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ABSTRACT

Unhealthy dietary habits (such as eating disorders, eating too fast, excessive
energy intake, and chewing side preference) are major causes of some chronic
diseases, including obesity, heart disease, digestive system disease, and diabetes.
Dietary monitoring is necessary and important for patients to change their
unhealthy diet and eating habits. However, the existing monitoring methods are
either intrusive or not accurate enough. In this dissertation, we present our
efforts to use wearable motion sensors to sense mastication dynamics for
continuous dietary monitoring.

First, we study how to detect a subject’s eating activity and count the number of
chews. We observe that during eating the mastication muscles contract and
hence bulge to some degree. This bulge of the mastication muscles has the same
frequency as chewing. These observations motivate us to detect eating activity
and count chews through attaching a triaxial accelerometer on the temporalis.
The proposed method does not record any private personal information (audio,
video, etc.). Because the accelerometer is embedded into a headband, this
method is comparatively less intrusive for the user’s daily living than
previously-used methods. Experiments are conducted and the results are
promising. For eating activity detection, the average accuracy and F-score of five
classifiers are 94.4% and 87.2%, respectively, in 10-fold cross-validation test using
only 5 seconds of acceleration data. For chew counts, the average error rate of
four users is 12.2%.

Second, we study how to recognize different food types. We observe that each
type of food has its own intrinsic properties, such as hardness, elasticity,
fracturability, adhesiveness, and size, which result in different mastication
dynamics. Accordingly, we propose to use wearable motion sensors to sense
mastication dynamics and infer food types. We specifically define six mastication
dynamics parameters to represent these food properties. They are chewing speed,
the number of chews, chewing time, chewing force, chewing cycle duration, and
skull vibration. We embed motion sensors in a headband worn over the
temporalis muscles to sense mastication dynamics accurately and less intrusively
than other methods. In addition, we extract 37 hand-crafted features from each
chewing sequence to explicitly characterize the mastication dynamics using
motion sensor data. A real-world evaluation dataset of 11 food categories (20
types of food in total) is collected from 15 human subjects. The average
recognition accuracy reaches 74.3%. The highest recognition accuracy for a single
subject is up to 86.7%.

Third, we study how to detect chewing sides. We observe that the temporalis
muscle bulge and skull vibration of the chewing side are different from those of
the non-chewing side. This observation motivates us to deploy motion sensors on



the left and right temporalis muscles to detect chewing sides. We utilize a
heuristic-rules based method to exclude non-chewing data and segment each
chew accurately. Then, the relative difference series of the left and right sensors
are calculated to characterize the difference of muscle bulge and skull vibration
between the chewing side and the non-chewing side. To accurately detect chewing
sides, we train a two-class classifier using long short-term memory (LSTM), an
artificial recurrent neural network that is especially suitable for temporal data
with unequal input lengths. A real-world evaluation dataset of eight food types is
collected from eight human subjects. The average detection accuracy reaches
84.8%. The highest detection accuracy for a single subject is up to 97.4%.
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Chapter 1

Introduction

Unhealthy dietary habits are very common in our daily life. Some representative ones

are eating disorder, eating too fast, excessive energy intake, and chewing side preference.

Eating disorder is a mental disorder represented by some abnormal eating habits, such

as anorexia and bulimia [5]. The anorexia patients obsessively desire to lose weight by

refusing to eat [6] or restricting the amount of calorie intake. The bulimia patients have

recurrent episodes of binge eating. Then, they utilize some inappropriate compensatory

methods to prevent weight gain [7]. Some people eat too fast and chew too little. Ac-

cording to the report of Daily Mail, “people who thoughtfully chew their food and don’t

rush mealtimes not only avoid indigestion - they could be preventing diabetes as well

[8].” Some people consume excessive calories than they need by eating a lot of high-

calorie food, especially the fast food and snack food. Chewing side preference means a

tendency to use one side to chew food more than the other side [9].

Unhealthy dietary habits are major causes of some chronic diseases, such as obesity,

diabetes, heart disease, and digestive system disease. According to the statistics of the

Centers for Disease Control and Prevention (CDC), more than one-third of adults in

the United States were obese in 2015 - 2016 [10], more than 100 million Americans had

diabetes or prediabetes in 2017 [11], more than 600,000 Americans died of heart disease

in 2009 [12], and more than 22 million patients visited physician offices with digestive

diseases as the primary diagnosis in 2016 [13]. Deterioration of the situation forces people
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to actively monitor their dietary habits.

In recent years, some methods have been proposed to continuously monitor a subject’s

dietary habits. Self-report diary based methods [14] are simple and straightforward but

tedious and inaccurate. Audio based methods need to deploy sensors in the outer ear

[15] or at the throat area [16], which is intrusive. Video based methods do not require

a person to wear any sensor, but demand a camera to capture eating process [17] and

hence bring privacy concerns. Motion sensor based methods are mainly used to infer

eating behaviors through recognizing hand motions [18, 19] or head vibrations [20]. In

addition, some other sensors are also utilized, such as electromyography (EMG) sensor

and piezoelectric sensor [21]. However, these sensors need to be tightly adhered to skin,

which is intrusive and discomforting.

1.1 Problem Statements

In this dissertation, we propose how to exploit wearable motion sensors to sense mastica-

tion dynamics for continuous dietary monitoring. Specifically, we work on the following

three problems.

(1) Eating Detection and Chews Counting through Sensing Mastication

Muscle Contraction. Existing eating detection and chews counting methods are ei-

ther intrusive or not accurate enough. To solve this problem, we investigate the principle

of eating activity and are inspired by following observations: 1) Eating activity is ac-

tivated through a collaborative effort of four mastication muscles: the masseter, the

medial pterygoid, the lateral pterygoid and the temporalis. The first three muscles are

near mouth cavity and hence not convenient for sensor deployment. The temporalis is

a broad, fan-shaped muscle located at the side of the skull and in front of the ear [22].

This is the area where people often wear a headband or hat. Therefore, the temporalis

is most suitable for eating activity sensing; 2) During eating, the temporalis contracts

to elevate the mandible, which results in the bulge of this muscle. We are hence moti-

vated to recognize the eating activity through detecting the temporalis contractions and

3



bulges. This is done through embedding an acceleromter into a headband and attach-

ing the accelerometer on the temporalis; 3) The bulge of the temporalis has the same

frequency as chewing. Thus, the number of chews can also be counted through recogniz-

ing the frequency of periodic muscle bulges. Based on above observations, we propose

to detect eating activity and count the number of chews simultaneously with a triaxial

acceleromter. We embed the accelerometer into a headhand to sense the temporalis con-

tractions and bulges. However, there are two research questions. First, how to accurately

distinguish eating activity from other non-eating daily activities (reading/speaking, sit-

ting, walking, drinking, coughing, standing, etc.)? Second, how to accurately count the

number of chews from noisy accelerometer data? To answer these two questions, we

propose an eating activity detection method that extracts representative features to dis-

tinguish eating and non-eating activities. In addition, we propose to count the number

of chews through identifying the primary periodicity of acceleration data.

(2) Inferring Food Types through Sensing and Characterizing Mastication

Dynamics. To recognize food types accurately and less intrusively, we investigate the

food properties and mastication dynamics. We are inspired by the following observa-

tions: 1) Food properties and mastication dynamics are highly correlated. Each type

of food has its own intrinsic properties [23], such as hardness, elasticity, fractorability,

adhesiveness, and size. Because the masticatory system is highly adapted to the food

properties, the difference in food properties leads to the variance of corresponding mas-

tication dynamics; 2) Mastication dynamics can be sensed by deploying a motion sensor

on a mastication muscle. The contraction of a mastication muscle changes the shape

of the muscle spindle to make it shorter and thicker. In addition, the muscle contrac-

tions are synchronized with the mandible movements. Therefore, the motion sensor can

sense mastication dynamics through detecting the muscle contractions and deformations.

Based on these observations, we are motivated to deploy motion sensors on the temporalis

muscles to sense mastication dynamics and infer food types accordingly. However, this

raises three research questions. First, how to represent food properties using correspond-

4



ing mastication dynamics? Second, how to deploy motion sensors on the mastication

muscles to sense mastication dynamics accurately and less intrusively? Third, how to

characterize the mastication dynamics using motion sensor data? To answer these three

research questions, we define six parameters to represent the food properties and deploy

motion sensors in a headband to sense the mastication dynamics. In addition, we extract

37 hand-crafted features to explicitly characterize the mastication dynamics.

(3) Wearable Motion Sensor-Based Chewing Side Detection. To detect the

chewing sides during eating, we propose to deploy motion sensors on the left and right

temporalis muscles to sense the muscle bulge and skull vibration of these two sides.

However, there are three research questions. First, how to segment each chew from the

continuous motion sensor data? Second, how to characterize the difference of muscle

bulge and skull vibration between the chewing side and the non-chewing side? Third,

how to model and classify multi-dimensional data samples with unequal input lengths?

To answer these three questions, we utilize a heuristic-rules based method to exclude non-

chewing data and segment each chew accurately. Then, we characterize the difference

of muscle bulge and skull vibration between the chewing side and the non-chewing side

through calculating the relative difference series of the left and right sensors. In addition,

we utilize long short-term memory (LSTM), an artificial recurrent neural network, to

model the data samples and classify chewing sides accordingly.

1.2 Contributions

This dissertation proposes three solutions towards wearable motion sensors-based con-

tinuous dietary monitoring. The overall contributions are as follows.

Eating Detection and Chews Counting through Sensing Mastication Muscle

Contraction. We propose a novel eating activity detection and chews counting method.

It is done through identifying the mastication muscle contractions using a triaxial ac-

celerometer attached on the temporalis. Specifically, we make four contributions.
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• We propose to detect eating activity and count chews through attaching a triaxial

accelerometer on the temporalis. To our best knowledge, this is the first work on

motion sensor-based sensing of mastication muscle contraction for simultaneous

eating detection and chews counting.

• We design and develop an eating activity detection module. It extracts 23 rep-

resentative time-domain and frequency-domain features to accurately differentiate

eating activity from six other daily activities (reading/speaking, sitting, walking,

drinking, coughing and standing) using only 5 seconds of acceleration data.

• We design and develop a chews counting module. It identifies the primary period-

icity of highly noisy acceleration data and accurately count the number of chews.

• We evaluate the performance of the proposed method on a real-world dataset.

Experimental results show that the average accuracy and F-score are 94.4% and

87.2%, respectively, for eating activity detection in 10-fold cross-validation test.

The average error rate of chews counting for four users is 12.2%.

Inferring Food Types through Sensing and Characterizing Mastication Dy-

namics. We propose a motion sensor-based food type recognition method. It is done

through sensing and characterizing the mastication dynamics using motion sensors de-

ployed on the left and right temporalis muscles. Our main contributions are:

• We propose to infer food types through sensing mastication dynamics with wearable

motion sensors. To our best knowledge, this is the first effort in using wearable

motion sensors to sense mastication dynamics and recognize food types accordingly.

• We propose to embed motion sensors in a headband and deploy them on the

temporalis muscles to sense mastication dynamics accurately and less intrusively.

• We define six mastication dynamics parameters to represent the food properties

and extract 37 hand-crafted features from each chewing sequence to explicitly char-

acterize the mastication dynamics.
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• We evaluate the performance of our proposed method on a real-world dataset. Ex-

perimental results show that the average recognition accuracy of 15 human subjects

is 74.3%. The recognition accuracy of a single human subject is up to 86.7%.

Wearable Motion Sensor-Based Chewing Side Detection. We propose a motion

sensor-based chewing side detection method. It is done through sensing and characteriz-

ing the difference of muscle bulge and skull vibration between the chewing side and the

non-chewing side using motion sensors deployed on the left and right temporalis muscles.

Our main contributions are:

• We propose to detect chewing sides through sensing muscle bulge and skull vibra-

tion with wearable motion sensors. To our best knowledge, this is the first effort in

using wearable motion sensors to differentiating muscle bulge and skull vibration

between the chewing side and the non-chewing side.

• We propose a heuristic-rules based method to accurately exclude non-chewing data

and segment each chew from continuous motion sensor data.

• We propose to calculate the relative difference series of the left and right sensors to

characterize the difference of muscle bulge and skull vibration between the chewing

side and the non-chewing side.

• We evaluate the performance of our proposed method on a real-world dataset.

Experimental results show that the average detection accuracy reaches 84.8%. The

detection accuracy of a single human subject is up to 97.4%.

1.3 Dissertation Organization

The rest of this dissertation is structured as follows. In Chapter 2, we discuss related

work. In Chapter 3, we present our eating detection and chews counting method. In

Chapter 4, we present our food type recognition method. In Chapter 5, we present our
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chewing side detection method. The future work is described in Chapter 6. Finally, we

conclude in Chapter 7.
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Chapter 2

Related Work

This chapter reviews related work in eating detection and chews counting, food type

recognition, and chewing side detection, respectively.

2.1 Eating Detection and Chews Counting

A self-report diary [24] was often used to record the eating activities. However, people

may record incorrectly [25] or forget to write a diary. Furthermore, few people are willing

to estimate the eating speed or count the number of chews during eating. Recently, some

progress has been made on automatic eating detection and/or chews counting, including

audio based methods, video based methods and motion based methods.

Audio based methods. Reference [16] used a modified Bluetooth headset with em-

bedded microphone to collect sounds in a user’s throat area. Time domain features, fre-

quency domain features and cepstral features were extracted from the recorded sounds

to train the classification model. The F-measure accuracy reaches 79.5% and 71.5% for

laboratory study (12 activities) and small-scale in-the-wild study (4 activities), respec-

tively. Reference [15] placed the microphone inside the ear canal to differentiate chewing

from speech and silence. At the same time, this method can also differentiate several

types of food. Even though the above related works demonstrate the validness of the

audio based methods, a user may not be willing to wear a microphone near the throat
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or in the ear during eating. Besides, audio recording raises potential privacy concerns.

Video based methods. An Active Appearance Model (AAM) was utilized in [17]

to track a subject’s face and detect chewing activity from surveillance video. This is

based on the observation that variations in AAM parameters have distinct periodicity

during chewing. The experimental results demonstrated a cross-validated percentage

agreement of 93.0%. The video based method needs no on-body sensor, and the video

sequence can be acquired without any user intervention. However, this method brings

many privacy concerns. Its accuracy is also affected by environmental lighting changes

and face occlusion.

Motion based methods. In recent years, the popularity of wearable devices (smart

glasses, smartwatch, smart wristband, etc.) has made motion based methods possible.

Reference [26] combined accelerometers from a smartwatch and Google glass to recog-

nize a user’s eating activity. Reference [27] only used a glasses mounted accelerometer

to distinguish chewing from non-chewing activities. Similarly, reference [28] used motion

sensors on Google glass to detect head movement and infer eating activity. Reference [20]

integrated an EMG sensor and vibration sensor into 3D-printed eyeglasses for detecting

chewing and identifying food categories. Reference [18] used a watch-like device, which

is embedded with a micro-electro-mechanical gyroscope, to track wrist motions and de-

tect food intake. Moreover, reference [29] used a smartwatch to detect eating activity.

Reference [30] designed a sensor-embedded digital fork, Sensing Fork, to sense a child’s

eating behavior. Furthermore, a mobile game named Hungry Panda was developed to

encourage the child to eat diverse foods during mealtime. Although the above methods

also utilize motion sensors, they mainly focus on detecting head motion and/or hand

motion. Comparatively, our method aims to detect mastication muscle contractions and

corresponding bulges. Moreover, these methods are mainly for eating or chewing activ-

ities detection. Chews counting is not included. Li et al [31] proposed a novel method

that embeds a small accelerometer inside artificial teeth to capture unique motion char-

acters during chewing, drinking, speaking and coughing. This method is too intrusive to
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be widely accepted. In addition, safety issues and frequent battery changes also need to

be addressed. In [32], we published a poster paper to present our preliminary idea, by

which this technology had not been fully developed yet. In that poster publication, we

used a single axis accelerometer to detect eating activity and count chews. However, this

method requires much larger sliding windows. Besides, further experiments show that its

eating detection accuracy is very low for the leave-one-subject-out test. We believe that

it is because one axis acceleration data is not enough to distinguish motion characters

between eating and other activities, and the extracted features are not representative

enough.

Other methods. In addition to audio, video and motion based methods, there are

some other ways for eating detection and chews counting. For example, references [21]

and [33] deployed a piezoelectric sensor below the ear to capture the movement of the

lower jaw and detect chewing rate. Reference [34] placed a piezoelectric sensor on the

temporalis to detect the chewing bouts. However, the piezoelectric sensor needs to be

attached on the skin tightly. This is intrusive and unfriendly for users.

2.2 Food Type Recognition

The existing food type recognition methods are divided into three categories: image

based methods, ambient sensor based methods, and wearable sensor based methods. We

introduce some representative works for each category as follows.

Image based methods. The image based methods take advantage of image processing

algorithms to extract features from food pictures and build recognition models. This

kind of methods mainly focuses on food appearances, such as shape, texture, color, and

size. For example, Anthimopoulos et al. [35] proposed a bag-of-features (BoF) model-

based method to distinguish 11 food categories. A set of characteristics was extracted

and quantified to describe the visual content in the food images. Then this set of charac-

teristics was used to train a classifier for food type recognition. The accuracy of five-fold
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cross-validation test is 78%. Bossard et al. [36] introduced a large-scale benchmark

dataset, Food-101. This dataset contains 101,000 images of 101 food categories. The

authors used Random Forests to mine discriminative components in these images. The

average accuracy of this method is 50.76%. Yang et al. [37] exploited the spatial rela-

tionship between the different ingredients of the food. The authors proposed to calculate

pairwise statistics between local features to represent the food items and build a discrim-

inative classifier. The recognition accuracies on 61 food types and 7 food categories are

28% and 78%, respectively. Kawano and Yanai [38] proposed a smartphone-based mobile

food recognition system to recognize food items and estimate their calories. In general,

the image-based methods can recognize more food items than other existing methods.

However, it is difficult for them to distinguish food types with similar appearances. In

addition, they are sensitive to environmental lighting conditions and view occlusion.

Ambient sensor based methods. Ambient sensor based methods often embed sensors

in specially designed tablewares to sense the physical or chemical properties of the food.

Kadomura et al. [30] introduced a sensor-embedded digital fork, the Sensing Fork. A

single-pixel RGB color sensor was used to sample the food color and classify the food

types. The F-measure accuracy of 10-fold cross-validation test on 17 food types is 87.5%.

Lester et al. [39] proposed to embed spectrometer and pH/Conductivity probes into a

cup to sense and classify liquids. The accuracy is up to 79% for 68 different drinks. Zhou

et al. [40] embedded a fabric pressure sensor matrix on top of a dining tray and four

force sensitive resistors (FSRs) under the four corners. These sensors were used to detect

cutlery usage (cutting, poking, scooping, etc.) and infer the food types. The ambient

sensor based methods are friendly to use. However, these host objects are not convenient

to carry and only available at particular locations. This restricts the application scope

of this kind of methods.

Wearable sensor based methods. Wearable sensor based methods embed various

sensors into wearable devices. The commonly used sensors include microphone [41, 42,

43, 44, 45, 15, 16, 46], EMG [47, 20], piezoelectric sensor [48, 49], and motion sensor
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[50, 51]. Päßler et al. [41] integrated two microphones into a hearing aid package. One

was placed in the ear canal to record the chewing sounds. The other was attached on the

hearing aid to record the environmental sounds as the reference. A Viterbi algorithm

based finite-state grammar (FSG) decoder was used to recognize seven types of food and

one drink. The food classification accuracy is 79% on a test set of 10% of all records.

Bi et al. [43] designed a microphone embedded hardware prototype. It was worn on

the subject’s neck to record acoustic signals during eating. The recognition accuracy on

seven food types is 84.9%. Amft et al. [44] embedded a miniature microphone into an

ear-pad case to recognize 19 standard food types. The reported accuracy is 80%. These

above methods demonstrate the validness of audio based food recognition. However,

they need to deploy a microphone in the outer ear [41, 44, 15] or at the throat area

[43, 16]. Deploying a microphone in the outer ear may block the ear canal and affect daily

communication; deploying a sensor at the throat area is intrusive and uncomfortable.

Moreover, the audio recording may bring some privacy concerns.

Zhang et al. [47] embedded EMG electrodes into a 3D-printed eyeglass to detect

chews and recognize five food types. The accuracy is between 43% and 71% for individual

chewing cycles, and between 63% and 84% for intake sequences. Using a similar eyeglass,

reference [20] combined EMG and an accelerometer to monitor chewing and identify a

few food types. The accelerometer was placed on the temple of the eyeglass to sense the

skull vibration. Kalantarian et al. [48] embedded a piezoelectric sensor into a necklace to

distinguish between solid and liquid. Alshurafa et al. [49] presented a similar piezoelectric

sensor embedded necklace. The sensor was contacted with the skin in the lower trachea.

The F-measure accuracy on distinguishing liquids and solids is above 90%. However, the

EMG and the piezoelectric sensor need to be adhered on skin tightly. It is intrusive and

uncomfortable to wear.

Motion sensors are often used to detect eating [26, 27, 28, 52, 53, 54] and count the

number of chews [32]. However, there are only a few works on the motion sensor based

food type recognition. Kim et al. [51] utilized an accelerometer embedded wristband to
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detect 29 eating actions. The detection results were used to indirectly infer two different

food types, the rice and noodle. Mirtchouk et al. [50] combined a microphone embedded

earbud, a Google Glass and two smartwatches to recognize 40 types of food and estimate

the amount of food consumed. The motion sensors in the Google Glass and the smart-

watches were used to catch the head and wrist motions, respectively. Comparatively, our

proposed method utilizes motion sensors to directly sense the mastication dynamics and

infer food types accordingly, instead of indirectly inferring food types from the head and

wrist motions. In addition, their method requires using a camera to record the video

during model training and testing. The video is used to manually annotate the exact

time of food delivery, food intake, and chewing. This is obviously intrusive.

2.3 Chewing Side Detection

The existing methods of chewing side preference detection can be roughly divided into

two categories: clinical methods and wearable sensor-based methods.

Clinical methods. The clinical methods [55] take advantage of medical profession-

als’ observations or special diagnosis devices. Nissan et al. [56] utilized direct visual

observation to detect the chewing side preference. A piece of chewing gum was placed

on the center of the dorsal aspect of the tongue. Then, the chewing side preference was

determined by “observing the direction towards which the gum was moved by the tongue

for the first cycle of mastication [56]”. Watarai et al. [57] attached six landmarks on a

subject’s face, including the left and right corners of the mouth, the superior and inferior

labial tubercles, the pogonion, and the tip of the nose. The movements of these land-

marks were captured by two CCD cameras during chewing. Then, the three-dimensional

coordinates and trajectories of these landmarks were extracted to differentiate the move-

ments between the working-side (i.e. the chewing side) and the balancing-side (i.e. the

non-chewing side). Mizumori et al. [58] used a Sirognathograph Analyzing System to

record the movement traces of the incisal point during chewing. Then, these traces were

compared with the reference traces to determine the side of each chewing stroke. Based
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on the number of left side strokes and the number of right side strokes, an Asymme-

try Index (AI) was calculated to quantitatively evaluate the masticatory laterality. The

definition of AI is as follows [58]:

AI =
Number of right side strokes− number of left side strokes
Number of right side strokes+ number of left side strokes

× 100% (2.1)

Here, AI = 0 represents chewing equally on both sides; AI = −100% represents chewing

only on the left side; AI = 100% represents chewing only on the right side. Yamasaki et

al. [59] proposed to detect chewing sides by measuring the EMG activities of the bilateral

masseter muscles. Based on the collected EMG data, a metric named “level of amplitude

against the maximum voluntary contraction” was calculated for the left side and right

side, respectively, for each chew. The side that has a larger metric value was considered

as the actual chewing side. The above clinical methods require special diagnosis devices

and/or the involvement of medical professionals, which are mainly available in clinical

environments.

Wearable sensor-based methods. In order to detect chewing side preference

continuously and conveniently in our daily living, several wearable sensor-based methods

have been proposed in recent years. Wearable sensor-based methods embed sensors into

various wearable devices to detect chewing sides. Chung et al. [60] embedded two

load cells into hinges on both sides of a pair of glasses to recognize ingestive and facial

behaviors, such as head movements, left chewing, right chewing, winking, and talking.

The load cell measures the force amplified by the hinge. Similar to our proposed method,

Chung et al.’s method takes advantage of the contraction and relaxation motions of the

temporalis muscles. However, it senses the muscle motions indirectly using load cells

embedded in the glasses. Our method senses the muscle bulge and skull vibration directly

using motion sensors deployed on the temporalis muscles. Compared with our method,

Chung et al.’s method heavily relies on the sensitivity and deployment of the load cells.

In addition, it is a coarse-grained method because each motion detection is based on

a fixed-length window of 3 seconds instead of one chew. Lucena et al. [61] attached
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two motion sensors to a subject’s jaw and forehead to measure angle variations and

detect chewing sides accordingly. However, attaching sensors on the jaw and forehead is

obviously intrusive and not suitable for long-term wear. Zhang and Amft [62] embedded

EMG electrodes into 3D-printed eyeglasses to detect eating and chewing activities. They

indicated that “bilateral EMG measurement may serve to study chewing side variation”.

However, they did not investigate this problem. The chewing side detection accuracy of

this method is unknown. In addition, the EMG signal is easily affected by the hair.
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Chapter 3

Eating Detection and Chews

Counting through Sensing

Mastication Muscle Contraction

3.1 Introduction

Nowadays chronic diseases have become one of the most serious threats to human health

[63]. Eating detection and chews counting are helpful for monitoring eating time, esti-

mating eating speed and food amount, changing unhealthy eating habits, and preventing

related chronic diseases. In recent years, some methods have been proposed to recognize

a subject’s eating activity and count the number of chews. However, these methods are

either intrusive or not accurate enough.

How to detect a subject’s eating activity and count the number of chews in an

accurate and noninvasive way? To answer this question, we investigate the principle of

eating activity and are inspired by following observations: 1) Eating activity is activated

through a collaborative effort of four mastication muscles: the masseter, the medial

pterygoid, the lateral pterygoid and the temporalis. The first three muscles are near

mouth cavity and hence not convenient for sensor deployment. The temporalis is a

broad, fan-shaped muscle located at the side of the skull and in front of the ear [22].
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This is the area where people often wear a headband or hat. Therefore, the temporalis

is suitable for noninvasive sensing of eating activity; 2) During eating, the temporalis

contracts to elevate the mandible, which results in the bulge of this muscle. We are hence

motivated to recognize the eating activity through detecting the temporalis contractions

and bulges. This is done through embedding an acceleromter into a headband and

attaching the accelerometer on the temporalis; 3) The bulge of the temporalis has the

same frequency as chewing. Thus, the number of chews can also be counted through

recognizing the frequency of periodic muscle bulges.

In this chapter, we propose to detect eating activity and count chews simultaneously

with a triaxial acceleromter. We embed the accelerometer into a headhand to sense the

temporalis contractions and bulges, which is convenient and less intrusive. Compared

with existing audio or video based methods, our method only records the acceleration

data. Therefore, our method has less privacy concerns.

We summarize our contributions as follows:

1. We propose to detect eating activity and count chews through attaching a triaxial

accelerometer on the temporalis. To our best knowledge, this is the first work on

motion sensor-based sensing of mastication muscle contraction for eating detection

and chews counting simultaneously.

2. We design and develop an eating activity detection module. It accurately differ-

entiates eating activity from six other daily activities (reading/speaking, sitting,

walking, drinking, coughing and standing) using only 5 seconds of acceleration

data.

3. We design and develop a chews counting module. It identifies the primary period-

icity of highly noisy acceleration data and accurately count the number of chews.

4. We evaluate the performance of the proposed method on a real-world dataset.

Experimental results show that the average accuracy and F-score are 94.4% and
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87.2%, respectively, for eating activity detection in 10-fold cross validation test.

The average error rate of chews counting for four users is 12.2%.

The rest of this chapter is organized as follows. Section 3.2 introduces background

and motivation of the proposed method. Section 3.3 describes the system architecture

and implementation of each module. Experiment and evaluation are presented in Section

3.4. Section 3.5 presents discussion and future work. Conclusion is drawn in Section 3.6.

3.2 Background and Motivation

In this section, we first introduce four mastication muscles. Then we present the moti-

vation of acceleration data based eating activity detection and chews counting.

3.2.1 Four Mastication Muscles

From a physiological point of view, there are four mastication muscles: the masseter,

the medial pterygoid, the lateral pterygoid and the temporalis [64], as shown in Fig. 3.1.

During eating, these four muscles work together, enabling jaw open-close movements, to

cut and grind the food.

             
                     (a)                                           (b)  Figure 3.1: Mastication muscles [1]

The masseter is located on each side of a face. It connects the maxillae and the

mandible, and primarily serves for elevating the mandible while the deep tissues help

protrude the mandible forward [65]. The masseter is the most superficial muscle. It is

also one of the strongest mastication muscles.
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The medial pterygoid and the lateral pterygoid are located on the inner surface of

the mandible. Contraction of the medial pterygoid helps elevate the mandible, and thus

contributes to jaw-closing. However, the lateral pterygoid helps lower the mandible and

open the jaw. It is the only mastication muscle for jaw-opening [66].

The temporalis is a broad, fan-shaped muscle located on the side of the skull and in

front of the ear [22]. It is one of three muscles that close the jaw and clench the teeth.

From the above introduction, we see that the masseter, medial pterygoid and lateral

pterygoid are in the face area and near mouth cavity. This area is inconvenient and

invasive for sensor deployment. On the contrary, the temporalis covers a bigger area.

This makes it convenient and less-invasive to attach a sensor, such as in a headband or

hat.

3.2.2 Motivation

It is common knowledge that a muscle bulges when contracting. This motivates us to

detect a subject’s eating activity using a triaxial accelerometer attached on the tempo-

ralis. Moreover, as the temporalis contracts and bulges once for each chew, the number

of chews can also be counted by recognizing the frequency of periodic muscle bulges.

In this subsection, we demonstrate the potential of utilizing acceleration data to detect

eating activity and count the number of chews.

In the experiment, Shimmer2r wireless sensor platform [67] is used for data collec-

tion. Shimmer2r has an integrated accelerometer and can be connected to several types

of external sensors, such as electrocardiogram (ECG), EMG, GPS, etc. We use triaxial

accelerometer and EMG sensors to sample acceleration data and EMG data simultane-

ously. The acceleration data is utilized for eating activity detection and chews counting.

The EMG data is used to obtain the ground truth of chews counting.

The sensor platform and its deployment are shown in Figure 3.2 (a). The EMG sensor

has three electrodes: a positive electrode, a negative electrode and a neutral reference

electrode. The sensing device is fixed in a headband using scotch tape. The user wears
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11

Accelerometer for eating detection and chews counting

EMG sensor for ground truth of chews

Z axis

Right temple X-Y plane

Headband

(a) (b)

Figure 3.2: (a) Data collection device and deployment; (b) Z axis direction

the headband and places the device near the right temple. The headband is elastic and

adjustable. The X axis and Y axis of the accelerometer are perpendicular. These two

axes form the tangent plane of the skull at the contact position. The Z axis of the

accelerometer directs outward and is vertical to the X-Y plane, as shown in Figure 3.2

(b). The accelerometer is calibrated as following: when one axis points downwards, its

acceleration measurement is set to g (gravity); when it points upwards, the measurement

is set to −g. For the EMG sensor, both positive and negative electrodes are attached

on the right side of the face to detect contraction of the masseter. The neutral reference

electrode is attached at the ear edge, where there is no muscle but just bone and skin.

Hence, it is selected as the electrically neutral point of the body.

The sampling rates of the accelerometer and EMG sensors are the same and about

100Hz. All the collected data is wirelessly transmitted to the laptop through BlueTooth.

Data of each continuous sampling process is stored in one file for post processing. The

data of eating (while sitting) and six other non-eating daily activities (reading/speaking,

sitting, walking, drinking, coughing and standing) are collected separately. The subject

is served with multiple small pieces of watermelon. The reason for choosing watermelon

will be discussed in Section 3.5.

Figure 3.3 shows the acceleration data of eating and six other daily activities. We
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                 (a) Eating                                 (b) Sitting             

 
                (c) Standing                           (d) Speaking/Reading 

 
                (e) Walking                               (f) Drinking             

 
               (g) Coughing 
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Figure 3.3: Acceleration data of eating and other six activities

observe that the acceleration data of eating activity shows clear periodic pattern, espe-

cially for the Z axis data. This is because the bulge of the temporalis is in the same
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direction as the Z axis. In addition, the characters of the acceleration data indicate that

it is possible to distinguish eating activity from other six activities. For walking and

coughing activities, their fluctuation amplitude is much larger than that of eating ac-

tivity. For sitting, standing, speaking/reading and drinking activities, even though they

have similar fluctuation amplitude with that of eating activity, they have no clear peri-

odicity. Therefore, we can extract fluctuation amplitude and periodicity related features

to identify eating activity from other noisy activities.

Figure 3.4 shows an example window of raw Z axis acceleration data (m/sec2) and

EMG data (mVolts) during eating, indicated by a blue solid line and a red dashed line,

respectively. We observe that: 1) both signals have the same periodic cycles. Each

cycle corresponds to one chew; 2) the EMG signal has obvious spikes at the moments of

masseter contraction. It almost equals to zero between two neighboring chews; 3) the Z

axis acceleration data also has obvious increase during the muscle contraction, but there

is some fluctuation between two neighboring chews.
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Figure 3.4: Z axis acceleration and EMG data during eating

According to the above observations, we believe that, despite many challenges, there

is a high possibility of differentiating eating from other daily activities. Furthermore, it

is feasible to count the number of chews only using Z axis acceleration data.
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3.3 System Architecture and Implementation

Figure 3.5 shows the system architecture of the proposed method. It contains two main

modules: an eating activity detection module and a chews counting module.

Acceleration data composition

Feature extraction and normalization

Classifier training

Classification model based eating activity identification

Z axis acceleration data

Median filtering

Non-chewing window elimination

DFT based frequency analysis

MFC extraction in chewing frequency range

MFC based chews counting

Eating activity detection

Chews counting

Offline data Online data

Acceleration data segmentation

Figure 3.5: System architecture of the proposed method

The eating activity detection module includes two processes: offline training pro-

cess and online testing process. They are marked with black arrows and red arrows,

respectively. In the offline training process, with the offline data collected from the tri-

axial accelerometer, a sliding window of length L without overlap is used to segment the

sensor data. For each window, the eating activity detection module first composes the

acceleration data of three axes, and then extracts representative features. By combining

normalized feature vectors with corresponding class labels, the training dataset is built

to train a two-class classifier for online recognition. The online testing process has the

same operations of data segmentation, data composition, feature extraction and normal-

ization with those of the offline training process. After that, unlabeled feature vectors
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are fed to the trained classification model. Then, the eating activity detection results

are obtained.

If one window is identified as eating activity, the raw Z axis acceleration data is

used to count the number of chews in this window. The Z axis acceleration data is

first filtered using median filter to remove some sampling noise. Then, the non-chewing

window is eliminated through checking the difference of acceleration magnitude. For a

chewing window, discrete Fourier transform (DFT) based frequency analysis is applied,

and the maximum frequency component (MFC) in the chewing frequency range is ex-

tracted. Finally, the number of chews in this window is estimated based on the frequency

corresponding to MFC and the time length of the sliding window.

We introduce the detailed implementation of the above two modules as following.

3.3.1 Eating Activity Detection

After segmenting the triaxial acceleration data with a sliding window of length L without

overlap, we compose the ith sensor readings of three axes, aiX , aiY and aiZ into one scalar

acceleration ai:

ai =
√

(aiX)2 + (aiY )2 + (aiZ)2 (3.1)

where i = 1, . . . , L.

Based on the composed data, four groups of features are extracted to build the feature

vector for this window of data. The first group consists of six time domain features: the

maximum, the minimum, the 1st quartile, the 2nd quartile, the 3rd quartile, and the

number of mean cross.

The second group consists of four amplitude statistics features extracted from the

composed window data. They are defined [68] as:

Amplitude : µamp =
1

L

L∑
i=1

ai (3.2)
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Standard deviation : σamp =

√√√√ 1

L

L∑
i=1

(ai − µamp)2 (3.3)

Skewness : γamp =
1

L

L∑
i=1

(
ai − µamp
σamp

)3 (3.4)

Kurtosis : βamp =
1

L

L∑
i=1

(
ai − µamp
σamp

)4 − 3 (3.5)

The third group consists of four amplitude statistics features extracted from single-

sided amplitude spectrum (without direct current component) after Fourier transform

[69]. These features can be computed using the above four formulas after replacing L

and ai with L
2 and si, respectively. Here, si means the ith component of single-sided

amplitude spectrum.

According to [70], chewing activity mainly occurs in the range between 0.94 Hz (5th

percentile) and 2.17 Hz (95th percentile). Here, we define the chewing frequency range

as 0.5 Hz to 2.5 Hz. Then, the single-sided amplitude spectrum (without direct current

component) can be partitioned into three bands: (0, 0.5) Hz, [0.5, 2.5] Hz and (2.5, SF/2]

Hz. SF means the sampling frequency of accelerometer. Three features are extracted

from each band to form the fourth group of features. They are the MFC, the location

(i.e. the index) of the MFC, and the spectral energy. The spectral energy is defined as

the sum of squared spectrum components in each band.

In total, 23 features are extracted. To eliminate the scaling effects among different

features, all the features are normalized using the z-score normalization algorithm [71].

The eating activity detection is formulated as a two-class classification problem. The

positive class corresponds to eating activity, while the negative class corresponds to other

daily activities, such as speaking/reading, sitting, standing, walking, drinking, coughing,

etc. Five commonly used classification algorithms are compared: decision tree (DT),

nearest neighbor (NN), multi-layer perceptron (MLP), support vector machine (SVM)

and weighted support vector machine (WSVM).
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DT algorithm builds a pattern classifier from a labeled training dataset using a divide-

and-conquer approach. It recursively selects the attribute that is used to partition the

training dataset into subsets until each leaf node in the tree has a uniform class mem-

bership [72]. NN algorithm is an instance-based learning method. It only stores the

training samples but does not generate a specific classification model. During classifi-

cation, the distances between the test sample and all training samples are calculated.

The test sample is assigned the same class label as its nearest neighbor. MLP algorithm

is a feedforward artificial neural network model. It maps a set of inputs onto a set of

appropriate outputs. It uses a supervised technique called backpropagation to train the

network and obtain the parameters [73]. SVM algorithm is based on the foundation

of statistical learning theory. It gains promising empirical performance in the fields of

nonlinear and high dimensional pattern recognition [72, 74].

The above four algorithms have different rationales and model structures. Compari-

son of their recognition results should demonstrate performance of the proposed method

on eating activity detection in a comprehensive and unbiased way. WSVM can deal with

the uneven class size problem of SVM by assigning larger weights to classes with fewer

samples [75]. Therefore, it is also included for comparison.

3.3.2 Chews Counting

The Z axis acceleration data is used to count the number of chews in one sliding window.

The chews counting module contains the following five steps:

Step 1: Median filtering. We first use a 7th-order one-dimensional median filter [76]

to remove the sampling noise in the acceleration data. The median filter runs through

the sliding window sample by sample, and replaces each sample with the median of

neighboring samples [77].

Step 2: Non-chewing window elimination. In the eating activity detection module,

one window is identified as eating or non-eating activity. An eating window may contain

not only chewing, but also food intake and swallowing. From Figure 3.2 (b) we can see
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that, when the user bows down his head and feeds food into his mouth, the Z axis directs

downwards in some degree. Accordingly, there is a positive decomposition of gravity

on the Z axis. The gravity decomposition generates a large convex peak of the Z axis

acceleration data, as shown in Figure 3.6. Normally, the magnitude of the convex peak is

much larger than the acceleration variation during chewing. For simplicity, we calculate

the difference between the maximum acceleration and the minimum acceleration in one

window. If the difference is larger than a predefined threshold, MagDiff , this window

is considered as a non-chewing window and eliminated.
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Figure 3.6: Convex peak during food intake

Step 3: DFT based frequency analysis. For one chewing window, we need to count

the number of temporalis bulges. The most straightforward method is to count the

peaks of Z axis acceleration data. However, as shown by the red line in Figure 3.7, the

Z axis acceleration data is very noisy even after median filtering. There are lots of false

peaks caused by the vibration of the skull during chewing. One observation is that the

chewing frequency is consistent with the primary periodicity of the acceleration data.

We use the MFC to reconstruct the acceleration data only with primary periodicity. The

reconstructed data is shown as the blue line in Figure 3.7. Therefore, for chews counting,

we propose to utilize DFT to transform the acceleration data from time domain into

frequency domain.

Step 4: MFC extraction in chewing frequency range. After DFT based frequency
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Figure 3.7: Z axis data and reconstructed data

analysis, we extract the MFC in the chewing frequency range, i.e. [0.5, 2.5] Hz.

Step 5: MFC based chews counting. We take the frequency corresponding to MFC,

fMFC , as the approximate chewing frequency. Then we estimate the number of chews in

one window by multiplying fMFC with the time length of the window. The time length

can be obtained through dividing the window length by the sampling rate.

3.4 Experiment and Evaluation

In this section, we introduce the experimental evaluation on eating activity detection

and chews counting.

3.4.1 Data Collection and Ground Truth

We recruit four volunteers to collect the experimental dataset [32] of seven daily activities,

including eating, reading/speaking, standing, sitting, walking, drinking and coughing.

For eating, reading/speaking, standing, sitting and walking activities, one volunteer

performs each of them for 6 to 9 minutes. For drinking and coughing activities, one

volunteer performs each of them about 30 seconds. For reading/speaking and walking,

the volunteers are asked to perform in three different speeds (slow, moderate and fast),

and each speed for 2 to 3 minutes. The acceleration data of three axes and the EMG
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data are sampled simultaneously. In total, about 150 minutes of data is collected.

These activities are manually labeled during data collection. To serve as ground

truth of chews counting, the EMG data is manually identified and counted to obtain the

total number of chews for each volunteer.

3.4.2 Evaluation of Eating Activity Detection

Three tests are conducted to evaluate the eating detection performance of the proposed

method. 1) Cross validation test (CVT). CVT combines all subjects’ samples to form

the dataset. It uses the cross validation method to evaluate the general eating detection

accuracy on multiple subjects; 2) Self test (ST). ST only uses the samples of the subject

himself/herself to form the dataset. For the ST evaluation of each subject, the same cross

validation method as above is used; 3) Leave-one-subject-out test (LOSOT). LOSOT uses

the samples of all subjects except one to form the dataset and train the classification

model accordingly. Then the model is tested using the samples of the excluded subject.

LOSOT shows how generic the detection model is for unknown subjects.

Weka toolkit [72] is used for classifier training and testing. For DT, the J48 algorithm

is used. For SVM and WSVM, the LibSVM wrapper for Weka [78] is used. We adopt the

default parameters for all classifiers in the following experiments. For cross validation,

the fold number is set to 10. Because the samples of negative class are about three times

that of positive class, the weights of WSVM are set to 3 for positive class and 1 for

negative class.

Four evaluation metrics are used to quantify the classification performance. They

are accuracy, precision, recall and F-score, which are defined as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(3.6)

precision =
TP

TP + FP
(3.7)
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recall =
TP

TP + FN
(3.8)

F -score = 2 · precision · recall
precision+ recall

(3.9)

where TP denotes true positive, TN denotes true negative, FP denotes false positive,

and FN denotes false negative.

 
                 (a) DT                                    (b) NN                                   (c) MLP 

 
                (d) SVM                                  (e) WSVM 

Figure 3.8: CVT results of five classifiers

Cross validation test (CVT). Figure 3.8 shows the accuracy, precision, recall and

F-score of CVT for different window lengths: 256, 512 and 1024. From Figure 3.8 we see

that: (1) For all these five classification models, their accuracy is larger than 90%, and

their F-score is larger than 80%. Table 3.1 and Table 3.2 give the accuracy and F-score of

the five classifiers. The average accuracy of the five classifiers are 93.8% (window length

of 256), 94.4% (window length of 512) and 95.0% (window length of 1024), respectively.

The average F-score of the five classifiers are 85.4% (window length of 256), 87.2%

(window length of 512) and 88.5% (window length of 1024), respectively. This indicates

that the proposed eating activity detection method is able to accurately distinguish

eating activity from the six other daily activities; (2) The accuracy outperforms precision,
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recall and F-score in all these cases. Through comparing equations 3.6, 3.7 and 3.8, we

know that the accuracy metric not only takes TP and FP into consideration, but also

TN and FN. High accuracy indicates that TN is much larger than FN and FP. That

is to say, all the models can identify most negative samples; (3) For DT, NN, MLP and

SVM, their precision is better than recall. This is because that, according to equations

3.7 and 3.8, FP is smaller than FN. This implies that all these four models misclassify

more positive samples as negative class than negative samples as positive class. In other

words, these models are biased to negative class. Through assigning a larger weight to

the positive class, WSVM reverses the bias and obtains higher recall than precision; (4)

As to the five classifiers, DT, MLP and WSVM outperform NN and SVM. Specifically,

DT performs best for window length of 256 and 512. MLP performs best for window

length of 1024; (5) The classification performance improves with the increase of window

length, but the improvement is only two to three percent. As longer window length

causes larger time delay, in all the following experiments, the window length is set to

512 to balance the accuracy and delay.

Table 3.1: The accuracy of five classifiers in CVT

Win. DT NN MLP SVM WSVM Average
256 95.2% 91.9% 93.8% 93.5% 94.4% 93.8%
512 97.1% 91.7% 94.4% 93.7% 95.2% 94.4%
1024 96.2% 92.6% 96.5% 93.9% 95.7% 95.0%

Table 3.2: The F-score of five classifiers in CVT

Win. DT NN MLP SVM WSVM Average
256 89.1% 80.3% 85.5% 84.1% 87.8% 85.4%
512 93.6% 80.2% 87.2% 85.0% 89.8% 87.2%
1024 91.6% 82.6% 92.1% 85.6% 90.8% 88.5%

Self test (ST). Figure 3.9 depicts the ST results of these four users. For user 1 and user

2, the ST performances of the five classifiers on almost all these four metrics are highly

accurate. Both the accuracy and F-score are higher than those of CVT. For user 3, the

F-score of SVM is a little low. For user 4, while the accuracy of all these classifiers is
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above 90%, the F-score of NN and SVM is lower than 80%. However, DT and MLP still

perform quite good for user 4. The accuracy of DT and MLP is larger than 95%, and

the F-score of DT and MLP is above 90%. We believe that the performance difference

between different classifiers is mainly because that we adopt the default parameters for

all classifiers. The performance of these classifiers could be improved after parameter

optimization.
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Figure 3.9: ST results of four users

Leave-one-subject-out test (LOSOT). Figure 3.10 presents the LOSOT results of

four users. Comparatively, the performance of LOSOT falls below that of CVT and ST.

This is reasonable as the data of testing user is not included in the training dataset.

Table 3.3 shows the average accuracy and F-score of the five classifiers for these four

users. For user 1, user 2 and user 3, the average accuracy is between 89.8% and 93.4%,

and the average F-score is between 76.6% and 85.1%. These are still good. For user
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Figure 3.10: LOSOT results of four users

4, the average accuracy is 81.6%, but the average F-score is only 55.4%. Why is the

detection performance of user 4 lower than that of the other three users? We believe

that it is because of sensor position bias, which causes larger variance of the sampled

acceleration data for user 4.

Table 3.3: The average accuracy and F-score in LOSOT

User 1 User 2 User 3 User 4
Average accuracy 93.4% 89.8% 91.1% 81.6%
Average F-score 85.1% 77.1% 76.6% 55.4%

3.4.3 Evaluation of Chews Counting

We evaluate the chews counting accuracy for each user in the following experiments. For

non-chewing window elimination, the difference threshold, MagDiff , is set to 3. To

describe the chews counting accuracy, the following detection error rate is used:
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Error rate =
|Detection−Ground truth|

Ground truth
× 100% (3.10)

Table 3.4 describes the ground truth in terms of the number of chews, chewing time

and chewing frequency of these four users. Compared with the chewing frequency range

reported in reference [70], the chewing frequencies in Table 3.4 are a little low. This is

because we do not exclude the time spent in biting and swallowing.

Table 3.5 depicts the chews counting results for four users. The error rates are

9.9%, 21.8%, 4.0% and 13.2%. The average error rate of four users is about 12.2%.

Comparatively, the chews counting performance on user 2 is worse. After examining the

Z axis data of these four users, we think the reason may be that the Z axis data of user

2 is a little more noisy than the Z axis data of other three users.

Table 3.4: Ground truth of chewing of four users

User 1 User 2 User 3 User 4
Number of chews 473 596 323 380
Chewing time (Sec.) 532 481 492 461
Chewing frequency 0.9 Hz 1.2 Hz 0.7 Hz 0.8 Hz

Table 3.5: Chews counting results of four users

User 1 User 2 User 3 User 4
Chews counting 520 466 310 330
Error rate 9.9% 21.8% 4.0% 13.2%

In Step 2 of chews counting module, we drop the whole window if the acceleration

magnitude difference is larger than the predefined threshold. The dropped window may

contain a few chews. Therefore, in most cases, the chews counting results are underesti-

mated, as we can see from the results of user 2, 3 and 4. The best solution is to design

a segmentation algorithm to extract whole chewing segments for chews counting.

For the threshold of acceleration magnitude difference, we use a fixed value for all

the users. Considering the user difference and sensor location variance, a user-dependent

and online adaptive threshold should be better.
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3.5 Discussion and Future Work

We chose multiple pieces of watermelon as the food in all evaluation experiments. Wa-

termelon is one of the softest foods. Thus, the user chews it with little effort. According

to commonsense, the more strength the mastication muscles use, the greater the muscle

bulge is. Therefore, if eating watermelon can be accurately recognized by the proposed

method, it is reasonable to expect that eating harder food could also be accurately rec-

ognized. However, for some foods such as soups and drinks, there is no need to chew.

Eating these foods is more like drinking activity. Thus, the proposed method is mainly

for detecting eating solid foods.

In our experiment, all collected data is wirelessly transmitted to a laptop for of-

fline analysis. This experimental setup is energy-consuming and only for performance

evaluation and validation of the proposed method. For real-world application, we plan

to embed the eating detection model and chews counting model into the headband for

online analysis.

The experimental data for different activities is collected separately. However, in real

life scenarios, a person may conduct two or more activities simultaneously, such as eating

while walking, eating while talking, etc. Then, the collected data may be dominated

or contaminated by these noisy activities. In these scenarios, the performance of the

proposed method may be degraded. One possible solution is to separate the signal from

the data for each individual activity before eating activity detection and chews counting.

We leave this for future work.

For the ground truth in terms of the number of chews, the EMG data is used as

the reference to identify and count each chew. The EMG signal during food intake is

ignored. At the same time, as shown in the green boxes in Figure 3.11, occasionally the

EMG signal may be less obvious and hard to identify. Thus, the ground truth may not

be perfectly obtained, but the error is very small according to our observation.

For the feature extraction, when the window length is 256, there is only one frequency

component in the band of (0, 0.5) Hz. Thus, the MFC location feature in this band always
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Figure 3.11: Less obvious EMG signal

equals 1, which is useless for classification. We delete this feature in the CVT experiment

for window length of 256.

The proposed eating detection method is complementary to other methods for rec-

ognizing more complex dietary activities. We also leave this for future work.

3.6 Conclusion

In this chapter, we propose a novel eating activity detection and chews counting method.

It is done through identifying the mastication muscle contractions using a triaxial ac-

celerometer attached on the temporalis. The accelerometer is embedded in a headband,

and only the acceleration data is recorded. Therefore, the proposed method is less inva-

sive and privacy-preserving. Experiments are conducted with multiple human subjects.

The results demonstrate that the proposed method accurately distinguishes eating ac-

tivity from other daily activities using only 5 seconds of acceleration data. Moreover,

the average error rate of chews counting for four users is 12.2%.
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Chapter 4

Inferring Food Types through

Sensing and Characterizing

Mastication Dynamics

4.1 Introduction

As one of the major causes of chronic diseases, unhealthy dietary structure leads to

obesity, diabetes, and heart disease. Automatic food type recognition acts as a core

function to monitor the dietary structure. It provides medical professionals objective

information to understand patients’ nutritional contents, estimate carbohydrate intake

amounts, choose the best therapies, and provide timely feedback to the patients.

To recognize food types continuously and conveniently in daily living, some wearable

sensor-based methods have been proposed in recent years. These methods take advantage

of microphone, EMG, and piezoelectric sensors embedded in the wearable devices. The

microphone-based method deploys a microphone sensor in the outer ear [15] or at the

throat area [16]. This method is easily impacted by ambient acoustic noise. In addition,

the earphone or headphone may block the ear canal and affect daily communication.

Plus, deploying a sensor at the throat area is intrusive and uncomfortable. The EMG

and piezoelectric sensors need to be tightly adhered to the skin. They are obviously

38



intrusive and not suitable for long-time wear.

How to recognize food types accurately and less intrusively using wearable sensors?

To answer this question, we investigate the food properties and mastication dynamic-

s. We are inspired by the following observations: 1) Food properties and mastication

dynamics are highly correlated. Each type of food has its own intrinsic properties [23],

such as hardness, elasticity, fractorability, adhesiveness, and size. Because the mastica-

tory system is highly adapted to the food properties, the difference in food properties

leads to the variance of corresponding mastication dynamics; 2) Mastication dynamics

can be sensed by deploying a motion sensor on a mastication muscle. The contraction

of a mastication muscle changes the shape of the muscle spindle to make it shorter and

thicker. In addition, the muscle contractions are synchronized with the mandible move-

ments. Therefore, the motion sensor can sense mastication dynamics through detecting

the muscle contractions and deformations.

Based on these observations, we are motivated to deploy motion sensors on the mas-

tication muscles to sense mastication dynamics and infer food types accordingly. How-

ever, this raises three research questions. First, how to represent food properties using

corresponding mastication dynamics? Second, how to deploy motion sensors on the mas-

tication muscles to sense mastication dynamics accurately and less intrusively? Third,

how to characterize the mastication dynamics using motion sensor data? To answer

these three research questions, 1) we define six mastication dynamics parameters to rep-

resent the food properties. They are chewing speed, the number of chews, chewing time,

chewing force, chewing cycle duration, and skull vibration; 2) we embed motion sensors

in a headband and deploy the sensors on the temporalis muscles to sense mastication

dynamics accurately and less intrusively; 3) 37 hand-crafted features are extracted from

each chewing sequence to explicitly characterize the mastication dynamics. Based on

the extracted features, we train a multi-class classification model to recognize the food

types. The motivation of our proposed food type recognition method is shown in Fig. 4.1.

To evaluate the performance of our proposed food type recognition method, we collect
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Food types
• Nuts
• Candies
• Fruits
• Cookies
• Meats
• …

Food properties
• Hardness
• Elasticity
• Fracturability
• Adhesiveness
• Size

Mastication dynamics parameters
• Chewing speed
• The number of chews
• Chewing time
• Chewing cycle duration
• Chewing force
• Skull vibration

Represent food 
properties 

Motion sensor data
• Accelerometer data
• Gyroscope data

Sense mastication 
dynamics
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• Entropy of freq. spectrum
• …
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Classification 
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Multi-class model

Figure 4.1: Motivation of our proposed food type recognition method

a real-world dataset of 15 human subjects for 11 food categories (20 types of food in

total). The experimental results are very promising.

The main contributions are as follows:

• We propose to infer food types through sensing mastication dynamics with wearable

motion sensors. To our best knowledge, this is the first effort in using wearable

motion sensors to sense mastication dynamics and recognize food types accordingly.

• We propose to embed motion sensors in a headband and deploy them on the

temporalis muscles to sense mastication dynamics accurately and less intrusively.

• We extract 37 hand-crafted features from each chewing sequence to explicitly char-

acterize the mastication dynamics.

• We evaluate the performance of our proposed method on a real-world dataset. Ex-

perimental results show that the average recognition accuracy of 15 human subjects

is 74.3%. The recognition accuracy of a single human subject is up to 86.7%.

The remainder of this chapter is organized as follows: Section 4.2 introduces how to

represent food properties with mastication dynamics. Section 4.3 describes how to sense
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mastication dynamics with motion sensors. Section 4.4 introduces how to character-

ize mastication dynamics with hand-crafted features. Section 4.5 introduces food type

classification model. Experiment and evaluation are presented in Section 4.6. Section

4.7 presents the comparison with existing wearable sensor-based methods. Section 4.8

presents discussion and future work. Finally, the conclusion is drawn in Section 4.9.

4.2 Representing Food Properties with Mastication Dy-

namics

In this section, we first introduce the food properties. Then, we describe how to represent

the food properties with mastication dynamics.

4.2.1 Food Properties

A food property is defined as “a particular measure of the food’s behavior as a matter, or

its behavior with respect to energy, or its interaction with the human senses, or its efficacy

in promoting human health and well-being [79].” According to the aspects they describe,

the food properties are classified into different categories, such as textural properties,

tactile properties, appearance properties, rheology properties, acoustic properties, and

flavour properties.

Different types of food have different food properties. Thus, the food properties are

capable of identifying the food types. The image-based food type recognition method

takes advantage of the appearance properties (color, texture, shape, etc.) to distinguish

the food types [35]. The microphone-based method utilizes the acoustic properties dur-

ing chewing or swallowing to recognize the food types [15, 16]. Of all the food properties,

some are related to the mastication [80, 23], such as hardness, elasticity, fracturability,

adhesiveness, and size. Hardness indicates the force required to break/chew the prod-

uct [81]; elasticity describes the ability to deform and go back to its origin state [82];

fracturability describes the ability to break food into pieces when it is bitten [83]; ad-
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hesiveness indicates the ability of food to adhere to the teeth when chewed [83]; size

indicates the length, width and height of the food samples.

4.2.2 Food Property Representation

These mastication related food properties are highly correlated to the corresponding

mastication dynamics. Different food properties provide different stimulus to the mas-

ticatory system and lead to the variance of corresponding mastication dynamics. For

example, the chewing speed of the soft food is higher than that of the hard food [84].

Therefore, the mastication dynamics are able to represent the food properties and infer

the food types accordingly.

The mastication dynamics mainly include two aspects, the mastication muscle ac-

tivities and the mandible motions [80]. To represent the muscle activities and mandible

motions, some parameters are extracted from a single chew, a specific stage (e.g. the

early, middle, or late chewing stage), or a whole chewing sequence [85]. The muscle

activities related parameters include chewing speed, the number of chews, chewing time,

and chewing force. The mandible motions related parameters include time, amplitude,

and velocity of opening or closing the mouth.

We specifically define six mastication dynamics parameters to represent the masti-

cation related food properties. We observe that normally the food type between two

neighboring bites does not change. Thus, we extract mastication dynamics parameters

from a whole chewing sequence to represent these food properties. Compared with the

parameters extracted from a single chew or a specific stage, the parameters extracted

from a whole chewing sequence are more robust and complete. These six mastication

dynamics parameters are chewing speed, the number of chews, chewing time, chewing

force, chewing cycle duration, and skull vibration. The first four parameters are used

to represent the muscle activities. The chewing cycle duration indirectly indicates the

amplitude and velocity of mandibular movement. The skull vibration is not included in

the existing study of mastication dynamics. However, it is very useful to characterize
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the vibrations of skull bone during mastication.

Table 4.1 shows the food properties represented by each mastication dynamics param-

eter [80, 23]. We see that each mastication dynamics parameter represents several food

properties. Through combining all these parameters, it is highly possible to distinguish

different food types.

Table 4.1: Food properties represented by each mastication dynamics parameter

Parameter Food properties
Chewing speed Hardness, elasticity, adhesiveness
The number of chews Hardness, fracturability, adhesiveness, size
Chewing time Hardness, fracturability, adhesiveness, size
Chewing force Hardness, fracturability, adhesiveness
Chewing cycle duration Hardness, elasticity, adhesiveness, size
Skull vibration Hardness, fracturability

4.3 Sensing Mastication Dynamics

In this section, we first describe why we choose motion sensors to sense mastication dy-

namics. Then, we introduce the sensor deployment on the mastication muscles. Finally,

we introduce the motion data collection.

4.3.1 Why Motion Sensors?

Existing works often use EMG sensor and 3D kinematics method to sense the mastication

muscle activities and the mandible motions, respectively. The EMG sensor is utilized

to record the electrical signals generated by the mastication muscles during contraction

[80, 23]. However, the EMG electrodes are required to be adhered on skin tightly, which

is intrusive and uncomfortable. The 3D kinematics method [86] deploys several markers

on the head, mandible and reference plane. The infrared video cameras are used to

record the markers’ movements. Then, the 3D coordinates of the mandible are extracted

to calculate the parameters of mandible motions. This method is obviously intrusive and

only used in clinical study.

Mastication dynamics can be sensed by deploying a motion sensor on a mastication
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muscle. One observation is that the mastication muscle contraction changes the shape

of the muscle spindle to make it shorter and thicker. Accordingly, the mastication

muscle bulges to some degree; the greater the chewing force, the larger the muscle bulge.

In addition, the muscle contractions are synchronized with the mandible movements.

Therefore, through deploying a motion sensor on a mastication muscle, the sensor is able

to directly sense the mastication muscle activities. Plus, it is also capable of inferring

the mandible motions. For example, the chewing cycle duration indirectly indicates the

amplitude and velocity of the mandible movement. Therefore, the mastication dynamics

are sensed through detecting the muscle contractions and deformations. Moreover, the

motion sensor can also catch the skull vibration during mastication. Different from the

EMG sensor or 3D kinematics method, the motion sensor needs no skin contact and is

easily embedded into a headband or hat. Thus, it is less intrusive and more comfortable

to wear.

4.3.2 Sensor Deployment

The temporalis is the best mastication muscle to deploy motion sensors. As discussed

in subsection 3.2.1, the masseter, medial pterygoid and lateral pterygoid are in the face

area and near mouth cavity, where is inconvenient and intrusive for sensor deployment.

The temporalis is located at each side of the skull and in front of the ear [22], where

people often wear a headband or hat. This motivates us to embed motion sensors into a

headband and deploy the sensors on the temporalis muscles.

A subject may prefer to chew the food mainly on the left side or the right side.

Therefore, the mastication muscles and corresponding mastication dynamics of these

two sides are not symmetric. To accurately sense the mastication dynamics, two small-

size hardware platforms [2] shown in Fig. 4.2 (a) are deployed on the left and right

temporalis muscles, respectively. Each device contains a 3-axis accelerometer, a 3-axis

gyroscope, and a 3-axis digital compass. Only the accelerometer and gyroscope are used

in our proposed method.
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Figure 4.2: Wearable device. (a) Hardware platform [2]; (b) Device deployment; (c)
Device covered by two polyster tapes; (d) Sensor orientations of the left device; (e) Sensor
orientations of the right device

A headband [87] is utilized as the host object. It is made by polyester and spandex

materials and is comfortable to wear. We open the headband at the upper side and insert

two wearable devices in it. Fig. 4.2 (b) shows the deployment of these two devices on the

left and right temporalis muscles, respectively. Each device is covered by two polyester

tapes to protect its components and prevent the location change after the deployment,

as shown in Fig. 4.2 (c). Fig. 4.2 (d) and (e) indicate the sensor orientations of the left

and right devices (from the subject’s perspective), respectively. The X axes of these two

devices point upward. The Y axis of the left device points backward, and the Y axis of

the right device points forward. The Z axes of these two devices are vertical to their

corresponding X-Y planes and point inside of the skull.

4.3.3 Motion Data Collection

Fifteen human subjects were recruited for data collection. Each of them sits in front of a

table and is served with different types of food. The food is cut into pieces (if necessary)

and put on a paper plate. They eat the food one piece at a time using a spoon. For

some types of food that are inconvenient to scoop, they feed themselves with their hands

but act like using spoons. While a subject eats the served food, the accelerometer and

gyroscope on each device sample simultaneously. The sampling rate is 100 Hz. The

sampled data on these two devices are transmitted to a mobile phone through Bluetooth

Low Energy (BLE) in real time. On the mobile phone, a software is developed to receive
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all the data and store them on the local storage. The data of each food type are stored

in a separate file. Then, all the data files are transferred to a PC for offline analysis.

4.4 Characterizing Mastication Dynamics

In this section, we first describe motion data preprocessing. Then, we introduce the

extraction of the 37 hand-crafted features.

4.4.1 Motion Data Preprocessing

The motion data preprocessing includes two parts, the sensor data calibration and data

segmentation. We introduce them separately as follows.

Sensor Data Calibration. The motion sensor data may not be accurate because of

the scaling and bias errors. To eliminate them, we calibrate the accelerometer data and

the gyroscope data separately for each device.
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Figure 4.3: Accelerometer data of the X axis and Z axis. (a) Before calibration; (b)
After calibration

Fig. 4.3 (a) shows an example of the raw accelerometer data of the X axis and Z axis.

For the X axis, the raw sensor data are 10.97 and -8.66 when it points to the positive

and negative directions, respectively. The acceleration difference is 19.63, which is about

2g. The g is the gravitational acceleration, which is set to 9.8 m/sec2. Although their

scaling error is not obvious, the raw sensor data are clearly biased toward the positive

direction. For the Z axis, the raw sensor data are 9.14 and -10.85 when it points to the
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positive and negative directions, respectively. The acceleration difference is 19.99, which

is larger than 2g. The raw sensor data of the Z axis have not only the scaling error but

also the bias error.

We calibrate accelerometer data of each axis in the following way [88]. First, we

assume the raw sensor data of the X axis is mX and the true acceleration output of the

X axis is aX . They have the following linear relationship [89]:

aX = kX ·mX + bX . (4.1)

where kX is the scaling factor of the X axis. It scales the acceleration difference between

the positive and negative directions to 2g. kX is defined as

kX =
2 · g

m+
X −m

−
X

, (4.2)

where m+
X and m−

X are the raw sensor data of the X axis when it points to the positive

and negative directions, respectively. bX is the bias of the X axis, and is defined as

bX = −
kX · (m+

X +m−
X)

2
. (4.3)

In the same way, the raw data of the Y and Z axes are calibrated. The calibrated

accelerometer data of the X and Z axes in Fig. 4.3 (a) are shown in Fig. 4.3 (b). We see

that these two errors are eliminated.

For the gyroscope data, the bias of each axis is measured and subtracted from the

raw sensor data. The scaling error of each axis is very small. Thus, we ignore it for

simplicity.

Data Segmentation. We segment the continuous sensor data and extract the chewing

sequences through analyzing the subjects’ head motions during biting. As we introduced

in Section 4.2, the mastication dynamics parameters are extracted from a whole chewing

sequence. As chewing normally happens between two neighboring bites, the chewing se-

quences can be segmented by detecting biting or chewing actions [90, 32]. Here, a general
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biting or chewing detection method is not our focus. Our main goal is to characterize the

mastication dynamics through manually extracting features from a segmented chewing

sequence. As our dataset is collected mainly by using a spoon, the subjects bow their

heads before biting and raise their heads after biting. Therefore, we simply segment the

sensor data by analyzing the subjects’ head motions during biting.

The gyroscope data of the Z axis are appropriate for head motion analysis. According

to the sensor orientations in Fig. 4.2 (d) and (e), when a subject bows or raises his/her

head, the two wearable devices rotate around their own Z axes in opposite directions. We

randomly choose the Z axis on the left device for head motion analysis. Fig. 4.4 shows

the gyroscope data of eating 10 pieces of food. When the subject bows his/her head, the

device rotates clockwise around the Z axis. The gyroscope data are negative and form a

valley. When the subject raises his/her head, the device rotates counter-clockwise. The

gyroscope data are positive and form a peak.
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Figure 4.4: Gyroscope data of the Z axis during eating

We propose three metrics (PeakArea, V alleyArea, and Distance between two neigh-

boring zero-crossing points) to analyze head motions, as shown in Fig. 4.5. PeakArea

is the accumulation of the gyroscope data in a positive peak. It represents the degree

of raising the head. Similarly, V alleyArea is the accumulation of the gyroscope data

in a negative valley. It represents the degree of bowing the head. The third metric is

based on one observation, i.e. the distance between two neighboring zero-crossing points

before and after one peak or valley is relatively larger than the distance between two

neighboring zero-crossing points during chewing.
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Figure 4.5: Three metrics for head motion analysis

With above three metrics, we segment the sensor data as following. We first filter

the gyroscope data using a moving average filter of span s. Then, all the zero-crossing

points are detected. If the Distance between two neighboring zero-crossing points is

larger than DisThres, and the PeakArea between them is larger than PeakAreaThres,

the data segment between these two zero-crossing points is identified as raising head.

Similarly, if the Distance between two neighboring zero-crossing points is larger than

DisThres, and the V alleyArea between them is smaller than V alleyAreaThres, this

data segment is identified as bowing head. The data segment between the end point of

raising head and the start point of following bowing head is taken as a whole chewing

sequence. If a chewing sequence is incomplete and shorter than len, it is dropped.

4.4.2 Feature Extraction

From each chewing sequence, we extract 37 hand-crafted features to characterize the

mastication dynamics. These features are divided into two sets: 1) chewing cycles de-

pendent features. These features characterize the chewing speed, the number of chews,

chewing time, and chewing cycle duration parameters; 2) chewing cycles independent

features. These features characterize the chewing force and skull vibration parameters.

Chewing Cycles Dependent Features. We propose a metric, RMFC , to select one

sensor whose data is most regular and obvious to extract the chewing cycles dependent

features. We observe that if the data of one sensor is more regular and obvious than the
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data of other sensors, its energy should be more concentrated on a small range of frequen-

cies. Accordingly, we define RMFC as the ratio of the maximum frequency component

(MFC) in the chewing frequency range to the sum of all the frequency components. The

sensor whose data has the largest RMFC is selected. The details and justification of this

sensor selection method is introduced in Appendix 4.A. From the selected sensor data,

we extract the chewing cycles dependent features as follows:

Chewing speed. One feature, chewing frequency, is extracted to characterize the

chewing speed parameter. To compute this feature, we first filter the selected sensor

data using a 9th-order one-dimension median filter [76] to reduce the noise. Then, we

conduct Fourier transform on the filtered sensor data. The frequency corresponding

to the MFC in the chewing frequency range, fMFC , is taken as the chewing frequency

feature. Here, we define the chewing frequency range as [0.5, 2.5] Hz [90].

The number of chews. One feature, chewing count, is extracted to characterize the

number of chews. Because each peak in the data of a chewing sequence corresponds to one

muscle contraction, we estimate the chewing count through counting the number of peaks

in the selected sensor data. One problem is that some noise spikes may be falsely counted

as true peaks and exaggerate the counting results. To solve this problem, we first filter

the selected sensor data using the 9th-order median filter. Then, we propose a distance

threshold and an amplitude threshold to further eliminate the noise spikes. For the

distance threshold, we refer to the method in [91]. It requires that the distance between

two neighboring peaks is no less than 3
4 cycle length. The cycle length is calculated

based on the fMFC and the sampling rate, Rs. The distance threshold between two

neighboring peaks, DP2P , is defined as

DP2P =
3

4
· Rs

fMFC
. (4.4)

The second threshold, Pamp, is for the peak amplitude. If the amplitude of a peak is

less than this threshold, this peak is ignored. The details of the proposed peak detection

method are described as follows:
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• Step 1: Zero-crossing point detection. We scan the filtered sensor data sequentially

and find out all zero-crossing points.

• Step 2: Peak detection. One peak with the maximum amplitude is detected be-

tween any two neighboring zero-crossing points.

• Step 3: False peak elimination. We scan all the detected peaks from beginning to

end. If the amplitude of one peak is less than Pamp or the distance between it and

its prior peak is less than DP2P , this peak is dropped.

The number of remaining peaks is taken as the chewing count.

Chewing time. Two features are extracted to characterize the chewing time param-

eter: chewing duration and sequence length. We define the chewing duration feature as

the distance between the first peak and the last peak, L. However, the chewing duration

does not include the time spent on swallowing, which is also useful to distinguish the

food types. Therefore, we extract segment length feature to include the swallowing time.

It is defined as the distance between the first point and the last point of the selected

sensor data.

Chewing cycle duration. Three features are extracted to characterize the parameter

of chewing cycle duration. Suppose n peaks are detected in the selected sensor data.

Their indices are [p1, · · · , pn]. The cycle durations are expressed as [t1,2, · · · , tn−1,n],

where ti,i+1 = pi+1−pi is the duration between the ith chew and the i+ 1th chew. Then,

the maximum, mean, and standard deviation of the cycle durations are extracted as

features.

Chewing Cycles Independent Features. In the following, we introduce how to

extract features to characterize the chewing force and skull vibration parameters.

Chewing force. Two features are extracted to characterize the chewing force parame-

ter: the magnitude of translation and the magnitude of rotation. Chewing force indicates

the contraction intensity of the mastication muscles. The contraction of the temporalis

generates both translation and rotation movements of the wearable devices. The greater
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the mastication force, the larger the translation and rotation. Accordingly, we propose

to use the accelerometer and gyroscope data to quantify the translation and rotation,

respectively. To compute the magnitude of translation, we first filter the accelerometer

data of each axis using the 9th-order median filter. According to the peak detection

results, we extract filtered 3-axis accelerometer data from the first peak to the last peak.

Then, the ith filtered data of these three axes, aiX , aiY and aiZ , are composed into one

scalar acceleration ai using Equation 3.1. Here, i = 1, 2, . . . , L.

The accumulative acceleration, Sa, is defined as Sa =
∑L

i=1 ai. Because a subject

may chew the food on either the left side or the right side, we calculate the accumulative

accelerations for the left accelerometer and right accelerometer separately, which are

expressed as SLefta and SRighta . Then, the magnitude of translation, TMag, is formulated

as:

TMag =
SLefta + SRighta

L
, (4.5)

Similarly, from the 3-axis gyroscope data, we calculate the magnitude of rotation, RMag,

using the same method above.

Skull vibration. We extract 14 features from each accelerometer to characterize the

skull vibration parameter. These features are calculated from the raw accelerometer

data between the first and last peaks. First, using Eq. 3.1, the sensor readings of

the three axes are composed into scalar accelerations, which are not sensitive to the

sensor orientations. From the composed acceleration data, we calculate the number

of mean-crossing, i.e. the times of the data goes across its mean. We take it as the

first skull vibration feature. Then, the Fourier transform is conducted on the composed

acceleration data to compute its single-sided amplitude spectrum [69] (without direct

current component). From the single-sided amplitude spectrum, the MFC, entropy [92],

and energy are calculated as the second, third, and fourth skull vibration features. The

energy is defined as the sum of squared spectrum components. Finally, we partition all

the spectrum components into 10 bins, i.e. (0, 5] Hz, (5, 10] Hz, ..., (45, 50] Hz, according
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to their corresponding frequencies. The spectrum components in each bin are summed

together as one feature. These 10 features are used to represent the energy distribution

of skull vibration at different frequency intervals. Altogether 28 features are extracted

from the left and right accelerometers.

In total, 37 hand-crafted features are extracted from each chewing sequence, as shown

in Table 4.2. The first column is the feature number. The second column shows the fea-

ture name. The third column shows the mastication dynamics parameters characterized

by these features. The last column indicates the data source where each feature is ex-

tracted.

Table 4.2: The 37 hand-crafted features for mastication dynamics characterization

No. Feature name Characterized parameter The data source
1 Chewing frequency Chewing speed
2 Chewing count The number of chews
3 Chewing duration Chewing time
4 Sequence length Selected gyroscope data
5 Maximum of cycle durations
6 Mean of cycle durations Chewing cycle duration
7 Std of cycle durations
8 Magnitude of translation Chewing force Two accelerometers
9 Magnitude of rotation Chewing force Two gyroscopes
10 Number of mean-crossing
11 Entropy of frequency spectrum
12 Energy of frequency spectrum Skull vibration The left accelerometer
13 Maximum frequency component

14-23 Sum of spectrum comp. in 10 bins
24 Number of mean-crossing
25 Entropy of frequency spectrum
26 Energy of frequency spectrum Skull vibration The right accelerometer
27 Maximum frequency component

28-37 Sum of spectrum comp. in 10 bins

4.5 Food Type Classification

Existing works provide strong evidence to support our proposed food type recognition

method. Using well controlled food stimuli and strict criteria, existing research on masti-

cation [80, 93] demonstrated the stability of intra-individual mastication dynamics. The

experimental results clearly showed that “there are no significant differences between

the values of the masticatory parameters for a given individual who is asked to chew the

same food several times [80]”. This conclusion indicates that our proposed mastication
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dynamcis-based food type recognition method is valid.

Mastication dynamics-based food type recognition needs a personalized classification

model for each subject. These existing works [80, 93] also examined the inter-individual

variation of mastication dynamics. All the masticatory parameters demonstrated a large

variation between individuals [80]. For example, an experiment [93] selected 15 young

male subjects to chew four food products. The results showed that the parameters of

mandible motions and muscle activities varied up to 3-fold among these subjects [93].

Therefore, we train a personalized food type classification model for each subject.

We choose MLP as the multi-class classifier. This is because the mapping function

from the hand-crafted features to the food types is implicit and highly likely nonlinear.

MLP is a feedforward artificial neural network model. It specializes in modeling nonlinear

mapping from the input neurons to the output neurons [73]. It learns the connection

weights between neurons using backpropagation technique. The learned network is a

very good approximation of the mapping function from these features to the food types.

4.6 Experiment and Evaluation

In this section, we first introduce the experiment setup, followed by the classification

dataset. Then, we evaluate the performance of our proposed method with 11 food cat-

egories and 20 food types. Next, we introduce the feature importance analysis. Finally,

we present the recognition performance on either the left side or the right side.

4.6.1 Experiment Setup

With the approval from the institutional review board (IRB), ten male users and five

female users were recruited to collect the experimental data. Their demographic informa-

tion is shown in Table 4.3, including age, gender, weight, head circumference, dominant

feeding hand, and whether they wear glasses or not. The sensor deployment and data

collection method are the same to those in Section 4.3.

Twenty types of food are selected according to the following three criteria: 1) they
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Table 4.3: The users’ demographic information and data collection date

User Age Gender Weight Head cir. Feeding With Data collection date
(lbs) (cm) hand glasses (1st part; 2nd part)

User 1 39 Male 200 58 Right No 03/30/2018; 04/13/2018
User 2 34 Male 134 56 Right No 03/30/2018; 10/01/2018
User 3 31 Male 145 58 Right No 03/30/2018; 04/13/2018
User 4 29 Male 132 56 Right Yes 04/02/2018; 04/13/2018
User 5 28 Male 138 58 Right Yes 04/02/2018; 04/13/2018
User 6 32 Male 120 54 Right Yes 04/03/2018; 04/13/2018
User 7 29 Male 170 58 Right Yes 10/03/2018; 10/23/2018
User 8 28 Male 150 58 Right Yes 10/19/2018; 10/20/2018
User 9 41 Male 159 58 Right No 10/19/2018; 10/20/2018
User 10 24 Male 165 58 Right Yes 10/22/2018; 10/23/2018
User 11 24 Female 100 58 Right Yes 04/14/2019; 04/12/2019
User 12 41 Female 128 56 Right Yes 04/13/2019; 04/12/2019
User 13 27 Female 126 59 Right Yes 04/14/2019; 04/13/2019
User 14 37 Female 130 56 Right Yes 04/15/2019; 04/16/2019
User 15 23 Female 110 57 Right Yes 04/16/2019; 04/17/2019

Table 4.4: The food types in each food category

Food category The food types included
1 Nuts 1 Almond; 2 Pecan; 3 Peanut
2 Gum Candy 4 Gummi Bear
3 Dry Fruit Slices 5 Dry Pineapple Tidbit; 6 Dry Mongo Slice; 7 Dry Banana Chip
4 Fresh Fruits 8 Blueberry; 9 Fresh Apple Slice; 10 Fresh Tomato; 11 Green Grape
5 Pretzel 12 Pretzel Stick
6 Corn and Fry 13 Popcorn; 14 Potato Chip; 15 Potato Fry
7 Cookie 16 Cookie
8 Vegetable 17 Carrot
9 Bread 18 Bread
10 Meat 19 Chicken Breast Nugget
11 Frozen Cream 20 Ice Cream

have different food properties (hardness, elasticity, fracturability, adhesiveness, and size);

2) they are commonly eaten food. All the food is bought from the Food Lion Grocery

Store; 3) each type of food contains only one composition. We do not include food types

that contain multiple compositions, such as the sandwich or hamburger. These food

types are divided into 11 categories, as shown in Table 4.4.

According to the users’ feedback in the preliminary experiment, it is very difficult for

them to eat all the food at a time. Therefore, the data collection for each user is done on

two different days, as shown in Table 4.3. For each male user, he eats the first 15 types

of food on one day and the remaining five types of food on another day. Because the

female users prefer a more balanced division of the food between two days, we adjust the

data collection process for the female users accordingly. For each female user, she eats
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the first 12 types of food on one day and the remaining eight types of food on another

day.

For each of the first 19 types of food, we serve 10 pieces to each user. For the Ice

Cream, we serve it in a bowl and ask users to take 10 bites (except that user 1 takes 12

bites). The pictures of the served food are shown in Fig. 4.6. For each type of food, the

users chew half on the left side and the other half on the right side. The users eat one

type of food at a time. After finishing one type of food, they may drink some water or

have a rest until they feel comfortable to eat another type of food.

   
1 Almond 2 Pecan 3 Peanut 4 Gummi Bear 5 Dry Pineapple Tidbit 

  
6 Dry Mongo Slice 7 Dry Banana Chip 8 Blueberry 9 Fresh Apple Slice 10 Fresh Tomato 

     
11 Green Grape 12 Pretzel Stick 13 Popcorn 14 Potato Chip 15 Potato Fry 

   
16 Cookie 17 Carrot 18 Bread 19 Chicken Breast Nugget 20 Ice Cream 

 
Figure 4.6: The 20 types of food served

A few users dislike some types of food. They are allowed to skip them. User 10 does

not eat the Carrot. User 11 does not eat the Almond, Peanut and Gummi Bear. In

addition, user 13 eats only five pieces of Dry Pinapple Tidbit, seven pieces of Dry Mongo

Slice, and eight pieces of Dry Banana Chip.

The data recording starts just before one user eats one type of food and stops just
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after the user finishes it. Its corresponding food type is manually labeled.

4.6.2 Classification Dataset

The sensor data are segmented to extract the chewing sequences. For the data segmen-

tation, the span of the moving average filter, s, is set to 31. The thresholds of three

segmentation metrics (DisThres, PeakAreaThres, and V alleyAreaThres) are set to

75, 2000, -2000, respectively. The length threshold of the chewing sequence, len, is set

to 300, which represents 3 seconds.

The last chewing sequence is dropped in the real application because there is no

following biting action. However, in our lab experiment, the data collection stops just

after the user finishes one type of food. Thus, the remaining data after the last bite is

also a complete chewing sequence, and we include it in the following experiments.

Table 4.5 shows the number of detected chewing sequences. Of all the 2952 chewing

sequences. 2742 are detected. The detection rate reaches 92.9%. Most missing sequences

belong to the 8th (the Blueberry) and 20th (the Ice cream) food types. These two types

of food need little chewing efforts. Thus, some chewing sequences are shorter than the

configured length threshold, len, and hence are dropped. User 12 has 11 detected chewing

sequences for the 5th, 9th and 11th food types. The reason may be the user occasionally

bows her head to have a look at her smart phone. This head motion is falsely identified

as biting. Thus, one chewing sequence is segmented into two incomplete sequences.

Table 4.5: Number of detected chewing sequences

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Subtotal
User 1 10 10 10 10 10 10 10 8 10 10 10 10 10 10 10 10 10 10 10 8 196/202
User 2 10 10 10 10 10 9 10 0 10 10 10 10 5 9 7 10 10 10 10 6 176/200
User 3 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 6 196/200
User 4 10 10 10 10 10 10 10 9 10 10 10 10 9 10 9 10 10 10 9 8 194/200
User 5 10 9 10 10 9 10 10 10 9 10 9 6 9 8 7 10 9 10 9 4 178/200
User 6 10 10 10 10 10 10 10 10 10 10 10 10 9 9 9 9 9 8 10 7 190/200
User 7 10 10 10 10 10 10 10 1 10 9 10 10 10 10 9 10 9 10 10 2 180/200
User 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 200/200
User 9 10 9 10 10 10 10 10 6 10 10 10 9 10 10 9 10 10 10 10 4 187/200
User 10 9 10 10 10 10 10 10 7 10 9 10 10 10 10 10 10 − 10 10 6 181/190
User 11 − 10 − − 9 9 9 10 10 10 9 10 10 10 8 10 10 10 10 5 159/170
User 12 10 9 9 8 11 8 9 9 11 9 11 9 9 8 7 10 10 10 1 2 170/200
User 13 10 10 10 6 7 5 6 1 8 5 9 9 2 7 9 10 9 10 10 3 146/190
User 14 10 10 9 10 10 10 10 10 9 9 9 10 10 9 9 10 10 9 10 7 190/200
User 15 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 9 10 10 199/200

We extract features from each chewing sequence to form a feature vector. For the
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peak detection, the peak amplitude threshold, Pamp, is set to 4. Of all the 2742 detected

chewing sequences, 34 chewing sequences contain no more than one peak. The first

reason is that some users chew only a few times or do not chew at all when eating the

Ice Cream. The second reason is that the number of peaks is under-estimated for some

chewing sequences, because the amplitude of some real peaks is smaller than the peak

amplitude threshold. As the chewing duration feature is defined as the distance between

the first and last peaks, it equals zero for these chewing sequences, which is unreasonable.

Thus, these chewing sequences are dropped. The resulting sample numbers of these 15

users are 196, 171, 194, 194, 178, 187, 180, 195, 186, 181, 156, 163, 144, 186, and 197,

respectively.

The feature vectors of each user are normalized using the z-score algorithm [94] to

eliminate the scaling effects among the features. The z-score algorithm normalizes each

feature so that all the samples of this feature have mean 0 and standard deviation 1

[94]. The normalized feature vectors are combined with the corresponding labels of 11

food categories or 20 food types. Then, the classification datasets are obtained for model

training and testing.

4.6.3 Performance Evaluation with the 11 Food Categories and 20

Food Types

The evaluation experiments are conducted for each user separately. The 10-fold cross-

validation test is utilized to evaluate the recognition performance. The MLP classifier in

the Weka toolkit [72] is used in our experiments. We adopt the default parameters for

the MLP classifier in all the following experiments.

Table 4.6 and Table 4.7 show the recognition accuracies on the 11 food categories

and 20 food types, respectively. We see that our proposed method accurately recognizes

these 11 food categories and 20 food types. For the recognition of 11 food categories,

the average accuracy of 15 users reaches 74.3%. The accuracy of a single user is up to

86.7%; for the recognition of 20 food types, the average accuracy of 15 users is 64.8%.

58



The accuracy of a single user is up to 77.0%. Compared with the average accuracy on

the 20 food types, the average accuracy on the 11 food categories increases 9.5%. If we

use a random classifier, its recognition accuracies on the 11 food categories and 20 food

types are 9.1% and 5.0%, respectively. Comparatively, our proposed method is eight

times as accurate as the random classifier on the 11 food categories, and thirteen times

as accurate as the random classifier on the 20 food types. These results do approve the

concept of our design. In addition, the performance evaluation is based on the data

segmentation results. As we introduced in Section 6.2, the data segmentation results

are not entirely correct (e.g. user 12 has 11 detected chewing sequences for the 5th, 9th

and 11th food types). Therefore, with a more accurate data segmentation algorithm, the

performance of our proposed method could be further improved.

Table 4.6: Recognition accuracy on the 11 food categories

User ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.±Std
Accy (%) 79.6 79.5 85.6 85.1 66.3 78.6 73.3 86.7 69.9 79.0 74.4 53.4 68.8 54.8 79.7 74.3±10.2

Table 4.7: Recognition accuracy on the 20 food types

User ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.±Std
Accy (%) 77.0 64.9 75.8 75.8 52.2 70.6 58.3 74.9 65.6 72.4 67.9 49.1 55.6 42.5 69.0 64.8±10.8

The recognition performance of the male users is better than that of the female users.

For the recognition of 11 food categories, the average accuracy of ten male users (users 1

to 10) is 78.4%; the average accuracy of five female users (users 11 to 15) is 66.2%. For

the recognition of 20 food types, the average accuracy of ten male users is 68.8%; the

average accuracy of five female users is 56.8%. In these two experiments, the average

accuracies of the male users are about 12% higher than that of the female users. One

possible reason is that the male users have stronger chewing force than the female users.

According to a clinical study on the habitual mastication patterns of 20 male users and

17 female users, “men used significantly greater chewing force than women [95]”. The

stronger the chewing force, the larger the muscle bulge. Therefore, the motion data are

more distinguishable for different food categories and food types.
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The recognition accuracies are possibly related to users’ eating speed. From Table 4.6

and Table 4.7 we also see that the recognition accuracies vary a lot for different users. For

the recognition of 11 food categories, the standard deviation of accuracies for 15 users

is 10.2%. For the recognition of 20 food types, the standard deviation of accuracies for

15 users is 10.8%. To investigate the accuracy variation for different users, we examine

users’ eating speed. Table 4.8 shows the total number of chews during eating all these

20 types of food. We see that users 4, 6, and 8 chew more than 5000 times in total.

They eat slower than other users. Their recognition accuracies on the 11 food categories

are 85.1%, 78.6%, and 86.7%, respectively. These accuracies are obviously higher than

the average accuracy of 74.3%. The same is true for their recognition accuracies on

the 20 food types. On the contrary, users 5, 7, 9, and 13 chew less than 3000 times

in total. They eat faster than other users. Their recognition accuracies on the 11 food

categories are 66.3%, 73.3%, 69.9%, and 68.8%, respectively. These accuracies are lower

than the average accuracy of 74.3%. The same is true for users 5, 7, and 13 on the

recognition accuracies of 20 food types. User 9’s accuracy on 20 food types is 0.8%

higher than the average accuracy. According to the above observations, we believe that

the recognition accuracies are related to users’ eating speed. When a user eats very fast,

the corresponding chewing sequences are short. Thus, the extracted features might be

less distinguishable among different food categories and food types.

Table 4.8: Total number of chews during eating all the food

User ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# of chews 4554 3131 3840 6177 2863 5357 2869 5587 2554 3098 3698 3073 2333 4856 4884

To examine the misclassified samples among 20 food types, we sum the classification

confusion matrices of these 15 users together and show it in Fig. 4.7. We see that the

misclassified samples cluster in several areas. The first area is among the 1st, 2nd, and

3rd food types. These three food types belong to the 1st category (the Nuts). The

second area is between the 5th and 6th food types, i.e. the Dry Pineapple Tidbit and

Dry Mongo Slice. The third area is between the 10th and 11th food types, i.e. the
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Fresh Tomato and Green Grape. The fourth area is among the 13th, 14th, and 15th

food types. These three food types belong to the 6th category (the Corn and Fry).

Clearly, misclassification often happens among food types with similar food properties

and accordingly similar mastication dynamics. This indicates that our proposed method

specializes in recognizing the food types with different food properties. This conclusion

is consistent with the motivation of our proposed method.
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Figure 4.7: Sum of the confusion matrices of the 15 users

4.6.4 Feature Importance Analysis

The 37 hand-crafted features have different importances for the classification models.

Identifying the most important features are very helpful for the nutritionists and medical

professionals to understand our proposed food type recognition method.

The importances of these features are evaluated as follows. We utilize the InfoGainAt-

tributeEval algorithm in Weka toolkit [72] to rank all these 37 features for each user’s

dataset. The InfoGainAttributeEval algorithm “evaluates the worth of an attribute (i.e.

feature) by measuring the information gain with respect to the class [72]”. Then, from

the ranked features, the top five features are selected. Based on all the selected features
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from 15 users, we count the number of occurrences of each feature. This number of

occurrences is used to roughly represent the importance of a feature. The larger the

number, the more important this feature is.
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Figure 4.8: The number of occurrences of each selected feature on the datasets of 11
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Figure 4.9: The number of occurrences of each selected feature on the datasets of 20
food types

Fig. 4.8 and Fig. 4.9 show the number of occurrences of each selected feature on
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the datasets of 11 food categories and 20 food types, respectively. We see that the 1st

(chewing frequency), 3rd (chewing duration), 4th (sequence length), and 8th (magnitude

of translation) features have larger numbers of occurrences than other features. In the

datasets of 11 food categories, they occurs 6, 7, 7, and 12 times, respectively. In the

datasets of 20 food types, they occurs 8, 5, 7, and 10 times, respectively. These four

features characterize the chewing speed, chewing time, and chewing force parameters,

which represent the temporalis muscle activities. The above observation indicates that

the mastication muscle activities are most important for food type recognition.

The skull vibration is also important for food type recognition. The 10-37th features

characterize skull vibration. We see that most of these features occur a few times. Of

these features, the 11th feature (entropy of frequency spectrum on the left device) and

the 24th feature (number of mean-crossing on the right device) are two important ones.

The 11th feature occurs 4 and 3 times in the datasets of 11 food categories and 20 food

types, respectively. The 24th feature occurs 5 and 3 times in the datasets of 11 food

categories and 20 food types, respectively. This indicates that the skull vibration has

the characteristic of high frequency irregularity and data fluctuation.

The mandible motions are less important for food type recognition in our proposed

method. The 5-7th features (maximum, mean, and std of cycle durations) characterize

the mandible motions. However, these three features are not selected. Though they may

be helpful for the food type recognition, their contributions are relatively small.

4.6.5 Performance Evaluation of Single-Side Recognition

In our proposed method, two devices are used to sense the mastication dynamics simul-

taneously. If only one device is utilized to sense the mastication dynamics of either the

left side or the right side, what is the recognition performance?

To answer this question, we evaluate the performance of our proposed method using

the left device and the right device, respectively. First, we segment the data of each

device using its own gyroscope data of the Z axis. Then, we extract features from each
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chewing sequence. Compared with the two-side recognition (i.e. using both the left and

right devices), the feature extraction process of the single-side recognition (i.e. using

either the left device or the right device) has three differences. First, to calculate the

chewing cycles dependent features, one sensor whose data is most regular and obvious

is selected from the sensors on the host device. Second, the 8th feature (magnitude of

translation) and the 9th feature (magnitude of rotation) are calculated from the data of

the accelerometer and gyroscope, respectively, on the host device. Third, for the left-side

recognition, 24-37th features (skull vibration related features calculated from the right

accelerometer) do not existed. Similarly, for the right-side recognition, 10-23th features

(skull vibration related features calculated from the left accelerometer) do not existed.

Therefore, in total there are 23 features for the single-side recognition.

Table 4.9: Single-side recognition accuracy on the 11 food categories

User ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.±Std
Left (%) 74.0 73.3 85.1 75.3 65.0 65.4 62.2 72.7 65.8 63.5 59.1 57.3 59.7 50.5 70.9 66.7±8.7
Right (%) 77.3 72.2 77.9 84.8 53.6 74.8 72.8 88.8 70.3 78.5 73.7 59.9 76.6 66.5 78.4 73.7±8.9

Table 4.10: Single-side recognition accuracy on the 20 food types

User ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.±Std
Left (%) 60.2 59.3 75.4 69.1 45.8 54.8 54.4 58.1 57.8 50.3 55.8 39.6 44.4 42.0 57.3 55.0±9.7
Right (%) 70.2 52.5 66.2 74.9 46.9 63.2 54.3 73.5 57.8 66.1 67.9 42.7 60.7 49.2 67.8 60.9±10.0

The single-side recognition is able to distinguish the food types accurately. Table 4.9

and Table 4.10 show the single-side recognition accuracies on the 11 food categories and

20 food types, respectively. We see that the single-side recognition is also capable of

distinguishing the 11 food categories and 20 food types accurately, although the average

accuracies of the single-side recognition are slightly lower than the average accuracies

of the two-side recognition in Table 4.6 and Table 4.7. The average accuracies of the

left-side recognition on the 11 food categories and 20 food types are 66.7% and 55.0%,

respectively. The right-side recognition outperforms the left-side recognition and gets

close performance as the two-side recognition. The average accuracies of the right-side

recognition on the 11 food categories and 20 food types are 73.7% and 60.9%, respectively.

The above experimental results indicate that, in spite of slight accuracy degradation, our
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proposed method works for the single-side recognition.

The performances of the single-side recognition vary for different users. For most

users, the performance of the right-side recognition is better than that of the left-side

recognition. However, for users 2 and 3, the left-side recognition outperforms the right-

side recognition. The reason may be each user has his/her own preference to chew the

food on the left or right side. Thus, the mastication muscles of the left and right sides

are not exactly symmetric. Accordingly, the sensor data of these two sides have different

capability to characterize the mastication dynamics.

4.7 Comparison with Existing Wearable Sensor-Based Meth-

ods

In this section, we present a comparison between our proposed method and the existing

works. We first introduce the food types tested by these methods. Then, we compare

their recognition performances. Finally, we analyze the intrusiveness of these methods.

4.7.1 Food Types

The wearable sensor-based methods utilize different sets of food types. Table 4.11 shows

the food types tested by the existing methods and our proposed method. The food

types of each method are sorted in alphabetical order. We see that these methods utilize

different sets of food types. The reason may be that these methods use different sensors.

For example, Päßler et al. [41], Bi et al. [43], and Amft et al. [44] used microphones to

recognize the food types. Accordingly, they prefer the food types with different acoustic

properties. Similarly, Zhang et al. [47] utilized EMG. Alshurafa et al. [49] used a

piezoelectric sensor. Mirtchouk et al. [50] took advantage of both microphones in an

earbud and motion sensors in the Google Glass and smartwatches. Thus, they selected

the food types that have different acoustic properties and hand/head motions during

food delivery and food intake. Compared with these existing methods, our proposed
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method utilizes only motion sensors in a headband to sense the mastication dynamics.

Therefore, we select 11 food categories with different mastication related food properties.

They are the Nuts, Gum Candy, Dry Fruit Slices, Fresh Fruits, Pretzel, Corn and Fry,

Cookie, Vegetable, Bead, Meat, and Frozen Cream. These food categories have different

hardness, elasticity, fracturability, adhesiveness, and size. For some categories, we select

multiple food types because their food properties have obvious difference even in the

same category. For example, in the category of Corn and Fry, three food types are

included. They are the popcorn, potato chip, and potato fry.

Table 4.11: Food types tested by wearable sensor-based methods

Food types
Päβler et al. [41] Apple, carrot, chocolate, peanut, potato chips, pudding, walnut, drink

(juice/water)
Bi et al. [43] Apple, carrot, cookie, peanut, potato chips, walnuts, water
Amft et al. [44] Apple, biscuit, bread, carrot, chocolate, cooked chicken, cooked potato, corn-

bar, french fries, lettuce, maize, muffin, orange, pasta, peanut, pepper, potato
chips, toast, waffles

Zhang et al. [47] Banana, biscuit, carrot, jelly baby, toast
Alshurafa et al. [49] Liquid (hot tea, water) and solid (chocolate, nuts, patty)
Mirtchouk etc. [50] Almonds, apple, bagel, banana, bread, broccoli, burger, burrito, celery, chick-

en, chipotle, chips, chocolate, citrus, danish, drink, dumpling, eggs, fries,
ice cream, peanuts, peppers, pie, pizza, popcorn, potato, pretzel, rice, salad,
sandwich, shake, shrimp, soup, spaghetti, steak, strawberries, sushi, tacos,
wings, yogurt

Our method Almond, apple slice, blueberry, bread, carrot, chicken breast nugget, cookie,
dry banana chip, dry mongo slice, dry pineapple tidbit, grape, gummi bear,
ice cream, peanut, pecan, popcorn, potato chip, potato fry, pretzel stick,
tomato

Our proposed method has more food types than most of these existing methods. In

total, 20 food types are included in our user study, as shown in Table 4.12. Compara-

tively, Päβler et al.’s method [41] included seven food types and one drink; Bi et al.’s

method [43] tested seven food types; Amft et al.’s method [44] had 19 food types; Zhang

et al.’s method [47] contained five food types; and Alshurafa et al.’s method [49] only

included two food categories. Our proposed method contains more food types than the

above methods. We also notice that Mirtchouk etc.’s method [50] included more food

types than our proposed method. However, this method required a user to wear an

earbud, a Google Glass and two smartwatches simultaneously. In addition, it required

using a camera to record the video for manually annotation. This method is obviously
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intrusive.

Table 4.12: Performance comparison of wearable sensor-based methods

Sensor Host object Intrusive # of subj. # of food
types

Accuracy

Päβler et al. [41] 2 microphones Hearing aid
package

Median 51 7 food types
& 1 drink

79% on 10%
of all records

Bi et al. [43] 1 microphone Necklace-like
device

High 12 7 food types Average accu-
racy of 84.9%

Amft et al. [44] 1 microphone Ear-pad Low 3 19 food types Accuracy of
80%

Zhang et al. [47] 1 EMG sensor Eyeglass Median 8 5 food types 63% to 84%
for sequences

Alshurafa et al. [49] 1 piezo. sen-
sor

Necklace High 10 2 categories 90% for liquid
and solid

Mirtchouk etc. [50] Audio and
motion sen-
sors

Glass, ear-
bud, smart-
watch

Median 6 40 food types Accuracy of
82.7%

Our method 2 accel. & 2
gyroscopes

Headband Low 15 11 cat. (20
food types)

Average accu-
racy of 74.3%

4.7.2 Performance Comparison

For the recognition accuracy, it is infeasible to compare with existing wearable sensor-

based methods using the same dataset because the sensors used are different. Here, we

present a short performance comparison between our proposed method and other existing

methods, as shown in Table 4.12. For Päßler et al.’s work [41] and Bi et al.’s work [43],

they only recognized seven food types. Our method recognizes 11 food categories (in

total 20 types of food). Amft et al.’s work [44] and our method have a similar number

of food types, and both accurately recognize these food types. However, they use a

microphone, which is easily impacted by ambient acoustic noise. For Zhang et al.’s

work [47] and Alshurafa et al.’s work [49], they only recognized five food types and

two food categories, respectively. Our method recognizes 20 food types and 11 food

categories, which are much more than their methods. Mirtchouk et al. [50] presented a

pioneering work on sensor fusion based food type recognition. They accurately classified

40 food types. However, they required a user to wear an earbud, a Google Glass and two

smartwatches simultaneously during eating. Our method needs only a headband. We are

also aware that they reported 62.3% accuracy when only Google Glass is used. However,

for their Google Glass only solution, they still required using a camera to record the

video during model training and testing. The video was used to manually annotate the

exact time of food delivery, food intake, and chewing. Comparatively, our method only
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uses motion sensors.

4.7.3 Intrusiveness Analysis

In the following, we analyze the intrusiveness of these wearable sensor-based methods.

Päßler et al. [41] deployed two microphones in a hearing aid package. The in-ear

microphone was attached on the earmold that was placed in the ear canal. The reference

microphone was attached on the hearing aid that hooked over the top of the ear. The

earmold blocks the ear canal and affects daily communication. In addition, wearing a

hearing aid package may restrict some daily activities (e.g. running). Bi et al. [43]

deployed a microphone on a user’s neck to record acoustic signals during eating. This

sensor deployment is intrusive. Amft et al. [44] embedded a microphone in an ear-pad

case. Compared with the headphone, the ear-pad reduces ear occlusion and increases

user comfort. However, it still blocks the ear canal and affects daily communication to

some degree.

Zhang et al. [47] embedded EMG electrodes into 3D-printed eyeglasses. Although

the eyeglasses is commonly used in daily living, the skin contact of electrodes at the nose

and ear areas is intrusive. Alshurafa et al. [49] embedded a piezoelectric sensor against

the throat to detect skin motion in the lower trachea during ingestion. This method is

obviously intrusive and uncomfortable for long-term wear.

Mirtchouk et al. [50] utilized an earbud, a Google Glass and two smartwatches to

collect sensor data simultaneously. Though these three kinds of devices are commonly

used in daily living, wearing all these devices at the same time certainly interferes the

user’s daily living.

Our proposed method embeds motion sensors into a headband. The motion sensors

need no skin contact. In addition, the headband is often used by some people for fashion

and practical purposes (e.g. hold hair away from the face or eyes). We are also aware

that some people are not used to wearing headband. For those who do not prefer to wear

a headband, we can use a hat as the host object and embed the sensors at the inside
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edge of the hat.

4.8 Discussion and Future Work

In this section, we discuss some implementation issues of our proposed method and

introduce some future work.

In our experiment, we only include food types that contain one composition. For

the food types that consist of multiple compositions (such as the sandwich, pizza, and

hamburger), the sensed mastication dynamics represent a mixture of food properties of

all the compositions. Accordingly, the performance of the recognition model may be

reduced, especially when these compositions are included as independent food types.

Moreover, the variety of the composition proportion makes this problem more difficult.

We will investigate this problem in the future.

The evaluation of our proposed method is done in a lab environment, in which some

confounding factors in real life scenarios are not considered. For example, people eat

while talking and drinking. The talking and drinking activities normally happen after

a swallow and before the next bite. These two noisy activities can be filtered using

an eating/chewing detection module [90]. We plan to integrate this module into our

proposed method in the future.

4.9 Conclusion

In this chapter, a motion sensor-based food type recognition method is proposed. We

observe that each type of food has its own intrinsic properties, such as hardness, elas-

ticity, fracturability, adhesiveness, and size. Different food properties result in different

mastication dynamics. Through embedding motion sensors in a headband and deploying

the sensors on the temporalis muscles, the mastication dynamics can be captured accu-

rately. Based on these observations, we propose the first effort in using motion sensors to

sense mastication dynamics and infer food types accordingly. We define six mastication
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dynamics parameters to represent these food properties. From each chewing sequence,

we extract 37 hand-crafted features to explicitly characterize the mastication dynamics

using motion sensor data. Experiments are conducted with 15 human subjects on 11

food categories (in total 20 types of food). The average recognition accuracy of these 15

human subjects is 74.3%. The accuracy of a single human subject is up to 86.7%.

4.A Sensor Selection for Extracting Chewing Cycles De-

pendent Features

Each chewing sequence contains data from 12 sensors. They are the X, Y and Z axes

of the accelerometer and gyroscope of the left and right devices. Fig. 4.10 shows the

3-axis accelerometer data and the 3-axis gyroscope data in one chewing sequence. We

clearly see that the gyroscope data is more regular and obvious than the accelerometer

data, especially for the X axis and the Y axis. Therefore, we propose a metric, RMFC ,

to select one sensor whose data is most regular and obvious from the X and Y axes of

the left and right gyroscopes.
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Figure 4.10: One chewing sequence. (a) Accelerometer data; (b) Gyroscope data

We observe that if the data of one sensor is more regular and obvious than the data

of other sensors, its energy should be more concentrated on a small range of frequencies.

Taking the 3-axis gyroscope data of one chewing sequence in Fig. 4.10(b) as an example,

we first filter the data of each axis using a 9th-order one-dimension median filter [76]

to reduce the noise. Then, we conduct Fourier transform on the filtered data of each
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axis. The single-sided amplitude spectrum [69] (without direct current component) of

the 3-axis gyroscope data is shown in Fig. 4.11. We see that the X and Y axes have

obvious spikes near 2.25 Hz and 4.5 Hz. The spikes near 2.25 Hz indicate the frequency

amplitude of single chewing cycles, and the spikes near 4.5 Hz indicate the frequency

amplitude of double chewing cycles. Based on the above observation, we define RMFC as

the ratio of the maximum frequency component (MFC) in the chewing frequency range

to the sum of all the frequency components. That is,

RMFC =
MFC

Sum(Ci)
, (4.6)

where Ci is the amplitude of the ith frequency component. A large RMFC indicates

that the energy of the corresponding sensor data is concentrated on a small range of

frequencies. Accordingly, the sensor whose data has the largest RMFC is selected for

extracting the chewing cycles dependent features.

2.25 10 20 30 40 50
Frequency (Hz)

0

4

8

A
m

pl
itu

de

X axis
Y axis
Z axis

Figure 4.11: Single-sided amplitude spectrum of the gyroscope data in Fig. 4.10 (b)
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Chapter 5

Wearable Motion Sensor-Based

Chewing Side Detection

5.1 Introduction

Chewing side preference is an unhealthy dietary habit that is very common but often

overlooked. A subject with chewing side preference demonstrates a tendency to chew

food mainly on one side [9]. This tendency causes lateral asymmetry of chewing force

and occlusal contact area [96]. Accordingly, it can lead to several diseases, such as

lateral facial asymmetry [9], teeth abrasion [97], temporomandibular disorders (TMD)

[96, 98], malocclusion, and stomach illness [99]. Clinical studies have demonstrated that

the majority of people have a chewing side preference. Donnell et al. [100] examined 57

children aged 6-8 years old. The percentage with a chewing side preference varies “from

70% of the caries free group to 92% of the group with caries, pathology and pain [100]”.

Tiwari et al. [9] examined 76 healthy adults with a mean age of 20.8. They observed

that 75 of these adults had a chewing side preference. However, more than half were not

aware their habit of chewing side preference.

In order to detect chewing side preference and quantify its severity in a continuous

and convenient way, several wearable sensor-based methods have been proposed in recent

years. Chung et al. [60] embedded two load cells into hinges on both sides of a pair of
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glasses to recognize ingestive and facial behaviors, such as head movement, left chewing,

right chewing, winking and talking. This method heavily relies on the sensitivity and

deployment of the load cells. In addition, it is a coarse-grained method because each

motion detection is based on a fixed-length window of 3 seconds instead of one chew.

Lucena et al. [61] attached two motion sensors to a subject’s jaw and forehead to sense

the jaw movements and detect chewing sides. This method is obviously intrusive.

One research challenge is how to detect chewing sides accurately and less intrusively

using wearable sensors. To address this challenge, we investigate mastication muscle

bulge and skull vibration during chewing. We observe that: 1) chewing activity generates

mastication muscle bulge and skull vibration. During chewing, the mastication muscles

contract and relax rhythmically. When the mastication muscles contract, they bulge to

some degree; when these muscles relax, they return to the original shape. In addition,

food grinding and tooth friction during chewing cause skull vibration. 2) muscle bulge

and skull vibration can be sensed by wearable motion sensors. When we deploy motion

sensors on the mastication muscles, the muscle bulge and skull vibration cause translation

and rotation movements of these sensors. 3) the muscle bulge and skull vibration of the

chewing side are different from those of the non-chewing side. A subject normally exerts

larger chewing force on the chewing side than that on the non-chewing side. Thus, the

muscle bulge and skull vibration of the chewing side are relatively larger than those of

the non-chewing side.

Based on the above observations, we propose to deploy motion sensors on the masti-

cation muscles to sense muscle bulges and skull vibrations and differentiate chewing sides

accordingly. There are three research questions. First, how can we segment each chew

from the continuous motion sensor data? Second, how can we characterize the difference

of muscle bulge and skull vibration between the chewing side and the non-chewing side?

Third, how can we model and classify multi-dimensional data samples with unequal in-

put lengths? To answer these questions, 1) we propose a heuristic-rules based method to

exclude non-chewing data and segment each chew accurately; 2) we propose to calculate
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the relative difference series of the left and right sensors to characterize the difference

of muscle bulge and skull vibration between the chewing side and the non-chewing side;

3) we utilize long short-term memory (LSTM), an artificial recurrent neural network, to

model unequal-length data samples and classify chewing sides accordingly. To evaluate

the performance of our proposed method, a real-world dataset of eight food categories is

collected from eight human subjects. The experimental results show that our proposed

method is very promising.

The main contributions are as follows:

1. We propose to detect chewing sides through sensing muscle bulge and skull vibra-

tion with wearable motion sensors. To our best knowledge, this is the first effort in

using wearable motion sensors to differentiating muscle bulge and skull vibration

between the chewing side and the non-chewing side.

2. We propose a heuristic-rules based method to accurately exclude non-chewing data

and segment each chew from continuous motion sensor data.

3. We propose to calculate the relative difference series of the left and right sensors to

characterize the difference of muscle bulge and skull vibration between the chewing

side and the non-chewing side.

4. We evaluate the performance of our proposed method on a real-world dataset.

Experimental results show that the average detection accuracy reaches 84.8%. The

detection accuracy of a single human subject is up to 97.4%.

The remainder of this chapter is organized as follows. Section 5.2 describes the system

overview of our proposed method. Section 5.3 describes the motion sensor deployment.

In Section 5.4, we describe the motion data collection and calibration. Section 5.5

describes the data segmentation and classification sample generation. In Section 5.6,

we describe the chewing side classification with LSTM. Experiment and evaluation are

presented in Section 5.7. Section 5.8 presents discussion. Finally, we draw our conclusion

in Section 5.9.
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5.2 System Overview

Figure 5.1 shows the flowchart of our proposed chewing side detection method. Two

motion-sensing devices are deployed on the left and right temporalis muscles. From

each device, we collect both accelerometer data and gyroscope data simultaneously. The

collected sensor data are first calibrated to eliminate the scaling and bias errors. Then,

non-chewing data are excluded using a heuristic-rules based method. After segmenting

the sensor data for each chew, we calculate the relative difference series of the left and

right sensors to characterize the difference of muscle bulge and skull vibration between

the chewing side and the non-chewing side. By combining the relative difference series

with corresponding labels (i.e. left side and right side), we obtain the dataset that is

utilized to train and test an LSTM classification model.

Motion sensor deployment

Classification with LSTMPerformance evaluation

Data collection & 
calibration

Accelerometer data

Gyroscope data

Data segmentation & 
sample generation

Characterizing difference 
of mastication dynamics

SwallowChewsBite 
Non-chew data exclusion

Chew segmentation
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Figure 5.1: Flowchart of our proposed chewing side detection method

5.3 Motion Sensor Deployment

Accelerometer and gyroscope are the most suitable sensors for sensing muscle bulge

and skull vibration. When a mastication muscle contracts, its muscle spindle becomes

shorter and thicker. Accordingly, the muscle bulges to some degree, which causes the

translation and rotation movements of the sensors. The translation movements result

in velocity changes that are directly sensed by an accelerometer [101]. The rotation
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movements result in changes of orientation and angular velocity that are directly sensed

by a gyroscope [102]. During chewing, the upper and lower teeth rub against each other

to grind the food, which causes skull vibration. Skull vibration is a mechanical oscillation

that is directly sensed by an accelerometer.

In Figure 5.2, the green colored muscle is the temporalis. It is the most suitable

muscle to deploy motion sensors. We humans have four mastication muscles: the mas-

seter, the medial pterygoid, the lateral pterygoid, and the temporalis [64]. The masseter,

medial pterygoid, and lateral pterygoid are located in the face area and near the mouth

cavity. This area is not suitable for deploying a sensor. The temporalis is located at

each side of the skull and in front of the ear [22], where we often wear a headband, eye-

glasses, or hat. This observation motivates us to embed motion sensors into a headband

and deploy the sensors on the temporalis muscles.

Figure 5.2: Temporalis muscle fibers and sensor location

We deploy motion sensors on the anterior fibers of the temporalis muscles. The

fibers of a temporalis muscle are divided into three parts: anterior fibers, mid fibers,

and posterior fibers. As indicated in reference [103], “the anterior fibers have a vertical

orientation, mid fibers have an oblique orientation, and posterior fibers have a more of a

horizontal orientation [103]”, as shown by the red lines in Figure 5.2. The anterior and

mid fibers are responsible for elevating the mandible; the posterior fibers are responsible

for retracting the mandible [103]. Therefore, the anterior and mid fibers are stronger
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than the posterior fibers. Accordingly, they have a larger bulge than the posterior fibers

during contraction. The blue arrows in Figure 5.2 show the orientations of the X axis

of the left accelerometer and gyroscope at three different locations. Compared with

locations B and C, location A has the smallest angle between the X axis and the muscle

fibers. The smaller the angle is, the more regular the sensor readings are. Considering

the above two observations, we deploy the left device at location A, which is on the

anterior fibers and near the edge of the temporalis muscle. Similarly, the right device is

deployed at the symmetrical location on the right temporalis muscle.

5.4 Motion Data Collection and Calibration

Two small-size wearable devices [2] shown in Figure 4.2 (a) are used to collect motion

data. Each device contains a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis

digital compass. The device deployment and sensor orientations are the same as those

in Figure 4.2.

Eight human subjects were recruited to collect motion sensor data. The subjects sit

in front of a table and eat eight different types of food. The food is cut into pieces (if

necessary) and served on a paper plate. The subjects eat the food one piece at a time

using a spoon, folk, chopsticks, or hand. When a subject eats the served food, the sensors

sample simultaneously at 100 Hz. Only the accelerometer and gyroscope data are used

in our proposed detection method. The sampled data are transmitted to a mobile phone

through BLE in real-time. Then, the data are transferred to a PC for offline analysis.

To eliminate the scaling and bias errors, we calibrate the collected accelerometer and

gyroscope data separately using the same method introduced in Section 4.4.
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5.5 Data Segmentation & Classification Sample Genera-

tion

In this section, we first describe how to exclude biting data and swallowing data. Then,

we present how to segment each chew. Finally, we describe how to generate one classifi-

cation sample for each chew.

5.5.1 Biting Data Exclusion

Biting actions are normally accompanied by head motions. An eating cycle involves

three actions: biting, chewing, and swallowing. Before a subject bites the food, he/she

normally bows down his/her head to some degree to approach the food. After biting,

he/she starts to chew the food during or after raising his/her head. The chewing process

contains multiple continuous chews and is followed by swallowing. The above eating

cycles repeat until the subject finishes all the food.

The Z axis of the left gyroscope is used to detect head motions and infer biting

actions. Based on the sensor orientations shown in Figure 4.2, when a subject bows

down his/her head, the left device rotates around its Z axis in a clockwise direction,

and the right device rotates around its Z axis in a counter-clockwise direction; when

a subject raises his/her head, the left device rotates around its Z axis in a counter-

clockwise direction, and the right device rotates around its Z axis in a clockwise direction.

Therefore, the Z axis of either the left gyroscope or the right gyroscope can be utilized

to detect head motions and infer biting actions accordingly. In our proposed method,

we randomly select the Z axis of the left gyroscope.

We observe that the Z axis gyroscope data during biting have larger deviations than

those during chewing. Biting actions are low-frequency activities. To eliminate the high-

frequency noise, the Z axis gyroscope data are filtered using a moving average filter of

span s. Here, s is set to 31. Figure 5.3 (a) - (c) show the filtered Z axis gyroscope data

when a subject eats five pieces of food using a spoon, chopsticks, and hand, respectively.
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We see that when the subject bows down his/her head, the Z axis gyroscope data are

negative and form a valley; when the subject raises his/her head, the Z axis gyroscope

data are positive and form a peak. The standard deviations of these three data series

are 8.7, 5.9, and 3.3, respectively. Figure 5.3 (d) shows the filtered Z axis gyroscope

data when the subject chews food without head motion. The standard deviation is 0.6,

which is much smaller than those in Figure 5.3 (a) - (c).

  
               (a) Feed with spoon                            (b) Feed with chopsticks 

  
               (c) Feed with hand                          (d) Chewing w/o head motion  
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Figure 5.3: Filtered Z axis gyroscope data

We exclude biting data through detecting the deviation of filtered Z axis gyroscope

data. To exclude biting data, we first calculate the mean and standard deviation, i.e.

Mean and Std, of the filtered Z axis gyroscope data. Then, we set two thresholds,

Mean−Std and Mean+Std, as the lower bound and upper bound of the chewing data.

The sensor readings larger than the upper bound or smaller than the lower bound are

considered as biting data and hence dropped. Excluding biting data may partition the

data series into multiple segments. Each segment contains chewing data and swallowing

data. A few segments may be incomplete because of noise or intense head motions. We

set a length threshold, len, to drop the segments that are shorter than this threshold.
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Here, len is set to three seconds.

5.5.2 Swallowing Data Exclusion

The X axis of the left gyroscope is utilized to differentiate chewing data and swallow-

ing data. As shown in Figure 5.2, we deploy the left device at location A. When the

temporalis muscle contracts and bulges, the device rotates around the X axis to some

degree. The X axis gyroscope data are first filtered using a nth-order median filter,

which eliminates outliers while preserving details of the data. Here, n is the length of

the sliding window that the median is calculated from, and we set n to 15. Figure 5.4

shows an example of the filtered X axis gyroscope data during chewing and swallowing.

We see that: 1) the distances between two neighboring peaks of the chewing data are

very regular, which show the periodic and rhythmic muscle contractions. Comparatively,

the distances between two neighboring peaks of the swallowing data are irregular; 2) the

amplitude of the chewing data is much larger than that of the swallowing data. The

reason is that the temporalis muscles are not responsible for swallowing. Accordingly,

the muscle bulge is not obvious during swallowing.
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Figure 5.4: Filtered X axis gyroscope data during chewing and swallowing

We propose two heuristic rules to exclude swallowing data. The first heuristic rule is

the distance between two neighboring peaks, i.e. DP2P shown in Figure 5.5 (a), satisfies

the following inequality for the chewing data:
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3

4
· Rs

fMFC
≤ DP2P ≤

3

2
· Rs

fMFC
(5.1)

where Rs is the sampling rate, and fMFC means the chewing frequency. It is the fre-

quency corresponding to the MFC in the chewing frequency range. Here, the chewing

frequency range is defined as [0.5, 2.5] Hz [90]. Rs
fMFC

represents the cycle length of one

chew. If the distance between two neighboring peaks is less than 3
4 cycle length [91] or

larger than 3
2 cycle length, the data between these two peaks are considered as swallowing

data and dropped.

Peak 1
Peak 2

Valley
(a) (b)

Figure 5.5: Distance between peaks and amplitude difference

The second heuristic rule is the amplitude differences between two neighboring peaks

and the valley between them, i.e. DP1V and DP2V shown in Figure 5.5 (b), satisfy the

following two inequalities for the chewing data:

{
DP1V ≥ TPV
DP2V ≥ TPV (5.2)

where TPV is the predefined minimum amplitude difference for the chewing data. If either

one of these two inequalities is not satisfied, the data between these two neighboring

peaks are considered as swallowing data and dropped.

5.5.3 Chew Segmentation

The X axis data of the left gyroscope is used to segment each chew. After excluding

biting data, we conduct chew segmentation on the X axis gyroscope data using the above
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two heuristic rules. The steps of the proposed chew segmentation method are described

as follows:

• Step 1: Median filtering. We use a 15th-order median filter to eliminate outliers in

the X axis gyroscope data.

• Step 2: Chewing frequency determination. The Fourier transform is conducted on

the filtered X axis gyroscope data to compute the single-sided amplitude spectrum

[104] (without direct current component). Then, the chewing frequency, fMFC , is

obtained through locating the frequency corresponding to the MFC in the chewing

frequency range.

• Step 3: Zero-crossing point detection. We scan the filtered X axis gyroscope data

sequentially and find out all zero-crossing points.

• Step 4: Peak/valley detection. The maximum and minimum data points are de-

tected between any two neighboring zero-crossing points. If the absolute value

of the maximum data point is larger than that of the minimum data point, the

maximum data point is selected as a peak; otherwise, the minimum data point is

selected as a valley. If there are two neighboring peaks or valleys, the one with the

larger absolute value is kept and the other is dropped.

• Step 5: Data segmentation for each chew. We scan all the peaks and valleys from

beginning to end. If any two neighboring peaks and the valley between them satisfy

the aforementioned two heuristic rules in inequalities 5.1 and 5.2, the data segment

between these two peaks is considered as a chew.

• Step 6: Segmentation of calibrated data traces. Based on the segmentation loca-

tions of the X axis gyroscope data, all the calibrated data traces are segmented

accordingly. We extract the calibrated data of all the left and right sensors for

each chew, which are used to generate one classification sample.
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5.5.4 Classification Sample Generation

Based on the extracted sensor data of each chew, we calculate the relative difference

series of the left and right sensors to characterize the difference of muscle bulge and skull

vibration between the chewing side and the non-chewing side. There are two relative

difference series: accelerometer difference series and gyroscope difference series.

To calculate the accelerometer difference series, we first compose the ith data points

of three axes, aiX , aiY and aiZ , into one scalar acceleration ai using Equation 3.1. Here,

i = 1, 2, ..., n. n is the data length of one chew segment. The resulting scalar accel-

eration series is A = [a1, a2, ..., an]. We calculate the scalar acceleration series for the

left accelerometer and right accelerometer separately, which are expressed as Aleft and

Aright. Because the left and right temporalis muscles are not identical, they may have

different sizes, thicknesses, and strengths. Thus, their bulge degrees may be different,

which causes different acceleration amplitudes. To eliminate the scaling effects between

Aleft and Aright, we normalize them separately using the z-score algorithm [94]. The

z-score algorithm normalizes each scalar acceleration series so that all the data in this

series have mean 0 and standard deviation 1 [94]. The normalized scalar acceleration

series are Âleft and Âright. Finally, the accelerometer difference series is calculated as

DAccel = Âleft − Âright. Similarly, from the gyroscope data of each chew, we calculate

the gyroscope difference series, DGyro = Ĝleft − Ĝright, using the same method above.

One classification sample is generated for each chew. We combine DAccel and DGyro

to form a two-dimensional data series. Through combining this data series with corre-

sponding label (i.e. left side or right side), one classification sample is generated. All

classification samples constitute a classification dataset, which is utilized to train and

test a classification model.
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5.6 Chewing Side Classification with LSTM

In this section, we first explain why we need a personalized classification model for

chewing side detection. Then, we describe why we use LSTM to train the classification

model. Finally, we introduce the architecture and implementation of the LSTM model.

5.6.1 Why Personalized Classification Model?

A subject’s chewing patterns are consistent and can be accurately modeled. Clinical

studies [80, 93] demonstrated the stability of intra-individual masticatory parameters,

such as EMG activity, chewing frequency, and the number of chews. Woda et al. con-

cluded that “the lack of a significant difference for the same individual has been clearly

shown by using well controlled food stimuli and strict inclusion criteria [80].” The stabili-

ty of intra-individual masticatory parameters indicates that a subject’s chewing patterns

can be accurately modeled.

Chewing side detection requires a personalized classification model. Clinical studies

also showed that the masticatory parameters vary a lot between individuals [80, 93].

For example, Lassauzay et al. [93] recruited 15 male students between 21 and 25 years

old to eat four food products and then measured their masticatory parameters. The

results showed that the mean muscular work, which is calculated from the EMG data

and characterizes the magnitude of the chewing force, varies from 0.57 mV.s to 1.58

mV.s, the chewing frequency varies from 1.19 Hz to 1.70 Hz, and the number of chews

varies from 19 to 57. Therefore, we propose to train a personalized chewing side detection

model for each subject.

5.6.2 Classification Algorithm Selection

LSTM is the most suitable classification model for our proposed method. To classify

multi-dimensional time series, traditional classification models (decision tree, support

vector machine, etc.) need to explicitly extract features from the time series data.

However, the best features for chewing side detection are implicit and unknown. The
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feature extraction process may lose some useful information and impact the detection

accuracy. Another option is using deep learning models, such as convolutional neural

network (CNN) and LSTM, to automatically learn these implicit features from the time

series data. CNN is suitable for spatial data with fixed-size inputs. Comparatively,

LSTM is suitable for temporal data. An LSTM is a special type of recurrent neural

network. It is capable of learning long-term dependencies between time steps of sequence

data [3]. In addition, it can handle arbitrary input lengths [105]. The classification

samples obtained in Section 5.5 are temporal data with unequal lengths. Therefore, we

utilize LSTM to model the data and classify chewing sides accordingly.

5.6.3 Architecture and implementation of LSTM model

A simple LSTM model is utilized in our proposed method. The LSTM models can be

roughly divided into two categories: simple LSTM models and deeper LSTM models [3].

A simple LSTM model only contains one LSTM layer; a deeper LSTM model contains two

or more LSTM layers. A deeper LSTM model has a higher learning and representation

capability than a simple LSTM model. However, the more layers it has, the higher the

computation and storage cost it requires. In addition, a deeper LSTM model is easier to

overfit than a simple LSTM model. We choose a simple LSTM model in our proposed

method. There are two reasons: 1) although our method is implemented as an offline

system, its future implementation in a real-world application should be online and on-

device. A simple LSTM model is suitable for the limited resources of wearable devices; 2)

compared with a deeper LSTM model, a simple LSTM model has a higher generalization

capability and thus is more robust in a real-world application.

Chewing side detection is formulated as a sequence classification problem. As shown

in Figure 5.6, we adopt a five-layer architecture introduced in the Matlab deep learning

toolbox [3, 4]: 1) Sequence input layer: The sequence input layer inputs the classifi-

cation samples to the LSTM layer; 2) LSTM layer: The LSTM layer learns long-term

dependencies between time steps of the input data. It then outputs the last hidden state
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ht [106], a D-dimensional vector, to the next layer. Here, D is the number of hidden

units, which is set to 20; 3) Fully connected layer: A fully connected layer follows the

LSTM layer. It maps each output of the LSTM layer to a c-dimensional vector. This

is done through multiplying ht by a weight matrix and then adding a bias vector [107].

Here, c is the output size of the fully connected layer, which is equal to the number of all

possible classes. In our proposed method, c = 2. For a sequence classification problem,

the fully connected layer must be followed by a softmax layer and then a classification

layer [108]; 4) Softmax layer: The softmax layer applies a softmax activation function to

the output of the fully connected layer and generates a probability distribution over all

possible classes; 5) Classification layer: Based on the probabilities obtained in the soft-

max layer, the classification layer computes the cross-entropy loss [109] and then assigns

a predication label (i.e. left side or right side) for each classification sample.

Sequence 
input layer

LSTM 
layer

Fully 
connected 
layer

Softmax
layer

Classification 
layer

Figure 5.6: Architecture of the five-layer LSTM model [3, 4]

Mini-batch training is often used to speed up and optimize the process of stochastic

gradient descent optimization during training a LSTM model. Mini-batch training splits

the training dataset into multiple mini-batches. Each mini-batch is used to separately

evaluate the gradient of the loss function and update the weights [110]. The existing

research results [111, 112] have demonstrated that mini-batch training can not only

improves the computational efficiency but also avoids dropping into local minima.

Mini-batch training requires the classification samples in each mini-batch to have the

same length. To accommodate this requirement, a method named zero padding [4] is

often used. Zero padding method adds zeros to the samples so that all the samples in a

mini-batch have the same length as the longest one. One question is that adding zeros

introduces noise into the samples. The more zeros added, the more noise introduced.

Figure 5.7 shows the padding effect on 500 unsorted chewing side classification samples.

The size of each mini-batch is set to 50, as indicated by the red lines in Figure 5.7. We see
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that quite a few zeros are added to the samples in each mini-batch. To reduce the number

of padded zeros, we sort the classification samples by length [4] in ascending order before

padding zeros. Figure 5.8 shows the padding effect on the sorted classification samples.

We see that the number of padded zeros are greatly reduced.
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Figure 5.7: Padding effect on unsorted
samples
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Figure 5.8: Padding effect on sorted sam-
ples

5.7 Experiment and Evaluation

In this section, we first describe the experimental setup. Then, we present the perfor-

mances of chew segmentation and chewing side detection. Next, we analyze the impact

of sensor location bias. Finally, we evaluate the accuracy of the proposed method for

unknown food types.

5.7.1 Experimental Setup

With the approval from the institutional review board (IRB), five male users and three

female users were recruited in our user study. Their demographic information is shown

in Table 5.1, including age, gender, weight, head circumference, dominant feeding hand,

and whether they wear glasses or not during eating. The sensor deployment and data

collection method are the same as those in Section 5.4. After initial deployment, the

sensor locations may be slightly adjusted if the collected data are too noisy.

Eight different food types are included in our user study. They are almond, cookie,
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Table 5.1: The users’ demographic information

User Age Gender Weight (lbs) Head cir. (cm) Feeding hand With glasses

User 1 41 Male 200 58 Right No
User 2 26 Female 116 53 Right Yes
User 3 41 Female 128 56 Right No
User 4 29 Male 150 58 Right Yes
User 5 29 Male 150 60 Right Yes
User 6 24 Female 100 58 Right Yes
User 7 31 Male 174 58 Right Yes
User 8 31 Male 160 58 Right Yes

green grape, bread, gummi bear, popcorn, dry pineapple tidbit, and pretzel stick. These

food types have different food properties and are bought from the Food Lion Grocery

Store. For each food type, we serve 10 pieces to each user, as shown in Figure 5.9. The

users eat one piece at a time. These eight foods are delivered and fed four different ways.

The 1st and 2nd food types are fed with a spoon; the 3rd and 4th food types are fed with

a fork; the 5th and 6th food types are fed with chopsticks, and the 7th and 8th food types

are fed with a hand. Users 6 and 7 do not like eating gummi bear. They are allowed to

skip it.

  
1 Almond 2 Cookie 3 Green grape 4 Bread 

  
5 Gummi bear 6 Popcorn 7 Dry pineapple tidbit 8 Pretzel stick 

 

Figure 5.9: The food served to each user

The classification samples are labeled based on the corresponding chewing sides. For

each food type, we ask the users to chew the first five pieces on the left side and the second

five pieces on the right side. Accordingly, all the classification samples corresponding to

the first five pieces are labeled as “left side”. All the classification samples corresponding

to the second five pieces are labeled as “right side”. We do not consider the situation of
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chewing on both sides in our experiment, which will be discussed in Section 5.8.

To obtain the ground truth of the number of chews, we video-recorded the whole

eating process using a PC-embedded camera. Then, we replay the videos slowly and

manually count the number of chews by observing users’ jaw movements.

5.7.2 Performance of Chew Segmentation

The first question we would like to answer is how accurate the proposed chew segmen-

tation method is. Table 5.2 shows the ground truth, the number of detected chews, and

the chew segmentation accuracy for each user. Here, the chew segmentation accuracy is

defined as the ratio of the number of detected chews to the ground truth. We see that

the proposed method detects and segments chews accurately. The average accuracy of

these eight users is 85.9%. The accuracy of user 2 is up to 94.4%.

Table 5.2: Chew segmentation accuracy

User Ground truth # of detected chews Accuracy
User 1 2897 2538 87.6%
User 2 2158 2037 94.4%
User 3 1967 1674 85.1%
User 4 2903 2519 86.8%
User 5 1430 1130 79.0%
User 6 2347 2140 91.2%
User 7 1293 1091 84.4%
User 8 1378 1084 78.7%

From Table 5.2 we also observe that the numbers of detected chews are smaller than

the ground truths. This indicates that some chews are not detected. The reason may be

that the temporalis muscle bulge in the late stage of chewing (i.e. right before swallowing)

is much smaller than that in the early and middle stages. In the late stage of chewing,

the food has already been chewed into very small particles. Thus, the chewing force in

the late stage is smaller than that in the early and middle stages. A small chewing force

results in a small temporalis muscle bulge. Accordingly, some chews do not satisfy the

second heuristic rule in inequality 5.2 and hence are dropped.

89



5.7.3 Performance of Chewing Side Detection

The second question we would like to answer is how accurate the proposed chewing side

detection method is. To answer this question, we conduct a five-fold cross validation

test [113, 114] on the classification dataset of each user. The classification dataset is

split into five mutually exclusive and exhaustive folds. Each time, one fold is selected as

the testing dataset; the remaining four folds are combined together to form the training

dataset. A classification model is trained on the training dataset and then tested with

the testing dataset. The testing accuracies of these five folds are averaged. This average

accuracy is taken as the accuracy of the five-fold cross validation test.

Our proposed method detects chewing sides accurately. Table 5.3 shows the accura-

cies of the five-fold cross validation test for these eight users. We see that the chewing

sides are accurately classified. The average detection accuracy of these eight users reaches

84.8%. The detection accuracy of user 1 is up to 97.4%.

From Table 5.3 we also see that the detection accuracies of different users vary to

some degree. The standard deviation of the detection accuracies is 7.8%. The difference

between the highest accuracy and the lowest accuracy is 19.5%. According to our ex-

perience, this may be because the sensors are not deployed at the optimal locations for

some users. We will investigate this problem in the following subsection.

Table 5.3: Chewing side detection accuracy

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 Avg.±Std
Accy (%) 97.4 94.3 87.4 78.5 86.1 78.1 77.9 79.0 84.8±7.8

Figure 5.10 (a) shows the sum of classification confusion matrices of these eight users

in the five-fold cross validation test. We see that both left side chews and right side chews

are accurately classified. Of all the left side chews, 81.7% are correctly classified; of all

the right side chews, 89.3% are correctly classified. From Figure 5.10 (a) we also observe

that more left side chews are misclassified than right side chews. More specifically, 1230

left side chews are misclassified as right side, and 801 right side chews are misclassified

as left side. This indicates that the classification models are biased to right side a little
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bit. The reason may be the classification datasets are not completely balanced. For the

same type and amount of food, users chew on the right side slightly more than the left

side. The right side has 7483 samples, and the left side has 6730 samples. Normally,

“classification learning algorithms are biased towards the majority class and therefore

there is a higher misclassification rate for the minority class instances [115]”.

Figure 5.10 (b) and (c) show the sum of the confusion matrices of male users and

female users, respectively, in the five-fold cross validation test. We have the same obser-

vations as those from Figure 5.10 (a). This indicates that our proposed method is valid

for both male users and female users.

(a) All users                                                (b) Male users                                         (c) Female users

81.7%

89.3%

81.6%

88.7%

82.0%

90.2%

Figure 5.10: Sum of the confusion matrices in the five-fold cross validation test

5.7.4 Impact of Sensor Location Bias

The third question we would like to answer is how much impact a sensor location bias

has on the detection accuracy. To answer this question, we ask user 1 to collect data

once again. The left device is deployed one centimeter backward from the location A in

Figure 5.2. Similarly, the right device is moved one centimeter backward.

The detection model is sensitive to sensor location bias. We train a classification

model using the dataset collected at the previous location and test this model using the

dataset collected at the biased location. The detection accuracy is 45.6%. Conversely,

we train a classification model using the dataset collected at the biased location and test

this model using the dataset collected at the previous location. The detection accuracy

is 29.0%. The average detection accuracy of these two tests is 37.3%, which is 47.5%

lower than the average detection accuracy of the five-fold cross validation test.
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There are two potential reasons for the model sensitivity to the sensor location bias.

The first reason is that the muscle bulges of different locations are very irregular. As we

described in Section 5.3, the direction and strength of the muscle fibers are very irregular.

Accordingly, muscle bulges of different locations vary a lot. When the sensor location is

changed, the muscle bulge and the corresponding sensor data change accordingly. The

second reason is that the sensor data collected at the biased location is too noisy. This is

because the circuit board is a rigid body and covers an area of 26mm× 25mm [2]. The

muscle bulge of any point in this area may introduce noise and affect the sensed data.

This problem can be solved through detaching the small sensor module from the circuit

board and only deploying sensors at the specified locations.

5.7.5 Leave-One-Food-Out Test

The fourth question we would like to answer is how generic a classification model is for

unknown food types. To answer this question, we conduct a leave-one-food-out test on

the classification dataset of each user. The leave-one-food-out test uses classification

samples of all food types except one to train a classification model. Then, this model is

tested using the classification samples of the excluded food type. This process repeats

for all food types. The average of the testing accuracies is taken as the accuracy of the

leave-one-food-out test.

Our proposed method is capable of detecting chewing sides accurately for unknown

food types. In Figure 5.11, we compare the accuracies of the leave-one-food-out test

and the accuracies of the five-fold cross validation test. The average detection accuracy

of the leave-one-food-out test is 81.4%, which is only 3.4% lower than the average de-

tection accuracy of the five-fold cross validation test. This indicates that our proposed

classification models can be generalized to unknown food types.

Figure 5.11 also shows that, for all the users except user 4, the accuracies of the

leave-one-food-out test are a little lower than those of the five-fold cross validation test.

This is reasonable because the data of the testing food type are not included in the
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Figure 5.11: Accuracy comparison between the leave-one-food-out test and five-fold
cross validation test

training dataset. For user 4, the accuracy of the leave-one-food-out test is only 1%

higher than that of the five-fold cross validation test. This may be because we adopt

the same parameters for all the users when training the classification models. These

parameters are not optimal for the five-fold cross validation test of user 4.

78.3%

87.1%

Figure 5.12: Sum of the confusion matrices in the leave-one-food-out test

Figure 5.12 shows the sum of the confusion matrices of these eight users in the

leave-one-food-out test. We observe that both left side chews and right side chews are

accurately classified for unknown food types. 78.3% of the left side chews are correctly

classified, and 87.1% of the right side chews are correctly classified. Similar to the five-

fold cross validation test, there are more right side chews than the left side chews in the

leave-one-food-out test. Accordingly, the classification models are slightly biased to the

right side.
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5.8 Discussion

In our experiment, we only consider two cases: chewing on the left side and chewing on

the right side. We are aware that sometimes a subject may chew on both sides. However,

we do not consider this case in our user study. There are two reasons. First, according

to the clinical studies, chewing on both sides happens much less frequently than chewing

on the left or right side. For example, Gisel [116] investigated the oral side preferences of

103 children. Because “placement of food on the preferred side might facilitate chewing

[116]”, Gisel conducted this investigation through observing the initial placement of food

by the tongue. The experimental results show that only 2.5% observations are placing

food on both sides. Second, chewing on both sides normally happens in the late stage of

chewing. At this stage, the food has been chewed into particles, which are distributed

on both sides. As we indicated in Section 5.7, the chewing force in the late stage is much

smaller than that in the early and middle stages. Accordingly, the chews in the late

stage may not satisfy the second heuristic rule and hence are excluded.

Eating activity may be accompanied by other activities, such as talking and drinking,

which normally happen after a swallow and before the next bite. These noisy activities

can be easily filtered through integrating an eating detection module [90] into our pro-

posed method.

5.9 Conclusion

Chewing side preference can result in some diseases, such as lateral facial asymmetry,

teeth abrasion, temporomandibular disorders, malocclusion, and stomach illness. Ex-

isting wearable sensor-based methods are either intrusive or not accurate enough. In

this chapter, we propose a wearable motion sensor-based method to detect chewing sides

accurately and less-intrusively. This is done through embedding motion sensors in a

headband to sense temporalis muscle bulge and skull vibration. We utilize a heuristic-

rules based method to exclude non-chewing data and segment each chew accurately.
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The relative difference series of the left and right sensors is then calculated to charac-

terize the difference of muscle bulge and skull vibration between the chewing side and

the non-chewing side. To model the data samples with unequal input lengths, LSTM

is utilized to train a classifier and recognize chewing sides accordingly. Experiments are

conducted with eight human subjects on eight food types. The results demonstrate that

the proposed method accurately detects chewing sides. The average detection accuracy

of these eight subjects reaches 84.8%. The detection accuracy of a single human subject

is up to 97.4%.
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Chapter 6

Future Work

In Chapters 3 to 5, we have introduced three research projects. In each project, we have

listed some corresponding future work. Here, we list more future research topics in terms

of the whole dissertation.

• Food amount estimation. Carbohydrate intake estimation provides medical

professionals with important information to diagnose and monitor some chronic

diseases, such as obesity and diabetes. Our food type recognition method has

demonstrated that it can accurately recognize different food types. In order to cal-

culate the amount of carbohydrate intake, we also need to estimate the amount of

consumed foods. According to the clinical study [80], the food amount of each bite

is correlated with some masticatory parameters, including the number of chews,

chewing time, EMG activity, vertical/lateral amplitude, and closing velocity [80].

These masticatory parameters can be directly calculated or indirectly estimated

from the motion sensor data, which are collected from motion sensors deployed on

the temporalis muscles. Therefore, it is highly possible to estimate the amount

of consumed foods. There are two research questions. First, how to accurately

estimate the masticatory parameters that can not be directly calculated from the

motion sensor data (e.g. EMG activity)? Second, how to model the mapping from

these masticatory parameters to the amount of consumed foods?
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• Energy-efficient sensing. A wearable device may have a very limited power sup-

ply because of the constraints of its size and weight. How can we reduce the energy

consumption of data sensing to extend the lifetime of a wearable device? There

is a potential solution, which is a combination of the following two strategies: 1)

event-based high-power sensor triggering. We noticed that the energy consump-

tion of the accelerometer is about 1.5% of the energy consumption of the gyroscope

[117]. Thus, we can use one accelerometer in either the left or the right device to

recognize eating and non-eating activities, as we described in Chapter 3. All the

other sensors are turned on only when a user is eating. This strategy can greatly

reduce energy consumption. However, the sensor triggering always occurs after

detecting an eating activity and hence is delayed for a while; 2) eating detection

with a dynamic sampling rate. For our eating detection method in Chapter 3, the

accelerometer is sampled at 100Hz. This sampling rate is appropriate for distin-

guishing eating from some similar daily activities (e.g. speaking/reading) but may

be too high for distinguishing eating from other non-similar activities (e.g. sit-

ting). Thus, we can dynamically adjust the sampling rate of the accelerometer for

different activities. This strategy can further reduce energy consumption. There

are three research questions. First, how can we minimize the delay of sensor trig-

gering? Second, how can the eating detection model adapt to accelerometer data

with a dynamic sampling rate? Third, how can we minimize the sampling rate for

each specific activity?

• Bluetooth radio-based dietary monitoring. Although the motion sensor-

based dietary monitoring methods introduced in this dissertation are very promis-

ing, a few users in our user study expressed their unwillingness to wear motion

sensor during eating. Without the motion sensor attached on the mastication mus-

cle, the proposed methods do not work anymore. This motivates us to think about

how to monitor people’s diet and eating habits using other alternative non-intrusive

sensors. We are considering replacing the motion sensors with BLE transceivers.
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The BLE transceivers have already been widely used in commercial products like

Apple Bluetooth earbuds. We plan to attach two BLE transceivers at the end

of two earpieces of eyeglasses. One transceiver acts as the transmitter, and the

other transceiver acts as the receiver. The BLE signals sent from the transmit-

ter go across a user’s head and are received by the receiver. During eating, the

mandible moves up and down. This movement changes the shape of the oral cavity

and also the transmission channel of the BLE signals. Accordingly, the strength

of received BLE signals changes synchronously with the mandible movement and

shows a periodic pattern. Therefore, dietary monitoring can be done by analyzing

the strength series of the received BLE signals. There are three research questions.

First, how can we characterize the eating activity and mastication dynamics only

using the BLE strength series? Second, how can we personalize the recognition

models so that they can adapt to the head size of a specific user? Third, how can

we minimize the energy consumption of the BLE transceivers while preserving the

recognition performance?
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Chapter 7

Conclusion

In this dissertation, we present our efforts in using wearable motion sensors to sense

mastication dynamics for continuous dietary monitoring. Specifically, we work on the

following three topics:

First, we propose a motion sensor-based eating activity detection and chews counting

method. Eating activity detection is formulated as a two-class classification problem.

Twenty-three representative time-domain and frequency-domain features are extracted

from a few seconds of acceleration data to accurately distinguish eating activity from

other non-eating activities. In addition, the number of chews is accurately counted by

identifying the primary periodicity of acceleration data. Experimental results show that

the average accuracy and F-score are 94.4% and 87.2%, respectively, for eating activity

detection in 10-fold cross-validation test. The average error rate of chews counting for

four users is 12.2%.

Second, we propose a motion sensor-based food type recognition method. We define

six mastication dynamics parameters to represent the food properties. They are chewing

speed, the number of chews, chewing time, chewing force, chewing cycle duration, and

skull vibration. To sense mastication dynamics accurately and less intrusively, we embed

motion sensors in a headband and deploy the sensors on the left and right temporalis

muscles. We specifically define 37 hand-crafted features, which are extracted from each

chewing sequence to explicitly characterize the mastication dynamics. Based on the
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extracted features, a neural network model is trained to recognize 11 food categories (20

types of food in total). Performance evaluation on a real-world dataset demonstrates

that the average recognition accuracy of 15 human subjects is 74.3%. The recognition

accuracy of a single human subject is up to 86.7%.

Third, we propose a motion sensor-based chewing side detection method. We present

a heuristic-rules based method to exclude non-chewing data and segment each chew

accurately. We calculate the relative difference series of the left and right sensors to

characterize the difference of muscle bulge and skull vibration between the chewing side

and the non-chewing side. To model multi-dimensional data samples with unequal input

lengths, we utilize LSTM to train a two-class classifier for chewing side classification. A

real-world evaluation dataset of eight food types is collected from eight human subjects.

The average detection accuracy reaches 84.8%. The highest detection accuracy for a

single subject is up to 97.4%.
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