70 research outputs found

    Thought on Food: A Systematic Review of Current Approaches and Challenges for Food Intake Detection

    Get PDF
    Nowadays, individuals have very stressful lifestyles, affecting their nutritional habits. In the early stages of life, teenagers begin to exhibit bad habits and inadequate nutrition. Likewise, other people with dementia, Alzheimer’s disease, or other conditions may not take food or medicine regularly. Therefore, the ability to monitor could be beneficial for them and for the doctors that can analyze the patterns of eating habits and their correlation with overall health. Many sensors help accurately detect food intake episodes, including electrogastrography, cameras, microphones, and inertial sensors. Accurate detection may provide better control to enable healthy nutrition habits. This paper presents a systematic review of the use of technology for food intake detection, focusing on the different sensors and methodologies used. The search was performed with a Natural Language Processing (NLP) framework that helps screen irrelevant studies while following the PRISMA methodology. It automatically searched and filtered the research studies in different databases, including PubMed, Springer, ACM, IEEE Xplore, MDPI, and Elsevier. Then, the manual analysis selected 30 papers based on the results of the framework for further analysis, which support the interest in using sensors for food intake detection and nutrition assessment. The mainly used sensors are cameras, inertial, and acoustic sensors that handle the recognition of food intake episodes with artificial intelligence techniques. This research identifies the most used sensors and data processing methodologies to detect food intake.info:eu-repo/semantics/publishedVersio

    Methods for monitoring the human circadian rhythm in free-living

    Get PDF
    Our internal clock, the circadian clock, determines at which time we have our best cognitive abilities, are physically strongest, and when we are tired. Circadian clock phase is influenced primarily through exposure to light. A direct pathway from the eyes to the suprachiasmatic nucleus, where the circadian clock resides, is used to synchronise the circadian clock to external light-dark cycles. In modern society, with the ability to work anywhere at anytime and a full social agenda, many struggle to keep internal and external clocks synchronised. Living against our circadian clock makes us less efficient and poses serious health impact, especially when exercised over a long period of time, e.g. in shift workers. Assessing circadian clock phase is a cumbersome and uncomfortable task. A common method, dim light melatonin onset testing, requires a series of eight saliva samples taken in hourly intervals while the subject stays in dim light condition from 5 hours before until 2 hours past their habitual bedtime. At the same time, sensor-rich smartphones have become widely available and wearable computing is on the rise. The hypothesis of this thesis is that smartphones and wearables can be used to record sensor data to monitor human circadian rhythms in free-living. To test this hypothesis, we conducted research on specialised wearable hardware and smartphones to record relevant data, and developed algorithms to monitor circadian clock phase in free-living. We first introduce our smart eyeglasses concept, which can be personalised to the wearers head and 3D-printed. Furthermore, hardware was integrated into the eyewear to recognise typical activities of daily living (ADLs). A light sensor integrated into the eyeglasses bridge was used to detect screen use. In addition to wearables, we also investigate if sleep-wake patterns can be revealed from smartphone context information. We introduce novel methods to detect sleep opportunity, which incorporate expert knowledge to filter and fuse classifier outputs. Furthermore, we estimate light exposure from smartphone sensor and weather in- formation. We applied the Kronauer model to compare the phase shift resulting from head light measurements, wrist measurements, and smartphone estimations. We found it was possible to monitor circadian phase shift from light estimation based on smartphone sensor and weather information with a weekly error of 32±17min, which outperformed wrist measurements in 11 out of 12 participants. Sleep could be detected from smartphone use with an onset error of 40±48 min and wake error of 42±57 min. Screen use could be detected smart eyeglasses with 0.9 ROC AUC for ambient light intensities below 200lux. Nine clusters of ADLs were distinguished using Gaussian mixture models with an average accuracy of 77%. In conclusion, a combination of the proposed smartphones and smart eyeglasses applications could support users in synchronising their circadian clock to the external clocks, thus living a healthier lifestyle

    Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena

    Get PDF
    Earables have emerged as a unique platform for ubiquitous computing by augmenting ear-worn devices with state-of-the-art sensing. This new platform has spurred a wealth of new research exploring what can be detected on a wearable, small form factor. As a sensing platform, the ears are less susceptible to motion artifacts and are located in close proximity to a number of important anatomical structures including the brain, blood vessels, and facial muscles which reveal a wealth of information. They can be easily reached by the hands and the ear canal itself is affected by mouth, face, and head movements. We have conducted a systematic literature review of 271 earable publications from the ACM and IEEE libraries. These were synthesized into an open-ended taxonomy of 47 different phenomena that can be sensed in, on, or around the ear. Through analysis, we identify 13 fundamental phenomena from which all other phenomena can be derived, and discuss the different sensors and sensing principles used to detect them. We comprehensively review the phenomena in four main areas of (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication and identification. This breadth highlights the potential that earables have to offer as a ubiquitous, general-purpose platform

    Embedding a Grid of Load Cells into a Dining Table for Automatic Monitoring and Detection of Eating Events

    Get PDF
    This dissertation describes a “smart dining table” that can detect and measure consumption events. This work is motivated by the growing problem of obesity, which is a global problem and an epidemic in the United States and Europe. Chapter 1 gives a background on the economic burden of obesity and its comorbidities. For the assessment of obesity, we briefly describe the classic dietary assessment tools and discuss their drawback and the necessity of using more objective, accurate, low-cost, and in-situ automatic dietary assessment tools. We explain in short various technologies used for automatic dietary assessment such as acoustic-, motion-, or image-based systems. This is followed by a literature review of prior works related to the detection of weights and locations of objects sitting on a table surface. Finally, we state the novelty of this work. In chapter 2, we describe the construction of a table that uses an embedded grid of load cells to sense the weights and positions of objects. The main challenge is aligning the tops of adjacent load cells to within a few micrometer tolerance, which we accomplish using a novel inversion process during construction. Experimental tests found that object weights distributed across 4 to 16 load cells could be measured with 99.97±0.1% accuracy. Testing the surface for flatness at 58 points showed that we achieved approximately 4.2±0.5 um deviation among adjacent 2x2 grid of tiles. Through empirical measurements we determined that the table has a 40.2 signal-to-noise ratio when detecting the smallest expected intake amount (0.5 g) from a normal meal (approximate total weight is 560 g), indicating that a tiny amount of intake can be detected well above the noise level of the sensors. In chapter 3, we describe a pilot experiment that tests the capability of the table to monitor eating. Eleven human subjects were video recorded for ground truth while eating a meal on the table using a plate, bowl, and cup. To detect consumption events, we describe an algorithm that analyzes the grid of weight measurements in the format of an image. The algorithm segments the image into multiple objects, tracks them over time, and uses a set of rules to detect and measure individual bites of food and drinks of liquid. On average, each meal consisted of 62 consumption events. Event detection accuracy was very high, with an F1-score per subject of 0.91 to 1.0, and an F1 score per container of 0.97 for the plate and bowl, and 0.99 for the cup. The experiment demonstrates that our device is capable of detecting and measuring individual consumption events during a meal. Chapter 4 compares the capability of our new tool to monitor eating against previous works that have also monitored table surfaces. We completed a literature search and identified the three state-of-the-art methods to be used for comparison. The main limitation of all previous methods is that they used only one load cell for monitoring, so only the total surface weight can be analyzed. To simulate their operations, the weights of our grid of load cells were summed up to use the 2D data as 1D. Data were prepared according to the requirements of each method. Four metrics were used to evaluate the comparison: precision, recall, accuracy, and F1-score. Our method scored the highest in recall, accuracy, and F1-score; compared to all other methods, our method scored 13-21% higher for recall, 8-28% higher for accuracy, and 10-18% higher for F1-score. For precision, our method scored 97% that is just 1% lower than the highest precision, which was 98%. In summary, this dissertation describes novel hardware, a pilot experiment, and a comparison against current state-of-the-art tools. We also believe our methods could be used to build a similar surface for other applications besides monitoring consumption

    Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena

    Get PDF
    Earables have emerged as a unique platform for ubiquitous computing by augmenting ear-worn devices with state-of-the-art sensing. This new platform has spurred a wealth of new research exploring what can be detected on a wearable, small form factor. As a sensing platform, the ears are less susceptible to motion artifacts and are located in close proximity to a number of important anatomical structures including the brain, blood vessels, and facial muscles which reveal a wealth of information. They can be easily reached by the hands and the ear canal itself is affected by mouth, face, and head movements. We have conducted a systematic literature review of 271 earable publications from the ACM and IEEE libraries. These were synthesized into an open-ended taxonomy of 47 different phenomena that can be sensed in, on, or around the ear. Through analysis, we identify 13 fundamental phenomena from which all other phenomena can be derived, and discuss the different sensors and sensing principles used to detect them. We comprehensively review the phenomena in four main areas of (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication and identification. This breadth highlights the potential that earables have to offer as a ubiquitous, general-purpose platform

    Earables: Wearable Computing on the Ears

    Get PDF
    Kopfhörer haben sich bei Verbrauchern durchgesetzt, da sie private Audiokanäle anbieten, zum Beispiel zum Hören von Musik, zum Anschauen der neuesten Filme während dem Pendeln oder zum freihändigen Telefonieren. Dank diesem eindeutigen primären Einsatzzweck haben sich Kopfhörer im Vergleich zu anderen Wearables, wie zum Beispiel Smartglasses, bereits stärker durchgesetzt. In den letzten Jahren hat sich eine neue Klasse von Wearables herausgebildet, die als "Earables" bezeichnet werden. Diese Geräte sind so konzipiert, dass sie in oder um die Ohren getragen werden können. Sie enthalten verschiedene Sensoren, um die Funktionalität von Kopfhörern zu erweitern. Die räumliche Nähe von Earables zu wichtigen anatomischen Strukturen des menschlichen Körpers bietet eine ausgezeichnete Plattform für die Erfassung einer Vielzahl von Eigenschaften, Prozessen und Aktivitäten. Auch wenn im Bereich der Earables-Forschung bereits einige Fortschritte erzielt wurden, wird deren Potenzial aktuell nicht vollständig abgeschöpft. Ziel dieser Dissertation ist es daher, neue Einblicke in die Möglichkeiten von Earables zu geben, indem fortschrittliche Sensorikansätze erforscht werden, welche die Erkennung von bisher unzugänglichen Phänomenen ermöglichen. Durch die Einführung von neuartiger Hardware und Algorithmik zielt diese Dissertation darauf ab, die Grenzen des Erreichbaren im Bereich Earables zu verschieben und diese letztlich als vielseitige Sensorplattform zur Erweiterung menschlicher Fähigkeiten zu etablieren. Um eine fundierte Grundlage für die Dissertation zu schaffen, synthetisiert die vorliegende Arbeit den Stand der Technik im Bereich der ohr-basierten Sensorik und stellt eine einzigartig umfassende Taxonomie auf der Basis von 271 relevanten Publikationen vor. Durch die Verbindung von Low-Level-Sensor-Prinzipien mit Higher-Level-Phänomenen werden in der Dissertation anschließ-end Arbeiten aus verschiedenen Bereichen zusammengefasst, darunter (i) physiologische Überwachung und Gesundheit, (ii) Bewegung und Aktivität, (iii) Interaktion und (iv) Authentifizierung und Identifizierung. Diese Dissertation baut auf der bestehenden Forschung im Bereich der physiologischen Überwachung und Gesundheit mit Hilfe von Earables auf und stellt fortschrittliche Algorithmen, statistische Auswertungen und empirische Studien vor, um die Machbarkeit der Messung der Atemfrequenz und der Erkennung von Episoden erhöhter Hustenfrequenz durch den Einsatz von In-Ear-Beschleunigungsmessern und Gyroskopen zu demonstrieren. Diese neuartigen Sensorfunktionen unterstreichen das Potenzial von Earables, einen gesünderen Lebensstil zu fördern und eine proaktive Gesundheitsversorgung zu ermöglichen. Darüber hinaus wird in dieser Dissertation ein innovativer Eye-Tracking-Ansatz namens "earEOG" vorgestellt, welcher Aktivitätserkennung erleichtern soll. Durch die systematische Auswertung von Elektrodenpotentialen, die um die Ohren herum mittels eines modifizierten Kopfhörers gemessen werden, eröffnet diese Dissertation einen neuen Weg zur Messung der Blickrichtung. Dabei ist das Verfahren weniger aufdringlich und komfortabler als bisherige Ansätze. Darüber hinaus wird ein Regressionsmodell eingeführt, um absolute Änderungen des Blickwinkels auf der Grundlage von earEOG vorherzusagen. Diese Entwicklung eröffnet neue Möglichkeiten für Forschung, welche sich nahtlos in das tägliche Leben integrieren lässt und tiefere Einblicke in das menschliche Verhalten ermöglicht. Weiterhin zeigt diese Arbeit, wie sich die einzigarte Bauform von Earables mit Sensorik kombinieren lässt, um neuartige Phänomene zu erkennen. Um die Interaktionsmöglichkeiten von Earables zu verbessern, wird in dieser Dissertation eine diskrete Eingabetechnik namens "EarRumble" vorgestellt, die auf der freiwilligen Kontrolle des Tensor Tympani Muskels im Mittelohr beruht. Die Dissertation bietet Einblicke in die Verbreitung, die Benutzerfreundlichkeit und den Komfort von EarRumble, zusammen mit praktischen Anwendungen in zwei realen Szenarien. Der EarRumble-Ansatz erweitert das Ohr von einem rein rezeptiven Organ zu einem Organ, das nicht nur Signale empfangen, sondern auch Ausgangssignale erzeugen kann. Im Wesentlichen wird das Ohr als zusätzliches interaktives Medium eingesetzt, welches eine freihändige und augenfreie Kommunikation zwischen Mensch und Maschine ermöglicht. EarRumble stellt eine Interaktionstechnik vor, die von den Nutzern als "magisch und fast telepathisch" beschrieben wird, und zeigt ein erhebliches ungenutztes Potenzial im Bereich der Earables auf. Aufbauend auf den vorhergehenden Ergebnissen der verschiedenen Anwendungsbereiche und Forschungserkenntnisse mündet die Dissertation in einer offenen Hard- und Software-Plattform für Earables namens "OpenEarable". OpenEarable umfasst eine Reihe fortschrittlicher Sensorfunktionen, die für verschiedene ohrbasierte Forschungsanwendungen geeignet sind, und ist gleichzeitig einfach herzustellen. Hierdurch werden die Einstiegshürden in die ohrbasierte Sensorforschung gesenkt und OpenEarable trägt somit dazu bei, das gesamte Potenzial von Earables auszuschöpfen. Darüber hinaus trägt die Dissertation grundlegenden Designrichtlinien und Referenzarchitekturen für Earables bei. Durch diese Forschung schließt die Dissertation die Lücke zwischen der Grundlagenforschung zu ohrbasierten Sensoren und deren praktischem Einsatz in realen Szenarien. Zusammenfassend liefert die Dissertation neue Nutzungsszenarien, Algorithmen, Hardware-Prototypen, statistische Auswertungen, empirische Studien und Designrichtlinien, um das Feld des Earable Computing voranzutreiben. Darüber hinaus erweitert diese Dissertation den traditionellen Anwendungsbereich von Kopfhörern, indem sie die auf Audio fokussierten Geräte zu einer Plattform erweitert, welche eine Vielzahl fortschrittlicher Sensorfähigkeiten bietet, um Eigenschaften, Prozesse und Aktivitäten zu erfassen. Diese Neuausrichtung ermöglicht es Earables sich als bedeutende Wearable Kategorie zu etablieren, und die Vision von Earables als eine vielseitige Sensorenplattform zur Erweiterung der menschlichen Fähigkeiten wird somit zunehmend realer

    Dietary Monitoring Through Sensing Mastication Dynamics

    Get PDF
    Unhealthy dietary habits (such as eating disorders, eating too fast, excessive energy intake, and chewing side preference) are major causes of some chronic diseases, including obesity, heart disease, digestive system disease, and diabetes. Dietary monitoring is necessary and important for patients to change their unhealthy diet and eating habits. However, the existing monitoring methods are either intrusive or not accurate enough. In this dissertation, we present our efforts to use wearable motion sensors to sense mastication dynamics for continuous dietary monitoring. First, we study how to detect a subject\u27s eating activity and count the number of chews. We observe that during eating the mastication muscles contract and hence bulge to some degree. This bulge of the mastication muscles has the same frequency as chewing. These observations motivate us to detect eating activity and count chews through attaching a triaxial accelerometer on the temporalis. The proposed method does not record any private personal information (audio, video, etc.). Because the accelerometer is embedded into a headband, this method is comparatively less intrusive for the user\u27s daily living than previously-used methods. Experiments are conducted and the results are promising. For eating activity detection, the average accuracy and F-score of five classifiers are 94.4% and 87.2%, respectively, in 10-fold cross-validation test using only 5 seconds of acceleration data. For chew counts, the average error rate of four users is 12.2%. Second, we study how to recognize different food types. We observe that each type of food has its own intrinsic properties, such as hardness, elasticity, fracturability, adhesiveness, and size, which result in different mastication dynamics. Accordingly, we propose to use wearable motion sensors to sense mastication dynamics and infer food types. We specifically define six mastication dynamics parameters to represent these food properties. They are chewing speed, the number of chews, chewing time, chewing force, chewing cycle duration, and skull vibration. We embed motion sensors in a headband worn over the temporalis muscles to sense mastication dynamics accurately and less intrusively than other methods. In addition, we extract 37 hand-crafted features from each chewing sequence to explicitly characterize the mastication dynamics using motion sensor data. A real-world evaluation dataset of 11 food categories (20 types of food in total) is collected from 15 human subjects. The average recognition accuracy reaches 74.3%. The highest recognition accuracy for a single subject is up to 86.7%. Third, we study how to detect chewing sides. We observe that the temporalis muscle bulge and skull vibration of the chewing side are different from those of the non-chewing side. This observation motivates us to deploy motion sensors on the left and right temporalis muscles to detect chewing sides. We utilize a heuristic-rules based method to exclude non-chewing data and segment each chew accurately. Then, the relative difference series of the left and right sensors are calculated to characterize the difference of muscle bulge and skull vibration between the chewing side and the non-chewing side. To accurately detect chewing sides, we train a two-class classifier using long short-term memory (LSTM), an artificial recurrent neural network that is especially suitable for temporal data with unequal input lengths. A real-world evaluation dataset of eight food types is collected from eight human subjects. The average detection accuracy reaches 84.8%. The highest detection accuracy for a single subject is up to 97.4%

    안경에서 기계적으로 증폭된 힘 측정을 통한 측두근 활동의 감지

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 기계항공공학부, 2017. 8. 이건우.Recently, the form of a pair of glasses is broadly utilized as a wearable device that provides the virtual and augmented reality in addition to its natural functionality as a visual aid. These approaches, however, have lacked the use of its inherent kinematic structure, which is composed of both the temple and the hinge. When we equip the glasses, the force is concentrated at the hinge, which connects the head piece and the temple, from the law of the lever. In addition, since the temple passes through a temporalis muscle, chewing and wink activity, anatomically activated by the contraction and relaxation of the temporalis muscle, can be detected from the mechanically amplified force measurement at the hinge. This study presents a new and effective method for automatic and objective measurement of the temporalis muscle activity through the natural-born lever mechanism of the glasses. From the implementation of the load cell-integrated wireless circuit module inserted into the both hinges of a 3D printed glasses frame, we developed the system that responds to the temporalis muscle activity persistently regardless of various form factor different from each person. This offers the potential to improve previous studies by avoiding the morphological, behavioral, and environmental constraints of using skin-attached, proximity, and sound sensors. In this study, we collected data featured as sedentary rest, chewing, walking, chewing while walking, talking and wink from 10-subject user study. The collected data were transferred to a series of 84-dimentional feature vectors, each of which was composed of the statistical features of both temporal and spectral domain. These feature vectors, then, were used to define a classifier model implemented by the support vector machine (SVM) algorithm. The model classified the featured activities (chewing, wink, and physical activity) as the average F1 score of 93.7%. This study provides a novel approach on the monitoring of ingestive behavior (MIB) in a non-intrusive and un-obtrusive manner. It supplies the possibility to apply the MIB into daily life by distinguishing the food intake from the other physical activities such as walking, talking, and wink with higher accuracy and wearability. Furthermore, through applying this approach to a sensor-integrated hair band, it can be potentially used for the medical monitoring of the sleep bruxism or temporomandibular dysfunction.Abstract Chapter 1. Introduction 1.1. Motivation 1.1.1. Law of the Lever 1.1.2. Lever Mechanism in Human Body 1.1.3. Mechanical Advantage in Auditory Ossicle 1.1.4. Mechanical Advantage in Glasses 1.2. Background 1.2.1. Biological Information from Temporalis Muscle 1.2.2. Detection of Temporalis Muscle Activity 1.2.3. Monitoring of Ingestive Behavior 1.3. Research Scope and Objectives Chapter 2. Proof-of-Concept Validation 2.1. Experimental Apparatus 2.2. Measurement Results 2.3. Discussion Chapter 3. Implementation of GlasSense 3.1. Hardware Prototyping 3.1.1. Preparation 3.1.2. Load Cell-Integrated Circuit Module 3.1.3. 3D Printed Frame of Glasses 3.1.4. Hardware Integration 3.2. Data Acquisition System 3.2.1. Wireless Data Transmission 3.2.2. Data Collecting Module Chapter 4. Data Collection through User Study 4.1. Preparation for Experiment 4.2. Activity Recording Chapter 5. Feature Extraction 5.1. Signal Preprocessing and Segmentation 5.1.1. Temporal Frame 5.1.2. Spectral Frame 5.2. Feature Extraction 5.2.1. Temporal Features 5.2.2. Spectral Features 5.2.3. Feature Vector Generation Chapter 6. Classification of Featured Activity 6.1. Support Vector Machine (SVM) 6.2. Design of Classifier Model 6.2.1. Grid-Search 6.2.2. Cross-Validation 6.3. Classification Result 6.4. Performance Improvement 6.5. Discussion Chapter 7. Conclusions Bibliography 초록Docto

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio
    corecore