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Abstract

Clustered microcalcifications (MCs) in mammograms are an important early sign of breast cancer in women. Their
accurate detection is important in computer-aided detection (CADe). In this paper, we integrated the possibilistic
fuzzy c-means (PFCM) clustering algorithm and weighted support vector machine (WSVM) for the detection of MC
clusters in full-field digital mammograms (FFDM). For each image, suspicious MC regions are extracted with region
growing and active contour segmentation. Then geometry and texture features are extracted for each suspicious
MC, a mutual information-based supervised criterion is used to select important features, and PFCM is applied to
cluster the samples into two clusters. Weights of the samples are calculated based on possibilities and typicality
values from the PFCM, and the ground truth labels. A weighted nonlinear SVM is trained. During the test process,
when an unknown image is presented, suspicious regions are located with the segmentation step, selected features
are extracted, and the suspicious MC regions are classified as containing MC or not by the trained weighted
nonlinear SVM. Finally, the MC regions are analyzed with spatial information to locate MC clusters. The proposed
method is evaluated using a database of 410 clinical mammograms and compared with a standard unweighted
support vector machine (SVM) classifier. The detection performance is evaluated using response receiver operating
(ROC) curves and free-response receiver operating characteristic (FROC) curves. The proposed method obtained an
area under the ROC curve of 0.8676, while the standard SVM obtained an area of 0.8268 for MC detection. For MC
cluster detection, the proposed method obtained a high sensitivity of 92 % with a false-positive rate of 2.3 clusters/
image, and it is also better than standard SVM with 4.7 false-positive clusters/image at the same sensitivity.

Keywords: Microcalcification detection; Microcalcification cluster; Computer-aided diagnosis; Possibilistic fuzzy
c-means; Support vector machine
1 Introduction
Breast cancer is the most frequent form of cancer in
women and is also the leading cause of mortality in
women each year. The World Health Organization esti-
mated that 521,907 women worldwide died in 2012 due
to breast cancer [1]. Studies have indicated that early de-
tection and treatment improve the survival chances of the
patients. In order to detect it in its early stage, many coun-
tries have established screening programs. Among all the
diagnostic methods currently available for detection of
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breast cancer, mammography is regarded as the only reli-
able and practical method capable of detecting breast can-
cer in its early stage [2].
The screening programs generate large volumes of

mammograms to be analyzed. However, due to the com-
plexity of the breast structure, low disease prevalence
(approximately 0.5 % [3]), and radiologist fatigue, abnor-
malities are often ignored. It is reported that about 10–
25 % abnormal cases shown in mammography have been
wrongly ignored by radiologists [4]. Double reading can
improve the detection rate, but it is too expensive and
time consuming. Thus, computer-aided cancer detection
technologies have been investigated. The adoption of a
computer-aided detection (CAD) system could reduce
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the experts’ workload and can improve the early cancer
detection rate [5].
Various types of abnormalities can be observed in

mammograms, such as microcalcification clusters and
mass lesion, distortion in breast architecture, and asym-
metry between breasts which are the most dangerous
ones. Microcalcification clusters and mass [5–7] are the
most common signs of breast cancer, and microcalcifica-
tion (MC) clusters appear in 30–50 % of diagnosed
cases. MCs are calcium deposits of very small dimension
and appear as a group of granular bright spots in a
mammogram. A typical mammogram with microcalcifi-
cation clusters is shown in Fig. 1a and the full view of a
cluster of microcalcifications in Fig. 1b. Individual MCs
are sometimes difficult to detect because of the sur-
rounding breast tissue, their variation in shape, and
small dimensions.
Computer-aided detection of microcalcification clus-

ters has been investigated using many different tech-
niques [5, 8]. Roughly speaking, the methods can be
classified as traditional enhancement-based method,
multiscale analysis, and classifier-based methods. Kim
et al. [9] enhanced the mammographic images based on
the first derivative (such as Sobel operators and compass
operators) and the local statistics.
Laine et al. [10] investigated wavelet multiresolution

for mammography contrast enhancement. Three over-
complete multiresolution representations were investi-
gated. Contrast enhancement was applied for each level
separately, and edge features were extracted in each level
and decomposition coefficients were modified based on
edge features. Final images were reconstructed with
modified coefficients. Improved contrast for irregular
structures such as microcalcification was observed on
their experiments. In our previous work [11], a new
Fig. 1 Mammogram with a microcalcification cluster. a Original image. b E
red rectangle
wavelet-based image enhanced method is proposed. A
multiscale measure which matches the human vision
system is proposed and used to modify wavelet coeffi-
cients. The degree of enhancement can be adjusted by
manipulating a single parameter. Ramirez-Cobo et al.
[12] used 2D wavelet-based multifractal spectrum for
malignant and normal classification.
Several machine learning methods have been used for

microcalcification detection. El-Naqa et al. [13] investi-
gated the support vector machine (SVM) classifier for
MC cluster detection, and a successive enhancement
learning scheme was proposed to improve the perform-
ance. On a set of 76 mammogram images containing
1120 MCs, their method obtained a sensitivity of 94 %
with an error rate of one false-positive cluster per image.
Ge et al. [14] proposed a system to identify microcalcifi-
cation clusters on full-field digital mammograms
(FFDMs) with convolution neural network. The system
includes six stages: preprocessing, image enhancement
with box-rim filter, segmentation of microcalcification
candidates, false-positive (FP) reduction for individual
microcalcifications with convolution neural network, re-
gion clustering, and FP reduction for clustered microcal-
cifications. On a dataset of 96 cases with 192 images,
they obtained a cluster-based sensitivity of 70, 80, and
90 % at 0.12, 0.61, and 1.49 FPs/image, respectively.
Tiedeu et al. [15] detected microcalcifications by inte-
grating image enhancement and the threshold-based
segmentation method. Several features were extracted
for each region from the enhanced image, and by em-
bedding feature clustering in the segmentation, their
method obtained much less false positives than other
methods. Experiments were performed on a dataset of
66 images containing 59 MC clusters and 683 MCs, and
high sensitivity (100 %) was obtained, balanced by a
nlarged view of the microcalcification part of a outlined with a
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lower specificity (87.77 %). In the work of Oliver et al.
[16], the individual microcalcification detection is based
on local image features of the microcalcifications from a
bank of filters. A pixel-based boosting classifier is then
trained, and salient features were selected. Clusters are
found by inspecting the local neighborhood of each
microcalcification. Malar et al. [17] utilized wavelet-
based texture features and the extreme learning machine
(ELM) for microcalcification detection and classification.
One hundred and twenty regions of interest (ROIs; with
32 × 32 pixels) extracted from the MIAS [18] dataset are
used for the experiments. They obtained a classification
accuracy of 94 %.
Most of the previous microcalcification detection

works have been performed on film-scanned mammo-
grams. With the development of the imaging technique,
FFDMs have been widely deployed, and they have better
image quality than film-scanned images. We will con-
centrate on FFDM images.
In this paper, we proposed a novel weighted support

vector machine-based microcalcification cluster detec-
tion method for FFDM images. Inspired by the work in
[19], the possibilistic fuzzy c-means (PFCM) clustering
algorithm is used to derive weights for the samples. Sev-
eral features are extracted and used to train SVM. The
proposed method is evaluated on a publically available
FFDM dataset [20], consisting of 410 images.
The contributions of the paper are as follows: (1) The

weighted SVM is for the first time introduced for MC
and MC cluster detection. (2) A novel weighting scheme
based on PFCM clustering is introduced to assign
weights to samples; unlike the traditional transductive
learning-based “pseudo training dataset generating”
method, this integration is more simple and principled.
(3) A mutual information criterion-based feature selec-
tion is investigated for the MC detection in FFDM, and
until now, only very few MC detection works have been
done on the FFDM dataset.
The rest of the paper is organized as follows: Section 2

introduces the related PFCM technique used, and our
method is introduced in Section 3. Experimental results
are shown in Section 4. The conclusions and discussions
are provided in Section 5.

2 Brief introduction of PFCM clustering
The PFCM is a recently developed clustering algorithm,
which has the advantages of the fuzzy c-means (FCM) as
well as the possibilistic c-means (PCM) [21] algorithm.
Outlier sensitivity is one shortcoming of the FCM clus-
tering. The PCM clustering algorithm [21] can overcome
the shortcoming, and it can identify the degree of typic-
ality that a sample has with respect to the group to
which it belongs. However, sometimes the prototypes of
PCM clusters can coincide, and the PCM will fail in
these cases. Pal et al. proposed a hybridized PFCM clus-
tering [22] to cope with the above shortcomings.
For an unlabeled dataset X = {x1, x2,…, xn} ∈ R

p, a c-
partition of X is a set of (cn) values {uik} that can be
written as a (c × n) matrix U = [uik], i = 1,…, c, k = 1,…,
n. The possibilistic and fuzzy c-partitions of X are de-
fined as [22]

Mpcn ¼ U∈Rcn : 0≤uik≤1∀i; k; ∀k∃i∍uik > 0f g ð1Þ

Mf cn ¼ U∈Mpcn :
Xc
i¼1

uik ¼ 1∀k;
Xn
k¼1

uik > 0∀i

( )

ð2Þ

The optimization function in PFCM is formulated as
[22]

Jpfcm X;U ;T ;Vð Þ ¼Xc
i¼1

Xn
k¼1

aumik þ btηik
� �� xk−vik k2 þ

Xc
i¼1

γ i
Xn
k¼1

1−tikð Þη

ð3Þ

with constraints
Xc
i¼1

uik ¼ 1 ∀k; 0≤uik ; tik≤1 , and the con-

stants a > 0, b > 0, m > 1, and η > 1. vi ∈ R
p is the center

of the i ‐ th cluster, and xk is the k ‐ th data sample. The
values of a and b represent the relative importance of
membership and typicality values in the computation of
the prototypes. The parameters m and η represent the
absolute weight of the membership value and typicality
value, respectively. One can set b > a and m > η to re-
duce the sensitivity to outliers.
The probability (memberships, or relative typicalities,

used in FCM) and possibilities (or absolute typicalities,
used in PCM) are different. The membership uik for data
xk belongs to a class ci which is a function of xk and all c
centroids {v1,…, vk}, while the typicality value is a func-
tion of xk and the center vi alone, as shown below. For
example, in a two-class clustering problem, for a noise
data point, which is far away from both clusters, the
membership to both cluster uik will be about 0.5

(required by
X2
i¼1

uik ¼ 1 ), while the typicality values to

both cluster tik will be near zero. For another point
which lies between the two clusters (not far away from
the centers), the uik will also be about 0.5, but the typic-
ality values tik will be a positive number not approaching
zero. The probability and typicality can convey different
information about the dataset.
PFCM theorem [22]: If DikA = ‖xk − vi‖ > 0, for every i,

k, m > 1, η > 1, and if X contains at least c distinct data
points, then (U,T,V) ∈Mfcm ×Mpcm ×ℜc × n may minimize
Jpfcm only if
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uik ¼
Xc
j¼1

DikA

DjkA

� �2= m−1ð Þ !−1

; 1≤i≤c; 1≤k≤n ð4Þ

tik ¼ 1

1þ b
γi
D2

ikAi

� �1= η−1ð Þ ; 1≤i≤c; 1≤k≤n ð5Þ

vi ¼
Xn
k¼1

aumik þ btηik
� �

xk=
Xn
k¼1

aumik þ btηik
� �

; 1≤i≤c

ð6Þ

γi ¼ K

Xn
k¼1

umik xk−vik k2

Xn
k¼1

μmik

ð7Þ

The iterative process of the algorithm is presented in
[22].

3 Proposed method
The workflow of the proposed method is shown in Fig. 2.
For each image, suspicious MC regions are extracted
with active contour segmentation. Then geometry and
texture features are extracted for each suspicious MC, a
ROI geometry, texture feature 
extraction

Mutual information 
based feature selection

PFCM clustering

Weight of samples

Ground truth label

Weig
SVM tr

Training image

Region growing initial segmentation

Level set refined segmentation

Training s

Fig. 2 Workflow of the proposed method
mutual information-based supervised criterion is used to
select important features, and then PFCM is applied to
cluster the samples into two clusters. Weights of the
samples are calculated based on possibilities and typical-
ity values from the PFCM, and the ground truth labels.
A weighted nonlinear SVM is trained. During the test
process, when an unknown image is presented, a similar
process is performed. Suspicious regions are located by
active contour segmentation, selected features are ex-
tracted, and the suspicious MC regions are classified by
the more powerful weighted nonlinear SVM. Finally, the
MC regions are analyzed with spatial information to lo-
cate MC clusters.

3.1 Level set-based MC segmentation
The segmentation of MC consists of two steps: firstly,
several edge points are detected and used to initialize
the MC segmentation, and then an active contour is
used to refine the initial segmentation. The initial step
follows the method proposed in [23]. For a given image
f(x, y), the edge of a microcalcification to be segmented
is a closed contour around a known pixel (x0, y0), which
is the location of the local highest grayscale value pixel.
For each pixel, a slope value s(x, y) referred to f(x0, y0) is
defined as [23]
New image
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initial segmentation

Level set refined 
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hted
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s x; yð Þ ¼ f x0; y0ð Þ−f x; yð Þ
d x0; y0; x; yð Þ ð8Þ

where d(x0, y0, x, y) is the Euclidean distance between the
local maximum pixel (x0, y0) and pixel (x, y). A pixel is
considered on the edge if s(x, y) is maximal along a line
segment originating from (x0, y0). The length of the con-
sidered line segment is chosen as 15 (approximately
1 mm as the spatial resolution in INbreast is 70 μm per
pixel). The line search is applied in 16 equally spaced di-
rections originating from the seed pixel. Thus, with each
local maximal, 16 edge points are located. Note that the
segmentation step will encounter some difficulties for
small MC, and the approach used in [24] is adopted to
overcome the problem. That is, the segmentation step is
performed on the upscaled region containing a possible
MC.
For a given local maximal with 16 edge points, a circle

is fitted to the points. And the circle is used as the
initialization of the level set-based segmentation. Level
set originates from the active contour model (snake)
[25]. Snake can be edge based or region based.
In this paper, we used the segmentation method we

have proposed previously [7, 26]. The final energy func-
tional we used is

E ϕ; f 1; f 2ð Þ ¼ λ1

Z Z
K σ x−yð Þ I yð Þ−f 1 xð Þj j2H ϕ yð Þð Þdy

� �
dx

þλ2
R ð R K σ x−yð Þ I yð Þ−f 2 xð Þj j2ð1−H ϕ yð Þð ÞÞdyÞdx

þγ1

Z
I xð Þ−c1j j2 1−H ϕ xð Þð Þð Þdxþ γ2

Z
I xð Þ−c2j j2H ϕ xð Þð Þdx

þ μ

Z
∇H ϕ xð Þð Þj jdxþ v

Z
gδ ϕð Þ ∇ϕj jdxþ w

Z
1
2

∇ϕ xð Þj j2−1� �
dx

ð9Þ

For details about the above function and the numerical
implementation, please refer to [7, 26, 27] (see Fig. 3 for
an illustration of the segmentation steps).

3.2 Feature extraction from ROI
After segmenting suspicious MC from the ROI, we com-
pute a set of geometry and texture features related to
the boundary and the region. Several features used here
Fig. 3 An example of the segmentation steps. a An image patch showing
algorithm, c fitting edge points with a circle, and d the result of active con
have been used in our previous work [7] for mass
diagnosis.

3.2.1 Geometry features
Fourteen geometry features are considered in the study,
including area (denoted as GF1, where GF means geom-
etry feature), perimeter (GF2), compactness (C, GF3),
normalized distance moment (NDM2, NDM3, NDM4,
GF4-F6) [28], Fourier feature (FF, GF7) [28], normalized
radial length (NRL)-based features (μNRL, σNRL, ENRL,
ARNRL, GF8-GF11) [29], and relative gradient orientation
(RGO)-based features (μRGO, σRGO, ERGO, GF12-GF14)
[30]. The area is computed by the pixels in the seg-
mented region, and the perimeter is computed by the
number of pixels on the boundary. C is a measure of
contour complexity versus the enclosed area and is

defined as C ¼ 1− 4π� areað Þ
perimeterð Þ2 . For details about geometry

features, please see our previous work [7] and the refer-
ences therein. The 14 geometry features are listed in
Table 1.

3.2.2 Texture features
Besides the shape information of a MC contour, the tex-
ture information of the region surrounding the suspi-
cious MC boundary also contains important information
for MC analysis [8]. Thus, texture features are also used
for MC detection. For each suspected MC, a patch with
size 16 × 16 is extracted [14, 31], whose center is deter-
mined by the center of the suspected MC. Besides the
average grayscale in the segmented region in a block
(denoted as TF1, where TF means texture feature)
(16 × 16 window) and the grayscale difference between
the average suspicious region and background (TF2)
(the window without taking into account the segmented
region), the gray level co-occurrence matrix (GLCM)
[32, 33] and wavelet texture features are also extracted.
GLCM has been widely used in mammographic micro-

calcifications [8] and masses [34]. We use several GLCM
features, including autocorrelation (TF3), contrast (TF4),
correlation (TF5), cluster prominence (TF6), cluster
shade (TF7), energy (TF8), entropy (TF9), homogeneity
(TF10), maximum probability (TF11), sum of squares
a subtle microcalcification, b 16 edge points determined by the
tour segmentation



Table 1 Geometry features extracted from a MC boundary

Feature
index

Feature Note

GF1 Area of the MC Number of pixels in the segmented region

GF2 Perimeter of
the MC

Number of pixels on the border of the MC

GF3 Compactness Calculated with C ¼ 1− 4π� areað Þ
perimeterð Þ2

GF4 NDM2 Normalized distance-based moments

GF5 NDM3

GF6 NDM4

GF7 Fourier feature Fourier feature calculated taking boundary
pixel as a complex number

GF8 NRL mean Statistical values from normalized radial
length

GF9 NRL standard
deviation

GF10 NRL entropy

GF11 NRL area ratio

GF12 RGO mean Statistical values from relative gradient
orientation, measure spiculation, and defined
as the acute angle θ between radial direction
of a point on the contour and the gradient
direction of the point

GF13 RGO standard
deviation

GF14 RGO entropy
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(TF12), sum average (TF13), sum variance (TF14), sum
entropy (TF15), difference variance (TF16), difference
entropy (TF17), information measure of correlation
(TF18, TF19), inverse difference normalized (TF20), and
inverse difference moment normalized (TF21).
Besides GLCM-based features, we have also extracted

several wavelet-based features. Multiscale representa-
tions have been widely used in image processing applica-
tions. Wavelet analysis is the most common way to
generate such a representation [35]. We used undeci-
mated wavelet transform with the Daubechies 4 filter for
each suspicious MC patch (a 16 × 16 window) in the
paper. The entropy and energy of each sub-band are
used as features. For an N ×N (N = 16) sub-image, nor-
malized energy and entropy are computed as follows
[24]:

Energy ¼
X

i

X
j
x2ij

N2 ð10Þ

Entropy ¼ −

X
i

X
j

x2ij
norm2

� 	
log2

x2ij
norm2

� 	
logN

2

2

ð11Þ

where xij is the ij-th pixel value of the sub-images, and

norm2 ¼
X

i

X
j
x2ij ð12Þ

Twelve sub-images are generated for each ROI with a
three-level wavelet decomposition, and as the first-level
decomposition consists of mostly noise, features are ex-
tracted from the levels 2 and 3 sub-bands. Thus, 16
wavelet features are extracted for each ROI and are de-
noted with TF22-TF23 from the energy and entropy fea-
ture of the level 2 approximation coefficient matrix, and
TF24-TF25, TF26-TF27, and TF28-TF29 from horizon-
tal, vertical, and diagonal coefficient matrices, respect-
ively. TF30-TF37 are defined similarly for level 3
decomposition.

3.3 Feature selection based on mutual information
With the above procedure, a lot of features are extracted
to represent the possible MC. However, not every fea-
ture is useful to discriminate non-MC and MC. Each
feature used here has its physical meaning, and it is im-
portant to preserve the intelligibility of the result; several
methods, such as principal component analysis (PCA)
and linear discriminant analysis (LDA) [36], are not
applicable.
Feature selection methods can be categorized into two

types: filter methods and wrapper methods [37]. The
performance of wrapper methods is dependent on the
specific classifiers, while the performance of filter
methods is usually independent of the classifiers. In this
paper, we concentrate on the mutual information (MI)-
based filter feature selection method.
Positive (MC) and negative (non-MC) samples are

needed to select features. The positive samples are ob-
tained with the annotation in the image database, and
the negative samples are those ROIs segmented by active
contour but do not contain MC. In this way, the
selection of non-MC samples is tuned with the whole
detection procedure. It is an advantage compared with
other commonly used random sample methods, as used
in [13].
In information theory, MI calculates the statistical de-

pendence between two random variables and can be
used to measure the relative utility of each feature to a
classification problem. The MI between two random var-
iables X and Y is defined as

I X;Yð Þ ¼
Z
Y

Z
X

p x; yð Þ log p x; yð Þ
p xð Þp yð Þ dxdy ð13Þ

where p(x, y) is the joint probability density function of
continual random variables, and p(x) and p(y) are the
marginal probability density functions. MI can also be
defined with Shannon entropy

I X;Yð Þ ¼ H Xð Þ−H XjYð Þ ¼ H Yð Þ−H Y jXð Þ
¼ H Xð Þ þ H Yð Þ−H X;Yð Þ ð14Þ

where H(x) = − ∫p(x)log p(x)dx, H(y|x) = − ∬p(x, y)log
p(y|x)dxdy, and H(x, y) = − ∬p(x, y)log p(x, y)dxdy are the
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Shannon entropies. An explanation of MI for feature selec-
tion is as follows: Let Y be a variable representing the class
label (e.g., MC or non-MC) and X a variable denoting a fea-
ture. The entropy H(Y) is known to be a measure of the
amount of uncertainty about Y, while H(Y|X) is the amount
of uncertainty left in Y when knowing an observation X.
Therefore, MI can be seen as the amount of information
that the measure at X has about the class label Y. Thus, MI
measures the capability of this feature to predict the class
label.
As is known, the best k single features are usually not

the best k combined features, since there may exist re-
dundancy between these features. The minimum redun-
dancy maximum relevance (mRMR) method [38]
considered this problem, and it selects features that have
the highest relevance with the target class and are also
minimally redundant. Denote the i ‐ th feature as fi and
the class variable as c. The maximum relevance criterion
selects the top m features in the descent order of I(fi, c),
i.e., the best m individual features correlated to the class
labels:

max
S

1
Sj j
X
f i∈S

I f i; cð Þ ð15Þ

where S is the set of selected features, and |S| is the car-
dinality of the set.
Due to feature correlations among features, the m best

separated features are not the best combined m features.
The minimum redundancy criteria are introduced to re-
move the redundancy among features:

min
S

1
Sj j2

X
f i;f j∈S

I f i; f j
� �

ð16Þ

The final features are selected sequentially, to select
the m ‐ th feature after obtaining the m − 1 features Sm − 1,
by solving the following optimization problem [38]:

max
f j∈F−Sm−1

I f j; c
� �

−
1

m−1

X
f i∈Sm−1

I f j; f i
� �2

4
3
5 ð17Þ

3.4 Clustering with PFCM and weight samples
With the obtained MC and non-MC samples, using the
features selected by the mRMR criterion, PFCM is ap-
plied to cluster the samples. Each sample with selected
feature values is regarded as a data point. As shown
above, for each sample after PFCM clustering, it has a
probability and a typicality value.
Let yi denote the label of sample i, and let yi ∈ {+1, − 1}

denote the class variable (MC or non-MC) which we
can obtain by the doctor’s manual annotation. Let MUi

denote the probability of sample i belonging to
calcification, let MTþ1
i denote the typicality value of

sample i belonging to MC, and let MT−1
i denote the typ-

icality value of it belonging to non-MC. MUi, MTþ1
i ,

and MT−1
i can be obtained by PFCM clustering, and

their value ranges are between 0 and 1.
We want to give more weights to the samples with

higher confidence and define the weight W1i as

W1i ¼ 1þ yi
2

�MUi þ 1−yi
2

� 1−MUið Þ ð18Þ

If a sample is MC (yi = + 1), we can simplify it to W1i
=MUi, and if it is non-MC (yi = − 1), W1i can be simpli-
fied to be 1 −MUi. In this way, if a sample is MC and
the possibility value of it belongs to MC obtained by
PFCM is high, the weight W1i is high; otherwise, the
weight is low.
Besides the confidence value, we also used the typical-

ity values outputted by PFCM. The weight term consid-
ering the typicality value is defined as follows:

W2i ¼ 1þ yi
2

�MT1
i � 1−MT−1

i

� �þ 1−yi
2

� 1−MT 1
i

� ��MT−1
i ð19Þ

For a typical sample belonging to MC or non-MC, its
weight W2i is high. For example, for a typical MC sam-
ple xi, the first term in W2i approaches 1, since yi ¼ 1;
MT 1

i ≈1;MT−1
i →0 . For a typical non-MC, W2i is also

large due to the second term, while W2i is small for a
noise point, since in this case, both MTþ1

i and MT−1
i ap-

proach 0.
We take both possibility information and typical infor-

mation into consideration, and the final weight of sam-
ple i we defined is

W3i ¼ W1i �W2i ð20Þ

3.5 Weighted SVM-based classification
Given a set of vectors (x1,…, xn) and their corresponding
labels (y1,…, yn) with yi ∈ {+1, − 1}, the SVM classifier de-
fines a hyperplane (w, b) in kernel space that separates
the training data by a maximal margin.
For the weighted SVM, each sample consists of a data

vector xi, a label yi as in standard SVM; besides, a sam-
ple also contains a confidence value vi. Define the effect-
ive weighted functional margin of weighted sample (xi,
yi, vi) with respect to a hyperplane (w, b) and a margin
normalization function f to be f(vi)yi(〈w ⋅ xi〉 + b), where f
is a monotonically decreasing function. To tolerate noise
and outliers, more training samples than just those close
to the boundary need to be considered.
Definition (margin slack variable) [39]: Given a value

γ > 0, the margin slack variable of a sample (xi, yi) with
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respect to the hyperplane (w, b) and target margin γ is
defined to be

ξ i ¼ max 0; γ−yi w⋅xih i þ bð Þð Þ ð21Þ
The quantity measures how much a point fails to have

a margin γ from the hyperplane (w, b). If xi is misclassi-
fied by (w, b), then ξi > 0. To generalize the soft margin
classifier to the weighted soft margin classifier, the
weighted version of the slack variable is introduced.
Definition (effective weighted margin slack variable)

[39]: The effective weighted margin slack variable of a
sample (xi, yi, vi) with respect to a hyperplane (w, b) and
margin normalization function f, slack normalization
function g, and target margin γ is defined as

ξwi ¼ g við Þmax 0; γ−yif við Þ < w⋅xi > þbð Þð Þ
¼ g við Þξ i ð22Þ

where f is a monotonically decreasing function such that
f(⋅) ∈ (0, 1], and g is a monotonically increasing function
such that g(⋅) ∈ (0, 1].
The weighted SVM optimization problem can be for-

mulated as follows: Given a training sample set S = ((x1,
y1, v1),…, (xn, yn, vn)), the hyperplane (w, b) that solves
the following optimization problem

minimize w⋅wh i þ C
Xn
i¼1

g við Þξ i
s:t: yi w⋅xih i þ bð Þf við Þ≥1−ξ i; i ¼ 1;⋯; n

ξ i≥0; i ¼ 1;⋯; n

ð23Þ

realizes the maximal weighted soft margin hyperplane.
If both functions f and g are set to be constant at 1, then
the WSVM coincides with standard SVM.
In the above formulation, the final decision plane will

be less affected by those margin-violating samples with
low confidence, and samples with high confidence have
higher impact on the final decision plane. The
optimization problem can be solved using the sequential
minimal optimization technique as in standard SVM.
The function f(x) and g(x) are set as used in [39].

4 Experimental results
4.1 Mammogram database
The proposed method was tested on the publically avail-
able INbreast database [20]. The database was acquired
from the Breast Centre in CHSJ, Porto, between April
2008 and July 2010, and the acquisition equipment was
the MammoNovation Simens FFDM. The database has a
total of 115 cases (410 images), from which 90 cases are
from women with both breasts affected (four images per
case) and 25 cases are from mastectomy patients (two
images per cases). Several types of lesions (masses, calci-
fications, architectural distortion) were included. The
pixel size is 70 μm, with 14-bit resolution. The image
matrix was 3328 × 4084 or 2560 × 3328 pixels. All im-
ages were saved in DICOM format. The database has a
large portion of calcifications. Among the 410 images,
calcifications presented in 301 images, and 27 sets of
microcalcification clusters occurred in 21 images (≈1.3
clusters per image). A total of 6880 microcalcifications
were individually identified in 299 images (≈23.0 calcifi-
cations per image).
For our investigation, very small MCs (number of pixels

less than 3) are ignored and treated as normal. Note that
the tiny MC can be detected with techniques such as
wavelet transform. With such criterion, we obtained 2748
MCs on 232 images (≈11.8 MCs per image). Since the MC
cluster in this criterion in the dataset is small, and a clus-
ter can contain dozens of MC, we used a variant criterion
about the MC cluster [40]. That is, a group of objects clas-
sified as MCs is considered to be a true-positive (TP) clus-
ter only if at least three true calcifications should be
detected by an algorithm within an area of 1 cm2. A group
of objects classified as MCs is labeled as a FP cluster pro-
vided that the objects satisfy the cluster requirement but
do not contain true MCs. In this way, 76 MC clusters are
defined.

4.2 Results
4.2.1 Segmentation results
Our method first extracted suspicious MC regions, and
then use WSVM to reduce the false positives. If a MC is
missed in the segmentation step, then it will not show up
in the final detection. Visual inspection of the output im-
ages and their corresponding annotations showed that all
the MC clusters had been detected in the first segmenta-
tion stage. Figure 4 shows the segmentation stage of an
image. In Fig. 4a, the MC cluster is circled. Figure 4b
showed the output mask of the first stage, and it can be
seen that the MC cluster has been detected correctly. The
enlarged parts are shown in Fig. 4c, d.
To quantitatively evaluate the segmentation results, we

used Dice coefficient D, which has been widely used for
segmentation evaluation. The value of D ranges from 0

(no overlap) to 1 (perfect overlap) and is defined by D

¼ 2 A∩Gð Þ
A∩GþA∪Gð Þ � 100%, where A is the region segmented by

a method, and G is the manually labeled region. The aver-
aged value for D on 100 MC images was 93.8 %, and it in-
dicates that the proposed method is accurate for MC
segmentation.

4.2.2 Selection of features
As there are 2748 MCs in total, about half of them are
used as training dataset, and 1382 MCs from the 116
images containing MC are used in the training as posi-
tive samples. In addition, twice as many non-MC exam-
ples were selected from the 117 images (one contains



Fig. 4 Segmentation of suspected of MC. a Original image; the red circle is the annotation of MC cluster. b Segmentation mask of possible MC. c
Enlarged part of the MC cluster in a. d Enlarged part of segmentation mask of b
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only MC cluster) and 88 images not containing MC or
MC cluster. That is, in total, 205 images are used for
training (containing 1382 MCs, 38 MC clusters, and
2764 non-MCs), and the remaining 205 images (117 im-
ages containing MC or MC cluster and 88 images not
containing MC or MC cluster) are used for testing; the
test dataset contains 1366 MCs on 116 images and 38
MC clusters on 10 images.
Unlike usually random selection, the non-MC exam-

ples are selected considering the initial detection proced-
ure. That is, the non-MC examples are selected from the
level set segmented regions not containing MC. Thus,
the negative examples are specific to the used segmenta-
tion method, which is an advantage over the traditional
random selection method. There were 4146 (1382 × 3)
training examples in total.
Each MC or non-MC was covered by a 16 × 16 (about

1.12 mm × 1.12 mm with pixel spatial resolution of
0.07 mm) window whose center coincided with the cen-
ter of the suspected MC. Geometry features are ex-
tracted from the level set segmentation, and GLCM and
wavelet texture features are extracted from the window.
With the extracted features and known class label, MI

is used to select the important features. We have ex-
tracted 51 features (14 geometry features, 2 grayscale
features, 19 GLCM features, and 16 wavelet features) to
represent MC and non-MC, and the top 30 features
ranked by MI are shown in Table 2.
We used a fivefold cross-validation method to select the

number of features; the training samples were equally split
into five subsets, four subsets were used as the training
dataset and the remaining one subset was used for testing.
The averaged performances were recorded to set param-
eter values. For the classifier here, we used a standard
SVM (with radial basis function kernel) without weights;
more specifically, the LIBSVM toolbox [41] was used. The
parameters C and σ in the SVM were obtained with cross-
validation from set {2− 5, 2− 4,…, 20,…, 25}. Denote the
true-positive number of a classifier as TP, the false-
positive number as FP, the true-negative number as TN,
and the false-negative number as FN. Then the TPR (true-
positive rate), TNR (true-negative rate), and accuracy are
defined as TPR ¼ TP

TPþFN , TNR ¼ TN
TNþFP , and Accuracy

¼ TPþTN
TPþFNþTNþFN.
Figure 5 shows the classification accuracy with different

numbers of features. This figure shows that the accuracy
increases with the added features initially, but it begins to
decrease after several features are selected, which indicate
that some features may degrade the classifier’s perform-
ance. The best number of feature used here is 22, and we
will use these features in the following experiments. From
the features listed in Table 2, we can see selected features
including both geometry features and texture features,
which indicate that both geometry and texture features
are useful to separate MC from non-MC. The top feature
is the grayscale difference feature, which is in accordance
with the typical characteristic that MC is brighter than the
background. The second top feature is the compactness
geometry feature, which is also useful to distinguish MC
from other bright regions, for example, vessel, since the
MC is typically compact while the vessel region is elon-
gated. While the other used features may not have a direct
explanation, they contain discriminating information for
false-positive reduction.
4.2.3 Detection results and comparison with unweighted
SVM
After deciding the number of selected features, each data
sample is represented by a 22-feature vector. Then the



Table 2 Top 30 features ranked by mutual information filter

Order Feature no. and name Order Feature no. and name Order Feature no. and name

1 TF2, grayscale difference 11 TF31, entropy in approximate matrix of
level 3 with wavelet

21 GF11, NRL area ratio

2 GF3, compactness 12 TF3, autocorrelation with GLCM 22 GF13, RGO standard deviation

3 TF17, difference entropy with GLCM 13 GF10, NRL entropy 23 TF20, inverse difference normalized with
GLCM

4 TF23, entropy in approximate matrix
of level 2 with wavelet

14 TF6, cluster prominence with GLCM 24 TF22, energy in approximate matrix of
level 2 with wavelet

5 TF4, contrast with GLCM 15 GF8, NRL mean 25 TF9, entropy with GLCM

6 GF1, area of the MC 16 GF4, NDM2 26 TF33, entropy in horizontal coefficient
matrix of level 3 with wavelet

7 GF7, Fourier feature 17 TF25, entropy in horizontal coefficient
matrix of level 2 with wavelet

27 TF12, sum of squares with GLCM

8 TF1, the average grayscale in
segmented region

18 TF36, energy in diagonal coefficient matrix
of level 3 with wavelet

28 TF10, homogeneity with GLCM

9 GF12, RGO mean 19 TF15, sum entropy with GLCM 29 TF28, energy in diagonal coefficient matrix
of level 2 with wavelet

10 GF2, perimeter of the MC 20 GF5, NDM3 30 TF32, energy in horizontal coefficient
matrix of level 3 with wavelet
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samples in the training are clustered and weighted as in
Section 3.4. A weighted SVM is trained as introduced in
Section 3.5 and then used for testing.
We measured both MC detection and MC cluster de-

tection for the experiments. The MC cluster was identi-
fied by grouping the objects that have been determined
by the algorithm to be MC. The receiver operating char-
acteristic (ROC) curves are used to evaluate the per-
formance of MC detection, and the free-response
receiver operating characteristic (FROC) curves are used
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Fig. 5 Accuracy of the SVM classification versus the number of selected fea
to evaluate the performance of MC cluster detection.
The standard SVM without weighting is used to evaluate
the effect of the PFCM-based weighting scheme. An
ROC curve is a plot of operating points which can be
considered as a plot of true-positive rate as a function of
false-positive rate. The curve is generated by threshold-
ing the output possibilities of MC of the classifier. A
FROC curve is a plot of the correct detection rate (true-
positive rate) achieved by a classifier versus the average
number of false positives (FPs) per image varied over the
8 20 22 24 26 28 30 32 34 36
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decision threshold. A FROC curve can provide a sum-
mary of the trade-off between detection sensitivity and
specificity.
We compared the performance of the standard un-

weighted SVM and the proposed PFCM clustering-based
weighted SVM on MC classification. The test set con-
tains 1366 true MCs, and we selected 2732 non-MC
samples from the segmentation on test images, similar
to the training step. The performance of standard un-
weighted SVM and our weighted SVM is shown in Fig. 6
with a ROC curve. The AUC (Az), which is the area
under the ROC curve, is used to compare the perform-
ance of the two classification methods. The AUC for
standard unweighted SVM is 82.68 %, and the AUC of
the proposed PFCM-based weighted SVM is 86.76 %.
We can see that with the same training samples and test
samples, the proposed weight SVM achieved better per-
formance than the standard unweighted SVM.
The performances of the proposed weighted SVM ap-

proach, along with the standard unweighted SVM, are
also presented for MC cluster detection with the FROC
curve, as shown in Fig. 7. The proposed method ob-
tained a high sensitivity of 92 % with a FP rate of 2.3 FP
clusters/image. At a similar sensitivity, the FP rate of the
standard unweighted SVM obtained 4.7 FP clusters/
image. It can be seen that the proposed weighted SVM
also outperformed the standard unweighted SVM for
MC cluster detection.

5 Discussion and conclusion
Automatic detection of microcalcification in mammo-
grams has been investigated by many researchers in the
0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False P

T
ru

e 
P

os
iti

ve
 R

at
e

Fig. 6 ROC curve of the standard unweighted SVM and the proposed PFC
past two decades. In [15], Tiedeu et al. segmented
microcalcifications with an adaptive threshold method
on the enhanced image, and a set of moment-based geo-
metrical features were used for false-positive reduction.
On a dataset of 66 images containing 59 MC clusters
and 683 MCs, they obtained a sensitivity of 100 % with a
low specificity of 87.77 %. They also performed benign/
malignant classification. Oliver et al. [16] extracted
image features with a bank of filters, and a boosting
method is used to separate MC from non-MC. The data-
set they used included the MIAS dataset (322 mammo-
grams) and another 280 FFDM mammograms. Their
method’s performance for MC is Az = 0.85 with ROC
analysis, and for MC clusters, the result is 80 % sensitiv-
ity at one false-positive cluster per image.
In [42], Nunes et al. obtained Az = 0.93 for MC detection

on a database of 121 mammograms by combining three
contrast enhancement techniques. Papadopoulos et al.
[43] investigated five image enhancement techniques and
obtained Az = 0.92 for MC detection on a database con-
sisting of 60 mammograms from the MIAS and Nijmegen
databases. Linguraru et al. [44] proposed MC cluster de-
tection based on a biologically inspired contrast detection
algorithm, integrated with a preprocessing step (curvilin-
ear structure removal and image enhancement). They ob-
tained a 95 % sensitivity with 0.4 false positives per image
on a small subset of the Digital Database for Screening
Mammography (DDSM) dataset [45] (82 images, 58 of
which contain microcalcification and the other 24 were
normal ones, the number of MC cluster is 82). Ge et al.
[46] developed two systems to detect microcalcification
clusters, one for FFDM and the other one for screen-film
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mammograms (SFMs). They obtained an average of 0.96
or 2.52 false positives per image at 90 % sensitivity on
FFDMs and SFMs, respectively. The FFDM dataset they
used includes 96 mammograms with microcalcifications
and 108 normal mammograms.
It is hard to directly compare different methods, since

the used datasets are different, and the definition for
MC cluster sometimes is also different. On the DDSM
dataset [45], usually different subsets are used in investi-
gations. Most of the above techniques are developed for
film-scanned mammograms. Here we developed the
method on the FFDMs, as images from FFDM have bet-
ter image quality than file-scanned images and are also
widely deployed. From the above results, it can be seen
that the performance of our method with 92 % sensitiv-
ity at 2.3 false-positive clusters per image is better or
similar to the above results. It should be noted that our
method is investigated on a larger dataset.
In this paper, we proposed a weighted SVM technique

for detection of MC clusters in FFDM. In this approach,
suspicious MC regions are first segmented with active
contour, and then the regions are classified by a trained
weighted SVM. The non-MC training samples are se-
lected from the segmented regions, which can be better
tuned to the whole procedure than random sampling.
Mutual information criterion was used to select import-
ant features, and among the extracted 51 features, 22
features are selected and used in the training and test
process. The training samples are weighted with the pos-
sibility and typicality value of a sample belonging to MC
output by the novel introduction of possibilistic fuzzy c-
means (PFCM) clustering. Experimental results with
ROC and FROC analysis using a set of 410 FFDM mam-
mograms demonstrated that the proposed method
outperformed the standard unweighted SVM. The
proposed weight scheme may be also applicable to
other classifiers, such as random forest, and we will
investigate these problems in the future. Besides, we
will try to adapt the method for traditional film-
scanned mammograms.
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