005). A population code generally maps an input variable to an output variable

providing an estimate of how the input relates to the output. This is called identity

mapping. So, each neuron should encode limb configuration and velocity within

a function gi with a force vector fi. A neuron discharge rate for the duration of

a movement in a particular direction is defined as a function of the direction of

movement, gi(φ). This function describes the neuron’s directional tuning curve.

The internal models use certain basis functions to represent the dynamics and

the shape of the bases indicate the pattern of generalization. The tuning curve

of the participating neurons become the basis functions and through a combina-

tion of these functions any linear and non-linear function can be approximated

(Shadmehr and Wise, 2005). This basically describes the process happening in

an artificial neural network also where the activation functions of each neuron is

a basis function and in combination with other neurons, the network is able to

approximate any linear or non-linear function. The neural discharge in an arti-

ficial neural network is dependent on the type of activation function used. The

neuron cells in the CNS have perturbations or noise during discharge which has to

be accounted for in the discharge function. Thus, in (Shadmehr and Wise, 2005),

ri
(n) = gi(φ) + ηi

(n) (5.1)
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where ri
(n) is the neural discharge function, gi(φ) is the function of the direction

of movement φ and ηi
(n) is the noise term.

A particular limb configuration is used to map to a particular velocity field

defining a particular motion. The cerebellum, the parietal cortex and the mo-

tor cortex broadly encode limb configurations using approximate linear functions

(Shadmehr and Wise, 2005). Understanding these functions are key in unlocking

how an adaptive system stores the maps it learns and also in learning the patterns

of generalization used in the adaptation.

A motion of rigid linkage can be defined as a sequence of configuration

states in time, which can be expressed mathematically as an equation of forces for

achieving those configurations. Thus,

τ̂ (n)(t) =
∑
i

wigi(θ
(n)(t), θ̇(n)(t)) + wiη

(n)

i (t) (5.2)

where n is a given trial or iteration, θ and θ̇ denote the pose configuration and

velocity of the linkages, wi is the preferred force or direction vector. In the artificial

neural network controller used in this research, the direction of movement is input

as time sequence of pose vectors. Velocity encoding is not directly performed

in this network. But in Shadmehr and Wise (2005), it was shown that velocity

encoding works better than direction encoding.

As (Shadmehr and Wise, 2005) states, relating tuning curves to general-

ization patterns of motor learning requires the following set of assumptions:

• Temporal states of the limb during a movement is simplified to direction of

movement.

• Temporal activity (discharge) of the neural component during the movement

is denoted by the average discharge.

• Noise is absent.

Taking the above assumptions into consideration, (Shadmehr and Wise,

2005) presents the final derived force function as

τ̂ (n+1) = τ̂ (n)g(φ(n)) + αg(φ(n))Tg(φ(n+1))τ̃ (n) (5.3)

where τ̂ (n+1) is the force at a future time n + 1, τ̂ (n) is the current force, g(φ(n))

is the function of the current direction of motion, g(φ(n+1)) is the function of the

direction of motion at time n+1, τ̃ (n) is the error between the estimated and actual

forces. For a complete derivation, refer to Shadmehr and Wise (2005, p. 415).
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And the generalisation function, b(φ(n), φ(n+1)) is the second term and given

as

b(φ(n), φ(n+1)) = αg(φ(n))Tg(φ(n+1))τ̃ (n) (5.4)

It is a function of the current and subsequent direction of movement, φ(n),

φ(n+1). α is a scaling factor for scaling the error, τ̃ (n). The error is the differential

between estimated torques/forces and actual torques/forces. Equation 5.4 says

that the error in n trials times the tuning function (directional tuning curve)

describes the force predictions of the internal model from movement n to movement

n + 1 (Shadmehr and Wise, 2005, p. 416). The generalization function is the

key to adapting the dynamics to new movements. In the absence of quantifiable

data comparison between the inputs and the outputs, stochastic optimization

method is combined with an artificial neural network to accomplish motor learning.

The artificial neural network (with its generalization capability) encapsulates the

generalization function.

There are a few advantages in using machine learning methods to solve the

control problem over deterministic solutions, especially when the target applica-

tion is games.

• Using machine learning methods that adopt parallel processing nodes, like

the artificial neurons of ANNs, with simple computational functions.

• Machine learning methods using stochastic optimization are efficient in ex-

ploring vast search spaces that result from a large number of control vari-

ables. The muscle activation space is explored indirectly using GAs.

• Generalising ability of machine learning methods allow for re-usability and

solving for unknown inputs.

The presumption that paves way for the method detailed in this thesis

is that medical data relating to muscle activation is not practical in a computer

graphics pipeline used in the industry. Recording the EMG data often requires

specialised equipment and the expertise of medically trained professionals which is

not feasible economically. The computer graphics, animation and games industries

have access to low-cost alternatives like motion capture facilities which is widely

used in generating quick and realistic animation for characters. So the aim is to

design a system that can generate muscle activations from recorded surface motion

and to find out if the system can generalise to an unknown motion sample. Since

there is no direct correlation between input pose data (from motion capture) and

output activations, the only method to explore the space of activations is through

the means of stochastic optimisation methods.
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5.3 The Algorithm

The functional mapping between a pose state and corresponding muscle forces

(denoted by activations) that produce the pose is derived through training an

evolutionary neural network. The algorithm for evolving the weights of the neural

network is given as follows:

(1 ) I n i t i a l i z e GA. Create i n i t i a l weight populat ion vec to r .

( 2 ) Loop through each member o f the populat ion vec to r .

( i ) Set weights i n to the A r t i f i c i a l Neural Network .

( i i ) Act ivate the network .

( i i i ) Set output a c t i v a t i o n s to the p h y s i c a l muscles on the r i g i d

l i n k a g e .

( i v ) Run s imu la t i on .

( v ) Ca l cu la t e f i t n e s s .

( 3 ) I f e x i t c r i t e r i a i s reached ( opt imized ) then e x i t loop and save

network c o n f i g u r a t i o n .

(4 ) Perform Genetic Optimizat ion .

(5 ) Goto Step 2 .

There are two sub-algorithms implemented as part of the genetic optimiza-

tion.

(1 ) Ca l cu la t e s e l e c t i o n p r o b a b i l i t y r a t i o f o r each populat ion member .

( i ) Sum the f i t n e s s o f a l l the members in the populat ion .

( i i ) Ca l cu la t e the r a t i o f o r each member i e the percentage o f the

member f i t n e s s in the f i t n e s s landscape f o r the populat ion .

(2 ) Perform S e l e c t i o n us ing the ra t i o , Crossover ( s i n g l e po int

c r o s s o v e r ) and Mutation based on mutation p r o b a b i l i t y .

(3 ) Replace the o ld populat ion with the new one .

Genetic algorithms usually represent the problem space as binary strings.

But real-valued chromosomes are also used as is in this project. The genetic

operations are emulating natural evolution and exist to provide variations and

to guarantee crossover of genetic information in subsequent populations. In a

binary representation, changing even a single bit can produce drastic changes in

the fitness landscape. This can be achieved mostly using selection and crossover

alone with a low probability of mutation. But in real-valued chromosomes, variety

is better introduced through mutation, as crossover alone would be just recycling

the existing population without variation. The following algorithm is for creating
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mutation depending on a variance vector that mutates based on the performance

(Fogel, 2006). This is known as Gaussian mutation, explained in sub-section 5.5.3.

(1 ) For every gene in the chromosome c r e a t e a random number between 0

and 1 .

(2 ) For every chromosome in the populat ion c r e a t e a random number

between 0 and 1 .

(3 ) Ca l cu la t e new var iance vec to r f o r the populat ion member .

(4 ) Mutate the member based on the var iance vec to r us ing a Gaussian

scheme .

(5 ) Replace the o ld populat ion with the new mutated populat ion .

5.4 Evolution, Genes and Chromosomes: the

Genetic Algorithm

To optimize is to find the best solution to a certain designated problem. Opti-

mization methods can be broadly classified into two: deterministic and stochastic

methods (Garcia et al., 2006). Deterministic methods have a direct calculation ap-

proach, usually calculating the derivatives of a function or approximations (Garcia

et al., 2006). They are very useful in solving problems where functional represen-

tations are known a priori. Stochastic methods implement an “oriented random”

method. They are successful in tackling highly non-linear problems where the

problems do not have good functional approximations. These methods require

the change of the input parameters (usually a number of them) depending on the

output of the functional representation of the objective of the solution. The ob-

jective function is the only guide stochastic methods use to converge on a solution.

The situations where the stochastic methods work well are in large solution spaces

and these methods gained popularity mainly because of the increasing power of

the computers (Garcia et al., 2006). This section and the following sections and

sub-sections provide a brief overview of the various parts of a Genetic Algorithm.

The understanding of the biological world changed after Charles Darwin presented

his theory of evolution, which comprised of the neo-Darwinian paradigm (which

in turn is actually a sum total of the concept of genetics and theory of natural se-

lection) (Negnevitsky, 2005). Neo-Darwinism lays its foundation on the processes

of reproduction, mutation, competition and selection (Negnevitsky, 2005). What

forms the objective function in nature? One key factor is the environment. Once

environmental factors lay the foundation, natural selection takes over. The popula-

tion’s ability to counter environmental disasters and survive is called evolutionary

fitness (Negnevitsky, 2005). Genetic Algorithm (GA) is an evolutionary approach

to machine learning and is based on computational models of neo-Darwinism.
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Evolutionary computation is an encompassing term that includes GAs along with

evolution strategies and genetic programming. All these techniques simulate evolu-

tion by using the processes of selection, mutation and reproduction (Negnevitsky,

2005). Put forward by John Holland in 1975, GAs operates on a population of

artificial chromosomes by selectively reproducing the chromosomes of individuals

with higher performance and applying random changes. It is an iterative process

spanning over several cycles or generations. Each chromosome is decoded, one

at a time, its fitness evaluated and three genetic operators - selection, crossover

and mutation - are applied to generate a new population. The following two sub-

sections explore the genetic operators used and modified as a part of this project

and also explores the design of the most crucial part of a genetic algorithm that

helps in solution convergence - the objective function.

5.4.1 Methods of Representation

In nature the inherited genetic code is called the genotype and the resulting organ-

ism is called the phenotype (Nolfi and Parisi, 2002). The genotype is handed down

each subsequent generation and embodies the parent genetic information and a

new phenotype is created from those instructions. This is known as the genotype-

to-phenotype mapping (Nolfi and Parisi, 2002). Adaptation requires evolvability

which strongly depends on how the genetic variation maps onto phenotypic varia-

tion representation. This is known as the representation problem (Nolfi and Parisi,

2002). The two mechanisms that allow GAs to find solutions are encoding and

evaluation (Negnevitsky, 2005, p. 221). The solution space needs to be encoded in

a form the GA can process and apply evolutionary operations on it. An artificial

chromosome (genotype) is a string that encodes the characteristics of an individual

(phenotype) (Negnevitsky, 2005). The string may encode in binary representa-

tion the value of a variable of a function that must be optimized. Chromosome

representation ultimately depends on the target type for optimization. Thus, the

chromosome, for instance, might encode the connection weights of a neural net-

work instead of function variables. In order to use GA as a learning model for the

artificial neural network, the network needs to be encoded as chromosomes. In

the case of a learning model, the architecture of the network is fixed and synap-

tic weights are evolved using the GA. So the synaptic weights are encoded as

chromosomes.

5.4.2 Genetic Operators Used

Nature selects the fittest individual to propagate a species. Often adaptation to

environmental conditions occurs through successive generations and subtle changes
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in the organism’s genetic make up. Similarly GAs use selection, reproduction and

mutation in order to create the fittest solutions for a given problem.

5.4.2.1 Selection

Selecting the right individuals out of a population of individuals is of utmost

importance to guarantee that the fitness is transferred to the next generation.

There are various types of selection in the genetic algorithm like tournament

selection, rank selection and steady state selection. The selection used in this

project is called roulette wheel selection. It is a commonly used selection routine

(Goldberg, 1989).

In roulette wheel selection, a circle is subdivided into as many sections as

there are chromosomes in a population (see Figure 5.1).

Figure 5.1: A Roulette wheel visualisation for the neural network given in Fig-
ure 5.8. Population size is 20 while chromosome size is 182.

The size of each section depends on the fitness of each chromosome and is

measured as a percentage. The spinning of the wheel is simulated by generating
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a random number between 1 and 100 or a preferred upper limit. Then,

R =

(
rand()

RAND MAX

)
∗ 100 (5.5)

Equation 5.5 normalizes the random number generated and converts it into a

percentage

h = l + Pr(i) (5.6)

The selection probability ratio, Pr(i) is calculated for each individual chromosome

in the population. The size of the subdivision in the roulette wheel is proportional

to the selection probability ratio. The chromosome which satisfies the condition,

l ≤ R ≤ h, is selected for crossover.

Pr(i) =
Fi
N∑
i=1

Fi

∗ 100 (5.7)

where Fi is the fitness per chromosome in a population of size N .

There are two situations when the roulette wheel selection breaks. They

are:

• When all the individuals in the population have the same fitness, then all

the individuals have the same probability of being selected.

• When one or two individuals have a very high fitness value than the rest of

the population, then the fitness spans for those individuals occupy a larger

area of the wheel. Thus with every spin of the wheel, those same individuals

have a higher probability of being selected.

Scaling the fitness value prior to selection can help in resolving the above

issues.

5.4.2.2 Crossover

Crossover is the process of transferring genetic material from both parents to the

offspring. A pair of chromosomes is selected for crossover. Crossover is achieved

by splitting the parent chromosomes at a random location and swapping the parts

to generate two child chromosomes which form the part of the new population

(see Figure 5.2). Single point crossover is implemented for this project. The other

types of crossover are two point crossover and multi-point crossover. There are

also crossover operations that use multiple parents.
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Figure 5.2: Genetic crossover between parent chromosomes to generate offsprings

5.4.2.3 Mutation

If genetic diversity does not exist in subsequent generations, then the GA can

get trapped in a local optimum. Crossover and selection can stagnate at some

point. This is avoided through the use of mutation. Simple mutation is performed

by randomly selecting a gene in the chromosome and then modifying the value.

Excessive usage of mutation can be detrimental to convergence. Hence normally

mutation is assigned a very low probability.

Since this project uses GA as a learning model for an ANN, real-valued

chromosomes are used. As mentioned earlier, normal binary string chromosomes

can change drastically even when a single bit is flipped. For real value representa-

tions, the value of a selected location is substituted with another value randomly

extracted from the same range, or is incremented by a small number randomly

generated from a distribution centred on/around zero. But in real-valued chro-

mosomes change is gradual. In such a case, GAs can use mutation operator alone

without crossover (see sub-section 5.5.3).

Even though, standard GA can be adapted to work with evolving real-

valued vectors, it was discovered during implementation that unlike binary oper-

ators which depended on crossover to provide variety, real-valued chromosomes

preserved variety better through mutation than crossover alone (with a low mu-

tation probability).

Previous research, like in Reil and Husbands (2002) and Watson et al.

(1998), suggests that cross-over lacks efficiency in real-valued evolutionary neural

network problems involving dynamic learning. So mutation along with an elitist

selection, was preferred over crossover. Elitist selection was implemented in this

research to ensure that high standards are met while filtering the networks from the

population. A specified percentage of the fittest individuals from a population are

selected and transferred without mutation to the next generation. The remaining

individuals are mutated and then evaluated. This ensures that fittest individuals
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are always maintained and are replaced only if a new individual with a higher

fitness evolves from the remaining percentage of the population.

The evolutionary computation method of using the mutation operator alone

is termed as an evolution strategy (Negnevitsky, 2005). Mutating all the genes in

a chromosome mimics nature. Natural selection usually acts on a collection of

genes instead of a singular gene and the fitness of an organism can be governed by

either a single gene characteristic or multiple gene characteristics (Negnevitsky,

2005). The original evolution strategy was proposed by two students in 1963,

Ingo Rechenberg and Hans-Paul Schwefel and was a single parent-single offspring

strategy. Rechenberg later modified the algorithm to introduce a self-adaptive

parameter that controlled the distribution of new trials or offspring from each

parent (Fogel, 2006).

In order to achieve an evolution strategy based search, the mutation opera-

tor implemented is called Gaussian mutation. In Gaussian mutation, the mutation

is applied to all the individuals of the population based on a variance or pertur-

bation vector.

σ
′

i = σi · e(τ
′ ·N(0,1)+τ ·Ni(0,1)) (5.8)

where σ is the variance vector, N(0, 1) is a standard Gaussian random

variable and Ni(0, 1) is an independent standard Gaussian random variable for

every individual in the population (i = 1, 2, 3......n).

x
′

i = xi +N(0, σ
′

i) (5.9)

where xi is the gene per chromosome.

τ =
1√
2
√
n

(5.10)

τ
′
=

1√
2n

(5.11)

τ and τ
′

affect global and chromosome mutation step sizes.

5.4.3 The Objective Function

In GAs, an objective function or fitness function govern the fitness of a chromo-

some. The GA uses the measure of fitness of the chromosome to aid in reproduc-

tion (genetic operator) to propagate the fitter genes. The fitness function plays a

crucial role in the convergence of the system to the solution because it is the only

deciding factor in selecting a chromosome for an evolutionary process producing

the next generation of population. Fitness function formulation is often difficult
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and not always possible in some situations. This is generally due to complexity of

the problem under consideration or due to the large interdependence of variables

in the problem or due to the inseparability of the low-level implementation from

the behaviours exhibited. Fitness functions are often closely dependent on the

end-behaviour targeted. This dependency makes it extremely difficult to create

generalised fitness functions that suit multiple purposes. The fitness functions

implemented here are part of a class of dynamic learning fitness functions that

are often used in Evolutionary Robotics (ER) and Artificial Life (AL) and are

called behavioural fitness functions (Nelson et al., 2009). The behavioural terms

are mostly extracted from the result of motion generated in a specific time period

in a dynamic environment. These type of fitness functions are used in ER to

measure how a robot is behaving through the entire training period rather than

examining the end result. There are aggregate terms that measure the end result.

An example of an aggregate term is used in this thesis is detailed in the section

5.4.3.7. The objective functions developed in this research are explained in the

following sections.

5.4.3.1 Pose-based Objective Function

The sample spaces provided consists of three dimensional motion samples, which

acts as a guideline for evolution to follow. Mathematically, the guideline is ex-

pressed in the form of an optimizing function, which can provide a measure of

the fitness of the network chromosome that generated the motion. The differing

degrees of freedom of the kinematic linkages make the error calculation a multi-

dimensional problem. By discretizing the continuous looped motion sample, it is

possible to create specific instances of stationary motion manifolds or key frames.

Common objective functions found in evolutionary robotics and artificial life use

distance functions to teach the robot or the artificial organism to navigate its sur-

roundings. Similarly, the pose-based objective function uses the distance between

orientation of target and source vectors generated from the 3D pose in the motion

sample and the generated pose of the dynamic skeletal bodies.

5.4.3.2 A Special Case Vector Field

The research under discussion relies on certain factors to simplify the creation of

an objective function for the GA. The factors are as given below:

(1) The hand is an articulate organ. Topologically it is the same in all humans,

irrespective of the race, unless severe congenital or accidental deformation

occurs.
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(2) The number of skeletal segments remains constant. Also skeletal landmarks

(anatomical points that are in the same position over a range of human bodies)

exist, which can be used to transform the hand to a neutral alignment.

(3) The similarity metric is used only in the training phase of then network.

(4) The motion samples exist in the Autodesk FBX format, which is a 3D skeletal-

based format.

(5) The phalanges of the hand are rotation invariant along their central parallel

axis. This is important as it allows the representation of the skeleton orienta-

tion as a collection of directional vector chains.

(6) The magnitude of the phalanx vector is not taken into consideration, as lengths

of phalanges changes with different hands, but orientation can be the same.

For instance, an adult hand and a child hand vary in their respective dimen-

sions, but they can mimic each other maintaining the same orientation of the

skeletal segments.

(7) Unlike standard vector fields where vectors exist independently in space, the

vectors in this case are arranged in a chain, in order to function as a pose

descriptor. Hence a more accurate terminology is vector chain, though in the

course of this chapter both terms are used interchangeably.

Taking into consideration the above factors, a simplified vector chain can be

extracted from the 3D skeletal key frame. Since the hand (or any articulate body)

is segmented with joints constraining the rigid bodies (phalanges), the result is a

vector chain and not just any arbitrary set of vectors. It has to be noted that for

the purposes of this research, true shape matching is not required since it is a pose

identification using the vector chain generated by the skeleton of the articulated

body.

The use of vector chains for the comparison of a linked structure also en-

sures that the corresponding vectors are given as inputs also. There are 19 vec-

tors for the human hand. The musculotendon layout of the fingers are identical.

Therefore, by using individual neural networks for each finger simplifies network

training. A single trained finger network can act as the template for all the other

networks. Even though a one-to-one mapping exists between the two vector sets,

representing the source and target articulate bodies, the respective links can vary

in length. This case is shown in Section 5.7. Here, only the pose is considered

and not structural properties like size. This allows for the possibility of rigging a

completely non-human proportioned hand and have it trained using the motion

capture data of a human hand, provided the musculature and skeletal structure
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remains the same. Performing local space vector chain comparison allows for dif-

fering global space orientations for the source (motion capture skeletal chain) and

target (rigid body linkage) chains. A vector chain representation allows for seg-

mentation of the chain prior to training. The user has the choice of using only a

sub-chain from the original chain, for training.

5.4.3.3 Directional Cosines of the Vector Field

Vectors are mathematical structures that encompass a direction in space with a

magnitude. They are used to represent any quantity, which has both a direction

and a magnitude. They have proved to be an invaluable tool in the physical and

mathematical sciences to such an extent that an entire branch of mathematics is

devoted to them called vector analysis.

If V denotes a vector in Cartesian space,

V = x̂i+ yĵ + zk̂ (5.12)

The direction cosines, as the name suggests, are the cosines of the angle

subtended by the projection of the vector on the three coordinate axes. They are

usually denoted by the symbols, α, β and γ. So mathematically,

α = cos(θ) =
x∣∣V ∣∣ =

x√
x2 + y2 + z2

(5.13)

β = cos(ω) =
y∣∣V ∣∣ =

y√
x2 + y2 + z2

(5.14)

γ = cos(φ) =
z∣∣V ∣∣ =

z√
x2 + y2 + z2

(5.15)

where θ, ω and φ are the angles subtended by the vector on x, y and z

axes, respectively.
∣∣V ∣∣ denotes the magnitude of the vector.

5.4.3.4 Application to the problem

The directional cosines are unique to each vector in the vector field. In order to

compare the orientation of two vectors, assuming one of them as a source and the

other as a target, it is a good measure to and the difference between its directional

cosines. The difference is a measure of the quantity by which the orientation of a

vector differs from the other. So by constructing vector chains from each frame of

generated skeletal motion, it is possible to compare it to a stored motion clip.
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If V 1 and V 2 are two vectors, with directional cosines, d1 = (α1, β1, γ1) and

d2 = (α2, β2, γ2) respectively, then,

d2 − d1 = (α2, β2, γ2)− (α1, β1, γ1) (5.16)

Using equations 5.13, 5.14 and 5.15 in their native form creates a problem.

Due to lesser variations in cos(θ) as it tends to zero and to retrieve a better estimate

of the variation, it is beneficial to work with the angles, θ, ω and φ (Van Verth

and Bishop, 2008, p. 49). So the above three equations can be re-written as

θ = cos−1(α) (5.17)

ω = cos−1(β) (5.18)

φ = cos−1(γ) (5.19)

Thus Equation 5.16 can be changed to the difference of the corresponding

angles,

(θ2, ω2, φ2)− (θ1, ω1, φ1) = (εθ, εω, εφ) (5.20)

where εθ, εω, εφ denotes the respective small differentials. Hence if there are n

vectors in the vector chain F1 , denoted by (V F11, V F12, V F13..........V F1n) , the

corresponding angles are (θF11, θF12, θF13,.......θF1n, ωF11, ωF12, ωF13,......ωF1n,

φF11, φF12, φF13,......φF1n). Similarly it can be defined for another vector chain

F2 consisting of p vectors with corresponding angles, (θF21, θF22, θF23,.......θF2p,

ωF21, ωF22, ωF23,......ωF2p, φF21, φF22, φF23,......φF2p) The constraint imposed on

the system of vector chain is that n=p, so that there is a one-to-one mapping

between the vectors in the two chains. Subtracting the corresponding angles of

the corresponding vectors from the two vector chains, we get

(θF2p, ωF2p, φF2p)− (θF1n, ωF1n, φF1n) = (εθn, εωn, εφn), {n = p} (5.21)

A representative εprime of εθ, εω, εφ is required, which is retrieved using the

following

εprime = max(εθ, εω, εφ) (5.22)

Processing all the vectors in a similar fashion produces a set of εprime,

which is (n = p) dimensional. The root mean square (RMS), otherwise known

as a quadratic mean, is a well used statistical measuring tool used in engineering,
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which is ideal in providing a representative measure of the deviation of one vector

set from the other. The RMS is defined as

RMS =

√√√√ n∑
i=1

(xi)
2

n
(5.23)

, where i = 0....n. Thus, εprimeRMS can be defined as

εprimeRMS =

√√√√ n∑
i=1

(εprimei)
2

n
(5.24)

A threshold δ, which is user specified and having a very small floating-point

value, is used as a comparison target for εprimeRMS. Thus, a multi-dimensional

comparison problem is reduced into a solution with a single variable comparison.

So it is safe to assume that a target and a source pose are the same if εprimeRMS

≤ δ.

5.4.3.5 Rotation Invariance in Local Space

The algorithm given above is applicable only in neutral alignment in global space.

In Figure 5.12, the first set of images where the poses are identical, it can be seen

that with respect to the global coordinate system, the first link (the parent link)

in both source and target linkages maintain the same orientation. In the present

state of the algorithm, congruence in orientation is a required constraint for it to

provide the correct results. Below is given a screen-shot of a situation where the

algorithm fails, because the above stated constraint is not satisfied.

Figure 5.3: In global space, both linkages are different. And yet, in the local space
of the parent link, they have the same pose.

In Figure 5.3, the linkages maintain the same pose in local space, but in a

common global space the poses are different. It is vital to note that the pose is

determined using the root node of the linkages as the origin, which in the above

images is the extreme left end of the linkages. So, for pure pose comparisons

global orientation must be discounted, which leads to a comparison invariant un-

der rotation. The directional cosines of each of the vectors generated from the
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linkages define the cosines of the angles subtended by the vectors with each of the

basis vectors. The basis vectors define a coordinate space. Therefore, in order

to transform the respective vectors into local coordinate spaces, it is necessary to

define new sets of basis vectors that define the spaces. The required steps that

modifies the original algorithm to work in arbitrary root node orientation is:

(i) Transform the respective vectors into the local coordinate space of the re-

spective linkages.

(ii) Calculate the RMS differential of the directional cosine angles as a post

transform process.

Figure 5.4: The hypothetical local basis vectors (in red and yellow), at the root
nodes of the two linkages.

Let V 1,V 2, V 3 be the three basis vectors that define a coordinate system.

Arranging the components of the vectors in the columns of a matrix Mb, creates

a basis matrix.

Mb =

 V1x V2x V3x

V1y V2y V3y

V1z V2z V3z

 (5.25)

The basis matrix Mb is instrumental in transforming the vector chains from

global space to the local space of the linked chain. Transforming any vector V by

Mb transforms V into the global space. But the reverse transformation (transform

V from global space to the coordinate space represented by the basis vectors V 1,

V 2, V 3) is performed by taking the inverse of Mb. For a square matrix, the inverse

is equivalent to its transpose. Therefore if Mb
T is the transpose of Mb, then

V local = Mb
TV global (5.26)

The basis vectors are orthonormal vectors. The initial two vectors used to

create the first basis vector is the root node vector of the linkage and any one of

the global coordinate axis (x, y or z). The resultant vector of the cross product

of these two vectors forms the first basis vector. Subsequent cross products with
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the new generated vector and the initial two vectors provide the second and third

basis vector. The complication arises when the initially chosen two vectors are

parallel, in which case the cross product will be zero. In such a case, the chosen

coordinate axis has to be swapped with any of the other coordinate axes. For

example, if y was chosen initially, then it has to be swapped with x or z.

If X, Y and Z are global axis vectors, V R is the root link vector and V 1,

V 2 and V 3 are the basis vectors to be calculated then

V 1 = V R ×X (5.27)

V 2 = V R × Y (5.28)

V 3 = V 1 × V 2 (5.29)

5.4.3.6 End-effector based Objective Function

The pose-based objective function measures the difference in orientation of the

vectors calculated from each skeletal segment, in the input frame and also the

corresponding output frame. In order to simplify calculations and reduce iterative

complexity the number of vectors compared required reduction.

Figure 5.5: The cyan line from the end of the finger to the MCP joint is the end
effector vector of the dynamic motion generated and the brown line is the end
effector vector of the motion sample superimposed. The orientation of these two
vectors provides an indication of differing poses in the input and output.

The error calculation is the same as the pose-based objective function equa-

tion, Equation 5.24. The only difference is the number of vectors compared. While

the pose-based objective function utilised all the segment vectors, the end effec-

tor based objective function uses a single vector generated from the end point of
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the skeletal finger and the MCP joint (see Figure 5.5). In the pose-based objec-

tive function, the magnitude of the vectors are not considered because the vectors

formed a chain and orientation alone defined a pose. But in the case of end effector

vectors, both magnitude and direction are important.

ξmag = abs(
∣∣Em

∣∣− ∣∣Ed

∣∣) (5.30)

ξdir = O(Em, Ed) (5.31)

where O is the vector comparison function and Em and Ed are the end effector

vectors of the motion sample and the dynamic finger respectively.

ξtot = ξmag + ξdir (5.32)

The total error is the sum total of magnitude difference and directional

difference of the end effector vectors.

f =
1

ξtot
(5.33)

where f is the final fitness.

5.4.3.7 Motion Variety Penalty Function

The method of traversing all the possible neural clusters capable of generating the

coordinated activation requires examining the population of neural clusters/net-

works and selecting those that satisfy the fitness criteria. Network encoding in

chromosomes enables the GA to generate a population set of possible neural net-

works that can produce physical motion from kinematic input motion. Initial test

runs used only the pose-based objective function for calculating the fitness of each

network. But it was observed that some of the generated networks created better

continuous variation in activation than other networks which output a constant

activation. Constant activation caused the rigid bodies to reach a constraint max-

imum and maintain that pose for the duration of simulation. If the input motion

also had similar poses repeating frequently, then the pose-based objective function

marked these networks as having a high fitness, without taking into consideration

the overall motion generated. This caused deterioration in network performance

in subsequent generations of evolution because of poor genetic transmission.

The primary aim of the research is to replicate motion physically, the key

word being “motion” and not merely static poses retained over an extended period

of time. The solution to the above stated problem is to insert a penalty term into
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the primary objective function that penalises a network depending on the motion

generated by it during the training simulation.

The penalty is calculated by comparing subsequent frames in all the stored

poses of the generated motion by the network.

ξaccum =
N∑
f=0

(Pf+d − Pf ) (5.34)

where d = 1, 2, 3....N is the frame offset.

The basis of the calculation is the same as in the pose-based objective

function, specifically as in Equations 5.24, 5.27, 5.28 and 5.29. Thus, the sequence

of poses is examined by measuring the amount of deviation between poses. This

is indicative of the amount of movement generated by the network.

Due to the segmented nature of skeletal bodies, it is perfectly possible for

parent segments to be static while the child segments move. In order to get a better

estimate of the error, calculation is performed for each segment by converting it

to the local coordinate space of the segment parent (see Figure 5.6).

Figure 5.6: The local coordinate axes for each segment root are shown in red, blue
and green. The segments are s1, s2, s3 and s4 and the roots are denoted by r0,
r1, r2 and r3.

Equation 5.34 is subtracted from Equation 5.24. Conventional selection

operators requires that the fitness is always positive. Subtracting the penalty

has the drawback that fitness becomes signed. But since the genetic operation

uses only mutation without the conventional selection, the sign of the fitness is

immaterial. Thus,

ε = εprimeRMS − ξaccum (5.35)

f =
1

ε
(5.36)
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where f is the final fitness. The inclusion of the penalty term produced consider-

able difference in network performance in later generations.

5.5 Artificial Neural Networks

Artificial neural networks (ANN) are mathematical abstractions in interconnected

form, of the singular computing element in the human brain, the neuron. They are

used in a wide of variety of classifying tasks as they have shown good performance

in identifying patterns from large sample datasets and generalising to unknown

datasets. They are useful in modelling non-linear relationships between variables

where analytical approach fails. Muscle control is a computational neuroscience

problem. Owing to high non-linearity and complex interactions between various

biological elements, mathematical methods tend to contain numerous variables

that require tuning. Manually tuning the variables becomes a cumbersome task.

The ANNs modify the synaptic weights between neurons through learning

models. The most common learning model is the error Back-propagation (BP)

and variations of it that try to overcome the drawbacks of the original model.

The success of the back-propagation depends on the network architecture, the

activation function of the neurons and the learning algorithm (Negnevitsky, 2005,

p. 176). It is also dependent on the actual output and desired output at each

neuron in the output layer. The difference between the desired output and actual

output defines the error at that neuron.

With regard to neural control learning from surface motion, this is a pre-

supposition and it prevents the use of BP as a learning model in a neural network

that acts as a control system for coordinated muscle activations. The training

samples (extracted from motion capture) provide a “style” of motion that informs

the trajectory the limbs have to follow, which is the desired objective. But the

objective itself is not an indication of the desired muscle activations. Desired

muscle activation is an unknown quantity unless EMG readings of the real muscles

are recorded and used in training. Therefore, in the absence of EMG readings,

error calculation is not feasible.

5.5.1 Evolutionary Neural Network

In view of the situation detailed in Section 5.5 weight modifications can be per-

formed using a hybrid approach combining the features of an evolutionary opti-

mization method like the Genetic Algorithm and Artificial Neural Networks. An

artificial neural network that uses evolutionary optimization techniques as a learn-

ing model is called an Evolutionary Neural Network (ENN) (Yao, 1999). There
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are at least four distinct ways a GA can be used in conjunction with an ANN. All

of them require the modifications of the network parameters. They are:

(1) Evolving synaptic weights - The connection weights are modified itera-

tively through genetic operations, guided by a suitable chosen objective func-

tion.

(2) Evolving network architecture - The architecture of network topology can

evolve over time leading to an optimized topology.

(3) Evolving the Learning rules - It evolves the learning rules to create adap-

tive and probably better efficient learning algorithms.

(4) Evolving the transfer functions - Evolution can be used to determine

optimal mixture of transfer functions in neurons. Normally, neurons in a layer

have the same activation function like the sigmoid function. But experimental

research like in Annunziato et al. (2003) attempts to use multiple transfer

functions between neurons of the same layer.

Using a hybrid model like an ENN has certain features which makes it

advantageous than other approaches. Nolfi and Floreano (2000) lists them as

follows:

• Motor functions are smooth and continuous. Simulating a continuous control

system would be best achieved through a model that is analog in nature. In

neural networks, gradual changes in the network parameters produce gradual

changes in behaviour.

• Evolutionary networks have different levels of evolutionary flexibility ranging

from the low level specification like connection weights to higher level spec-

ification like network architecture. Nolfi and Floreano (2000) defines three

evolutionary stages that can be applied to ANNs: phylogenetic (evolution),

developmental (maturation) and ontogenetic (life learning). These stages

pertain to architecture evolution starting from a base structure and evolving

through time and adapting connection weights to learn from experience.

• The generalising capability of neural networks encodes information learned

over trials and hence makes it ideal to represent an adaptive system like the

motor control system in the human body.

5.5.2 Time Series Predictor Network

Dynamical systems where deterministic rules describe the state of the system can

be classified as a time series. Connectionist architectures like ANNs are ideal for
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predicting future states in the time series (Frank et al., 2001). Neural networks are

commonly used in the time series prediction of network traffic forecasting, traffic

forecasting, weather forecasting, market analysis and more. A time series is highly

suitable for understanding patterns in a dynamic process. By understanding the

time series pattern in one system, it is possible to simulate the relation of that

system to another. And so in the system described in this thesis, the recorded

motion acts as a template of the underlying neural and muscular dynamics that

produced the motion. Thus, ANNs are used as time series predictors of muscle

activations for a given motion sample. The neural networks used in time series

prediction normally has standard feed-forward architecture. The network accepts

an N-tuple set as inputs that describe the sequence d steps back in time. This

method is often termed as a sliding window technique.

Figure 5.7: Vectors at three preceding time steps are fed into the network. The
output is an extrapolated value for time t+1.

Animation is a sequence of static frames, instances in time, which when

combined in the right order produces coherent action. The input to the ANN is a

motion sample with key poses at each frame of the sample. The motion sample is

a recording of a dynamic system (the neuro-musculo-skeletal system). Therefore,

by treating the motion sample as a time series problem, the nature of the dynamic

system can be recreated. Since the neural network exists within the same dynamic

environment as the rigid bodies and the muscles, the outputs (activations) always

generate continuous motion for any input irrespective of coherence.. The correla-

tion between the input vectors and the output activation is unclear and there is

the possibility that continuous motion is regarded as the correct output.

The activations that generate an arm or finger motion take the arm or finger

from an initial state at time t to another state at time t+1. In the animation

sequence given as input to the network, the time relation is maintained. It is

imperative that the network learns the time relation between the input sequence.
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In the dynamic system, the space of muscle activations that generated the original

motion can be termed as the phase space.

It is up to the neural network to capture the nature of this phase space,

so that each subsequent activation takes the dynamic system from one state to

the other in time. The neural network, by using the sliding window technique,

“slides” over the training set. So for every t + 1 step, the network outputs the

activations that allow the muscle to contract so that the dynamic linkages mimic

the orientation of the input skeletal set.

Mathematically, the predictor function can be defined as,

x(t+ d) = f(x(t), x(t− 1), ...., x(t−N + 1)) (5.37)

where f is a real valued function that calculates the value of the observed

system at a future time t+ d.

The size of the window is a crucial factor in pattern identification. If the

window is very large, then the relation between subsequent time samples becomes

less coherent. This prevents the ANN from identifying the pattern in the time

series. Although, the correct window size is normally found through trial and

error, the probability for the correct identification of the pattern is higher if the

sizes between the samples are close to each other.

5.5.3 Architecture and Activation

Artificial Neural Networks are classified based on the architecture and also some-

times based on the activation functions used (such as Radial Basis function net-

works and Wavelet neural networks). Some of the different architectures are feed-

forward networks, recurrent networks, adaptive resonance maps etc. The type of

architecture is often dependent on the task at hand. So following the well re-

searched notion that an artificial neural network with a single hidden layer can

approximate any function that contains a continuous mapping from one finite

space to another, the control system in this thesis used a fully connected feed-

forward time series predictor network with three layers (see Figure 5.8). There

are 27 inputs corresponding to 3 pose vectors for time t− 2, t− 1 and t. There are

8 hidden neurons in this version. The output layer consists of 8 neurons that give

activations for the 8 muscles controlling the finger. A Discrete Time Recurrent

Neural Network (see Figure 5.9) was also created in order to map the input motion

to temporally correlated muscle activations. The recurrent neural network incor-

porates feedback neurons that preserves the previous state of the network which is

fed back into the hidden layer. This functions as a memory retention layer and is

perfectly suited for learning in dynamic systems. In the neural network controller,

125



the activations output at a previous time step are input to the hidden layer in

order to provide additional information regarding the state of system.

The three layers are: input, hidden and output. The number of neurons in

the hidden layer varies with the type of problem and deciding the correct number

is a matter of trial and error. The heuristic followed as a starting point in this

thesis is as follows (adapted from Heaton (2005)):

• The number of hidden neurons is between the number of input and output

neurons.

• The number of hidden neurons is two-third the number of input neurons

plus the number of output neurons.

• The number of hidden neurons is less than twice the number of neurons in

the input layer.

The first rule was followed by taking the average of the number of input and

output neurons.

Unlike first generation neural networks that can compute only binary func-

tions (the activation function produces digital output), the neurons in the evo-

lutionary neural network implement continuous activation functions (analogue)

capable of representing a wider range of behaviour.

Activation functions like the step and sign functions are binary. Such

functions are called as hard limit functions (Negnevitsky, 2005). Networks using

these functions are called linear separators (Negnevitsky, 2005). In an active

control process during task execution in the human body, the force output by the

muscles vary in accordance with neural stimulation. In other words activation can

be termed as continuous. And hence, the activation function used in the neurons

of the hidden and output layers of the network is the sigmoid function.

S =
1

1 + e−X
(5.38)

where X is the net weighted input, given by

X =
n∑
j=1

wjxj(t) (5.39)

Unlike hard limit functions, the sigmoid function converts any value be-

tween plus and minus infinity into a value ranged between 0 and 1 (see Figure 5.10).

This property makes it an ideal choice to use it as an activation function

for the neurons in the hidden and output layers. It can be seen later in Section 5.6

that muscle activation is represented by a value between 0 and 1.
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Figure 5.8: The fully connected time series predictor artificial neural network.
The input is the pose vector of the forefinger at time states t − 2, t − 1 and t,
which is an input vector containing 27 elements. In this particular network, there
are 9 hidden nodes. A0..A7 are the activations for the eight simulated muscles of
the forefinger.
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Figure 5.9: Recurrent architecture.

Figure 5.10: The continuous sigmoid function with output between 0 and 1.

5.6 Controlling Muscle Activations

According to Adamczyk and Crago (2000), “Activation and deactivation dynam-

ics are the processes that describe the delay between muscle force development
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(i.e., the delay between the neural excitation arriving at the muscle and the mus-

cle developing force) and relaxation (i.e., the delay between the neural excita-

tion ceasing and the muscle force falling to zero) that is a characteristic of the

excitation-contraction coupling.” Muscle activation is a complex time dependent

process that gradually generates the force. In short, a muscle activates when the

motor units fire and the actin-myosin cross-bridges start to form (IvyRose, 2010).

Force generation in a muscle is gradual and is dependent on both the activation

strength and duration. OpenSim is a biomechanical simulation toolkit used in the

analysis of muscle activation dynamics (OpenSim, 1990). Similar biomechanical

systems implement a Hill-type muscle model that models activation and deacti-

vation dynamics as first order differential equations. Activation is represented by

a real value in the interval (0, 1) making it a real-valued continuous optimization

problem. Unlike PD controllers where target angles can be negative, limiting ac-

tivations to a positive range makes it suitable for a neural network output using

sigmoid activation functions. This also allows the muscle behaviour to have a sin-

gular function (contract) and mimic the biological counterpart where antagonistic

muscles are used to generate opposing motion. The timing of activations during a

movement is too complex to recreate manually, especially when multiple muscles

are involved. The dynamic calculations involved are often complicated and time

consuming computationally.

5.6.1 Activation Modulation per frame

Time dependent functions, like the motion equation in dynamic simulations, mod-

ulate function variables at each time step. Dynamic simulation of an object re-

quires the calculation of the forces acting on it at every time step. Thus, in an

active control scenario like muscle actuated motion, forces produced by each mus-

cle must be known ahead to apply on the rigid body. This is achieved through

forward dynamics methods. In a normal rigid body simulation, the force value is

not modulated actively. The system computes the forces acting on the object in

the simulation environment, like gravity for example, and performs the Newtonian

calculation for each time step using time as a parameter. Examples of the said

passive simulation are an object falling under the force of gravity and bouncing

to rest, a ball rolling after a force is applied. On the contrary, constraining a

rolling ball on a curved trajectory requires modulation of the forces acting on it

at every time step. Thus, it can be summarised that force and time are important

quantities in generating motion through dynamics. Since the force is a vector, the

modulation is two fold:
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• Magnitude: The magnitude requires modulation at each step in order to

prevent the ball from off-shooting the trajectory. So corrective forces need

to be applied.

• Direction: Similarly the direction of force application is modulated to keep

in synch with the magnitude modulation and maintain the trajectory.

In the human body, the modulation is performed by the CNS through

a complex neural process (Shadmehr and Wise, 2005). Equation 5.4 in sub-

section 5.2 describes the force changes or force predictions in the model residing

in the CNS during a transition from one movement to another at every time step.

Figure 5.11: The untrained time activation graphs for the distal and inter pha-
langes for a period of 308 frames.

Through constant neural signalling, the central nervous system maintains

sustained activation in muscles to maintain positions or trajectories (MussaIvaldi

and Bizzi, 2000). This is necessary because neural stimulation in the CNS that
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pertains to a muscle movement creates a dynamic (as opposed to static) force

field. The sustained activation affects the muscle lengths which in turn affects or

produces the force generation of the muscle (MussaIvaldi and Bizzi, 2000). Nor-

mally differential equations are used to express the complex dynamics involved in

the simulation of muscle actuated control. Solving the differential equations al-

ways require numerical solvers and depending on the number of variables involved,

solving can be time inefficient. The number of force variables is dependent on the

number of muscles involved in the action. This generates a layer of complexity

with regard to activation prediction. If the force is not considered as a computa-

tional factor, the problem can be simplified through the use of neural computing

elements and the concept of a scaling representation of force.

The force acting on the body can be expressed linearly as a fixed force

magnitude (that is user specified) scaled by the muscle activations output by the

neural network (see Equation 5.40).

τi(t) = ai(t)|F | (5.40)

where τi(t) is the force of the muscle at time t, ai(t) is the activation of the

neuron innervating the muscle at time t and |F | is the force magnitude input by

the user.

With the muscle activations changing at every time step, scaling the force

magnitude using activations produce a changing force every time step. The force

magnitude is embedded with a directional vector by way of the muscle system

described in Chapter 4. Combining Eqn. 5.38 and Eqn. 5.39, the activation of the

output neuron i at time t is given by,

ai(t) =
1

1 + e
−

n∑
j=1

wjxj(t)
(5.41)

where n is the total number of incoming connections at neuron i and wj is

the weight and xj is the input of the jth connection.

The unknown activation function is highly non-linear and dynamic with a

vast search space. The neural network is used to approximate this function and

produce coordinated motion. (see Figure 5.11).

In a simulation, a typical output of the neural network would have activa-

tion values per frame (see Table 5.1).

The neural network has to recognise a mapping between the changing pose

of the limbs, input as pose vectors (see Table 5.2) and probable corresponding

muscle activations. In the course of a motion, there are some muscles that activate

and others that do not or all muscles activate at varying levels. The activations

are dependent on the type of motion, the direction of motion, the external forces
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Table 5.1: Activation modulation table for 8 muscles at time ranging from t0 to
tn

Time M1 M2 M3 M4 M5 M6 M7 M8
t0 a01 a02 a03 a04 a05 a06 a07 a08
t1 a11 a12 a13 a14 a15 a16 a17 a18
.... .... .... .... .... .... .... .... ....
tn an1 an2 an3 an4 an5 an6 an7 an8

involved that the motion is playing against. Since the neural network is receiving

constant input at each frame of simulation, there is a constant stream of output.

This is indicative of co-activation of the muscles. Thus every muscle is active

at every point of time. The determining factor for the shape or envelope of the

motion is the amount of activation for each muscle.

Table 5.2: The first 6 frames of the motion sample, converted into vectors for the
phalanges of the forefinger. The first training set is a motion sample of 308 frames.
The columns are in sets of x,y and z components.

X Y Z X Y Z X Y Z
4.8043 0.18845 0 2.6021 -0.0834 0 2.4028 -0.0777 0
4.8026 0.22652 0 2.6027 -0.0629 0 2.4033 -0.0590 0
4.8023 0.23661 0 2.603 -0.0573 0 2.4036 -0.0537 0
4.8031 0.22428 0 2.6029 -0.06534 0 2.4034 -0.0609 0
4.8028 0.22626 0 2.6028 -0.0644 0 2.4034 -0.0599 0
4.8034 0.22065 0 2.6029 -0.0675 0 2.4034 -0.0627 0

5.7 Standalone Outputs of Genetic Objective

Function and Neural Activation

Below are given screen captures of kinematic linkages first created in Maya, and

then later exported into the custom C++ application. The linkages consist of four

links in each chain. The linkage labeled A in the left image is the target chain

and chain B is the source. The application compares linkage B with linkage A to

calculate by what amount linkage B differs in pose from linkage A. The output of

the external comparison application (threshold, RMS differentials, source/target

linkage sizes and comparison result) is given below each set of images.

For all the cases in Table 5.3, the threshold (δ) is 0.15.

Below are given the new results after implementing the rotational invari-

ance comparison. The image on the left is screen captured from Maya and the
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Table 5.3: Objective Function Results

Case Description No: of
links

RMS Dif-
ferential

Result

1 Identical in pose and
proportion (see Fig-
ure 5.12)

4 0.0601041 Source and tar-
get chains are in
the same pose

2 Proportionally same,
different pose (see Fig-
ure 5.13)

4 0.201456 Source and tar-
get chains are in
different poses

3 Proportionally differ-
ent, identical pose (see
Figure 5.14)

4 0.0619632 Source and tar-
get chains are in
the same pose

4 Different both in pro-
portion and pose (see
Figure 5.15)

4 0.219443 Source and tar-
get chains are in
different poses

Figure 5.12: The two sets of linkage chains (Maya joint tool) created in Maya.
The brown coloured linkage labelled B is the source chain and the chain labelled
A is the target chain. On the right, the same two chains are exported from Maya
into the external application, which performs the comparison test. Both links are
proportionally same and maintain the same pose.

Figure 5.13: On the left, Maya scene and on the right the external application.
The source chain is in a different pose from the target chain.

image on the right is the screen capture of the application implementing the algo-

rithm.

In addition to acting as an objective function for the genetic algorithm,
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Figure 5.14: On the left, Maya scene and on the right the external application.
Here the source chain is of different proportions, but have the same pose and the
objective function can still compare the two poses.

Figure 5.15: On the left, Maya scene and on the right the external application.
The links are proportionally different and the poses are different.

Table 5.4: Objective Function Results after Local Space Transformation

Case Description No: of
links

RMS Dif-
ferential

Result

1 Identical in propor-
tion with same local
pose, different global
orientation (see Fig-
ure 5.16)

4 0.118765 Source and tar-
get chains are in
the same pose

2 Proportionally dif-
ferent, same local
pose, different global
orientation (see Fig-
ure 5.17)

4 0.118765 Source and tar-
get chains are in
the same pose

the algorithm can be used to retrieve animation frames from a motion sample of

4 segment skeletal linkage. In the following Table 5.5, the frame to be retrieved is

the frame where the RMS differential is zero. But the threshold given was 0.015

in order to retrieve the closest frames around the required frame (frame no: 46).

The time taken for retrieval is also shown. The motion sample had 300 frames in

total.
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Figure 5.16: On the left Maya and on the right, the output of the external ap-
plication. With the modified algorithm, the comparison works by identifying the
two linkages as having the same pose.

Figure 5.17: On the left Maya and on the right the output of the external applica-
tion. The modified algorithm recognizes the pose even when the source links are
in different proportions.

Table 5.5: Objective Function Results for Frame Retrieval

Frame No: RMS Differential Time taken (sec-
onds)

42 0.00203514 0.002
43 0.00126628 0.001
44 0.000650087 0.001
45 0.000217639 0.002
46 0 0.001
47 2.83306e-005 0.035
48 0.000334082 0.002
49 0.000948799 0.002
50 0.00190461 0.001

5.8 Summary

Biomechanical muscle models for generating human motion have sub-models like

activation dynamics, contraction dynamics and skeleton dynamics that involve

solving complex differential equations. Muscle dynamics, particularly coordination

of limbs through synergistic co-activations is a complex problem with a huge solu-

tion space. The human central nervous system traverses this space in a non-trivial

manner. For locomotor functions, the central nervous system contains neural mod-
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els (called CPGs) that generate cyclic patterns in the motor neural activation. But

movements that are non-repetitive and requiring an active modulation of motor

faculties to execute are difficult to represent using periodic functions. As men-

tioned in section 5.2, the CNS performs generalizations from previously executed

motions. The CNS uses the basis functions in the neurons participating in the

movement, which when combined can approximate linear or non-linear functions.

The objective of this research is to use the biological model of CNS motor control

as a basis to generate controlled muscle activations for given input motions. Ar-

tificial neural networks are used as a simplified facsimile of the biological neural

networks.

Thus, this chapter explained the control and computational system that

simulated the motor functions of the CNS using artificial neural networks. Due

to the difficulty of obtaining muscle activation data, the simulated motor control

system is trained using genetic algorithms. Genetic algorithms are very useful

in finding solutions where the search space is large. The network weights are

encoded as chromosomes and subjected to artificial evolution and selected based

on the fitness functions explained in sections 5.4.3.1 and 5.4.3.7.

In order to recreate the muscle activations that produced the sample mo-

tion, a technique called time series prediction is used with the artificial neural

networks where previous poses of the sample animation is used to generate pre-

dicted values of activations.

Thus ANNs, in conjunction with GAs are used to sample the large muscle

activation space to isolate the correct activations that correspond to recorded

surface motion.
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6
RESULTS AND ANALYSIS

6.1 Introduction

Muscle dynamics is computationally complex to perform manually, and hence

require a controller system to automatically manage the coordinated activations

that produce a given motion. This chapter applies the controller system concepts

detailed in the previous chapter to a dynamic hand model in a real-time game

physics environment and discusses the results of the generated animation. This

chapter also presents the results of a very early version of the system that used

PD controllers as actuators.

Section 6.2 gives a short description of the two broad groups of hand ani-

mation. Section 6.3 presents a the very early test results of a PD controller-based

dynamic hand model, an early physical model driven by an XBox360 game con-

troller, grasp contact determination tests (6.3.2) and the implemented Maya plug-

in. Starting from Section 6.4, the chapter presents the results and analysis of the

neural controlled muscle dynamics-based model. It presents motion tests of the

dynamic finger model rigged with the locator-based muscle system. It looks into

the time series predictor network format and effect of window sizes on convergence,

It also looks into the effects of scaling forces of the muscles and changing the orig-

inal motion pattern by using non-uniform force values. Sub-section 6.4.1 analyses

the motion produced using the system, the effect of noise addition in neural output

and activation graphs both prior to and after training. Sub-section 6.4.2 explains

a modification of the neural system to enable a procedural control system similar

to inverse kinematics. And finally, in Section 6.5 the current problems and short

comings of the system like accuracy of the physics engine are examined.
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6.2 Types of Hand Animation

In the real world, since we use our hands for a variety of purposes, many of

which are purely based on the context of usage. This research classifies the hand

movements into two categories:

• Hand gesture: Hands are used for communicating through gestures. For

the hearing impaired, a gestural language itself is developed called sign lan-

guage and is widely used in conversing. An example is American Sign Lan-

guage (ASL) (Xu et al., 2009). Gestural interfaces are a hot bed for research

in Human-Computer Interaction (HCI). In gestural animation, interaction

is devoid of contact with the environment. From a physical point of view,

the environment has little (gravitational forces) or no effect on the internal

forces generated by the muscles and tendons of the hand.

• Hand grasping: Grasps form the base type of interactive function that

hands evolved to perform. There are different categories of types of grasps

(Napier, 1956). Grasps require our hands to have physical contact with the

environment with an exchange of forces. Complexity of grasps lies in the

balancing of forces to maintain a stable grasp.

Observational analysis makes it clear that all hand animation, either falls

into or into subsets of these categories. Having stated that, there are also types of

hand animation, which fall into neither of the above classification, namely, push,

touch, rub etc. And a few of those are difficult to be isolated from a full body

motion and are the direct result of movement initiated by muscles higher up the

fore limbs. These types of motion are not the subject of this research.

6.3 Results during the Initial Phases

A review of existing research proved that considerable work was already done in

the area of grasping animation like the work done by Nancy S. Pollard ((Pol-

lard and Zordan, 2005), (Li and Pollard, 2005), (Pollard, 2004), (Pollard, 1996)).

While grasping research examined computational problems, grasp animations were

implemented through traditional inverse kinematics methods and PD controllers

(Pollard and Zordan, 2005). The composite problem of hand animation in grasp-

ing was divided into two layers, namely, the computational layer (mapping points

on the object using both object and hand properties) and the animation layer

(that actually moves the fingers to the mapped regions computed on the object in

the previous layer). The animation layer is further sub-divided into two groups,
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which are traditional key-frame animation and physics-based animation. So it

was evident that the area for research had to be narrowed. Muscle-based physical

motion proved ideal in view of the techniques intended for use.

Before present iteration of the physical system, the early prototype used for

experimentation used hand models (proportional to a real hand skeleton), which

relied on a deprecated concave mesh support in the PhysX engine (Ageia, 2006).

The concave mesh (as opposed to convex mesh) allowed for converting polyhedral

meshes directly into a rigid body. And so, hand models from Maya were directly

imported into the PhysX engine. Due to drastic reduction in performance while

using high-resolution meshes as rigid bodies, the researcher opted for a “box”

model of the hand, created in Maya using the high-resolution mesh as a reference

and directly imported into PhysX as a concave mesh. Concave mesh support was

later removed by the developers. Also, collision detection between concave meshes

was performed by another deprecated API structure called PMap (Ageia, 2006).

By redesigning the system later and combining convex meshed rigid bodies with

high-resolution mesh models proved to be extremely efficient and aesthetically

pleasing. The muscle system was also very rudimentary. Tests were done with

implicit Proportional Derivative joint springs. The explicit actuator tested was

an ordinary line-of-action based muscle actuator with joint wrapping absent. The

following sub-sections present the results obtained during the initial phases.

6.3.1 Early Physical Model

In the real world, muscle contractions and expansions drive the skeletons in con-

trast to the virtual world where the reverse takes place. In a musculo-tendon en-

semble, the force is developed in the muscle and transmitted to the bones through

the tendons. Some filtering occurs in the true contraction force due to the non-

linear passive properties of the connective tissues (Maurel et al., 1998). It also

depends non-linearly on the current length, velocity and activation of the muscle

spindle. Biomechanical models help in measuring musculo-tendon force genera-

tion. A basic model is the linear spring-damper, which views muscles as spring-like,

exhibiting linear forces in the direction determined by an origin and an insertion

point (Maurel et al., 1998).

f = ks(Lc − Lr) + kdvs (6.1)

where f is the spring force, ks is the spring constant, Lc and Lr the current

and rest spring length respectively, kd is the dampening constant and vs is the

spring velocity. Another type of virtual spring popularly called the Proportional

Derivative Controller is used to keep a control variable and its derivative within
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the neighbourhood of desired values (Parent, 2007, p. 240-241). A PD controller

is a continuous controller; generating target poses automatically from the current

state of the system. PD controllers are useful for biasing a model toward a given

motion and allowing it to react to system forces.

τi = kp(θd − θ)− kd
.

θ (6.2)

where τi is the torque, kp and kd are the proportional and derivative constants, θ

and
.

θ are the angle and angular velocity respectively.

The proportional gain controls the strength of the spring while the deriva-

tive gain adjusts how smoothly the joint reaches the desired value. Without mus-

cles to apply passive forces to the linkage, the rigid body linkage would behave

like a loose chain (Figure 6.1).

Figure 6.1: On the left, shows the effect of the absence of PD spring muscles. On
the right, shows the effect of passive forces on the linkages from the joint springs
functioning as muscles (PD). The pale green lines at the joints (blue boxes) denote
the axis of rotation.

In order to observe the real-time motion behaviour of the fingers, the PD ac-

tuator was hooked up to a standard XBox360 controller. Support for the XBox360

controller was provided through the unified framework classes designed by the re-

searcher. These classes adhere to strict object oriented design practices giving it

flexibility and ease of use along with extensibility to use in other applications us-

ing the framework. Flexing of the fingers is controlled using the analogue triggers

on the controller. The analogue output ranges between 0-255, which is normal-

ized and clamped. This enables a precise and smooth control of the animation in

real-time (Figure 6.2).

The PD controller has a couple of advantages. The motion produced looked

organic. Maintaining static poses was stable. The disadvantage was that, the

spring constants of the joint required a lot of fine-tuning to get the correct amount
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Figure 6.2: The dynamic finger (in white) is equipped with PD controllers on
each joint while the linkage (in red) has a line of action force actuator. Both are
controlled using the XBox360 gaming controller providing continuous control.

of compliance. The PD controller works fine as long the joint was a revolute type

with a single degree of freedom. Multiple degrees of freedom require manipulation

of the joint axis in addition to the spring constant and damping values. For a

highly articulated organ like the hand, with 15 articulate joints (excluding the

wrist), the number of tunable parameters would more than double the number of

joints.

Figure 6.3: A Qt-based application and UI that demonstrates the PD controller.
On the right window is the motion capture sample motion (with the animation
takes listed in the list box below) and on the left is the simulated rigid body hand
model with attached PD controllers at the joints.

A Qt-based stand alone application was also designed to interactively ma-
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nipulate and observe the PD controller (see Figure 6.3). Once the simulation is

connected to the motion capture animation (read from an Autodesk FBX file),

the PD controller tries to track the animation. The animation can also be played

manually by scrubbing the time-line controller. The PD controller requires a con-

siderable amount of tuning to accurately track the motion.

Anatomical joints, acting merely as constraints unlike the PD controlled

joints in PhysX, are not powered by any actuator.

6.3.2 Grasp Contact Determination Tests

Susan J. Lederman in Lederman and Wing (2003) says “Object symmetry is a

visual attribute that may contribute to perceptual judgement and to action”.

For grasping an object, determining the grasping points on the object is essential.

And so symmetry of an object might be a deciding factor for a sub-conscious brain

function of grasp point determination. Without direct contact interaction, humans

achieve this mainly through the primary sense of vision. Visual interpretation

of the object is used to estimate the center of mass of the object (Lederman

and Wing, 2003). We judge an object to be manipulated by mentally mapping

grasping points on the object, depending on object geometry, size and also task.

The former two factors are quantifiable as far as computer graphics is concerned,

but the last factor is purely based on human judgement and prior knowledge,

which would be difficult to describe mathematically in a precise manner. Even

though the type of objects in the real world varies, there is a great degree of

redundancy in the type of grasps used by humans. Since many successful grasps

are whole-hand or enveloping or power grasps, one plausible solution suggested in

Pollard (1996) is to develop grasping prototypes, like a generic cylinder grasp, and

apply that to common objects. The grasping pre-shapes, which are the result of

gross simplification of grasping tasks is classified into grasp taxonomies (Napier,

1956).

One of the easiest approaches is to use the line of action (a direction along

which force is applied) of the fingers to determine preliminary contact points on

the surface of the object. These lines of action can also be used for computing

grasp contacts on the object surface and temporary spring attachments can be

created to fix the hand on the object at runtime. The thumb plays a crucial

role in any feasible grasp. It is the opposable nature of the thumb that allows

for different types of grasps and provides for stability (Napier and Tuttle, 1993).

Upon observation of grasps (both power and precision), it can be seen that the

thumb is the convergence point of the line of action of the fingers during a grasping

action. This action line convergence point, which is the meeting point of all the
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fingers, can also be offset from the thumb but staying within the finger limits

(which can together be called a grasp volume) and can be shifted around to direct

finger movements (Figure 6.4).

Figure 6.4: Action line convergence point (red sphere), a guide for lines of force.

Initial implementation of this theory was done within the Autodesk Maya

graphics environment using the Maya C++ Application Programming Interface

(API) (see Figure 6.5). The meshes of the object and hand used were discrete

polygonal meshes rather than implicit surfaces. The Maya API facilitates the

creation of user-defined nodes, which allow custom plug-ins to be integrated into

the Maya dependency graph. With nodes it is possible to get real-time feedback

in the view port.

Since discrete meshes (triangulated) are used, contact points on the meshes

are represented as triangles. But then this restriction is purely based on how the

action line is represented, whether as a line or as an action volume, with the

thumb as the convergence point. With the action volume (group of action lines),

each contact point would become a contact region. It is also possible to keep the

intersection point of the action line as a point rather than as a triangle or group

of triangles. In Maya locators are graphical objects that denote position in space

acting as a reference point for the artist. In order to test the concept of action

lines, locators are placed on the fingertips of the three fingered gripper model.

The gripper is rigged using the standard joint skeleton interface provided

in Maya and animated using forward kinematics.

Each triangle can be treated as a plane and intersections of the action line

can be calculated using simple vector math. A plane is represented by the C/C++

structure:
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Figure 6.5: Screen capture of the Maya plug-in implementation of contact deter-
mination, using a three-fingered gripper. The highlighted green patches on the
sphere show possible contact points along the action line.

s t r u c t Plane

{

MFloatVector n ;

f l o a t d ;

} ;

The structure holds the normal vector, n, to the plane and the distance of

the plane from the origin, d. Each triangle in the target mesh is iterated over, and

the plane equation for the triangle is calculated.

If a,b and c are the vertices of the triangle, then

V 1 = b− a (6.3)

V 2 = c− a (6.4)

where V 1 and V 2 are the vectors from vertex a to vertex b and vertex a to vertex

c. Then the normal n is

n = V 1 × V 2 (6.5)

(×) denotes cross product. The distance of the plane from the origin, d, is found

by finding the dot product of the normal n and vertex a of the triangle.

d = n · a (6.6)

Action lines are represented by a C++ class, which holds the two end points of

the line. If (x1, y1, z1) and (x2, y2, z2) represent the two endpoints of the line, a
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vector V can be found using

V = (x2, y2, z2)− (x1, y1, z1) (6.7)

In order to find the intersection between the action line and the plane containing

the triangle, let

S(t) = A+ t(B − A) (6.8)

where 0 ≤ t ≤ 1 is a parametric equation of the action line, where A and B are

the two end points on the line, so B − A = V and

(n ·X) = d (6.9)

is the vector plane equation and X = (x, y, z). Substituting the parametric equa-

tion for X in the plane equation and solving for t obtains the t value of intersection

of the segment with the plane:

(n · (A+ t(B − A))) = d (6.10)

n · A+ tn · (B − A) = d (6.11)

tn · (B − A) = d− n · A (6.12)

t =
(d− n · A)

(n · (B − A))
(6.13)

If the value of t falls within the range, 0 ≤ t ≤ 1, then the line intersects the

plane. The expression for t can now be inserted into the parametric equation (see

Eqn. 6.8) for the segment to find the actual intersection point Q:

S(t) = S(
(d− n · A)

(n · (B − A))
) =

A+ [(d− n · A)

(n · (B − A))](B − A)
(6.14)

A plane is infinite. Therefore, it is not merely enough to find the intersection of

the line with the plane, but it is essential to find which triangle on the target

mesh contains the intersected plane. Thus a check is required to see if the point

of intersection is inside the required triangle or not. Unlike an iterative algorithm

like the Jordan Curve Theorem 1 (Hatcher, 2002) a simpler and efficient vector

math solution is the Same Side Technique and works well with triangles and is

also extensible to convex polygons and iteration needs to be done only for the

1Essentially, it says that a point is inside a polygon if, for any ray from this point, there is
an odd number of crossings of the ray with the polygon’s edges.
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number of vertices (Scott, 2012). If the mesh used is triangulated, the number of

iterations remains 3. The mesh used in the demonstration has convex polygons

with different number of sides.

Let A(x1, y1, z1), B(x2, y2, z2), C(x3, y3, z3) be the vertices of the triangle

∆ABC and Q denote the intersection point on the plane. Then average of the

vertices can be defined by the point, Pavg where

Pavg = {(x1 + x2 + x3)

3
}, {(y1 + y2 + y3)

3
}, {(z1 + z2 + z3)

3
} (6.15)

Now let V 1,V 2,V 3 denote the vectors from A to B, A to Pavg and A to Q.

V 1 = B − A (6.16)

V 2 = Pavg − A (6.17)

V 3 = Q− A (6.18)

Taking the cross product of the vectors,

V n1 = V 1 × V 2 (6.19)

V n2 = V 1 × V 3 (6.20)

Now Pavg is the centroid of the ∆ABC. In order for the intersection point to be

inside the triangle, it has to be on the same side of the edges of the triangle as

the centroid (Scott, 2012). That condition is satisfied if and only if the product

of the z components of the vectors V n1and V n2 is a negative value ie.

(V n1 · z)(V n2 · z) < 0 (6.21)

This condition has to be satisfied by all the three edges of the triangle. Then it

can be concluded that the intersection point is within the triangle.

6.4 Results of the Current System

NVidia’s real-time physics engine PhysX was used for all the simulations in the

implementation. The development platform was a Windows 7 laptop with an Intel

i3 2.4 GHz processor and a system memory of 4 Gb equipped with an NVidia

GeForce GT 415M graphics card with 1 Gb of video memory. Early development

was also done on a Windows Vista laptop with an Intel Core Duo 1.86 GHz
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processor with 2 Gb of memory and an NVidia GeForce Go 7300 graphics card

having 400 Mb of video memory.

In preparation for neural control, the forefinger is rigged using the muscle

locators in Autodesk Maya (see Figure 6.6). Using anatomical and other references

(from Gray (2006), Valero-Cuevas and Lipson (2004), Valero-Cuevas et al. (2007)),

the tendinuous hood of the fingers was re-constructed in a simplified manner for

a real-time context.

The finger muscles were broken down into 8 muscles based on 4 movement

groups (see Table 6.1)

Table 6.1: Movement vs muscles

Finger Movements No: of Muscles
Flexion 3
Extension 3
Abduction 1
Adduction 1

Figure 6.6: The images show the muscle rig laid out in Maya (top) and the dynamic
muscle system created in PhysX (below) using the rig information. Extensor,
flexor, abductor and adductor muscles are added.

During the configuration of the physical hand model in PhysX, the metacarpal

phalanx of the forefinger and the cuboid rigid body (representing the wrist) it is

attached to are configured as kinematic (see Figure 6.7). Kinematic bodies in
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PhysX are not dynamic (impervious to forces), retain only position in space and

have no velocity component (Ageia, 2006). The position of a kinematic body in

space can be moved only by directly changing it and not through the action of

forces. The kinematic constraint was imposed to reduce DoFs and number of

muscles and also to eliminate the need for simulating antagonistic muscle action

(to keep the phalanx steady). If the metacarpal phalanx and the cuboid body

were to be made dynamic, then additional muscle structures would be necessary

to counteract the forces exerted by the muscles of the proximal, inter and distal

phalanges. The training sample motion lacks arm motion thus preventing training

of any upper wrist muscles. Moreover, the metacarpal phalanx only articulates at

the wrist joint, which in this case is fixed.

Based on the structure of the human hand, there are two ways of creating

the neural network controller. They are:

• Single neural network controlling all the muscles as a group

• Individual neural networks for each finger.

The method chosen directly affects training time, performance efficiency and mem-

ory usage. The first method has obvious disadvantages over the other. With each

finger having 8 muscles that control the movements, there are 40 muscles in the

model which suggests that there would be 40 output neurons mapped to the re-

spective muscles. The input to the network is in the form of three dimensional

vectors specifying the orientation of the skeleton. There are three vectors per

chain having three components each of which are fed into the network via indi-

vidual input neurons. In a fully connected three layer network, each neuron in a

preceding layer is connected to every neuron in the succeeding layer. The number

of connections defines the number of weights in the network. Table 6.2 shows the

number of connections which in turn gives the size of the chromosome. The table

calculates the chromosome sizes for the two possible controller generation methods

stated above. The example uses two neural networks with 47 hidden neurons. The

total number of muscles for all five fingers is 40 (based on the movement groups

for one finger).

The number of connections is given by the following formula:

C =
l−1∑
i=0

(Ni)(Ni+1) (6.22)

where N is the number of neurons in the layer i.

There are 8 muscles mapped to 8 neurons. Research confirms the existence

of independent neural networks controlling individual digits to coordinate finger
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Figure 6.7: Frames taken from muscle twitching. Finger joint constraints are not
imposed and the muscle activation is not coordinated (absence of neural control)
thereby creating random movements.

forces during grasping tasks (Burstedt et al., 1997). Based on those findings and

also based on the duplicative nature of the musculotendon layout on each finger,

individually training each finger is preferred. The laterality in both the dynamic
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Figure 6.8: Finger flex using the muscle system described in Chapter 4.

Table 6.2: Neural network and Chromosome statistic

Method Input No: of
Muscles

Hidden Output Chromosome
Size

Single
ANN con-
troller for
the whole
hand

135 40 47 40 8225

Individual
ANN con-
troller for
each finger

9 8 47 8 799
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Figure 6.9: The forefinger bone model with the muscle system performing abduc-
tion movement.

hand model and the motion capture model used in training are different - the

dynamic hand model is a right hand while the motion capture model is a left
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Figure 6.10: The fully dynamic rigid body hand model with the muscles laid out
for each finger (top) and the forefinger and the little finger executing a motion
(bottom).

Table 6.3: Forefinger muscles to ANN output mapping. The muscle type is also
listed.

Output
Neuron
Index

Forefinger Muscle type

0 muscleGrpdistalEXT distal extensor
1 muscleGrpinterEXT inter extensor
2 muscleGrpproxiEXT proximal extensor
3 muscleGrpdistFLEX distal flexor
4 muscleGrpinterFLEX inter flexor
5 muscleGrpproxiFLE proximal flexor
6 muscleGrpABD abductor
7 muscleGrpADD adductor

hand.

The generalising property (synaptic plasticity) of the neural network allows

it to reproduce motion that is absent from the original training samples. In order

to adapt traditional motion capture data for input as training data for the network,

relevant data is extracted from the motion samples. The motion capture data used
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in this project is in the Autodesk FBX animation format. The relevant frame data

is read from the FBX data file and converted to a simple text format. The details

of the format is available in Appendix C.

The research began with the following questions,

• Is it possible to create a functional mapping between an end motion and the

underlying muscle activations without resorting to complex inverse dynamic

calculations and activation dynamics?

• What are the various techniques that can enhance the training model of the

network?

Muscle activation and force quantification and thereby prediction occupies

a vast search space. There is no upper or lower limits that define a range. GAs

are well suited to find the correct solution from large spaces. This is largely due

to the parallel nature of GAs. In the context of finding muscle activations, the

process requires massive iterations using very large chromosomes. Chromosome

size is largely dependent on the number of neurons in the artificial neural network

which directly affects the size of the encoding chromosome. This methodology of

finding the correct muscle activations from a large search space uses two black box

systems namely, the GA and the ANN.

The mechanism by which they converge on solutions is little understood.

Previous research attempted to theoretically analyse genetic algorithms and ex-

plain the reason why they work (Senaratna, 2005). A key example is the Schema

Theorem which was a stepping stone to succeeding mathematical models that

tried to clarify certain fundamental questions regarding the role of the genetic

operators in the GA, namely, crossover and mutation (Senaratna, 2005). The ar-

gument, famously known as the Crossover-Mutation debate, is as yet unresolved.

The success of GA depends on probabilities on how a schema of high fitness is

transferred into future generations by surviving the genetic operations performed

on it.

The presence of two black box techniques made solution convergence diffi-

cult. The reasons are:

• Number of training samples: Effect of the number of training samples varies

with the problem. It depends on the type of feature one expects the network

to extract from the training samples. In the system under discussion, the

network is expected to produce real-valued activations that corresponds to

time varying poses and generalise to unknown poses. Hence, the better

variation in poses, would allow the network to generalise.
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• Population size: Initial population size determines the sampling size from

the search space. The bigger the population size, the higher the probability

of finding the solution from the search space, but with an increase in time.

• ANN hidden layer size: As mentioned in the previous chapter, the hidden

layer size is a heuristic. Initially, the number of neurons in the hidden layer

was judged by taking the average of the number of layers in the input and

output layer neurons. But during later stages, a brute force manual method

of trial and error was performed. There is always the case of over-fitting if

there are too many neurons and under-fitting if there are too less. Standard

back-propagation neural networks normally start with a high number of

hidden layer neurons. But since the learning model is a genetic algorithm,

size of the encoding chromosome also needs to be considered.

• Choosing the best convergence strategy: In an evolutionary system, con-

vergence strategies can vary from the type of genetic operators used to the

variations in the actual evolution scheme used. For example, pure GAs (us-

ing standard genetic operators) or using only the mutation operator or using

a completely different strategy like Hill Climbing.

Encoding scheme for network evolution was strictly real valued instead of

the standard binary string format popular with GAs. There were a few factors

that influenced the choice of the encoding scheme. They are:

• Loss of precision in conversion: Data is lost during conversion to binary

format, specifically in deciding the number of bits to represent the real value.

• Length of chromosomes: Binary string chromosomes tend to be large. The

bit string length can be compounded due to the fact that in evolutionary

neural networks, synaptic weights form the schemata and the number of

weights are dependent on the number of connections. A binary string rep-

resentation of real-valued weight genes can be impossibly large. Such large

sized chromosomes can be detrimental to the GA convergence.

• Use of specialized genetic operators: Real-valued chromosomes allow the use

of specialized genetic operators like the mutation operator using the variance

vector, which is not possible with the binary string chromosomes.

The method that successfully produced a solution was the time series pre-

dictor network. From a single input sample, the predictor was able to provide a

solution that generalised to three available unknown samples.
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The neural control system described explores the learning and generation of

muscle activations with multiple constraints imposed. Using motion-training sam-

ples, the virtual nervous system is taught to produce synergistic muscle activations

to produce motion theoretically matching the training samples. A mapping be-

tween a surface motion template and virtual muscle system is attempted through

a stochastic exploration of muscle activation space. In order to achieve this goal,

the system is presented only with the motion template or sample. There are

no electromyographic data recordings to enable parameter extraction for neural

learning. This limitation is circumvented through the use of evolutionary neural

networks. Network weights are evolved through the use of Genetic Algorithms. In

the absence of quantifiable data that can help to derive an error between desired

and actual output, the system resorts to a random optimisation search method

that narrows the search using an objective function. Four different neural input

models were used, with each model building on the limitation of the previous

model (see Table 6.4).

Table 6.4: Various neural models used.

Neural Network type Result
Standard Feedforward with-
out state feedback

Unsuccessful

Discrete Time recurrent Unsuccessful
Feedforward with state
feedback

Unsuccessful in motion gen-
eration, but successful in
single pose retention

Time series prediction Successful in creating simi-
lar motion to the input sam-
ple

Stochastic optimisation methods like the GA, that behaves as the learning

model for an artificial neural network, can successfully extract coordinated muscle

activations from purely surface motion is. The speed and efficacy of the conver-

gence is purely dependent on the ability of the objective function to filter out the

bad solutions from a massive solution space. The objective functions implemented

as a part of the system are detailed in Chapter 5.

The original primary objective function used was a pose matching algo-

rithm that calculated the root mean error from the differences in the vector ori-

entations. The vectors were calculated from the skeletal segments of the motion

sample as well as the dynamic rigid body linkage that incorporated the virtual

muscles. Pose matching is the simplest and most direct method to compare sam-

ples of skeletal motion. But pose matching works best with kinematic motion

samples where key frames define the motion and where the interpolation value for
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the motion samples are equivalent. Physical simulation uses discrete time steps.

When comparing key frame data with physically simulated motion data, the in-

terpolation value and the time step are different. This means that there is no

one-to-one relation between the frames compared in the motion sample and the

output simulation. But this disparity is overcome by the iterative fitness calcula-

tion of the GA, because the objective is to compute muscle activations that allow

the simulated motion to match the input frames.

A neural model with a state feedback failed to produce the required motion.

The ANN was a standard feedforward network that accepted a set of 3D vectors

that defined a skeletal pose and also a second set of 3D vectors that defined the

output skeletal pose that was the feedback. A single frame (pose) from the motion

sample was given as input to the network. Even though unsuccessful in finding

the converged network that produced matching activations to the input sample,

the network learned to produce the single input poses. In order to achieve it the

network generated simultaneous activation of agonistic and antagonistic muscles

on the rigid body linkages.

The most crucial feature that the simulation depended on was the muscle

system. During simulation, the muscle system proved capable of generating a

wide variety of motion that remained within the physical constraints imposed.

The neural system during the course of learning generated complex activations

that were otherwise impossible to generate manually.

Once the network is trained and is capable of generating coordinated muscle

activations, the scaling force can be modified. This enables the appendage to

execute an input motion in lesser time. In other words, the speed of an action is

controlled by the force input.

The population size used was 50 with the number of hidden neurons at 30.

The GA was able to produce a good solution in 32 generations over a time period

of approximately 6-7 hours. Due to penalty fitness, the fitness is negative, with

higher fitness nearing 0 (see Figure 6.11).

The size of the window or the spacing between the input sequence is a

crucial factor in the network’s pattern recognition training. In the motion training,

with a sample having 308 frames, setting wide spacings of 15 frames failed to

produce any convergence even after 80 generations of genetic evolution.

6.4.1 Motion

Control is always an issue in physics-based character animation. The animator

requires absolute control over the characters in an industry where the director

reigns supreme where character acting is concerned. Kinematic techniques often
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Figure 6.11: The average fitness of each individual in the population over 32
generations in the time series prediction.

provide fine control of computer generated characters for the animators, whereas

dynamic techniques often require intuitive representation of the various simulation

parameters which the animator can easily understand and conceal as much of the

mathematics involved as possible. In spite of that control problems arise when

the character moves or behaves in ways unintended by the animator. Making

the characters anatomically similar and biomechanically function like the real-

world counterparts increases the complexity in control. Dynamics is based on

forces acting on bodies and an increase in the number of force actuators (muscles)

increases the number of parameters that require tuning to produce the motion the

animator desires. Separating forces from activation dynamics allow coordinated

muscle action to occur independently of the force generated. This is the idea

behind force scaling. Section 4.3.4 in Chapter 4 explains this simple concept in

detail. Force is not an easily quantifiable parameter which makes it very difficult

to manipulate the various muscles on the character to fine tune motion. The

complex task of coordinating muscle forces so that the limb reaches its end goal

is achieved through the neural controller using force magnitude as a user specified

parameter. This allows the user to define how slow or fast an action needs to

be. Force scaling is an important aspect of the system because the animator is

saved from the difficult task of providing various forces for the muscles and instead
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controls timing of the motion by providing a singular value for the muscle group.

Research from neuroscience (MussaIvaldi and Bizzi, 2000) shows similarity

between force scaling and biological dynamic computation by the central nervous

system. The experiments performed in (MussaIvaldi and Bizzi, 2000) suggests

a vector summation of the vector field generated by the central nervous system.

These forcefields represent motion primitives and the CNS, through a superpo-

sitioning of these various vector fields, produces a wide range of motion. The

summation of the vector field is used in MussaIvaldi and Bizzi (2000) to replace

the generic torque function in the inverse dynamic problem and each field is tuned

by a non-negative scalar value representing a supraspinal command 2. Reformulat-

ing the inverse dynamic problem suggests that joint torques are produced through

the modulation of the force fields. (MussaIvaldi and Bizzi, 2000) proves that

modulating the scalar coefficients in the reformulated inverse dynamic equation

produces intended minimum jerk movements. But it is still unclear as to how the

central nervous system derives the tuning coefficients purely based on the desired

movement.

6.4.1.1 Motion Generated versus Muscle Activation

The motion generated by the system is remarkably similar to the input motion. In

this section, a comparison is made between the input motion and the corresponding

muscle activations generated by the neural system. This gives an idea on the

pattern of activation/deactivation of specific muscles during the course of a motion.

The number of muscles in the human body are more than the number of DoFs,

which is called the redundancy problem (Lee et al., 2009). This indicates that there

is a probability that a specific motion can be generated at different points in time

using a different set of muscles. This is decided by the way the CNS uses muscle

synergies in order to solve the redundancy problem (Gazzaniga, 2004). The CNS

groups muscles based on tasks in order to reduce control signals. The exact nature

of synergy is a continuing subject of research.

In the implemented system there is constant muscle activation at every

time step of the simulation. The observed motion has a phase difference from

the input motion due to certain issues which are examined in section 6.5. A

comparison between activations and motion transitions can be performed to see

how activations vary with changes in the direction of motion. Figure 6.12 is the

generated muscle activation graphs for the distal phalanx of the forefinger for two

different sets of input motion. The highlighted section is enlarged in Figure 6.13.

2Supraspinal commands - Motor or postural commands that occur from above the spinal
column
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Figure 6.12: The top image is the muscle activation-time graph of the flexor tendon
of the distal phalanx of the forefinger, for a motion sample of 305 frames. The
image below is the muscle activation-time graph for the same but using a motion
sample consisting of 608 frames.

Two different motion samples (Motion Clip 1 and Motion Clip 2) are used

to show the activation/deactivation nature of the involved muscles during specific

actions like flexion or extension. Figure 6.12 and the scaled segment (see Fig-

ure 6.13) of the same, shows the activations of the flexor tendons in the distal

phalanx. The top image in Figure 6.13 shows the activations for a frame range of

70-150 for Motion Clip 1. The activations for the muscles are in the interval (0,1).

The peaks denote activations for the flexor tendon that causes the flexion of the

finger.

In the bottom image in Figure 6.13, the flexion starts from frame 213 for

Motion Clip 2. This matches the flexed finger pose for those frames in both the

generated and input motion. From frames 221-235, the graph shows fluctuation,
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Figure 6.13: Both images show activations/deactivations of the flexor tendons of
the distal phalanx for two different motion samples. The top image is from Motion
Clip 1 and the bottom image is from Motion Clip 2. These images represent the
re-scaled portions highlighted in Figure 6.12.

which reflects a positional turbulence in the motion sample. From frame 236,

there is a sudden drop in activation from 0.78 to 0. In the motion sample, this

indicates a full extension of the finger that do not require the activation of the

flexor muscles. Subsequently from frame 276, there is again a sudden flexion

activity. The corresponding motion frames can be seen in Table 6.5.

The graphs in Figure 6.14 show the activations and deactivations of the

extensor tendon of the distal phalanx. Between frames 58-76 approximately in the

re-scaled graph in Figure 6.14, it can be seen that there is a “W” shaped variation

in the activation. In the input motion, this corresponds to a perturbation of the

finger during full extension.

This pattern of activation and deactivation of muscles correspond to the
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Figure 6.14: The activations/deactivations of the extensor tendon of the distal
phalanx of the forefinger and the re-scaled portion of the highlighted section.
Both images show activations from Motion Clip 2
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Figure 6.15: On the top is the superimposed image showing the activations of both
flexor and extensor tendons of the distal phalanx of the forefinger. The bottom
image shows a re-scaled portion of the highlighted section in the top image.

direction of motion and the neural controller schedules activations on a task basis.

Muscles in close proximity to the direction of motion are activated while those

situated away are deactivated. The neural controller behaves similar to the CNS

in the scheduling and creating muscle synergies as per Gazzaniga (2004). Syn-

ergestic activity is evident in the behaviour of the controller because activation

of flexor muscles during the transition from extension to flexion varies depending

on the amount of flexion for each phalanges. The activity of both flexion and

extension between frame period 236-276 can be seen in Figure 6.15. Thus it can

be clearly seen that there is a pattern of activation and deactivation for the flexor

and extensor tendons between the specified frames. The flexor tendon deactivates

during the extension of the distal phalanx.
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It is also to be noted that there is a sharp decline in the activation of

the extensor tendon at frames at 235 and 273 approximately. But at the same

time there is an absence of corresponding activation in the flexor tendon at these

frames. This is primarily due to the activation of the other flexor tendons for

either the proximal or inter phalanges. This is further evidence of the synergestic

behaviour of the neural controller mimicking a biological nervous system.

6.4.1.2 Changing the Original Motion Pattern

During training of activation, the forces for each muscle are uniform, having a uni-

form value for the magnitudes. So the activations are scaled by the same amount.

But by providing non-uniform force magnitudes for each muscle, it is possible to

alter the original motion pattern. In a hand model though, the possibilities are

limited by the limited amount of movement available (extension, flexion, abduc-

tion and adduction). But if applied to an upper body or arm or full body motion,

the animator can create variations from the original motion allowing transitions.

The force scaling, since it is per muscle, can easily be converted to a user

interface in an animation package like Autodesk Maya. The scaling parameters

can be animated (having different values at every time step) and re-timed using

animation curves.

The motion generated by the trained neural network follows the motion

input with the muscles activating in a seemingly expected manner. The motion is

generated through muscle activations alone and this makes it possible to introduce

noise into the neuron output (see Figure 6.16). In Figure 6.16, a block representa-

tion of the hand is used. The muscles are not displayed as rendering the muscles

reduces frame rate drastically.

Table 6.5: Select key frames between frame period 236-276. The forefinger extends
from a flexed position and maintains the extended pose for a few frames and then
flexes again.

Medically, erratic motion in the human body can occur due to many rea-
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Figure 6.16: A few key frames captured from the generated animation. On the
left is the physical hand model and on the right are the corresponding frames from
the motion capture data.

164



Figure 6.17: Motion frame 385. On the left, is the frame without noise and on the
right is the frame with noise added on all the muscles of the forefinger.

sons. It occurs when the neural transmission of signals from the brain are not

conveyed properly to the muscles. This causes specific muscles to activate with

a delay or not activate at all. The limb or appendage is unable to achieve the

end goal due to improper activation. There are two ways to achieve this in the

current simulation - disconnecting specific muscles, thereby having zero effect of

activations and by introducing noise into the neural outputs. Figure 6.18 plots

path traced by the positions (x,y,z) of the distal phalanx of the forefinger before

and after noise addition. The 3D vector plot shows an entire motion cycle. It can

be seen in the top image the number of lines retracing the path in the course of

the motion. When noise is added, the original motion structure is retained but

path retrace is considerably less. Visually, the finger displayed sluggish motion

with perturbations in the motion. The noise addition causes erratic activations

causing the finger to be out of phase with the normal course of motion. Thus, the

finger occupies a different position at the same frame as the noiseless frame (see

Figure 6.17).

Figure 6.19 depicts the activation graph for the flexor tendon of the distal

phalanx prior to and after training for a particular training sample. There are

marked discrepancies in the activation at every frame in comparison. The range

of activation is also limited in the untrained version, whereas activation occurs

over the entire spectrum after training.

Capturing hand motion is difficult when compared to whole body motion

capture due to occlusion and capture volume (Jin and Hahn, 2005). Conventional

optical marker method is difficult to use due to the reduction in size of the subject.

A sensor glove is a widely used equipment in capturing hand motion data. But

there are normally medial axis offset errors, due to glove fitting problems. Jitter

in the data can also arise due to sensor noise. Such sensor noise causes errors in

the motion recorded. Physics engines produce motion using discrete time steps.

But since the forward motion is dependent on the previous temporal states of the
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Figure 6.18: A comparison of the motion graph of the distal phalanx of the fore-
finger, original (top) and when noise is added(bottom).

system, the resulting motion is smooth and continuous. There are no interpolation

errors which are seen in key frame animation or motion capture (recorded set of

key frames). The continuous nature of the motion generated by the physics engine

smoothed any motion disparities that existed in the original motion sample.

6.4.2 Procedural Control using an End-Effector

It is possible to change the inputs into a suitable animator-friendly format through

modification of inputs to the network and also through re-training, which would

push the technique towards its application in a production pipeline. An example

of such an animator-friendly format is an inverse kinematic (IK) style interface.

Inverse Kinematics computes the positions and orientations of each link in a chain
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Figure 6.19: The top image is the activation pattern of the distal flexor of the
forefinger after training and the image below is the pattern for the same prior to
training.

in order to position the end link at a desired position. IK-based control is essential

for procedural animation of characters as it is easier to specify an end position

than specify the position of each link. IK algorithms are commonly used in games

where motion blending is used in combination with IK to take into account the

weight and dynamics of the character (Edsall, 2003). A similar end-effector style

control guidance system is very useful in directing the motion of physically-based

characters using muscle actuators. The ANN inputs were modified to accept

three temporal states of an end effector position rather than the position of all the

segments of the finger. The hidden layer neurons were set to 30 as in the previous

motion training example. The forefinger motion was used to train the forefinger
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model. The input end-effector was calculated from the motion capture sample.

V end = V root + V 1 + V 2 + V 3 (6.23)

where V end is the end-effector vector, V root is the root joint vector of the

forefinger and V 1, V 2 and V 3 are the phalanx vectors of the finger.

V = V end − V root (6.24)

Vector V is is calculated both for the motion capture model and the dy-

namic model. Vector comparison is performed using Equation 4.10 in Chapter 4.

It was found that the muscle activation coordination was synchronized with

the direction of movement of the end target (see Fig. 6.20). The end target position

was procedurally controlled.

6.5 Current Problems and Shortcomings

Though successful in approximating an input motion, there are domains in the

system that would benefit from fine tuning and improved models. These are:

• Current real-time physics engines are able to perform complex simulations.

But even so, these software simulators are forced to compromise on simula-

tion techniques, collision resolution, constraint dynamics and other physics

implementation methodologies in order to achieve high frame rates and not

impede overall game performance. This causes accuracy issues, especially

in handling complex rigs of dynamic characters (the human hand in this

research). Constraints break down and collision handling can fail (See Fig-

ures 6.21 and 6.22). There are instances when the collision system fails to

handle the collision between the distal phalanx and the metacarpal phalanx

during forward motion (see Figure 6.21). But collision handles on the reverse

motion, thereby locking the finger indefinitely.

• With the help of licensed versions of commercial quality physics engines, it

is possible to extend existing feature sets and mould the engine to function

better with biomechanical character animations of high accuracy and real-

time performance.

• Accuracy in motion approximation can be improved by resorting to anatomi-

cal muscle layouts. The movement of linkages is dependent on the point and

direction of application of force. This describes the basic functionality of

muscles and the layout of muscles on the underlying skeletal structure. The
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Figure 6.20: The movement of the forefinger is controlled by a procedurally ani-
mated locator (blue sphere).
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current system employs a muscle layout which is referenced from robotics

literature (Pollard and Gilbert, 2002). Anatomical landmarks on the skele-

tal structure can be used as 3D fitting points in superpositioning using least

squares to easily transfer muscle layouts between characters having similar

morphology.

• Better and accurate objective functions for genetic evolution can help in

isolating networks that are more accurate in generating the input motion.

The difficulty in achieving fast convergence necessitates the use of objective

functions that generates a fitness metric by taking into account the entire

range of the input and output motion rather than per-frame pose states. One

method that accomplishes this is, generating a velocity map of the generated

motion and then comparing it with the map of the input motion could give a

better fitness factor. Comparison of velocity vectors can be performed using

the vector directional cosine algorithm described in Chapter 5.

Figure 6.21: A rare instance caught when the simulation broke down.

6.6 Summary

This chapter presented the simulation results and the possibility of using existing

game software and hardware technology to create biomechanically accurate phys-

ical animation is explored. Prior to presenting the results of the current system,

some early test results of a PD controller-based dynamic hand is described. The

PD controlled system was a stepping stone to designing the more anatomically

accurate current solution. A grasp contact determination concept is also explored
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Figure 6.22: An example of constraint violation when the rigid body segment
bends in an unnatural manner.

which is sufficiently generic to plug-in to the current system. The grasping con-

tact point generation determines the finger contact points on an object based on

line-of-action tests. The concept is implemented as a Maya plug-in to demonstrate

viability and compatibility with a conventional 3D software package.

Following that the results of the current unified system, consisting of the

neural controller and muscle model, are presented. The system is used to create

gestural animations of a dynamic model of the human hand. The movement and

constraints of the finger model is examined via manual input of muscle forces.

Noise is added to the output activations and the resulting motion is monitored.

It was also seen that the timing of the generated animation can be modified by

increasing or decreasing the magnitude of force for the muscles. A procedural end-

effector based interface for creating procedural animation using the current system

is also presented. This interface enables programmatic control over the rigid body

linkages by using end-effector positions rather than the 3D pose vectors of the

entire linkage. The shortcomings and problems of the existing system regarding

physics engine accuracy issues were also addressed.
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7
CONCLUSIONS AND FUTURE

WORK

7.1 Discussion

Physically-based character animation in games use joint torques generated by PD

controllers to achieve target poses. PD controllers are simple to implement and

are part of standard real-time physics engines. Active rag-dolls in games imple-

ment PD controllers to add realism to character motions during a fall or death.

These controllers are also used to create intelligent transitions between and from

motion capture and physically-based motion (see (Motion, 2011a)). But PD con-

trollers have limitations due to notable differences in function from anatomical

motion generation. The limitations prevent certain types of adaptive and pro-

cedural motion that are possible with a more accurate muscle actuated system.

Deterministic methods for simulating muscle dynamics are computationally ex-

pensive to perform in-game. The alternative is to create a re-usable system that

generalises to unknown target inputs and reduces computational overhead by an

order of magnitude. The concept of neuromuscular control is demonstrated using

a virtual physically-based model of the human hand with virtual muscle models

tracking an input kinematic gestural motion. In view of the neuromuscular control

system developed in this thesis, there are a few points that needs to be addressed.

Feedback systems in the human body play a vital role in control learning

of voluntary movements. Feedback is essential for skill acquisition, especially

response-initiated feedback that is common in physical movements (Shadmehr

and Wise, 2005). In order to generate feedback information, sensors are necessary.
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The currently implemented system is an open-loop controller that foregoes direct

environmental feedback and hence there are no joint sensors in the physical model

of the hand. The only information that acts as an indirect feedback resides in the

objective functions for the GA, where a comparison is made between the input

pose and the output pose.

The accuracy of the motion tracking (muscle-based motion with captured

motion) is dependent on the muscle models. Mathematical models are approxi-

mations of the real anatomical muscles. The muscle locator-based muscle model

is a very simplified model compared to proper biomechanical models like the Hill

muscle model. For performance reasons, speed is preferred over accuracy. Thus,

the generated motion has certain phase discrepancies with the input motion. The

timing of the muscle activations is delayed and this reflects on the pose transitions

during the motion. One possible reason is that there are two sub-systems that re-

side on top of the actual physical hand model, namely, the neural activation layer

and the virtual muscle layer. But in spite of this discrepancy, the order of the ac-

tivations is in accordance with the direction of movement. So, the correct muscles

activate in the correct order so that the rigid body linkages of the fingers follow

the motion captured fingers. Also, muscle laying based on anatomy would improve

the motion. The system correctly mimics agonist/antagonist action found in the

human body. Even though a detailed anatomical study of the hand is beyond the

scope of this thesis, a sufficiently comprehensive description is given in Chapter 3

for reference to creating a better muscle layout system. A proper anatomical mus-

cle model would automatically warrant an anatomically compliant muscle layout

system.

Automatic trajectory correction is absent in the current system. This

means that the system is prone to perturbations due to external forces like gravity

or any other applied force. For corrective activations, the training process would

require an additional alteration. Since dynamic turbulences during motion cap-

ture is not specifically captured unless required, the perturbations would have to

be introduced to the physical model during the activation training. One possible

method is to add a perturbation vector as an input to the neural network. The

perturbation vector would be applied at every frame of the motion training al-

lowing the evolutionary learning model to incorporate perturbation adjustments

during weight modifications. For this process, the objective functions would re-

main unchanged.

The current system was modelled with game technology in mind. The

system caters more to procedural in-game animations post-training. But the pos-

sibility exists to convert it to an off-line animation system commonly found in

3D animated films and visual effects. Before proceeding with the conversion, it is
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essential to dissect the tools and methodology involved in a conventional anima-

tion production. 3D animation is often created using an animation software which

provides various tools for animating a character. A typical example is Autodesk’s

Maya or 3D Studio MAX. The mode of animations is kinematic, with dynamics

acting as an enhancement that animates the participating objects connected to

the character (like cloth or particles). There are also various muscle tools available

within these animations software, although these muscle tools are used for simu-

lating the effects of muscle movements as skin deformations instead of animating

the skeletal structure of the character. Animators are familiar with standard IK

and FK tools customised using their own control rigs. Therefore, there are two

options available for converting the neuromuscular animation system into a work-

able tool in an off-line system. For both options, the muscle model is required

for creating rigs. The options differs in the methodology of animation generation.

The options are:

• Interactive simulation of the muscle-rigged character is created within the

software (Maya or 3D Studio MAX) viewport allowing the artist to animate

the character using muscles which is then “baked” for render.

• The animator creates the animation traditionally (using IK/FK) while a

biomechanical proxy of the character with the muscles laid out, creates the

final animation during render time.

The second option is efficient because it brings the best of both kinematic

and dynamic techniques. Kinematic techniques are very efficient in giving real-

time feedback to the animator allowing him/her to modify key-frames and adjust

animation curves, whereas dynamics is very useful in bringing a level of secondary

realism that is very tedious to create using kinematic methods. There are numer-

ous other ways to integrate the current system into a production pipeline. Refer

to Appendix 7.3 for a detailed description.

7.2 Further Research

Further research with the existing system is possible in the following areas:

• Creating an improved skeletal muscle model: The muscle model implemented

currently was constructed with games and real-time physics engines in mind.

So complex activation dynamics calculations were abandoned and a linear

system favoured. Therefore, force-length and force-velocity dependency cal-

culations are absent. Implementing force-length cause and effect can improve
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realism and also pave way for an alternate method of training the neural

network, based on passive activations. Another area that would benefit is

creating a physics engine compliant true tendinuous structure using b-spline

models. This would better capture tendon-bone interaction mechanics with-

out compromising the quality of animation in a real-time physics engine.

• Using different neural network architectures and type: There are more com-

plex neuron models available that are time dependent and which model a

biological neuron more accurately. Examples of these types of networks are

Spiking Neural Networks and Continuous Time Recurrent Neural Networks

using time dependent neuron models. These neural networks model the com-

plex time dynamics involved in the CNS control system such as time delays

in the production of muscle forces. Using accurate neuron models bridges the

gap in understanding how motor control is achieved in biological organisms.

Simulating these types of networks is extremely processor intensive and get-

ting real-time performance and investigating suitably similar alternatives is

a good research area.

• Full body animation: The feasibility of the existing system is demonstrated

using the human hand which is an extremity of the human body. But the

same technique is well suited for full body animation. The primary research

focus would be a multi-network strategy for learning muscle activations and

motion styles from motion capture and combining it with balance simulation.

• GPU Acceleration: General purpose computing using the GPU is gaining

popularity where the problem to be solved is parallel in nature. The arti-

ficial neural network and genetic algorithms are highly suitable for parallel

processing on the GPU. The performance improvement and architecture de-

sign of the machine learning components using parallel languages like CUDA

and OpenCL is well worth researching. This would result in changes in the

design of the GA and Artificial Neural Network code. Likely advantages

would be speed in evolutionary processes and training.

7.3 Summary

In this thesis, a machine learning approach is undertaken, that successfully at-

tempted and simulated muscle activations from an input kinematic motion to

create physically-based muscle actuated motion of a set of articulated rigid bod-

ies, namely the hand. The main contributions and innovation of this research

are:
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• An artificial neural network-based predictor model that generates muscle

activations on a virtual muscle model which corresponds to the direction of

movement in motion data.

• A unique force scaling method that is used by the muscle model emulate

anatomical functionality with a game physics engine environment.

• A simplified linear piece-wise line segment-based muscle model that is opti-

mized for a generic commercial quality real-time game physics engine. From

a real-time perspective, this simplified model is very important. This muscle

model was specifically created for use in real-time media and foregoes elastic

behaviour. The elastic behaviour is simulated explicitly using joint springs.

• A training model for the artificial neural network that is based on an evo-

lutionary model using suitable objective functions that selects the fittest

controller network from a population of networks. The objective function is

also capable of extremely fast retrieval of a pose from a motion sample.

By encapsulating complex activation dynamics in a neural network model,

this system emphasises the ease of re-usability for converting kinematic animation

to dynamic animation.

Previous research using machine learning techniques attempting to teach

connectionist architectures, used recorded muscle activations as a base for gradient-

based learning algorithms. The research in this thesis was successful in circumvent-

ing the requirement of such recorded data, using purely captured motion as a basis

to reconstruct the muscle activations that originally produced the motion. The

problem was divided into two parts: creating a lightweight physics engine-based

muscle system and an artificial neural network- based controller that coordinated

the muscle activations.

The ANN controller is a standard feed-forward neural network that accepts

pose vectors as inputs and outputs muscle activations for the locator-based muscle

system. Captured motion is used as a basis to teach the computer to generate

coordinated muscle activations using artificial neural networks. 3D vectors are

generated from the motion sample and fed into the ANN. The ANN is also able

to provide solutions by generalising to unknown input vectors. The search space

of activations is huge primarily due to the number of participating muscles in an

action with varying forces and the size of the neural network that affects training

time. The space of activations a muscle can produce is constrained to an interval

(0,1). In order to traverse the vast search space, a genetic algorithm is implemented

to search the population of randomly generated neural networks and select the

best networks that produce the closest activations which would produce the input
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motion. A time series prediction method is used in the input architecture of the

ANN in order to aid in the time series pattern identification of the input motion

sample.

The muscle system implemented uses specific location specifiers (locators)

on the rigid body to define the muscle path. These locators act as contact force

generators when the muscle contracts. Muscle contraction is simulated using a

force scaling method that scales the magnitude of forces using the activations

generated by the controller.

The system was used to create gestural animations of the human hand. A

fully physics-based rigid body dynamic model of the human hand was constructed

and the muscle system laid out. The trained ANN successfully generated muscle

activations and produced hand motion that matches the input sample. The ANN

also generalised successfully, by producing matching motion to unknown input

motion. As an extended development, a user controlled end-effector target-based

ANN was also developed that successfully generated motion of the rigid body link-

ages by following the end-effector. This is useful in creating procedural grasping

animations. The system was also used to create motion changes through noise

additions in the network output.

Even though neural control is a non-trivial problem and produces the over-

head of neural training, the existing system performs robustly in a real-time envi-

ronment. Moreover, training is performed only once as an off-line process (though

still producing animations in real-time). A character endowed with biomechanical

virtual muscles can modify the target motion trajectory depending on changing

game scenarios. Such a biomechanical system allows for individual muscles in a

game character to be disconnected and the simulation would reflect the effect of

the de-activation in the motion generated (subject to other object interactions),

whereas in deterministic methods, muscle dynamics is not easily separable from the

set of mathematical equations that describe the contraction behaviour and hence

detrimental effects of muscular atrophy and neural damage in motion generation

is not easily simulated. This type of effect is useful in games to simulate injured

characters which is not possible with conventional PD controller driven physics

characters. From a production point of view, since the trained neural network

generalises to unknown motion samples, the system would be useful in convert-

ing a kinematic animation (key-framed or motion captured) into a physics-based

dynamic animation.

Physics-based character animation is still in its infancy. Due to its mathe-

matical nature, animator or artist friendly control parameters are always an issue.

Issues in managing control parameters and maintaining fine control are the main

reasons why dynamic character animation is only used in small portions in game
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animations. It is very processor intensive to drive all the animations physically.

Animators are comfortable with user interfaces that have been a part of the pro-

duction pipeline for a long time and drastic changes both in the interfaces and

animation methods require some time for adaptation . The key is to design in-

tuitive controllable parameters that allows the animator to treat physics-based

character animation and control in a manner very similar to its kinematic coun-

terparts.
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Appendix A

-

Numerical Methods

Physical simulation requires numerical solvers to solve the differential equations

of the laws of motion. Real-time physics engines (commercial and open source)

always use one or a combination of these methods for stepping the simulation

forward in time. Normally, physical simulations fall under a category called initial

value problems. All three methods use Taylors Theorem to approximate the value

of the function at time t+ h.

x(t0 + h) = x(t0) + h
.
x(t0) +

h2

2!

..
x(t0) +

h3

3!

...
x(t0) + ...+

hn

n!

∂nx

∂tn
+ ...

Eberly and Shoemake (2004) defines the theorem as: If x(t) and its deriva-

tives x(k)(t) for 1 ≤ k ≤ n are continuous in the closed interval [t0, t1] and x(n)(t)

is differentiable on the open interval (t0, t1) then there exists t−E[t0, t1] such that

x(t) =
n∑
k=0

x(k)(t0)

k!
(t1 − t0)k +

x(n+1)(t−)

(n+ 1)!
(t1 − t0)n+1

The polynomial,

Pn(t) =
n∑
k=0

x(k)(t0)

k!
(t− t0)k

is called the Taylor polynomial of degree n and can be used to compute an ap-

proximate value for x(t) and the remainder is

Rn(t) =
x(n+1)(t−)

(n+ 1)!
(t− t0)n+1

The summation form, the polynomial and the remainder are given as in Eberly

and Shoemake (2004), while the fully expanded Taylor series is as given in Witkin

(1997).
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Euler’s Method

The Eulers method of numerical solving of differential equations is the simplest and

the fastest. The drawback is its lack of stability and accuracy during simulation.

This is largely because of large truncation errors. Using n = 2 in the equation for

the Taylors theorem, it is possible to find the value of the simulation function at

a future time and gives,

x(ti+1) = x(ti) +
.
x(ti)h+

..
x(t−)

h2

2

Removing the remainder part of the equation (the second derivative of x), we get

the equation for Eulers method

yi+1 = yi +
.
x(ti)h, {i ≥ 0, y0 = x0}

The truncation of terms is evident from the fully expanded Taylor series given

in the beginning. This truncation of terms is crucial in understanding the error,

which in turn is needed to improvise the Euler method (for the RK4 method).

The error term starts with

h2

2!

..
x(t0)

From this the error is O(h2). Bigger values of h would increase the error. If

the step is halved, thereby reducing the error to one fourth, the number of steps

required to reach h would double. So the error is directly dependent on the time

step h.

Runga-Kutta Method

The Runge-Kutta methods of integration is a well used category of numerical

solving methods used in physical simulations. Eulers method also falls into this

category. This section looks into a particular form of the Runge-Kutta method

known as the Fourth Order Runge-Kutta method or RK4 for short. The RK4 is

O(h4) order of complexity. The RK4 requires computing four intermediate steps

between t and t+ h.

u1 = hif(ti, yi)

u2 = hif(ti + hi
2
, yi + 1

2
u1

u3 = hif(ti + hi
2
, yi + 1

2
u2)

u4 = hif(ti + hi, yi + u3)

yi+1 = yi + 1
6
[u1 + u2 + u3 + u4]
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The cost of the improved accuracy of the method is the requirement of four in-

termediate calculations per time step. The RK4 is a combination of two methods

(improved accuracy) not shown here, the modified Euler method and the mid-point

method.

Verlet Integration

The Verlet class of integration methods is a crossover from the field of molecular

dynamics into the world of games. Thomas Jakobsen developed and implemented

the algorithms using this method for the physical simulation of ragdolls in IO In-

teractives hit game Hitman: Codename 47 (Jakobsen, 2001). Verlet integration is

otherwise known as a velocity-less because it integrates position from acceleration

without using velocity. Hence, it is extremely useful in simulating particles (collec-

tion of very small, volumeless point masses) and also when simulating constrains

between the particles (Van Verth and Bishop, 2008).

Adding the Taylor expansion for the current time step with the previous

time step gives,

y(t+ h) + y(t− h) = y(t) + h
.
y(t) + h2

2

..
y(t) + ...+ y(t)− h

.
y(t) + h2

2

..
y(t)− ...

y(t+ h) = 2y(t)− y(t− h) + h2
..
y(t) +O(h4)

Eliminating the higher order terms,

y(t+ h) = 2y(t)− y(t− h) + h2
..

y(t)

This is an O(h2) solution that integrates position from acceleration without the

need for velocity and hence the velocity-less nature of the Verlet method. Being

time invariant, particle simulation using the Verlet method can be run forward and

backwards in time (Van Verth and Bishop, 2008). There are Verlet methods that

calculate velocities. Leapfrog Verlet and velocity Verlet are two Verlet methods

that track velocity (Van Verth and Bishop, 2008). Tracking velocity is essential

for the simulation of friction.
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Appendix B

Common Geometry Primitive Inertia Tensors

Physical simulation of rigid bodies requires the moment of inertia or inertia tensor

or masses in order to compute angular velocity and angular acceleration. The

inertia tensors of common object primitives are given below. Most of the commer-

cial (and non-commercial) physics engines support these primitives and therefore

use the following calculations.

Cuboid

I =


1
12
m(h2 + d2) 0 0

0 1
12
m(w2 + d2) 0

0 0 1
12
m(w2 + h2)



Sphere

I =


2
5
mr2 0 0

0 2
5
mr2 0

0 0 2
5
mr2
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Cylinder

I =


1
12
m(3r2 + h2) 0 0

0 1
12
m(3r2 + h2) 0

0 0 1
12
mr2
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Cone

I =


3
5
mh2 + 3

20
mr2 0 0

0 3
5
mh2 + 3

20
mr2 0

0 0 3
10
mr2
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Appendix C

Custom Text file Formats

Below are given the various text-based file formats created for exporting data

between the modelling framework (Autodesk Maya) and the simulation framework

(the PhysX application, training data extraction from the FBX motion data and

the neural net simulation module). All the formats are simple tag-based formats

similar to XML. In the future, possibility exists to convert the formats into pure

XML thereby standardizing the parsing process.

Joint file format

The joint export file format, as the name implies, is used to export the joint

information (position, orientation, type and connecting bodies). The tags are self-

explanatory. The information of a joint is placed between the < jnt >< /jnt >

tags, within which the above-mentioned information is placed, either as name-

value pairs or within nested tags, like the transformation matrix. The joint file

format has a file extension (.jnt).

<jnt>

name=DIPJnt

type=r e v j n t

actor1=Dista lPhalange

actor2=InterPhalange

<matrix>

0.7921975181 0.5870075717 0.1668688198 0

−0.5866499215 0.8078492867 −0.05675737545 0

−0.1681218662 −0.05293052805 0.9843441458 0

−11.40712835 8.165527518 1.5984333 1

</matrix>
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</jnt>

<jnt>

name=MCPJnt

type=sphjnt

actor1=MetacarpalPhalange

actor2=ProximalPhalange

<matrix>

0.9714396469 0.2372867726 0 0

−0.2372867726 0.9714396469 0 0

0 0 1 0

−3.89624726 10.60723316 1.760809397 1

</matrix>

</jnt>

<jnt>

name=PIPJnt

type=r e v j n t

actor1=InterPhalange

actor2=ProximalPhalange

<matrix>

0.9366352191 0.3478620296 0.04130949894 0

−0.347524196 0.9375457367 −0.0153272588 0

−0.04406131597 1.734723476 e−017 0.9990288286 0

−9.111888256 9.074044594 1.720138193 1

</matrix>

</jnt>

<jnt>

name=WristJnt

type=f i x j n t

actor1=MetacarpalPhalange

actor2=WristBox

<matrix>

0.9969053365 0 −0.07861138582 0

0 1 0 0

0.07861138582 0 0.9969053365 0

5.326832888 12.08383844 0.8308477492 1

</matrix>

</jnt>
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Object Export file Format

The various surface meshes (bones) are exported with vertex data to the PhysX

application. This object export file format serves this purpose. The vertex data

is given within the < object >< /object > tag. The vertex data is used by the

PhysX application to generate a convex hull rigid body. The object file format

has a file extension (.bdy).

<OBJECT>

NAME=WristBox

NUMVERTS=8

5.751612273 10.05044714 1.855332545

10.170724 10.05044714 1.855332545

5.751612273 12.44223467 1.855332545

10.170724 12.44223467 1.855332545

5.751612273 12.44223467 −4.551213571

10.170724 12.44223467 −4.551213571

5.751612273 10.05044714 −4.551213571

10.170724 10.05044714 −4.551213571

</OBJECT>

<OBJECT>

NAME=MetacarpalPhalange

NUMVERTS=8

−3.528156996 10.31964684 2.297899961

5.045786858 11.61166954 1.700646043

−3.62928009 10.99070358 2.297899961

4.944664001 12.28272724 1.700646043

−3.736160994 10.97459793 1.097776055

4.805333138 12.26173115 0.1361449957

−3.635037899 10.30354118 1.097776055

4.906455994 11.5906744 0.1361449957

</OBJECT>

<OBJECT>

NAME=ProximalPhalange

NUMVERTS=8

−8.786824226 8.788265231 2.298346444

−4.039862156 10.23062802 2.298346444

−8.984120369 9.437586787 2.298346444

−4.237157822 10.87994862 2.298346444

−8.984120369 9.437586787 1.093364521
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−4.237157822 10.87994862 1.093364521

−8.786824226 8.788265231 1.093364521

−4.039862156 10.23062802 1.093364521

</OBJECT>

<OBJECT>

NAME=InterPhalange

NUMVERTS=8

−11.13336919 7.955673218 2.161617041

−9.275342683 8.652562141 2.309717894

−11.3716924 8.591082573 2.161617041

−9.513665895 9.28797245 2.309717894

−11.28772328 8.622576714 0.9599769711

−9.429696779 9.319465637 1.108078003

−11.04940007 7.987166882 0.9599769711

−9.191373567 8.684056282 1.108078003

</OBJECT>

<OBJECT>

NAME=Dista lPhalange

NUMVERTS=8

−12.75316715 6.348068237 1.509700141

−11.38812256 7.696584225 2.071010194

−13.18757725 6.771625042 1.509700141

−11.87401962 8.170343399 2.071010194

−13.07863998 6.883353233 0.6978121023

−11.7152462 8.333185196 0.8876871686

−12.64423084 6.459795952 0.6978121023

−11.22934914 7.859426975 0.8876871686

</OBJECT>

Muscle Locator Export file Format

The muscle locator placed on the bone surface in Maya is exported using this

format. At present, not all the attributes of the muscle locator are exported. The

information exported include, the name of the bone surface on which the locator

is placed, the muscle group it belongs to, the transformation matrix, the type

of muscle locator (origin, insertion, intermediate) and the locators order in the

muscle group. The muscle locator file has a file extension (.mus).
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<muscleset>

<musclegroup id=muscleGrp distalEXT>

<muscle>

<o r i g i n>

order=0

segment=MetacarpalPhalange

<matrix>

0.9888357722 0.1490094484 0 0

−0.1490094484 0.9888357722 0 0

0 0 1 0

1.996658875 11.83848695 1.317274304 1

</matrix>

</o r i g i n>

<in termediate>

order=1

segment=MetacarpalPhalange

<matrix>

0.9888357634 0.1490095067 −2.067951531e−025 0

−0.1490095067 0.9888357634 2.27704485 e−008 0

3.393013297 e−009 −2.251623382e−008 1 0

−3.576016678 10.99873016 1.688745584 1

</matrix>

</intermediate>

<in termediate>

order=2

segment=ProximalPhalange

<matrix>

0.9568066023 0.2907251722 0 0

−0.2907251722 0.9568066023 0 0

0 0 1 0

−4.44748138 10.81604193 1.740745721 1

</matrix>

</intermediate>

<in termediate>

order=3

segment=ProximalPhalange

<matrix>

0.9568066106 0.290725145 0 0
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−0.290725145 0.9568066106 0 0

0 0 1 0

−8.8494893 9.47849436 1.665783631 1

</matrix>

</intermediate>

<in termediate>

order=4

segment=InterPhalange

<matrix>

0.9363078774 0.3511802368 0 0

−0.3511802368 0.9363078774 0 0

0 0 1 0

−9.595594244 9.257243031 1.618755017 1

</matrix>

</intermediate>

<in termediate>

order=5

segment=InterPhalange

<matrix>

0.9363076618 0.3511808116 0 0

−0.3511808116 0.9363076618 9.943059203 e−008 0

3.491811601 e−008 −9.309762513e−008 1 0

−11.22654475 8.64552301 1.513454727 1

</matrix>

</intermediate>

< i n s e r t i o n >

order=6

segment=Dista lPhalange

<matrix>

0.6852964908 0.7282626923 −0.001473352693 0

−0.7282626923 0.6852895929 −0.00340951965 0

−0.001473352693 0.00340951965 0.9999931022 0

−12.4335533 7.571922934 1.307185648 1

</matrix>

</ i n s e r t i o n >

</muscle>

</musclegroup>

<musclegroup id=muscleGrp interEXT>

<muscle>
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<o r i g i n>

order=0

segment=MetacarpalPhalange

<matrix>

0.9888357722 0.1490094484 0 0

−0.1490094484 0.9888357722 0 0

0 0 1 0

2.009875248 11.84047856 1.471239349 1

</matrix>

</o r i g i n>

<in termediate>

order=1

segment=MetacarpalPhalange

<matrix>

0.9888357634 0.1490095067 −2.067951531e−025 0

−0.1490095067 0.9888357634 2.27704485 e−008 0

3.393013297 e−009 −2.251623382e−008 1 0

−3.581821129 10.99785541 1.892260284 1

</matrix>

</intermediate>

<in termediate>

order=2

segment=ProximalPhalange

<matrix>

0.9568066023 0.2907251722 0 0

−0.2907251722 0.9568066023 0 0

0 0 1 0

−4.401774251 10.82993001 1.866454082 1

</matrix>

</intermediate>

<in termediate>

order=3

segment=ProximalPhalange

<matrix>

0.9568066106 0.290725145 0 0

−0.290725145 0.9568066106 0 0

0 0 1 0

−8.816305211 9.488577326 1.774725637 1

</matrix>
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</intermediate>

< i n s e r t i o n >

order=4

segment=InterPhalange

<matrix>

0.9363078774 0.3511802368 0 0

−0.3511802368 0.9363078774 0 0

0 0 1 0

−10.2266597 9.020549828 1.740064683 1

</matrix>

</ i n s e r t i o n >

</muscle>

</musclegroup>

<musclegroup id=muscleGrp proxiEXT>

<muscle>

<o r i g i n>

order=0

segment=MetacarpalPhalange

<matrix>

0.9888357722 0.1490094484 0 0

−0.1490094484 0.9888357722 0 0

0 0 1 0

1.941687484 11.8302032 1.010575503 1

</matrix>

</o r i g i n>

<in termediate>

order=1

segment=MetacarpalPhalange

<matrix>

0.9888357634 0.1490095067 −2.067951531e−025 0

−0.1490095067 0.9888357634 2.27704485 e−008 0

3.393013297 e−009 −2.251623382e−008 1 0

−3.569413846 10.99972527 1.371007116 1

</matrix>

</intermediate>

< i n s e r t i o n >

order=2

segment=ProximalPhalange

<matrix>
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0.9568066023 0.2907251722 0 0

−0.2907251722 0.9568066023 0 0

0 0 1 0

−6.72974206 10.12257834 1.507633453 1

</matrix>

</ i n s e r t i o n >

</muscle>

</musclegroup>

</muscleset>

Training Motion data Export file Format

The training data is extracted from the Autodesk FBX motion file. The vectors

specifying a linkage are calculated from the skeleton data. The data extracted

consists of global space coordinates of the computed vector as well as the origin

point of the vector and the direction cosines of the vector for orientation. The

above data is extracted on a per frame basis and stored between the < frame ><

/frame > tags. The frames are children of the < motion >< /motion > tag.

The training data export file format has a file extension (.trn).

<motion>

<frame=1>

<vectorcha in>

<id=0>

<vector>

<coords>

10.2684 1.21229 1.21229

</coords>

<dcos ines>

0.29335 1.45754 1.30139

</dcos ines>

<pos>

0 0 0

</pos>

</vector>

<vector>

<coords>

4.80482 0.168459 0.168459
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</coords>

<dcos ines>

0.079388 1.53584 1.49955

</dcos ines>

<pos>

10.2684 1.21229 2.85501

</pos>

</vector>

<vector>

<coords>

2.60172 −0.0937687 −0.0937687

</coords>

<dcos ines>

0.0796643 1.60673 1.49973

</dcos ines>

<pos>

15.0732 1.38074 3.19814

</pos>

</vector>

<vector>

<coords>

2.40235 −0.0868062 −0.0868062

</coords>

<dcos ines>

0.0797058 1.60682 1.49973

</dcos ines>

<pos>

17 .675 1.28698 3.38347

</pos>

</vector>

<endnode>

20.0773 1.20017 3 .5546

</endnode>

</vectorcha in>

</frame>

</motion>

194



Neural Network saving file Format

This file was created for writing out the neural network (neurons, layers, neuron

weights, threshold) settings. In the present state, it does not write out the archi-

tecture because the application uses a fully connected (between neurons of two

consecutive layers) network. The ANN file format has a file extension (.net).

<network>

< l a y e r s=3>

< l a y e r id=0>

< l a y e r=input>

<neuron id=0>

<inputs=1>

<th r e sho ld =0.0635681>

<weight=−0.498749>

</neuron>

<neuron id=1>

<inputs=1>

<th r e sho ld =0.308716>

<weight=−0.306702>

</neuron>

<neuron id=2>

<inputs=1>

<th r e sho ld =−0.0201416>

<weight =0.0849915>

</neuron>

</layer>

< l a y e r id=1>

< l a y e r=hidden>

<neuron id=0>

<inputs=3>

<th r e sho ld =0.246582>

<weight=−0.149719>

<weight =0.395935>

<weight =0.322815>

</neuron>

<neuron id=1>

<inputs=3>

<th r e sho ld =0.0135193>

<weight=−0.325897>
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<weight =0.358917>

<weight =0.21048>

</neuron>

<neuron id=2>

<inputs=3>

<th r e sho ld =−0.135559>

<weight=−0.196014>

<weight=−0.485016>

<weight=−0.4086>

</neuron>

<neuron id=3>

<inputs=3>

<th r e sho ld =−0.0543213>

<weight=−0.352692>

<weight=−0.334106>

<weight =0.488495>

</neuron>

<neuron id=4>

<inputs=3>

<th r e sho ld =−0.122131>

<weight=−0.38092>

<weight=−0.495331>

<weight=−0.491089>

</neuron>

</layer>

< l a y e r id=2>

< l a y e r=output>

<neuron id=0>

<inputs=5>

<th r e sho ld =0.163025>

<weight =0.0316467>

<weight =0.071167>

<weight =0.101746>

<weight =0.107147>

<weight=−0.333771>

</neuron>

<neuron id=1>

<inputs=5>

<th r e sho ld =0.302582>
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<weight =−0.0492249>

<weight=−0.147888>

<weight=−0.442963>

<weight =0.107666>

<weight =0.283295>

</neuron>

<neuron id=2>

<inputs=5>

<th r e sho ld =0.42569>

<weight =0.0198669>

<weight=−0.198059>

<weight =0.375946>

<weight =0.226654>

<weight =0.455872>

</neuron>

</layer>

</network>

End-effector Export file Format

The end effector locator is a matrix that denotes the position of the end of the

joint chain. This is important to rebuild the link in the simulation environment.

This file format has a file extension (.end).

<e n d e f f e c t o r p o i n t>

l inkID=WristJnt

name=endEf f ec to rPo intLocator

end l ink=Dista lPhalange

<matrix>

1 0 0 0

0 1 0 0

0 0 1 0

−12.88794707 6.529908363 1.065800936 1

</matrix>

</e n d e f f e c t o r p o i n t>
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Genetic Population Export file Format

It is possible to output the entire genetic population into a file. The following file

format was created with that purpose in mind. This is useful to stop and start

the evolution at any point. The file extension is .gao.

<HEADER>

EPOCH=10

POPULATION SIZE=50

MUTATION PROB=0.0175

CROSSOVER PROB=0

GENE SIZE=1050

VVECTOR SIZE=52500

</HEADER>

<CHROMOSOME ID=0>

FITNESS=−0.0112199

<GENES>

1.51318

1.36645

−1.00025

0.869028

0.02544

0.40674

−0.751089

0.871438

−0.716687

0.403261

.

.

.

.

</GENES>

<VARIANCE>

0.31787

0.533222

−0.317877

0.376147

−0.121852

0.450917

−0.444236
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0.546081

−0.338346

0.118954

−0.283533

0.689133

−0.103283

0.143662

−0.116119

0.684874

−0.131253

−0.701738

0.186323

0.011913

.

.

.

.

</VARIANCE>

</CHROMOSOME>

<CHROMOSOME ID=0>

FITNESS=−0.02119

<GENES>

.

.

.

</GENES>

<VARIANCE>

.

.

.</VARIANCE>

</CHROMOSOME>

Chromosome Export file Format

A single network weight encoded chromosome can also be exported. This is im-

portant refine the solution using other evolutionary optimization methods like Hill

Climbing. The file extension is .gas.
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<HEADER>

POPULATION SIZE=50

GENE SIZE=1050

VVECTOR SIZE=52500

</HEADER>

<CHROMOSOME ID=9>

FITNESS=−0.00380829

<GENES>

2.26061

4.51739

−1.5248

3.77671

−1.03259

3.26371

−2.60857

.

.

.

.

</GENES>

<VARIANCE>

0.497428

1.00317

−0.490078

0.893702

−0.24529

0.776144

−0.709042

0.82311

−0.665519

0.231937

−0.494683

1.62176

−0.215485

0.260736

−0.164094

1.38509

−0.339546
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−1.11774

.

.

.

.

</VARIANCE>

</CHROMOSOME>
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Appendix D

Maya Embedded Language (MEL) User

Interfaces

User interfaces are essential for the artists to interact with the underlying algo-

rithms in any software package. The user interfaces designed in the course of this

research are mainly for Autodesk Maya for exporting muscle rigs that are set up

by the artist. The main window consists mainly of text fields where the user enters

the file name and the path to export to, with the exception of the joint export

window. It mainly acts as a data entry interface for the user to specify exporting

parameters. The muscle rigs and various other data is exported from Maya into

the simulation using the various file formats detailed above. The export files are

configured depending on the user interface settings specified by the artist.

The joint export window provides a convenient interface that makes it easier

for the user to select and associate the bone meshes with the correct locator that

indicates the joint between them. The UI also provides a selection mechanism for

the types of joint the locator represents. The joint type is based on the standard

joints available in the Nvidia PhysX simulation engine. The joint types are selected

based on the similarity in function between it and an anatomical joint.
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Figure 1: MEL interface for exporting data.
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Figure 2: MEL interface for selecting and exporting joint data based on the 3D
model. The artist can also choose the type of joint used in the PhysX simulation
environment.
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Appendix E

Introduction

The system detailed as part of this research is prototypical. It is a proof-of-concept

resulting from an interdisciplinary study. Physics-based character animation and

control is still an active area of research and there are not many applications that

have managed to integrate it into a usable animation pipeline. The application

that deserves mention due to proper integration of machine learning and physics-

based character animation to synthesize motion behaviours is Natural Motions En-

dorphin (Motion, 2011a). Endorphin uses pre-created motion behaviours to drive

a physics-based full-body character skeleton. Adjusting parameters and changing

the simulation properties can develop various animation styles and thus there is no

“canned” animation. Other character animation tools include Havok Behaviour

from Havok, Kynapse from Autodesk and Natural Motions Morpheme (Havok,

2011)(Autodesk, 2011a)(Motion, 2011b). These toolsets are state-machine based

and uses parametric motion graphs or blend trees to blend between motion clips

from a database depending on the blend graphs created by the animator. Kynapse

is an AI middle-ware for games that use path finding algorithms and mesh naviga-

tion for navigating the non-player characters (NPCs) in large game environments.

It does not generate character animation. Havok also has a similar tool called

Havok AI. With the exception of Endorphin, all of the software mentioned above

uses traditional kinematic methods for animation generation.

In the system that forms the body of this research, a lot of feature sets

can be added to make it full-fledged and also modifications made in order to

make the system fit into a production animation pipeline. This appendix explores

the various parts where modifications are possible and also investigates adding

certain features, in view of research done elsewhere, so that the system becomes

production friendly.
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Possible Feature Sets

From a conventional production pipeline point of view, there are various software

and tools, which are used to create the effects and animations seen in visual

effects, games and animated movies. There are various departments that come

into combining all the output produced to generate a cohesive whole. But when

an isolated part of the pipeline is examined in-depth to integrate a completely

new system, it makes sense to plug in the different parts of the system under the

controlling application in the system. See Figure 3 and Figure 4 that shows a

fairly accurate production pipeline schematic followed in the games industry and

the film visual effects industry.

Figure 3: Games Pipeline. Image courtesy (Autodesk, 2011b)

Integration into the core Animation Application

Autodesk Maya is a core component of the production pipeline in the film vi-

sual effects industry. The easy-to-use intuitive interfaces and expandable plug-in

architecture allows developers to add functionality and new features when the sit-

uation asks for. Similarly, Autodesk 3D Studio Max is also very popular in the

gaming industry fast gaining popularity in the visual effects industry also. In a
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Figure 4: Film visual effects Pipeline. Image courtesy (Autodesk, 2011b)

conventional visual effects pipeline (see Figure 4), a 3D animation and modelling

package like Maya or 3D Studio Max plays an active role in the first three of the

four layers, namely, Pre-production and production, Asset creation and finally

Shots. Therefore it is beneficial to the production schedule, logistically (time) and

technically (troubleshooting and standardization of interchangeable formats) to

integrate the simulation system into Autodesk Maya (similarly for any other core

package). The two core aspects of the system that can be integrated in Maya are,

the simulation module and the neural network machine-learning module.

Figure 5: Maya hypergraph.

During the initial stages of exploratory research, the lack of a proper built-

in real-time physics simulation toolset in Maya (version 6.5) prompted the decision

to use a third party simulation technology (PhysX). The rigid body solver exist-

ing in Maya had stability issues and lacked a good joint constraint solver, which
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was essential to creating rigid body linkages. At present, many of the commer-

cial physics engine companies provide simulation plug-ins for standard animation

packages, allowing developers to use them as is or use the classes provided to de-

velop custom simulations that are many orders more powerful than Mayas built-in

simulation system. But Maya, since version 8.5, has Autodesks Nucleus simula-

tion framework integrated into it, which brings unified simulation architecture to

simulate a wide variety of natural phenomena. The Nucleus system is a common

dynamics solver that simulates various phenomena using methods that are inde-

pendent of what the phenomena is (Autodesk, 2009). So there is no specialised

code for solving cloth, fluids or rigid body simulations. The common dynamics

solver solves everything. This unified framework is achieved through the use of

distributed building block design of the core solver (Autodesk, 2009). The creation

of the Nucleus system makes it ideal for performing the simulations also within

Maya, rather than outside. Proper joint constraints (like that available in physics

engines like PhysX and Havok) are still not available, but can be developed us-

ing Mayas plug-in architecture using the Nucleus framework, making constraint

dynamics efficient and stable. The Nucleus solver is one of the options available.

The other is to use the PhysX plug-in for Autodesk Maya by NVidia. The PhysX

plug-in brings in the simulation power of the PhysX physics engine to the Maya

platform. This is a highly desirable option as the higher level operating principles

and underlying simulation frameworks is the same as the standalone engine. More

importantly, all of the joint constraints available in the standalone are available

in the plug-in. The D6 joint is supported and with this highly configurable joint,

other joints can be emulated. The PhysX plug-in is supported on Autodesk 3D

Studio Max, Autodesk Maya and Autodesk SoftImage. While it exists as a plug-in

for the former two, it is built into SoftImage. Due to a wider application support

for PhysX, it is reasonable to use PhysX to integrate the system into the animation

package than Nucleus, which is restricted to Autodesk Maya.

Internally Maya represents a scene as a collection of interconnected nodes.

This interconnected structure is called a dependency graph. Nodes are processing

elements that process the data coming in through its connections. The intercon-

nections are visualized in the Maya hypergraph window (see Figure 5). Though

the implicit graph structure of the graph might suggest compatibility for neu-

ral network creation, graph traversals and computation becomes inefficient as the

size of the network increases. Moreover, the node itself is a non-lightweight class

structure.

An alternative and faster approach is to directly encode the neural network

as part of a single plug-in object that can either create a new neural network

based on parameters provided by the user or load an existing network from a

208



specification file. This way much of the existing code for the network can be re-

used without partitioning them into dependency nodes. This would be far more

efficient because dependency graph traversal is reduced to a bare minimum because

the neural network exists within its own control class. The training process itself

is performed off-line, so the network classes exist to load trained networks and act

as the control program for the animation.

Adaptive Grasping Guidelines Based on Object Properties

Grasping has inherent task complexities, which the human brain performs with

ease and at a sub-conscious level that can be broken into rules that can act as

guidelines. Some examples would be direction of approach to the object, topology

of the object, size of the object etc. From an implementation point of view, these

rules are algorithmic and can be programmed. The difficulty is trying to quantify

a psychological guideline like object purpose in a task. The way an object is

grasped is also governed by the purpose of the object in question. Object purpose

is a human assigned attribute and mathematically a mapping between object and

its purpose is severely under constrained. This can be treated as an artificial

intelligence problem. But for simplicity, geometric properties can also be used

to create an adaptive grasping strategy that would be markedly different from

any algorithmic approach. The center of mass (CoM) is one such property, which

humans estimate to decide grasping points on the object (Lukos et al., 2007). As

shown in Zhang and Tsuhan (2001), it is possible to extract object properties

from its 3D mesh representation. The psuedocode in (Eberly, 2003) computes

the CoM and the inertia tensor for a convex polyhedron. The vertices of the

polyhedron and the indices to the vertices are passed in as an arrays. and the

function computes the mass value, CoM vector and the inertia tensor respectively.

Chapter 6 explains a line of action-based grasp contact point estimation and also

an action line convergence point that can provide an early distribution of contact

points on the surface of the object. The early distribution can be used as a

starting point for adaptive modification of the points as a secondary process. The

contact points on the surface are shifted to coincide better with the center of

mass of the object. Distance functions can be used for good objective functions.

The problem space can be represented mathematically for the adaptive system,

which is minimizing the distance between the early contact points and the center

of mass of the object. Stability of the grasp also can be estimated based on

the number of contact points on the surface. But in a dynamic environment, a

completely different approach has to be taken. Force vectors for the fingers have

to be considered and opposability has to cancel the torques generated for a stable
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grasp. An adaptive neural network can be generated for this purpose. Samples

would consist of various convex hulled rigid bodies, with the previous mentioned

method used to determine contact points. The current system would be used

to generate the muscle activations, except that the objective function would be

to minimize the forces required for a grasp that maintains the object at a given

distance from the ground plane.

Inverse Kinematics Style User Interface to Animate

Physically Actuated Linkages

Without an intuitive interface to manipulate characters, animators cannot “di-

rect” the behaviour of characters. Traditional key-frame approaches make it easy

for animators to pose characters and adjust timing between key frames to perform

the desired action. This is easy because key-frame approaches directly manipulate

positional and orientation information. Simulation interfaces with respect to char-

acter animation is still in a nascent state, with many of packages like Maya, 3D

Studio Max, SoftImage, Houdini etc relying on kinematic approaches. The most

common type of simulation method employed in character animation is the Pro-

portional Derivative controller. Being linear and feedback based, they are easily

simulated and use positional information (orientation) as input. Also, the number

of parameters to tune is manageable, increasing only with the number of joints or

constraints on the linkage. This is a convenient method to integrate into a con-

ventional kinematic pipeline because positional and orientation information from

one can be used to drive the other. Simulation interfaces using PD for articulated

characters are supported by third party physics plug-ins for popular packages like

3D Studio Max and Maya (NVidia PhysX plug-in). Predictive and suggestive

interfaces are commonly used techniques for interactive control of physics-based

character animation (Laszlo et al., 2005). Predictive interfaces provide the user

with possible states forward in time depending on dynamically changing proper-

ties while suggestive interfaces present possible actions stemming from the current

state or based on the editing action (Laszlo et al., 2005). Natural Motions Endor-

phin makes use of a predictive element as one of its features, showing the user the

state of the simulation forward in time (Motion, 2011a). There are interfaces that

map the mouse accelerometer to joint angles and the changing angles are used to

drive the PD controller (Laszlo et al., 2000). The key aspect of PD control in-

terface systems is devising a convenient angle input method, which is highly user

friendly and tractable even with increased DOFs. High DOF input devices like

data gloves can be used for virtual puppetry using physics-based animation but

they used reduced character models to map the joint angles effectively to the data

210



glove output (Laszlo et al., 2000). Keystroke mapping is also another interface

method to drive physically actuated character models. Inverse Kinematics (IK)

is used to calculate the desired joint angles, which in turn is input into the PD

controllers (Laszlo et al., 2000). The invoking of the IK trajectory is based on

keystroke mapping (Laszlo et al., 2000).

Having an inverse kinematic style user interface for active muscle control

of physically actuated linked skeletons, would allow the animator to work with

a familiar interface without the necessity for them to learn a new and compli-

cated interface. The convention of key-framing and 3D animation tool-sets for

character animation are based on a joint skeleton system as a primary interface

for interaction with the characters to be animated. End-effector based interfaces

for linked bodies have proved to be an efficient approach to animate articulated

characters. The character joint skeleton also allows for mapping motion capture

data. Therefore the adjustment time required to familiarise an artist with any

new system can be reduced if the original IK style interface is either adopted or

used as a template for a new interface.

The current system uses vector directional cosines (a set of three angles)

as an input rather than single joint angles. The vectors are computed from the

underlying skeleton and the corresponding muscle activations are computed by

the system. In order to incorporate end-effector based activations, an additional

training process is required that maps the computed muscle activations to end-

effector positions of the linkage. Section 6.4.2 in Chapter 6 shows the results of a

similar system for procedural control of the physical linkages.

Physics-based Deformations and Rendering

Visual realism in appearance is as important as realistic motion behaviours and

that makes the difference between a good shot and bad shot. The rendering pro-

cess happens towards the end of the pipeline (for visual effects as can be seen in

Figure 4). Also for games it is the absolute end point of the pipeline, as the game

engine takes the various forms of data and creates the final composite output in

real-time (see Figure 3). Deformations happen at an intermediate stage at the

point where animation is performed. For physics-based deformations, the ideal

location along the pipeline is where middleware technology (physics engines, AI

middleware) is integrated into the pipeline. The visual effects pipeline would have

deformations grouped along with simulation and effects. The common type of

deformations for simulated organic characters is surface skin deformations due to

effects of muscle simulation. Usually surface deformations are generated through

finite element methods, sub-surface deformations and other techniques. On some
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occasions geometric muscles (as opposed to physical muscles) are used to perform

deformations (Albrecht et al., 2003). They are constructed from anatomy and

make use of mass-spring systems that are attached to the skin (Albrecht et al.,

2003). These methods are efficient when large surface area is to be deformed. The

tendinuous structure simulated in this project are volume-less and single dimen-

sional. And so deformations, which are localised sub-spaces of the deformation

domain, are the kind that can be simulated best. These can be categorised as de-

formations caused due to the movement of the tendons underlying the skin surface.

Standard deformation artifacts like rubber-tube effect can be avoided through the

use of curve skeleton skinning that uses a b-spline to deform the mesh (Yang et al.,

2006). The curve skeleton can also be customised for GPU processing. For ren-

dering (in real-time), the deformations on dense meshes can be accelerated using

latest Graphics Processing Unit (GPU) techniques. The muscle system (in the

current iteration) is real-time existing within a real-time framework. So GPU-

based rendering techniques can be used in specific areas, like shadow rendering,

layered sub-surface scattering for improved skin shaders and soft body systems to

simulate muscle jiggle, to improve visual realism in the system. Skinning methods,

which are the fundamental deformation methods, are already implemented on the

GPU (Fernando, 2004). With the level of GPU capability today, Bidirectional Re-

flectance Distribution Functions (BRDF) can be calculated real-time for realistic

rendering of skin also (Nguyen, 2007).

Integration into an existing pipeline system - Games and

Visual Effects

For any new animation or simulation system, it is always important to analyse

how it fits into an existing pipeline. The lesser it changes the existing pipeline the

better compatibility it has with the pipeline. Games are autonomous in that the

entities are imbued with AI logic and that logic dictates animation playback of the

entities. So adaptive animation systems are ideal in the largely automated world

of games. In the pipeline, the training process for adaptive muscle activation is

always an offline process, preferably external to the pipeline, though acquiring

resources from the pipeline (see Figure 6).

The system will exist as a middle-ware and therefore after the training

process can be added into the middle-ware integration part of the pipeline, which

is in the Program/Build layer of the pipeline (see Figure 3).

The middle-ware commonly used are AI path-finding modules and physics

engines. Therefore, at that juncture the muscle activation system exists as an

additional component of the game engine runtime. If the characters in the game
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Figure 6: Modified segment of the games pipeline from Figure 3. The activation
training is an offline process not directly a part of the pipeline. But existing
pipeline processes are used for the training..

Figure 7: Middleware integration with the game engine. At this point the activa-
tion system would become a part of the main pipeline.

follow more or less very similar muscular anatomy, then there is no necessity

for duplication of the activation networks. Musculature layout can be morphed

in three dimensions between characters using the anatomical landmarks on the

underlying skeleton structure and the muscle locators. The morphing process

would come into play after the rigging process. Rigging would be performed on

a base character of artist choosing and then morphed to fit the similar characters

grouped beforehand. In a game there is little intervention by the animators once

the game is built. The engine autonomously takes care of all the assets distributing

the tasks to its sub-systems. Intelligent animation is performed based on the

differing states of the game world, either through the action of the user or by the

action of bots.

In visual effects, artist intervention takes place almost throughout the entire

pipeline. Automation is possible only during asset creation. The final output is

static where there is no scope for any interactive behaviour.

The animator would require complete control in the animation package he

or she uses. Thus a complete integration of the current system (modified) into the

core animation package would achieve that. This would be a culmination point

of physics-based animation and control interface that would help the animator to

create physics-based animation in a traditional manner. A plausible interface for
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Figure 8: The various processes that is required in the training process, from the
visual effects pipeline. Extracted from the original pipeline in Figure 4.

this purpose is given in sub-section 7.3.

Summary

In addition to the given improvements, there are low-level enhancements that can

be programmed into the system like taking advantage of multi-cores of the system

and use multi-threading to perform operations in parallel. The system that forms

the subject of this research has all the core elements of an animation pipeline,

namely, modelling, rigging, simulation and rendering. Thus it is entirely possible

to combine the various parts of the system into a comprehensive tool set that

exists as part of an animation package like Maya. A singular tool-set is easier

to integrate into the production pipeline than a distributed set of applications.

It also helps in keeping the existing pipeline relatively unchanged with a fewer

number of processes.
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