
 

 

Earables: Wearable Computing on the Ears 

Zur Erlangung des akademischen Grades eines 

Doktors der Ingenieurwissenschaften 

von der KIT-Fakultät für Informatik  
des Karlsruher Instituts für Technologie (KIT) 

 
genehmigte  

Dissertation 

von 

M.Sc. Tobias Röddiger 

_____________________________________________
_____________________________________________ 

 

Tag der mündlichen Prüfung: 26. Juli 2023 

1. Referent: Prof. Dr. Michael Beigl 

2. Referent: Prof. Dr. Hans Gellersen 



This document is licensed under a Creative Commons  
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0): 
https://creativecommons.org/licenses/by-sa/4.0/deed.en



Acknowledgements

I would like to express my deepest gratitude to my primary advisor, Prof. Dr.

Michael Beigl, for his unlimited support and advice to guide me through my

dissertation. Thanks for always listening to my ideas, trusting in my skills, and

putting me into the positions where I could grow and learn the most, to become

the researcher I am today. I could not have imagined having a better advisor

and mentor for my PhD.

Also, thank you to my second advisor, Prof. Dr. Hans Gellersen (Lancaster

University), for being a steady companion and trustworthy source of advice for

many years. I would also like to thank Prof. Dr. Joseph A. Paradiso (MIT

Media Lab) for giving me the opportunity to work with his group and hosting

me at MIT. Also, thank you to PD Dr. Victor Pankratius (Bosch Sensortec

GmbH) for the exciting industry insights and project challenges. A special

thanks to Dr. hc. Hans-Werner Hector and Josephine Hector, whose support

has inspired me to pursue a career in computer science in the first place.

I am very grateful to have met Dr. Christopher Clarke (University of Bath).

Not only was he an incredibly smart colleague to work with, but more impor-

tantly, he also has become a great friend of mine along the way.

Thanks to my wonderful colleagues at KIT - Dr. Anja Exler, Dr. Erik

Pescara, Haibin Zhao, Dr. Matthias Budde, Dr. Michael Hefenbrock, Paula

Breitling, Dr. Till Riedel, Tim Schneegans, Tobias King, and Yexu Zhou. A

special thanks to Fangzheng Liu from MIT for letting me participate in the As-

troAnt project, and Michael Knierim from KIT for collaborating on the ExG

headphones. Thanks to Denise Hillmann, Helga Scherer, Melissa Alpman, and

Zina Tsiouma for the support with all administrative tasks.

A massive thanks to all the students that I have supervised or worked with.

Your enthusiasm to learn and drive have many times motivated me to exceed

my own expectations. It was a pleasure working with my research assistants

I



Anja Hansen, Daniel Wolffram, Dennis Moschina, Dylan Ray Roodt, Jennifer

Münk, Leon Simmon, Mark Schenkel, Michael Küttner, Murat Kurnaz, Nils

Kerwer, Oliver Bagge, Ömer Erdinç Yağmurlu, Philipp Lepold, Shanshan Du,
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Abstract

Earphones have gained widespread consumer adoption due to their ability to

provide private audio channels for listening to music, watching the latest movies

during commuting, or making hands-free phone calls. Because of this clear

primary purpose, earphones have seen broader adoption than other wearables,

such as smart glasses. In recent years, a new class of wearable computing

devices known as "earables" has emerged. These devices are designed to be

worn in or around the ears and integrate various sensors to enhance the func-

tionalities of earphones. The unique proximity of earables to key anatomical

structures of the human body offers a distinct platform for sensing a diverse

range of properties, processes, and activities.

While some progress has been made in the realm of earables research, vast

potential remains unexplored. Thus, the purpose of this dissertation is to pro-

vide novel insights into the capabilities of earables by introducing advanced

sensing approaches that enable the detection of previously inaccessible phe-

nomena. Through the introduction of new state-of-the-art hardware and algo-

rithms, this dissertation aims to push the boundaries of what is achievable in

the domain of earables, ultimately striving to guide them towards a general-

purpose sensing platform for human augmentation.

To establish a robust foundation, this dissertation systematically synthesizes

the state-of-the-art in earable sensing works and presents a uniquely compre-

hensive taxonomy of earable sensing capabilities based on 271 relevant publi-

cations. By connecting low-level sensing principles with higher-level phenom-

ena, the dissertation then goes on to summarize works across various domains,

including (i) physiological monitoring and health, (ii) movement and activity,

(iii) interaction, and (iv) authentication and identification.

Expanding upon existing research in the field of physiological monitoring

and health using earables, this dissertation introduces algorithms, statistical
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evaluations, and empirical evidence to demonstrate the feasibility of track-

ing respiration rates and detecting episodes of increased coughing frequency

through the utilization of in-ear accelerometers and gyroscopes. These novel

sensing capabilities offer new ways for earables to promote healthier lifestyles

and enable proactive healthcare.

Furthermore, this dissertation introduces an eye-tracking approach termed

“earEOG” to facilitate activity tracking. By systematically evaluating electrode

potentials measured around the ears in a headphone form factor, the disserta-

tion unveils a new avenue for measuring gaze in a less intrusive and more com-

fortable manner. The dissertation compares different electrode positions and

introduces a regression model to predict absolute gaze angles from earEOG.

This development opens up new opportunities for research that seamlessly in-

tegrates into daily life, providing deeper insights into human behavior and also

shows how the unique form factors of earables, combined with suitable sens-

ing, enables the detection of new phenomena.

To advance the interaction possibilities of earables, this dissertation intro-

duces a discreet input technique called “EarRumble”, which relies on volun-

tary control of the tensor tympani muscle in the middle ear. The dissertation

offers insights into the prevalence, ease of use, and comfort of EarRumble,

along with practical applications in two real-world scenarios. The EarRumble

approach effectively transforms the ear from a purely receptive organ into a

dual function one, enabling it not only to receive, but also to generate output

signals. It essentially introduces the ears as an additional interactive medium,

bridging the gap between humans and machines in a hands-free and eyes-free

manner. This contribution unveils an interaction technique that users describe

as “magical and almost telepathic”, highlighting significant untapped potential

within the realm of earables.

Finally, the findings across the different application domains and research

insights accumulate in an open-source hard- and software earable sensing plat-

form called “OpenEarable”. OpenEarable encompasses a range of advanced

sensing capabilities suitable for various earable research applications, while

also being easy to manufacture. This reduces entry barriers into ear-based

sensing research and, therefore, OpenEarable aids in unleashing the full po-

IV



tential that earables may offer. In addition, the dissertation contributes fun-

damental design guidelines and reference architectures for earables. Through

this research, the dissertation bridges the gap between foundational research

on earable sensing capabilities and their practical deployment in real-world

scenarios.

In sum, the dissertation contributes new usage scenarios, algorithms, hard-

ware prototypes, statistical evaluations, empirical evidence, and design guide-

lines to advance the field of earable computing. Furthermore, this dissertation

extends the traditional scope of earphones, transitioning them from audio fo-

cused devices towards a platform offering a plethora of advanced sensing ca-

pabilities to understand properties, processes, and activities. This redefinition

puts earables at the frontier of becoming a significant wearable category so

that the vision of earables to be a general-purpose sensing platform for human

augmentation becomes increasingly apparent.
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Zusammenfassung

Kopfhörer haben sich bei Verbrauchern durchgesetzt, da sie private Audio-

kanäle anbieten, zum Beispiel zum Hören von Musik, zum Anschauen der

neuesten Filme während dem Pendeln oder zum freihändigen Telefonieren.

Dank diesem eindeutigen primären Einsatzzweck haben sich Kopfhörer im

Vergleich zu anderen Wearables, wie zum Beispiel Smartglasses, bereits stärker

durchgesetzt. In den letzten Jahren hat sich eine neue Klasse von Wearables

herausgebildet, die als “Earables” bezeichnet werden. Diese Geräte sind so

konzipiert, dass sie in oder um die Ohren getragen werden können. Sie enthal-

ten verschiedene Sensoren, um die Funktionalität von Kopfhörern zu erweitern.

Die räumliche Nähe von Earables zu wichtigen anatomischen Strukturen des

menschlichen Körpers bietet eine ausgezeichnete Plattform für die Erfassung

einer Vielzahl von Eigenschaften, Prozessen und Aktivitäten.

Auch wenn im Bereich der Earables-Forschung bereits einige Fortschritte

erzielt wurden, wird deren Potenzial aktuell nicht vollständig abgeschöpft.

Ziel dieser Dissertation ist es daher, neue Einblicke in die Möglichkeiten von

Earables zu geben, indem fortschrittliche Sensorikansätze erforscht werden,

welche die Erkennung von bisher unzugänglichen Phänomenen ermöglichen.

Durch die Einführung von neuartiger Hardware und Algorithmik zielt diese

Dissertation darauf ab, die Grenzen des Erreichbaren im Bereich Earables zu

verschieben und diese letztlich als vielseitige Sensorplattform zur Erweiterung

menschlicher Fähigkeiten zu etablieren.

Um eine fundierte Grundlage für die Dissertation zu schaffen, synthetisiert

die vorliegende Arbeit den Stand der Technik im Bereich der ohr-basierten Sen-

sorik und stellt eine einzigartig umfassende Taxonomie auf der Basis von 271

relevanten Publikationen vor. Durch die Verbindung von Low-Level-Sensor-

Prinzipien mit Higher-Level-Phänomenen werden in der Dissertation anschließ-

end Arbeiten aus verschiedenen Bereichen zusammengefasst, darunter (i) phys-
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iologische Überwachung und Gesundheit, (ii) Bewegung und Aktivität, (iii)

Interaktion und (iv) Authentifizierung und Identifizierung.

Diese Dissertation baut auf der bestehenden Forschung im Bereich der phys-

iologischen Überwachung und Gesundheit mit Hilfe von Earables auf und stellt

fortschrittliche Algorithmen, statistische Auswertungen und empirische Stu-

dien vor, um die Machbarkeit der Messung der Atemfrequenz und der Erken-

nung von Episoden erhöhter Hustenfrequenz durch den Einsatz von In-Ear-

Beschleunigungsmessern und Gyroskopen zu demonstrieren. Diese neuarti-

gen Sensorfunktionen unterstreichen das Potenzial von Earables, einen gesün-

deren Lebensstil zu fördern und eine proaktive Gesundheitsversorgung zu er-

möglichen.

Darüber hinaus wird in dieser Dissertation ein innovativer Eye-Tracking-

Ansatz namens "earEOG" vorgestellt, welcher Aktivitätserkennung erleichtern

soll. Durch die systematische Auswertung von Elektrodenpotentialen, die um

die Ohren herum mittels eines modifizierten Kopfhörers gemessen werden,

eröffnet diese Dissertation einen neuen Weg zur Messung der Blickrichtung.

Dabei ist das Verfahren weniger aufdringlich und komfortabler als bisherige

Ansätze. Darüber hinaus wird ein Regressionsmodell eingeführt, um absolute

Änderungen des Blickwinkels auf der Grundlage von earEOG vorherzusagen.

Diese Entwicklung eröffnet neue Möglichkeiten für Forschung, welche sich

nahtlos in das tägliche Leben integrieren lässt und tiefere Einblicke in das

menschliche Verhalten ermöglicht. Weiterhin zeigt diese Arbeit, wie sich die

einzigarte Bauform von Earables mit Sensorik kombinieren lässt, um neuartige

Phänomene zu erkennen.

Um die Interaktionsmöglichkeiten von Earables zu verbessern, wird in der

vorliegenden Dissertation eine diskrete Eingabetechnik namens “EarRumble”

vorgestellt, die auf der freiwilligen Kontrolle des Tensor Tympani Muskels im

Mittelohr beruht. Die Dissertation bietet Einblicke in die Verbreitung, die Be-

nutzerfreundlichkeit und den Komfort von EarRumble, zusammen mit prak-

tischen Anwendungen in zwei realen Szenarien. Der EarRumble-Ansatz er-

weitert das Ohr von einem rein rezeptiven Organ zu einem Organ, das nicht

nur Signale empfangen, sondern auch Ausgangssignale erzeugen kann. Im

Wesentlichen wird das Ohr als zusätzliches interaktives Medium eingesetzt,
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welches eine freihändige und augenfreie Kommunikation zwischen Mensch

und Maschine ermöglicht. EarRumble stellt eine Interaktionstechnik vor, die

von den Nutzern als “magisch und fast telepathisch” beschrieben wird, und

zeigt ein erhebliches ungenutztes Potenzial im Bereich der Earables auf.

Aufbauend auf den vorhergehenden Ergebnissen der verschiedenen Anwen-

dungsbereiche und Forschungserkenntnisse mündet die Dissertation in einer

offenen Hard- und Software-Plattform für Earables namens “OpenEarable”.

OpenEarable umfasst eine Reihe fortschrittlicher Sensorfunktionen, die für

verschiedene ohrbasierte Forschungsanwendungen geeignet sind, und ist gle-

ichzeitig einfach herzustellen. Hierdurch werden die Einstiegshürden in die

ohrbasierte Sensorforschung gesenkt und OpenEarable trägt somit dazu bei,

das gesamte Potenzial von Earables auszuschöpfen. Darüber hinaus trägt die

Dissertation grundlegenden Designrichtlinien und Referenzarchitekturen für

Earables bei. Durch diese Forschung schließt die Dissertation die Lücke zwis-

chen der Grundlagenforschung zu ohrbasierten Sensoren und deren praktis-

chem Einsatz in realen Szenarien.

Zusammenfassend liefert die Dissertation neue Nutzungsszenarien, Algo-

rithmen, Hardware-Prototypen, statistische Auswertungen, empirische Studien

und Designrichtlinien, um das Feld des Earable Computing voranzutreiben.

Darüber hinaus erweitert diese Dissertation den traditionellen Anwendungs-

bereich von Kopfhörern, indem sie die auf Audio fokussierten Geräte zu einer

Plattform erweitert, welche eine Vielzahl fortschrittlicher Sensorfähigkeiten bi-

etet, um Eigenschaften, Prozesse und Aktivitäten zu erfassen. Diese Neuaus-

richtung ermöglicht es Earables sich als bedeutende Wearable Kategorie zu

etablieren, und die Vision von Earables als eine vielseitige Sensorenplattform

zur Erweiterung der menschlichen Fähigkeiten wird somit zunehmend realer.
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1. Introduction

Earables are wearable computing devices that are worn in or around the ear.

Ear-worn devices evolved for isolated purposes, as hearing aids and personal

speakers. In using the notion of “earables”, this dissertation refers to de-

vices that integrate wider capabilities, as a new type of ubiquitous computing

platform. In consumer electronics, earphones have already become wireless

at large scale, and increasingly integrate diverse types of sensors to extend

their functionality [397]. Conversely, hearing aids integrate sensing to person-

alise sound amplification but also converge toward wireless integration with

other devices [255]. These trends are mirrored in research, where earables

(and synonymously “hearables”) have emerged as a distinct area of investiga-

tion [379; 235; 102]. At the heart of much of the research in this new field are

questions of sensing - what can be detected and observed with earables, and

what interactions and applications are enabled by sensing in or on the ear?

To this extent, this dissertation seeks to: (i) synthesize the state-of-the-art in

earable sensing works; and (ii) expand upon the status quo through the contri-

butions of novel sensing capabilities of earables, and evaluations thereof.

1.1 Motivation

Earables, with their specific positioning on the human body, provide a distinct

platform for sensing of a wide range of properties, processes and activities.

They are portable and their small and lightweight form factor allows them to

be worn for prolonged periods throughout the day. The shape of the ear affords

a variety of mechanical anchoring points [184; 236; 359] and the ears are less

susceptible to motion disturbance and artefacts as the body stabilises the head

during locomotion [164; 232]. The proximity to the brain and blood vessels en-

ables the accurate measurement of brain activity, cyclic blood flow and related
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properties [137], and the inner ear cavity acts as an echo chamber to amplify

internal body sounds [13]. The position of the ears on the head allows for a

multitude of facial, neck, and eye muscle activations to be sensed [16] and in-

put from head movement [16], facial gestures [304], mouth movements [435],

and eye gaze to be detected [374; 57]. The ear itself is easily and comfort-

ably reached by the hands [494; 241], while the distinctive surface area creates

opportunities for a variety of touch interactions [272]. In sum, earables are

capable of sensing a wide variety of processes of the skeletal (e.g., gait [32]),

muscular (e.g., facial expressions [304]), nervous (e.g., brain activity [115]),

endocrine (e.g., emotions [35]), cardiovascular (e.g., blood pressure [76]), res-

piratory (e.g., breathing [450]), and digestive (e.g., food intake [150]) systems).

1.2 Aim

Earables have the potential to be a ubiquitous platform, but the understanding

of their capabilities and limitations is still evolving. Despite the extensive re-

search conducted on earables, achieving reliable and consistent sensing results

remains a challenge, with much untapped potential yet to be explored.

This dissertation aims to provide fundamentally new insights into the capa-

bilities of earables, contributing novel sensing approaches that enable the de-

tection of phenomena previously inaccessible to earable devices. By breaking

ground with the introduction of new hardware and algorithms, this dissertation

seeks to push the boundaries of what is possible in the earables domain, with

the ultimate goal to steer earables towards a general-purpose sensing platform.

1.3 Objectives

To achieve the overarching aim, the dissertation focuses on the development of

solutions that overcome current limitations of earable sensing capabilities. On

a conceptual level, this leads to the following objectives:

1. Thoroughly understanding the existing challenges and limitations in ear-

able sensing technologies through systematic literature review.

2. Identifying novel sensing opportunities and under-explored phenomena
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in the earables domain.

3. Designing and implementing innovative hardware and algorithms tai-

lored to these novel sensing opportunities through prototyping.

4. Evaluating the effectiveness of the proposed solutions in terms of relia-

bility and usability through empirical studies.

5. Integrating the proposed solutions into a unified, general-purpose ear-

able sensing platform.

Through this approach, this dissertation seeks to facilitate a future where ear-

ables become a ubiquitous, integral part of our lives, serving as a general-

purpose sensing platform.

1.4 Contributions

In line with the overarching aim and objectives, this dissertation presents a

series of contributions that guide earables towards the goal of becoming a

general-purpose sensing platform.

1.4.1 Taxonomy of Sensing on the Ears

To establish a foundation for exploring novel ear-based sensing applications,

the first objective of this dissertation is to comprehensively understand the ex-

isting research on earables, to reveal what has been accomplished so far and

how. This leads to the first research question of this dissertation:

Question 1: What can be detected and observed with earables, and what

interactions and applications are enabled by sensing in or on the ears?

To address this question, a systematic literature review of 271 peer-reviewed

research articles was conducted. Each article reviewed was classified with re-

spect to sensing principles applied, types of information gained, and purposes

to which sensing was used. Through iteration, this process resulted in the de-

velopment of a taxonomy of phenomena sensed. At the lowest level, the dis-

sertation identifies and characterises phenomena that are directly sensed with
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sensors placed in or on the ear as fundamental phenomena, including for in-

stance motion or blood perfusion. Other phenomena are identified as indirectly

observable and derived from fundamental phenomena, ranging from physio-

logical parameters (e.g., heart rate) and lower-level cues (e.g., earable state)

to conditions (e.g., stress), actions (e.g., gestures), activities (e.g., daily tasks)

and other context (e.g., identity). The dissertation shows how higher-level phe-

nomena build on fundamental phenomena, and relates this to different sensors

that have been investigated for their observation. The result is an open-ended

taxonomy that provides a clear end-to-end structure for classification of ear-

able sensing work, from sensors employed to fundamental and higher-level

phenomena and their application. This results in the following contributions:

Contribution 1: (1) A uniquely comprehensive, open-ended taxonomy

of sensing on the ears, identifying 13 fundamental phenomena using 21

different sensors to enable close to 50 phenomena to be sensed around

the ears; (2) a summary of related works in four main areas (i) physio-

logical monitoring and health, (ii) movement and activity, (iii) interac-

tion, and (iv) authentication and identification.

1.4.2 Measuring Respiration and Cough with Inertial Sensing

From the fundamental understanding for earable sensing, it was quickly found

that the unique positioning of earables has led to research on their potential for

health and physiological monitoring, including tracking vital signs and detect-

ing medical conditions. Still, the potential of earables for health monitoring

has not been fully realized. Accelerometers and gyroscopes, which measure

health- and fitness-related body motions, represent a promising set of sensors.

They are cost-effective, energy-efficient, and already integrated into commod-

ity earables (e.g., Apple AirPods [20]). Therefore, the second objective of this

dissertation is to explore the use of these sensors for new health applications.

This leads to the following research question:

Question 2: How can inertial sensing on the ears be applied to realize

respiration rate sensing while the user is at rest?
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To address the question, breath data in three different poses (sitting, stand-

ing, supine) was collected from 12 participants wearing a 6-axis inertial mea-

surement unit on the left ear (accelerometer and gyroscope). They were in-

structed to breath naturally before and after exercising. Based on this data, a

filter-based processing pipeline and the necessary tuning parameters were in-

troduced to achieve an absolute error of 2.62 and 2.55 breath cycles per minute

for accelerometer and gyroscope, respectivley. This performance is close to

the accuracy required for non-vital signs monitoring. Hence, the dissertation

contributes:

Contribution 2: Algorithms and empirical evidence to show the fea-

sibility of respiration rate tracking based on in-ear accelerometer and

gyroscope data in three stationary poses (sitting, standing, supine).

Breathing is a critical vital sign that can be an early warning indicator of

physiological deterioration [363]. Especially with the relevance of COVID-19

during the writing period of this dissertation, respiratory illness was a partic-

ularly prominent topic. To contain a pandemic, detecting illness early on can

help isolating patients which helps containing a virus outbreak [217]. Hence

detecting cough events with accelerometer and gyroscope data with earables

appeared to be a promising path for further investigation which lead to the

following research question posed by this dissertation:

Question 3: How can inertial sensing on the ears be applied for detect-

ing episodes of increased cough frequency (e.g., during illness)?

To answer this question, the dissertation evaluates 4,200 throat activity re-

lated event samples to propose a machine learning model for detecting cough

events and identifying episodes of increased cough based on statistical analy-

sis. The classifier achieves 77% accuracy in predicting cough events. Based

on the developed machine learning model, the dissertation presents a statistical

approach to discriminate episodes of increased cough after a defined observa-

tion period (e.g., 24 hours). Therefore, the dissertation contributes:
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Contribution 3: Algorithms, empirical evidence, and statistical mod-

elling to realize episode of increased cough detection under motion stress

(e.g., walking) based on in-ear accelerometer and gyroscope data.

1.4.3 Eye Tracking based on Periauricular Electric Potentials

Activity tracking is a popular domain in ubiquitous computing. An interesting

modality to track the activity of a person is eye tracking based on electric po-

tentials of the eyes [82]. While it is well-known that movement of the eyes can

be sensed with electrodes around the ears, no efforts were undertaken to under-

stand this phenomenon systematically. This leads to the following question:

Question 4: How well can electric potentials sensed around the ears be

leveraged as an alternative for gold-standard eye tracking and where to

position measurement electrodes to yield the best results?

Hence, the third contribution of this dissertation explores ear Electrooculog-

raphy (earEOG) using 28 electrodes positioned around the ears in a regular

headphone form factor (14 on earch ear). Based on a data collection study

with 3 participants, the dissertation identifies the most effective electrode pairs

and establishes their correlation to gold-standard EOG with respect to different

eye movement patterns. In the four cardinal directions (left, right, up, down)

a regression model based on earEOG achieves an average absolute angular er-

ror of 9.2° ± 4.5° to predict saccades between 5° and 30° (vs. 4.4° ± 1.1°

gold-standard EOG). In sum, the contributions are:

Contribution 4: (1) An investigation of EOG-based eye tracking us-

ing electrodes placed around the ears in a custom-built headphone form

factor, providing earEOG - a novel approach to on-the-go wearable eye

tracking; (2) an evaluation of different electrode positions for earEOG

and recommendations for the optimal placement of electrodes, to enable

a more effective use of earEOG for eye tracking; and (3) an evaluation of

earEOG to predict absolute gaze angles of the four cardinal directions.
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1.4.4 Discreet, Hands- & Eyes-Free Tensor Tympani Input

While the former research questions focus on passively sensing physiological

processes and activities, a lot of research has also been conducted on how user

can actively perform input into ear-worn devices. Current interaction tech-

niques with earables mainly relied on visible gestures or vocal commands. By

exploring new ways to interact with earables that do not require the use phys-

ically demanding gestures or voice, earables could be more accessible for a

wider range of users, including those with disabilities or who work in environ-

ments where voice commands or gestures are not practical or desirable. There-

fore, this dissertation explores how, compared to existing principles, input may

be offered in a discreet as well as hands- and eyes-free manner. This leads to

the fifth research question of this dissertation:

Question 5: How may the tensor tympani muscle, found in the hu-

man middle ear, be leveraged for interaction with earables as a discreet,

hands- and eyes-free technique?

To answer this question, the dissertation introduces a novel interaction tech-

nique based on the tensor tympani muscle, called "ear rumbling". This tech-

nique is based on the voluntary contraction of the tensor tympani. Through

an online questionnaire, the dissertation sheds light on the prevalence of the

voluntary tensor tympani contraction ability, with 43.2% of participants self-

reporting the controlling ability (N = 192). Using a custom-built sensor ear-

piece, the thesis also introduces a sensing technique to detect rumbles via ear

canal pressure and describes the required processing pipeline to use ear rum-

bling as a real-time interaction technique. The developed system yields 95%

accuracy in detecting three ear rumble gestures (N = 16). Furthermore, the

dissertation characterizes ear rumbling with respect to reaction time. In a task-

based study with eight users ear rumbling is applied to interact with a music

player and handle phone calls. Users described the technique as "magical" and

"almost telepathic". Through these studies, the dissertation does the following

contributions:
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Contribution 5: (1) EarRumble, a hands- and eyes-free, discreet input

technique based on voluntary control of the tensor tympani muscle and

sensed through in-ear barometry; (2) an indication of how prevalent ear

rumbling is, how easy it is to perform on demand, and how comfortable

it is through an online questionnaire; (3) data-driven insights into how

well users can contract the tensor tympani muscle in the context of inter-

action; and (4) insights into how EarRumble can be used for interaction,

grounded in real-world applications.

1.4.5 Advancing towards General Purpose Ear-based Sensing

Earables have been extensively studied due to their sensing capabilities and

potential applications. However, many researchers often build custom devices

from scratch which requires substantial effort and makes it more challenging

to reproduce results. Therefore, this dissertation seeks to understand:

Question 6: How can earables be established as a general-purpose plat-

form for prototyping sensor-based applications focused around the ears?

Therefore, and by taking all previous research into account, this dissertation

introduces a new open-source hardware platform and accompanying software

toolchain for earable sensing research. The platform is called OpenEarable

and has a 9-axis IMU, an ear canal ultrasound microphone and speaker, and an

ear canal pressure and temperature sensor. OpenEarable is implemented as an

earhook design and the earpiece inside the ear canal can be easily exchanged

to allow for other sensors to be applied on the ears. The dissertation shows

the wide capabilities of OpenEarable based on three sample applications: de-

tecting jaw motions, tracking body movement, and measuring ear canal sound

reflections for authentication. Moreover, based on 39 student projects, this dis-

sertation demonstrates how such earable prototyping platforms can be used for

problem-based learning and generating new ideas for earable research. The

introduction of OpenEarable will hopefully reduce the assessment heterogene-

ity of studies conducted with earables and contribute to the establishment of
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earables as a general-purpose platform.

Therefore, this dissertation seeks to establish a general-purpose earable pro-

totyping platform resulting in the following contributions:

Contribution 6: (1) An open-source hard- and software platform for

earable sensing applications called “OpenEarable” which features a 9-

axis inertial measurement unit, an ear canal pressure and temperature

sensor, as well as an inward facing ultrasound microphone and speaker;

(2) an evaluation of earable prototyping platforms to show that such

devices enable new ideas and create interest in the research topic.

While earables are commonly used during the day, their broad sensing capa-

bilities are also interesting to track sleep-related parameters (e.g., brain activity

[374]). To understand comfort of earables during sleep and establish best prac-

tices, the dissertation explores the wearability of seven different earable form

factors for sleep. In a 14 participant study, users wore each of the devices for

one night. It was found that rigid parts should be placed behind the ears and

obstruction of the ear canal should be avoided. All earables had an adverse

effect on sleep quality. This results in the following contribution:

Contribution 7: An evaluation of the comfort and wearability of seven

different earable form factors during sleep

1.5 Structure

The dissertation is divided into eight logical sections that delve into specific

aspects of earable technology and its applications. The structure of the thesis

is represented as a matrix in Figure 1.1, which provides an overview of the re-

lationships between the different sections and subsections. The matrix format

allows the reader to quickly understand how the different sections of the dis-

sertation relate to each other and how they fit together as a whole. Overall, the

structure of the dissertation is designed to provide a comprehensive exploration

of earable technology and its potential applications in different domains.
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After initially establishing the foundation for ear-based sensing based on the

taxonomy presented in chapter 2, the dissertation follows the primary research

areas identified by the literature review: (i) physiological parameters and health

in chapter 3, (ii) movement and activity in chapter 4, and (iii) interaction in

chapter 5. The dissertation presents related works across these domains and

introduces the application-specific ear-based sensing contributions: respiration

rate sensing (section 3.2), episode of increased cough detection (section 3.3),

eye tracking with periauricular electric potentials (section 4.2), and discreet

hands- and eyes-free tensor tympani muscle input (section 5.2). Based on all

insights generated, chapter 6 then investigates earables as a platform with re-

spect to prototyping and design. This includes the introduction of the Open-

Earable hardware and software platform for ear-based sensor applications.

The application-specific chapters are followed by discussions of the earable

field as a whole in chapter 7, focusing on research challenges and gaps that re-

main open and to be investigated for future research. In addition, the discussion

includes a summary of related works of the fourth research field identified in

this dissertation but not investigated through specific applications: (iv) authen-

tication and identification (section 7.4). In the last chapter 8, the dissertation

offers the concluding remarks.

1.6 List of Papers

The following list gives an comprehensive overview of all scientific papers

published by the author that are relevant for this dissertation. Significant parts

of this dissertation (across all chapters) were copied from the relevant earable

papers listed below and assembled into a coherent monograph structure.

T. Röddiger, D. Wolffram, D. Laubenstein, M. Budde, and M. Beigl. Towards Respi-
ration Rate Monitoring Using an In-Ear Headphone Inertial Measurement Unit. In Pro-
ceedings of the 1st International Workshop on Earable Computing, EarComp’19, page
48–53. Association for Computing Machinery, 2019

T. Röddiger, M. Beigl, and A. Exler. Design space and usability of earable prototyping.
In Proceedings of the 2020 International Symposium on Wearable Computers, pages 73–
78, 2020
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T. Röddiger, M. Beigl, M. Hefenbrock, D. Wolffram, and E. Pescara. Detecting Episodes
of Increased Cough Using Kinetic Earables. In Augmented Humans Conference 2021,
pages 111–115, 2021
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1–14, 2021
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Data Collection Toolkit. In Augmented Humans Conference 2021, pages 286–288, 2021

H. Zhao, T. Röddiger, and M. Beigl. AirCase: Earable Charging Case with Air Quality
Monitoring and Soundscape Sonification. In Adjunct Proceedings of the 2021 ACM In-
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= Open ExG Headphones – An Open-Source Research Platform for Biopotential Earable
Applications. In Extended Abstracts of the 2023 CHI Conference on Human Factors in
Computing Systems, pages 1–7, 2023

12



2. Taxonomy of Sensing on the Ears

To establish a foundation for all work presented in this dissertation and ad-

vance the understanding of sensing with earables, this chapter initially presents

a comprehensive analysis of the different phenomena sensed with earables,

based on a systematic literature review of 271 peer-reviewed research articles.

Each article reviewed was classified with respect to sensing principles applied

or investigated, types of information gained, and purposes to which sensing

was used. Through iteration, this process resulted in the development of a tax-

onomy of phenomena sensed with earables. At the lowest level, fundamental

phenomena that are directly sensed with sensors placed in or on the ear were

identified and characterized. These fundamental phenomena include, for in-

stance, motion, body temperature, and blood perfusion. Other phenomena were

identified as indirectly observable and derived from fundamental phenomena,

ranging from physiological parameters (e.g., heart rate) and lower-level cues

(e.g., earable state; in or out of ear) to conditions (e.g., stress), actions (e.g. ges-

tures), activities (e.g. daily tasks) and other context (e.g. user identity). In total,

close to 50 phenomena were identified and categorized. The relationship be-

tween higher-level phenomena and fundamental phenomena is demonstrated,

and this is related to different sensors and sensing principles that have been

investigated for their observation. The result is a taxonomy that is open-ended

(new sensors might emerge, and further phenomena explored) but complete

in providing a clear end-to-end structure for classification of earable sensing

work, from sensors employed to fundamental and higher-level phenomena and

their application. This chapter was published as journal paper in “Proceedings

of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies

Volume 6 Issue 3” [455]. Also, the related work sections of this dissertation

were part of this publication.
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2.1 Related Work

A number of recent articles have also reviewed earables research. Plazak and

Kersten-Oertel reviewed the properties and affordances of earables and how

they are distinct from other wearables, for input and output [379]. Choudhury

provided a reflection on earable computing that draws out key opportunities

and challenges [102]. The present work, in contrast, is more specifically fo-

cused on sensing with earables, and grounded in a systematic literature review.

Two other systematic reviews have been published recently. Masè et al. re-

viewed 39 studies of in-ear monitoring of physiological parameters, focused

on temperature, heart rate, and oxygen saturation [298]. Ne et al. also fo-

cused on earables for health monitoring but considered a wider range of bio-

signals, reviewing 92 studies to capture device characteristics versus study out-

comes [340]. In contrast, this review presented as part of this dissertation con-

siders earable sensing broadly, not limited to health monitoring, and inclusive

also of research that has been less experimental, for example demonstrating

novel forms of interaction enabled by earable sensing. The review is organized

by phenomena, in four main areas of (i) physiological monitoring and health,

(ii) movement and activity, (iii) interaction, and (iv) authentication and identi-

fication. For each of the phenomena, a clear definition is provided, and work

on how they are sensed and on applications they enable is reviewed. As such,

the presented review contributes a uniquely comprehensive survey of the state

of the art in earable sensing.

2.2 Methodology

Informed by prior work [248; 51; 163; 499; 75], the systematic literature re-

view was undertaken by collecting and filtering papers from the ACM and

IEEE digital libraries using a set of defined inclusion and exclusion criteria

and a four-eyes principle, followed by backward chaining with the same crite-

ria applied. This process resulted in 271 relevant articles which were analyzed

and clustered based on a newly introduced earable taxonomy.
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2.2.1 Paper Retrieval

An initial keyword-based search was conducted on the ACM Digital Library

(ACM-DL) and IEEE Xplore (IEEE-X) libraries, which are considered to con-

tain the majority of wearable and HCI publications. The definition of earables

was formulated as follows to guide the survey:

Earables are devices that attach in, on, or in the immediate vicinity of

the ear to offer functionalities beyond basic audio in- and output.

Research areas that apply to earables but were excluded include voice and

audio interfaces as well as the technical design of audio earphones (e.g., speaker

and antenna design or noise cancelling algorithms). These topics have been

summarised elsewhere (e.g., voice interfaces [428], audio interfaces [143],

soundscapes [199], or sonification [250]) or are not specific to the location

on the ear (e.g., algorithms to translate speech to text).

The queries listed below were used to match keywords against title, abstract,

and author keywords. Keywords were identified by assembling a list that was

expanded with additional relevant keywords found in the first 50 papers re-

turned by both libraries. The search resulted in 210 ACM-DL and 695 IEEE-X

publications. A final query of both libraries was performed on Jan. 21st, 2022.

query target: Title, Keywords, Abstract (ACM-DL) / Document
Title, Index Terms, Abstract (IEEE-X)
keywords: earable(s), hearable(s), ear-worn, ear AND
wearable(s), earbud(s), earphone(s), headphone(s),
earpiece(s), ear(-)mounted, ear(-)attached, ear(-)based
filter: Research Article OR Short Paper (ACM-DL) /
Conferences, Journals (IEEE-X)

2.2.2 Selection Criteria, Filtering, and Backward Chaining

As the keyword-based search does not result in a set of papers with clear defini-

tion boundaries, explicit inclusion and exclusion criteria were defined to man-

ually select the relevant papers returned by the queries. First, selected papers

15



have to fulfill the basic properties of earables in that:

1. the device attaches in, on, or in the immediate vicinity of the ear; and

2. sensing occurs in, on, or in the immediate vicinity of the ear.

Additionally, articles were excluded that:

1. are not peer-reviewed, e.g. workshop proposals, theses, patents, techni-

cal reports

2. are a bigger head-worn or off-body system (e.g., VR headsets)

3. focus on animals

4. are not written in English

The main objective was to show the full breadth and depth of earable research

contributions to date. Hence, papers were not excluded based on number of

citations, impact factor of the venue, or number of study participants.

The search produced 906 results. Together with a second researcher, the

initial results were reviewed separately by reading the titles and abstracts be-

fore screening the papers and applying the above criteria. After removing 24

duplicates and one broken cross-site link the articles with positive agreement

were selected for the the review (75 ACM-DL, 112 IEEE-X). Performing this

step yielded an initial set of 187 papers. Then backward-chaining was applied

to the selected papers to account for publications that are not available in the

ACM-DL and IEEE-X library or were missed by the keywords, resulting in the

inclusion of papers from other publishers including Springer, Frontiers, and

MDPI. Together with a second researcher, the references of the papers (4,854

incl. duplicates) were scanned according to the same criteria. All references

were split in half and one researcher confirmed the selection of the other. In

total, 82 additional papers were identified through this process. Three further

papers were added manually that did not appear in the search process, which is

a common practice [75]. After going through all papers in depth, 10 additional

papers were excluded – five because of severely flawed experiments and five

because no evaluation was done but the claims of the paper would demand it.

The described procedure resulted in the final set of 271 papers.
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Venues with more than three papers were the IEEE International Engineer-

ing in Medicine and Biology Conference (EMBC) (N=28), EarComp (N=15),

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies (IMWUT) / Ubicomp (N=14), ACM International Symposium

on Wearable Computers (ISWC) (N=13), IEEE Sensors (N=13), IEEE-EMBS

BSN International Conference on Wearable and Implantable Body Sensor Net-

works (N=10), IEEE Transactions on Biomedical Engineering (N=10), MDPI

Sensors (N=7), ACM Conference on Human Factors in Computing Systems

(CHI) (N=6), ACM Symposium on User Interface Software and Technology

(UIST) (N=6), BioCAS (N=5), Mobicom (N=4), and SenSys (N=4).

2.2.3 Analysis and Structuring Approach

To structure the identified papers’ content in a unified format, a Google Sheets

document was assembled. Together with a second researcher, 15 papers were

read by each to came up with an initial suggestion for a table structure. This

structure was reviewed with four other researchers to distill the final data table

(46 columns spanning varying aspects). Then, all papers were split between

four researchers to fill the table accordingly.

At the highest level, four main areas of research to group papers were identi-

fied which provide a top-level structure. The grouping is pragmatic and based

on larger overarching themes. The largest area, in number of articles published,

is physiological sensing and health monitoring. Research in this space is pur-

sued across disciplines and has a strong measurement focus but also includes

work on detection of distinct phenomena, such as teeth grinding and coughing.

Movement and activity forms an area that is more defined by a common ground

in activity analysis than any specific application domain, with most of the re-

search stemming from the wearable and ubiquitous computing community. In-

teraction forms another distinct area, where research tends to be exploratory in

pursuit of new means for input and interaction enabled by earable sensing. Au-

thentication and identification is the smallest area but distinct with a research

focus on biometrics captured at the ear, including physical properties of the ear

itself. Figure 2.1 shows how the four main research areas have evolved over

time. The field has grown over the past 20 years with a significant rise in activ-
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Figure 2.1.: Total number of papers published overall and per research area.

ity in the last 6-7 years. In every of the four main areas identified, most papers

were published in 2021, underlining the growing interest in earables.

For the discussion of the state of the art in this dissertation, works with more

study participants are prioritised and preliminary findings are signalled. The

exact number of study participants of related works are presented in the ap-

pendix tables (see section A.1 to section A.15). Works from the same authors

with overlapping contents (e.g., follow-up papers) or the same underlying sys-

tem are not filtered. Instead, overlapping contributions are attributed by citing

all relevant papers while highlighting specific contributions through citations

of the specific paper.

2.3 Earable Taxonomy

There are many ways in which the research space of earables can be structured,

for example by affordances [379] or features of earable platforms [451]. In this

dissertation, works are classified by types of sensor and purpose to which sen-

sors were employed. In iteration, phenomena were identified, in the sense of

“something that can be observed” as central for structuring the body of work,

as it provides the link between sensors as the means for observation, and ap-

plications as the target. The use of “phenomena” is comparable to the use of

“context” as abstraction in sensing-based applications, however “phenomena”

was chosen to better encompass observation of anything from low-level physi-

ological parameter to higher-level condition, event, state, or activity.
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Figure 2.2 provides an overview map of the phenomena identified, clustered

into related themes and grouped into four main areas. For example, heart rate,

blood oxygen saturation, blood pressure and respiration are all distinct phe-

nomena but clustered as relating to the cardio-respiratory system. For each of

the phenomena, the map captures the types of sensors that have been investi-

gated for their observation. The overview map also shows how many articles

were found that studied the various phenomena. For example, 49 articles stud-

ied earable sensing of heart rate, while other phenomena have only been studied

in single works (e.g., detection of sleep apnea, or workout repetition counting).

2.3.1 Definition of Phenomena Sensed with Earables

Table 2.1 provides the list of phenomena distilled from the earable research lit-

erature. In many cases, higher-level observations build on lower-level observa-

tions that often remain implicit. In developing a taxonomy, all selected articles

were analyzed in depth, to clearly identify the actual phenomena observed and

phenomena that are derived. For each of the phenomena thus identified, a clear

description is provided as point of reference for future research.

In the table phenomena are listed from lower to higher levels of observa-

tions, as that allows to show how phenomena build on each other. Phenomena

that can be directly captured by a sensor are shown in boldface, and they are re-

ferred to as fundamental phenomena that enable observation of other phenom-

ena. For example, blood perfusion and cardiac action potential can be sensed

directly at the ear, whereas heart rate is derived from lower-level observations.

We also identify categories to capture the principal types of phenomena. A

wide range of earable sensing work is, for instance, focused on monitoring of

body functions. These are interesting as they focus on physiological param-

eters as observations at a lower level of abstraction that directly underpin ap-

plications concerned with their monitoring. Other categories relate to sensing

modalities such as sound, movement and vision, with sound listed at a lower

level as it contributes to observation of a wide range of other phenomena. A

category of particular note is “Ear” as it encapsulates phenomena that relate

to the ear or earable device as such, for example the unique shape of the ear

channel, or the manipulation of either the ear or the ear-worn device.
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In the ubiquitous computing field, lower-level observations are often referred

to as “cues” that contribute to inference of “higher-level context”. Similar re-

lationships are visible in the presented schema, where other categories such

as mental states, health conditions, activities and identity describe higher-level

contexts. However, across the examined body of work, phenomena of interest

are viewed at different levels of abstraction. Therefore, the dissertation avoids

any layering into cue versus context. The same phenomenon may be consid-

ered low level in one application and high level in another.

Figure 2.3 shows the relationships identified between phenomena. Funda-

mental phenomena that can be directly sensed are shown as grey boxes, with

other phenomena in blue. For a range of phenomena, the relationship appears

straightforward, for example with posture or gait derived from motion. How-

ever, phenomena build also in less obvious ways on each other. Observation of

heart rate, for instance, can be based on observation of cardiac muscle activ-

ity, blood perfusion and sound but in turn also contributes to observation of a

spread of phenomena including blood pressure, respiration and fitness activity.

Another example is ear canal shape deformation which feeds into detecting jaw,

teeth, and tongue movements which enables the observation of higher-level

phenomena such as eating, bruxism or silent speech detection. Simultaneously,

the ear’s distinct shape can also reveal the user’s identity. While changes of ear

canal shape can be quantified directly using piezoelectric or pressure sensors,

it may also be sensed indirectly by measuring motion changes over time or by

characteristic sound reflections emitted in the enclosed ear canal.

2.3.2 Fundamental Phenomena

Figure 2.3 highlights how the observation of a wide range of phenomena is

grounded in a relatively small set of fundamental phenomena. These funda-

mental phenomena are sensed either directly or indirectly from different sen-

sors attached in, on or in the immediate vicinity of the ear. However, the phe-

nomena labelled as fundamental may also be inferred from other fundamental

phenomena in addition to being (in)directly sensed. For instance, “Touch” is

classified as a fundamental phenomenon because it can be captured directly

with specific sensors (see Table 2.3). However, "Touch" can also be inferred
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indirectly, for example from sound captured with a microphone or visual ap-

pearance of body and hand captured with an ear-mounted camera.

Table 2.2 provides a detailed definition for the identified fundamental phe-

nomena, explaining the physiological mechanisms on which their observation

is based. The description makes reference to the anatomy of ear and head,

for readers should refer to Figure 2.4. The table provides a comprehensive

overview of the foundations on which earable sensing is based. Note also

specifics, for instance how external, emitted and body sound leverages earable

sensing differently.

2.3.3 Sensing Principles

Table 2.3 provides a list of the different types of sensors that were reported in

the earables literature, grouped into general categories. For each sensor, the

dissertation provides a description of the sensing principle for reference. Each

sensor directly relates to sensing at least one of the fundamental phenomena,

however some fundamental phenomena can be sensed with a wide variety of

sensors. For example, ear canal deformation can be sensed using a barometer to

detect the in-ear pressure, through proximity sensors which measure the in-ear

distances, or through accelerometers and gyroscopes as the ear canal deforms

during jaw movements.

The list of sensors also completes the circle to the overview map of the

taxonomy (Figure 2.2), which mapped out the range of phenomena with the

different types of sensors used for their observation. The taxonomy provides

a clear structure based on sensors, fundamental phenomena, higher-level phe-

nomena, and their relationships. The remainder of this dissertation builds upon

the presented taxonomy. For future research, the taxonomy should provide a

reference scheme for new work in the field, for which the taxonomy will natu-

rally be extensible for other sensors and phenomena of interest.
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Table 2.2.: Fundamental phenomena from which all other phenomena can be
derived on the earable platform.

Fundamental Phenomena Description / Underlying Mechanisms
Blood Perfusion The ears are characterized by thin tissue and visi-

ble blood vessels (see Figure 2.4 D) enabling the
observation of cyclic blood flow and related proper-
ties [53]. The perfusion of the middle ear is excel-
lent in comparison to the peripheral perfusion of other
body parts [469].

Cardiac Muscle Activity Due to the conductive characteristics of the body, the
cardiac action potential created by the heart is prop-
agated throughout the body up to the ear [502; 173;
419].

Brain Activity The area around the ear, the concha, and the ear canal
are closely located to the brain, which allows captur-
ing its electric activity, commonly resulting in sinu-
soidal waves that are also called brain waves [446;
224; 57]. It provides access to the brain’s response
upon auditory and visual stimulation [224; 342]

Body Temperature The close proximity to the carotid artery results in
the tympanic membrane having a temperature close
to core body temperature [62] (see Figure 2.4 C and
D). Additionally, the ear canal and an earbud create a
confined space in which temperature stabilizes [284].

Sweat The area around the ear has high sweat-gland density
relating to stress and physical exertion [426]. Sweat
gland activity is not symmetric and different between
both ears [377].

External / Emitted /
Body Sound

Activities occurring close to the ear (e.g., chewing
sounds or tapping around the ear) are transmitted by
body sounds, or bone conduction [13; 494]. The
cavity created by the ear and an earable generates
a natural echo chamber that amplifies body-internal
sounds [257; 359], while external sounds are damp-
ened [364; 359]. Sounds that are actively emitted
from a device at the ear result in characteristic sound
reflections that are utilised by different phenomena,
including detection of ear canal deformation [11].
Compared to smartwatches and smartphones, ear-
ables are less susceptible to motion-induced sound ar-
tifacts [318].

Motion The ear provides a robust and stable attachment
point [84] with few vibrations and random move-
ment artifacts [136] when detecting motions across
the body and at the ear. This includes motion induced
by the ear canal deforming (e.g., during facial expres-
sions [472]).

Continued on next page
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Continued from previous page

Facial Muscle Activity Sensing of facial and neck muscles can be achieved
via electrical potential changes in the area around the
ear [304], which is closely located to the temporalis, mas-
seter, and steroncleodmastoid muscle (see Figure 2.4). Fa-
cial muscles deform the ear canal [16].

Ear Shape /
Deformation

The fine structures of the ears are unique enough between
different users (see Figure 2.4 A) for the purpose of bio-
metrics [378; 37]. Additionally, the ear canal deforms dur-
ing head, face, mouth, teeth and jaw motions and muscu-
lar activity [16; 47; 162; 354], e.g. upon movement of the
temporomandibular joint (see Figure 2.4 E).

Touch The unique structure of the ear and the earable itself cre-
ate a surface for interaction and are easily reached by the
hands which affords touches by the user [272; 241].

Proximity The ear offers a fixed reference point from which distance
to external objects can be measured, or their presence in-
ferred [312]. In addition, in-ear based proximity sensors
can be used to detect ear canal deformation [47].

Eye Movement The standing potential of the eyes and, upon movement of
the eyes, changes thereof can propagate to the ear [57].

Visual / Object
Appearance

The location at the ears can capture the field of view of
the wearer and also the broader area around them which
contains visual information about the appearance of the
surroundings [273] and can also determine touch [241].
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3. Physiological Parameters and Health

3.2 Respiration Tracking 
with Inertial Sensing

3.1 Related Earable Works

3.1.1 
Cardio-
Respiratory 
System

• Heart Rate

• Blood Oxygen 

Saturation

• Blood Pressure

3.1.2 
Nervous 
System

• Brain 

Activity

• Sleep

• Drowsiness

3.1.3 
Thermal 
Regulation

• Body 

Temperature

• Sweating

3.1.4 
Mental 
State

• Emotion

• Stress

3.1.5 
Health 
Tracking

• Bruxism

• Face Touching

• Sleep Apnea

• Epilepsy

• Ovulation

3.3 Coughing Detection 
with Inertial Sensing

application-specific research contributions

Figure 3.1.: Structure of the “Physiological Parameters and Health” section ac-
cording to different functions of the human body. The sections
"Respiration" and "Coughing" are separated out because of the
sensing contributions and studies conducted in this dissertation.

This chapter focuses on physiological parameters and health applications

related to ear-based sensing. Figure 3.1 gives an overview of the structure of the

chapter, which includes related works and application specific contributions.

Section 3.1 summarizes related earables works according to various func-

tions of the human body. They describe the technical realization and appli-

cations of various bodily phenomena detected by sensors attached to the ear

motivated by tracking and maintaining personal health.

Two body functions are separated out into their own sections because of the

application-specific contributions of this dissertation. Section 3.2 introduces

respiration rate sensing based on inertial data and also related works. In sec-

tion 3.3, episodes of increased cough detection is presented based on inertial

sensing and also related works are summarized.
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3.1 Related Earable Works

The following sections are structured according to functions of the human

body, as illustrated Figure 3.1. Respiration and coughing are separated out

into their own sections 3.2 and 3.3, respectivley.

3.1.1 Cardio-Respiratory System

The cardio-respiratory system resembles a close coupling process between two

biological phenomena: blood flow and breathing cycles. The following sec-

tions will introduce the technical realization and applications of heart rate,

blood oxygen saturation, and blood pressure sensing on the ear. Respiration-

related sensing is introduced section 3.2 in line with the approach for respira-

tion rate tracking introduced in this dissertation.

3.1.1.1 Heart Rate. Heart rate (HR) is an indicator of the cardiovascular

and the autonomic nervous system and, therefore, a vital sign that is influenced

by physical fitness, diets, and the overall health [464]. It describes the fre-

quency at which the heart contracts and relaxes. A typical heartbeat consists of

multiple characteristic waves (most importantly P-, QRS-, and T-waves [173]).

Typically, the heart rate is identified from the R-wave and reported in beats per

minute (bpm), with adults having an average resting heart rate of 60-100 bpm

[501]. Heart rate variability (HRV) is the variability in the beat-to-beat time

intervals which can predict cardiovascular diseases and mortality [458; 457].

HRV is reported in milliseconds (ms), with adults typically having an average

resting HRV of approximately 20-200 ms [349; 251].

Heart Rate - Sensing. Table 3.1 compares seven earable heart rate sensing

principles based on the results of 44 studies (for details, see appendix A.1).

The different sensor locations, experimental protocols, experimental condi-

tions, and performance metrics reported across papers only allow an ordinal

comparison of accuracy and robustness (low, medium, high). In this disserta-

tion, “high accuracy” is defined as medical-grade accuracy in the resting con-

dition (e.g., mean error < 10% [24; 353]). Robustness refers to the stability
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against motion artifacts. The following paragraphs will describe the advan-

tages and disadvantages of the different sensing principles in further detail.

Table 3.1.: Comparison of heart rate sensing principles. Accuracy based on
comparison to medical gold standard under resting conditions. Ro-
bustness refers to the robustness against body movements. Accur.
= Accuracy, Robustn. = Robustness, PPG = Photoplethysmogra-
phy, ECG = Electrocardiography, Mic. = microphone, Acc. = Ac-
celerometer, N = Number of studies

Sensor Accur. Robustn. Advantages Disavantages Best Loc. N
PPG high moderate supports pulse

oximetry,
blood pressure,
and respiration
rate

sensitive to
motion but can
be filtered up
to some degree

ear canal 29

ECG high moderate gold standard
for HR HRV,
most detailed
heart activity

does not work
for everyone,
obtrusive, re-
quires multiple
electrodes

ear canal,
mastoid 8

Mic. medium low off-the-shelf sensitive to
motion but can
be filtered up
to some degree

ear canal,
circumaural 5

Acc. medium low off-the-shelf,
filter move-
ment supports
activity track-
ing

highly sensitive
against move-
ment

posterior 2

Piezo high low configurable
ear shapes,
robust against
temperature

highly sensitive
against move-
ment, requires
pressure to the
skin

ear canal 1

Photoplethysmography (PPG) measures the blood volume change by illu-

minating the skin and then tracks changes in the reflected or transmitted light.

The proximity between the brain and ears offers an arterial network that is

ideal for heart rate sensing in comparison to other locations that are subject

to peripheral perfusion (see Figure 2.2). At the same time, PPG affords sens-

ing other phenomena such as blood pressure (see subsubsection 3.1.1.3), blood
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oxygen saturation (see subsubsection 3.1.1.2), and even respiration (see sec-

tion 3.2). In general, a PPG sensor location in the ear canal is preferable

even though it may be sensitive to jaw motions [475; 137]. Other non-ear-

obstructing locations with sufficient accuracy are at the tragus, the ear lobe,

and the area posterior to the ear (see appendix A.1). Accuracy-wise, earable

PPG devices can meet official medical standards in resting and moving con-

ditions. Most resting state studies reported error scores of less than 1 bpm

mean error [422; 459; 137; 372; 469; 470; 476; 475; 474] which even outper-

forms wrist-worn PPG [392; 376]. Within-subject studies showed that PPG

performance decreases with motion artifacts introduced by body movement

[498; 137; 422; 382; 459], facial movement (e.g. talking) [286; 184; 382],

or music listening [381]. While several studies report accuracy scores of less

than 10% mean error under motion noise [372; 286; 422; 422], other studies

exceed the acceptable range of medical standards (e.g., [137]). Two promis-

ing pathways for reducing earable PPG motion artifacts are the use of ac-

celerometers [372; 283; 90] and machine learning based calibration procedures

[439; 283; 502].

Electrocardiography (ECG) measures the contraction of the cardiac muscle

and the resulting electrical activity with electrodes on the skin surface [431].

ECG provides the highest resolution of heart rate activity and is, therefore, con-

sidered the gold standard for conventional medical measurement. A handful of

studies on earable ECG reported acceptable performance (see appendix A.1)

with peak delays of only 50 ms [438]. The ear canal was recommended as

the best location for earable ECG [477]. Still, some evidence exists that ECG

waves can also be measured at the mastoid [209; 502] and posterior ear position

[89]. However, Jacob et al. [209] could not identify the fundamental heart beat

frequencies for 6 out of 13 study participants. Additionally, multiple ECG-

electrodes are required on the skin (not necessarily on the head), which leads

to the conclusion that earable PPG offers significant advantages over ECG with

regards to obtrusiveness, generalizability, and possible accuracy.

Microphones [296; 128] record air-conducted (and by modification also bone-

conducted [160]) sound pressure waves elicited by mechanical pulsation of the

ear-canal blood vessels. The recorded audio signal is processed with filter-
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ing algorithms for low (<24Hz) and recurring frequencies [128; 345], or other

denoising algorithms [70; 296]. One advantage is that microphones are com-

monly built into commercial earbuds. Fan et al. [128] developed a device that

plugs in between a smartphone and any off-the-shelf headphone to derive heart-

beats from small voltage changes. Most studies report errors below the 10%

range (appendix A.1). However, the performance of microphone-based heart

rate sensing is generally lower than earable PPG. Moreover, it has low robust-

ness against motion artifacts (ME=7.5 bpm) [345]. As a result, microphones

should only be considered as a cost-efficient and off-the-shelf alternative to

PPG sensors.

Accelerometers measure heartbeats through recurring mechanical vibrations

that result from the blood volume change [184; 355]. Similar to microphones,

they are built into several off-the-shelf earables (e.g., eSense [236]). He et al.

[184] found high regression coefficients for the R- and J-waves but lower co-

efficients for the PPG-measured stroke volume. Such accelerometers are also

useful for filtering out motion artifacts of other heart rate sensors [372; 283;

90; 183] (see above).

Moreover, Park et al. [362] used piezoelectric sensors for measuring the

heart rate via the variance of surface pressure in the ear canal. The authors

found showed high accuracy scores on a large sample size when the user is at

rest.

None of the sensing principles have high robustness against body move-

ments. PPG and ECG are evaluated as moderately robust because they had less

decline in accuracy compared to other sensing principles and still enabled an

overall identification of the heartbeats. Overall, a combination of PPG sensors

in the ear canal and accelerometers that control for motion artifacts seems most

promising for earable heart rate sensing.

Heart Rate - Applications. Most earable heart rate publications were moti-

vated by the possibility to continuously monitor cardiovascular functions (e.g.,

[381; 362; 173]). Other use cases are monitoring of stress [283; 439; 439; 169],

see subsubsection 3.1.4.2, energy expenditure [258], see subsubsection 4.1.2.2),

and exercising [460; 345]. Heart rate measured at the ear also gives insights
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into respiration-related events (see section 3.2 and subsubsection 3.1.5.3).

3.1.1.2 Blood Oxygen Saturation. Delivering oxygen-bound hemoglobin

to different cells of the body is vital to human life [485]. The proportion of oxy-

genated hemoglobin (saturated) to the total amount of hemoglobin molecules

in the arteries (saturated and unsaturated) is defined as blood oxygen saturation,

and is reported in percent (%).

Non-invasive methods commonly measure the peripheral oxygen saturation

(SpO2) based on computing the difference of absorbed light at two wavelengths

by Photoplethysmography (PPG). In medicine, the earlobe is a popular and

reliable location to obtain transmissive PPG-based SpO2 measurements as light

can be emitted on one side of the ear, whereas the absorption is determined on

the other side of the tissue [485]. However, transmissive PPG is limited to

the auricle, as the emitting LED and the light sensor are placed on opposing

sides of the skin. Therefore, earables commonly use reflective PPG sensors

that measure the amount of light reflected back to the emitting probe.

Appendix A.2 shows that acceptable accuracy can be achieved by reflective

PPG at rest on the earlobe [286], and in the ear canal [53; 137] based on ground

truth finger SpO2 measurements (< 2% error according to FDA [141]). Be-

sides, PPG sensors posterior of the ear could also measure reliable values in a

range between 70% - 100% evaluated according to gold standard arterial blood

gas values (SaO2) [71]. PPG to sense blood oxygen saturation suffers from the

same problems as described in the previous heart rate section (see subsubsec-

tion 3.1.1.1), such as degraded performance by motion artifacts when walking

or during jaw movement [137; 475].

Based on the blood oxygen saturation of the wearer, it was suggested to per-

form sleep apnea detection [469], see subsubsection 3.1.5.3. Other possible

applications include vital signs tracking and alerting [40; 286; 53] foreseeing

diseases [475; 168], and unobtrusively monitoring the oxygen dosage of pa-

tients [249].

3.1.1.3 Blood Pressure. The circulatory system transports nutrients to all

parts of the body while the pressure generated by the heart pumping plays

a decisive role as the driving force. This pressure is known as blood pres-
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sure [309]. High blood pressure (hypertension) is a known risk factor of car-

diovascular diseases and even death which makes it an important vital sign to

track [352]. The blood pressure during systole (contraction) and diastole (re-

laxation) is called systolic blood pressure (SBP) and diastolic blood pressure

(DBP), respectively. Historically, medicine reports blood pressure in millime-

ters of mercury (1 mmHg = additional pressure by 1 millimeter of mercury).

In related work, Teng and Zhang [445] showed a strong relationship between

blood pressure and the time of pulse propagation from the heart to other loca-

tions of the body. Therefore, a PPG sensor worn on the ear and a traditional

chest-worn ECG makes it possible to compute the Pulse Transit Time (PTT)

and hence, blood pressure [168]. Selvaraj [417] demonstrated by regression

analysis that PPG measured on the earlobe gives about similar results as the

finger to compute PTT yielding a weak correlation between PTT and SBP /

DBP (r < 0.3, see appendix A.3).

In a concept study it was suggested to measure blood pressure in the sealed

ear canal based on pressure sensing with initially encouraging results [500].

The feasibility and precise performance of the principle remains to be evalu-

ated.

The aforementioned approaches prerequisite chest-worn ECG or sealing the

ear canal which reduces everyday wearability. Bui et al. [76] introduced eBP

to measure blood pressure using an ear-worn device only. Very similar to cuff-

worn blood pressure sensing [154], eBP places an inflatable balloon in the ear

canal of the user. An evaluation with 35 users showed that eBP yields an av-

erage error of 1.8 mmHg and −3.1 mmHg and a standard deviation error of

7.2 mmHg and 7.9 mmHg for SBP and DBP, respectively). Though these re-

sults are promising, the acceptable accuracy for at-home blood pressure devices

was defined to be ±3 mmHg in other works [194].

The primary purpose of ear-worn blood pressure is a frequent assessment

throughout the day as diseases may be episodic and related to specific activ-

ities [76; 168; 417]. Compared to traditional cuff-based monitors, ear-worn

blood pressure monitoring minimizes the impact during regular activities while

maximizing comfort [76; 417].
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3.1.2 Nervous System

The nervous system sends and receives electrical and chemical signals to con-

trol body functions and cognitive processes [333]. The resulting electrical

fields can be measured on the skin surface by Electroencephalography (EEG)

to extract a user’s response to external stimuli internal states. Such states in-

clude sleep stages and the sleep-wake cycle. The following two sections will

introduce earable brain activity sensing and sleep tracking.

3.1.2.1 Brain Activity. Sensing the brain activity of a person based on stan-

dard testing protocols is used for diagnosing a number of neurological and

psychological disorders [334; 175]. Additionally, brain activity sensing en-

ables higher-level applications such as sleep (see subsubsection 3.1.2.2) and

emotion (see subsubsection 3.1.4.1) tracking, seizure detection (see subsub-

section 3.1.5.4), brain-based authentication and identification (see section 7.4),

as well as brain-computer interfaces (see subsection 5.1.6).

Brain Activity - Sensing. EEG measures the electric field potential caused

by characteristic brain rhythms (also called brain waves) that correspond to a

user’s internal state or response to external stimuli [60]. The standard proce-

dure to capture brain waves is Electroencephalography (EEG). Conventional

EEG relies on a full-scalp setup worn all around the user’s head which is ob-

trusive and not easily portable. In contrast, a smaller number of electrodes in

(e.g., [160]) or around (e.g., [57]) the ear can still capture a subset of interesting

brain waves. Generally speaking, related ear EEG works have shown that in

comparison to scalp EEG, brain activities primarily occurring in the temporal

and occipital lobe around the ear can be recorded successfully [240; 57; 58].

Overall, the reduced size of earable EEG compared to conventional EEG re-

sults in several advantages by being more discreet, unobtrusive, robust, user

friendly, and feasible [278; 57].

Slight performance differences with regards to impedance and usability as-

pects specific to the possible electrode positions and accompanying form fac-

tors have emerged. For example, 9 out of 10 devices in the posterior and peri-

auricular region have a generic form factor that fits on the skin around the ear.
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Similarly, 10 out of 12 devices in the ear canal are implemented as generic soft

earplugs. In contrast, 19 out of 21 concha-placed ear EEG devices are custom

fit to the wearer as the unique structure of the concha creates a challenging fit

across users. Still, electrodes placed in the concha were more prone to lose

contact than in the ear canal [228]. Furthermore, EEG placed inside the ear

leverages it as a mechanical anchoring point (e.g., [160; 314; 58]), whereas

EEG around the ear often demands gluing the electrodes onto the user’s skin

(e.g., [57; 348; 295]). While generic in-ear EEG can fit many different users,

there is some preliminary evidence that custom-fit earplugs are more sensitive

than generic ones [239; 233]. At the same time, generic ear EEG worn around

the ear was found to be more sensitive than generic in-ear EEG [52].

Across ear EEG locations and styles, 23 dry and 21 wet electrode setups

were identified. Dry electrodes improve the comfort of the user and simplify

attachment. However, they have reduced impedance or sensitivity depending

on the electrode material and compared to wet electrodes [225; 34; 223]. Addi-

tionally, the presence of cerumen was found to increase dry-contact impedance

by 86% [370]. In general, the close vicinity of the ear to facial muscle poten-

tials [45], as well as eye movement and blinking artifacts [234; 125; 57] can

result in noise which was recommended to filter out in related earables works.

As to be expected, no works looked into the feasibility of ear EEG on the

auricle. Overall, the different design aspects of ear EEG allow to make trade-

offs between form factor, fit, ease of application, comfort, and desired accuracy.

Brain Activity - Applications. Table 3.2 gives an overview of earable EEG

implementations and lists standard protocols that were conducted to show the

general feasibility of EEG on the ear (see appendix A.6 for details). It also

links to other sections that summarize more concrete applications. Generic,

dry ear EEG is most generally applicable in day-to-day usage, while custom-fit

ear EEG devices with wet electrodes are more likely to be relevant for clinical

usage.

In EEG research and clinical practice, auditory, visual, and somatosensory

(i.e., haptic) cues are applied to trigger an expected response of the patient’s

brain [410]. As it stands, little insights are available about the response to
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Table 3.2.: Standard EEG protocols that have been evaluated on the ear using
generic form factors that can fit any ear and devices that have to be
custom fit to the user. Ear EEG applies wet and also dry electrodes.
The feasibility of standard EEG protocols shows the general feasi-
bility and enables higher-level applications. In brackets is the num-
ber of studies that confirmed the paradigm. A detailed overview of
ear EEG papers and placements can be found in appendix A.6.

Auditory Stimulus Visual Stimulus TaskElectrodes
P300 MMN ASA ASSR P300 SSVEP AAR

Generic
Dry ✓(3) ✓(1) - ✓(7) ✓(1) ✓(4) ✓(5)
Wet ✓(3) - ✓(1) ✓(4) ✓(3) ✓(6) ✓(4)

Custom
Dry - ✓(1) ✓(1) ✓(6) ✓(1) ✓(5) ✓(6)
Wet ✓(3) ✓(2) - ✓(6) ✓(2) ✓(3) -

Example
Application

psycho-
logical
/ neu-

ro-
logi-
cal

disor-
ders

[175]

psycho-
logical
/ neu-

ro-
logi-
cal

disor-
ders
[334]

spatial
audio
hear-
ing
aids

[139]

brain-
computer
inter-
faces
[190]

psycho-
logical
/ neu-

ro-
logi-
cal

disor-
ders

[175]

brain-
computer
inter-
faces
[5]

sleepi-
ness /
drowsi-
ness
de-
tec-
tion
[57]

Note: Other applications based on EEG are introduced in subsubsection 3.1.2.2 (sleep),
subsubsection 3.1.4.1 (emotions), subsubsection 3.1.5.4 (seizures), section 7.4 (brain-based

authentication and identification), and subsection 5.1.6 (brain-computer interfaces). P300=Positive
deflection in brain potential; MMN=Mismatch Negatively; ASA=Auditory spatial attention;

ASSR=Auditory steady state response

somatosensory stimuli. However, it was initially shown that skin impedance

decreases in response to tactile stimulation [370]. Nonetheless, a variety of

auditory and visual stimulus paradigms have been confirmed to be feasible in

and around the ear, which will be described in the following.

In a clinical diagnostic context, the P300 response has been associated with

dementia, schizophrenia, anxiety disorders, and more [175]. Presenting a de-

viant stimulus among continuous auditory or visual signals triggers a so-called

transient P300 response which is a positive deflection in brain potential ap-

proximately 300ms after the deviant stimulus is presented [437]. Auditory

P300 was confirmed by multiple earable studies even several hours after initial
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attachment [57]. Visual P300 with ear EEG was visible in response to letters

[58], words [348], symbols [278], LED lights [240; 160; 159], and black/white

checkboards [166]. Similarly, Mismatch Negativity (MMN) has clinical rel-

evance for diagnosing schizophrenia or aging [334] and represents a negative

EEG amplitude deflection. It targets the lower-level discrimination abilities

without the user having to actively focus their attention on a stimulus. Kappel

et al. [228] found that a reference electrode on one ear is required to capture

a significant MMN response on the other. As such, visual attention or rest-

ing may be predicted directly from ear EEG at >70% accuracy [371]. In sum,

earables potentially give easy access to diagnosing or monitoring neurological

and psychological disorders without the need for a full-scale scalp EEG setup.

Presenting auditory and visual stimuli at a high repetition rate creates an

overlap of transient responses, the so-called steady-state response. As the

steady-state response depends on the frequency of the presented stimulus, it

is ideal for selection tasks of brain-computer interfaces (see subsection 5.1.6).

The auditory steady-state response (ASSR) was confirmed with ear EEG in

and around the ear with amplitude modulation frequencies ranging from 40

Hz [278] up to 90 Hz [224]. The steady-state visual evoked potential (SSVEP)

was also confirmed in and around the ear at many different frequencies ranging

from 5.4 Hz [266], up to 20 Hz [240].

Extracting the direction of a user’s auditory attention creates a compelling

use case for hearing aids that could amplify the sounds from an attended source

[139]. In that regard, the auditory spatial attention (ASA) tests the response of

a person attending to simultaneous sounds coming from different directions

[101]. Wet periauricular ear EEG could achieve similar performance to scalp

EEG [59]. The feasibility of ASA in the ear canal with dry electrodes depended

on the positioning of the reference electrode [139].

The alpha attenuation response (AAR) describes an increase of alpha fre-

quency power in the EEG signal once a person closes their eyes. The alpha

power (brain waves at 8 - 12 Hz) can be associated with the sleepiness of a per-

son [430]. It is well possible to observe a statistically significant alpha attenua-

tion response with in-ear and around-the-ear electrodes. Alpha power increase

can also be associated with drowsiness [57], see subsubsection 3.1.2.3.
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3.1.2.2 Sleep. It was reported that up to 40% of the U.S. adult population

struggles with sleep annually which results in morbidity and mortality [201],

which makes sleep an interesting parameter to track. Sleep can be divided into

four reoccurring stages (N1, N2, N3, REM), which are repeated up to six times

per night [369]. Each stage is characterized by physiological patterns across the

body, that are commonly analyzed in professional sleep labs by polysomnog-

raphy (includes scalp EEG, EMG, nasal airflow, etc.). State-of-the-art sleep

stage classification from full-scale polysomnography achieves up to 97% F1

score on diverse datasets [167]. In contrast, earable computing research aims

to reduce the number of required sensors to perform sleep analysis from biopo-

tential signals at the ear, making it feasible even at the patient’s home [337].

Automatic sleep stage classification from biopotential signals at the ear ties

in deeply with the general feasibility of sensing brain activity (see subsubsec-

tion 3.1.2.1), facial muscles (see subsection 5.1.5), and movement of the eyes

(see section 4.2). Sleep stage prediction in the ear canal (see appendix A.5)

was performed with wet electrodes using different evaluation strategies and

classifiers. Accuracies between 66% and 95% in comparison to gold standard

polysomnography were achieved [337; 342; 315]. Sleep latency (the time it

takes to fall asleep) was predicted at less than three minutes error [10]. Based

on the presence of sleep spindles in ear-EEG, it was initially shown, that sleep

staging with dry electrodes may be feasible [316; 293]. With data captured

over 80 nights from 20 participants, Mikkelsen et al. [317] then showed that

custom-fit, dry ear-EEG allowed automatic sleep scoring at 0.73 Cohen’s kappa

in comparison to gold-standard full-scalp EEG. Their results suggest that ear-

EEG may be a real alternative to full-scale Polysomnography, especially for

long-term monitoring.

Additionally, the relationship of changes in body temperature from ear-worn

infrared thermometry and the circadian sleep-wake rhythm was initially shown

based on a single subject [61] motivated by the possibility to measure body

temperature at high accuracy on the ear (see subsubsection 3.1.3.1).

From a wearability perspective, sleep-related earables should place "rigid

parts behind the ear and [...] soft materials at the concha and in the ear canal"

[454].
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3.1.2.3 Drowsiness. Drowsiness is the feeling of being abnormally sleepy.

Drowsiness during the day affects 10-20% of the population and can have an

adverse influence on physical and mental health, especially when operating ve-

hicles or heavy machinery [479]. A summary table of drowsiness works can

be found in appendix A.7. Bleichner and Debener [57] initially found that al-

pha power measured around the ear increased in the afternoon compared to

recordings in the morning, indicating that the ear may be a suitable position for

sensing drowsiness. Since then, drowsiness has also been detected by classify-

ing light sleep onset with an accuracy of 80% when using in-ear EEG recorded

in 20 minute sleep sessions [335]. Researchers have also explored multimodal

sensing for microsleep detection. Pham et al. [374] designed a behind-the-ear

device which collects data from EEG, EOG, EMG, and electrodermal activ-

ity sensors before streaming them to a mobile phone for classification. They

demonstrated that microsleep can be detected on an unseen subject with av-

erage precision and recall of 76% and 85% respectively using a leave-one-

subject-out cross-validation design with subjects suffering from sleep depri-

vation and narcolepsy [374]. More generally, Mikkelsen et al. [317] envision

that earable drowsiness tracking methods may support long-term monitoring

of daytime sleepiness disorders such as narcolepsy or hypersomnalence.

3.1.3 Thermal Regulation

One of the most important processes in humans is thermoregulation which

refers to the ability to sustain a steady core body temperature (CBT) such as

under different climate conditions or while exercising [488]. The ear can sup-

port measurements of body temperature and sweating, which will be described

in the following.

3.1.3.1 Body Temperature. Under normal circumstances, body tempera-

ture ranges around 37.0°C ± 1°C [73]. In medical care, core body temperature

is commonly measured in the ears as the tympanic membrane is located close

to the carotid artery and, therefore, accurately reflects its temperature [62].

An infrared thermophile sensor pointing at the eardrum may be used for

measuring body temperature according to medical standards. Bestbier and
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Fourie [53] applied the principle to an earable form factor and achieved a small

mean error of only 0.02 ± 0.52 °C. However, multiple works found that the

principle requires per-user calibration because of ear canal shape differences

and orientation of the sensor toward the tympanic membrane [53; 283; 300].

Alternatively, a thermistor measures surface skin temperature at the mastoid

with high accuracy (0.03 °C mean error) [33]. According to Matthies et al.

[304] the sensing principle requires an average heat-up time of 7 minutes and

is easily influenced by environmental changes [205].

Across earable research, changes of body temperature in response to external

weather conditions [61; 294; 40] and while exercising [61; 434; 294; 300; 91]

were confirmed. This relationship enables various applications such as alert-

ing or vital signs and parameter tracking based on the identified relationships.

Additionally, the relationship between ear-recorded body temperature and ovu-

lation (see subsubsection 3.1.5.5) as well as sleep (see subsubsection 3.1.2.2)

has been shown.

3.1.3.2 Sweating. Commonly, sweating occurs in response to physical ex-

ertion, heat or psychophysiological arousal [421]. In general, the preauricular

area has relatively high sweat gland density [426].

Matsumoto et al. [300] presented an earbud-type wearable prototype with a

sweat rate sensor based on humidity sensing in the ear canal. They showed the

relationship to physical exertion and amount of sweat based on a single user

which they envision to apply for early detection and prevention of heat-strokes.

Pham et al. [374] introduced a posterior ear device with integrated electroder-

mal activity (EDA) sensing. The normalised cross correlation between the ear

EDA signal and a wrist-worn ground-truth evaluated with a single user was

0.37 [374]. As sweat gland activity is not symmetric between the two halves of

the body it may be necessary to place electrodes on each ear to reliably capture

sweating [377]. Overall, sweat sensing appears to be feasible on the ear but

more research is necessary.
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3.1.4 Mental State

A person’s mental state entails, among others, emotions and stress, which trig-

ger physiological changes that can be measured at the ear.

3.1.4.1 Emotion. Emotions include the feelings and thoughts of a person,

which are commonly associated with their physical and psychophysiological

state. In related literature, emotions are measured either dimensional (e.g.,

according to the valence-arousal model [406]) or categorical (e.g., happy, sad,

angry, etc. [462]).

Based on in-ear EEG (see subsubsection 3.1.2.1 for the general feasibil-

ity), valence has been classified from low to high at 71.07% [35] to 94.1%

[269] and arousal at 72.89% [35] accuracy (see appendix A.8). This accuracy

is close to state-of-the-art performance of full-scale EEG [357]. Dimension-

based scales can be applied to derive categorical emotion classes, which has

been done based on in-ear EEG to predict happiness, sadness, calmness, fear

at 53.72% accuracy [35]. Similarly, excited, relaxed, and negative emotions

were predicted from in-ear EEG at 58.8% accuracy [269]. Interestingly, higher

valence could also be associated with higher movement measured by an ear-

able accelerometer [146]. Some models suggest up to eight basic emotions that

can be observed in humans [380] which greatly over-exceeds what is currently

possible to predict with data obtained from the ear.

Earable-based emotion tracking could enable monitoring patients and el-

derly remotely for more effective care-taking [35]. Additionally, facial ex-

pressions (e.g., facial action units) may be associated with emotions which are

introduced separately in subsection 5.1.5.

3.1.4.2 Stress. Stress is triggered when an individual’s mental or physical

ability to cope with a situation effectively is over exceeded. It is commonly

known that stress is associated with changes of heart rate and heart rate vari-

ability [441]. The previous subsubsection 3.1.1.1 gives an overview of the

general feasibility of different heart rate sensing principles.

With earables, increasing heart rate and decreasing heart rate variability at

the beginning of stress exposure elicited by a mathematical addition task was
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confirmed [283]. In a similar experiment, Suzuki et al. [439] also showed

that higher heart rates at the ear are associated with stress using multivariate

regression.

From the literature, the relationship between stress and skin impedance caused

by sweat is well known [67]. Even though sweat sensing is possible with ear-

ables (see subsubsection 3.1.3.2), no earable works looked into the relationship

between EDA measured at the ear and stress.

3.1.5 Health

The principle feasibility of the physiological parameters introduced in the pre-

vious sections can be applied to identify an individual’s health status directly.

Meanwhile, the location and phenomena of the ear also make it possible to de-

rive insights into more specific bodily occurrences such as bruxism, coughing,

sleep apnea, seizures, and even the reproductive system.

3.1.5.1 Bruxism. Bruxism is a movement disorder that is characterized by

grinding of teeth and clenching of the jaw [420]. Tooth damage and headaches

are common symptoms associated with bruxism. An initial evaluation with a

single user successfully investigated the possibility to sense teeth grind and jaw

clenching using electromyography on the ear (EMG) [125]. As jaw movements

are closely related with ear canal shape deformations [378], jaw clenching and

teeth grinding may be sensed from inertial sensors in the ear canal [404; 63].

Bondareva et al. [63] concluded that gyroscope-based sensing outperforms ac-

celerometers when mixing with in-the-wild activities - achieving 76% and 74%

accuracy for jaw clenching and teeth grinding, respectively.

3.1.5.2 Face Touching. Earables have also been used for detecting uncon-

scious face touching which increases the risk of passing and spreading pathogens

into the body, especially pertinent given the COVID-19 pandemic [221; 401].

Kakaraparthi et al. [221] used a hybrid sensing approach of thermal sensors

embedded into an earable combined with facial skin impedance to monitor the

user’s face touching behavior. Using a deep learning model to combine the

two signals resulted in an F1 score of 84.4% for touch detection and 70.1% for
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touch zone identification (rising to 90.1% for personalised models). Rojas et al.

[401] introduced Saving Face which uses unmodified commercial earphones to

sense the face touches through the distortion patterns in an ultrasound signal.

The user’s earphones are transformed into a sonar system with one earbud (po-

sitioned on the collar) emits the ultrasound signal which is captured by the

microphone. The system was evaluated in a number of activities, achieving a

sensitivity of 93.7% and precision of 91.5%.

3.1.5.3 Sleep Apnea. The interruption of breathing for 10 seconds or more

during sleep is referred to as sleep apnea which, if not treated, poses a serious

health risk [138]. As breathing results in subtle changes of the pulse wave in

the PPG signal (see subsubsection 3.1.1.1), the interruption of breathing can

be sensed with earables. In a whole-night study, 94.6% sensitivity and 93.4 %

specificity was achieved for three out of six patients based on a PPG sensor

worn at the tragus [469].

3.1.5.4 Epilepsy. As described in subsubsection 3.1.2.1, the brain activity

of a person can be well quantified from ear-worn EEG. Epilepsy often en-

tails seizures which are episodic abnormal neural activities that can result in

body shaking or awareness loss. Given the high portability and unobtrusive-

ness of ear EEG, a natural application is the detection of seizures from ear-worn

EEG for better health management and intervention [165; 219]. Bleichner and

Debener [57] initially presented a periauricular EEG setup revealing epilepti-

form brain activity of a patient. Gu et al. [165] applied EEG posterior to the

ear and reported 94.5% sensitivity and a false detection rate of 0.52 per hour

to detect seizures of patients with focal epilepsy. Juez et al. [219] identified

inter-ictal spikes in the EEG trace of a pre-diagnosed patient wearing an in-ear

device. These spikes are known to occur in epilepsy patients.

3.1.5.5 Ovulation. Reproduction is critical to sustain the human species.

The possibility to capture body temperature at the ear (subsubsection 3.1.3.1)

and its relationship to ovulation creates a compelling use case for the earable

platform. During the menstrual cycle, ovulation can be associated with the

highest fertility, making it an important event to track when seeking pregnancy.
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It is well known that ovulation can be associated with basal body temperature

changes [42]. In an earable context, Luo et al. [284] recorded body temperature

every 5 minutes during the night using a thermistor placed in the ear canal with

34 study participants. They could correctly predict ovulation within three days

at 82.35% accuracy when tracking multiple cycles.

3.2 Respiration Tracking with Inertial Sensing

For oxygen gas exchange, the human chest rhythmically expands to perform

inspiration (breathing in), followed by passive relaxation of the chest wall for

expiration (breathing out) [74]. This process is referred to as respiration. Two

key characteristics of respiration are inhaled and exhaled volume of air as well

as rate. The number of breath cycles per time interval is commonly reported as

cycles per minute (CPM). From medical research, it is known that particularly

high or low breathing rates (< 8 CPM, > 24 CPM) can be associated with

underlying health problems [109]

When tracking respiration rates in day-to-day scenarios, respiratory induc-

tance plethysmography is the current state-of-the-art. A belt straps around the

user’s chest and abdominal wall to measure the expansion while breathing in

and out [491]. Such devices are specialized and expensive equipment and not

suitable for everyday use. A different method, applied for instance in sleep

labs and under medical conditions, uses nasal cannulas made from plastic tubes

which redirect the airflow to pressure transducers [347]. These tubes are un-

comfortable to wear as they are placed inside the nostrils and are unhygienic

when used multiple times or with different users. As an alternative, the dis-

sertation proposes to leverage the inertial measurement unit (IMU) embedded

in standard in-ear earphones for respiration rate tracking. This technology is

potentially accessible to a broad set of users, as already today, earphones with

integrated IMUs are commercially available (like e.g., the Apple AirPods).

Embedding respiratory sensing into headphones opens up a set of use cases

where auditory feedback couples to breathing. For example, Harris et al. [177]

suggest that auditory biofeedback can enable the control of the respiration rate

of users , which can help with stress management or support guided medita-

tions [418]. Other reasons to obtain respiration from the ear include the de-
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tection of interruption of breathing during sleep (see subsubsection 3.1.5.3)

[469; 450] and more generally monitoring the vital respiratory state of the user

for alerting [470; 53] or of workers in hazardous environments by embedding

the sensor in hearing protection for faster intervention [296].

The following sections first introduce the necessary background and related

work on wearable respiration sensing in subsection 3.2.1. Then, the working

principle of an earable respiration rate sensing system based on IMU data and

the required data processing pipeline is introduced in subsection 3.2.2. In sub-

section 3.2.3, the system is evaluated in a lab study with twelve participants to

compare between standing, sitting, and lying on the back (supine). The system

achieves 2.62 and 2.55 CPM mean absolute error (MAE) which is close to the

accuracy of ± 2 CPM required for non-vital signs monitoring [270].

In sum, the dissertation contributes an evaluation of inertial-based sensing

to measure the respiration rate of a user. The presented work was published as

a conference paper at EarComp 2019 [448].

3.2.1 Background and Related Work

Previous research proposes a broad set of alternatives to the formerly men-

tioned state-of-the-art for respiration rate tracking.

Systems based on UWB [471], WiFi [1], or vision [297] have significant

advantages because they are not attached to the user. However, they require

specialized setups which can be complicated or might have problems with other

people present in the room. Further techniques which do not require nasal

cannulas to measure respiration from human breath include gas sensors that

measure, e.g., volatile organic compounds [449] or humidity [325]. They still

require to be placed in the air stream or have to be attached close to the area

around mouth and nose.

Respiration rate, so far, was quantified by earables based on audio-, and heart

beat-based sensing which will be introduced in the following (see appendix A.4

for details). As breathing is a biomechanical process, it produces tiny body

movements and friction-induced sounds when the air enters and leaves the

lungs. A microphone embedded in the ear canal could sense sounds propa-

gating through the body during the respiratory cycle at 2.7 CPM MAE [296].
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It was reported that such acoustic respiration rate measurements were reliable

above approximately 12 CPM [160]. In [182], an accelerometer-equipped de-

vice wraps around the user’s ear to measure respiration. They only evaluate

the device with a single participant and do not consider gyroscope data as well

as an in-ear form factor. Subtle respiration-induced changes in the cardiac cy-

cle may be measured on the ear to indirectly derive respiration rate through

PPG amplitude changes, blood oxygen variations, or the respiratory sinus ar-

rhythmia [469; 53; 470]. From earable heart beat PPG signals, respiration rate

was predicted at -0.558 ± 1.406 CPM mean error at the ear canal at rest [53]

and around 3 CPM error in the ear canal, concha, and posterior auricular un-

der varying motion activities [137]. With increasing motion, the performance

of PPG-based respiration rate estimation decreased [137]. PPG-based sensing

then could also be used to classify the more granular inspiration, and expiration

phases at 81.5% sensitivity and 86% specificity [470].

The performance differences across sensing principles are relatively small.

The U.S. Food and Drug Administration (FDA) acceptance criterion for non-

vital signs respiration monitors requires a maximum error of ± 2 CPM [270]

(or 10-20% of typical human CPM frequency). While sound-based respira-

tion rate prediction with earables can not achieve such accuracy, PPG-based

respiration rate estimation appears to be acceptable when the user is at rest.

Acceleration and gyroscope data have significant advantages in terms of cost

and unobtrusiveness because many modern devices already come equipped

with these inexpensive sensors (< 5$, single quantity). The idea to use the

IMU’s data is not new, and others have shown that the underlying principle

does work. It has been implemented using chest belts [44] or smartwatches

[172; 436]. Another approach which is particularly relevant because it is head-

worn uses Google Glass smart glasses [188].

3.2.2 Working Principle

The following sections introduce the hardware setup to obtain inertial respira-

tion sensing data and the working principle of the processing pipeline to calcu-

late respiration rates from accelerometer and gyroscope signals.
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Figure 3.2.: The Nokia Bell Labs eSense earphones [235] connect via BLE to
transfer gyroscope and accelerometer data to a smartphone app.

3.2.2.1 System Design. The system leverages the eSense platform [235],

which was kindly provided by Nokia Bell Labs. It comes equipped with a six-

axis IMU (accelerometer and gyroscope) in its left earbud and connects via

Bluetooth Low Energy (BLE). For respiration sensing, the x, y and z angular

velocity in deg/s using the built-in gyroscope, and the x, y and z acceleration in

m/s2 based on the accelerometer is recorded (see Figure 3.2). Data is sampled

at the maximum frequency of 50 Hz and without using the internal lowpass

filtering functionalities of the eSense earbuds.

For recording the data, a mobile application in Swift for iOS was imple-

mented that connects to the eSense earbuds. The data is stored locally on the

phone, and timestamps are taken on a rolling basis as the Bluetooth packages

arrive. To transfer the data to a computer, they are exported to a CSV file.

3.2.2.2 Data Processing Pipeline. To compute the respiration rate, the same

processing steps are applied independently on gyroscope and accelerometer

data. The approach expands upon the algorithm proposed in [188]. Steps (1),

(2), (4), and (5) are applied to each axis. Additionally, steps (3) and (5) remove

motion sensitivity.

1. To remove signal shifts and trends, a moving average window of 3 sam-

ples is subtracted from each dimension. Additionally, an averaging filter

with a window size of 2 seconds is applied, corresponding to one respi-

ration cycle at the maximum breathing rate (30 breaths per minute).
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2. To inflate the data and create equidistant samples, a cubic spline inter-

polation is applied and the the signal is resampled at 256 Hz to account

for small variations in timestamps due to Bluetooth latency.

3. Similar to Sun et al. [436], windows are discarded if movement is too

high. If 3% or more of all accelerometer data points are above a thresh-

old of 10 m/s2 the entire sequence is excluded. Additionally, hard

thresholding is applied for samples ±2SD.

4. A bandpass Butterworth filter of order four and cut-off frequency of 0.1

Hz and 0.5 Hz is applied to remove noise. The selected frequencies are

equivalent to 6 to 30 breath cycles per minute (CPM).

5. To further smoothen the signals while retaining the peak positions, a

triangle filter with a width of 2 seconds is applied [176].

6. To make the results independent from changes on different axes for dif-

ferent postures, principal component analysis (PCA) is applied.

7. A spectral analysis of each principal component is performed using a

Fast Fourier Transformation (FFT) with zero-padding. The maximum

peak with the highest magnitude is assumed to be the respiration rate

that is converted to CPM.

Figure 3.3 displays the raw signals captured from the accelerometer (left)

and gyroscope (right) of one of the study participants sitting. The two graphs

indicate how noisy the initial data signals are along all axes. As the user

breathes, the accelerometer signal visibly oscillates around zero on the Y-

axis and the gyroscope on the Z-axis. The second row compares a normal-

ized ground truth signal captured using nasal cannulas hooked to a pressure

transducer (PRS) with the filtered signal. The bottom row displays the three

different spectra computed from the respective sensor signals. A red star in-

dicates the maximum in each spectrum, which indicates a small error between

the three different sensing principles.
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3.2.3 Evaluation

To evaluate the proposed system, the following sections first introduce the

study design which is followed by the results achieved by inertial ear-based

respiration rate sensing.

3.2.3.1 Study Design. Twelve participants were recruited (two female, ten

male) between the ages of 21 and 39 (mean age 26) for a lab study. The mean

height was 179 cm and weight 81 kg. Participants received no reward for their

participation. The experiment was conducted in a room with a couch to lay

down on and a stable chair with armrests for sitting down. Both eSense earbuds

[235] were placed into the participant’s ears (left earbud equipped with the

IMU). Participants were hooked up to nasal cannulas connected to a pressure

transducer as ground truth. This was a custom made monitoring device: a

RedBear BLE Nano v2 was wired to a pressure transducer that connects to nasal

cannulas (see Figure 3.4). The device samples pressure data at a frequency

of 50 Hz. The gold-standard pressure signal is filtered with the same data

processing pipeline as described in 3.2.2.2, except no PCA is required. It also

connects to the mobile application. No audio was played during the study.

Figure 3.4.: Participant wearing nasal cannulas (red, left) and the eSense ear-
buds (blue, right).
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During the first phase of the evaluation, each participant was asked to breathe

normally for one minute each in three different postures (standing, sitting, and

lying) while otherwise keeping as still as possible. This step was followed by

a second phase, in which participants were asked to perform a short 30-second

jumping jacks session to increase breathing rate and produce a more dynamic

dataset. After performing the activity, one minute of additional respiration data

was recorded in each of the three postures.

Williams design generalized Latin squares [490] were applied to balance for

first-order carryover effects introduced by potentially unnatural breathing be-

havior when asked to breathe on the spot. For the three different postures, this

resulted in six different combinations, which were assigned to participants in

a round-robin fashion. The order of postures for the first and second phase

of the evaluation was identical. After completing all respiration tasks, partici-

pants were asked to fill in a short questionnaire, which included demographic

questions (sex, age, weight, height) as well as a question inquiring whether

participants felt that they had breathed naturally and space for free-text.

3.2.3.2 Results. In total, 72 minutes of breathing data were collected. A

20 s sliding window at a step size of 5 seconds is shifted over every one-minute

data frame. This process yields 669 twenty-second breathing sequences. After

removing the ones with too many movement artifacts, 253 remain. Ground

truth respiration rates range from 7.6 to 22 in cycles-per-minute (CPM) for

those sequences. To evaluate the agreement between the presented approach

and the ground truth measurement, the Bland-Altman plots in Figure 3.5 were

generated. In most settings, the observed differences are centered around zero

and show no significant bias, also observable from the displayed mean error.

The plots also show the limits of agreement (interval between +1.96SD and

-1.96SD) that contain 95% of the measured differences. Additionally, Table

3.3 shows several performance metric. The results are broken down by body

posture in Table 3.4. Overall, the performance of gyroscope is similar to the

accelerometer but varies between postures. The best results are achieved by the

accelerometer in the supine position, followed by similar results for sitting and

standing. For the gyroscope, the results are comparable for all three postures.
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Table 3.3.: System performance in cycles-per-minute (CPM) for accelerometer
and gyroscope across all three postures.

Sensor MAE SD RMSE

Accelerometer 2.62 2.74 3.79
Gyroscope 2.55 2.63 3.67

Table 3.4.: Comparison between modalities and postures (MAE / SD) in
cycles-per-minute (CPM).

Sensor Standing Sitting Supine

Accelerometer 3.15 / 2.74 3.10 / 2.80 2.56 / 2.19
Gyroscope 2.45 / 2.22 2.74 / 2.64 2.68 / 2.00

3.2.4 Discussion

Generally, the proposed method is highly sensitive to motion artifacts. The first

row in Figure 3.6 shows that better results are possible when setting the motion

threshold to 1% and limiting the dataset to non-aroused participants (before

jumping jacks). Introducing this limitation reduces the MAE to 2.09 CPM for

the accelerometer and to 1.90 CPM for the gyroscope. Additionally, the results

vary significantly between participants.

Figure 3.7 shows that even after raising the motion threshold to 5% partici-

pant P1 has much better results than P8 across a large range of breathing rates,

especially for the accelerometer (MAE 1.21 ACC / 1.45 GYR for P1 vs. MAE

8.97 ACC / 4.58 GYR for P8).

The reason for the differences between participants are not entirely clear;

however, bad fitting of the earplugs or differences in pose and anatomy could

be a possible root causes.
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Figure 3.6.: Reducing the movement threshold increases the accuracy. Per-
User results indicated by different colors.

Figure 3.7.: P1 (dark) achieves a much lower mean error than P8 even at a
higher movement threshold of 5%.
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3.2.4.1 Comparison to Related Work. Table 3.5 compares the results to

other related works based on inertial data on different locations of the body.

Hernandez et al. [188] have evaluated smart glasses and also smartwatches

[189] for the same three postures. Compared to [188] there are no signifi-

cant differences between gyroscope and accelerometer results. Overall, the

head seems to be a less suitable position for tracking respiration rates than e.g.,

the wrist. The presented results have higher error than what Hernandez et al.

[188]; Sun et al. [436] reported, especially for the gyroscope. The root causes

for the differences between earables and glasses is unclear, however, one possi-

ble factor would be a larger amplitude of motion when the sensor is positioned

in front of the head compared to the ear which is more in the center of mo-

tion. According to Leong et al. [268], the thoracic spine moves back and forth,

whereas the spine moves up and down while breathing. The resulting motion

of the head could be different when measuring above the eye compared to the

ear in different poses and on varying head positions. Another theory may be,

that the differences could be caused by a dampening effect of the ear plugs’

flexible caps which might absorb motion.

Table 3.5.: Performance (MAE / SD) in cycles-per-minute (CPM) of the sys-
tem compared to related work.

Sensor In-Ear Glasses [188] Watch [189]

Accelerometer 2.62 / 2.74 2.29 / 3.43 0.92 / 2.20
Gyroscope 2.55 / 2.63 1.39 / 2.27 0.38 / 1.19

Comparing the different poses, the results are similar to Hernandez et al.

[188] for the accelerometer in the standing posture; however, the performance

is worse for sitting and lying down. Additionally, the gyroscope’s performance

for standing is comparable, but the findings in this dissertation yield higher

errors for the sitting and supine position.

3.2.4.2 Limitations. For the evaluation the nasal respiration was measured

using a pressure transducer. After performing the physiologically straining

task of jumping jacks, several participants reported the urge to breathe through
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the mouth afterward. Participants were not instructed to nose breathing before

the study, but several participants reported that they "felt forced to not breathe

through the mouth" (P2). An FDA-cleared chest belt based on respiratory in-

ductance plethysmography is a more suitable methodology, which could sup-

port a more natural breathing behavior and therefore positively affect results.

In addition, the experimental environment left things to explore visually (e.g.,

posters), which may have resulted in unwanted motion artifacts.

Since the presented work has been published as a paper, Ahmed et al. [4]

later improved the performance by automatically selecting the best sensor chan-

nels and filtering out windows with too much motion which reduced the MAE

to 1.62 CPM which is well below the required accuracy for non-vital signs

monitoring.

3.2.5 Conclusion

Through this work, it was explored how in-ear inertial sensing may be ap-

plied for tracking respiratory rates. A data processing pipeline that combines

multiple ideas from previous work was fit to the in-ear sensing use case. An

evaluation compared accelerometer and gyroscope data for the three different

postures standing, sitting and lying on the back (supine). The approach was

validated by comparing measurements with ground truth data from nasal can-

nulas connected to a pressure transducer. In general, the results suggest that

the ear is a less suitable position for measuring respiratory rates than, e.g., on

the wrist. Overall, the solution has a high sensitivity to small motion artifacts.

Nevertheless, it achieves stable performances for a subpopulation of partici-

pants that is suitable for non-vital signs monitoring (approx. 2 CPM absolute

error).

To explore the inaccuracies between subjects, the potentially loose attach-

ment of in-ear earbuds may be further investigated. Additionally, a possible

dampening effect created by the eartip cushions may be interesting to under-

stand. Lastly, a more advanced approach should fuse accelerometer and gyro-

scope data and the microphone signals to maximize performance.
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3.3 Coughing Detection with Inertial Sensing

Diagnosis of patients suffering from aerosol-transmissible diseases such as the

corona virus provides significant advantages as patients can be isolated quickly

to avoid further spreading [185]. Objectifying the physiological state of the

user allows foreseeing acute respiratory illnesses [329], whereas coughing and

fever are the symptoms with high predictive value of, e.g., influenza [158].

Even though cough is a clearly perceivable indicator, objectifying the health

status of patients by detecting episodes of increased cough might be helpful,

e.g., to encourage seeing a doctor. To broadly succeed in containing a dis-

ease’s outbreak, a ubiquitous technology must be applied. Ear-worn devices

with an inertial measurement unit may be suitable to monitor cough [235].

Some earables even have a body temperature sensor (e.g., Cosinuss°), imply-

ing a holistic solution to predict respiratory illness. Therefore, the dissertation

hypothesizes that kinetic earables can discriminate cough and non-cough ac-

tivity to ultimately achieve episodes of increased cough discrimination.

In a twelve subject study, voluntary weak and strong cough, and five non-

cough activities (laughing, throat clearing, swallowing, talking, being quiet)

were collected under various conditions (laying down, sitting still, sitting fid-

gety, standing, walking). During the activities, an in-ear worn sensor records

acceleration and gyroscope data. In total, 4,200 activity samples were col-

lected. A single step classification pipeline (0.77 overall accuracy) serves as

the foundation for statistical analysis to achieve episodes of increased cough

discrimination. As a digression, that data is also analyzed for pose classifica-

tion which could enable faster cough episode prediction.

In sum, the contributes are: (i) an evaluation of kinetic earables for cough

event detection and (ii) a statistical analysis for increased cough episode dis-

crimination. The presented work was published at the Augmented Humans

conference 2021 [452]

3.3.1 Background and Related Work

Related work thoroughly investigated activity recognition with head-worn sen-

sors [171; 207; 361]. Previous work covering cough detection, especially in
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the medical field, mostly relied on audio features. Smith [427] gives a good

overview of the work in this area, while Pressler et al. [390] provide an in-

troduction in the required signal processing chain. The techniques achieve

partially high recognition rates >99%; however, mostly in laboratory environ-

ments. Monge-Álvarez et al. [328] reported excellent recognition rates in real-

world settings; however, they do not apply leave-one-subject-out cross vali-

dation. Drugman et al. [126] showed that accelerometers can provide useful

information for cough detection under various conditions and close to the sig-

nals of a microphone. Additionally, their work reveals which activities (e.g.,

laughing) are most easily confused with coughing. Therefore, the dissertation

seeks to collect similar activity data samples. Mathie et al. [299] compared

positions of accelerometers on the thorax for various breathing conditions with

promising results. So far, kinetic earables have been used for tracking the res-

piration rate of the user (see the previous section 3.2), but not for cough event

classification and episodes of increased cough discrimination. Hence, the dis-

sertation researches the feasibility of such an approach.

Cough describes the voluntary or involuntary rapid expulsion of air from the

lungs to clear the airways. A variety of severe viral infections and diseases

such as COVID-19, influenza, or COPD are accompanied by cough symptoms

[158; 324]. Detecting respiratory illness from cough allows quicker isolation

[452] and monitoring disease activity [341]. The sounds and motion of cough

create cough detection opportunities by sensing at the ears.

3.3.2 Evaluation

The following sections first introduce the data sampling soft- and hardware,

which is followed by a description of the instructions that were given to partic-

ipants for the self-guided data collection of different activity samples.

3.3.2.1 Activity Sampling App and Hardware. Because of the ongoing

COVID-19 pandemic, it was not possible to collect data at the lab. Therefore,

an app was developed that leads the user through the study fully autonomous

at their home. It connects to the eSense hardware which was kindly provided

by Nokia Bell Labs. It comes equipped with a 6-axis inertial measurement
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unit (accelerometer and gyroscope) in the left earbud sampling at 50Hz (see

Kawsar et al. [235] for device details). It connects to the user’s smartphone

using Bluetooth Low Energy. The app uses Flutter with the eSense library

[39]. For every activity (e.g., coughing) under each condition (e.g., standing),

the app shows a countdown and then a full-screen call-to-action to tell the

user to perform the activity. Users can pause at any time. The app stores all

recordings and offers email export. As the approach should preserve privacy

and require little data and compute, audio signals are not gathered.

3.3.2.2 Instructions and Participants. The app and earables are handed

out to the participants and a phone holder is provided to place it within the

line of sight. The base conditions standing and sitting should be performed

on a stable surface and chair, respectively. Fidgety sitting involves shaking the

body rhythmically and walking should be in a straight line. Lying down should

be on the back. Activities to be performed are: voluntary weak cough and

strong cough, laughing, throat-clearing, swallowing, talking and quiet. Every

activity (e.g., cough) is performed ten times in a five second window under

each base condition (e.g., sitting). Activities are shuffled randomly within each

base condition. Users are encouraged to vary the duration and starting point of

activities within the allotted time frame. All participants had instant messaging

available to contact the study supervisor if something was unclear.

For the study, twelve healthy adult participants (8 male, 4 female) were re-

cruited through a sample of convenience from the lab. The mean age was 25.3

years, the mean height 176 cm, and the mean weight 75.8 kg. In total, 1,200

cough, and 3,000 non-cough activities were recorded.

Figure 3.8 shows the different activities performed by one subject in the

standing pose. Weak and strong cough signals are significantly different com-

pared to the other activities. Especially strong cough shows acceleration on

the x-axes and rotational forces on the y-axes, induced by the rhythmic mo-

tion of the upper body. Similar patterns are observable for laughing, however,

at higher frequencies. Overall, throat clearing, swallowing, talking, and being

quiet all lead to little motion. Looking at similar activity data under the walking

and fidgety sitting base condition obviously shows high background noise.
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3.3.3 Classifier Pipeline

This section describes the pre-processing steps, the feature extraction, the train-

ing approach and the classifier results.

3.3.3.1 Pre-Processing. The data has to be pre-processed before being fed

into the classifier pipeline. eSense does guarantee timeliness of data packages

within a time-frame. Therefore, samples are evenly spread on the five second

window and interpolation is performed to resample at 50 Hz. Windows which

contain less than 200 samples are discarded. No further data cleaning is per-

formed. No normalization or PCA is applied to retain activity signal energy

and characteristic axial motions.

3.3.3.2 Features and Training. Automated feature extraction with tsfresh

[103] is applied to all six axes. For training, cough and non-cough classes

are balanced by randomly oversampling from all cough activities. XGBoost

gradient-boosted decision trees is used in its default configuration [95], which

outperformed a SVM and kNN classifier. A leave-one-subject-out cross val-

idation strategy is applied. Each subject is held out for testing once and the

remaining are used for training.

3.3.3.3 Results. Based on the collected simulated cough data data, relevant

performance metrics were computed. Figure 3.9 shows the confusion matrix

and Table 3.6 the performance metrics. The presented approach achieve 0.77

overall accuracy.

Figure 3.9.: Confusion matrix to predict cough and non-cough.
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Table 3.6.: Performance for the two classes.
Class Precision Recall F1-Score
Cough 0.63 0.47 0.54
No-Cough 0.81 0.89 0.85
Overall 0.72 0.68 0.69

3.3.4 Increased Cough Episode Detection

To evaluate episodes of increased cough activity, the exact number of coughs

is not particularly important. Based on statistical analysis, a classifier better

than random will be able to reliably discriminate individuals with more cough

events than usual after a sufficient number of observations was collected. The

previous sections introduced a simple classifier to differentiate cough from

non-cough samples and, based on the confusion matrix of that predictor, in

the following a statistical meta-analysis will be presented to illustrate how in-

creased cough event detection can be achieved.

Statistically Discriminating Episodes of Cough. According to literature from

the medical field, healthy adults cough up to 16 times per day [203]. For stable

asthmatics, 282 coughs, and for chronic coughers, even 794 events per day are

reported. Few coughs (< 3%) occur during night time. The average sleep time

of US adults is around eight hours per day [142]. If the 16 remaining hours are

split into the five-second windows that were used in the study, this will yield a

total of 11,520 observations per day.

A cough C as an event, can either happen in a given time-window or not.

This condition makes modeling it as a Bernoulli variable a natural choice.

From now on, for ease of understanding, the dissertation refers to episodes

of increased cough as sickness (S). Assuming that coughing events in sub-

sequent time-windows are independent given the factor that induces cough-

ing (i.e., sickness), and assuming the probability of coughing given sickness

P(C | S) from the literature is the true value, the distribution of averaged-based

estimates can be obtained that would be observed after periods of one day.
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According to the central limit theorem (CLT), the average number of ob-

served coughs p̂ (for P(C | S) or P(C | S), would be distributed with N (p,N−1 ·
p(1− p)), where p denotes the true P(C | S) or P(C | S) respectively, and N is

the number of samples used for estimation i.e. calculating the average.

When comparing the distribution of the estimates of the coughing proba-

bility given sickness (S) and non-sickness (S) for the number of events of

N = 11,520 in a day, there is evidently little to no chance to confuse an estimate

of P(C | S) and P(C | S) due to the clear separation between their distributions.

In other words, it can be likely assessed which of both distributions generated

the average of the data that is observed. The first graph in Figure 3.10 illus-

trates the clear separability of sick and not sick assuming 16 (P(C | S) = 16/N)

coughs per day for healthy, and 282 coughs (P(C | S) = 282/N) for non-healthy

individuals.

Unfortunately, coughs can not be observed directly but only the predicted

coughs of the classifier (Cp) which may confuse cough events for non-cough

events and vice versa. The confusion matrix in Figure 3.9 illustrates the prob-

ability of these misclassifications. Through these, it is only possible to esti-

mate P(Cp | S) via averages of predicted coughs, but not P(C | S). Naturally,

P(Cp | S) and P(CP | S) are biased (through the confusion) and will not yield

the same values as P(C | S) and P(C | S). However, the distribution of both

estimates may still be different enough to decide whether a healthy or a sick

individual generated the observed average.

To assess the distribution of these averages, the probability of P(Cp | S) is

calculated, which can be readily derived as

P(Cp | S) = P(Cp |C,S) ·P(C | S)+P(Cp |C,S) ·P(C | S) (3.1)

= P(Cp |C) ·P(C | S)+P(Cp |C) ·P(C | S). (3.2)

Note that P(C | S) and P(C | S) are the probabilities given above, while

P(Cp | C) and P(Cp, | C) can be calculated from the confusion matrix in Fig-

ure 3.9. Further note that from Equation 3.1 to Equation 3.2 it assumed that

the probability of predicting a cough is conditionally independent of the health

status of the person, i.e., the confusion of the classes does not depend on if
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the person is sick or not, but merely on whether a cough was observed. The

probability of P(Cp | S) can be calculated analogously.

As before, the distributions of the estimates of P(Cp | S) and P(Cp | S) can be

derived through the CLT. The resulting distributions of the (predicted) average

coughs for one and two days can be seen in Figure 3.10. Note that for two days

(N = 2×11,520), the distributions become more narrow, as the variances get

smaller for higher N.

This information can now be utilized to classify episodes of increased cough

based on the average number of observed coughing events. One possibility is

to decide for sickness and non-sickness based on if the average is more likely

to fall in either the distribution of the cough estimates given sickness or non-

sickness. Alternatively, the distribution of the average coughs for a healthy

person can be used to classify them as sick if the probability of the observed

average is below a certain threshold i.e., confidence level. While the former

approach weighs in misclassifications for sickness equally, the latter tries to

avoid false positives. Generally, decision rules can be derived based on costs

associated with each type of error.

Note that for the derivation of this result it was assumed the true probabilities

are known. Unfortunately, this information would seldom be given in practice

but also has to be estimated. Here, longer episodes (e.g., a week) of sickness

or non sickness could be used to achieve estimates closely reflecting the true

value. For example, a system could observe an individual in a known healthy

state to compute the personalized P(C | S) over time. Then, significant changes

in the average number of predicted coughs could be detected to identify sick-

ness on a more personalized level.

3.3.5 Discussion

Since publication of the results presented in this dissertation, other authors

have explored cough detection with earable sensing data. Zhang et al. [503]

introduced an algorithm based on template matching that allows tuning sen-

sitivity and specificity to the desired use case with about similar performance

to what was presented in this work under noise-predicated situations. Inter-

estingly, Doddabasappla and Vyas [123] could show that the ear had the best
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performance to predict simulated cough from accelerometer data in compar-

ison to the chest, stomach, shirt pocket, and upper arm [123; 124]. Another

work could show that combining audio and motion data obtained at the ear de-

creased the false positive rate of cough detection and achieved 83% sensitivity,

and 91.7% specificity, which is an increase by 55% compared to audio-only

[341]. An advantage of audio-based cough prediction is the availability of au-

dio cough datasets, even for specific diseases such as COVID-19 [343].

Reliably classifying pose and, in general, if the user is at rest could improve

the cough detection as the samples would be less noisy. For example, evaluat-

ing the presented cough classifier for the sit, laying down, and stand still poses

increases the possible accuracy by 9%. Therefore, an advanced pipeline may

detect situations where the user is generally at rest and then quantify cough

which could reduce the required monitoring time.

It remains to be evaluated how proposed earable-based techniques perform

based on real-world cough sounds and motion data from the field.

Digression: Pose from Kinetic Earables. Detecting simple activities such as

walking with head-worn sensors has been done by others [171; 202]. As the

collected dataset contains airway activity related noise the dissertation investi-

gates the achievable performance for classifying poses under these conditions.

A classifier that detects the different poses under varying activities was evalu-

ated. Again, tsfresh [103] feature extraction is applied and an XGBoost [95]

model is trained and evaluated with a leave-one-subject-out cross-validation

strategy. Figure 3.11 shows the confusion matrix of the experiment.

Walking is detected reliably and mostly confused with fidgety sitting. Lying on

the back can be well distinguished as the gravity vector changes. Sitting still

and sitting fidgety as well as standing are confused most easily. Sitting and

standing have no distinguishable characteristics. Fidgety sitting is subject to

the kind of movement performed by the participant, which might be little. As

poses usually change less frequently than within the allotted 5-second window

that was recorded, further performance improvements are possible. A classifier

that distinguishes between “at-rest” and “moving” (walk, sit fidgety) achieves

satisfying results (see Table 3.7).
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Figure 3.11.: Confusion matrix of different poses.

Table 3.7.: Detecting if the user is moving or at rest can be well derived from
kinetic earables under interfering activities.

Class Precision Recall F1-Score
Moving 0.87 0.75 0.81
At-Rest 0.85 0.93 0.89
Overall 0.86 0.84 0.85

Limitations. The conducted experiments assume that motions of simulated

and real activities are similar, which may not stand in real-world settings, es-

pecially for cough. For example, the characteristics of coughing symptoms of

COVID-19 are distinctive for the disease [254]. Additionally, it is assumed

that the probability of predicting cough is conditionally independent of the

health status of the person. There may be other activities that create confusion

to classify coughs. In related work, audio signals were reported to have the

most significant value to predict cough [126]. This work opted for a non-audio

based solution due to privacy. Still, a microphone could easily be employed on

the ear. In future work, collecting a dataset of sick people and in-situ over an

extended period could show the proposed technique’s robustness and applica-

bility of the mostly theoretical assessments to discriminate cough from kinetic

earables.
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3.3.6 Conclusion

The presented study could show that increased episodes of cough discrimina-

tion can be achieved with kinetic earables based on a simple brute-force classi-

fier and statistical analysis. The collected dataset from twelve subjects contains

4,200 activity samples which were used to perform a leave-one-subject-out

cross-validation. Compared to an inaccurate one-off classifier, the presented

approach benefits from modeling the probability of observing coughs. The

sensing component relies on a single 6-axis IMU in the left ear and requires no

microphone. The concept may be easily transferred to other head-worn devices

such as smart glasses, for which the ear hook attaches in a similar location as

the eSense earable. Future work may collect earable cough data over prolonged

periods from sick and non-sick patients to verify the suggested principle.
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4. Movement and Activity

4.1 Related Earable Works

4.1.2 Fitness 
Tracking 
and Support

• Step Counting

• Energy Expenditure

• Repetition Counting

• Performance Feedback

• Posture

4.1.1 Activity 
Recognition

• Activity 

Classification

• Sensor 

Performance

4.1.5 
Navigation

4.1.3 
Gait

4.1.4 Food and 
Drink Consumption

• Eating Detection

• Drinking 

Detection

• Food Type 

Detection

• Tooth Brushing

4.2 Eye Tracking based on 
Periauricular Electrodes

application-specific research contribution

Figure 4.1.: Structure of the “Movement and Activity” section according to dif-
ferent application areas. The section "Eye Tracking" is separated
out because of the sensing contributions and studies conducted in
this dissertation.

This chapter focuses on movement and activity applications related to ear-

based sensing. Figure 4.1 gives an overview of the structure of the chapter.

Researchers have explored how the earable platform can be used to sense user

movement and infer information about activities the user is performing. Move-

ment detected at the ear can be classified into discrete classes to infer a user’s

pose, how they are moving, or what type of activity they are undertaking. Be-

yond just classifying the sensor data, researchers have also explored how phys-

ical quantities can be derived from the user’s movement to provide useful infor-

mation for a wide variety of applications including fitness tracking, gait analy-

sis, food and drink consumption, inertial navigation. In addition, eye tracking

is a popular modality for activity recognition which is explored in depth with

earables in section 4.2.
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4.1 Related Earable Works

The following sections are structured according to different application areas

of movement and activity, as illustrated by Figure 4.1.

4.1.1 Activity Recognition

Sensor-based activity recognition has been a staple of the of the ubiquitous

computing community for many years, both as a technical pursuit focused on

improving recognition rates but also as a means to understand activity con-

text that can be used to personalise devices and systems. Earables are com-

pelling for activity recognition because many people wear ear-based devices,

such as earphones or hearing aids, as they perform their everyday activities.

In contrast, other wearables are commonly abandoned as activity trackers due

to their inability to be incorporated into a person’s everyday life (e.g., knee or

waist trackers) [178; 36].

4.1.1.1 Activity Classification. Prior research has explored how ear-based

devices can successfully recognise a wide variety of activities. For basic activ-

ity recognition tasks, such as determining whether a user is walking or running,

earable-based accelerometers on their own provide an almost perfect accuracy

of 99% [84]. Similarly, Min et al. [318] reported an F1-score of 95% when

determining the mobility of a user (stationary, walking, stepping up, stepping

down) and 80% when performing a head gesture (nodding, shaking) by utilis-

ing both the accelerometer and gyroscope and using a nearest-neighbour classi-

fier. Hammour and Mandic [174] show that motion artefacts from in-ear EEG

can be used to classify four basic activities (sitting, walking, speaking, and

chewing) with 85% testing accuracy. For estimating a user’s understanding

of an online lecture, Kim et al. [243] classified whether a user is gazing at a

monitor or looking down at the desk based on the accelerometer and gyroscope

of the earable, achieving F1-scores of ≈ 0.92 and ≈ 0.90 respectively. These

results demonstrate how earables can detect simple movements and gestures

with high accuracy.

However, more advanced activity recognition tasks show more variable re-
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sults. Atallah et al. [29] explored one-versus-all classification for ear-based

accelerometer sensing using different activities groups based on the “com-

pendium of physical activities” [7]. Activity recognition using a nearest neigh-

bour classifier was similar for the high-level (running and cycling) and low-

level (preparing and consuming food, socialising, reading, and getting dressed)

activities with approximately 65-70% F1-score. However, medium level activ-

ities (walking and cleaning) performed much worse than both with approxi-

mately 50% F1-score. Similar results were also found in previous research by

Atallah et al. [26], although Nirjon et al. [345] reported 96.8% accuracy when

classifying only the level of activity (i.e., physical intensity) rather than the

activity itself.

Advances in the underlying classifiers may also increase recognition per-

formance on the ear. More recent work has explored how end-to-end deep

learning can classify five scripted activities (nodding, speaking, eating, stay-

ing, and head shaking) with an F1-score of 82% [256] and physical exercises

with 82% accuracy (squats, lunges with dumbbells, alternating bicep curls, sit-

ups, push-ups, sitting overhead dumbbell triceps extensions, standing dumb-

bell rows, jumping jacks, sitting dumbbell shoulder press, and dumbbell lateral

shoulder raises) [433]. Across these works, earables are able to achieve good

recognition performance despite the difficulty in detecting movements of other

parts of the body.

Researchers have addressed the difficulties of using earables to detect com-

plex movements by combining them with other devices in a complementary

manner, leading to greater recognition rates than are possible with any single

device. Strömbäck et al. [433] recorded motion data from ten participants per-

forming ten different exercises while carrying commodity wearable devices –

a smartphone, smartwatch, and earbuds equipped with inertial sensors. Fus-

ing the data using deep-learning techniques across wearables achieved 96%

activity recognition accuracy, which was significantly higher compared with

using the data from only a single wearable (earbuds - 82%, smartwatch - 94%,

and smartphone - 85%) [433]. Radhakrishnan et al. [394] pair earables with

dumbbells, both augmented with an accelerometer and a gyroscope, in order

to classify the free-weight exercise a user is performing with a test-set accu-
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racy of 96.85% from 3 exercises (bicep curls, triceps extension, and lateral

raises), 93.72% from 6 exercises (also including squats, lunges, and side bend),

and 88.6% from 12 exercises (also including seated barbell shoulder press, in-

clined chest flyes, weighted crunch, dumbbell triceps kickback, barbell dead-

lifts, and alternating bicep curls). Other work suggests fusing accelerometer

and gyroscope data from an earable with optical flow from cameras can also

improve classification accuracy for basic gestures including reaching for items

and dressing oneself [307].

4.1.1.2 Sensor Performance. Accelerometers and gyroscopes are the main

sensors used to detect motion of the earable for activity recognition, with the

exception of one paper which explored the motion artefacts of in-ear EEG [174].

For many applications it is only the accelerometer that is used [29; 440]. Min

et al. [318] found that the accelerometer significantly outperformed the gy-

roscope, and that fusing the two sensors resulted in a marginal performance

increase over the accelerometer-only approach (only 1% for head gestures).

Using only the accelerometer is compelling because they are more energy-

efficient than gyroscopes [318]. However, despite finding the same relative

performance differences between the three conditions, Laporte et al. [256]

found the difference in performance between accelerometer-only and hybrid

approach to be larger, and between accelerometer and gyroscope to be smaller,

when using end-to-end deep learning with F1 scores of 75% (accelerometer),

69% (gyroscope), and 80% (both).

Comparisons between the ear and other locations show it to be among the

best positions for activity detection. Atallah et al. [29] compared accelerometer

placement of seven different locations on the body whilst tracking different

high-level activities (including preparing food, getting dressed, cleaning, and

socializing) of eleven users. The ear was second best after the knee, without

significant loss in classification accuracy, and better than the chest, arm, wrist,

waist, and ankle. More recent work has also shown similar results with only the

knee and shin outperforming the head for activity classification for activities

including climbing stairs, jumping, lying, standing, sitting, running/ jogging,

and walking [440].
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However, more recent work that uses deep learning suggests that other com-

modity wearables may outperform earables when classifying physical exer-

cises. Earables achieved an accuracy of 82%, lower than both a smartwatch

(94%) and smartphone (85%) [433]. Earables are also susceptible to falling

out during heavy movements, even when adjusted correctly, and therefore cer-

tain activities may be less suitable for ear-based devices [195]. In addition,

earables produce greater wearing variability in comparison to a smartwatch,

with differences of roll and pitch of about 10-20 degrees in earables compared

with 3-8 degrees [322] in smartwatches. Despite these disadvantages, earables

provide good recognition performance across a wide range of activities, and

when used in combination with other wearable sensors can further improve

recognition accuracy [433].

4.1.2 Fitness Tracking and Support

Sedentary lifestyles account for 25% of all medical expenses and cause mil-

lions of deaths worldwide [15]. Beyond just classifying physical activities or

sports, as shown in the previous sub-section, earables can help to improve and

manage a user’s fitness and health [40; 258; 387; 198; 65; 84; 29]. To date

earable research has covered a range of different fitness activities ranging from

weight-lifting [394] and general exercise routines [433; 330], to sports includ-

ing cycling [65; 28; 29], rowing [28], climbing [358], and basketball [195].

4.1.2.1 Step Counting. Counting how many steps a user takes is one of

the most commonly used metrics for tracking and assessing physical activity,

and for encouraging users to stay active [43]. Earables are ideally suited for

step counting because the body acts as a filter which stabilises the head during

locomotion [164; 232]. Prakash et al. [387] show the initial feasibility of step

counting at the ear with a variety of walking speeds including very slow, slow,

normal, and running that can be tracked with 95% accuracy [387]. They also

propose to detect and measure jumping to assess the physical health of a user,

with a limited user trial reporting jump heights of within 1-3cm of the ground

truth.
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4.1.2.2 Energy Expenditure. Motion of the human body measured on the

ear directly relates to physical activities performed by the user, and this rela-

tionship can be used to infer a user’s energy expenditure [144]. This approach

provides a more generalised way of measuring a user’s activity in compar-

ison to step counting. Energy expenditure can be estimated from accelera-

tion forces measured at the ear with high correlation confirmed by calorimetry

(r=0.92 [258], r=0.74 [65]). This relationship was confirmed for lying down,

standing, computer work, vacuuming, walking stairs, slow walking, fast walk-

ing, slow running, fast running, cycling, and rowing [28; 65]. Consequently,

a mean absolute deviation of only 27 kcal per day was achieved [65]. Beyond

tracking a user’s activity to monitor their fitness, energy expenditure prediction

can be combined with dietary measures to maintain long term weight loss [258]

or to monitor patients remotely [26]. Also, Nirjon et al. [345] used the concept

of energy, derived from the accelerometer, to detect the activity level of a user

which was then used to control music being played.

4.1.2.3 Repetition Counting. Strömbäck et al. [433] used earables to count

the number of repetitions performed whilst exercising for a variety of ten phys-

ical exercises. Whereas accelerometers are favoured for activity classification,

the authors found that gyroscope data results in better performance for rep-

etition counting, although only marginally. Earables achieved a mean abso-

lute repetition counting error of 1.31 (all results reported are for gyroscope),

outperforming a smartphone (1.61), but significantly worse than a smartwatch

(0.34). Interestingly though, the percentage of exercise sets within two repeti-

tions of the actual number of repetitions was slightly higher for the smartphone

(82.95%) than for the earable (81.33%). Again the smartwatch significantly

outperformed both with 98.70% of exercise sets within 2 repetitions.

4.1.2.4 Performance Feedback. Earables can also be used to provide feed-

back to users whilst performing a physical activity in addition to analysing their

form afterwards. Radhakrishnan et al. [394] not only classified the type of ex-

ercise a user was performing, but also developed a feedback system for use

during weight-based exercises that combined earable motion data with mo-

tion data of a dumbbell which detected exercise mistakes (94%) of 33 users
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which helped to reduce subsequent mistakes by more than 10%. Similarly, Mo-

tokawa et al. [330] explored how acceleration data from the ear and chest can

be combined to provide real-time corrective feedback during planks. Rather

than providing real-time feedback, Pansiot et al. [358] used the accelerometer

in an earable to collect data so that climbers could assess the fluidity, speed,

strength-to-weight ratio, and endurance of their performances and to provide

insights into their proficiency level. Hermann et al. [186] applied earables to

support life-saving cardiopulmonary resuscitation (CPR). Based on an evalua-

tion with twenty users on a test dummy, acceleration data measured at the ear

of the rescuer can predict chest compression depth and rate at 5.9 mm and 1.6

cycles per minute median absolute deviation. Though that was worse than on

the rescuer’s wrist or chest, the performance of earables was still within the

acceptable range for real-world feasibility of CPR.

4.1.2.5 Posture. Poor posture when sitting at a desk can cause back pain

and poor circulation that can lead to other health issues [110; 180]. Earables

equipped with an accelerometer and a gyroscope can be used for corrective

posture feedback by detecting when a user leans forward with their head while

sitting down [442; 395]. An initial simulated experiment based on five partic-

ipants using their smartphone or laptop 30 minutes each yielded perfect preci-

sion at 89% recall to detect a forward-leaning posture [395].

4.1.3 Gait

Gait describes the motion performed by a user when walking. Earables can

accurately detect several temporal and spatial gait parameters including heel

contact time, toe off event, swing time, stance time, stride time, step cycle time,

and step asymmetry [32; 210; 211]. The relationship between gait-specific mo-

tion data and acceleration measured at the ear has been confirmed in conjunc-

tion with gold standard procedures including an in-shoe pressure measurement

system [210], a force-plate instrumented treadmill [32; 30], and a high-speed

camera [211; 212]. Extracting these precise gait parameters provides clinicians

with the opportunity to monitor rehabilitation from either surgery or a stroke,

or progression of pathologies including osteoarthritis [32]. Ear-worn devices
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are a much cheaper and simpler platform for detecting gait patterns and pa-

rameters than traditional gait platforms and force plates, and have the added

advantage that they can be deployed in-the-wild.

Gait parameters have been successfully extracted using earables and applied

to assess health outcomes of an individual. appendix A.10 details all earable

papers that have explored gait-related parameters. Recovery after surgery can

be tracked using acceleration signals at the ear which capture the irregular-

ity of a user’s gait pattern [27]. Atallah et al. [27] used this possibility to

both assess the recovery over time as well as approximating the user’s gait

to a healthy control group. Similarly, Jarchi et al. [213] conducted a valida-

tion study which showed that stride time, amplitude asymmetry, and step time

measured at the ear improved one year post-surgery. The amplitude asymme-

try level was also found to correlate with the Knee Injury and Osteoarthritis

Outcome Score [210].

Impairment of gait, e.g., because of skeletal malfunctions or due to ag-

ing, can also be extracted directly using earable devices. Accuracy of more

than 95% was achieved for predicting truncal [31] and lower limb impair-

ment [25; 31] using an accelerometers on the ear. Lorenzi et al. [280] used

an inertial measurement unit consisting of an accelerometer, gyroscope, and

magnetometer to measure the freezing of gait of Parkinson’s disease patients.

The choice of an ear-based sensor was motivated through wearability and also

the need to provide auditory feedback to feedback to the patient. The risk of

falls in elderly people has been clinically measured using the Tinetti Gait and

Balance Assessment (TGBA) [465]. King et al. [244] discovered that certain

aspects of TGBA can be assessed base on motion data from the ear (2 out of 17

test-related activities), however this small fraction is likely not enough for prac-

tical use. Similarly, ear-based devices have been equipped with accelerometers

for detecting fall events aimed at elderly patients [478].

4.1.4 Food and Drink Consumption

Dietary monitoring involves detecting both when someone consumes food or

drink and, ideally, also what they are consuming. The ability to automatically

monitor dietary activity can take the burden of self-reporting away from a user
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or patient and assist with mindful eating, tackling unhealthy behavior, and pre-

venting diseases by supporting healthier diets [49; 13; 14]. Earables are suit-

able for automatic dietary monitoring because they are non-invasive [415; 360;

150; 366; 364], socially acceptable [415; 47; 56] and can be worn throughout

the day [366; 346; 150]. appendix A.9 details all of the work that has explored

how to detect when and what a user is eating or drinking on the earable plat-

form.

4.1.4.1 Eating Detection. The first step of dietary monitoring is detection

of eating events. The repetitive nature of jaw movement when chewing and eat-

ing is beneficial when trying to predict eating phases under real-world condi-

tions [49] and can be detected using several sensing principles. Air- and bone-

conduction microphones sense chewing sounds; proximity, piezoelectric, and

inertial sensors track ear canal deformations induced by mouth motions; and

electromyography (EMG) quantifies chewing-based muscle activity directly.

On their own these different sensing modalities achieve roughly similar accu-

racy rates ranging from 80-90% in field experiments, however fusing multiple

sensors can further improve recognition accuracy [281; 55; 359].

Each sensing principle used to detect eating behaviour has advantages and

trade-offs. For eating detection, body-internal vibrations and sounds can be

measured due to the ear cavity that are amplified by the ear’s physiology [56;

13]. However, external and background sounds not relating to the chewing

activity should be dampened for optimal recognition [359], which remains a

critical challenge for audio-based approaches [150]. This issue is further ex-

acerbated when chewing softer foods as the amplitude of the chewing signal

is much lower compared with crunchier foods [281]. An additional micro-

phone which measures and filters sounds from the surroundings can improve

performance [310; 364], and deep learning approaches have also been shown

to increase recognition accuracy up to 77-94% even with ambient noise [150].

Audio-based approaches are still an active research area because they possess

a key advantage to other sensing modalities as microphones are already com-

monly embedded in many commercial ear-worn devices.

Motion-based approaches sense movement of the jaw when eating. They
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do not face the same privacy concerns and are more robust against soft food

types than audio-based approaches [281]. Similar to audio-based approaches,

motion-based eating detection also suffer from signal noise induced by unre-

lated body movement [281]. Bedri et al. [49] showed how it is possible to filter

out undesired motions by using additional body-worn sensors, in the form of

an IMU behind the user’s neck, resulting in an F1-score of 80.1% based on

field experiments. However, having the additional IMU in a form-factor that a

user is likely to use is still an open challenge.

Proximity sensors can be used to detect ear canal deformation as a result of

jaw movements when eating. They are compelling as they require less power

and do not suffer from the same level of privacy concerns in comparison to

audio-based approaches [47]. Bedri et al. [47] measured ear canal deforma-

tion using three orthogonal proximity sensors and a gyroscope embedded in an

off-the-shelf earpiece which resulted in 95.3% accuracy when detecting eating

events. Also, Bedri et al. [49] explored the use of an in-ear proximity sensor but

found that users found it uncomfortable when wearing for prolonged periods

and especially when eating.

Other sensing principles have been used to detect eating at the ear via jaw

movements. Wet EMG electrodes located behind the ear on the mastoid detect

the jaw’s muscle activity [55], PPG senses the changes in blood flow as a result

of the jaw movement [360; 359], and piezoelectric strain gauges located on

the lower jaw directly measure jaw movement [415; 140]. EMG and PPG

were both significantly outperformed by audio-based detection, yet when fused

resulted in an overall increase in accuracy [55; 360].

Multiple lab studies investigated how to predict individual bites and chew

strength on the ear using pressure, bend, and piezoelectric strain sensors [414;

200]. However, individual chews are more complicated to predict than general

eating activity due to the higher temporal resolution that is required [359].

4.1.4.2 Drinking Detection. Staying hydrated is important for cognitive

function and overall health [399]. Tracking the consumption of liquids (in-

cluding liquid foods) is a challenging detection task for earables because it

lacks the characteristic chewing information (e.g., [414; 281; 150; 364]). Some
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works reported good results based on sound sensing for a subset of study par-

ticipants [424], however drinking detection can not be reliably detected with

earables (see appendix A.9).

4.1.4.3 Food Type Prediction. In addition to detecting when the user eats,

automatic dietary monitoring should detect what food the user is consuming,

and how much of it they are eating. The amount and type of consumed food

are key contributors to the success of weight loss maintenance [252]. Research

to date has focused on distinguishing foods of different textures in a lab setting

using audio data collected at the ear, with a success rate of 79% [366]. Alter-

natively, cameras located on the ear can be triggered by a microphone when

chewing is detected and images are taken of the meal which can be later anal-

ysed for an overview of the user’s food-intake [273]. No field studies or studies

involving food type predictions of complex meals have been undertaken.

4.1.4.4 Tooth Brushing. Closely related to food and drink consumption

is tooth brushing, as sugary diets in particular can lead to cavities and prob-

lems with dental hygiene. Researchers have explored how tooth brushing lo-

cation can be tracked using earables in order to help form better tooth brush-

ing habits [356; 389]. Prakash et al. [389] modified an off-the-shelf earphone

speaker to detect the vibrations from tooth brushing with 89% accuracy over 7

locations of the upper and lower teeth. Ouyang et al. [356] explored a larger

number of locations (16) and achieved a similar prediction accuracy by using

a combination of throat and ear microphones.

4.1.5 Navigation

Navigation can be achieved by leveraging the inertial sensors in an earable

to track the position and orientation of the user over space and time without

having to rely on a GPS connection [493; 6]. Listening to music or wear-

ing earphones is common when travelling and the stable attachment and fewer

random movements of earables in comparison to other locations on the body

makes them a suitable platform for inertial navigation [136; 157].

However, the accuracy of inertial navigation is dependent upon a fixed global
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reference point which is commonly the magnetic field of the earth and detected

by a magnetometer. In earable devices, the close proximity of communication

circuitry and the speaker introduce significant electromagnetic noise which has

so far proved problematic for inertial navigation on the earable platform [136].

To overcome this problem, Ferlini et al. [136] developed an automatic mag-

netometer calibration method in combination with the user’s smartphone that

reduces the average error from 30 degrees to less than 5 degrees at any given

time. Based on a 9-axis inertial measurement unit and the described magne-

tometer calibration method, an inertial navigation drift of 0.15m/s when using

one earable and 0.11m/s when using two earables could be achieved [6]. Gong

et al. [157] presented a deep learning based pipeline that fuses the inertial data

from a smartphone and earables. This pipeline takes into account the reliability

of each sensor at any given point in time prior to fusing, and only relies on the

earables accelerometer and gyroscope readings for inertial navigation, achiev-

ing accuracy improvements in comparison to other state-of-the-art navigation

models.

To navigate indoors, Schindler et al. [416] proposed an ear-based device

that tracks footsteps from acceleration data and doorways through proximity

sensing. From this data, a topological graph of the environment is generated

which is applied to localise the user based on a particle filtering approach with

preliminary success.

4.2 Eye Tracking based on Periauricular Electrodes

Eye tracking is a widely employed technique for sensing and interaction that

typically involves either camera-based [156; 99] or Electrooculography (EOG)

[119; 83; 99] methods. EOG detects electric field changes when the eyes move

because the eyeballs have a negative charge on the retina and a positive charge

on the cornea [289]. While camera-based eye tracking can be precise, it is

computationally intensive and requires a significant amount of power [99]. On

the other hand, traditional EOG is less computationally demanding and even

works when the eyes are closed. However, it is restricted to tracking relative

changes in gaze direction, is subject to signal drifts and is relativley invasive as

electrodes have to be glued on the face around the eyes. Despite these limita-
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tions, EOG has various interesting applications, including hands-free interac-

tion with wearable devices [262; 119], classifying user activities [83], detecting

drowsiness from related eye movements [506], quantifying reading activity up

to word-level accuracy [81; 253], and providing directed auditory attention in

noisy environments [131; 130; 132].

To make EOG more feasible, past work implemented electrodes into smart

glasses which improves wearability and more naturally integrates into the life

of the user [119; 253]. Prior research has also suggested that eye tracking us-

ing electrodes placed inside the ear canal [130; 132; 193; 292; 342; 234] or at

the mandible [289] and around the ears [480; 57] is generally feasible. Favre-

Felix et al. [132] investigated the use of ear-based EOG and motion sensors

around the ear to estimate absolute horizontal eye gaze in multi-talker situa-

tions, showing promising results when the head was fixed. However, hardware

issues hindered reliable estimations when the head was free. Manabe et al.

[292] developed an earphone-based eye gesture input interface using conduc-

tive rubber electrodes. In another paper, the same authors [289] proposed a

headphone-type gaze detector with electrodes placed at the mandible on one ear

to estimate gaze direction. They achieve an estimation error of 4.4° (horizon-

tal) and 8.3° (vertical) in a 5 × 3 fixation point grid (20° visual angle between

fixation points) and lay the foundation for this work. Ear-based eye tracking

was also leveraged for sleep detection [374; 342]. Similar to smart glasses,

ear-based EOG devices have the potential to be more comfortable, discreet,

and portable than traditional EOG. Furthermore, the ear is an ideal location for

integrating eye tracking with audio applications for example for directed audi-

tory attention in noisy environments and with hearing aids [130; 132; 193].

The effectiveness in monitoring eye movements using electrodes placed in-

side the ear canal is well understood, primarily for horizontal eye movements

[130; 132; 193; 292]. However, incorporating eye-tracking capabilities into

headphones presents several advantages over the in-ear EOG method. Firstly,

the proximity of headphones to the eyes enhances the sensitivity to eye move-

ments, leading to potentially more accurate measurements of changes in eye

position. Additionally, the larger vertical coverage provided by headphones

enables the detection of both horizontal and vertical eye movements, expand-
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ing the range of applications and insights that can be gained from this tech-

nology. To this extent, this dissertation seeks to expand upon the initial work

of Manabe and Fukumoto [289] and evaluate headphone-based eye tracking in

depth.

This work thoroughly investigates the hypothesis that EOG-based eye track-

ing using electrodes placed around the ears in a regular headphone form factor

is a reliable and accurate method for studying eye movements. To understand

the achievable performance and add context, the research is grounded in com-

parison to gold-standard EOG. For the evaluation, a specialized headphone de-

vice was developed with 28 electrodes positioned strategically around the ears,

see Figure 4.2. Using the earEOG headphones, a lab study with 3 participants

was conducted to collect data of two tasks.

For the first task, participants were asked to follow one-dimensional moving

targets to elicit smooth pursuit data [473]. Smooth pursuits are continuous eye

movements that allow the eyes to follow a moving target smoothly without any

jerks or abrupt changes in direction [400]. They were chosen for this study be-

cause they allow us to identify the best electrodes for detecting eye movements

more effectively than saccades, which are rapid and sudden eye movements

between fixed points. Smooth pursuits provide a continuous signal that can be

more easily correlated with the changes in eye position, enabling a better anal-

ysis of the relationship between electrode signals and eye movements. This,

in turn, helps us to determine the most effective electrode positions for cap-

turing the nuances of eye movement and to evaluate the overall feasibility of

the earEOG method. For horizontal eye movements, the bipolar montage of

L4-R4 (difference in electrical signals between the two electrodes) yielded the

highest correlation to horizontal gold-standard EOG (rh−L5−R5 = 0.89). Using

electrodes from just one ear, the montage of L5-L10 (rh−L5−L10 = 0.7) and

R5-R10 (rh−R5−R10 = 0.67) produced the highest correlation. For vertical eye

movements, the bipolar montage of L2-L6 and R2-R6 had the highest corre-

lation with vertical gold-standard EOG (rv−L2−L6 = 0.35, rv−R2−R6 = 0.56).

The position of these electrodes closely resemble the positions of gold-standard

EOG.

For the second task, participants were instructed to follow a point that jumped
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from the center of the screen at 0° to 5° up to 30° in the four cardinal di-

rections at 5° increments. Using the ideal electrode positions identified from

the previous analysis it was found that voltage deflections during saccades of

earEOG and gold-standard EOG across all angles are mostly highly correlated

(rleft = 0.875, rright = 0.799, rup = 0.019, rdown = 0.498). Horizontal saccades

exhibit significantly higher correlation to gold-standard EOG than vertical sac-

cades which suggests that earEOG works better for measuring horizontal eye

motions. Building upon the relationship between voltage deflections and the

underlying gaze angle, a regression model was evaluated to calculate the ab-

solute saccade angle from earEOG. On average, earEOG achieves an absolute

angular accuracy of 9.2° ± 4.5°. In comparison, a similar model fitted on

gold-standard EOG data achieves an absolute angular accuracy of 4.4° ± 1.1°.

These findings demonstrate that earEOG is a reliable and accurate method for

eye tracking, and has the potential to achieve accuracy and reliability close to

gold-standard EOG.

In sum, the contributions are: (i) a thorough investigation of EOG-based eye

tracking using electrodes placed around the ears in a custom-built headphone

form factor, providing earEOG - a novel approach to on-the-go wearable eye

tracking; (ii) an evaluation of different electrode positions for earEOG and

recommendations for the optimal placement of electrodes, to enable a more

effective use of earEOG for eye tracking, thereby enabling a wider range of

applications; and (iii) an evaluation of earEOG to predict absolute gaze angles

of the four cardinal directions.

4.2.1 Methods

The following sections introduce the participants, apparatus, study procedure,

and data evaluation strategy.

4.2.1.1 Participants. The participants in this study were recruited through a

sample of convenience. Demographic information was self-reported by partic-

ipants using questionnaires. Participants without sufficient vision capabilities,

as determined by the need to wear glasses, were excluded from the study.

The study protocol was approved by the institutional review board of the
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Karlsruhe Institute of Technology (Germany) and followed all relevant ethical

regulations in accordance with the Declaration of Helsinki. Before beginning

the study, participants were informed of the study protocol, the purpose of data

collection, and the specific data that would be collected. Informed consent was

obtained from participants through the signing of an agreement form. Partici-

pants were not compensated.

4.2.1.2 Apparatus. A 32-channel electric potential data collection setup

was implemented using two OpenBCI Cyton + Daisy biosensing boards (one

on each ear), with 14 channels around each ear and 2 channels each for vertical

and horizontal eye movements gold-standard EOG, see Figure 4.2 (A) to (C).

The boards were housed in a 3D-printed headphone enclosure. The elec-

trodes around each ear are metal Ag/AgCl electrodes repurposed from the

OpenBCI Biosensing kit. The two boards were manually and precisely time-

synchronized using the data captured from the shared electrodes for vertical

and horizontal gold-standard EOG. Figure 4.2 (B) shows a schematic repre-

sentation of the electrode positions on each ear. To enhance conductivity, abra-

sive gel was applied on each electrode. Before application, the area around the

ears was cleaned with isopropanol. Four wet electrodes were placed around

the participants’ eyes as a reference for capturing vertical and horizontal gold-

standard EOG, see Figure 4.2 (C). All data was sampled at 125 Hz.

For data collection, a web-based tool was implemented that provides instruc-

tions to the participants and shows on-screen stimuli to elicit specific eye move-

ment patterns. The experiment was conducted using a 23" monitor (1920px ×
1080px) with a viewing distance of 50 cm. Participants were seated centered

in front of the screen, with the vertical center of the screen positioned at eye

level using a height-adjustable desk. This ensured that the visual stimuli could

be presented at the desired size and angle in relation to the participants head

and the screen size. The participant’s head position was not fixed in space,

but the person conducting the study carefully monitored the head position and

distance to the screen to intervene if participants moved notably.
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4.2.1.3 Task, Stimuli, and Procedure. Participants were presented with

two different tasks to collect two types of eye movements: smooth pursuits and

saccades. Smooth pursuits were added to find the best electrode for vertical

and horizontal eye movement tracking, respectively. Saccades were added as

they are fundamental for many research studies, and the absolute angle is the

most characteristic for understanding eye movements.

Smooth Pursuit Task. Smooth pursuit eye movements are continuous eye

movements that follow a moving object, and they exhibit much slower char-

acteristics compared to rapid eye movements such as saccades that shift the

gaze from one object or point in space to another. The smooth pursuit task

consisted of 1D smooth pursuits angles in both vertical and horizontal direc-

tions. Participants were instructed to follow the gaze target that moved within

a 5 to 30 degrees visual opening angle from the center for 6 seconds each. The

frequency of the gaze target movement was set to 0.33, 0.5, and 1 Hz. The

motion of the gaze target was eased by sin(x) on the axis of movement, which

means it followed a simple harmonic motion. The gaze target had a diameter

of 30 pixels, which is equivalent to 7.8 mm.

The purpose of this task was to find the best electrode for vertical and hor-

izontal eye movement tracking. The eye movement data collected during the

smooth pursuit task will be correlated with the eye movements of the gold-

standard EOG signals.

Saccade Task. In the saccade task, participants were presented with a series

of fixation points to elicit saccade eye motion. Participants started with resting

their gaze in the resting position at the screen’s center (0° visual angle in the

x and y direction). The fixation point then jumped to 5-degree increments in

each of the four cardinal directions (left, right, up, down) from 5 to 30 degrees.

Each fixation point was presented for 2 seconds and shrank from 30 to 20

pixels (equivalent to 7.8 to 5.2 mm). After completing an angle, the fixation

point returned to the center resting point for 2 seconds.
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The purpose of the saccade task was to collect saccade eye movement data

that helps to create an understanding of the relationship between earEOG signal

deflections, gold-standard EOG, and absolute gaze angle changes.

Data Collection Procedure. After arriving at the lab, signing the consent

forms, and asking any possible questions, participants were fitted with the

earEOG headphones as well as gold-standard vertical and horizontal EOG elec-

trodes. They were then seated in front of the screen. Participants then followed

to on-screen instructions to complete the eye-based tasks for data collection.

Both tasks took approximately 10 minutes to complete and were repeated three

times, totaling approximately 30 minutes of gaze data per participant. The or-

der of tasks was not counterbalanced.

4.2.1.4 earEOG Analysis. The collected gold-standard EOG and earEOG

data per ear are aligned as both were sampled using the same device. To en-

sure synchronicity between the left and right earEOG data captured by the

two OpenBCI boards, the gold-standard EOG data captured by both devices

using the same electrodes at the same time were aligned manually by visual

agreement of the smooth pursuit data. Pairwise differences between all elec-

trodes were computed for the 14 electrodes on each ear and also between the

14 frontal electrodes between both ears. The difference signals were bandpass

filtered between 0.1 and 15 Hz using a 5-th order Butterworth filter to eliminate

noise or artifacts. To further smoothen the data, a mean filter was applied with

a window size of 10 samples. These preprocessing steps were carried out to

ensure that the data was suitable for subsequent analysis. The same filtering

was applied to the vertical and horizontal gold-standard EOG.

4.2.1.5 Saccade Angle Prediction. The measurement of voltage deflec-

tions through electrooculography (EOG) does not directly provide information

on the absolute gaze angle. To overcome this limitation, a regression model

was developed that predicts the gaze angle from voltage deflections in earEOG

signals. This model was implemented using Python. The 216 saccade samples

from 3 participants, 3 sessions, 4 directions, and 6 angles were each labeled

manually with a start and end marker. Saccades for which no clear start and
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end could be identified were excluded (15 in total). From these labels, the volt-

age deflection of gold-standard and the best earEOG electrodes were computed

and assigned to the respective ground truth gaze angle change. This data was

used to fit a simple linear regression model from the sklearn library. The re-

gression model was evaluated using 5-fold cross-validation. A seperate model

was fit to predict vertical and horizontal saccades angles.

4.2.2 Results

In total, 3 male participants were recruited for the study aged between 20 and

30. The following sections present the results and discussion of the evaluation.

4.2.2.1 Comparison of Electrode Positions. In order to find the best elec-

trode positions for measuring eye movements with electric potentials from

around the ears, in this dissertation the ground truth gold-standard EOG signal

is correlated with pairwise, differential earEOG electrode signals. 1D smooth

pursuit data (vertical and horizontal) was used to compute the best electrodes.

Smooth pursuit eye movements were chosen because they exhibit continuous

electric signal changes compared to rapid saccades, which create a sharp, short

spike in the EOG signal. Consequently, smooth pursuits are less prone to arti-

facts and noise and allow for a continuous sequence to be correlated between

the gold-standard and ear-based EOG principle, which improves the reliability

of the results.

For horizontal eye movements, electrode combinations for which one elec-

trode is closer to the eye than the other on the horizontal axis were considered

(see Figure 4.4 A and B). Similarly, for vertical eye movements, a subset of

electrode pairs was analyzed, focusing on those positioned above each other

(see Figure 4.4 C). For all recorded smooth pursuits, the full six-second sam-

ple was correlated.
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The results are based on all sampled smooth pursuit speeds and angles. To

identify the best vertical electrodes, only the vertical smooth pursuit data was

used, and for the horizontal electrodes, the horizontal smooth pursuit data was

leveraged.

Horizontal earEOG Electrodes. As shown in Figure 4.4 A and B, electrodes

at eye level have the highest correlation, and the correlation when combining

electrodes from the left and right ear is even stronger than using electrodes

from one ear alone for horizontal earEOG with up to rh−L5−L10 = 0.7 and

rh−R5−R10 = 0.67 vs. rh−L5−R5 = 0.89. Moving farther away from eye

level decreases the correlation. The smallest correlation to horizontal earEOG

is achieved by the montage of L2-L13, R2-R13, and L2-R2, which are the

farthest away from the eye level.

Vertical earEOG Electrodes. For vertical EOG, the distance to the eyes and

sufficient vertical distance covered by the electrodes on the ears are crucial fac-

tors. Therefore, the electrodes closest to the ears do not work best; instead, the

montage of L2-L6 and R2-R6 yield the strongest correlation (see Figure 4.4 C).

Moving farther away from the eyes decreases performance and produces much

smaller correlations with L1-L7 and R1-R7 exhibiting the smallest correlation

to gold-standard EOG.

Discussion. Horizontal earEOG electrodes showed promising results. Sig-

nals were generally stronger when measured closer to the eyes, making the

combination of electrodes from both ears advantageous as it captured more of

the signal.

Regarding the vertical earEOG electrodes, it was found that the electrodes

closest to the eyes were not the most effective. Instead, the L2-L6 and R2-

R6 had the highest correlation. This suggests that a sufficient vertical distance

covered by the electrodes on the ears is crucial to achieving accurate mea-

surements. The performance of vertical earEOG electrodes diminished as they

were placed farther away from the eyes. Overall, the vertical method appeared

to be less effective in measuring eye movements compared to the horizontal

earEOG.
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4.2.2.2 Average Saccade Signal Analysis. Based on the ideal ear elec-

trodes (horizontal: L5-R5, vertical: R2-R6), the average signal for each sac-

cade direction and amplitude was investigated. Figure 4.5 provides insights

into the overall shape and characteristics of the earEOG and gold-standard

EOG signals during saccades, enabling a more comprehensive understanding

of the eye movement patterns. It is noted, that the signals were shifted to

zero based on the average voltage difference of the electrode montage before

the saccade was performed to better show the relative change per angle and

direction. As to be expected, the gold-standard EOG exhibits stronger charac-

teristics.

Upon examining the average saccade signals for each direction and visual

angle, several key features and trends emerge: (i) the EOG signals for saccades

of the same direction, irrespective of their amplitude, exhibit a similar wave-

form shape; this consistency suggests that the EOG system can reliably detect

saccades in different directions and that the waveform shape is characteristic

of the saccade direction; (ii) the signal magnitude generally increases with in-

creasing saccade amplitude, indicating a strong relationship between saccade

amplitude and EOG signal magnitude; (iii) the average saccade signals are

reasonably pronounced, allowing for clear identification of the saccades; (iv)

vertical saccades exhibit much smaller amplitudes and are less consistent than

horizontal earEOG waveforms.

Discussion. The consistency in signal shape, the relationship between signal

duration and amplitude, and the overall signal magnitude trends support the

notion that the EOG system near the ears can effectively track eye movements

across different saccade amplitudes and directions. However, the electric signal

properties of vertical eye movements are relatively noisy and less pronounced

compared to the horizontal earEOG, which suggests that prediction absolute

gaze angles are harder to predict, which is further analyzed in the following

sections.
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4.2.2.3 Saccade Amplitude vs. Voltage Deflection. The EOG voltage de-

flections were analyzed for saccades of different angles (5°, 10°, 15°, 20°, 25°,

and 30°) in the left, right, up, and down directions. The results are summa-

rized in Figure 4.6 and described below. The correlation between the absolute

voltage deflections (∆V ) and the best earEOG positions (h-L5-R5 for horizon-

tal saccades, v-R2-R6 for vertical saccades) and gold-standard wet electrode

EOG was also computed.

Horizontal Saccades. For horizontal saccades, the EOG voltage deflections

increased with the increase in saccade amplitude. The 5° left saccade showed

a deflection of 17.5 µV, while the 30° left saccade resulted in a deflection of

87.7 µV. In the right direction, the deflections were negative, with the 5° right

saccade showing a -20.3 µV deflection and the 30° right saccade resulting in a

-77.4 µV deflection. This trend indicates that the EOG system was able to dif-

ferentiate between left and right saccades and capture the increasing deflection

with increasing saccade amplitude. For horizontal saccades, the correlations

between earEOG and gold-standard EOG deflections was found to be very

strong at rle f t = 0.875 and rright = 0.799.

Vertical Saccades. For vertical saccades, the EOG average voltage deflections

also showed a general increase with increasing saccade amplitude, but the pat-

tern was less consistent compared to horizontal saccades. Upward saccades

resulted in positive deflections, with the 5° upward saccade showing a 2.2 µV

deflection and the 30° upward saccade resulting in a 7.1 µV deflection. Down-

ward saccades resulted in negative deflections, with the 5° downward saccade

showing a -0.8 µV deflection and the 30° downward saccade resulting in a -7.3

µV deflection.

For vertical saccades, the correlations between earEOG and gold-standard

EOG deflections were more varied compared to horizontal saccades. For up-

ward saccades, the correlation was only rup = 0.019. Downward saccades had

a much stronger correlation of rdown = 0.498.
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Discussion. The results demonstrate that the EOG system applied close to the

ears is capable of measuring horizontal and vertical saccades with varying am-

plitudes. The voltage deflections for horizontal saccades show a more consis-

tent pattern with increasing amplitude compared to vertical saccades. In both

horizontal and vertical directions, the EOG system could differentiate between

opposite saccade directions, as evidenced by the positive and negative voltage

deflections for left and right, as well as up and down saccades, respectively.

The correlation analysis of voltage deflections between the earEOG and

gold-standard EOG provides valuable insights into the earEOG system’s per-

formance. The high correlations for horizontal saccades indicate that the earEOG

system can reliably track horizontal eye movements. On the other hand, the

more varied correlations for vertical saccades suggest that there may be room

for improvement in the earEOG system’s ability to accurately capture vertical

eye movements. Especially the upward saccades produced inconsistent results.

While the electrodes sufficiently cover vertical distance in the downward direc-

tion, the upper electrode is only slightly positioned above eye level. This may

contribute to the more inconsistent results.

4.2.2.4 Gaze Angle Prediction. Table 4.1 presents the mean absolute gaze

angle errors and standard deviations for the gold-standard and ear-based elec-

trooculography (EOG) methods across different gaze angles (5, 10, 15, 20,

25, and 30 degrees) and directions (left, right, up, and down). The overall er-

ror for each method and direction is also provided. The overall errors for the

gold-standard method were smaller than those of the ear-based method in every

direction: left (3.5° ± 1.3° vs. 7.5° ± 2.6°), right (3.0° ± 1.5° vs. 7.6° ± 2.6°),

up (6.1° ± 3.0° vs. 13.5° ± 1.3°), and down (5.2° ± 1.5° vs. 9.6° ± 1.8°).

Discussion. The results indicate that the gold-standard method outperforms

the ear-based EOG method in terms of mean absolute gaze angle errors across

all gaze angles and directions. The overall error for the gold-standard method

was less than half of the overall error for the ear-based EOG method, suggest-

ing that the gold-standard method provides more accurate predictions.
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The increased errors observed in the up and down directions for both methods

suggest that these directions may be more challenging for accurately measur-

ing gaze angles. However, the ear-based EOG method showed significantly

higher errors in these directions, which could be attributed to factors such as

signal interference, noise, or anatomical differences in the placement of the

electrodes. Further research is needed to explore these factors and improve the

accuracy of the ear-based EOG method in the up and down directions.

4.2.3 Discussion

This part of the dissertation investigated the performance of an earEOG sys-

tem for tracking eye movements, specifically focusing on smooth pursuits and

saccades of different directions and amplitudes. The analysis included the cor-

relations between the earEOG system and gold-standard EOG, the examination

of average saccade signals and voltage deflections, and absolute gaze angle pre-

diction. The results of the study provides valuable insights into the potential

and limitations of the earEOG system for eye movement tracking and analysis.

Electrode Positions. The presented study identified the optimal electrode

pairs for measuring vertical and horizontal eye movements using EOG. It was

found that horizontal earEOG works better than vertical earEOG, likely due

to the fact that horizontal eye movements are more pronounced and easier to

measure, even for gold-standard EOG.

Furthermore, using diagonal electrode configurations for earEOG may be

possible. However, upon further investigation it was found that these electrode

arrangements are unable to unambiguously differentiate between vertical and

horizontal eye movements, as they concurrently capture both dimensions.

The electrode pairs identified by the study can be used in future research and

clinical settings conducting similar research with ear-based EOG.

4.2.3.1 Vertical vs. Horizontal earEOG. Overall, the earEOG system

demonstrated that tracking horizontal saccades is reliable, with high correla-

tions between the earEOG and gold-standard EOG. The consistency in signal

shape, duration, and magnitude trends observed in the average saccade signals
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and the prediction performance further support the earEOG system’s ability to

effectively track horizontal eye movements.

However, the results for vertical saccades were more varied, with lower and

more inconsistent correlations between the earEOG and gold-standard EOG.

This finding suggests that there is room for improvement in the earEOG sys-

tem’s ability to accurately capture vertical eye movements.

4.2.3.2 Comparison to Related Work. Favre-Félix et al. [132] investi-

gated 30° horizontal saccades using in-ear electrodes. They reported a volt-

age change of approx. 50 µV during saccades. In comparison, earEOG based

on the headphone setup achieves 100 µV which suggests that saccades can be

measured more reliably using the periauricular positioning of electrodes.

Manabe and Fukumoto [289] used a related headphone setup with gaze tar-

gets that were 20° apart. They reported an overall absolute gaze angle estima-

tion error of 4.4° horizontal and 8.3° vertical. Similar to the presented findings,

the vertical error exceeded the horizontal error. They calibrate the model per

user which increases the performance compared to the general model intro-

duced in this dissertation which is implemented as a one-fits-all approach.

4.2.3.3 Limitations. The current study has several limitations that should

be acknowledged. Firstly, the presented work assumes a center resting position

for gaze, and therefore does not investigate any relative saccadic movements.

As saccades play a crucial role in visual perception, this assumption may limit

the generalizability of the presented findings. Secondly, the study does not

account for head movements during saccades, assuming instead that the head

is fixed in space. However, turning the head is an integral part of gaze, and this

oversight may introduce result bias. Lastly, the gaze angle prediction method

assumes that saccades have already been detected, and only predicts the angle

of gaze. In a real-world system, the isolation of saccades would be a necessary

step, and this simplification may lead to an overestimation of the accuracy of

the prediction method.
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4.2.4 Conclusion

Through the presented research, the potential of using ear-based EOG for mea-

suring eye movements with varying amplitudes and directions was demon-

strated. The findings revealed that horizontal earEOG is more effective than

vertical earEOG for measuring eye movements. The results also indicate that

the gold-standard EOG method outperforms the ear-based EOG method in

terms of gaze angle prediction accuracy, particularly in the vertical plane. Nev-

ertheless, the ear-based EOG system shows promising results for measuring

eye movements, and future developments may enhance its potential for use in

clinical settings and other practical applications such as gaze-based human-

computer interaction.
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5. Interaction

5.1 Related Earable Works

5.2 Discreet, Hands- & 
Eyes-Free Tensor Tympani Input

application-specific research contribution

5.1.5 Facial 
Expressions

5.1.4 Mouth-
Based 
Interaction

• Jaw Gestures

• Teeth 

Gestures

• Tongue 

Gestures

• Silent Speech

5.1.6 Brain 
Computer 
Interface

5.1.1 Ear & 
Earable Input

• Gesture 

Elicitation

• Button Input

• Touch

• Ear-Shape 

Changes

• Wearable State

5.1.2 
Hands 
Gestures 
and 
Location

5.1.3 Head

• Gestures

• Pointing

5.1.7 Actuation

Figure 5.1.: Structure of the “Interaction” section according to different ways
of interaction based on sensing on the ears. The section "Tensor
Tympani Muscle" is separated out because of the sensing contri-
butions and studies conducted in this dissertation.

Earables present an exciting opportunity for unique and novel interaction tech-

niques given the rich and diverse sensing capabilities available on the earable

platform. To date, researchers have explored how input can be provided on

the ear or earable itself, as well as how the earable platform can be used to

detect other modalities which can be used to provide input, as summarized in

subsection 5.1.1. The dissertation expands upon the status-quo through a novel

interaction technique based on the voluntary contraction of the tensor tympani

muscle, introduced in section 5.2.

5.1 Related Earable Works

The following subsections introduce a series of existing interaction technique

for earables, as illustrated in Figure 5.1
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5.1.1 Ear and Earable Input

The location of the earable device makes it compelling as an interaction device

that can be directly manipulated by the user to provide input. This enables

common basic interactions including tap and double tap on and around the ear,

however researchers have also investigated how more complicated sliding ges-

tures or manipulation of the ear itself can be utilised for interaction purposes,

see appendix A.11.

5.1.1.1 Gesture Elicitation on the Ear. Abstracting from any specific sens-

ing modality, Chen et al. [98] used an elicitation study (N=28) to explore user-

defined gestures for ear-based interactions for a number of smart device tasks.

The majority of user-defined gestures involved mid-air interactions (57%), with

39% involved touches directly on the ear. Of those touch-based gestures, the

most common part of the ear for touch-based gestures was the helix (8.4%),

followed by the tragus (and cheek) (6.8%), the lobe (4.7%), the back (4.4%)

and finally the center (2%). The remaining touch-based gestures involved mul-

tiple ear parts (0.9%) or the location did not matter (11.6%). The study’s user-

defined gesture set contained a number of touch-based inputs involving single

and double taps on different parts of the ear, covering of the ear itself, slid-

ing gestures on the helix, and pinching of the ear lobe. They also discuss the

design space of deforming the ear through manipulation, similar to Kikuchi

et al. [241]’s EarTouch, however these gestures did not feature heavily and the

authors speculate that these could cause physical discomfort.

Xu et al. [494] also introduce and explore a rich set of 27 gestures on and

around the ear which include single and double tap, as well as simple and com-

plex sliding gestures. They then proceeded to select 8 gestures based on tech-

nical properties (signal-to-noise ratio and similarity) of their acoustic-based

sensing principle, and user preference based on simplicity, social acceptance

and fatigue. Their final gesture set included single and double taps on the

cheek, mastoid, and middle ear, as well as two sliding gestures (one on the ear

rim and one below the mastoid).
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5.1.1.2 Button Input. Pressing a button on an earable device is one of the

most basic forms of input. However, the action of pressing inherently requires

force to be applied in order to depress the button. In comparison with other

parts of the body the ear can be more sensitive to pressure and force which

can cause discomfort, especially when applied to the inner canal. Buil and

Hollemans [78] found that users (N=16) were split on their preference for the

amount of force required to depress a button on an earable, with 85 grams being

within the acceptable range of most users.

5.1.1.3 Touch. In contrast, touch-based gestures enable a similar input band-

width without requiring the same levels of physical force to be applied to the

ear. Capacitive sensing has been applied to detect explicit user input using the

hands [79; 272; 486]. Buil et al. [79] demonstrated how simple interactions of

tap, double tap, and hold could be implemented on the earable platform using

capacitive antennas built into the earphones. Lissermann et al. [272] extended

this concept to 12 electrodes spanning from the beginning of the ear helix to

the ear lobe. They sought to answer how well one can touch their own ear and

discovered that users (N=27) are capable of detecting four salient points on the

ear arc, with greater precision found at the extrema of the ear arc. Weigel et al.

[486] introduced iSkin which demonstrated how capacitive sensing can go be-

yond traditional capacitive form factors and be achieved using a low-cost, thin,

stretchable form factor made up of two layers. Light touch is sensed using the

capacitive principle, while firm touch can be detected using the resistive princi-

ple when the two layers are in contact due to the pressure exerted. This sensing

concept is operationalised in an application called EarSticker which consists

of a five-element slider located behind the ear, however the sensor itself was

not evaluated on the ear.

Due to the importance of real estate in such a small form factor, researchers

have explored innovative solutions to detect input by using the built-in com-

ponents of commodity earphones [290; 494]. Manabe and Fukumoto [290]

developed an external adapter which allowed taps on the shell of commodity

earphones to be detected through the speaker unit. They tested this technique

on ten different pairs of earphones with six users, finding promising results for
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some earphones, while others did not work due to residual sound. In contrast,

EarBuddy uses the built-in microphone from earphones to detect a wide range

of touches and sliding gestures with an accuracy of > 90% by utilising deep

learning based on mel spectrograms [494]. Input was not limited to just on the

ear, but also included interactions around the ear including cheek and mastoid.

Similarly, Fan et al. [128] leverage the coupling effect of headphone drivers

detected using a peripheral device attached to unmodified headphones. Using

this principle, they sense touch and sliding gestures on the earphone enclosure

using a cumulative sum algorithm. As a proof-of-concept they found success

rates of >99% when audio is off and >97.7% with audio signal with gestures

performed 300 times.

In contrast to detecting manipulation of the sensing device, Lee et al. in-

troduced EarTouch which uses a camera to detect touches on the ear [259].

The proposed technique was designed to be obfuscated, i.e. hidden from an

observer by turning the head, miniaturized due to the small size of the ear, and

camouflaged as common actions such as scratching. Their evaluations showed

high (approx. 40%) error rates for tapping detection using a “land on” strat-

egy, similar to those found by Lissermann et al. [272], however detection using

a “lift off” or “dwell” approach resulted in much lower error rates (approx.

10%).

5.1.1.4 Ear-Shape Changes. Sensing dynamic changes in the shape of the

outer ear and ear canal can also be used in the context of interaction. Kikuchi

et al. [241] introduced EarTouch which uses photo reflective sensors to detect

shape changes of the ear caused by physical manipulation of the helix with the

hands. A support vector machine classifies four directional gestures of moving

the ear helix, which in turn can be used to classify five symbolic gestures (line,

check mark, inverted caret, square, and stairs) with an average accuracy of

77.43%.

5.1.1.5 Wearable State. Researchers have also explored how the location

of the earables relative to the user can be sensed for both implicit and explicit

interactions. Sensing whether the earables are located in the ear can be used

for locking the on-ear controls to prevent accidental activation [79], pausing
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music or answering phone calls [257], or detecting whether the earphones are

positioned correctly (i.e. left ear bud in left ear, right ear bud in right ear) [302].

The wearable state of the earables can be detected using capacitive sens-

ing [79], proximity sensors [302], ultrasound frequency sweeping [257], and

the coupling effect through the headphone drivers [128]. HeadFi, introduced

by Fan et al. [128], provide an extensive study on detecting the wearable state

of the earphones using 54 pairs of earphones grouped into five types. By lever-

aging the coupling effect through the headphone drivers they achieved success

rates per group between 97.9% and 99.8%.

Beyond detecting just whether the user is wearing the earables or not, Ear-

phoneTrack uses acoustic motion tracking to find out where the earphones are

located in 3D space with millimeter level accuracy [85]. The system leverages

an inaudible single frequency acoustic signal and can be used with commercial

earphones. They propose self-interference and frequency offset techniques to

allow for the tracking of both wired and wireless earphones respectively. This

approach creates an interesting and untapped design space where the earables

themselves can be used for spatial input.

5.1.2 Hand Gestures and Location

Besides direct manipulation of the earable or the ear for input, hand movements

can also sensed and leveraged for input. Using an elicitation study (N=28),

and abstracting from any specific sensing modality, Chen et al. [98] found

that the majority of user-defined gestures for ear-based interactions involved

mid-air hand interactions (57%) around the ear. Other researchers have oper-

ationalised sensing mechanisms which can detect motion of the hands using

earables, see appendix A.12.

Metzger et al. [312] introduced FreeDigiter which allows rapid, contact-

free entry of digits based on finger gestures. To enter a digit, the user spreads

their fingers to show the desired number and then slide it over a proximity

sensor embedded in the earbud to encode the digit. The earbud detects the digit

by the reflections of the infrared light emitted by the proximity sensor which

can be used for selecting a numbered item from (e.g.) a list of tracks or to

manage phone calls. SonicASL by Jin et al. [215] uses deep learning techniques
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to classify reflections of a sonic wave into 42 different sign language words.

This technique enables mid-air input in front of the earable that can be used to

enable communication with hard-of-hearing individuals. Tamaki et al. [443]

presented Brainy Hand which embeds a mini-projector and a color camera

inside an earbud capable of detecting hand gestures. The projector gives the

user feedback where input can be performed (camera field of view), and in

another configuration the projector displays words and images on the user’s

palm for richer feedback.

Beyond detecting mid-air hand movement for explicit user input, hand move-

ments have also been detected in more subtle and novel ways. Yan et al. [497]

introduced PrivateTalk, a subtle interaction technique to activate voice input by

partially covering the mouth with the hand from one side. This action causes

differences of the audio signals arriving at the left and right ear which can be

used to signify that the user intends to interact with the voice assistant when

the hand covers the face. This removes the necessity to use wake-up words

or pressing a button while increasing the privacy of the user by reducing the

spread of voice and concealing lip movements.

5.1.3 Head Gestures and Pointing

Head movement provides a hands-free input mechanism when the hands are

busy or unavailable. The head has been used for input by either semantically

mapping pre-defined gestures to system commands (e.g., [496]), or by using

the direction as a pointing device to select targets spatially (e.g., [412]). Ear-

ables are perfectly situated to detect head movements, and researchers have ex-

plored how sensing on the earable can be used to operationalise both of these

interaction paradigms.

5.1.3.1 Head Gestures. In addition to being hands-free, head gestures, such

as nodding or shaking, are compelling because they can also be invoked in an

eyes-free manner due to proprioception, and do not require visual feedback.

The inertial sensors within an earable can be used to detect different head

gestures intended for interaction. Gashi et al. [153] combines a hierarchical

classification with transfer learning to detect typical activities including head
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shaking and nodding from accelerometer and gyroscope data. They achieved

an F1-score of 88.24%. Similarly, Laporte et al. [256] detected nodding and

shaking (and three other activities) with an end-to-end deep learning approach

with an F1-score of 82%. Rather than using inertial sensors, Ando et al. [16]

leveraged the fact that the ear canal changes shape when the sternocleidomas-

toid muscle is used to move the head. They used in-ear pressure sensing to rec-

ognize six head gestures (rotate left/right, rotate up/down, tilt left/right) with

a recognition accuracy of 87.6% (which also included five facial gestures).

While these papers show a promising future direction for earables interaction,

they also highlight a common challenge with semantic gestures – distinguish-

ing movement intended for interaction versus natural head movement.

5.1.3.2 Head Pointing. Pointing is a fundamental interaction principle that

is at the core of graphical user interfaces. An inertial measurement unit that can

track yaw, pitch, and roll can be used as a pointing device with three degrees

of freedom. However, a magnetometer is required to measure the absolute

yaw position which has proved problematic for earables due to electromagnetic

noise in such a small form factor [136]. Odoemelem et al. [350] used head

motion to control a robot arm, however due to the lack of yaw information of

the head they map the roll of the head to the yaw of the robot. Two research

threads have emerged due to the difficulties with the magnetometer: the first

seeks to understand the source of the error and overcome it using calibration

techniques, and the second thread seeks alternate ways of detecting the yaw

position of the head.

Ferlini et al. [133] aimed to compensate for the lack of magnetometer by uti-

lizing an additional gyroscope. Instead of detecting a specific yaw angle of the

head, they classified from 30 degrees to 90 degrees in 15 degree increments.

They demonstrate errors of between 5 - 15 degrees between the ground truth

and proposed approach, which increases when the user is chewing or speaking.

The prediction error also increases when the user maintains their position due

to sensor drift. More recently, Ferlini et al. [136] demonstrated how an auto-

matic magnetometer calibration method can overcome the electromagnetic in-

terference resulting in an error of less than 5 degrees over a wide range of yaw
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angles. This approach may be key to future opportunities for earable-based

head pointing.

As a result of difficulties with head pointing on the earable platform, other

work has looked at innovative ways of leveraging the earables relationship

to other devices to infer head direction. Hashem et al. [181] introduced the

Look&Lock system which determines which device a user is looking at by us-

ing the Bluetooth received signal strength (RSS) on a set of earables.In a single

subject study, the system was capable of 100% accuracy when detecting ob-

jects on the walls or in the corner, spaced by 15 degrees, at short distances of

less than 3m. Closely related, Pfreundtner et al. [373] used the same principle

with audio signals instead. They used four microphones (two on each ear) to

estimate the direction of a sound source in relation to the head with an accuracy

of 14 degrees on the horizontal and 5 degree on the vertical plane. Whereas

the previous two papers used fixed devices in the environment, Gamper et al.

[149] tracked the head orientation between multiple earable wearers by taking

the speaker’s voice as sound emission source and estimating the relative head

angle to the listener using binaural microphones with an accuracy of around

10 degrees. This set of approaches may provide interesting opportunities for

cross-device interactions, however they do not provide the accuracy required

for pointing selection on a single device.

5.1.4 Mouth-Based Interaction

Similar to head movements, mouth-based movements afford hands- and eyes-

free opportunities for input. The mouth provides a surprisingly rich input space

for interaction [97] involving movement of the jaw, clicking of the teeth, and

positioning of the tongue. appendix A.13 provides details on the different sys-

tems that have been used for explicit input using the jaw, teeth, tongue.

5.1.4.1 Jaw Gestures. Physiologically, jaw movements can be detected on

the ear due to changes in the shape of the ear canal, however the magnitude

of these changes can strongly vary between users [162; 378]. More specifi-

cally, when the jaw moves the shape of the ear canal changes depending on

the position of the mandibular condyle [16]. Researchers have explored how
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the resultant ear canal deformations can be sensed using in-ear pressure sens-

ing [16], proximity sensors [46], or piezoelectric bending sensors [88].

Ando et al. [16] explored how sensing in-ear pressure can be used to detect

a wide variety of facial and head gestures due to the ear canal changing shape.

They showed that gestures involving sliding the jaw left and right, as well as

basic open and closing of the mouth, can be detected with >88.2% accuracy

against other head movements (which also cause ear canal deformation). They

also explored how different levels of mouth open can be detected, with four

levels (closed, slight, open, wide) showing a minimum accuracy of 79.2%.

In contrast, Bedri et al. [46] used three orthogonal proximity sensors to de-

tect the change in shape of the ear canal, and Carioli et al. [88] used bend

sensors on a custom fitted ear piece. Proximity sensors were used in the con-

text of silent speech recognition [407] and eating detection [48], but in theory

both sensing modalities could be used for interaction.

5.1.4.2 Teeth Gestures. Movement of the jaw can also involve clicking the

teeth together which results in vibrations and an audible sound. Tooth-based

interaction has been used as an activation gesture [435] as well as for navigating

menus [22; 389], answering phone calls [435], and typing on a keyboard in

both assistive and non-assistive use cases (e.g., while working out) [22]. Such

smaller interactions reduce the effort required to perform short input tasks [22]

and maintain the privacy of the user [389], however users reported issues of

jaw muscle fatigue when using teeth for typing [22].

Tooth-based interaction is commonly sensed using audio-based approaches

to classify the distinctive sounds and vibrations from teeth clicking, similar to

eating detection in subsection 4.1.4. Ashbrook et al. [22] reported a recognition

accuracy of 96% for five different tooth pairs using bone conduction micro-

phones, showing that the location of the click can be determined. Prakash et al.

[389] expanded the input space for tooth-based interaction by exploring slid-

ing gestures and found that these can be distinguished from taps with >90%

accuracy (using six gestures). Sun et al. [435] used a fusion of audio-based

and inertial sensors to detect 13 gestures, consisting of hold gestures combined

with single, double, and triple taps with 90.9% accuracy in a lab environment.
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5.1.4.3 Tongue Gestures. Interestingly, movement of the tongue can also

be sensed on the ear as a result of the deformation of the ear canal [86; 287;

444]. This principle can be used for private input techniques when in a public

setting [344; 444], and provides an accessible means of input for users who

have a speech impairment [287; 344; 86] or physical disability [344; 86]. In-

teraction can be based upon pointing with the tongue in pre-defined directions

within the mouth, or by detecting whether the tongue is protruding or retracted

in the mouth [287; 444; 344; 86].

Earable form factors have shown how detecting tongue movements is pos-

sible. Maag et al. [287] use in-ear pressure sensing to detect ear canal de-

formation of three tongue gestures (left, right, and front) and two interfer-

ing movements (removing device and moving head) with comparable accuracy

but significantly lower power requirements than other audio-based approaches.

Taniguchi et al. [444] use a miniaturised optical sensor to detect when the

tongue pushes the roof of the mouth in a small (N=5) feasibility study which

shows promising results.

Other work, has explored how sensing more advanced tongue movement is

possible at the ear. Nguyen et al. [344] built a more complex setup from mul-

tiple sensors including EEG, EMG, and skin surface deformation and demon-

strated the feasibility of detecting ten different touch points using the tongue

that can be used to provide input. Their setup achieved >85% accuracy for eight

out of ten locations including four on the tongue-side (lingual) of the teeth, and

six on the cheek-side (buccal). Participants found the cheek-side movements

easier than the tongue-side, however many found the technique difficult to use.

Finally, Cao et al. [86] use a smartphone held to the ear to sense ear canal

deformation by sensing acoustic reflections measured using the microphone.

Both of these are promising avenues, however it is unclear how well they can

be translated to a practical earable form factor.

5.1.4.4 Silent Speech Input. Silent speech recognition is a unique use case

of detecting both jaw and mouth movement in synergy on an ear-based device.

Silent speech offers the user a privacy-preserving, socially acceptable interac-

tion technique [237; 96] which can be used in noisy environments [407; 96]
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and by users with medical conditions [407].

Ear canal deformation can be used to detect silent speech, similar to jaw and

tongue movements. Khanna et al. [237] developed JawSense, an accelerometer-

based approach that uses ear canal deformations to classify 9 phonemes with

92% accuracy (N=6). Sahni et al. [407] combined an earable equipped with

proximity sensors and a magnet attached to the tongue, sensed by a magne-

tometer, to detect 11 sentences at 90.5% accuracy (N=6). Chen et al. [96]

opted to sense cheek deformation instead of ear canal deformation. They used

a camera attached on the ear of a user to predict eight words with 84.7% ac-

curacy (N=6). These early works demonstrate how silent speech recognition is

possible on the ear, however there are still open research questions and chal-

lenges with regards to using and deploying this technology in-the-wild.

5.1.5 Facial Expressions

Facial expressions can either be voluntary or involuntary. Voluntary facial ex-

pressions are a form of non-verbal communication and can be used for explicit

input for mobile and wearable devices [304; 11; 411; 96]. Involuntary facial

expressions can be used in affective computing to capture the underlying feel-

ings, mood, or emotions of a user and can be used as implicit context Verma

et al. [472]. Additional insights into emotion detection with earables can be

found in subsubsection 3.1.4.1). appendix A.14 details a complete list of the

different sensing principles and facial expression gestures explored with ear-

ables.

The muscles which control facial expressions (i.e., sternocleidomastoid, mas-

seter, and temporalis muscles – see Figure 2.4) all run close to the ear. Prelim-

inary work has shown how in-ear EMG can be used to sense the muscle con-

tractions in the ear when someone performs a facial expression [411]. Facial

expressions can also be sensed indirectly using the deformation of the ear canal.

Matthies et al. [304] explored the use of electrical field sensing which, based

on a single user, performed similar to EMG in a lab environment, but when

studied in a mobile context with 3 users, the electrical field sensing approach

was more robust resulting in better performance. They also found that placing

non-insulated electrodes in a vertical arrangement produces better results for
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detecting the in-ear deformation caused by facial expressions

Amesaka et al. [11] sensed the deformation of the ear canal using reflected

sound, by measuring the ear canal transfer function with a microphone in the

earable device. They show that it is possible to achieve a recognition accuracy

of 62.5% when classifying 21 gestures, increasing to 90.0% with a smaller

subset of 6. This approach of exploring a larger number of facial expression

gestures (20+) before deciding on a smaller subset to increase the recognition

accuracy is common in the literature [304; 11; 264].

Similarly, inertial data was applied to extract characteristic motions during

facial expressions [472; 264; 153]. Verma et al. [472] reported very high ac-

curacy (89.9%) for up to 32 facial expressions when training a user-specific

classifier, however this performance decreased to 42.1% for a user-independent

model. Ear-mounted miniature cameras can also be used reconstruct the outline

of the cheeks with a mean square difference of 0.77mm and 0.74mm for both

earphones and headphones respectively, with little degradation in performance

when the user wears a mask (0.717mm) or glasses (0.824mm) [96]. Despite

these promising results, the applications of camera-based approaches may be

limited as they require significant power and raise potential privacy concerns

of passers-by.

5.1.6 Brain Computer Interfaces

Brain-computer interfaces (BCI) offer input based on brain activity alone. Com-

monly, users have to execute a specific task or follow a stimulus that trig-

gers an expected response of the brain which can be quantified by electroen-

cephalography (EEG), which was evaluated broadly with earables (see subsub-

section 3.1.2.1). In the context of BCI, the steady-state response of the brain

plays a critical role as it creates a response in the EEG trace that matches the

frequency of an auditory or visual stimulus attended by the user. By offering

multiple stimuli at the same time and at different frequencies, a user can select

a desired option by attending the specific stimulus [279; 58]. Accuracies of

79.9% (six visual stimuli, [5]), and 87.92% (four visual stimuli, [482]) were

achieved with in-ear electrodes. Based on the principle, text-spelling was pos-

sible at 2.4 characters per minute [348]. Brain activity also depends on the task

118



a user is performing. Up to 90% binary selection accuracy was achieved when

selecting the two ideal tasks among a list of 5 activities (breath, imagine song,

listen to tone, imagine a face, imagine a cube rotating shown on screen) [311].

5.1.7 Actuation

Earables commonly use auditory output to share feedback with the user, or

rely on visual feedback from an external device. Visualisations on the earable

can not provide information to the wearer directly during use due to the loca-

tion of the ear, however visual cues, such as colour-changing LEDs, have been

used to provide feedback to other users [100]. Beyond these common output

modalities, researchers have explored how ear-based devices can provide al-

ternative output mechanisms based on haptics, thermal cues, and mechanical

deformation.

5.1.7.1 Haptics. The ear is one of the best body locations for perceiving

vibrating stimuli based on research which has shown that vibrations on the ear

had the highest perceivability compared with other body parts including the

hand, foot, and neck [120]. However, other work suggests that users could

better perceive vibration stimuli at the ear because they could hear them [487].

To make full use of the ear as a tactile display, Lee et al. [263] performed a

thorough investigation of vibration stimuli at the lobe, concha, and superior

crus (under the helix) on each ear. Across all locations, users perceived 15

Hz to be the clearest and most unobtrusive vibration frequency. Additionally,

sequential stimuli were easier to perceive and distinguish than simultaneous

stimuli, while 25 spatio-temporal dual-ear patterns yielded 58.2% recognition

accuracy with 4.8 seconds average response time. Vibrotactile feedback at the

ear may also give hard-of-hearing users the ability to understand the sound of

their surroundings better. For example, they could identify simple words and

environmental sounds from vibrations at different intensities depending on the

frequency of the incoming sound [487].

5.1.7.2 Thermal Cues. Hot and cold sensations can be created around the

ear using Peltier elements [8; 338; 339]. Akiyama et al. [8] initially presented
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how thermal sensation changes around the ear may enhance the excitement and

comfort of users listening to music. An in-depth evaluation of the thermal cues

revealed that four periauricular thermal cues could be distinguished reliably by

users at >99% recognition accuracy, while 5 parallel cues significantly reduced

recognition performance to 86% [339]. Superior auricular cues were perceived

less accurately due to the user’s hair, while the posterior auricular area was

most sensitive. Spatio-temporal combinations of cues on one or two ears re-

sulted in 14 patterns with 85.3% recognition accuracy and 2.3 seconds average

response time.

5.1.7.3 Ear Deformation. Inspired by the movement of the ears during

communication of animals, Huang et al. [204] introduced a system that ap-

plies mechanical actuators to deform the ear with a view to extending the body

language of disabled users. They propose 22 static and dynamic auricular pos-

tures which they link to different emotions based on an online survey. Closely

related, Shirota et al. [423] applied linear actuators behind the ear to change the

opening angle of the ear which could successfully manipulate the perceived di-

rection of sound.

5.2 Discreet, Hands- & Eyes-Free Tensor Tympani Input

Earphones are widely adopted by consumers because they provide private au-

dio channels to listen to music, podcasts, or audiobooks, to watch the latest

movies and TV series whilst commuting, or to make hands-free phone calls.

As shown in the previous sections, earables present new opportunities for in-

teraction with mobile devices - where interactions may occur when the user

is pre-occupied, or in public spaces. Input techniques using “subtle” or “mo-

tionless” input gestures are desirable in mobile contexts because they take into

consideration the social context of mobile device usage [108].

Input techniques with little to no movement avoid the inconvenience of tech-

niques requiring large physical effort (e.g. hand gestures) [191] and are more

socially acceptable to spectators [398]. The latter benefit also has the advan-

tage from a user’s perspective of maintaining a level of privacy over the inter-

action to avoid unwanted attention [383]. Microgestures and hands-free input
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approaches enable users to interact with their device without disrupting other

tasks they may be performing, for example manual tasks such as writing a let-

ter or driving a car [492]. Earables can be used to detect input by tapping the

earphone itself [80; 291], or as a sensing platform to detect more advanced ges-

tures performed directly on [242], around [495; 271], or in front of [313] the ear

(see previous section 5.1 for details). The earable platform also presents unique

opportunities for interaction, such as the use of in-ear barometry to detect head

gestures [17]. However, the use of such interactions, in addition to others such

as opening and closing the mouth, raises social acceptability issues [398] and

there is large scope for the exploration of more discreet methods of input using

the earable medium.

This dissertation introduces EarRumble, an interaction technique which uses

contraction of the tensor tympani muscle inside the middle ear, see Figure 5.2 (a).

The tensor tympani muscle is the second smallest muscle found in the human

body, and is used for dampening loud noises [218]. Interestingly, a subset of

the population has voluntary control over the contraction of the tensor tympani

muscle which causes in-ear vibrations when contracted [384; 431]. As the ten-

sor tympani contracts it tightens the eardrum and the volume encapsulated in

the ear canal rises, resulting in a reduction in pressure. EarRumble measures

pressure changes within the sealed ear canal to unobtrusively detect contraction

of the tensor tympani [197], see Figure 5.2 (b).

The dissertation explores how this phenomenon, also known as ear rumbling,

can be exploited for interaction with mobile devices using simple, discreet ges-

tures. However, not everyone has voluntary control of the tensor tympani. To

inform how many people could hope to use ear rumbling for interaction, and

to demonstrate that rumbling is a viable opportunity to pursue, this dissertation

first investigates the prevalence of rumbling through an online questionnaire

(N=198) which revealed that 43.2% of respondents had the ability to voluntar-

ily contract the tensor tympani. As contraction of the muscle is unlikely to oc-

cur voluntarily on a regular basis, it is unclear what level of control users have

over the muscle for the purposes of interaction. To address this, this work pro-

vides initial insights into the complexity of the interaction design space through

analysis of different gestures (e.g. sequential rumbles, holding the rumble).
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The dissertation also gathers feedback on user perception of how easy and

comfortable different rumble gestures are to perform on demand to determine

their viability. In this dissertation, data from participants with the ability to ear

rumble is collected (N=16), and the characteristics of three ear rumble gestures

is analysed, see Figure 5.2 (c). Using the data collected, a recognition pipeline

is implemented which detects ear rumble gestures from everyday activities that

may also induce pressure changes in the ear canal, with up to 95% accuracy

with real-time performance. Finally, EarRumble is explored to be used for

interaction in two exemplar applications (receiving phone calls and an audio

player) using three manual, dual task application scenarios that one might face

when using earables in everyday life. Users (N=8) provided positive feedback,

describing how the EarRumble technique felt “magical” and “telepathic”, and

highlighting how EarRumble is a low-effort, hands- and eyes-free input tech-

nique for earables.

In sum, this part of the dissertation provides the following contributions: (i)

EarRumble, a hands- and eyes-free, discreet input technique based on volun-

tary control of the tensor tympani muscle found in the middle-ear, and sensed

through in-ear barometry; (ii) An indication of how prevalent ear rumbling is,

how easy it is to perform on demand, and how comfortable it is through an on-

line questionnaire; (iii) Data-driven insights into how well users can contract

the tensor tympani muscle in the context of interaction; and (iv) Insights into

how EarRumble can be used for interaction, grounded in real-world applica-

tions involving dual task scenarios. The presented work was published at CHI

2021 [453].

5.2.1 Background and Related Work

First, subtle and discreet interaction in HCI research is introduced. Also, the

medical background of the tensor tympani muscle is provided. For a sum-

mary of related techniques for interacting with earables, readers should refer

to section 5.1. None of the work that was identified regarding interactions

on, around, or by the ear investigated voluntary control of the tensor tympani

muscle as an active input mechanism which, therefore, presents an entirly new

technique introduced to HCI.
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5.2.1.1 Subtle and Discreet Interactions. This dissertation introduces a

subtle and discreet interaction technique that requires low effort and can be

hidden from others – two areas that were recently highlighted as part of a sys-

tematic investigation into subtle interaction in the HCI literature [383]. Moti-

vations for doing less in interaction include (a) to make interaction smaller and

more comfortable [275] so that they do not cause physical discomfort [117],

(b) being always available [275] and/or (c) “to execute a secondary task, for

example controlling mobile applications, without interrupting the manual pri-

mary task, for instance, driving a car” [492]. Costanza et al. promote the

term intimate interfaces, meaning subtle, discreet and unobtrusive control of

mobile devices [108]. Systems that enable subtle interaction, but involve tech-

nology that itself is not subtle include Gunslinger (two 3D cameras for bare-

hand gestures) [275], the Magic Ring (finger-worn wearable with accelerom-

eter to detect small finger gestures) [216] and Bitey (teeth clicking through a

head-mounted bone microphone) [23]. In contrast, the approach in this disser-

tations integrates pressure sensors with commodity earphones, and the act of

contracting the tensor tympani does not necessarily require an externally no-

ticeable user gesture or facial expression. Other discreet interaction techniques

of note are Itchy Nose by Lee et al. which employed EOG sensors embedded

in the frame of smart glasses to detect small finger gestures performed on the

nose [260], and Gallego Cascón et al.’s ChewIt – an intraoral device that re-

sembles an edible object and allows hands-free input-operations [148].

Another common motivation for subtlety is to enable socially acceptable

interaction, meaning to not “disrupt [...] others in the vicinity, or others in the

group” [396]. Users may desire privacy, e.g. to protect private texts, passwords,

or PIN entry. Taking this to extremes can mean completely hiding the fact

that interaction happens at all. There are also application-specific motivations

for subtle interaction: many researchers have approached discreet interaction

in the context of different modalities, ranging from micro-gestures with the

hand [145], fingers [93], gaze [114; 231], and oral interfaces [466; 148]. The

use of the ear is underexplored, and EarRumble enables interaction in which

users can do less and are not impaired in other actions, as well as provide

hidden interaction that is undetectable by, and non-disruptive to, others.
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5.2.1.2 Tensor Tympani Muscle. The tensor tympani muscle sits in the

human middle ear and actuates the tympanic membrane during the middle ear

reflex [431; 327]. The tensor’s subconscious contraction accompanies vocal-

ization and swallowing [245], or expecting a startling sound [122], and the

ability to voluntarily contract the tensor tympani muscle has been discussed

for over one hundred years [385]. Due to the vibrations induced by the tensing

muscle, a rumbling sound can be heard [385], and those who can voluntarily

contract the muscle often describe it as flexing, activating, or moving a muscle

inside their ear1. The sound might be imitated by firmly tensing one’s fist and

pressing it on the ear to create a comparable dull rumbling sound. Little infor-

mation is available about the prevalence of the ability to consciously control

the muscle [18]. In this dissertation, an online questionnaire is conducted to

provide insights into the prevalence of voluntary contraction, and to explore

the applicability and constraints of an input technique that relies on voluntary

tensor tympani control.

The medical field documented multiple principles to sense tensor tympani

contraction [327]. Electromyography is the most invasive method as it requires

surgery for placing electrodes [408]. Otologists commonly measure the acous-

tic impedance of the ear which can be used to detect contraction [327; 326].

However, the technique requires playing an 800 Hz probing tone. It is also

possible to use a camera otoscope to detect contraction. This is used in subsec-

tion 5.2.4 for validation that participants are contracting the tensor tympani by

visually observing the eardrum displacement as a result of tensor tympani con-

traction. However, camera-based technology is not suitable because of power

consumption, computational complexity, occlusion (e.g. ear wax), and the need

to focus the camera on the eardrum. Alternatively, in-ear barometry can be

used to measure the displacement of the eardrum during contraction through

pressure changes in the sealed ear canal [197]. EarRumble uses this approach

because it does not require playing a constant tone, is cheap to realise with

off-the-shelf components, and can be incorporated into a pair of earphones.

Previous work has also demonstrated the utility of in-ear barometry for inter-

action through head gesture and facial expression detection [17].

1Ear Rumblers Assemble subreddit: www.reddit.com/r/earrumblersassemble/

125

www.reddit.com/r/earrumblersassemble/


5.2.2 EarRumble

The following sections introduce EarRumble, an interaction technique based

on the voluntary contraction of the tensor tympani muscle found in the human

middle ear - a phenomenon also known as ear rumbling. The contraction of

the tensor tympani is detected using in-ear barometry, i.e. measurement of

pressure changes within the ear canal, using a custom-built earable consisting

of commercial off-the-shelf (COTS) components and a custom 3D-printed en-

closure, see Figure 5.3. A thresholding detection algorithm and feature-based

machine learning classifier are applied to recognise three basic ear rumbling

gestures from the raw pressure signals, see Figure 5.4.

5.2.2.1 Concept. Figure 5.2 (a) illustrates the underlying principle of the

EarRumble interaction technique. Upon contraction of the tensor tympani mus-

cle, the eardrum displaces inward. As the soft foam earcaps worn by the user

seal the ear canal, the volume increases while the encapsulated air remains con-

stant which results in a pressure drop. After the relaxation of the muscle, the

eardrum returns to its original position. This leads to a pressure wave that is

pushed outwards of the ear canal to produce a positive pressure peak, as shown

in the Rumble signal in Figure 5.2 (c).

As the sealing of the ear canal is not perfectly air-tight, the pressure equalizes

over time. Therefore, holding the tensor tympani contracted does not yield a

constant low pressure reading, however releasing the muscle still produces a

sufficiently pronounced pressure peak in the opposite direction, as shown in

the Hold Rumble signal in Figure 5.2(c). EarRumble utilises the changes of

pressure to derive contraction events of the muscle which can be measured with

a standard, off-the-shelf pressure sensor. The presented technique assumes that

the tensor tympani can be in one of two states – relaxed or contracted – and the

exploration focuses on the use of three basic ear rumble gestures based on

insights from sections 5.2.3 and 5.2.4:

• Single rumble – a quick contraction of the tensor tympani

• Double rumble – two contractions of the tensor in quick succession

• Hold rumble – contraction of the tensor tympani for approx. one second
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5.2.2.2 Hardware. Figure 5.3 illustrates the assembly of a custom-built de-

vice. To realise in-ear barometry, Bosch BME280 pressure sensor (2.5 x 2.5 x

0.93 mm) sampling at 32 Hz is used. The speaker was removed from a pair of

commercially available earbuds (Sony MDR-EX110LP) and a custom earplug

case was 3D-printed that encapsulates the different components in a single de-

vice. The case splits the enclosed air into two channels, one directed towards

the speaker and the other towards the pressure sensor. This was done to min-

imise the volume of air enclosed within the ear canal, and maximise the change

in pressure. To ensure tight sealing of the ear canal, a foam earplug is inserted

into the ear (Etymotic Research Disposable eartip ER1-14A, 13mm diameter).

Before insertion users firmly squeeze the tip, which then expands within the

ear to create a tight seal. To increase air-tightness further and to keep the elec-

tronic components in place, the 3D-printed case is sealed by applying hot glue

on the backside of the components. The manufacturing process is the same for

left and right earbuds, except that the device uses stereo sound which plays the

respective channel on either of the ears. The pressure sensors in the earphones

connect to an ESP32 MCU breakout board using I2C and data is transferred

to a PC using serial communication. The audio signal connects to the same

workstation using the aux connector.

5.2.2.3 Recognition Pipeline. Figure 5.4 illustrates the final recognition

pipeline of EarRumble. Other classifiers and their performance are evaluated

in subsection 5.2.4.

Detection. Activity detection uses a 360 ms sliding window with step size

of 120 ms to decide if a window of the pressure signal contains activity. The

detector computes the sum of absolute difference (SAD) within each window,

and those with an SAD above 20 Pascal (PA) are flagged as containing ac-

tivity. The threshold value was deduced from different rumble activity and

non-activity samples that were collected during subsection 5.2.4, and ensures

that > 95% of all samples are correctly detected. A correct detection is defined

as one in which more than 75% of the gesture was detected as activity. An ac-

tivity is considered complete and passed to the classifier after four consecutive

windows without activity.
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Classification. Once an activity is detected, it is passed to the classification

stage to determine whether an ear rumble has been detected. Features are ex-

tracted from the signal, before being passed to a gesture classifier. Four dif-

ferent classifiers were evaluated: a radial basis function (RBF) kernel support

vector machine (SVM), k-nearest neighbours (kNN), random forest (RF), and

gradient boosting (XGBoost). The XGBoost classifier yields the highest over-

all accuracy at 0.95. More details are presented in subsection 5.2.4.

For classification features were self-defined, and also derived from the work

by Ando et al. [17], in addition to systematically selecting features from ts-

fresh [103] using the data gathered in subsection 5.2.4. All features are com-

puted on the zero mean-shifted signal to account for drift in the pressure read-

ings. To reduce the initial collection of 1,618 features systematically, impor-

tance selection with XGBoost feature importance scores was applied. If a fea-

ture was deemed relevant for the left or right ear only, it is computed for both

ears to account for different laterality conditions. This results in a set of 70 fea-

tures (35 per ear) for feature extraction, which are then passed to the classifier.

The average computation time of all features across all collected samples was

46.2 ms (Intel Core i7-9700KF 8 x 3.7 GHz).

For replicability, the features are: the number of, and the mean distance be-

tween peaks (both negative and positive), the absolute difference of the first two

peaks, and the minimum and maximum values of the signal and also their loca-

tions. Additionally, the absolute difference and ratio of maximum to mean, and

also the minimum and maximum slope and intercept over a five sample rolling

window. Also, the sum of absolute differences (SAD) of the whole signal and

also SAD of four even sequences that each sample is cut into. Finally, auto-

correlation of the signal (lag: 2, 5, 9, 32), the variance of quantile changes (ql

- qh: 0.2 - 1.0, 0.0 - 0.8), the spectral welch density (c: 2, 5), the continuous

wavelet transform of the Ricker wavelet (c / w: 0 / 20, 2 / 2, 4 / 5, 8 / 20) and

the FFT coefficients of the signal (c: 1, 2).

5.2.3 Prevalence of Tensor Tympani Muscle Control

Although not part of the acoustic reflex, the involuntary contraction of the

tensor tympani muscle (tympani reflex) helps prevent ear damage from loud
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noises [218]. However, not everyone can voluntarily contract the muscle to

cause in-ear vibrations, and there is currently no data about the prevalence of

ear rumbling, nor how well people can voluntarily control the tensor tympani

muscle. In this section, a large sample of participants was surveyed remotely

using an online questionnaire, predicated on the basis that voluntary contrac-

tion of the tensor tympani can be self-reported due to audio feedback during

the contraction of the muscle.

The dissertation aims to gain insight into what proportion of the population

can voluntarily control the tensor tympani muscle - to inform how many people

could hope to use ear rumbling for interaction. Of those who can voluntarily

control contraction of the tensor tympani, deeper insight should be gained with

respect to the level of control, isolation, and laterality when performing the

ear rumbling. In the questionnaire, the level of control that participants have

when contracting the muscle was queried to inform the potential complexity

of the interaction design space. The questionnaire also investigates the level

of discreetness afforded by ear rumbling as an interaction technique, which

is dependent upon whether the tensor tympani can be contracted in isolation

of other physical movements or facial gestures. Finally, this research seeks

to discover whether participants can perform ear rumbling in one ear or both,

which informs whether signals from the ears should be treated independently

or in combination.

5.2.3.1 Design and Procedure. To minimise non-response bias – where

those who can not ear rumble find the questionnaire less appealing – partici-

pants were recruited using neutral, context-free online ads and a social media

post (Twitter) that did not reveal information on the nature of the study. Par-

ticipants could use any device with browsing capabilities to fill in the survey,

and no reward was offered for participating in the study. Firstly, participants

were presented with the information sheet and relevant consent forms. Par-

ticipants were not admitted to the study if they self-reported acute ear-related

health conditions or were not at least 18 years of age.

The first page introduced the concept of “ear rumbling” by describing the

contraction of the tensor tympani muscle. This was illustrated using an ani-
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mated image of the human ear and a short textual description based on observa-

tions from people who have voluntary control, related work reporting the phe-

nomenon, and by talking to an ear, nose, and throat doctor. Participants were

then instructed to move to a quiet environment and to remove headphones, with

explicit instructions for those who wear hearing aids to leave them on. Partic-

ipants were asked to attempt to activate, flex, or move the muscles inside their

ear to produce a rumbling sound. In addition, it was clarified that this is not to

be confused with ear wiggling, and that some people can only perform ear rum-

bling when performing other actions (e.g. when yawning, swallowing, with

closed eyes, or with the mouth open). Participants were then asked whether

they could hear a “rumble or vibration”, or a “clicking, crackling or popping”

sound, or both. The question about the clicking, crackling, or popping sound

was asked because such sounds might be induced by opening the Eustachian

tube for pressure exchange [306], rather than contraction of the tensor tympani.

Participants who reported that they can perform ear rumbling, either with

or without crackling noises in addition, were asked which ear they could hear

the rumbling in and whether they could perform the rumbling independently of

other actions, such as closing the eyes, blinking, or swallowing. They were also

asked to complete two 7-point Likert items (1: strongly disagree, 7: strongly

agree), one asking whether the rumbling is easy to perform on demand, the

other asking whether it is comfortable to perform. To investigate the level of

control users have of contracting the muscle, participants were asked whether

they could perform the rumbling in quick succession (e.g. one ear rumble

directly after another), and whether or not they could control the duration of

the rumbling (e.g. hold an ear rumble for one second). The order in which these

questions were presented was counterbalanced in the event that performing one

movement made it more difficult to perform the other. If participants answered

yes to either of these, they were asked the same two Likert items regarding ease

of performance on demand and comfort, in addition to whether any additional

action was required for the rumbling. The whole survey took around seven

minutes to complete.

To validate the results from the online questionnaire, the same questionnaire

was given to sixteen participants who completed the questionnaire as part of
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an in-person evaluation in subsection 5.2.4. These responses were validated

visually using a USB otoscope and form a separate dataset. The responses to

the Likert items from the online participants with those from subsection 5.2.4

were compared to see if any statistically significant differences exist.

5.2.3.2 Results. 208 participants completed the study, from a total of 1,399

clicks on the adverts. After data cleaning, there were 192 completed data sets

(110 male, 78 female, 1 other, 4 preferred not to answer, age: M = 40.1, SD =

13.7, min = 18, max = 76). Eight participants had reduced hearing abilities (4

medical and 4 self-diagnosed), three wore hearing aids on both ears, and one

participant was deaf.

Prevalence. Out of 192 participants, 83 (43.2%) reported that they could pro-

duce a rumbling or vibrating sound on at least one ear. Using the normal ap-

proximation interval, this results in a 95% confidence interval between 36.2%

to 50.2%. Of the 83 who reported that they could produce a rumbling, 18 re-

ported that they heard a crackling, clicking or popping sound in addition to

the rumbling. Out of the 18 participants who reported rumbling and popping

sounds, 9 said that they can do the rumbling sound independent of the crack-

ling. In addition to those who reported some form of rumbling, 44 participants

reported a crackling sound, but no rumbling. Those who did not report a rum-

bling sound were not asked to complete the remainder of the study. The deaf

participant did not report rumbling, however participants with reduced or no

hearing ability might still be able to contract the tensor tympani, but are lack-

ing the audible feedback loop.

Laterality. Of those who could rumble, 68 participants (81.9%) reported the

rumbling sound on both ears simultaneously, 11 (13.3%) in isolation on the left,

and 19 (22.9%) in isolation on the right ear. Overall, 14 (7.1%) participants re-

ported that they could perform rumbling on both ears and also in isolation on

one ear - suggesting a high level of control of the muscle contraction. No par-

ticipants reported the ability to perform rumbling on both ears and in isolation

on both sides.

133



Fi
gu

re
5.

5.
:T

he
m

ed
ia

n
an

d
in

te
r-

qu
ar

til
e

ra
ng

e
(I

Q
R

)
fo

r
on

lin
e

da
ta

se
tf

ro
m

su
bs

ec
tio

n
5.

2.
3

an
d

la
b

pa
rt

ic
ip

an
ts

fr
om

su
b-

se
ct

io
n

5.
2.

4
fo

r
th

e
tw

o
L

ik
er

ti
te

m
s

–
ea

se
to

pe
rf

or
m

on
de

m
an

d
an

d
co

m
fo

rt
fo

r
pe

rf
or

m
in

g
–

fo
r

(a
)

a
ru

m
bl

e,
(b

)
ru

m
bl

in
g

in
qu

ic
k

su
cc

es
si

on
,a

nd
(c

)
ch

an
gi

ng
th

e
du

ra
tio

n
of

ru
m

bl
es

(1
:

st
ro

ng
ly

di
sa

gr
ee

SD
,7

:
st

ro
ng

ly
ag

re
e

SA
).

Fi
gu

re
(d

)s
ho

w
s

th
e

fr
ac

tio
ns

of
re

qu
ir

ed
se

co
nd

ar
y

m
ov

em
en

td
ur

in
g

di
ff

er
en

tr
um

bl
in

g
va

ri
at

io
ns

.

134



Control. Out of all those who could rumble, 74 (89.2%) reported the ability to

perform rumbles in quick succession, and 71 participants (85.5%) could change

the duration of rumbles. 67 participants reported that they could both perform

rumbles in quick succession and change the duration of the rumbles. Inter-

estingly, three of the participants with reduced hearing abilities could perform

all rumbling variations (1 medical, 2 self-diagnosed). Figure 5.5 (a)-(c) shows

that participants perceived ear rumbling to be easy to perform on-demand and

comfortable. Performing a Friedman test for those who reported that they could

perform all types of ear rumble, revealed a significant difference for responses

about how easy ear rumbling is to perform on-demand, but no difference for

the reported level of comfort across the rumble variations. Posthoc Wilcoxon

rank-sign tests revealed that performing a single ear rumble was perceived to

be much easier to perform on demand compared with both successive rum-

bles (Z=37.5, p < .01), and when holding a rumble for a prolonged duration

(Z=27.5, p < .01). There was no statistically significant difference between

successive rumbling or holding for a prolonged duration.

Isolation. The majority of participants did not have to perform secondary

actions when contracting the tensor tympani muscle. Five participants required

a secondary action when performing repetitive rumbling, and six participants

when holding the rumbles for a longer duration. Figure 5.5 (d) shows the

breakdown of the three types of secondary action which were required by these

participants: closing eyes, blinking, and yawning.

Comparison to Lab Dataset. To validate the reliability of the Likert items

administered online, the responses from the online participants were compared

with the responses from participants who completed the same questionnaire

in-person as part of the data collection performed in subsection 5.2.4. Mann-

Whitney U tests showed that no significant differences existed between the

responses across the three types of rumbling (single, changing duration, and

successive rumbling) for either of the Likert items. Both data sets showed that

participants found ear rumbling easy to perform on-demand, and comfortable,

see Figure 5.5.
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Qualitative Results. Five participants commented that they remember being

able to perform ear rumbling since they were a child (P492, P556, P1320,

P1809, P1709) and were surprised to learn that not everyone has that ability.

Another participant said that they can recall involuntary rumbling during stress

(P1320). One participant expressed the urge to keep rumbling after rumbling

once (P480). Another participant with mild tinnitus mentioned that the rum-

bling can only be perceived when the surrounding area is very quiet. One

participant expressed that rumbling led to a tense feeling in the cheek muscles.

5.2.3.3 Discussion. These results demonstrate that a substantial proportion

of those who responded had the ability to voluntarily contract the tensor tym-

pani, and generally participants reported that ear rumbling is easy to perform

on demand and comfortable. It is unclear if and how the muscle contraction

might be learnable for those who do not possess the ability to voluntarily con-

tract the tensor tympani, or indeed if the muscle can be strengthened over time

for those who can. Very few people required secondary actions (such as closing

the eyes) to induce the ear rumble, which makes it ideal as a discreet interaction

technique that is externally hard to notice. Of those who reported they could

perform an ear rumble, 80.7% reported that they could change the duration of

the ear rumble, and perform multiple ear rumbles in succession. Using this

knowledge, it can be investigated how a simple gesture set that leverages these

characteristics can provide simple input capabilities using contraction of the

tensor tympani. The next section explores this in more depth.

The results reported in this section are predicated on the ability of partici-

pants to accurately self-report the ability to voluntarily contract the tensor tym-

pani. In subsection 5.2.4, all participants (N=18) were initially recruited based

on self-reporting the ability to ear rumble, which was validated using a camera

otoscope and confirmed in all cases. It is also noted that the subjective re-

sponses of the in-person participants were not significantly different compared

with the online survey. However, due to the nature of the online survey it was

not possible to physiologically validate the ability to voluntarily contract the

tensor tympani for the remote participants, and it is important to note that the

data collected does not stand as physiological evidence.
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5.2.4 Data Collection and Analysis

Next, a study was conducted to investigate the feasibility of detecting ear rum-

bling across a range of participants using in-ear barometry. Through this, the

dissertation seeks to understand how well users can perform ear rumbling on-

demand, how comfortable they find it, and the general characteristics when

performing ear rumbles to inform interaction design. Based on initial data ex-

ploration, the data collection focuses on the use of three ear rumble gestures:

single, double, and hold rumble.

The study also investigated participants’ ability to perform repetitive sequen-

tial rumbling, where they were asked to contract the tensor tympani multiple

times in quick succession. To goal of this task was to understand the level of

control participants had over the muscle contraction, because a higher level

of control opens up the opportunities for the use of switch scanning inter-

faces [425], rhythmic patterns [155], or beat synchronization [467; 504] for

interaction.

Previous work has demonstrated that tensor tympani contraction might occur

during swallowing and vocalization [245], and that in-ear pressure sensing can

be used to detect a number of different gestures that users may naturally per-

form, such as opening and closing their mouth [17]. This begs the question as

to whether the recognition pipeline can accurately distinguish pressure changes

from ear rumbling compared with similar everyday activities. Therefore, the

following actions which may induce pressure changes in the ear canal are also

collected: opening and closing the mouth, reading out loud, drinking and swal-

lowing, and chewing gum. The tensor tympani muscle contraction may also

be induced by sound [122], therefore ear rumbling is investigated under two

conditions: in silence, and with music playing through the earphones.

5.2.4.1 Participants and Apparatus. 18 participants were recruited through

e-mail and a university Facebook group. Prior to the study, participants self-

reported that they could perform ear rumbling, which was validated using an

otoscope and confirmed in all cases. The study was conducted according to

national COVID-19 regulations and within the university’s safety guidelines.

Participants wore the custom-built, in-ear pressure sensing device on both ears,
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see subsubsection 5.2.2.2. Each participant’s outer ear canal was measured us-

ing a caliper, and two participants were excluded because of insufficient sealing

of the ear canal with the ear buds (> 14 mm external ear canal diameter). The

final dataset consists of 16 participants (13 male, 3 female, Age: M = 24.7 SD

= 2.63, Ear canal width: M = 8.0 mm SD = 1.6 mm, Ear canal height: M = 11.2

mm SD = 1.8 mm). All participants reported that they had no hearing loss, and

none of the participants wore a hearing aid.

5.2.4.2 Design and Procedure. Participants began the study by complet-

ing the same questionnaire about their ability to ear rumble featured in sub-

section 5.2.3, and all participants reported that they had not participated in the

online questionnaire in subsection 5.2.3. Following this, the researcher mea-

sured the ear canal and verified that the ear rumbling reported by participants

was caused by contraction of the tensor tympani muscle. This was validated

by visual inspection of the eardrum with a Teslong USB digital in-ear camera

otoscope. Participants were then asked to wear the EarRumble earphones and

ensure a tight fit so that pressure differences could be detected.

Participants performed nine activities – four ear rumbling gestures (sin-

gle, double, hold, repetitive), four everyday activities (opening/closing mouth,

reading out loud, drinking, and chewing gum), in addition to an activity where

users were asked to do nothing. A display was used to indicate which activ-

ity the participant should perform. Each activity was preceded by a five sec-

ond on-screen countdown, after which participants were instructed to execute

the activity in a five second window. Participants were asked to perform the

rumbling gestures immediately and as quickly as possible after the countdown.

Data was recorded from the start of the countdown, until the five seconds of the

activity had elapsed. After each activity there was a five second break. After

performing one of the rumbling activities, participants completed two 7-point

Likert items (1: strongly disagree to 7: strongly agree):

• Ease-on-demand: The [rumbling activity] was easy to perform on de-

mand.

• Comfort The [rumbling activity] was comfortable to perform.
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The study follows a within-subject design, where all participants performed

all activities. Participants performed the activities in two blocks: one in silence,

and one with music playing (Symphony No. 5 by Ludwig van Beethoven). The

order of the blocks was counterbalanced, i.e. half the participants performed in

silence and then with music, and half vice versa. For each block, participants

were asked to perform all rumble gestures, prior to performing all of the every-

day activity tasks in a fixed order: open/close mouth, vocalization, drink and

swallow, chew gum, and finally do nothing. The order in which the rumble ac-

tivities are presented was counterbalanced across participants using a balanced

Latin square design. For each activity, participants had a training phase prior

to the data recording, in which each activity was repeated five times. The study

lasted approximately 60 minutes, and participants received a bag of candy as a

reward for their participation.

5.2.4.3 Data Labelling. The collected data was labeled by hand to be used

for analysis and development of the EarRumble recognition pipeline. One re-

searcher precisely identified the start and end time of single and double rum-

bles, and a second researcher verified the labels. The start time was labelled

for the hold rumbles, however the exact end time could not be identified from

the recorded data for the majority of samples because it was observed that the

pressure equalised over time and there were no visible features to identify the

end. In total there were 79 hold rumbles that were labelled by hand (49.3%).

For repetitive and double rumbling, the peaks of each rumble were labeled to

extract the periodicity. The peak detection was automated, using the Python

Scipy signal processing library, and hyperparameters were fine tuned if they

did not fit the individual samples. The accuracy of the peak detection was

verified by visual inspection for all samples.

5.2.4.4 Results. The following section explores the participants’ perception

of ear rumbling and the characteristics of how users contract the tensor tym-

pani muscle when performing different gestures. Figure 5.6 shows samples

for all the different activities that participants performed during the study. All

statistical results are reported as significant if p < .05, unless using Bonferroni

correction to account for multiple comparisons.

139



Fi
gu

re
5.

6.
:Z

er
o-

sh
if

te
d

pr
es

su
re

re
ad

in
gs

m
ea

su
re

d
in

bo
th

ea
rs

fo
rt

he
di

ff
er

en
ta

ct
iv

iti
es

.T
he

fo
ur

ru
m

bl
in

g
va

ri
at

io
ns

sh
ow

ho
w

th
e

pr
es

su
re

re
ad

in
gs

sp
ik

e
do

w
nw

ar
ds

w
ith

in
iti

al
m

us
cl

e
co

nt
ra

ct
io

n
an

d
in

di
ca

te
an

ot
he

rp
ea

k
in

th
e

op
po

si
te

di
re

ct
io

n
af

te
rr

el
ax

at
io

n
–

cr
ea

tin
g

di
st

in
ct

pa
tte

rn
s

fo
rr

um
bl

in
g

va
ri

at
io

ns
.T

he
fo

ur
no

is
e

ac
tiv

iti
es

ha
ve

di
ff

er
en

t
ch

ar
ac

te
ri

st
ic

s.

140



Questionnaire Responses. First, the responses to the questionnaire that was

also administered in subsection 5.2.3 are investigated. All participants cor-

rectly reported that they could rumble, which was validated visually with an

otoscope. Five participants self-reported that they heard crackling in addition

to the rumbling. Fourteen people reported that they could rumble in both ears,

with the remaining two reporting that they could only rumble in their right ear.

Three people out of the fourteen reported that they could perform ear rumbling

in isolation in one ear in addition to both ears (1 right, 2 left). No participants

reported that they could perform ear rumbling in both ears and in isolation in

both left and right ears. Visual inspection of the pressure sensor data confirmed

the reported laterality, with little to no pressure changes being observed when

participants reported rumbling in only one ear. All participants reported that

they could change the duration of the ear rumble, and that they could repeat the

rumble in quick succession. Similarly, all participants reported that they could

contract the tensor tympani without other activities, such as closing their eyes.

User Perception. Figure 5.7 shows the median and inter-quartile ranges for

the Likert items participants completed during the data collection (please see

Figure 5.5 for the Likert responses for the lab participants’ responses to the

questionnaire from subsection 5.2.3). Wilcoxon signed-rank tests showed that

there was no significant differences for responses between the music or silence

conditions across all the different rumble gestures. In general, participants re-

ported that the ear rumbling gestures were easy to perform on demand, and

comfortable. A Friedman test on the “easy to perform on demand” and “com-

fortable” Likert items was performed to see whether participants’ perception

was consistent across the different types of ear rumbling gestures. Partici-

pant results were significantly different for both the easy to perform (χ2(3) =

11.79, p= .008), and comfortable Likert items (χ2(3)= 10.22, p= .017). Pair-

wise comparisons using the Wilcoxon signed-rank test were performed with a

Bonferroni correction for multiple comparisons. These revealed that partici-

pants found it significantly easier to perform a single rumble compared with

holding the rumble for approximately 1 second (Z = 4.0, p = 0.0079). No other

results were significant after Bonferonni correction.
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Analysis of Ear Rumble Gestures. Figure 5.8 (a)-(c) shows the time to start

the ear rumble when performing each of the three different ear rumble ges-

tures (rumble, double rumble, hold rumble). The start time incorporates the

participants’ reaction time to the visual stimulus, and the time taken to start

the gesture. As participants were presented a five second countdown, the re-

action time should be smaller than that of a random stimulus. Statistical tests

were performed to see if there was a significant difference between the reaction

times across gestures, however due to the difficulty in extracting ground truth

labels for the hold rumble, only single versus double rumbles were compared.

Shapiro-wilks test of normality revealed both distributions were not normally

distributed (p < .05), and hence the Wilcoxon signed-rank test was used. There

was no significant difference between the start time for the single (Median =

308 ms) compared with the double rumble (Median = 308 ms). A Wilcoxon

signed-rank test (Z = 407.5, p < .001) showed that a single rumble (Median =

958 ms) was significantly quicker to perform than a double rumble (Median

= 1301 ms) - as to be expected. Interestingly, when analysing the duration of

each rumble gesture, it was observed how the double rumble (Median: 1010

ms) takes only 48% longer than a single rumble (Median: 684 ms). Figure 5.8

(d) and (e) shows a histogram of the durations for the first and second rum-

ble in the double rumble gesture. By comparing the time difference between

rumbles, it can be seen how the first rumble when performed in the double

rumble gesture is performed significantly quicker (Median = 419 ms) than the

second (Median = 516 ms), using a Wilcoxon signed-rank test (Z = 425.0, p

< .001) as both distributions were not normally distributed according to the

Shaprio-Wilks test. Furthermore, it was found that the first (Z = 313.0, p <

.001) and second rumbles (Z = 2237.0, p < .001) were performed significantly

more quickly compared with the duration of the single rumble. Figure 5.8 (e)

shows the average time between rumbles for the consecutive rumbling con-

dition. In contrast to the double rumble, the time difference between rumbles

when participants were asked to perform for 5 seconds was significantly longer

(Median = 662 ms), and more comparable to the duration of a single rumble.

A Wilcoxon signed-rank test showed there was no statistically significant dif-

ference between the single rumble and those performed in repetition.
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Table 5.1.: Performance metrics comparison of different classifiers. XGBoost
yielded the best overall performance for the individual rumbling
activities.

Classifier Pre. Rec. F1 Acc.

Dummy 0.28 0.28 0.28 0.28
RBF Kernel SVM 0.81 0.79 0.80 0.79
kNN 0.82 0.81 0.81 0.81
Random Forest 0.95 0.95 0.95 0.95
XGBoost 0.95 0.95 0.95 0.95

Classifier Performance Evaluation. To assess the performance of different

classifiers under ideal conditions, the labeled start and end times of the dif-

ferent rumbles and time-constrained noise activities were used. The continu-

ous activities were randomly sub-sampled from the recording (1 - 3 seconds).

To avoid over-fitting the noise class, they were randomly selected evenly per

class from all activities. For each classifier candidate, a 5-fold nested cross-

validation with grid search for hyper-parameter optimization was performed.

Both silent and music conditions were included in the training and test sets.

The best classifier was the XGBoost model which achieved 95% overall ac-

curacy. The optimal hyper-parameters to achieve this were learning rate (0.08),

maximum depth (3), and number of estimators (640). Table 5.1 shows the

performance metrics of the different classifiers. The random forest classifier

achieves similarly good performance overall, but it was found that it did not

perform as well on the single rumble class.

Figure 5.9 shows the confusion matrix of the best classifier. Prolonged and

double rumble achieve the best results. The main reason for the confusion

between rumbles and noise classes is that rumbles are much less significant in

their structure and therefore might be confused easier with short noise samples.

Likely, with additional sensors (e.g. IMU or microphone) the noise classes

could be discriminated with higher accuracy from the rumble class and vice-

versa.
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Figure 5.9.: The conufsion matrix shows how short, sub-sampled noise activi-
ties can confuse the classifier for single rumble detection and vice
versa.

Leave-One Subject Out Validation. There may be variations in the data for

the different rumble gestures between participants. The variability could ei-

ther be temporal (e.g. completion time of rumbles) and/or due to differences

in the intensity of the ear rumble (i.e. peak amplitude of the rumbles). There-

fore, the best classifier was trained in a leave-one-subject-out cross-validation

setting. Overall the classifier achieved 93% overall accuracy (2% decrease),

which suggests that the proposed selection of features generalizes well across

participants.

5.2.4.5 Discussion. It was demonstrated how in-ear barometry can be used

to detect contraction of the tensor tympani. The hold rumble gesture was par-

ticularly difficult to identify ground truth labels for, and this inherently has

ramifications for the development of a classification pipeline because there are

fewer samples for training and validation for the hold rumble. It also implies

that a large percentage of hold rumbles may not be accurately detected using in-

ear barometry. However, participants found contraction of the tensor tympani

easy to perform on-demand and comfortable across the different ear rumble

gestures.

Ear rumbling can be detected in silence or with music playing, however one

participant mentioned that it was harder to focus on the execution of rumbles

because the music made the rumbling sound harder to hear which affected the

feedback loop. This is something that was potentially also observed in the

previous online questionnaire with the deaf participant and the participant with
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mild tinnitus, as feedback of the gesture is an important part of the interaction

to notify that their interaction has been successfully registered [50]. However,

it also important to note that in this context there was no action associated

with the ear rumbling gestures, and feedback can be provided either indirectly

through the response of the system (e.g. changing the song or answering the

phone), or directly in response to detection of the ear rumbling itself (e.g. play

a sound to indicate rumbling).

There are a number of interesting insights to be gained from the analysis

of rumbling characteristics in Figure 5.2.4.4. The acquisition time of an input

technique refers to the time required to acquire the input device so that it is

ready for use (e.g. unsheathing a pen), and the homing time refers to the time

required to return to a "home" position (e.g. making contact with a finger for

touch screen interaction) [192]. Ear rumbling through contraction of the tensor

tympani does not introduce any acquisition time, nor any homing time. During

the data collection participants were presented with a countdown timer prior to

performing the ear rumble gestures, therefore it can be seen how quickly users

are able to respond to the predicted stimulus.

No significant difference were observed for the start times between perform-

ing a single or double rumble, however it should be noted that it takes approx-

imately 308 ms to begin the ear rumble. This may be due to the fact that

voluntary contraction of the tensor tympani is rarely performed as it serves lit-

tle purpose. Comparing the time to start a rumble gesture, it is nearly 100 ms

shorter than to home in on a device (400 ms) according to the keystroke-level

model (KLM) [87]. Based on the duration of a single ear rumble it can be noted

how it is similar to typing random letters (500 ms) or complex codes (750 ms)

according to KLM.

The insights into repetitive rumbling indicate that contraction of the tensor

tympani could be suitable for more complex interactions than the three basic

gestures that were explored here, which opens up the opportunity to use ear

rumbling with switch scanning interfaces [425], rhythmic patterns [155], or

beat synchronisation [467; 504]. The results provide insights into what kind

of tempo one could use for these interactions to optimise throughput of the

technique, and participants reported that this was generally easy to perform
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on-demand and comfortable. There is also scope to incorporate ear rumbling

interaction with existing techniques, such as extending Ando et al.’s in-ear

barometry-based gesture set [17], so that a wider vocabulary is available for

users when interactions beyond simple binary choices are required.

5.2.5 Usability Evaluation

A study was performed to explore the performance and usability of EarRumble

as a hands- and eyes-free input technique. Using a real-time implementation of

the pipeline featured in subsubsection 5.2.2.3, the exploration is grounded in

three manual, dual task application scenarios that one might face when using

earables in everyday life. The goals of the study was to test how well the

pipeline worked, and to gather feedback from users when using EarRumble for

interaction.

5.2.5.1 Participants and Apparatus. Eight participants (7 male, 1 female,

Age: M = 24.5 SD = 2.7) were invited from the previous data collection study

in subsection 5.2.4. Participants were seated in a regular office chair in front of

a desktop PC. The pressure sensors in the earphones were connected via USB

to a desktop computer which was running the EarRumble detection pipeline

software in Python. Participants used the custom-built EarRumble earphones

described in subsection 5.2.2, and a separate pair of HolyHigh in-ear earables

which features a mechanical click button on the outside of both earphones.

Participants were instructed to use either earphone for the click, depending on

their handedness preference.

5.2.5.2 Design. Tree rumble gestures (single rumble, double rumble, and

hold rumble) using the EarRumble technique were compared with a simple

button click on a pair of smart earphones using three analogous gestures (click,

double click, hold). A button click was chosen instead of a tap gesture because

the button allows for the accurate detection of hold gestures. Three different

use cases using two applications were selected for the evaluation. These were

chosen to evaluate the techniques in the context in which they may be used in

real-life.
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Incoming Call. The first scenario featured an incoming call, whereby a ring-

tone plays in the earphones and the user can either accept (rumble/click), reject

(double rumble/click), or mute (hold rumble/button) the incoming phone call.

A use case was mimicked in which the user’s attention is on a manual task.

Participants were given a primary task of typing a piece of text on the desktop

PC whilst playing music in the background through the earphones. The phone

would then ring and the user would be tasked with either accepting, rejecting,

or muting the phone call, before carrying on with the typing task.

Audio Player. The second and third application scenarios feature an audio

player in which the user can play and pause (rumble/click), skip to the next

(double rumble/click), or go back to the previous track (hold rumble/button).

The second scenario consists of an audio transcription task whereby partici-

pants are tasked with transcribing sentences being read aloud through the ear-

phones. After each sentence the participant is required to pause the audio, write

the sentence down, and resume playback to hear the next sentence. The third

scenario consisted of a music playlist in which participants were required to

skip forwards or backwards in order to find specific songs.

5.2.5.3 Procedure. Participants began the study by completing demographic

information and signing a consent form. They were then given one of the appli-

cation tasks to practice with, using both input techniques. The order in which

the applications were presented to participants were counterbalanced, as was

the order of the input techniques.

For the incoming call scenario, participants completed the task in three blocks.

For each block, the participant had to accept/reject/mute all incoming calls.

Only one action was chosen per block to reduce the burden of memorising

which action to take. In each block, the participant received four phone calls at

intervals of 20 seconds. This was chosen to give the participant time to resume

typing, and long enough to reduce the chance of precisely predicting when a

call would occur. For the audio player scenario, participants were given four

sentences to transcribe, resulting in eight rumbles/clicks in order to pause and

resume playback. The song playlist consisted of five songs, and participants

were tasked with finding the songs which involved skipping 3x forward, 2x

149



back, 1x forward, and 2x back – resulting in four gestures each of the double

rumble/click and hold rumble/click.

For the incoming call task the response time of participants from when the

call was triggered to the corresponding action was measured. Also the time

taken to return to the typing task was measured, defined as the first keystroke

after the incoming call had been actioned (e.g. rejected). Participants were

asked to report any errors during the interactions arising from (a) incorrect de-

tection of gestures (e.g. rumbles/clicks which aren’t detected or which should

have been), (b) incorrect classification of gestures (e.g. detection of a single

rumble/click instead of a hold rumble/click), and (c) user error (i.e. perform-

ing the wrong gesture). Participants completed the NASA TLX [179] and were

asked what they liked and disliked about each input technique for both of the

applications. After both techniques had been performed for an application,

participants were asked which they preferred using for the specific application,

and at the end of the study they were asked which one they preferred overall.

5.2.5.4 Results. When asked about their overall preferences, six partici-

pants preferred the EarRumble technique, and two preferred the button click.

The EarRumble technique was favoured because it required less effort (P2, P4,

P6, P8), and was more comfortable (P5). P3 specifically highlighted the sin-

gle ear rumble gesture was their preferred technique. The button click was

preferred because it was more robust (P1), and P7 noted that they would have

preferred the earphones if it was tap input rather than button click because the

EarRumble was lacking immediate feedback. Issues with the reliably of detect-

ing the hold rumble were discovered – only 56% of prolonged rumbles were

detected correctly compared with 91% of single rumbles and 94% of double

rumbles throughout all tasks and across participants. Friedman tests on the

responses to the NASA TLX revealed no significant differences between the

input technique and task conditions. In the following the feedback from the

two application scenarios is discussed.

Phone Call Task. For the phone call task, seven participants highlighted the

advantage of not having to take their hands off the keyboard, and ability to

continue typing immediately. P6 perceived that it felt much quicker than the
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button to interact. Excluding erroneous detections, the mean time between the

phone call and detection of gesture was 3.40 s for EarRumble, and 3.34 s for the

button click. The mean time between detection and the first keystroke during

the call task was 1.09 s for EarRumble and 1.51 s for the button click. No

statistical tests were run due to the different numbers of successful detections

and low participant numbers. Interestingly, P1 also noted how it was nice not

to have to use voice – alluding to the social acceptability of the technique.

However, six participants struggled using the hold rumble for interaction. P1,

P5, and P7 reported that the hold rumble required additional concentration and

was more uncomfortable to perform. P4 also commented on the latency of the

rumble detection, and both P1 and P7 noted the lack of immediate feedback

from the EarRumble techniques.

The participants also saw advantages of using the button for input, because it

was clear how it worked and have used it before (P1, P7), provided immediate

haptic feedback (P1, P4, P8), and worked reliably (P1, P3) with low latency

(P1). However, 3 participants highlighted a disadvantage of having to take

their hands off the keyboard to interact (P1, P2, P4) which they felt broke their

workflow. Also, five participants felt the physical click button was hard to

press and hurt the ear canal (P2, P3, P5, P6, P7). Two preferred the button

click because of the immediate feedback (P1) and because it was more robust

(P7).

Six out of the eight participants preferred the EarRumble technique for the

phone call task, despite the technical issues with the hold rumble gesture. Par-

ticipants preferred EarRumble because it required no extra movement (P2, P6),

less time (P5), and allowed them to continue typing (P3, P8). P4 preferred the

technique because “it felt magical” and “almost felt telepathic”.

Audio Player Tasks. Participants gave similar feedback for the audio player

tasks. The EarRumble technique was perceived to be faster because it does

not require the use of the hands (P1, P3, P4, P8), and was low effort (P5). P6

described the technique as “much more practical” than the button click. Inter-

estingly, two participants described the interactions with the audio player using

EarRumble as “fun” (P7, P8). The disadvantages cited once again referred to
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the hold rumble (P1, P2, P5, P6, P7, P8), and higher latency of rumbling de-

tection (P3, P4, P5).

Feedback was similar as well for the button click with the audio player, with

it being described as a known technique (P5), very robust (P1), and immediate

haptic feedback was an advantage (P1, P4, P7, P8). Participants described it as

“annoying” to take the hands off the keyboard when pausing the text to write

(P1, P3, P4), and once again they highlighted that the click hurts the ear canal

(P2, P3, P5, P6, P7, P8).

No participants changed their preference between phone call task and audio

player task. Participants preferred the EarRumble technique because it was low

effort (P3, P4, P8), and because it does not require the use of the hands (P6). P2

said they preferred EarRumble because they think it would be “perfect when

listening to music in bed”. P5 reported that they preferred EarRumble because

the button click was uncomfortable to use, and the remaining participants pre-

ferred the button because it was more robust (P1, P7).

5.2.5.5 Discussion. This usability evaluation highlights the low-effort, hands-

free nature of EarRumble, which was the main motivation of adopting ear rum-

bling for interaction. Scenarios in which participants could imagine using the

EarRumble technique included during focused work (P1, P2, P4), when hands

are occupied (P2, P5, P8), for secretive input (P2, P3), to interact without any

noise, e.g. speech (P3), or for music or calls (P6). However, as expected from

the results in subsection 5.2.4, the pressure sensing technique did not reliably

detect the hold rumble gestures. For some users, the accuracy was very high

(90+%), however there are larger issues around detecting the hold rumble us-

ing in-ear barometry. It is also noted that the latency of the pipeline was an

issue for some participants, which with further optimisation could be further

reduced allowing for quicker selection times.

5.2.6 Future Work and Limitations

EarRumble requires air-tight sealing of the user’s ear canal. Blocking the ear

canal with headphones for prolonged time can change the “climate” of the ear

(e.g. temperature and humidity) and is often said to support the entry of, e.g.,
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bacteria in the middle ear. However, no significant clinical evidence exists

to back increased bacterial or fungal exposure by continuous use of regular

earphones [305; 106]. Regarding comfort, one participant mentioned that they

felt uncomfortable sealing the ear canal for prolonged periods, and this was

also applicable when wearing regular in-ear headphones (subsection 5.2.5-P7).

The ear caps of the current EarRumble system are foam soft type plugs which

fit in tightly in the ear canal and go deeper into the ear canal than regular ear

plugs, meaning they may not feel as comfortable after expansion as regular

in-ear type plastic caps. Initially, standard earphone plastic caps were used

and still pressure changes could be observed clearly and consistently, however

in the initial exploration of in-ear barometry it was noticed that some users

could not perform the ear rumbles as strongly and they were harder to detect.

Nevertheless, standard in-ear caps should be investigated further in future work

for real-world applications.

Ear rumbling is a prime candidate for providing simple gestures on the go

– for example, interaction in a crowded train would be easily possible without

requiring any movement by the user, or other cases where mobility is limited.

The use of ear rumbling was only investigated with users sat down in a station-

ary position, and did not investigate the social acceptability implications of the

technique. Real-world deployments of the technology may reveal interesting

insights into how movement in unconstrained environments affects the seal-

ing of the ear canal, the detection pipeline, and/or a user’s ability to contract

the tensor tympani. It also may reveal how many other actions throughout the

day could lead to false positives (e.g. yawning), as the false positive actions

chosen in this dissertation were based on easily replicable actions that most

closely resembled the contraction of the tensor tympani. There may also be

scope to suppress false positives through the use of other sensing modalities,

e.g. sensing chewing gum using an IMU [282].

The applied sensing principle allows for reliable detection of single and dou-

ble rumbles, however the hold rumbles proved to be problematic and the cur-

rent setup does not allow to derive the duration of rumbles precisely. In the

future, other sensing principles may be used to realize ear rumble detection

more reliably, e.g. by an in-ear camera or acoustic impedance measurements
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[327; 326]. The latter might be even realized with off-the-shelf hardware with

noise canceling earphones as they have an in-ear microphone to for the noise

canceling feedback loop [12].

Finally, no literature was identified discussing the consequences of voluntary

tensor tympani contraction over a long-term basis. Potential long-term safety

concerns were discussed with the ear, nose, and throat doctor consulted during

the project, who noted no known safety issues with voluntarily contracting the

tensor tympani and could not see why this would cause any problems. How-

ever, the absence of data relating to this does not imply long-term safety, which

future work should further investigate.

5.2.7 Conclusion

EarRumble uses in-ear barometry to detect the contraction of the tensor tym-

pani muscle, known as ear rumbling, allowing users to provide low-effort, dis-

creet interaction using earable devices. An online questionnaire showed that

44% of respondents reported that they could perform ear rumbling, and a data

collection with 16 participants provided insights into the level of control users

have over contracting the tensor tympani, demonstrating how ear rumbling is a

viable interaction technique. The dissertation explored how interaction could

be achieved using three simple “gestures” using a detection pipeline consist-

ing of feature extraction and gradient boosted classification. Single and dou-

ble rumbles could be accurately detected, however detection of a rumble that

is held for a prolonged period (e.g. 1 second) proved to be problematic for

many participants due to the pressure sensing approach. A usability evaluation

grounded in three manual, dual task application scenarios showed the low-

effort, hands-free advantages of the technique relative to providing input via a

button on the earable. The use of ear rumbling has the potential to be useful in

a number of application scenarios involving on-the-go mobile interaction, with

scope for future work to investigate more robust sensing techniques.

154



6. Earables as Platform

This chapter presents contributions that go beyond the scope of specific appli-

cations areas and addresses the more general earable field and its fundamental

technologies. Section 6.1 introduces an open-source hardware platform for

earable computing called “OpenEarable” that integrates a series of advanced

sensing capabilities into a modular, ear-worn device. This is followed by sec-

tion 6.2 which introduces an evaluation of standard earable form factors with

respect to their suitability to be worn during sleep, and an evaluation of eSense,

another earable prototyping device, for problem-based learning.okay

6.1 Open Hardware for Earable Sensor Applications

Chapter 2 has demonstrated how earables integrate diverse sensing capabil-

ities to detect a multitude of interesting phenomena that have been used in

applications spanning the four research areas identified by this dissertation:

physiological monitoring and health, movement and activity, interaction, and

authentication and identification. As a result, the earable platform has attracted

attention from several, different research communities, and the number of re-

search publications using the platform is increasing year-on-year.

A wide variety of hardware prototypes have been used in the earable research

literature, ranging from commercial offerings such as Apple Air Pods1 and cos-

inuss2, prototype research platforms such as eSense developed by Nokia Bell

Labs [235], and fully bespoke earable research devices (e.g., [77]). Of partic-

ular note is the eSense, which has accelerated the growth of earable research

within the academic community. This in part was driven by the devices be-

ing freely distributed to academics across the world, providing a platform for

1AirPods Pro - https://www.apple.com/airpods-pro/
2cosinuss - https://www.cosinuss.com/en/technology/
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which earable research can place and which others can openly contribute to.

More recently, Chatterjee et al. [94] introduced ClearBuds, which has open

hardware and comes equipped with dual microphones that can be used for

speaker separation using beamforming. However, these earable platforms lack

the extensibility that is required to take full advantage of the wide range of

sensors that have been shown to be effective on the earable platform.

Therefore, the dissertation introduces OpenEarable, the first open-source,

Arduino-based earable research platform. OpenEarable aims to build upon the

success of other earable prototyping platforms by providing a fully transparent

and open hardware platform that enables researchers to push the boundaries of

earable research. The main objective of OpenEarable is to provide an extensi-

ble platform that can be easily and cost-effectively manufactured for research

and development purposes. OpenEarable features a 9-axis IMU (accelerome-

ter, gyroscope and magnetometer), an ear canal pressure and temperature sen-

sor, an inward facing ultrasonic microphone as well as a speaker, a push but-

ton, an on-off-switch, and a controllable LED. The following sections provide

an overview of the design process and an in-depth walkthrough of the hard-

ware and software systems that make up the OpenEarable platform. Based on

three exemplar applications from the research literature it is highlighted how

the platform has to the potential to be used for motion-based activity tracking,

detection of chewing events, and ear canal shape based authentication. The

presented work was published at EarComp 2022 [456].

6.1.1 Design Process

In the following, the guiding design principles and sensor selection for Open-

Earable are rationalized.

6.1.1.1 Guiding Principles. The main objective when developing the Ope-

nEarable platform was to provide a general-purpose hardware sensing platform

for the earable research community that allows for the exploration of state-of-

the-art sensing capabilities on the ear. This process was guided by the follow-

ing principles throughout the design and development phase:
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Openness and Extensibility. The OpenEarable platform’s hardware and soft-

ware should be open to, and easily extensible by, others. The OpenEarable

platform should provide the core infrastructure to enable the exploration of

different sensing paradigms. As a result, all hardware design files, firmware,

communication interfaces, and data recording tools should be made public and

easily accessible so that others can modify and expand the platform in unique

and novel ways. In addition, the earpiece, which contains the critical sensor

inside the ear canal, should be interchangeable from a core main processing

component that deals with communication and processing. Also, a conscious

effort was made to use development tools that are free-of-charge in the design

of the hardware and software. This way, as many people as possible can be

provided with the opportunity to develop on, and for, the OpenEarable plat-

form.

Manufacturability and Cost-Effectiveness. In order for people to leverage the

OpenEarable platform for research, they must be able to easily manufacture the

device at an affordable cost. To achieve this, the system should use commercial

off-the-shelf components that require no specialized tools for manufacture. The

PCB was specifically designed to be manufactured, and components assem-

bled, by a self-service PCB assembly manufacturer. Additionally, all plastic

parts are designed to be 3D-printable with a standard stereolithography (SLA)

printer, commonly available as consumer devices or available to order online.

The assembly of an OpenEarable should only require minimal equipment, with

the version presented in this dissertation only requiring a soldering iron, pliers

and plastic-compatible power glue. All hardware components should be com-

patible with the open-source Arduino platform.

Attachment and Comfort. The OpenEarable platform, and any extensions,

will need to be validated with users and therefore it should be easy to attach

yet stable and robust against user movement. In addition, the earable should

be comfortable to wear within the limitations of a general purpose prototyping

device. Therefore, OpenEarable has an over-the-ear hook design that wraps

around the auricle to encapsulate the electronics whilst providing mechanical

stability. This provides an opportunity for sensors to be placed in, on, or around
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the ear via a flexible cable that runs from the main unit behind the ear to a sens-

ing earpiece.

6.1.1.2 Sensor Selection. For the OpenEarable platform both traditional

and new sensing capabilities not currently available on other earable platforms

are incorporated. For basic input there is a push button, and a 9-axis iner-

tial measurement unit (IMU) for motion-based applications (e.g., gait analy-

sis [32]) and to filter out motion artifacts.

For new sensing capabilities an ultrasound microphone and an in-ear pres-

sure sensor combined with temperate sensor were incorporated. Many earable

platforms feature access to an external microphone for voice-based interaction,

and most have a microphone inside the earbud for noise-cancellation. How-

ever, no available platform that provides access to a microphone placed inside

the ear canal could be identified. Therefore, OpenEarable features an inward

facing ultrasonic microphone which can be used to detect ear canal shape and

deformation based on measured sound reflection. An ultrasound microphone

was chosen to be able to detect both audible and inaudible sounds which do not

disturb the wearer. Also, a pressure sensor was integrated for in-ear barometry

which provides information about the ear canal shape and deformation. In-ear

barometry has gained traction in recent years across a range of applications and

have been used to detect jaw and facial movements [17], blood pressure [500],

and contraction of the tensor tympani muscle (see section 5.2).

6.1.2 Hardware

The hardware of OpenEarable is inspired by existing works in the earable do-

main. The following sections present the electronics, mechanical design, and

production process.

6.1.2.1 Electronics. The following section describes the circuit layout, mi-

crocontroller unit, power architecture and sensors of OpenEarable. A schematic

system architecture overview is shown in Figure 6.1. The PCBs and other com-

ponents for mechanical assembly are shown in Figure 6.2.
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LED
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MCU
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Pressure
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Controller
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Speaker

Figure 6.2.: (A) PCB layout of OpenEarable; (B) 3D-rendering of the PCB
and components; (C) assembled device; (D) a person wearing the
device; (E) disassembled hardware components.
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Printed Circuit Board. OpenEarable consists of two PCBs: one that sits be-

hind the ear to house all processing and the IMU as well as power management,

and a sensing earpiece PCB (see Figure 6.1 and Figure 6.2 A, B , and E). The

PCBs are connected via a 7-wire cable. The OpenEarable PCBs were designed

in an ear-hook form factor which makes it easy to attach the device to the ear. In

addition, the shape of the PCB creates sufficient space to place all components

behind the ear comfortably. The PCBs are 0.4 mm thick and are designed so

that all surface mount device (SMD) components are on the top side only which

simplifies assembly and makes it possible to have the components placed and

soldered by a self-service PCB assembly manufacturer. For the earpiece, there

are two version: one for the left ear and one for the right with similar, mirrored

components. The main PCB can be used on both sides interchangeably. Two

holes in the earpiece PCB are designed specifically to let air and sound pass to

the pressure sensor and ultrasonic microphone. A larger hole is in place for the

speaker. Two screw holes were added to the main PCB to attach the 3D-printed

enclosure. The design files of the PCBs are open-source and released under a

CC-BY license.

Microcontroller Unit. The microcontroller unit (MCU) of OpenEarable is a

u-blox NINA-B306-00B module which is based on the nRF52840 Bluetooth

Low Energy (BLE) 5.2 system on chip (SoC). OpenEarable makes use of the

Inter-Integrated Circuit (I2C) interface to communicate with the pressure and

temperature sensor as well as accelerometer and gyroscope. The digital pulse

density modulation (PDM) interface is used to read the microphone. Program-

ming the MCU is possible using USB Serial or via Serial Wire Debug (SWD)

on the backside of the PCB (e.g., to initially flash the USB Device Firmware

Upgrade bootloader).

Power Architecture. In general, OpenEarable is intended to run from a sin-

gle LiPo battery cell (PowerCElls 301525, 90mAh nominal capacitiy, 3.7 V

nominal voltage). Charging is possible via a micro USB port with electro-

static discharge protection. For battery charging the board uses the Microchip

Technology MCP73831T charging controller. As the MCU operates at 3.3V,

OpenEarable also comes with a low dropout voltage regulator (Texas Instru-
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ments TPS73733). It is possible to also use the device while charging. When

sampling all sensors and sending out the data via Bluetooth Low Energy a fully

charged OpenEarable lasts roughly 10 hours which is well above the threshold

for most research .

Ultrasonic Microphone and Speaker. An ultrasonic microphone (Knowles

SPH0641LU4H-1) with bottom port is placed in close proximity above the

speaker. By default, OpenEarable samples the microphone at approximately 44

kHz. The speaker inside OpenEarable is a standard true wireless stereo (TWS)

8 mm, 16 Ohm resistance earbud component that is available from many con-

sumer electronics stores.

Pressure and Temperature Sensor. Pressure and temperature are measured

in close proximity to the speaker and ultrasonic microphone. A hole in the

PCB next to the pressure sensors redirects airflow from inside the ear canal.

The pressure and temperature information are available from a single package

inside the Bosch BMP280 pressure sensor. The sensor typically samples at

182 Hz in an absolute pressure range of 300 to 1100 hPa. The temperature

sensor supports a similar sampling rate range and has an absolute accuracy of

±0.5 °C.

Accelerometer and Gyroscope. OpenEarable has a 9-axis inertial measure-

ment unit (Bosch BMX160) compromising of a 3-axis digital accelerometer, a

3-axis digital gyroscope and a 3-axis digital mangetometer. Linear acceleration

measurement range and angular measurement range can both be configured. In

theory, the accelerometer supports 12.5 Hz to 1600 Hz, the gyroscope 25 Hz

to 2500 Hz, and the magnetometer 12.5 Hz. Limited by BLE bandwidth, Ope-

nEarable currently limits to 100 Hz.

Light Emitting Diodes. OpenEarable features four LEDs for basic output.

Two static LED indicating the charging status when the micro USB cable is

plugged in (red on, green off: charging, red off, green on: fully charged or

not charging). One LED indicates when the power switch is turned on (green

on: powered, green off: no power - i.e. switched off or battery dead). The
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fourth LED can be freely turned on and off or controlled in brightness using

pulse-width modulation (PWM).

Push Button. A push button on the lower backside of OpenEarable can be

used for simple, binary input. Another push button next to the MCU serves as

reset button and can be used to enter the device firmware updates mode of the

microcontroller by double pressing the button. An on-off-switch can be used

to turn on and off the device.

6.1.2.2 Mechanical Design and Assembly. The assembly of the PCB was

done by a contract manufacturer, see subsubsection 6.1.2.3. The remaining

parts have to be self-assembled are described below.

speaker

earpiece

PCB

main PCB

battery

top case

(main)

bottom case

(main)

screws

top case

(earpiece)

bottom case

(earpiece)

7-wire 

JST cable

foam eartip

Figure 6.3.: (A) PCB layout of OpenEarable; (B) 3D-rendering of the PCB
and components; (C) assembled device; (D) a person wearing the
device; (E) disassembled hardware components.

Speaker and Battery. The speaker has an adhesive foam ring pre-installed so

it can be glued onto the PCB while also sealing off the speaker (see Figure 6.3).

In addition, it is held in place by the earpiece case. The battery is mechanically
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also held in place by the case and the wires are soldered ontp the PCB (see

Figure 6.3).

Earplug. The OpenEarable earplug consists of two 3D-printed parts which

are glued together and sealed off with plastic-friendly glue (Pattex instant glue).

The front part sits above the speaker and the PCB through-hole and seals it

of. Either, a foam type sealing earplug with plastic tube (Etymotic Research

disposable eartip ER1-14A, 13mm diameter, see Figure 6.3 C (a)) to maximise

ear canal sealing, or a silicone standard eartip can be put on the earplug (see

Figure 6.3 and Figure 6.2). The backside separates the speaker cables and

pressure sensor as well as microphone. Together, the 3D printed parts ensure

that the ear canal is sealed for pressure sensing.

6.1.2.3 Production and Costs. OpenEarable was designed with the JL-

CPCB 3 parts library in mind. Therefore, almost all components are available

as standard self-service SMD parts assembly order. The MCU and microphone

have to be ordered specifically for assembly which, from past experience with

JLCPCB, has two weeks lead time (depending on supplier availability) fol-

lowing which PCB manufacturing and assembly require an additional working

week. For the 3D-printed parts an Formlabs Form 3B+ printer was used, how-

ever, there are also many inexpensive online 3D-printing services available that

could be used to manufacture the earpiece plastic parts made-to-order.

The total costs excluding shipping for ten OpenEarable is roughly $550 (≈
$55 per device). The costs per device are split as follows: $1 PCBs, $43 electric

components, $4 foam earpieces (incl. 4 replacements), $1 screws and $4 3D-

printed parts (if ordered online). One-sided PCB assembly is free of charge.

6.1.3 Software

All OpenEarable software is open-source and available on the project website

under the MIT license.

3JLCPCB - https://jlcpcb.com/
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6.1.3.1 Firmware. The OpenEarable firmware is implemented in C++ us-

ing the Arduino framework based on the implementation of the Arduino Nano

33 Bluetooth Low Energy (BLE) Sense. This makes it easily possible for others

to change the firmware running on the device. The firmware reads out all sen-

sors and makes them available via BLE. Due to bandwidth limitations, at least

BLE 4.2 has to be supported by the device connecting to OpenEarable.

Generic Attribute Profile Specification. OpenEarable’s main interface for data

transfer is a custom-defined Generic ATTribute Profile (GATT). Based on the

profile, various functionalities of the earable can be controlled as well as sen-

sors can be configured and read out. Table 6.1 gives an overview of the GATT

specification for OpenEarable for regular data recording, as well as for record-

ing and sending audio data. The sensor service is responsible for enabling

sensors, configuring sampling rates and sending out sensor data. Using the de-

vice info service, a unique name and the device generation can be read out. The

dedicated audio service sends out bursts of audio samples of roughly 1 second

duration sampled at 62.5 kHz. At the moment, continuous audio streaming is

not supported, however this is a software limitation that will be fixed in a future

iteration (see subsubsection 6.1.4.4).

Table 6.1.: BLE GATT profile services and characteristics overview of Open-
Earable. A detailed documentation including UUIDs of the BLE
API can be found on the project’s website. The specification fol-
lows the schema for usage with edge-ml.org. (R = Read, W = Write,
N = Notify)

Service Characteristic R/W/N Description
sensor sDatChar R/N timestamped sensor data

sConfChar W enable and configure sensors

device deviceIdChar R unique name of the device
deviceGenChar R generation of the device

audio audioChar R/N burst chunks of ultrasonic audio
packageInfChar R/N package info and sending state
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6.1.3.2 Recording Tool. Two options are available to record data with Ope-

nEarable, a custom-built dashboard and an open-source and browser-based

toolchain for machine learning on microcontrollers.

OpenEarable Dashboard. To make it easy to get started with recording sensor

data, a dedicated dashboard for OpenEarable was developed (see Figure 6.4).

Users can connect to the device via their browser, configure sampling rates,

enable sensor streams and record as well as export sensor data as CSV files.

Figure 6.4.: OpenEarable dashboard that lets users configure sampling rates,
enable sensors, and record data via WebBLE.

edge-ml. Out of the box, the OpenEarable firmware supports edge-ml4, which

is an open-source and browser-based toolchain for machine learning on micro-

controllers. It offers recording, dataset management and labeling features. Us-

ing the default firmware installed on OpenEarable, users can simply connect to

the device via WebBLE in their browser via edge-ml. In addition to data col-

lection and labeling, it is also possible to train, validate, and export embedded

machine learning models for OpenEarable using the edge-ml toolchain.

4edge-ml - https://edge-ml.org
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6.1.4 Application Examples

To gain an understanding that the OpenEarable platform is outputting valid

data, three example application scenarios from the literature were investigated.

6.1.4.1 Motion Tracking. Measuring motion on the ear is a common ap-

plication in the earable space which can be used for a number of applica-

tions [455]. Figure 6.6 shows accelerometer and gyroscope readings from a

single subject performing a sequence of three activities: (1) standing still, (2)

walking, and (3) jumping jacks. These activities were chosen to elicit distinct

patterns, and the jumping jacks allow us to validate the mechanical stability of

the OpenEarable during vigorous motion. The activities were performed for 10

seconds in the following sequential order: stand, walk, stand, jumping jacks,

and stand.

(a) Data obtained with the integrated accelerometer.
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(b) Data obtained with the integrated gyroscope.
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Figure 6.5.: Motion activities recorded with OpenEarable. The following
events can be seen in chronological order: Standing still, walk-
ing, standing still, jumping jacks and standing still. The data was
z-normalized before plotting.
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6.1.4.2 Ear Canal Pressure. A popular ear canal pressure application is the

detection of jaw motions [17]. Figure 6.6a shows two sequences of chewing

activities, with a break in-between. The importance of an air tight ear canal can

be seen with the chewing events clearly visible when using the sealed ear buds.

The distinct pressure signal demonstrates the feasibility of in-ear barometry us-

ing the OpenEarable platform. In addition, this also shows how OpenEarable

may be used for tensor tympani muscle interaction, as introduced in section 5.2

of this dissertation, which uses the same sensor (Bosch BMP280) for measur-

ing ear canal pressure changes.

(a) No sealing is applied to the earpiece of OpenEarable (using standard silicone tips)
which results in just noise being measured at the ear.

(b) Sealing is applied to the earpiece of OpenEarable using that expanding foam eartip
so that the pressure sensor is air tight with the ear canal.

Figure 6.6.: A sequence of ear canal pressure changes including chewing and
not chewing with (a) a standard conical silicone eartip, and (b)
Etymotic Research disposable eartip ER1-14A. The data was z-
normalized before plotting.
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6.1.4.3 Ear Canal Sound Reflections. It is possible for the ultrasonic mi-

crophone to pick up an inaudible signal from the speaker. This information can

be used to understand the shape of the ear canal because the sound is reflected

differently depending on the shape, a principle which can be used for authenti-

cation [484]. While more detailed evaluations are necessary to assess general-

ized authentication performance based on OpenEarable, Figure 6.7 shows the

spectogram of a 18kHz tone played in the ear canal for 8 seconds.

Figure 6.7.: Spectrogram of a reflected ultrasonic signal which was emitted
into the ear canal with multiple 1s long probings.

6.1.4.4 Future Work. As this is the first version of OpenEarable, there are a

number of limitations with the prototype and improvements to be made. Firstly,

The earable can not be paired with a second device. So far, there are no libraries

available for recording data from the OpenEarable platform on either Android

or iOS devices which is a high priority item considering popular use cases of

earable devices. While transferring a continuous audio signal over BLE is tech-

nically feasible, it is not yet implemented in the current OpenEarable firmware

and the speaker only supports playback of a constant frequency. The Bluetooth

classic advanced audio distribution profile (A2DP) is not yet supported. The

standard ArduinoBLE library with current configuration achieved a transmis-

sion rates of 6.5 kB/s for the audio signal, but it is intended to use the Nim-

BLE library, however, just recently support for the nRF52840 was added and

compatibility with the bootloader of OpenEarable is pending but under active

development. OpenEarable does not support reading out the battery level
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6.1.5 Conclusion

OpenEarable is the first-if-its-kind open hardware initiative for earable research.

Through this dissertation, a new device that features a series of sensors and ac-

tuators was introduced: a 9-axis accelerometer, gyroscope and magnetometer,

an ear canal pressure and temperature sensor, an inward facing ultrasonic mi-

crophone as well as a speaker, a push button, and a controllable LED. The

dissertation has shown the validity of the hardware based on three example

application scenarios.

6.2 Designing and Prototyping

The following two sections study earables from the end user’s perspective.

Subsection 6.2.1 delves into how a series of commodity earphones are per-

ceived in terms of wearability and comfort when used during sleep, which is

a continuation of the possibility to wear earables for respiration rate tracking

in the context of sleep apnea (see section 3.2, subsubsection 3.1.5.3, and sub-

subsection 3.1.2.2). Subsection 6.2.2 then takes the developers perspective to

understand how earable prototyping platforms, such as OpenEarable (see sec-

tion 6.1) or eSense [236], foster creativity and support problem-based learning.

6.2.1 Wearability and Comfort of Earables during Sleep

Many publications looked into sleep-related parameters such as sleep stages

based on earable sensing (see subsubsection 3.1.2.2). However, none ques-

tioned their comfort and wearability during sleep. Therefore, a study was con-

ducted to understand the wearability of 7 daytime targeted earables with 14

participants wearing each device for one night. All devices reduced subjective

sleep quality and affected the sleeping position of the wearer. The following

sections introduce related work, the study procedure, and results in depth, as

published in ISWC 2021 [454].

6.2.1.1 Background and Related Work. Hoelzemann et al. [196] explored

the wearability of the eSense earables during daytime activities. Overall, their

comfort was well perceived. They also found that users were “generally not
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concerned about their appearance”. Haas et al. [170] found that, e.g., in-ears

are more suitable than over-ears and vice versa in some situations for personal

soundscape curation. Xu et al. [495] evaluated the social acceptability of hand-

based input on the ear, which revealed that tapping gestures are more appropri-

ate than sliding.

According to Knight and Baber [247], a wearable can be characterized based

on the comfort rating scale (CRS) across six dimensions: emotions, attach-

ment, harm, perceived change, movement, and anxiety. Each dimension rep-

resents a deviation from the norm (i.e., not wearing a device). The presented

study applies the CRS to assess wearability and comfort.

6.2.1.2 Study Design.

Earables. Two researchers performed a Google search (keyword “Bluetooth

earphones”) looking for market-available earable form factors targeted at day-

time usage. The presented study looks into their suitability during sleep, im-

plying 24/7 usage. This yielded the following basic attachment principles: in-

ear, fixed between tragus and anti-tragus, concha filling, hook around the ear,

and hook around the head. The earables use in the study span this design space

(see Figure 6.8) and have different materials (e.g., hard / rigid and soft / bendy).

Headphones were excluded from the study.

Procedure. Participants were given in-person instructions about the study.

They wear the devices at their home during sleep. Participants give informed

consent, and they are handed over the earables, questionnaires, and written in-

structions. The order of devices per participant is counterbalanced according

to Williams design [490]. They are asked to wear every device for one night.

If they feel too uncomfortable (e.g., sleeping impossible), participants can take

off the device. They fill in the questionnaire immediately after waking up. Per

earable, the questionnaire covers the CRS with the addition of “during sleep”

for each item [247], questions on the influence and suitability of the device

during sleep, if they kept the earable in and how many times it fell out, general

concerns, demographics, and free text feedback. After completing all nights,

participants rank all devices according to their preference.
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Figure 6.8.: Earables selected for the study, ranging from in-ear to ear-hooks.

6.2.1.3 Results. For the study, 14 participants were recruited (8 male, 6

female, mean age: 27.0±3.1 years, sample of convenience). One participant

was excluded because of incomplete replies. For significance testing, pairwise

Wilcoxon signed-rank tests with Bonferroni correction for multiple compar-

isons were applied. Hypotheses were no differences of each device compared

to all others per question item.

Comfort Rating Scale (CRS). Figure 6.9 summarizes the responses. Gen-

erally, users were not concerned about how they look during sleep, as to be

expected by the pervasive nature of earables and the private setting. For at-

tachment, Z8 was perceived more compared to K8 (p < 0.1). Interestingly,

they were the heaviest (160 g) and lightest earable (2 x 8 g) of the selected

devices. Regarding harm, in-ear devices that have a rigid part placed inside

the concha (eSense, HolyHigh) were more painful to wear (p < 0.1) than in-

ear devices that do not (Cosinuss). Intuitively, the perceived pain of wearing a

particular earable and the number of participants that took the device out pre-

maturely is closely coupled (rxy = 0.9). Based on the participant feedback Z8

created discomfort at the temple. Devices wrapping around the ear which only

have a soft or flexible or no part in the ear canal were perceived as less painful

and taken out less often (see Table 6.2). Participants did not feel different or

strange when wearing any of the selected earables. However, differences be-

tween the earables regarding the impairment on movement are well notable
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Figure 6.9.: Dimensions of the CRS for all earables [247]. SD = strongly dis-
agree, SA = strongly agree. Results as median and inter-quartile
range (IQR).

(see next paragraph). Overall, participants did not feel insecure wearing any of

the earables.

Suitability for Sleep. Figure 6.9 (top) shows that all earables reduced the sleep

quality of participants to some degree. However, SBH82D4 did less than i12,

HolyHigh, and Z8 – and K8 less than Z8 (p < 0.1). This finding aligns with the

advantages identified across the CRS dimensions. Regarding sleep position,

it was found that SBH82D4 influences it less than eSense, i12, Z8, and Holy-

High (p < 0.1). In the context of wearables, acceptance plays an important role.

Participants largely disagree with wearing any of the selected earables during

sleep, see Figure 6.10 (top). However, they are less likely to reject SBH82D4

than eSense and HolyHigh, and Cosinuss, as well as K8, compared to eSense,

i12, HolyHigh, and Z8 (p < 0.1). Zero up to six pointswere assigned to the par-

ticipants’ ranks at the end of the study. The summed up scores and respective

ranks are presented in Table 6.2. The ranks align with what one would expect

from the results presented before.
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Figure 6.10.: Effects on sleep of the earables; (c) attachment of the earables
and general concerns of the users. SD = strongly disagree, SA =
strongly agree. Results as median and inter-quartile range (IQR).

Attachment and Concerns. Figure 6.10 (bottom) shows that all earables are

easy to attach. eSense and i12 only attach in the ear canal and were easier

to put on than SBH82D4, which uncommonly wraps under the ear (p < 0.1).

Z8 fit worse than all other devices (p < 0.1) and participants were undecided

whether Cosinuss, which can be fit to the ear, could be well adapted. Partic-
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Table 6.2.: Ranking and times devices were taken out / fell off.

Device Rank Score Fell Off Taken Out
SBH82D4 1 64 6 4
K8 2 60 10 6
Cosinuss 3 41 2 6
i12 4 38 8 9
Z8 5 25 5 9
eSense 6 24 7 9
HolyHigh 7 21 5 10

ipants mainly were not concerned about having batteries close to their heads.

Four users agreed with concerns about Bluetooth, but the majority still dis-

agreed. Table 6.2 shows that especially the K8, i12, and eSense fell off during

sleep – as to be expected given they are loosely attached.

Materials. The most favoured in-ear device (SBH82D4) is made from soft

silicone material compared to, e.g., HolyHigh, which is primarily built from

hard plastic. In contrast, the rigid K8 form factor was comfortable to support

slim plastic parts behind the ear.

6.2.1.4 Conclusion. Overall, daytime-targeted earables applied in the study

appeared unsuitable for usage during sleep as they reduced subjective sleep

quality and affected the sleeping position. Primarily, rigid parts at the outer

ear canal and the concha should be avoided. The area behind the ear offers

real estate for rigid components, but the maximum weight is limited. Earables

designed for sleep should be soft in front of the ear and in the ear canal (e.g.,

[161]) possibly combined with slim rigid components placed at the medial au-

ricle (e.g., [375]). Users are not worried about how they look and do not feel

insecure about earables during sleep. The results are limited by the earables

that were used as they are not targeted at usage during sleep. This leaves op-

portunities for future work (e.g., BOSE Sleepbuds) with more participants over

multiple nights per device to further validate and expand the presented findings.
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6.2.2 Prototyping with Earables

In this section, the potential of earable prototyping platforms such as eSense

[235] or OpenEarable (see section 6.1) is investigated. Making earabletechnol-

ogy available to a broader audience might support innovation. A platform that

aims to improve the availability of earable prototyping is eSense by Nokia Bell

Labs [235]. Based on 24 publications, the design space of earable prototyping

with eSense was characterized. Then, the eSense platform (6-axis IMU, audi-

tory I/O) was evaluated for its problem-based learning usability with university

students. Data was collected from 79 undergraduate students who developed

39 projects. Questionnaire-based results suggest that the platform creates inter-

est in the subject matter and supports self-directed learning. The projects align

with the research space, indicating ease of use, but lack contributions for more

challenging topics. Additionally, many projects included games not present in

current research. The average SUS score of the platform was 67.0. The ma-

jority of problems are technical issues (e.g., connecting, playing music). The

following sections present the results as published in ISWC 2020 [451].

6.2.2.1 Background and Related Work. A platform already used for prob-

lem based education in various disciplines is Arduino [38]; however, building

earables with Arduino requires substantial effort as wiring components, setting

up connectivity interfaces, and fitting everything onto the ear is a challenging

task already.

To summarize available earables and their data interfaces, Google Search

was initially queried for “in-ear sensor” and “smart earbuds”. Relevant results

were chosen from the first 20 entries (earbuds with more than audio I/O). The

rationale for choosing Search as opposed to, e.g., Scholar, was that market

available earables are new and heavily commercialized. Table 6.3 presents the

results. Based on the earable name Google Scholar was queried to extract

publications from the first 30 results (excluding patents / citations) that make

use of any of the device capabilities.

Cosinuss° provides a highly engineered platform for medical applications with

many sensors and multiple research publications [107; 403; 92; 220; 41; 393;

368]. However, data access requires proprietary software or unofficial, limited
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Table 6.3.: Earable comparison. (✓=̂ yes, (✓)=̂ limited, ✗=̂ no) (API =̂ open
app framework, FW =̂ open firmware, MIC =̂ microphone, SPK =̂
speaker, IMU =̂ inertial measurement unit, PPG =̂ photoplythys-
mography, TMP =̂ temperature sensor, PRS =̂ pressure sensor)

Platform API FW MIC SPK IMU PPG TMP PRS
cosinuss° (✓) ✗ ✗ ✗ ✓ ✓ ✓ ✗

Bose ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗

Soul Blade ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗

Jabra ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗

Bragi (✓) (✓) ✗ ✗ ✗ ✗ ✗ ✗

AirPods ✓ ✗ ✓ ✓ (✓) ✗ ✗ ✗

eSense ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

OpenEarable ✓ ✓ ✓ ✓ ✓ (✓) (✓) ✓

libraries. While the Bose SoundSport firmware is open, it lacks an application

framework [64]. The Jabra Elite Sports have many sensors but no data access

[208; 332], similar to Blade [127]. Bragi provides a powerful, closed developer

framework but no more hardware [72]. Apple’s AirPods have a proprietary API

for iOS [20]. The Google Pixel or Amazon Echo Buds offer no access to the

IMU. Platforms like eSense [235] and OpenEarable (see section 6.1), therefore,

fill a critical gap for non-experts with a clearly defined, open framework with

many research publications (see subsubsection 6.2.2.2). This simplification

helps getting started with earables quickly.

A key motivation for making earables available to non-experts is to enable

learning based on real-world projects. In that regard, the idea of problem-based

learning (PBL) is to “confront students with problems from practice which pro-

vides a stimulus for learning” [68]. According to Munshi et al. [331], effective

PBL should “lead to thinking, analysis, and reasoning. It should stimulate self-

directed learning and fit with students’ prior knowledge. The problem should

show clear links with the future profession and enhance interest in the subject

matter.”. These underlying principles will guide the presented evaluation.

6.2.2.2 Design Space of Earable Prototyping. As shown in chapter 2, ear-

ables enable a multitude of compelling use cases. The following evaluation
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focuses on eSense, which at the time of conducting the presented study has

been available for around two years. eSense is a stereo earable equipped with

a microphone, 6-axis inertial measurement unit, and dual-mode Bluetooth. It

allows recording of three real-time data streams - audio, motion, and prox-

imity (BLE RSSI). It is powered by a CSR processor, has a 40 mAh battery,

weighs 20 grams, and the dimension is 18 x 18 x 20 mm, including enclo-

sure [235; 320]. Existing software libraries make it easy to get started with the

earables. Using the paper by Kawsar et al. [235] and the esense.io website, sev-

enteen peer-reviewed publications were identified that make direct use of the

platform. In Figure 6.11, a fine granular research design space based on eSense

publications is presented, with the primary motivation to use it for putting the

non-expert projects into context that will be implemented by students. This

design space differs from the presented high-level taxonomy in chapter 2 and

presents only a subset of what is possible with earables in their entirety.

Figure 6.11.: Work areas of publications based on eSense to put the student
projects into context.

In a health context, eSense was used to track the user’s physiological state (res-

piration rate [448]). The platform was also used as mHealth building block

[39] and to detect jaw clenching [405]. Activity recognition includes step

counting [388], stay/walk detection as well as classifying speaking, eating and

head shaking or nodding [202], drinking or chewing [282; 319], and exercising

[206]. Additionally, frown and smile detection [265] as well as head move-

178



ment [391] are possible indicators of the emotional state. Also, a data logging

mechanism was proposed [196]. Auditory agents were used for auditive ma-

nipulation to support walking in a straight line [301]. Katayama et al. [230]

proposed a setup for adapting a conversational agent’s style, tone, and volume

to the emotional, environmental, and social context to create a comfortable en-

vironment. Well-being creates a feedback loop, e.g., to understa conversational

well-being [321]. In general, eSense can be an interface device of virtual con-

versational agents [2]. Work on fundamental principles creates the foundation

of the research space. This includes e.g., characterization of wearing variabil-

ity [323] and understanding earables as input modality, e.g., to control a robot

arm [351]. Community initiatives include approaches for secure earable data

sharing platforms [386], and also sensor extensions such as a magnetometer

[134]. Publications for any of the other platforms also fall into the proposed

prototyping design space.

6.2.2.3 Application Use Case Projects. To investigate problem based learn-

ing with eSense, undergrad university students were challenged to developed

their own projects using the platform’s sensing capabilities. They were asked to

use the existing library [39] for Flutter, which is a cross-platform framework.

Course Setup and Data Collection. To collect data from students about their

opinions and experience with the eSense prototyping platform, the course and

data collection was structured as follows:

• all students fill in an initial questionnaire reporting their general de-

mographics and attitude towards earables, based on related work on

problem-based learning [331]. (i.e., if they see them as being relevant

for their future profession)

• after filling in the questionnaire, the project task is presented and they

are given a workshop on Flutter and the eSense library

• each student gets a pair of earbuds from the lab to take home and imple-

ments the project in a self-organized manner
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• students finish the course by handing in their final project results and fill

in a second questionnaire that asks about their experience (i.e., problems

they faced and if the assignment helped to <3improve their knowledge

in relevant areas)

Otherwise, students were not limited to any idea or particular challenge and

asked them to build a creative solution that uses any of the eSense features.

6.2.2.4 Results. In total, 70 students participated in building projects. Out

of all students, 63 were male and seven female. Sixty-eight participants were

undergraduate computer science and two business informatics students. 22

took the university’s HCI lecture. Twenty-four students never built a mobile

app before, and only five used Flutter. Twelve have used Bluetooth before.

Fifty-eight students reported never having heard of earables.

Suitability for Problem-based Learning. Figure 6.12 illustrates the results of

four rating scales that students filled in before the project. Overall, there is

no strong agreement if earables are relevant for the future profession or match

the overall curriculum. Key factors might be different electives and individual

career plans of students. Nevertheless, the majority of students agreed that the

project was interesting.

Figure 6.12.: Rating scales filled-in by students (N = 70) before implementing
their projects with the eSense earables.
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Figure 6.13.: Results of self-directed eSense projects (N = 37).

Retrospective Project Reflections. Unfortunately, due to COVID-19, only 37

students handed in the retrospective questionnaire. The results of the rating

items are reported in Figure 6.13. Overall, the project has supported self-

directed learning as students strongly agree that it improved their knowledge

about earables, app development, and Bluetooth Low Energy. Even though the

earables did not entirely work without problems and errors occurred regularly

for some, the assignment was reported to have been fun. The task was not frus-

trating for the majority of students. THis shows how earables are an effective

way to encourage problem-based learning.

Figure 6.14 reports the project types according to the categories defined in

subsubsection 6.2.2.2. A topic not found in the design space analysis were

games, for which earables served as direct input. Also, students built activity

tracking (e.g., push-ups, situps, squats, walking, cycling, street-crossing, head-

banging) with threshold state machines. One person classified nodding with

ML. Auditory agents solely used text-to-speech. Some students implemented

physiological state tracking (e.g., sleep position and work desk body pose).

The auxiliary material contains detailed project descriptions.

Likely due to the higher complexity, no project included context recognition
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Figure 6.14.: Project results based on category and data processing approach
(n = 37). Projects can have multiple categories.

(e.g., use proximity, or audio features).

The overall mean SUS score was 67.0 (max: 90.0, min: 35.0, sd: 14.2),

which, according to literature, is close to the average reference value of 68

[413]. For good usability, however, the score should be above 80. Figure 6.15

the issues students faced during development extracted from free-text.

Connection issues included earables taking long to connect and problems con-

necting both earbuds. Seven users had problems with unstable audio. Issues

with the button occurred when it involuntarily triggered music, started phone

calls, or sent more than one press. Especially projects with more movement

reported loose fit. Only three users reported trouble understanding sensor data.

Issues with the library (iOS inconsistencies) and noisy data are also very lit-

tle. In contrast to the technical problems, students expressed that “the earables

look modern”, that it was “the best assignment they had at university so far”

Figure 6.15.: Problems during development extracted from free text provided
by participants (N = 37).
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and also “an interesting introduction into pervasive computing”. Overall, all

students successfully fulfilled the assignment. Even though the complexity of

results varies, eSense was easy to use by non-experts.

6.2.2.5 Conclusion. Overall, earables are enablers of a broad research de-

sign space. Undergraduate CS students are excited about the subject matter

and enjoy as well as succeed in building applications with the prototyping plat-

form eSense. However, relevance for their future career is limited. Frustration

mostly roots in technical issues and little problems are reported with realizing

ideas. The platform’s documentation for teaching in a PBL setting seems suf-

ficient. Considering the limited technical depth of student projects, teachers

should encourage responsible design (i.e., in a health context). The reference

material might also include core sensor concepts, and classification libraries

could simplify prototyping.
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7. Discussion

The following sections first discuss the state of earables in the four key do-

mains: physiological parameters and health (section 7.1), movement and activ-

ity (section 7.2), interaction (section 7.3), and authentication and identification

(section 7.4). Section 7.5 then goes on to discuss future opportunities and

challenges of earables. Lastly, section 7.6 discusses the overarching aim of

this dissertation: to break new ground through novel sensing capabilities and

steer earables towards a general-purpose wearable sensing platform.

7.1 Physiological Parameters and Health

As summarized in this dissertation based on systematic literature review, ear-

ables can sense a multitude of body functions from 9 (out of 11) major systems

of the human body, including skeletal (e.g., gait [32]), muscular (e.g., facial

expressions [304]), nervous (e.g., brain activity [115]), endocrine (e.g., emo-

tions [35]), cardiovascular (e.g., blood pressure [76]), respiratory (e.g., breath-

ing see section 3.2), reproductive (e.g., ovulation [284]), immune (e.g., cough-

ing in section 3.3). and digestive (e.g., food intake [150]) systems.

This dissertation succeeded in expanding upon the existing body of research

by introducing the required processing chain to measure respiration rate and

detect cough based on inertial sensors in the ear canal (see section 3.2 and sec-

tion 3.3). While the performance for respiration rate tracking is limited when

the user is moving, the results are promising for scenarios where the user is at

rest. Similarly, predicting cough from inertial sensors has its limitations un-

der motion-induced stress. However, the dissertation showed that, in principle,

monitoring patients over longer duration still allows predicting if a person is

in a state of increased cough frequency with a relatively weak classifier. In the

future, combining multiple sensors placed on the ears may further boost the
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performance of respiration rate sensing [53] and cough prediction [341].

Already today, ear-based temperature monitoring is available in consumer

products [107]. Similarly, heart rate sensing has found its way into the hands

of consumers with commodity earables supporting the possibility to measure

heart rate inside the ear canal [429; 107]. Still, the ear holds a lot more po-

tential for many health-related parameters to be sensed which will need further

validation and increased robustness.

In sum, earables are already showing promising results in the health domain,

and as the sensing and processing capabilities continue to advance, earables are

likely to play a vital role in at-home monitoring and even possibly diagnosis.

7.2 Movement and Activity

The ears present a relatively stable anchoring point from which to sense a wide

range of movements and activities, in turn enabling recognition of exercises,

sports, and other daily activities. Despite earables not achieving the best perfor-

mance when used in isolation, they can support and complement other devices

in the wider wearable eco-system [433], and the everyday use of ear-based

form factors make them easier to integrate into everyday life than many other

devices – an important factor for successful habit formation [36]. Beyond just

classification, quantification of sensed phenomena can also support users to

self-regulate healthy behaviours in their everyday life, from monitoring their

levels of physical activity to tracking what food and drink they consume.

To expand upon the status quo in activity sensing with earables, this dis-

sertation introduced earEOG as a new, more comfortable modality to track

eye movements based on electrodes placed around the ears (see section 4.2).

While the results are promising, especially for horizontal eye movements, this

research is still evolving. Some hurdles to overcome are, for example, that

electrodes will have to be integrated more naturally into headphones, e.g., us-

ing cloth electrodes; or that the sensing principle will have to be more robust

against motion artifacts.

The vast majority of movement and activity tracking research relies on mo-

tion sensors such as accelerometers and gyroscopes. Such sensors have already

found their way into consumer products, for example Apple’s Airpods even of-
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fering an API to access the raw motion data [20]. Nonetheless, apps do not

make full use of these capabilities.

Therefore, combined with the physiological parameters and health data avail-

able on the platform, earables have the potential to be a powerful self-tracking

tool in the quantified self movement [285].

7.3 Interaction

In the context of human-computer interaction (HCI), earables present an excit-

ing opportunity for unique and novel interaction techniques given the rich and

diverse sensing capabilities available on the earable platform. The ear itself is

easily and comfortably reached by the hands [494; 241], while the distinctive

surface area creates opportunities for targeted interactions [272]. The possibil-

ity to bend the ear and its unique shape as well as flat surface area around it

also opens up an interesting interaction design space [494; 241]. Beyond the

ear itself, the earable platform can also be used to detect other modalities for

interaction, including head position [16], facial gestures [304], mouth move-

ments [435], and eye gaze [374; 57].

In this dissertation, the physiological nature of the ear was harnessed for a

new interaction paradigm. By using the tensor tympani, a small inner ear mus-

cle is used as a discreet, eyes- and hands-free input (see section 5.2). While this

method is unique, the main limitation is that only a subpart of the population

has the ability to control the muscle which suggests future research that may

explore if and how this ability might be learned.

From a market perpsective, interaction with earables still is limited to click-

ing and tapping. In addition, head position tracking is used passively for spatial

audio [20]. A major hurdle for consumer adoption is the heavy lifting required

for advanced processing which is challenging for low power ear-based devices.

In addition, the experimental techniques in human-computer interaction lack

proven reliability and robustness in field settings which hinders adoption fur-

ther.

Despite the current limitations in interaction techniques and market adop-

tion, ongoing research and advancements in HCI hold promise for expanding

the potential of earables, enabling more diverse and reliable interactions in the
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future.

7.4 Authentication and Identification

Mobile devices typically secure sensitive data using biometrics. Hence, the

fourth research area identified in the earables taxonomy in chapter 2 is "Au-

thentication and Identification". While no new application-specific contribu-

tions have been made by the dissertation, this section briefly discusses related

earable works in this area, whereas a detailed summary can be found in the

related survey paper published as part of this dissertation [455].

Existing earable approaches commonly make use of unique individual fea-

tures of the user’s ear, skull, body, and even brain activity or body motion

sensed by ear-located principles. More traditional passcode-based methods

based on rhythmic patterns are also used. These systems function in two main

ways: verification, where a user’s claimed identity is confirmed or rejected, and

identification, which seeks to match the user to a set of pre-enrolled identities

[336].

Shape-based authentication and identification rely on the uniqueness of the

individual’s ear, skull, and body (see section A.15). Ear authentication, for in-

stance, uses in-ear and over-ear devices to measure sound reflections from the

static [151; 9; 288; 21] or dynamic ear canal [483] or the entire ear [9; 118].

The performance of these methods can be influenced by varying wearing con-

ditions and environmental disturbances [151; 288; 21]. A standout method is

one that uses the response of the cochlea’s basilar membrane to sound stim-

uli, offering superior performance [276]. Skull and body-based authentication

methods exploit the unique structures and tissues of these parts of the body.

For example, methods have been developed that use sounds produced by the

body, which are propagated through the structures of the skull [152], or vibra-

tions from the mandible that are detected by an accelerometer [274]. Another

method measures a leakage current propagated through the body to an ear-

able when the user touches a metal-encased laptop, showing promising results

[121].

Motion-based authentication and identification methods harness the individ-

ual patterns of a person’s gait [135] or head movements [104]. Brain-based
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methods, on the other hand, capture EEG responses during specific tasks to

create a unique biometric profile [112; 111; 336].

An alternative to these biometric approaches is passcode-based authenti-

cation, which involves rhythmic tapping on the earbud, measured by an ac-

celerometer [54].

While earable authentication techniques are a growing area of interest for

their potential to provide seamless and continuous authentication, their current

performance does not quite match that of traditional smartphone biometrics

such as fingerprint and face recognition [19].

Despite the current performance gap compared to traditional smartphone

biometrics, the growing interest and advancements in earable authentication

techniques pave the way for seamless and continuous authentication experi-

ences in the future.

7.5 Future Opportunities and Challenges

As demonstrated through this dissertation and Figure 2.1, earables are a grow-

ing research area. Despite technological advances, the limited space of the

earable form factor creates, and will remain, an engineering challenge as com-

ponents need to be miniaturised (e.g., [362; 35; 66]). The need for miniatur-

isation and small form factor introduces a number of potential constraints on

the available computational performance, storage, and power on the earable

device itself. From the literature review and studies conducted in this disserta-

tion, several overarching opportunities and challenges were identified that need

to be overcome in order for earables to realise their full potential across the four

research areas identified. The statistics presented in the following sections are

based on the body of research described in the taxonomy chapter 2.

7.5.1 Self-contained Platform

Earables have the potential to be a self-contained, light-weight wearable plat-

form that does not depend on other devices due to the vast array of sensing

principles available on the platform and the audio, and potentially haptic, out-

put capabilities. However, in part due to the currently available computing
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resources on-board, it is common that other devices are used for further pro-

cessing of the earable sensor data. Out of the research papers that were exam-

ined for the taxonomy, only 12 (4%) reported processing of sensor data on the

earable device itself, with 22 studies (8%) using a smartphone for processing.

The vast majority of research papers used higher powered computing devices

(e.g., laptops and desktop computers). While this does not necessarily mean

the systems developed could not run on lower-powered devices, it highlights a

lack of research into earables as a self-contained platform.

7.5.2 Power Consumption

In addition to maximising the computational resources on the platform, power

sources are also required to fit into the earable form factor which makes power

consumption an important consideration (e.g., [287; 279; 256]). This require-

ment can be a considerable barrier for applications requiring frequent compu-

tationally expensive operations (e.g., machine learning models) or large and/or

continuous data throughput which can quickly drain the battery. However, be-

cause the earable form factor is commonly used in wearable, mobile contexts

there is the potential for energy to be harvested on the device itself, with pre-

liminary research showing the feasibility of harvesting energy from jaw move-

ments [116; 66] and thermoelectric generators [3]. Energy harvesting tech-

nologies may be required to supplement earable’s on-board power capacity

and extend battery life as the platform matures.

7.5.3 Wearable and Smart Device Ecosystem

Earables are ideally placed to, and will likely become, part of the commod-

ity wearable and smart device ecosystem alongside smartphones and smart-

watches. Earables can, and often do, offload processing onto other devices

which can be beneficial for many applications in which other devices would

likely be present anyway. Offloading sensor data provides access to additional

computing resources, helps to extend the battery life of the earables, and al-

lows earables to benefit from other devices providing higher-level contextual

information about the user and their location. Researchers have also started
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to explore how earables can work in synergy with other wearables and smart

devices. This emerging research space has yielded promising results which

have shown how combining earables with other devices results in improved

performance compared with the devices in isolation (e.g., [310; 157; 433]). It

is important that the research community explores and understands how ear-

ables best fit into and complement the current and future wearable and smart

device ecosystems. It may also be noted that the “self-contained” and “device

ecosystem” research directions are not mutually exclusive, and each will play

an important role in unlocking the potential of the earable platform.

7.5.4 Integration of Multiple Sensors

Earables can come in many different form factors, from subtle in-ear hearing

aids to over-the-ear headphones and mechanically anchored earphones for ex-

ercising. In this dissertation multiple sensing principles were discussed (see

Table 2.3) that have been demonstrated on the earable platform. However, dif-

ferent sensors and their required methods of attachment present a challenge

when considering what can be simultaneously sensed on the ear by one de-

vice. An earable that encompasses multiple sensing modalities will inherently

be limited by what attachments are viable for a given combination of sens-

ing principles. This introduces trade-offs between the sensing capabilities and

method of attachment, and the summaries of related works have shown how

some sensors have different performance characteristics that are dependent on

the form factor (e.g., electrode placement for earEOG, see section 4.2).

To date, research into earables equipped with multiple sensing modalities or

solutions that span different application domains is limited. However, commer-

cial offerings such as the eSense1 or more recently Cosinuss Two2 provide plat-

forms that remove the need for bespoke hardware to be created and may allow

researchers to consider the relationship of multiple solutions on a single plat-

form. With the introduction of a fully open platform for ear-based sensing in

this dissertation (see section 6.1), further opportunities for novel multi-modal

sensing applications are created.

1eSense earable computing platform: https://www.esense.io/
2Cosinuss: https://store.cosinuss.com/
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7.5.5 Assessment Heterogeneity

The ability to understand and compare the performance of different sensing

principles on the earable platform is crucial. However, both Masè et al. [298]

and Ne et al. [340] noted in their hearable reviews that the literature suffers

from a wide variety of protocols and measurements that made comparisons be-

tween studies difficult [298; 340]. This dissertation found this issue extends to

the research papers reviewed in this work and is evidenced in the Appendices.

For example, research into heart rate (section A.1) and blood oxygen saturation

(section A.2) shows multiple performance metrics being used.

Not only does assessment heterogeneity make it difficult to compare sensors

across the earable literature, but it also limits and obfuscates the understanding

of earables compared to other wearable and smart devices (e.g., smartphones or

smartwatches) and gold standards. In this dissertation, where possible this gap

was closed by providing gold standard comparison points, as does Ne et al.

[340] in their review. However, it should be of primary importance moving

forward for researchers investigating new and novel sensing principles on the

earable platform to make a concerted effort to establish standard protocols for

specific sensing principles and phenomena.

7.5.6 Ecological Validity

On top of assessment heterogeneity, earable research to date generally suffers

from a lack of ecological validity. Work showing preliminary results and proofs

of concepts is common, with over half (52%) of the papers surveyed having

a study with less than 10 participants, and 48 (18%) papers’ evaluations are

based on a single user only. While preliminary research is important for the

laying the foundations and exploring what is capable on the platform, there are

significant questions being raised as to whether these innovations, often studied

in limited lab conditions, will hold up in-the-wild during the mobile use cases

and scenarios that earables will likely be used in.

Further analysis found that only 26 (< 10%) papers included field experi-

ments in their evaluation. Researchers need to take into account the context

of use which is likely going to be varied, dynamic, and possibly on-the-move
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in noisy environments or for prolonged periods. Researchers should consider

any discomfort created by exerting force on the ear canal (e.g., [78; 290; 454])

or through blocking the hearing abilities of the user (e.g., [105]). Similarly,

the form factor of the earable will affect the stability during different activities,

but there also exists variability between wearing sessions (e.g., [151; 322]) and

earables are susceptible to motion artefacts (e.g., [281; 57; 450; 184]), audio

noise (e.g., [11; 487; 287]), and environmental weather conditions (e.g., [61]).

Filling in these research gaps and embracing the opportunities they present will

support and accelerate the transition from experimental prototypes to impact-

ful, real-world products.

7.5.7 User Variability

Another issue related to ecological validity, which is also highlighted across

the contributions in this dissertation, concerns user variability. Ergonomics re-

search has shown that anthropometric differences exist between different gen-

ders and populations, including differences in upper ear height, concha width,

lower ear height, and ear protrusion [267; 37; 147]. Another source of vari-

ability between users involves varying ear canal conditions which includes ear-

wax blockages, ear infections, or other skin conditions that could affect the ear

canal. These may affect some sensors more than others, for example those that

require line-of-sight. Similarly, it is common for people to have ear piercings

that may affect attachment. This is in addition to the potential problems intro-

duced by attaching and maintaining contact with the sensors. Users may not

be able to attach the sensors correctly first time (e.g., [49; 257; 322]) and there

is the possibility that skin contact of a sensor is lost during use (e.g., [205]).

This highlights the need for diverse research participation, and to understand

how these factors affect wearability over long periods, and in the use contexts

in which they were intended.

7.6 Aim and Objectives

This dissertation ambitiously strived to establish a foundational understanding

of the capabilities of earables and to pave the way for versatile, general-purpose
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earable sensing. As such, earables present a unique opportunity to leverage

a platform already embedded in our everyday lives through ear-based devices

such as earphones and hearing aids. As a result, earables are socially acceptable

to wear [46] and have the potential to be unobtrusive (e.g., [304; 264; 112]),

discreet (e.g., [264; 279; 233]), inconspicuous (e.g., [160; 195; 105]), con-

cealed (e.g., [115; 151]), privacy preserving (e.g., [264; 381; 261]), and non-

stigmatizing [381; 240].

Building upon these fundamental properties, the primary objective of this

dissertation was to comprehensively understand the existing capabilities of ear-

able sensing technologies through a systematic literature review. This objec-

tive was accomplished through a uniquely comprehensive approach, reviewing

over 270 relevant publications. However, it is important to note that earables

are a rapidly progressing and broad field of research, which means that the

developed taxonomy will continue to evolve as earables mature.

To expand on the existing research, the second objective was to identify

novel sensing opportunities and explore under-explored phenomena. Specif-

ically, the dissertation opportunistically investigated respiration rate sensing,

cough detection, and earEOG based on available sensing principles and the

global situation, particularly the COVID-19 pandemic. Furthermore, the au-

thor of this dissertation coincidentally possessed the necessary rumbling ability

to utilize the novel interaction technique introduced, leading to further investi-

gation. While these phenomena offer unique insights and advantages, the in-

dustry’s willingness to incorporate such capabilities into commercial earables

remains an open question for the future.

The third objective aimed to design and implement hardware and algorithms

to detect these phenomena. Developing earables from scratch required deep

technical knowledge and expertise. The dissertation successfully built relevant

hardware and proposed suitable algorithms to detect the newly identified ear-

able sensing capabilities. However, it is important to note that the devices and

software are primarily intended for lab usage and research purposes. With the

introduction of OpenEarable, the dissertation takes a significant step forward

in bridging the gap between experimental research results and the sensing ca-

pabilities of commercially available ear-based devices.

194



To evaluate the reliability and usability of the proposed solutions, this dis-

sertation extensively employed empirical studies. This ensured that the new

earable devices and algorithms were tested to assess their generalizability and

real-world applicability.

In conclusion, the objectives set by this dissertation were ambitious and not

without significant challenges. However, tackling these challenges resulted in

an enhanced understanding of earable sensing capabilities and catalyzed the

development of general-purpose earable sensing.
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8. Conclusion

The dissertation’s main objective was to create fundamentally new insights

into the capabilities of earables and guide them towards a general-purpose

platform. This objective was achieved by breaking new ground and creating

deeper understanding across four major domains: (i) physiological monitoring

and health, (ii) movement and activity, (iii) interaction, and (iv) authentication

and identification.

Evidently shown by this dissertation through systematic literature review,

earables have broad sensing capabilities. Arguably, these capabilities are more

diverse than any other location across the human body which makes earables

unique and superior in comparison to any other commodity wearable platform.

While the existing body of research is immense, this dissertation could still

significantly expand upon existing knowledge. As such, the dissertation has

provided significant contributions to the field, offering previously unseen sens-

ing capabilities to detect novel phenomena: respiration, cough, eye gaze, and

tensor tympani muscle contraction. From a methodological point of view, the

presented work succeeded in identifying suitable sensing principles, collecting

relevant data, and building methods to detect and quantify phenomena. On

top, the dissertation accumulates in the OpenEarable platform which integrates

diverse sensing capabilities to establish a general-purpose platform for the ear-

able research field as a whole.

The detection of new phenomena gives rise to promising health-related res-

piration tracking and cough detection. The data processing techniques pro-

posed to detect these physiological phenomena are simple enough to run con-

tinuously on earables which suggests that the generated insights can have a

real-world impact. Hence, this dissertation could extend upon the ability of

earables to be a platform that guides healthier lifestyles.

Additionally, monitoring eye gaze with electrodes placed around the ears
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opens up the opportunity for an entirely new, more comfortable and easily

accessible eye tracking modality with much potential left to be explored. In-

tegrating such sensing capabilities into commodity devices will allow deeper

insights into human behavior through activity tracking and supports the vision

of earables becoming a platform that integrates deeply with user behavior.

A novel interaction paradigm based on the voluntary contraction of the mus-

culus tensor tympani in the human middle ear results in unique advantages.

Compared to existing interaction techniques, it is entirely invisible to external

observers and does not require the use of the eyes or hands. Through this con-

tribution, the dissertation effectively transforms the ear from a purely receptive

organ into a dual function one, enabling it not only to receive, but also to gener-

ate output signals. The principle is so special that users found it "magical and

almost telepathic" which suggests that the dissertation unleashed significant

unused potential of earables.

Lastly, the introduction of the open hardware OpenEarable platform reduces

entry barriers into ear-based sensing research and bridges the gap between

foundational research on earable sensing capabilities and their practical de-

ployment in real-world scenarios.

While the findings are significant, their transition to consumer devices is still

in the future. Nonetheless, some research is already finding its way into the

real-world with other universities and major industry players showing interest

in the presented research and collaborating to continue the journey that this

dissertation embarks on.

In conclusion, the presented work marks a significant advancement in the

field of earable computing and beyond. It provides crucial insights and sets the

stage for further research. The future of earables is promising and the vision

of earables as a general-purpose platform for human augmentation becomes

increasingly apparent.
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A. Appendix

A.1 Heart Rate

Heart rate sensing with earables is summarized in subsubsection 3.1.1.1. The

appendix Table A.1 lists the papers that developed heart rate sensing earables

according to the sensor used, the activity level and context they have been eval-

uated with (e.g., while sleeping, speaking, etc.), where the sensor is located,

and what was the achieved performance. Additionally, the reference device

and number of study participants are listed.

Commonly, earable prototypes for heart sensing are evaluated in compar-

ison to a gold-standard ECG or PPG on other parts of the body (e.g., a fin-

gertip PPG [345; 209] or chest-ECG [422; 173]). Most studies cannot be

directly compared because of different sensors, experimental contexts, and

performance metrics. Performance is assessed based on correlations (e.g.,

[417; 476]) mean or median deviations (e.g., [345; 476; 474]), or standard

deviations (e.g., [469; 470]). Several studies applied more unconventional met-

rics. For example, Wang et al. [481] measure the accuracy of the movement

detection and the effects of motion artifacts with the HR spectrum fidelity in-

dex (fHRS), which is the ratio of the HR frequency spectrum density over the

full-spectrum strength for their respective device. The activity levels for the

evaluation context of the studies were adapted from [345], ranging from activ-

ity level 1 (resting state) to activity level 3 (high effort). A large share of the

studies did not report standardized performance scores, but reported proof-of-

concept evaluations (e.g. [498; 249; 498]).
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