90 research outputs found

    Early Stage Brain Tumor Detection And Classification Using KSVM Algorithm In GUI Window

    Get PDF
    The brain is central control unit of human body. The tumor is not diagnosed in early stage then it affects the brain means it causes the death of the patient. Magnetic Resonance Image (MRI) doesn’t produce any harmful radiation and it is a better method for area calculation as well as classification based on the grade of the tumor. Nowadays there exists no automatic system to detect and identify the grade of the tumor. This paper proposes brain tumor classification which is divided into four phases as pre-processing, segmentation, feature reduction and extraction, classification. Segmentation of brain Tumor is a one of the basic steps in detection and classification of tumor. The noise is eliminated by using Gaussian filter and canny edge detector is used to detect the tumor area and calculation of tumor area. To segment the tumour K means cluster is used. DWT (Discrete wavelet transform) and GLCM (Grey Level co-occurrence matrix) used for transform and spatial feature extraction and PCA (Principal component analysis) reduces the feature vector to maintain the classification accuracy of brain MRI images. For the performance of MRIs classification, the significant features have been submitted to KSVM (kernel support vector machine). The proposed method is validated on BRATS 2015 dataset and Kaggle dataset. The proposed system will reduce processing time and achieved 99% classification accuracy,98% of sensitivity and 100% of specificity

    Bot recognition in a Web store: An approach based on unsupervised learning

    Get PDF
    Abstract Web traffic on e-business sites is increasingly dominated by artificial agents (Web bots) which pose a threat to the website security, privacy, and performance. To develop efficient bot detection methods and discover reliable e-customer behavioural patterns, the accurate separation of traffic generated by legitimate users and Web bots is necessary. This paper proposes a machine learning solution to the problem of bot and human session classification, with a specific application to e-commerce. The approach studied in this work explores the use of unsupervised learning (k-means and Graded Possibilistic c-Means), followed by supervised labelling of clusters, a generative learning strategy that decouples modelling the data from labelling them. Its efficiency is evaluated through experiments on real e-commerce data, in realistic conditions, and compared to that of supervised learning classifiers (a multi-layer perceptron neural network and a support vector machine). Results demonstrate that the classification based on unsupervised learning is very efficient, achieving a similar performance level as the fully supervised classification. This is an experimental indication that the bot recognition problem can be successfully dealt with using methods that are less sensitive to mislabelled data or missing labels. A very small fraction of sessions remain misclassified in both cases, so an in-depth analysis of misclassified samples was also performed. This analysis exposed the superiority of the proposed approach which was able to correctly recognize more bots, in fact, and identified more camouflaged agents, that had been erroneously labelled as humans

    Advances in transfer learning methods based on computational intelligence

    Get PDF
    Traditional machine learning and data mining have made tremendous progress in many knowledge-based areas, such as clustering, classification, and regression. However, the primary assumption in all of these areas is that the training and testing data should be in the same domain and have the same distribution. This assumption is difficult to achieve in real-world applications due to the limited availability of labeled data. Associated data in different domains can be used to expand the availability of prior knowledge about future target data. In recent years, transfer learning has been used to address such cross-domain learning problems by using information from data in a related domain and transferring that data to the target task. The transfer learning methodology is utilized in this work with unsupervised and supervised learning methods. For unsupervised learning, a novel transfer-learning possibilistic c-means (TLPCM) algorithm is proposed to handle the PCM clustering problem in a domain that has insufficient data. Moreover, TLPCM overcomes the problem of differing numbers of clusters between the source and target domains. The proposed algorithm employs the historical cluster centers of the source data as a reference to guide the clustering of the target data. The experimental studies presented here were thoroughly evaluated, and they demonstrate the advantages of TLPCM in both synthetic and real-world transfer datasets. For supervised learning, a transfer learning (TL) technique is used to pre-train a CNN model on posture data and then fine-tune it on the sleep stage data. We used a ballistocardiography (BCG) bed sensor to collect both posture and sleep stage data to provide a non-invasive, in-home monitoring system that tracks changes in the subjects' health over time. The quality of sleep has a significant impact on health and life. This study adopts a hierarchical and none-hierarchical classification structure to develop an automatic sleep stage classification system using ballistocardiogram (BCG) signals. A leave-one-subject-out cross-validation (LOSO-CV) procedure is used for testing classification performance in most of the experiments. Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), and Deep Neural Networks DNNs are complementary in their modeling capabilities, while CNNs have the advantage of reducing frequency variations, LSTMs are good at temporal modeling. Polysomnography (PSG) data from a sleep lab was used as the ground truth for sleep stages, with the emphasis on three sleep stages, specifically, awake, rapid eye movement (REM), and non-REM sleep (NREM). Moreover, a transfer learning approach is employed with supervised learning to address the cross-resident training problem to predict early illness. We validate our method by conducting a retrospective study on three residents from TigerPlace, a retirement community in Columbia, MO, where apartments are fitted with wireless networks of motion and bed sensors. Predicting the early signs of illness in older adults by using a continuous, unobtrusive nursing home monitoring system has been shown to increase the quality of life and decrease care costs. Illness prediction is based on sensor data and uses algorithms such as support vector machine (SVM) and k-nearest neighbors (kNN). One of the most significant challenges related to the development of prediction algorithms for sensor networks is the use of knowledge from previous residents to predict new ones' behaviors. Each day, the presence or absence of illness was manually evaluated using nursing visit reports from a homegrown electronic medical record (EMR) system. In this work, the transfer learning SVM approach outperformed three other methods, i.e., regular SVM, one-class SVM, and one-class kNN.Includes bibliographical references (pages 114-127)

    Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A Survey

    Get PDF
    Major assumptions in computational intelligence and machine learning consist of the availability of a historical dataset for model development, and that the resulting model will, to some extent, handle similar instances during its online operation. However, in many real world applications, these assumptions may not hold as the amount of previously available data may be insufficient to represent the underlying system, and the environment and the system may change over time. As the amount of data increases, it is no longer feasible to process data efficiently using iterative algorithms, which typically require multiple passes over the same portions of data. Evolving modeling from data streams has emerged as a framework to address these issues properly by self-adaptation, single-pass learning steps and evolution as well as contraction of model components on demand and on the fly. This survey focuses on evolving fuzzy rule-based models and neuro-fuzzy networks for clustering, classification and regression and system identification in online, real-time environments where learning and model development should be performed incrementally. (C) 2019 Published by Elsevier Inc.Igor Škrjanc, Jose Antonio Iglesias and Araceli Sanchis would like to thank to the Chair of Excellence of Universidad Carlos III de Madrid, and the Bank of Santander Program for their support. Igor Škrjanc is grateful to Slovenian Research Agency with the research program P2-0219, Modeling, simulation and control. Daniel Leite acknowledges the Minas Gerais Foundation for Research and Development (FAPEMIG), process APQ-03384-18. Igor Škrjanc and Edwin Lughofer acknowledges the support by the ”LCM — K2 Center for Symbiotic Mechatronics” within the framework of the Austrian COMET-K2 program. Fernando Gomide is grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for grant 305906/2014-3

    Multiple instance fuzzy inference.

    Get PDF
    A novel fuzzy learning framework that employs fuzzy inference to solve the problem of multiple instance learning (MIL) is presented. The framework introduces a new class of fuzzy inference systems called Multiple Instance Fuzzy Inference Systems (MI-FIS). Fuzzy inference is a powerful modeling framework that can handle computing with knowledge uncertainty and measurement imprecision effectively. Fuzzy Inference performs a non-linear mapping from an input space to an output space by deriving conclusions from a set of fuzzy if-then rules and known facts. Rules can be identified from expert knowledge, or learned from data. In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are known but not those of individual instances. MIL deals with learning a classifier at the bag level. Over the years, many solutions to this problem have been proposed. However, no MIL formulation employing fuzzy inference exists in the literature. In this dissertation, we introduce multiple instance fuzzy logic that enables fuzzy reasoning with bags of instances. Accordingly, different multiple instance fuzzy inference styles are proposed. The Multiple Instance Mamdani style fuzzy inference (MI-Mamdani) extends the standard Mamdani style inference to compute with multiple instances. The Multiple Instance Sugeno style fuzzy inference (MI-Sugeno) is an extension of the standard Sugeno style inference to handle reasoning with multiple instances. In addition to the MI-FIS inference styles, one of the main contributions of this work is an adaptive neuro-fuzzy architecture designed to handle bags of instances as input and capable of learning from ambiguously labeled data. The proposed architecture, called Multiple Instance-ANFIS (MI-ANFIS), extends the standard Adaptive Neuro Fuzzy Inference System (ANFIS). We also propose different methods to identify and learn fuzzy if-then rules in the context of MIL. In particular, a novel learning algorithm for MI-ANFIS is derived. The learning is achieved by using the backpropagation algorithm to identify the premise parameters and consequent parameters of the network. The proposed framework is tested and validated using synthetic and benchmark datasets suitable for MIL problems. Additionally, we apply the proposed Multiple Instance Inference to the problem of region-based image categorization as well as to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar

    Speech data analysis for semantic indexing of video of simulated medical crises.

    Get PDF
    The Simulation for Pediatric Assessment, Resuscitation, and Communication (SPARC) group within the Department of Pediatrics at the University of Louisville, was established to enhance the care of children by using simulation based educational methodologies to improve patient safety and strengthen clinician-patient interactions. After each simulation session, the physician must manually review and annotate the recordings and then debrief the trainees. The physician responsible for the simulation has recorded 100s of videos, and is seeking solutions that can automate the process. This dissertation introduces our developed system for efficient segmentation and semantic indexing of videos of medical simulations using machine learning methods. It provides the physician with automated tools to review important sections of the simulation by identifying who spoke, when and what was his/her emotion. Only audio information is extracted and analyzed because the quality of the image recording is low and the visual environment is static for most parts. Our proposed system includes four main components: preprocessing, speaker segmentation, speaker identification, and emotion recognition. The preprocessing consists of first extracting the audio component from the video recording. Then, extracting various low-level audio features to detect and remove silence segments. We investigate and compare two different approaches for this task. The first one is threshold-based and the second one is classification-based. The second main component of the proposed system consists of detecting speaker changing points for the purpose of segmenting the audio stream. We propose two fusion methods for this task. The speaker identification and emotion recognition components of our system are designed to provide users the capability to browse the video and retrieve shots that identify ”who spoke, when, and the speaker’s emotion” for further analysis. For this component, we propose two feature representation methods that map audio segments of arbitary length to a feature vector with fixed dimensions. The first one is based on soft bag-of-word (BoW) feature representations. In particular, we define three types of BoW that are based on crisp, fuzzy, and possibilistic voting. The second feature representation is a generalization of the BoW and is based on Fisher Vector (FV). FV uses the Fisher Kernel principle and combines the benefits of generative and discriminative approaches. The proposed feature representations are used within two learning frameworks. The first one is supervised learning and assumes that a large collection of labeled training data is available. Within this framework, we use standard classifiers including K-nearest neighbor (K-NN), support vector machine (SVM), and Naive Bayes. The second framework is based on semi-supervised learning where only a limited amount of labeled training samples are available. We use an approach that is based on label propagation. Our proposed algorithms were evaluated using 15 medical simulation sessions. The results were analyzed and compared to those obtained using state-of-the-art algorithms. We show that our proposed speech segmentation fusion algorithms and feature mappings outperform existing methods. We also integrated all proposed algorithms and developed a GUI prototype system for subjective evaluation. This prototype processes medical simulation video and provides the user with a visual summary of the different speech segments. It also allows the user to browse videos and retrieve scenes that provide answers to semantic queries such as: who spoke and when; who interrupted who? and what was the emotion of the speaker? The GUI prototype can also provide summary statistics of each simulation video. Examples include: for how long did each person spoke? What is the longest uninterrupted speech segment? Is there an unusual large number of pauses within the speech segment of a given speaker

    A Bottom-Up Review of Image Analysis Methods for Suspicious Region Detection in Mammograms.

    Get PDF
    Breast cancer is one of the most common death causes amongst women all over the world. Early detection of breast cancer plays a critical role in increasing the survival rate. Various imaging modalities, such as mammography, breast MRI, ultrasound and thermography, are used to detect breast cancer. Though there is a considerable success with mammography in biomedical imaging, detecting suspicious areas remains a challenge because, due to the manual examination and variations in shape, size, other mass morphological features, mammography accuracy changes with the density of the breast. Furthermore, going through the analysis of many mammograms per day can be a tedious task for radiologists and practitioners. One of the main objectives of biomedical imaging is to provide radiologists and practitioners with tools to help them identify all suspicious regions in a given image. Computer-aided mass detection in mammograms can serve as a second opinion tool to help radiologists avoid running into oversight errors. The scientific community has made much progress in this topic, and several approaches have been proposed along the way. Following a bottom-up narrative, this paper surveys different scientific methodologies and techniques to detect suspicious regions in mammograms spanning from methods based on low-level image features to the most recent novelties in AI-based approaches. Both theoretical and practical grounds are provided across the paper sections to highlight the pros and cons of different methodologies. The paper's main scope is to let readers embark on a journey through a fully comprehensive description of techniques, strategies and datasets on the topic

    Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2

    Get PDF
    Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making

    Clustering of multiple instance data.

    Get PDF
    An emergent area of research in machine learning that aims to develop tools to analyze data where objects have multiple representations is Multiple Instance Learning (MIL). In MIL, each object is represented by a bag that includes a collection of feature vectors called instances. A bag is positive if it contains at least one positive instance, and negative if no instances are positive. One of the main objectives in MIL is to identify a region in the instance feature space with high correlation to instances from positive bags and low correlation to instances from negative bags -- this region is referred to as a target concept (TC). Existing methods either only identify a single target concept, do not provide a mechanism for selecting the appropriate number of target concepts, or do not provide a flexible representation for target concept memberships. Thus, they are not suitable to handle data with large intra-class variation. In this dissertation we propose new algorithms that learn multiple target concepts simultaneously. The proposed algorithms combine concepts from data clustering and multiple instance learning. In particular, we propose crisp, fuzzy, and possibilistic variations of the Multi-target concept Diverse Density (MDD) metric, along with three algorithms to optimize them. Each algorithm relies on an alternating optimization strategy that iteratively refines concept assignments, locations, and scales until it converges to an optimal set of target concepts. We also demonstrate how the possibilistic MDD metric can be used to select the appropriate number of target concepts for a dataset. Lastly, we propose the construction of classifiers based on embedded feature space theory to use our target concepts to predict the label of prospective MIL data. The proposed algorithms are implemented, tested, and validated through the analysis of multiple synthetic and real-world data. We first demonstrate that our algorithms can detect multiple target concepts reliably, and are robust to many generative data parameters. We then demonstrate how our approach can be used in the application of Buried Explosive Object (BEO) detection to locate distinct target concepts corresponding to signatures of varying BEO types. We also demonstrate that our classifier strategies can perform competitively with other well-established embedded space approaches in classification of Benchmark MIL data
    • …
    corecore