
ADVANCES IN TRANSFER LEARNING METHODS

BASED ON COMPUTATIONAL INTELLIGENCE

A Dissertation presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

RAYAN S. GARGEES

Dr. Mihail Popescu and Dr. James M Keller, Dissertation Supervisors

DECEMBER 2020

© Copyright by Rayan Gargees 2020

All Rights Reserved

The undersigned, appointed by the Dean of the Graduate School, have examined

the dissertation entitled:

ADVANCES IN TRANSFER LEARNING METHODS

BASED ON COMPUTATIONAL INTELLIGENCE

presented by Rayan Gargees,

a candidate for the degree of doctor of philosophy and hereby certify that, in their

opinion, it is worthy of acceptance.

Dr. Mihail Popescu

Dr. James M. Keller

Dr. Marjorie Skubic

Dr. Marilyn Rantz

This dissertation is dedicated with love to my parents...

ACKNOWLEDGMENTS

First and foremost, I sincerely thank my savior, Jesus Christ, to provide me with

the strength, capacity, and dedication to complete this research. His innumerable

blessing has made me thrive in my scholarly pursuits. My deep gratitude goes to

my advisors, Dr. Mihail Popescu and Dr. James M. Keller, for their experienced

guidance and enthusiasm. Their insightful knowledge led me through this research

and motivated me to carry my research to a greater extent. It was a great privilege

to research under their supervision. Their support has formed my advancement as

a scholar. I am thankful to my dissertation committee members, Dr. Marjorie Sku-

bic and Dr. Marilyn Rantz, for serving on the dissertation committee and for their

thoughtful feedback and suggestions, which have greatly improved my dissertation.

A huge thank you goes to my friends, who always provide needed support and cheer-

fulness. Your encouragement has meant to me more than you could think. I am

incredibly grateful to my family, especially my parents, for their unconditional love,

prayers, and always being there for me. They inspired me to strive in pursuit of my

goals and supported me to achieve beyond what I believed I could accomplish. I’m

forever indebted to you.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . vii

LIST OF FIGURES . viii

List of Algorithms . xiv

ABSTRACT . xv

CHAPTER

1 Introduction . 1

1.1 Motivation . 1

1.2 Transfer Learning . 2

1.2.1 Definition and Foundation 3

1.3 Major Contribution . 5

1.4 Dissertation Organization . 6

2 Background . 8

2.1 Machine learning and Neural network 8

2.1.1 Deep Learning . 10

2.2 Related Work . 15

2.2.1 Unsupervised Transfer Learning 15

2.2.2 Supervised Transfer Learning 17

3 TLPCM: a Transfer-Learning Possibilistic C-Means Algorithm 21

3.1 Introduction . 21

3.2 Transfer Learning . 25

3.3 C-means, FCM, and PCM . 26

iii

3.4 The Proposed Method, TLPCM 30

3.4.1 Update the Membership uij Equation 32

3.4.2 Update the Membership zjk Equation 33

3.4.3 Update the Equation of the Cluster Centers vj 33

3.5 Dataset Description . 37

3.5.1 Synthetic Dataset . 37

3.5.2 Real-World Datasets . 39

3.5.2.1 Bed Sensor Dataset 39

3.5.2.2 Forensic Glass Dataset 42

3.5.2.3 Chronic Kidney Disease Dataset 44

3.6 Experimental Results . 46

3.6.1 Experimental Results on the Synthetic Datasets 46

3.6.1.1 Increase the Number of Data Samples 46

3.6.1.2 Shift the Location of the Clusters 46

3.6.1.3 Coincident Clustering Feature 49

3.6.1.4 Different Initializations 50

3.6.1.5 Increase the Number of Cluster Centers 52

3.6.1.6 Experiments on ηj and βj Parameters 53

3.6.2 Experimental Results on the Real-World Datasets 56

3.6.2.1 Experimental Results on the Bed Sensor Dataset 56

3.6.2.2 Experimental Results on the Forensic Glass Dataset 66

3.6.2.3 Experimental Results on the Chronic Kidney Dis-
ease Dataset . 68

3.7 Conclusion . 71

iv

4 Non-Invasive Classification of Sleep Stages with a Hydraulic
Bed Sensor Using Deep Learning 72

4.1 Introduction . 72

4.2 Sensors and Datasets . 74

4.2.1 Posture Dataset . 75

4.2.2 Sleep Stage Dataset . 76

4.2.3 Data Preprocessing . 78

4.3 Architecture Design . 81

4.4 Training and Experimental Results 82

4.5 Conclusion . 96

5 Early Illness Recognition in Older Adults Using Transfer Learn-
ing . 97

5.1 Introduction . 97

5.2 Methodology . 99

5.3 Datasets . 103

5.3.1 Synthetic dataset . 103

5.3.2 Real-world dataset . 103

5.4 System Architecture and Implementation 104

5.5 Experimental Results . 106

5.5.1 Experiments on the synthetic dataset 106

5.5.2 Experiments on the real dataset 106

5.6 Conclusion . 109

6 Conclusion and Future Directions 110

6.1 Summary . 110

6.2 Future work . 112

v

BIBLIOGRAPHY . 114

VITA . 128

vi

LIST OF TABLES

Table Page

3.1 Distributions of Source Data and Target Data for S1 [1]. 37

3.2 Data for three residents in TigerPlace. 40

3.3 Consistency of TLPCM and PCM. 51

3.4 Glass dataset Results. 68

3.5 Kidney dataset Results. 69

4.1 Selected five sleep lab patients with a low Apnea-hypopnea index (AHI). 88

5.1 Data for three residents in tiger place. 104

5.2 Amount of transfer knowledge versus AUC. 107

5.3 AUC results for the all combination residents. 108

vii

LIST OF FIGURES

Figure Page

1.1 Overview of the transfer learning Methodology. 4

2.1 Architecture of an LSTM network [2]. 11

2.2 Activation functions; (a) Sigmoid (logistic) function (b) Tanh function

and (c) ReLU function. 14

3.1 Overall framework of transfer learning clustering. 26

3.2 Synthetic dataset S1 ; (a) source data and (b) target data 38

3.3 Differences between the source data and the target data; source (blue)

and target (red). 38

3.4 Synthetic datasetS2 ; (a) source data and (b) target data 39

3.5 Synthetic datasetS3 ; (a) source data and (b) target data 39

3.6 The TigerPlace sensor network architecture comprises a data logger,

sensor network and EHR system, a reasoning system, a secure Web-

based interface, and an alert manager. 41

3.7 Pairwise relationships in a Resident1 dataset with layered kernel den-

sity estimate (KDE). 43

3.8 3D visualization for the three residents ; (a) Resident1 (b) Resident2

and, (c) Resident3. 44

3.9 Glass dataset distribution. 45

viii

3.10 Target data with final cluster centers found with TLPCM for Experiment. 47

3.11 Rand index versus the number of data samples per cluster using PCM

and TLPCM; our algorithm reached a Rand index of approximately

one when it had 4 data points per cluster. 47

3.12 Moving centers. (a) Moved centers inside (converged) and (b) moved

centers outside (diverged) . 48

3.13 Rand index versus percentage distance using PCM and TLPCM; our

approach, TLPCM, was able to cluster the data when the distance

between clusters was 25% less than the distances between clusters in

the original dataset. 50

3.14 Experiment of testing the TLPCM algorithm with coincidence cluster-

ing feature.. 50

3.15 Target data with 6 small clusters and final cluster centers found with

TLPCM. 51

3.16 Rand index with different initializations for PCM and TLPCM; our

algorithm has a higher average Rand index and a smaller standard

deviation than PCM, which means greater consistency. 52

3.17 Rand index versus the number of clusters using PCM and TLPCM;

TLPCM was able to cluster the data regardless of the number of clus-

ters that had been set. 53

3.18 Evolution of ηj vs iteration on target data for all clusters using S1

dataset. 54

3.19 Evolution of βj vs iteration on target data for all clusters using S1

dataset. 55

3.20 Evolution of ηj vs iteration on target data for all clusters using S2

dataset. 56

ix

3.21 Evolution of βj vs iteration on target data for all clusters using S21

dataset. 57

3.22 Target data S3; discovered cluster centers with TLPCM 57

3.23 ηj vs iteration on target data for all clusters using S3 dataset. 58

3.24 βj vs iteration on target data for all clusters using S3 dataset. 58

3.25 Weekly Rand index using Resident 1 as the source data and Resident

2 as the target data; TLPCM was able to reach a Rand index of ap-

proximately one with fewer weeks of data. 60

3.26 Weekly Rand index using Resident 1 as the source data and Resident

3 as the target data; TLPCM was able to reach a Rand index of ap-

proximately one with fewer weeks of data. 60

3.27 Weekly Rand index using Resident 2 as the source data and Resident

3 as the target data; TLPCM needs fewer data than in the previous

two cases due to the similarity between Residents 2 and 3 (source and

target data). 61

3.28 The block diagram illustrates how to detect a new health issue using

the ground truth from earlier weeks’ data. 62

3.29 Detecting a new health issue by consistently checking on a weekly basis

using our algorithm with a small number of data samples compared to

those in the PCM algorithm. 63

3.30 The weekly Rand index for TLPCM using Residents 1 and 2 as the

source data and Resident 3 as the target data (solid blue curve) com-

pared with the Rand index for a single resident (Resident 1 or 2) as

the source data and a single resident (Resident 3) as the target data

(green dashed and red dotted curves). 64

x

3.31 The weekly Rand index for TLPCM using Residents 1 and 3 as the

source data and Resident 2 as the target data (solid blue curve) com-

pared with the Rand index for a single resident (Resident 1 or 3) as

the source data and a single resident (Resident 2) as the target data

(green dashed and red dotted curves). 65

3.32 The weekly Rand index for TLPCM using Residents 2 and 3 as the

source data and Resident 1 as the target data (solid blue curve) com-

pared with the Rand index for a single resident (Resident 2 or 3) as

the source data and a single resident (Resident 1) as the target data

(green dashed and red dotted curves). 65

3.33 Heatmap of the correlations glass dataset. 66

3.34 Principal component analysis performance for glass dataset features. . 67

3.35 Kidney disease dataset features before normalization. 69

3.36 Kidney disease dataset features after normalization. 70

3.37 Principal component analysis performance for Kidney disease features. 70

4.1 Hydraulic Bed Sensor System. 75

4.2 Characteristics of the 56 source participants. 76

4.3 PSG signals visualized in the Natus SleepWorks interface. 77

4.4 Hypnogram of an entire night exported from a PSG system. 78

4.5 Sample of BCG signal with cleaning and normalizing stages. 79

4.6 The proposed architecture of the network 83

4.7 System framework, the features of posture data were utilized to train

the sleep stages data and fine-tune the top layers of the model. 84

4.8 Confusion matrix of 56 patients five-fold non-hierarchical posture data

classification ; Class 0: Supine posture, Class 1: Left Lateral, Class

2:Right Lateral, Class 3: Prone posture (a) training phase (b) testing

phase. 85

xi

4.9 Sleep Stages hierarchical classification steps. 86

4.10 Confusion matrix of 5 patients leave-one-subject-out hierarchical sleep

stages classification utilizing posture data knowledge (a) Training phase,

Class 0: Wake, Class 1: Sleep (b) fine-tuning training, Class 0: REM,

Class 1: NREM (c) Hierarchical fine-tuning testing phase Class 0:

Wake, Class 1: REM, Class 2: NREM 87

4.11 Experimental results; (a) PSG sleep stages ground truth for 5 subjects

and (b) Sleep stages predicted labels for 5 subjects. 88

4.12 Confusion matrix of 5 patients five-fold LOSO-CV non-hierarchical

sleep stages classification utilizing posture data knowledge; Class 0:

Wake, Class 1: REM, Class 2: NREM (a) fine-tuned training phase

(b) fine-tuned testing phase. 89

4.13 Confusion matrix of 5 patients LOSO-CV non-hierarchical sleep stages

classification; Class 0: Wake, Class 1: REM, Class 2: NREM (a)

Training phase (b) testing phase. 90

4.14 Annotation example of PSG system with break. 91

4.15 Incomplete epoch removed from PSG system. 91

4.16 Confusion matrix of 27 patients non-hierarchical sleep stages classifica-

tion; Class 0: Wake, Class 1: REM, Class 2: NREM; (a) training phase

for 22 patients (b) fine-tuning training phase five-fold LOSO-CV for 5

patients (c) fine-tuning testing phase five-fold LOSO-CV for 5 patients. 93

4.17 Confusion matrix of 71 patients non-hierarchical sleep stages classifi-

cation; Class 0: Wake, Class 1: REM, Class 2: NREM; (a) training

phase for 56 (about 80%) patients (b) fine-tuned training phase (c)

fine-tuned testing phase. 94

xii

4.18 Confusion matrix of the testing phase for 15 patients; non-hierarchical

sleep stages classification; Class 0: Wake, Class 1: REM, Class 2:

NREM; (a) Confusion matrix of the testing phase for 15 patients di-

rectly (b) Confusion matrix of the five-fold CV testing phase for 15

patients utilizing posture knowledge. 95

5.1 Synthetic dataset: (a) Source data and (b) Target data 103

5.2 Visualization of three features for normalized data of Resident1: (a)

Day data and (b) Night data. 104

5.3 ROC curves for transfer learning SVM comparing regular SVM with

an RBF kernel, SVDD, and KNNDD run on synthetic data. 107

5.4 ROC curves for transfer learning SVM comparing regular SVM with

an RBF kernel, SVDD, and KNNDD on the sensor data of Resident3

after training on the data of Resident1. 108

xiii

List of Algorithms

1 TLPCM . 36

2 Converging and Diverging Centers 49

3 Extract Segments . 80

4 Preprocessing . 81

xiv

ABSTRACT

Traditional machine learning and data mining have made tremendous progress

in many knowledge-based areas, such as clustering, classification, and regression.

However, the primary assumption in all of these areas is that the training and testing

data should be in the same domain and have the same distribution. This assumption is

difficult to achieve in real-world applications due to the limited availability of labeled

data. Associated data in different domains can be used to expand the availability of

prior knowledge about future target data. In recent years, transfer learning has been

used to address such cross-domain learning problems by using information from data

in a related domain and transferring that data to the target task.

The transfer learning methodology is utilized in this work with unsupervised and

supervised learning methods. For unsupervised learning, a novel transfer-learning

possibilistic c-means (TLPCM) algorithm is proposed to handle the PCM clustering

problem in a domain that has insufficient data. Moreover, TLPCM overcomes the

problem of differing numbers of clusters between the source and target domains.

The proposed algorithm employs the historical cluster centers of the source data

as a reference to guide the clustering of the target data. The experimental studies

presented here were thoroughly evaluated, and they demonstrate the advantages of

TLPCM in both synthetic and real-world transfer datasets.

For supervised learning, a transfer learning (TL) technique is used to pre-train a

CNN model on posture data and then fine-tune it on the sleep stage data. We used a

ballistocardiography (BCG) bed sensor to collect both posture and sleep stage data

to provide a non-invasive, in-home monitoring system that tracks changes in the sub-

jects’ health over time. The quality of sleep has a significant impact on health and

life. This study adopts a hierarchical and none-hierarchical classification structure

to develop an automatic sleep stage classification system using ballistocardiogram

xv

(BCG) signals. A leave-one-subject-out cross-validation (LOSO-CV) procedure is

used for testing classification performance in most of the experiments. Convolutional

Neural Networks (CNNs), Long Short-Term Memory (LSTM), and Deep Neural Net-

works DNNs are complementary in their modeling capabilities, while CNNs have the

advantage of reducing frequency variations, LSTMs are good at temporal modeling.

Polysomnography (PSG) data from a sleep lab was used as the ground truth for

sleep stages, with the emphasis on three sleep stages, specifically, awake, rapid eye

movement (REM), and non-REM sleep (NREM).

Moreover, a transfer learning approach is employed with supervised learning to

address the cross-resident training problem to predict early illness. We validate our

method by conducting a retrospective study on three residents from TigerPlace, a

retirement community in Columbia, MO, where apartments are fitted with wireless

networks of motion and bed sensors. Predicting the early signs of illness in older

adults by using a continuous, unobtrusive nursing home monitoring system has been

shown to increase the quality of life and decrease care costs. Illness prediction is

based on sensor data and uses algorithms such as support vector machine (SVM)

and k-nearest neighbors (kNN). One of the most significant challenges related to the

development of prediction algorithms for sensor networks is the use of knowledge from

previous residents to predict new ones’ behaviors. Each day, the presence or absence of

illness was manually evaluated using nursing visit reports from a homegrown electronic

medical record (EMR) system. In this work, the transfer learning SVM approach

outperformed three other methods, i.e., regular SVM, one-class SVM, and one-class

kNN.

xvi

Chapter 1

Introduction

1.1 Motivation

There is a plethora of data in many areas such as health, images, and industry; in

fact, there is an overabundance of data in these fields. However, the most significant

issues in the field of machine learning are the limitation of the labeled data sets

and heterogeneous data sources. In traditional machine learning, high accuracy and

reliability can be obtained if particular assumptions are satisfied. First, the training

and testing data should be independent and identically distributed. Second, enough

labels data are available to learn a good classification model. Nevertheless, these two

assumptions may not always hold in real-world applications due to two facts: First,

the new test data coming from fast-evolving information sources usually generate a

distribution gap, which causes the unavailability of existing labeled data. Second, in

most cases, it is tough and expensive to obtain the labeled data.

To tackle these two problems, transfer learning has become an important and

challenging research topic in recent years. Transfer learning (TL) is a new machine

learning method that applies the knowledge from related but different domains to

1

target domains. It relaxes the two underlying assumptions which mentioned earlier

in traditional machine learning and aims to overcome the problems when there are

few or even not any labeled data in target domains. Related data in different domains

can be used to expand the availability of prior knowledge about future target data.

In the past few years, transfer learning has been utilized to address such cross-domain

learning difficulties by using information from data in the related area and transfer

that data to the target task. This can be achieved by enhancing the learning in a

new task through transfer the knowledge from a similar but not the same task that

has already been learned. Thus, the performance of a transfer learning method can

be appropriately examined when represented as a function of several target examples

employed in the learning process.

1.2 Transfer Learning

Transferring learning is a humanistic characteristic that has been well studied across

education, philosophy, and psychology [3]. In education, Transfer Learning (TL) or

the transfer of learning is described as “prior-learned knowledge or skills that affect

the way in which new knowledge or skills are learned and performed. The transfer is

deemed to be positive if acquisition and performance are facilitated, and negative if

they are impeded” [4], [5], [6].

The aim of transfer learning is similar, when utilized to a Computational Intelligence

(CI) domain. Thus, transfer learning aims to improve learning in a target domain by

acquiring information from a different but related source domain. Transfer learning

offers the capability to use earlier acquired knowledge to enhance learning in a re-

lated area. Transfer learning can be utilized in varying domains. For instance, a web

documentation task has been undertaken to manually label web site documents into

defined categories. As a new website is created, the data features and data distribu-

2

tions are different from those contained within the old site. There is a lack of training

data to categorize the new pages. Transfer learning can transfer the classification

knowledge to the new domain.

Information availability creates different interpretations of problems. Hence, knowl-

edge is comprised of sourced information and the understanding that is consequently

determined [7]. However, a lack of information diminishes the ability to experience a

problem. In addition, variations in data and understanding about a problem domain

can be interpreted as being included within a knowledge gap. Transfer learning ex-

tends the ability to apply earlier acquired knowledge to areas where not much or no

information is available, improving the learning. Transfer learning has been applied

to varying domains: activity recognition [8], eye tracking [9], image classification [10],

and gaming [11]. For example, transfer learning is used in a range of high-performing

models that have been developed for image classification and demonstrated on the

annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC). A major mo-

tivation behind the supervised and unsupervised transfer learning framework comes

from environments that lack any prior knowledge in the form of labeled target data.

1.2.1 Definition and Foundation

Transfer learning comprises two principal elements, a Domain, and a Task. The

domain can be identified as consisting of two components [12]: a feature space x and

marginal probability distribution P (x) where X = {x1, . . . , xn} ∈ X. A task consists

of a label space Y and a predictive function f(.). The predictive function can be

learned from training data, which is constructed as data pairs xi, yi where xi ∈ X

and yi ∈ Ys. The source domain can be identified as Ds = {(Xs1, Ys1), . . . , (Xsn, Ysn)}

where xs ∈ Xs is the data point and ys ∈ Ys is the corresponding label. According

to these definitions, transfer learning can be defined as: Given source domain Ds and

learning task Ts, a target domain Dt and learning task Tt, transfer learning aims to

3

improve the learning of a new task Tt through the transfer of the knowledge from

related task Ts [13] by the learning of the predictive function in the target domain

Dt, where Ds 6= Dt or Ts 6= Tt [12] [7].

There are three main types of transfer learning, a brief definition of each type is

given below:

Source	Model

Source Data

Large amount
 of data

Source labels

Transfer learning
knowledge Target	Model

Target Data

Target labels

Small amount
 of data

Figure 1.1: Overview of the transfer learning Methodology.

1. Inductive Transfer Learning: The source task Ts is different from the target

task Tt as Ts 6= Tt in this kind of transfer learning. In the inductive transfer

learning, the tasks Domain D and Task T differ either in terms of predictive

function (fs 6= ft), or label spaces (Ys 6= Yt).

2. Transductive Transfer Learning: The source and the target tasks, in trans-

ductive transfer learning which is also known as Domain Adaptation(DA), re-

main the same Ts = Tt. However, the source domain and the target domains are

different Ds 6= Dt. This specific transfer learning case can further be classified

into two settings, one where the feature space between the source and the target

tasks are different Xs 6= Xt is known as Translated Learning, and the other is

where the data distribution is different Ps(X) 6= Pt(X), known as Cross-domain

Transfer.

4

3. Unsupervised Transfer Learning: Unsupervised Transfer learning is simi-

lar to the other forms of transfer learning, which looks to improve the target

domain’s predictive function by extracting information from the source to assist

the target. Taking a similar stance to standard unsupervised learning, the data

within neither the target or source domain contains labels. for a given source

domain Ds and source task Ts, a target domain Dt and a target learning task Tt,

the idea is to assist in improving the learning of the target predictive function

ft(.) in the target domain Dt employing the knowledge in source domain Ds and

source task Ts, where Ts 6= Tt and Ds 6= Dt. The unsupervised transfer learning

case arises where clustering the cross-domain data instances, which can be used

to cluster a small collection of unlabeled data in the target domain with the

guidance of a large amount of unlabeled data in the source domain.

1.3 Major Contribution

The contributions of this dissertation can be summarized as follows:

� A novel clustering framework is Proposed to learn target tasks from limited

unlabeled target data and related; differing source labeled data. The publication

of this contribution can be seen in [14].

– Works in applications where data are limited and insufficient for useful

clustering or are polluted by unknown noise or outliers such as the COVID-

19 dataset where it is tough to obtain sizeable data and experiments cannot

be performed.

� A novel deep learning architecture is Proposed to classify sleep stages and sleep

posture based on CNN and LSTM to benefit transfer learning. The publication

of this contribution can be seen in [15].

5

– It helps people to have a repetitive and regular sleep cycle for good sleep

which results in more persistent morphological templates in longitudinal

studies.

– It helps nurses in reducing changes in pressure ulcers in bed-bound pa-

tients.

� Employ a transfer learning SVM approach to address the cross-resident training

problem and compare it with the other three methods, regular SVM, one-class

SVM, and one class kNN. The publication of this contribution can be seen

in [16].

– It helps predict the early signs of illness in older adults by using a contin-

uous, unobtrusive nursing home monitoring system to increase the quality

of life and decrease the cost of care.

1.4 Dissertation Organization

The subsequent chapters of the dissertation are organized as follows:

The background and related work are introduced in Chapter 2. Its purpose is to

provide a general context for the manuscripts’ work, which comprise the next chapters.

Each manuscript includes a more thorough introduction and review of the state-of-

the-art. Chapter 3 details the implementation of the proposed Transfer Learning

Possibilistic C-Means (TLPCM) framework. This includes the experimental studies

which were thoroughly evaluated. Moreover, the advantages of TLPCM in both

synthetic and real-world transfer datasets are demonstrated. This chapter’s main

content is from the following publication: ”TLPCM: Transfer Learning Possibilistic

C-Means” [14]. Chapter 4 reports a new deep learning-based hierarchical classification

method for automatic sleep stage classification based on CNN and LSTM with the

6

help of transfer learning. The main content of this chapter is from the following

publication: ”Non-invasive Classification of Sleep Stages with a Hydraulic Bed Sensor

Using Deep Learning” [15]. Chapter 5, explores the practicability of using transfer

learning SVM for early illness recognition based on sensor data by using training

data from another resident. The main content of this chapter is from the following

publication: ”Early Illness Recognition in Older Adults Using Transfer Learning” [16].

Finally, Chapter 6 provides some summary remarks regarding the work described in

this dissertation and a discussion of possible future work.

7

Chapter 2

Background

This chapter is divided into two different sections. Section 2.1 will cover the machine

learning and Neural network background.

2.1 Machine learning and Neural network

Machine learning (ML) is a sub-field of computer engineering that develops auto-

matically through experience. It is also considered a subset of artificial intelligence.

The machine learning algorithm can be interpreted as a method to estimate a given

probability distribution. A discriminative model learns the conditional probability

distribution p(y|x), i.e., given an input, what is the probability that the label is y. A

generative model learns the joint probability distribution p(x, y) where x is the input

data, and y is the labels for x. Based on the available data, we can divide the ma-

chine learning algorithms into precisely three types of learning models. As their name

indicates, supervised learning algorithms require labeled training data, and unsuper-

vised learning algorithms do not require labeled training data, while semi-supervised

algorithms require a combination of both labeled and unlabeled training data.

8

� Supervised machine learning: Supervised learning describes a class of sys-

tems and algorithms that determine a predictive model using data samples with

known outcomes. The model is learned by training across an appropriate learn-

ing algorithm such as neural networks or random forests that naturally work

through some optimization routine to minimize a loss or error function [17].In

the supervised machine learning algorithm, if target data stated in some class,

then the problem is called the classification problem; however, if the target data

are continuous, then the problem is called the regression problem.

� Unsupervised machine learning: Unsupervised learning is a machine learn-

ing algorithm used to obtain inferences from datasets comprising input data

without pre-existing labels and with a minimum of human supervision. The

most typical unsupervised learning method is cluster analysis, which is used for

experimental data analysis to discover hidden patterns or categories in data [18].

Clustering is the method to divide a collection of data samples into individual

groups, called clusters. The clustering idea is to utilize the clustering algorithm

on the set of data samples without building a model for the algorithm using

training data. The algorithm attempted to group the data samples into clusters

on pre-existing associations in the data instances itself.

� Semi-supervised machine learning: Semi-supervised learning is a type of

machine learning algorithms that combines a small amount of labeled data with

many unlabeled data during training. Hence, it is a setup in which among the

training data samples available, some of the samples are not labeled, and the

learning model uses additional unlabeled data samples to describe the shape of

the underlying data distribution for the new samples in an effective way [19].

The semi-supervised learning algorithm’s goal is to understand how labeled and

unlabeled samples can enhance learning behavior.

9

2.1.1 Deep Learning

Deep learning is a sub-field of machine learning which has evolved from the traditional

approaches to artificial neural networks. Artificial neural networks are computational

systems initially inspired by the human brain. They comprise many computational

units, called neurons, which perform an essential operation and pass the informa-

tion to further neurons. Besides, recent deep learning improvements have surpassed

expectations of what many people thought was potentially in machine learning and

pattern recognition [20,21].

Fields such as speech recognition, computer vision, and natural language processing

have seen a significant progress forward toward solving problems once thought diffi-

cult. For example, in the computer vision field, a computer can perform better than

a human on the object recognition, and in the field of speech recognition and natural

language processing Siri and Cortana are synthetic systems that sound reasonably

lifelike.

Deep Learning is a set of methods that are a natural progression of traditional neural

network techniques. These include:

� New types of layers: The most significant difference between traditional neural

networks and deep learning is adopting new layers in the network. Traditional

neural network research focused on fully connected layers, in which every neu-

ron in one layer is connected to every neuron in the next. While many of these

layer types existed in the past, they usually could not significantly affect var-

ious issues in training. Convolutional neural networks learn filter banks that

are convolved with the original data. The filters can also be represented as a

fully connected layer where the edges of the edges are tied together to replicate

the convolution operation. This weight sharing structure allows for fewer pa-

rameters than having each weight be unique and directly accounts for structure

in the data. This procedure creates a network with only forward connections,

10

letting backpropagation work as expected at the cost of limiting the impact of

the recurrent connections. Because of this, only a few architectures have seen

widespread use and success in classification tasks. Recurrent neural networks

(RNN) are a type of neural network robust for modeling sequence data such

as time series or natural language. Diagrammatically, an RNN layer uses a for

loop to iterate over the time steps of a sequence while maintaining an internal

state that encodes information about the time steps it has seen so far.

Figure 2.1: Architecture of an LSTM network [2].

Hochreiter and Schmidhuber [22] introduced Long Short-Term Memory net-

works in 1997, usually just called “LSTMs,” which is a unique kind of RNN,

capable of learning long-term dependencies. The authors were refined and pop-

ularized by many people in the following work. They work exceptionally well

on a sizeable range of problems and are now widely used. LSTMs are explicitly

designed to prevent the long-term dependency problem. Remembering infor-

mation for long periods is practically their default behavior [21]. All recurrent

neural networks have the form of a chain of repeating modules of the neural

network. In standard RNNs, this repeating module will have a straightforward

structure, such as a single tanh layer. The architecture of an LSTM network is

shown in Fig. 2.1. LSTMs are made to function specifically with time series or

sequential data. Each time its own LSTM unit processes a point in the data,

11

the results are passed to the next layer and the next time point within the same

layer. Several gates for each LSTM unit control the flow of information. The

gate is a combination of a sigmoidal activation unit and pointwise multiplica-

tion. These gates control the amount of information that flows from a one-time

point to the following one. The amount of information is the output of each

unit, and other LSTM unit functions.

� Stochastic Gradient Descent (SGD) and related algorithms : Gradient descent

[23] is a first-order iterative method for optimizing an objective function with

suitable smoothness properties. In neural networks, it is used in combining with

backpropagation to update the weights in the network. It is formally identified

with the update rule:

−→x k = −→x k−1 − η∇f(−→x k−1) (2.1)

where:

– −→x k is the current point in the space,

– −→x k−1 is the previous point in the space,

– η is the learning rate,

– ∇f(−→x k−1) is the gradient of the value of the function being optimized at

the previous point.

SGD is a derivative of traditional gradient descent, differing in that the error

function is calculated using only a few samples selected randomly instead of

the whole data set for each iteration [21]. This is both easier to use and more

efficient for training datasets that do not fit in memory. Moreover, adding ran-

domness to the optimization can avoiding local minima. In Gradient Descent,

12

a term called “batch” denotes the total number of samples from a dataset used

for calculating the gradient for each iteration. In standard Gradient Descent

optimization, like Batch Gradient Descent, the batch is taken to be the whole

dataset. Although using the whole dataset is useful for getting to the min-

ima less noisy and randomly, but the problem arises when our datasets get

big. The addition of momentum terms, which biases the gradient in the di-

rection of recently calculated gradients, significantly improved the ability to

train deep models by further increasing convergence speed [24]. Newer, SGD

derived algorithms, such as Adaptive Moment Estimation (ADAM), calculate

per parameter adaptive learning rates, allowing even more efficient training at

memory cost [25].

� New Activation Functions: One of the most extensive and most persistent chal-

lenges in developing neural networks is the vanishing gradient problem. The

error is essentially multiplied with the values between 0 and 1 repeatedly, as

the gradient is propagated back along with the network. This causes the er-

ror, and hence, the update trends toward 0 exponentially, resulting in little

to no ability to update the first layers in a multilayer network. Sigmoid and

Tanh activation functions, which were historically the most prominently activa-

tion function, are particularly susceptible to this problem due to having a first

derivative that rapidly tends toward zero as a neuron saturates. The sigmoid

function is defined as: 1
1+e−x . The Rectified Linear Unit (ReLU), which the

most generally used activation function in deep learning models. The function

returns 0 if it receives any negative input, but for any positive value x it returns

that value back. Hence, it can be written as f(x) = max(0, x). and other mod-

ern activation functions have larger gradients and saturate less quickly, thus

avoiding the vanishing gradient problem more effectively [26].

13

(a) (b) (c)

Figure 2.2: Activation functions; (a) Sigmoid (logistic) function (b) Tanh function
and (c) ReLU function.

� Dropout and other regularizers: Large networks typically require large volumes

of training data, and there may not be enough data available to train different

networks on different subsets of the data. In other words, deep neural nets with

a large number of parameters are potent machine learning systems. Moreover,

training many architectures is difficult because finding optimal hyperparameters

for each architecture is a daunting task, and training each extensive network

requires much computation. Dropout is a technique that addresses both these

concerns. The term ”dropout” describes dropping out units in a neural network

[27].

Dropout is a technique in which a random set of neurons from each layer is

omitted from both updating and classification during a training pass through

the data. This successfully allows a single model to act as an ensemble, a

group of classifiers that act in union to produce a classification. Additionally,

since different sets of neurons will be participating from one pass to the next,

dropout avoids training data’s direct memorization. In other words, it prevents

overfitting and provides a method of approximately combining exponentially

many different neural network architectures efficiently. Overfitting is a severe

problem in such networks. It is the phenomenon of learning patterns that

14

happen to be present in the training data by random chance and not present in

general, is a constant threat in deep learning due to the immense numbers of

parameters involved.

2.2 Related Work

Various papers have recently developed transfer learning frameworks tightly coupled

with supervised and unsupervised transfer learning. This section gives a brief review

of the associated work in these fields.

2.2.1 Unsupervised Transfer Learning

Hua Zuo et al. [1] proposed a fuzzy-regression transfer-learning method based on fuzzy

rules to manage the problem of approximating the value of the target for regression.

A Takagi-Sugeno fuzzy-regression model was created to transfer knowledge from a

source domain to a target domain. Experimental results confirmed that the proposed

fuzzy-regression transfer-learning method significantly improved the performance of

existing models when solving regression problems in the target domain. The methods

of [1] solve regression problems in the target domain when only a small amount of

data is available.

In [28], a novel clustering framework was designed, and the transfer learning-

based maximum-entropy clustering (TL MEC) algorithm was proposed. Historical

cluster centers are employed in the TL MEC algorithm and in the membership of

past data, which are used as references to guide the clustering of the current data,

which distinctly improves its performance in two areas: clustering effectiveness and

privacy protection.

In [29], a transfer-learning algorithm for document analysis based on the density-

based spatial clustering of applications with noise (DBSCAN) algorithm was devel-

15

oped. Documents are classified into different classes using weight-adjustment strate-

gies. DBSCAN is used to extract feature clusters; then, the dataset is clustered using

KNN. The proposed algorithm showed a better performance in the experimental re-

sults.

The authors in [30] proposed a novel multitask clustering paradigm that performs

multiple related clustering tasks together and employs the relationships among these

tasks to improve clustering performance. The authors’ goal in [30] was to learn the

subspace shared by all clustering tasks to enable the transfer of information from

different tasks to other tasks. This multitask clustering method was extended to the

transductive transfer classification.

P. Qian et al. [31], inspired by transfer learning, devised a cluster prototype and

fuzzy membership jointly leveraged (CPM-JL) framework for classic cross-domain

maximum entropy clustering (CDMEC) to propose a corresponding algorithm, CPM-

JL-CDMEC. Moreover, the authors proposed the dedicated validity index, i.e., a

fuzzy membership-based cross-domain difference measurement (FM-CDDM), to aid

self-adaptive parameter setting in CPM-JL-CDMEC. The new algorithm shows ac-

ceptable clustering effectiveness and robustness in the experimental results.

A clustering-based approach was developed by Thendral et al. [32]to overcome the

problem of data sparsity by using knowledge from a denser associated domain. The

authors focus on finding a reference in a sparsely rated domain by using the knowledge

from a highly rated domain with the same users and then rating the items in both

domains. The results of [32] proved that clustering is a transfer learning technique

that can be used to mitigate the cold-start and sparsity problems in recommended

systems.

Hua Zuo et al. [33] proposed an infinite Gaussian mixture model (IGMM) with

active learning to improve the performance of the model. The authors used the

IGMM to identify the source and target domains’ data structure, thereby providing

16

a promising solution to the domain selection problem. In addition, [33] exploited the

interactive query in active learning to correct imbalances in the knowledge and thus

generalized the learning model. The idea of active learning in [33] leads to an increase

in the number of labeled data in the target domain by actively labeling the target

domain’s most informative data.

2.2.2 Supervised Transfer Learning

Wenyuan Dai et al., [34] addressed the issue of classifying text documents across dif-

ferent distributions utilizing transfer learning. The labeled training data are available,

but the problem is that this data has a different distribution from the unlabeled test

data. The authors developed a transfer-learning algorithm based on the Naive Bayes

classifiers, called Naive Bayes Transfer Classifier (NBTC). Their solution is first to

estimate the initial probabilities under a distribution Dl of one-labeled data set and

then use an EM algorithm to revise the model for a different distribution Du of the

unlabeled test data.

Sinno Jialin Pan etal. [35] presented a location-estimation method based on Man-

ifold co-Regularization, which is a machine learning technique for building a mapping

function between data using transfer learning. The authors described LeManCoR,

a system for adjusting the mapping function between the signal space and physical

location space on different periods based on Manifold Co-Regularization. Moreover,

they showed that LeManCoR could effectively transfer the knowledge between two

time periods without requiring an excessively new calibration effort.

In recent years, interest in utilizing BCG has increased.This recovery is funda-

mentally made possible by the ongoing development of piezoelectric sensors, signal

processing [36–38], and new technology to ensure noninvasive long-term vital signs

monitoring. Rosales etal. [39] enhanced system abilities to capture a heartbeat signal

from four subjects using a new hydraulic transducer configuration. [39] also presented

17

a new approach for detecting the accuracy of heartbeats from ballistocardiogram

(BCG) signals by extracting three features based on the peak-to-valley amplitude

differences in the BCG signals and then combining the fuzzy C means clustering and

k-means approaches.

In [40] researchers examined the mechanisms for BCG waveforms’ genesis and

proved their proposed model capable of assisting during surgery. The authors also

presented an algorithm to detect individual heart beats and beat-to-beat interval

lengths in BCG using healthy subjects. Wang etal. [41] proposed a new technique

for extracting respiratory signals from ballistocardiography. They also developed

a structure to detect ballistocardiography signals without the subjects’ awareness.

Besides, [42]developed an adaptive interface cancellation algorithm to derive the res-

piration component, attenuating the uncorrelated noise, and improving the shared

information. This method delivers an accurate means to monitor respiration compo-

nents without the subjects’ awareness.

In [43], the authors found that positional patients having most of their breathing

abnormalities in the supine posture and who became non-positional patients had a

significant gain in weight and a significant increase in the apnoea-hypopnoea index,

mainly in lateral apnoea–hypopnoea index. On the contrary, non-positional patients

who became positional patients had a significant decrease in weight and showed a

significant improvement in the apnoea-hypopnoea index, again mainly in the lateral

apnoea–hypopnoea index. Gardner et al. [44], have been shown that body movements,

a prominent behavioral aspect of sleep, impressively changes with age.

Daulatzai et al. [45], recorded the number of apnea and hypopnea in the supine

position and in the lateral position of sleep. The authors evaluated the number of

apnea and hypopnea in responders and non-responders. They found that avoidance

of sleep in the supine (horizontal) position positively influences on the frequency and

severity of obstructive sleep apnea. OSA patients are “Responders” when they re-

18

spond to positional therapeutic measure, while those in whom sleeping vertically does

not decrease apnea hypopnea index (AHI) and is referred to as “Non- Responders.”

In [46] proposed a model that achieved the state-of-the-art performance for ECG

heartbeat arrhythmia detection on the commonly used benchmark dataset from the

MIT-BIH Arrhythmia Database. We then utilize our model in an active learning

process to perform patientadaptive heartbeat classification tasks on the non-wearable

ECG dataset from the MIT-BIH Arrhythmia Database and the wearable ECG dataset

from the DeepQ Arrhythmia Database.

Long short-term memory recurrent neural networks improve over the general re-

current neural networks, which possess a vanishing gradient problem. As stated in

Hochreiter etal. [22], LSTM RNNs address the vanishing gradient problem commonly

found in ordinary recurrent neural networks by incorporating gating functions into

their state dynamics. At each time step, an LSTM maintains a hidden vector h

and a memory vector m responsible for controlling state updates and outputs. More

concretely, Graves etal. [47] define the computation at time step t as follows :

gu = σ(W uht−1 + Iuxt)

gf = σ(W fht−1 + Ifxt)

go = σ(W oht−1 + Ioxt)

gc = tanh(W cht−1 + Icxt)

mt = gf � mt−1 + gu � gc

ht = tanh(go �mt)

(2.2)

where σ is the logistic sigmoid function, � represents elementwise multiplica-

tion, W u,W f ,W o,W care recurrent weight matrices and Iu, If , Io, Icare projec-

tion matrices. While LSTMs possess the ability to learn temporal dependencies in

19

sequences, they have difficulty with long term dependencies in long sequences. The

attention mechanism proposed by Bahdanau etal. [48] can help the LSTM RNN learn

these dependencies.

In [49], the authors implemented a long short-term memory (LSTM) network with

a convolutional neural network (CNN) to automatically diagnose Coronary artery

disease CAD ECG signals accurately. The system has the potential to be deployed in

clinical settings to assist cardiologists in making an objective and reliable diagnosis

of ECG signals.

20

Chapter 3

TLPCM: a Transfer-Learning
Possibilistic C-Means Algorithm

3.1 Introduction

Cluster analysis has been widely used in many fields, such as image segmentation,

data mining, and unsupervised pattern recognition, as an unsupervised data pro-

cessing method. Many methods based on different concepts have been proposed for

solving these problems. The most widely used soft clustering algorithm is fuzzy c-

means (FCM) [50]. Nevertheless, FCM is sensitive to noise and outliers because of

its probabilistic constraint. Krishnapuram and Keller [51] proposed a concept of typ-

icality or possibility. Typicality values are the only constraint in this approach, and

these values must lie in the interval [0, 1]. The resulting algorithm is known as the

possibilistic c-means (PCM) algorithm. Furthermore, it has been referred to as a

mode-seeking algorithm because good clusters (dense regions) can be shaped with

a proper estimation of the scale parameters. PCM can cluster data even with an

unknown number of clusters. Traditional clustering approaches, such as k-means and

FCM, usually work well in an ideal condition where the data are sufficient and pure.

21

However, noise and interference data are omnipresent in the real world [52].

Thus, two main problems must be addressed when working with datasets. First,

the data capacity may be strictly limited for specific reasons, such as those found in

biomedical datasets or a lack of accumulated data, especially in some emerging fields.

Second, too much noise can be a problem in the original data. Several advanced

cluster models have been developed to address the problems of a lack of information

and data impurity, such as co-clustering [53], multitask learning [54], semisupervised

learning [55], and transfer learning [56, 57]. We believe that transfer learning is the

most promising model due to its specific mechanisms. Transfer learning works in a

minimum of two domains, i.e., the source domain and the target domain. It first

identifies useful information from the source domain, within its classification of either

data or knowledge, and then it moves this information into the target domain to guide

the training procedure. Unsupervised transfer learning works to improve the target

domains’ predictive function of the target domains when the current data of the source

domain are insufficient or impure; it utilizes helpful information from related fields or

previous studies. Here, we will illustrate the power of our algorithm by applying it

to real-world biomedical data. Our data were collected at a large nursing home and

consist of complex data, such as ballistocardiogram (BCG) data, used to detect early

illness.

One application of this is in home monitoring systems for cardiovascular disease.

More than 37% of the United States population is affected by the cardiovascular

disease [16, 58, 59]. A home monitoring system has been developed to detect the

early signs of cardiovascular abnormalities and to avoid the fatal consequence of

advanced cardiovascular disease. Monitoring cardiac parameters during sleep can

provide critical information about the subject’s health. In this work, real-world data

from a hydraulic bed sensor (HBS) are used to capture BCG signals. The HBS

was positioned under the mattress and used to perform both cardiac and respiration

22

monitoring in the home. Overall activity, behavioral patterns, and in-home gait

patterns were also captured using motion sensors and a depth camera. An automated

health change alert system is currently installed in 75 senior apartments and regularly

runs as part of a longitudinal study.

The hydraulic bed sensor was developed at the Center for Eldercare and Rehabili-

tation Technology (CERT) at the University of Missouri. The BCG device provides a

non-invasive, low-cost, robust solution for capturing physiological parameters during

sleep [39, 60–62]. The bed sensor has a pressure sensor, a transducer, and a wa-

ter tube. The transducer is 50 cm long and 6 cm wide and is filled with 0.4 liter

of water. One end of the transducer is connected to an integrated silicon pressure

sensor for measuring the vibrations of the discharge hose. It is placed under the

mattress to provide sleeping comfort. The outputs are connected to the filtering cir-

cuit (Maxim MAX7401) that consists of a 741 op-amp amplifier and an 8th-order

integrated Bessel filter. The four-channel signal is sampled and quantized to 12-bit

precision. The BCG signal acquired from the sensor is superimposed on the respi-

ration signal. Four transducers are placed in a parallel alignment underneath the

subject’s mattress to guarantee sufficient coverage. The four matching transducers

are independent; thus, the quality of data collected by these transducers might vary

depending on the subject’s sleeping position, the type of bed (e.g., its material and

thickness) and the physical characteristics of the subject (e.g., age and body mass

index (BMI)).

In this work, we take advantage of transfer learning and combine it with PCM’s

unique features to propose a new approach, transfer-learning possibilistic c-means

(TLPCM), that works with a limited dataset. Transfer learning helps to strengthen

its clustering robustness and promote its ability to deal with more complex data.

Here, we validate our proposed algorithm with synthetic and real-world data. This

is the first work that uses transfer learning with PCM and applies it to synthetic and

23

real-world data to the best of our knowledge.

Despite the achievements in the above research, there exist limitations associated

with each that are worth mentioning:

Despite the achievements in the abovementioned research (see 2.2.1), there exist

limitations associated with each that are worth mentioning.

� The numbers of clusters in the source domain and the target domain are the

same.

� Most of the research based on fuzzy clustering methods with transfer learning

has problems associated with the constraint on memberships. This constraint

causes the fuzzy clustering methods to generate memberships that can be taken

as degrees of sharing but not as degrees of typicality. Thus, the memberships of

two data points in a given cluster that are equidistant from the cluster prototype

can be significantly different, and the memberships of two data points in a given

cluster that are randomly far from each other can be the same.

In this work, the transfer-learning possibilistic c-means algorithm (TLPCM) is pro-

posed to address these challenges.

The rest of this chapter is organized as follows:

In Section 3.2, we briefly review the transfer learning concept. Section 3.3 presents

some preliminaries on clustering. The details of our approach are presented in 3.4. In

Section 3.5, the synthetic and real-world datasets used in this work are described. The

experimental results are reported in Section 3.6. Finally, some concluding remarks

and future directions are provided in Section 3.7.

24

3.2 Transfer Learning

The key idea of transfer learning is to improve learning in a target domain by ac-

quiring information from a different but related domain called the source domain.

Traditional machine learning strategies work under several assumptions that entail

that the target and source domains have similar feature distributions. However, it is

necessary to relax these assumptions in practice and allow that the two domains may

have different feature distributions or that the classification task may have to change.

In this situation, traditional machine learning techniques often fail to model the test

data correctly. As shown in Fig. 3.1, transfer learning offers the ability to use previ-

ously acquired knowledge to improve learning in a related area. In addition, it can be

applied to different task domains [56, 63, 64]. In each transfer-learning algorithm, a

source task is related to the source domain, and the target task is linked to the target

domain. The transfer learning system procedure has two steps: First, the source task

is learned, and second, the knowledge is transferred from the first step and used to

improve the learning of the target task. If the model is not modified for new situ-

ations, the prediction accuracy will drop significantly. Transfer-learning techniques

have been proposed to handle these types of cases. The idea behind transfer learning

is that the knowledge learned previously can be applied to solve a new problem with

a better or faster solution. In the machine learning area, transfer learning has many

benefits, such as saving time when learning new tasks, requiring less information from

experts, and making the learned model more robust.

In the next section, we present preliminary elements (c-means, fuzzy c-means, and

possibilistic c-means) necessary for our proposed algorithm, TLPCM.

25

source data clusters

TLPCM

target data clusters
target

sparse data

source
dense data

of clusters in
the source data

of clusters in
the target data

Source
clusters centers

of clusters in
the target data

target
sparse data

learned
knolwdge

Figure 3.1: Overall framework of transfer learning clustering.

3.3 C-means, FCM, and PCM

There are many partition-based clustering methods, but the three well-known algo-

rithms are the k-means clustering algorithm [65], the fuzzy c-means (FCM) clustering

algorithm [50], and the possibilistic c-means (PCM) clustering algorithm [51]. These

are the most popular approaches because of their general applicability to real life

problems. k-means clustering is a typical example of an algorithm that achieves it-

erative modification of K cluster centers. The objective function used to derive the

cluster center update is:

26

J(V, U) =
1

2

N∑
n=1

K∑
k=1

unk‖xn − vk‖2, (3.1)

where vk is the kth cluster’s position vector, xn is the data point being evaluated,

and unk is the binary membership vector for data point xn. The FCM algorithm [50],

a generalization of the C-means (K-means), is an unsupervised clustering algorithm

in which a dataset is grouped into C clusters with every point in the dataset belonging

to every cluster to a certain degree [66]. The FCM algorithm is nearly identical to

C-means except for one important point. Instead of a binary value of u, FCM has u ∈

[0,1]. This means that a data point can have partial membership in multiple clusters.

The objective function to minimize for FCM is:

FCM : min
U,V

JFCM =
C∑
j=1

N∑
i=1

uqij ‖xi − vj‖
2 (3.2)

s.t. uij ∈ [0, 1], ∀i,j

0 <
N∑
i=1

uij < N,∀j and

C∑
j=1

uij = 1,∀i.

Differentiating equation (3.2) with respect to uij and vj and setting them to 0

leads to the equations

uij =
1∑C

k=1

(d(xi,vj)
d(xi,vk)

)1/(q−1)
, (3.3)

27

vj =

∑N
i=1 u

q
ijxi∑N

i=1 u
q
ij

, (3.4)

where C is the number of clusters (j = 1, 2, ..., C), N is the number of data

points, and xi ∈ Rd is the ith data sample, where (i = 1, 2, ..., N). V = [v1, ..., vC]T

is the matrix of C cluster centers with vj ∈ Rd. U = [uij]N×C is the fuzzy partition

matrix whose element uij denotes the membership of the ith data sample belonging

to the ith class for all i = 1,. . . , n. Here, the fuzzifier parameter q ∈ (1, ∞). A

standard approach for optimizing the FCM model is to randomly initialize V and

then alternately update U and V using the necessary conditions for the extrema of

JFCM .

FCM is a fuzzy clustering model; moreover, it is primarily a partitioning algorithm.

Consequently, it will find a fuzzy C partition of a given dataset regardless of how many

clusters are actually present in the dataset. In other words, each component of the

partition may or may not correspond to a cluster.

In contrast, PCM is a mode-seeking algorithm; i.e., each component generated

by PCM corresponds to a dense region in the dataset. In PCM, the prototypes

are automatically attracted to dense regions in the feature space as the iterations

proceed [67]. Additionally, PCM has a significant advantage for anomaly detection

compared with FCM. The noise points and outliers are often very distant from the

primary clusters. In PCM, the farther a noise point is from a dense area, the smaller

the membership degree. Noise points and outliers will be assigned a small degree of

membership when using PCM, which gives them little influence on the estimation of

the prototypes and the final partition. Merely relaxing the constraint will lead to a

trivial solution of the memberships; the criterion function is minimized by assigning

all memberships as zero. Therefore, a constraint is added to the objective function of

PCM to make representative data points have high membership and unrepresentative

28

points have low membership. The objective function that satisfies the requirements

can be formulated as:

PCM : min
U,V

JPCM =
C∑
j=1

N∑
i=1

uqij ‖xi − vj‖
2

+
C∑
j=1

ηj

N∑
i=1

(1− uij)q
(3.5)

s.t. uij ∈ [0, 1], ∀i,j

0 <
N∑
i=1

uij < N, ∀j and

max
j

uij > 0,∀i.

The update equation (a necessary condition for a minimum) for the typicality

value was found to be:

uij =
1

1 +
(d2(xi,vj)

ηj

)1/(q−1)
, (3.6)

where U = [uij]N×C denotes the possibilistic partition matrix, uij denotes possi-

bilistic membership, and ηj is a “scale” parameter, which corresponds to the size of

the cluster or “zone of influence” [67].

The first term of Jpcm is the same as the FCM objective function, which leads to the

minimization of the weighted distances, and the second term, which acts as a penalty,

is used to avoid the trivial solution of uij = 0 ∀i,j.

Although the PCM algorithm effectively solves the noise sensitivity problem of FCM,

29

some new problems have been caused by the PCM clustering model. PCM is sensitive

to initialization. If there is poor initialization, PCM might converge to an insignifi-

cant partition where some or all of the clusters are coincident and other clusters may

go unobserved.

3.4 The Proposed Method, TLPCM

The existing literature and many applications have demonstrated the relatively good

performance of classic PCM. However, PCM effectiveness strictly depends on the

preconditions, i.e., abundant data and sufficient information. Without this precon-

dition, PCM might be invalid. This is a strong incentive to strive for accuracy and

thoroughness in subsequent PCM research. In this work, we adopt transfer learning,

construct an objective function by utilizing the historical matrices of cluster centers

v̂, and propose the corresponding transfer-learning possibilistic C-means (TLPCM)

algorithm. The historical matrices of cluster centers v̂ are employed to construct the

novel objective function

TLPCM : min
U,Z,V

JTLPCM =
N∑
i=1

Ct∑
j=1

uqtij‖xi − vj‖
2

+

Ct∑
j=1

ηj

N∑
i=1

(1− uij)qt

+Γ

Ct∑
j=1

Cs∑
k=1

zqsjk‖v̂k − vj‖
2

+Γ

Ct∑
j=1

βj

Cs∑
k=1

(1− zjk)qs

(3.7)

30

s.t. uij ∈ [0, 1],∀i,j,

zjk ∈ [0, 1],∀j,k,

0 <
N∑
i=1

uij ≤ N,∀j,

0 <

Cs∑
k=1

zjk ≤ Cs,∀j,

max
j

uij > 0,∀i, and

max
k

zjk > 0,∀j,

where:

N : number of data samples

Ct: number of cluster centers in the target data

Cs: number of cluster centers in the source data

v̂k: source cluster center

vj: target cluster center

qt: target data fuzzifier

qs: source data fuzzifier

uij: possibilistic membership between the target data and target centers

zjk: possibilistic membership between the source centers and target centers

Γ: coefficient of the term of the historical cluster centers

ηj and βj: suitable positive numbers.

The first term requires that the distances from the feature vectors to the target

data prototypes be as small as possible, and the second term forces uij to be as

large as possible, consequently avoiding a trivial solution. The first and second terms

are inherited directly from the original PCM algorithm. The third term is used to

31

learn the knowledge from the source domain; it demands that the distances from the

source data prototypes to the target data prototypes be as small as possible. The

target domain will gain more knowledge from the source domain if the jth cluster in

the target domain and kth cluster in the source domain are more similar. The fourth

term forces zjk to be as large as possible, hence avoiding the trivial solution.

It is worth noting that the first two constraints ensure that no cluster in the source

or target data is empty, while the last two guarantee that no point has zero typicality

in all clusters.

We propose TLPCM clustering algorithms whose general form is given in Algo-

rithm 1. Most of the research discussed in Section 2.2 assumed that the number of

clusters in the source data and target data are the same. However, in most practical

applications, this assumption does not always hold. The beauty of our approach is

its ability to implement transfer clustering with different numbers of clusters in the

source and target domains. By using a similar optimization strategy in PCM, the

novel update equations for uij, zij, and vj in TLPCM can be determined as described

below.

3.4.1 Update the Membership uij Equation

∂J

∂uij
= qtu

(qt−1)
ij ‖xi − vj‖2−ηjqt(1− uij)(qt−1)

Let ∂J
∂uij

= 0. Thus, we obtain

(uij
1− uij

)qt−1

=
ηj

‖xi − vj‖2

1− uij
uij

=
(‖xi − vj‖2

ηj

)1/(qt−1)

1

uij
=
(‖xi − vj‖2

ηj

)1/(qt−1)

+ 1

32

uij =
1

1 +
(
d2(xi,vj)

ηj

)1/(qt−1)
. (3.8)

3.4.2 Update the Membership zjk Equation

∂J

∂zjk
= Γqsz

qs−1
jk ‖v̂k − vj‖

2−Γβjqs(1− zjk)qs−1

Let ∂J
∂zjk

= 0.

(zjk
1− zjk

)(qs−1)

=
βj

‖v̂k − vj‖2

1− zjk
zjk

=
(‖v̂k − vj‖2

βj

)1/(qs−1)

1

zjk
=
(‖v̂k − vj‖2

βj

)1/(qs−1)

+ 1

zjk =
1

1 +
(
d2(v̂k,vj)

βj

)1/(qs−1)
(3.9)

3.4.3 Update the Equation of the Cluster Centers vj

∂J

∂vj
= −2

N∑
i=1

uqtij‖xi − vj‖−2Γ
Cs∑
k=1

zqsjk‖v̂k − vj‖

Let ∂J
∂vj

= 0.

−
N∑
i=1

uqtijxi +
N∑
i=1

uqtijvj = Γ
Cs∑
k=1

zqsjkv̂k − Γ
Cs∑
k=1

zqsjkvj

33

vj(
N∑
i=1

uqtij + Γ
Cs∑
k=1

zqsjk) =
N∑
i=1

uqtijxi + Γ
Cs∑
k=1

zqsjkv̂k

vj =

∑N
i=1 u

qt
ijxi + Γ

∑Cs

k=1 z
qs
jkv̂k∑N

i=1 u
qt
ij + Γ

∑Cs

k=1 z
qs
jk

(3.10)

The values of ηj and βj need to be chosen depending on the desired bandwidth of

the possibility distribution for each cluster. If all clusters are expected to be similar,

these values can be the same for all clusters. In addition, ηj determines the relative

degree to which the second term is essential compared with the first; A target cluster

with larger values of ηj and mostly empty will have more freedom to move as the

iterations proceed since more data will lie on its domain.

In TPCM, βj determines the ”zone of influence” of a target cluster. Hence, a

source cluster center v̂k will have little influence on the estimates of the prototype

parameters of a target cluster vj if d2(v̂k, vj) is large when compared with . Conversely,

“close” source cluster centers to a target cluster center relative to βj exert more

influence on the target typicalities and hence prototype movement. βj decides also

the relative degree to which the fourth term is necessary compared with the third. As

in the PCM, these parameters can be set as constants or can be iteratively updated

as weighted averages of the distances between the source and target cluster centers

at each iteration.

In this work, ηj is estimated using the following equation [67]:

ηj =

∑N
i=1 u

qt
ijd

2(xi, vj)∑N
i=1 u

qt
ij

. (3.11)

34

In the same way, we estimate βj using the following equation:

βj =

∑Cs

k=1 z
qs
jkd

2(v̂k, vj)∑Cs

k=1 z
qs
jk

. (3.12)

Algorithm 1 lists the steps of the TLPCM method. Like any clustering algorithm,

TLPCM has a few hyper-parameters that need to be set ahead of time: the number

of clusters in the source and target data Cs, Ct; the source and target fuzzifiers qs, qt;

the partition matrices uij, zjk; and the regularization coefficient Γ. However, all these

parameters, except Γ, can be chosen using strategies also employed in the PCM al-

gorithm. Hence, the only additional parameter that we need to initialize, and it is

not part of the PCM algorithm, is the regularization coefficient Γ. This coefficient Γ

controls the influence of the cluster prototypes from the source domain on those in

the target domain, that is, the higher the coefficient Γ, the greater the influence of the

source values. The values of fuzzifiers determine the fuzziness of the final possibilistic

C-partition that affects the shape and overlap among the resulting membership func-

tions. When qs or qt → 1, the membership function is hard, and when qs or qt →∞

the memberships are maximally fuzzy. By removing the last constrain of FCM (see

equation 3.2), the membership functions of c clusters become independent of each

other. This makes PCM and TLPCM sensitive to the initialization of the partition

matrices since nothing prevents the algorithms from converging to degenerate parti-

tion matrices where all clusters are identical or similar to each other. Therefore, the

FCM algorithm is called to initialize the partition matrix uij according to Krishnapu-

ram and Keller’s recommendation [51], whereas uniform random numbers are utilized

to initialize zjk. Ultimately, the values of ηj and βj are calculated utilizing equations

3.11 and 3.12, respectively. In Section 3.6, a couple of experiments were conducted

to show the effect of ηj and βj on the results.

35

Algorithm 1: TLPCM

1

Input: X = Dataset, V̂=Source centers, q=Fuzzifier, d= Equ. distance, StopThresh,
Cs=No. source centers, Ct=No. target centers, MaxIter.

Output: V= Target centers, U = Partition matrix
2 Initialization
3 begin

4 Obtain the cluster prototypes V̂ in the source data with the original PCM algorithm;

(Skip this step if the cluster prototypes V̂ in the source data are known beforehand)
5 while diff> StopThresh && iter < MaxIter do
6 foreach xi ∈ X do
7 foreach vj ∈ V do
8 calculate d(xi,vj)
9 end

10 end

11 foreach v̂k ∈ V̂ do
12 foreach vj ∈ V do
13 calculate d(v̂k,vj)
14 end

15 end
16 foreach xi ∈ X do
17 foreach vj ∈ V do
18 update ηj utilizing equation (3.11)
19 end

20 end
21 foreach vj ∈ V do

22 foreach v̂k ∈ V̂ do
23 update βj utilizing equation (3.12)
24 end

25 end
26 foreach vj ∈ V do

27 foreach v̂k ∈ V̂ do
28 update possibilistic membership between source centers and target centers

using equation (3.9)
29 end

30 end
31 foreach xi ∈ X do
32 foreach vj ∈ V do
33 update partition matrix utilizing equation (3.8)
34 if d == 0 then
35 d = ε
36 end

37 end

38 end
39 foreach vj ∈ V do
40 update target cluster centers utilizing equation (3.10)
41 end
42 diff = norm(Viter−1 - V)

43 end
44 Output the final cluster prototypes V and memberships U in the target domain.

45 end

36

3.5 Dataset Description

3.5.1 Synthetic Dataset

To assess the abilities of our new approach, we created three synthetic datasets. The

first synthetic dataset is S1, which has 1500 instances in the source domain and 15

instances in the target domain, with three clusters in both the source and target

datasets. Fig. 3.2 shows that there is a good partitioning for the target data. To

show the differences between the source data and the target data, the input data in

both domains are displayed in Fig. 3.3. The S1 datasets is similar to the one used

in [1]. The mean values and covariance matrices of the source data and target data

are shown in Table 3.1

The second synthetic dataset isS2 , which has 4000 instances with four clusters

in the source data and 18 instances with six clusters in the target data, which are

shown in Fig. 3.4. In the second synthetic dataset, we chose the case where the target

dataset has a different distribution than the source dataset from which we want to

enable knowledge transfer. The third synthetic dataset is S3 (see Fig. 3.5), where

target clusters had different densities and a larger spread; this dataset is used to test

ηj and βj parameters.

Table 3.1: Distributions of Source Data and Target Data for S1 [1].

Source data Target data

Mean values Covariance Mean values Covariance

µ1 = [1 1] σ1 =

[
0.52 0

0 0.52

]
µ́1 = [2 1] σ1 =

[
0.42 0.1
0.1 0.42

]
µ2 = [5 2] σ2 =

[
0.52 0

0 0.52

]
µ́2 = [5 3] σ2 =

[
0.52 0.1
0.1 0.52

]
µ3 = [3 4] σ3 =

[
0.52 0

0 0.52

]
µ́3 = [2 4] σ3 =

[
0.52 0.1
0.1 0.52

]

37

-2 -1 0 1 2 3 4 5 6 7 8

Feature 1

-2

-1

0

1

2

3

4

5

6

7

8

F
e
a
tu

re
 2

C1

C2

C3

(a)

-2 -1 0 1 2 3 4 5 6 7 8

Feature 1

-2

-1

0

1

2

3

4

5

6

7

8

F
e
a
tu

re
 2

C1

C2

C3

(b)

Figure 3.2: Synthetic dataset S1 ; (a) source data and (b) target data

-1 0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

Figure 3.3: Differences between the source data and the target data; source (blue)
and target (red).

38

-15 -10 -5 0 5 10 15

Feature 1

-20

0

20

40

60

80

100

120

F
e
a
tu

re
 2

C1

C2

C3

C4

(a)

-15 -10 -5 0 5 10 15

Feature 1

-40

-20

0

20

40

60

80

100

120

F
e
a
tu

re
 2

C1

C2

C3

C4

C5

C6

(b)

Figure 3.4: Synthetic datasetS2 ; (a) source data and (b) target data

-10 0 10 20 30 40 50 60

Feature 1

-120

-100

-80

-60

-40

-20

0

20

F
e
a
tu

re
 2

C1

C2

C3

C4

(a)

-20 -10 0 10 20 30 40 50 60 70 80

Feature 1

-10

-5

0

5

10

15

20

25

30

35

F
e
a
tu

re
 2

C1

C2

C3

C4

(b)

Figure 3.5: Synthetic datasetS3 ; (a) source data and (b) target data

3.5.2 Real-World Datasets

Three different kinds of real-world datasets are used in this work to prove the validity

of our algorithm:

3.5.2.1 Bed Sensor Dataset

The sensor data of three different TigerPlace residents with different numbers of nor-

mal and abnormal days were used, as shown in Table 3.2. Technology has a tremen-

dous impact on the elderly by providing them with full creative and independent

39

lives. Sensor technology is utilized in the TigerPlace facility to help elderly residents

manage their illness, stay healthy, and be as independent as possible. The Americare

Corporation of Sikeston, MO with the help of the Missouri Sinclair School of Nurs-

ing (SSON), established TigerPlace, a senior living community that was opened in

mid-2004 just a few miles from the MU campus [94].

Table 3.2: Data for three residents in TigerPlace.

Resident No. Total records
Positive

days (”feel
good”)

Negative
days (”feel

bad”)

Resident1 441 360 81
Resident2 744 709 35
Resident3 499 164 335

An integrated monitoring system was placed in 47 TigerPlace apartments with

the University of Missouri’s IRB approval. Only non-wearable sensors were used for

monitoring because they are more acceptable to older adults and are unobtrusive.

The monitoring began in the fall of 2005, accumulating , as of 2020, an average of

two years’ worth of data for each resident. There is a data logger for each resident’s

apartment, which is used to collect the data from wireless sensors. The data logger

tags the data with the date and time, then logs it in a document that is sent to a

database on a protected server via a wired network connection. Fig. 3.6 shows the

architecture of our monitoring system.

The main components of the monitoring system are a data logger, sensor network,

and electronic health record (EHR) system; a reasoning system for decline detection

and recognition; a secure Web-based interface to display the data for clinicians and

researchers; and an alert manager to inform clinicians of possible problems. Each

sensor network consists of several types of sensors placed in the resident’s apartment,

including passive infrared motion (PIR) sensors, a Microsoft Kinect depth sensor

and bed sensors. Newer apartments have in-house built depth sensors. The PIR

40

Alert Feedback

R
N

 N
ur

se
 C

ar
e

C
oo

rd
in

at
or

Alert Email

ِAlert Manager
Decline Detection
and Recognition

Motion
Sensors

Bed
Sensors

Mobile Devices
and Web Interface

Integration and
Data Storage

Nurse

Resident
EHR

Figure 3.6: The TigerPlace sensor network architecture comprises a data logger,
sensor network and EHR system, a reasoning system, a secure Web-based interface,
and an alert manager.

motion sensors are set in various places, such as the bedroom, the kitchen, the living

room, and the bathroom. In addition, some of the residents have sensors of this type

installed on the door of their refrigerator, kitchen cabinets, and even drawers.

A resident’s movement within the apartment is captured by the PIR sensors that

produce a signal as long as there is movement around them. The bed sensors are

arranged in sets of four pneumatic (which was replace by a hydraulic version later)

sensor strips placed under the bed mattress. Unlike the motion sensors, the pneumatic

bed sensor captures three types of signal (heart rate, respiration and bed restlessness),

which are discretized into three or four levels of severity. The newer hydraulic sensor

produces continuous sensor values, instead. Sensitivity is the key for early illness

recognition. If the resident does not feel well, the sleep and motion pattern will be

altered.

Four features are used in this study to represent residents’ behavior: the total

number of motion sensors firing, restlessness, pulse rate, and breathing for each hour

41

of the day. The bed sensor can continue to track the residents’ restlessness, pulse, and

breathing as long as the person lies on the bed. The number of features is doubled by

dividing each feature into a day and night hours. Fig. 3.7 shows pairwise relationships

in a Resident1 dataset with layered kernel density estimate (KDE). It can be noticed

from this figure that breathing in the day hours has a high and wide kernel density

range compared to the other feature. Moreover, the two classes interfere with each

other, which makes them more challenging in clustering or classification.

All clinical records for these residents were collected. These records included their

medication, nursing visits, and hospitalizations. The labels for each hour (normal

and abnormal) were added manually based on the nursing visit reports and other

clinic records. These labels represent the ground truth for our data, which was later

used to calculate the Rand index and thereby check the accuracy of our proposed

algorithm. Data processing was rather simple. The steps were as follows: first, we

aggregated the sensor data. Features 1-4 were the sum of the sensor data for the

night hours (12 a.m. to 7 a.m.), and features 5-8 provided the sum of the sensor data

for the day hours (7 a.m. to 12 a.m.) and represented the sensor activity prior to a

nursing visit. Fig. 3.8 shows 3D visualization for the three residents. Then, the data

were normalized for the three residents, after which the data were passed through our

algorithms as described in Section 3.4.

3.5.2.2 Forensic Glass Dataset

This dataset includes 214 fragments of glass that were initially collected by B. Ger-

man for a study of the context of a criminal investigation [68]. Each fragment has a

measured refractive index and chemical composition (weight percent of oxides of Na,

Mg, Al, Si, K, Ca, Ba and Fe) [69, 70]. After cleaning the data, 14 fragments were

discarded, and 200 were used in this work. The glass types are as follows: 1. build-

ing windows, float processed; 2. building windows, non-float processed; 3. vehicle

42

−2

0

2

4

M
o
ti
o
n
N

0

2

4

6

8

R
e
st
le
sn
e
ss
N

−2

−1

0

1

Pu
ls
e
N

−2

−1

0

1

B
re
a
th
in
g
N

0

2

4

M
o
ti
o
n
D

0

2

4

6

R
e
st
le
sn
e
ss
D

−1

0

1

2

3

4

5

Pu
ls
e
D

−2.5 0.0 2.5 5.0
MotionN

−1

0

1

2

3

4

5

B
re
a
th
in
g
D

0 5
RestlesnessN

−4 −2 0 2
PulseN

−4 −2 0 2
BreathingN

0 5
MotionD

0.0 2.5 5.0 7.5
RestlesnessD

0 5
PulseD

−2.5 0.0 2.5 5.0
BreathingD

Abnormality
1
2

Figure 3.7: Pairwise relationships in a Resident1 dataset with layered kernel density
estimate (KDE).

43

(a) (b)

(c)

Figure 3.8: 3D visualization for the three residents ; (a) Resident1 (b) Resident2 and,
(c) Resident3.

windows, float processed; 4. vehicle windows, non-float processed; 5. containers; 6.

tableware; and 7. headlamps. The glass type “windows, non-float processed” is not

available in this dataset. Therefore, we ultimately used 6 types of glass in this work.

It is worth mentioning that these data are unbalanced, as shown in Fig. 3.9, which

provided us with a good challenge to test the validity of our algorithm.

3.5.2.3 Chronic Kidney Disease Dataset

The third real-world dataset used in this work is the chronic kidney disease dataset

taken from the University of California Irvine machine learning repository [70]. This

set of data was collected over two months in India with 400 rows and 25 features in

44

Figure 3.9: Glass dataset distribution.

total, among which 14 features were categorical and 11 were numeric. A total of 400

instances were stored in this dataset, which was collected from the Apollo Hospitals,

Karaikudi, Tamilnadu, India [71,72]. The features include age, specific gravity, blood

pressure, albumin, sugar, red blood cells, pus cell clumps, pus cells, bacteria, sodium,

blood glucose random, blood urea, serum creatinine, potassium, hemoglobin, packed

cell volume, red blood cell count, white blood cell count, hypertension, diabetes

mellitus, coronary artery disease, appetite, pedal edema, and anemia [73]. The output

variable has only two values, “ckd” and “notckd”, where ”ckd” denotes chronic kidney

disease. Every attribute contained missing values except the class attribute. Among

the 400 instances, there were 250 instances with the “ckd” class, which is 62.5% of

the aggregate data, and the remaining 150 instances were labeled as the “notckd”

class, which is 37.5% of the whole data.

45

3.6 Experimental Results

In this section, we describe the experiments conducted with synthetic and real-world

datasets to validate the proposed method. Specifically, we evaluated the impact of

the TLPCM and the active learning technique on the performance of the constructed

models. The Rand index is used for performance evaluation, and the experimen-

tal setup is first described. Then, the performance of the proposed algorithms on

synthetic and real-world datasets is reported and discussed.

3.6.1 Experimental Results on the Synthetic Datasets

3.6.1.1 Increase the Number of Data Samples

In the first set of experimental studies, we determine the effect of increasing the

number of data samples on both the PCM and TLPCM algorithms. The S1 dataset

is used by increasing the number of data samples in the target dataset gradually

and applying both the PCM and TLPCM algorithms each time until the optimum

clustering for our data is reached. Fig. 3.10 shows Target data with final cluster

centers found with TLPCM for Experiment with five samples on target data. Fig.

3.11 shows that TLPCM reached a Rand index of approximately one when it had 4

data points per cluster. However, PCM needed 14 data points to cluster the data

correctly, which is three times more than what TLPCM needed.

3.6.1.2 Shift the Location of the Clusters

The second experiment studies the effect of moving the centers of the S1 target dataset

in Fig. 3.2 apart and then moving them closer, as shown in Fig. 3.12. To move

the centers precisely, we calculated the main center of the three centers. Next, we

calculated the slope and the angle between the main center and the center of each

46

-2 -1 0 1 2 3 4 5 6 7 8

-2

-1

0

1

2

3

4

5

6

7

8

C1

C2

C3

Center

Figure 3.10: Target data with final cluster centers found with TLPCM for Experi-
ment.

Figure 3.11: Rand index versus the number of data samples per cluster using PCM
and TLPCM; our algorithm reached a Rand index of approximately one when it had
4 data points per cluster.

47

2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

C1

C2

C3

C1 New

C2 New

C3 New

main center

(a)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C1

C2

C3

C1 New

C2 New

C3 New

main center

(b)

Figure 3.12: Moving centers. (a) Moved centers inside (converged) and (b) moved
centers outside (diverged)

cluster. The distances between the initial three centers were then calculated to obtain

the percentage distance needed to move the centers to the new locations. Finally, we

calculated the centers’ new locations and generated a Gaussian dataset based on the

slope, angle, and distances determined above. The general form of these steps is

described in Algorithm 2.

The proposed TLPCM algorithm and the original PCM algorithm were applied to

the S1 dataset, with 14 samples per cluster in the target data at each cluster location,

starting from very close clusters, which overlapped each other with 50 percent of the

original distance between the centers. Fig. 3.13 shows that both algorithms failed

to cluster the data because the clusters overlapped. However, when we increased

the distance between the clusters, TLPCM was able to cluster the data when the

distance between clusters was 25% less than the distances between clusters in the

original dataset.

48

Algorithm 2: Converging and Diverging Centers

1

Input: V= target centers, d= Euclidean distance, MD =
movement direction

Output: x new,y new= x and y positions for the new center
location.

2 begin
3 Load(V)
4 main center ⇐ mean(V)
5 foreach vj ∈ V do
6 calculate the slope and the angle between main center

and vj.
7 calculate the shifting distance (d).
8 if MD==1 then
9 x new = vj + d ∗ cos(φi)

10 y new = vj + d ∗ sin(φi)

11 else
12 x new = vj − d ∗ cos(φi)
13 y new = vj − d ∗ sin(φi)

14 end

15 end

16 end

3.6.1.3 Coincident Clustering Feature

Coincident clustering is one of the PCM algorithm features since it relaxes the prob-

abilistic constraint in the fuzzy c-means (FCM) clustering algorithm. Hence, an

experiment is created here to test our new approach with this feature, as shown in

Fig. 3.14. Thus, the TLPCM algorithm is initialized “mistakenly” with 4 clusters for

the target data. However, the real data set S1 has 3 clusters only in the source and

target data.

49

-5
0

-4
5

-4
0

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10

0

percentage distance

0

0.2

0.4

0.6

0.8

1

1.2

R
an

d
In

de
x

TLPCM
PCM

Figure 3.13: Rand index versus percentage distance using PCM and TLPCM; our
approach, TLPCM, was able to cluster the data when the distance between clusters
was 25% less than the distances between clusters in the original dataset.

coincidence clusters

-2 -1 0 1 2 3 4 5 6 7 8
-2

-1

0

1

2

3

4

5

6

7

8

5.0117 2.7585
2.0672 1.4680
2.1122 1.5510
2.5121 4.0129

11

Figure 3.14: Experiment of testing the TLPCM algorithm with coincidence clustering
feature..

3.6.1.4 Different Initializations

PCM might not guarantee a unique clustering result if the partition matrix and initial

cluster number are chosen randomly. For this reason, the results of the clustering are

50

not consistent. Concerning cluster consistency, the TLPCM algorithm was compared

with the original PCM algorithm by applying different initializations of FCM on theS2

dataset on both algorithms. Fig. 3.15 shown target data with 6 small clusters and

final cluster centers found with TLPCM. Table 3.3 and Fig. 3.16 show that TLPCM

surpassed PCM in terms of consistency and accuracy. The average Rand index of

PCM is 0.7304 with a standard deviation of 0.0514, while the average Rand index of

TLPCM is 0.977 with a standard deviation of 0.0245. A smaller standard deviation

means greater consistency, quality, and predictability.

-15 -10 -5 0 5 10 15

Feature 1

-20

0

20

40

60

80

100

120

F
e
a
tu

re
 2

C1

C2

C3

C4

C5

C6

Center

Figure 3.15: Target data with 6 small clusters and final cluster centers found with
TLPCM.

Table 3.3: Consistency of TLPCM and PCM.

TLPCM PCM

Mean = 0.9778 Mean = 0.7304
STD = 0.0245 STD = 0.0514

51

1 2 3 4 5 6 7 8 9 10

Trial

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a

n
d

 I
n

d
e

x

TLPCM

PCM

Figure 3.16: Rand index with different initializations for PCM and TLPCM; our
algorithm has a higher average Rand index and a smaller standard deviation than
PCM, which means greater consistency.

3.6.1.5 Increase the Number of Cluster Centers

This experiment studies the effect of increasing the number of clusters on our proposed

TLPCM algorithm, comparing the original PCM algorithm results. TheS2 dataset,

as shown in Fig. 3.4, is used to carry out this experiment. We started our experiment

by making the number of clusters in the target dataset less than that in the source

dataset. Then, we increased the number of clusters until we reached 10 clusters in

the target dataset.

This was greater than the number of clusters in the source dataset, which had

four clusters. Fig. 3.17 shows that PCM could not cluster the data when we set

the number of clusters at 10. In fact, we had only two clusters in the very first

trial. The accuracy of PCM increased as the actual number of clusters increased and

continued to do so until we reached our preset number of clusters, which was 10.

Nevertheless, TLPCM could cluster the data, because we inherited the information

from a similar source dataset but not the same target dataset. In this experiment, we

attempted to fix the initialization and changed the actual number of clusters in the

52

target data; then, we observed how both the PCM and TLPCM methods performed.

The TLPCM was most accurate when the source and the target data had the same

number of clusters (four clusters).

Figure 3.17: Rand index versus the number of clusters using PCM and TLPCM;
TLPCM was able to cluster the data regardless of the number of clusters that had
been set.

3.6.1.6 Experiments on ηj and βj Parameters

I provide here a few experiments to help understand the update of both ηj and βj. In

each experiment, we initialized each ηj and βj to a value of 2 and allowed equations

3.11 and 3.12 to update their values.

Because the cluster data and hence cluster center locations in the source and target

are consistent, there is not much change that occurs in the evolution of ηj and βj,

and as shown in Fig 3.18 and Fig. 3.19 respectively.

To show how the adaptation of ηj and βj for a target data set with more clusters

than existed in the source, consider the source from data set S2 . From Fig. 3.20, we

see that the ηj values are stable after a few iterations at fairly small values. This is due

to the fact that ηj controls the local cluster spread. The clusters in Fig. 3.4 are well

53

0 2 4 6 8 10 12

Iteration

0

0.5

1

1.5

2

2.5

3

3.5

E
ta

j

Eta1

Eta2

Eta3

Figure 3.18: Evolution of ηj vs iteration on target data for all clusters using S1

dataset.

separated and compact, so the points themselves are close to their respective cluster

centers, keeping ηj small. The evolution of the values for each βj are also stable, but

the range is more varied. This is because a few of the source cluster centers need

to “stretch” into the target space to influence the extra structure there. Besides, it

can be seen from equation 3.12 that βj is proportional to the average fuzzy distance

between the source and target cluster centers. The target cluster with a higher βj

value will have greater mobility because it achieves more source centers and therefore

moves as the iteration proceeds. This explains why β5 is significant compared to the

βj of other clusters (see Fig. 3.21). The same idea can be seen for ηj in Fig. 3.20,

but with smaller range because ηj is working with the local target cluster spread (see

equation 3.11).

As a final observation, what happens when the target clusters are quite different

54

0 2 4 6 8 10 12

Iteration

0

0.5

1

1.5

2

2.5

3

3.5

4

B
e
ta

j

Beta1

Beta2

Beta3

Figure 3.19: Evolution of βj vs iteration on target data for all clusters using S1

dataset.

from those in the source? Consider the source and target data in Fig. 3.5. Note the

difference in both location and shape between these clusters. As a result, even though

relatively stable (see Fig. 3.23 and Fig. 3.24), there is a larger variance in both of

the parameter sets with ηj controlling the within cluster spreads, and βj controlling

the match between source and target cluster centers. Fig. 3.22 shows the target data

with discovered cluster centers using TLPCM.

55

0 5 10 15 20 25

Iteration

0

20

40

60

80

100

120

E
ta

j

Eta1

Eta2

Eta3

Eta4

Eta5

Eta6

Figure 3.20: Evolution of ηj vs iteration on target data for all clusters using S2

dataset.

3.6.2 Experimental Results on the Real-World Datasets

3.6.2.1 Experimental Results on the Bed Sensor Dataset

To validate our approach, we used data from three different TigerPlace residents with

different numbers of normal and abnormal days, as shown in Table 3.2. We conducted

three experiments using the resident data to test the performance of our algorithms

for clustering on both normal and abnormal days. Conventional mathematical models

(such as classifiers) for early illness recognition are not transferable from one person

to another due to different disease-behavior associations that can vary among peo-

ple. However, our transfer-learning possibilistic C-means approach allowed us to take

advantage of one person’s data to cluster a few weeks of data from another person’s

56

0 5 10 15 20 25

Iteration

0

20

40

60

80

100

120

B
e

ta
j

Beta1

Beta2

Beta3

Beta4

Beta5

Beta6

Figure 3.21: Evolution of βj vs iteration on target data for all clusters using S21

dataset.

-20 -10 0 10 20 30 40 50 60 70 80

Feature 1

-10

-5

0

5

10

15

20

25

30

35

F
e

a
tu

re
 2

C1

C2

C3

C4

Center

Figure 3.22: Target data S3; discovered cluster centers with TLPCM .

57

0 5 10 15 20 25

Iteration

0

20

40

60

80

100

120

E
ta

j

Eta1

Eta2

Eta3

Eta4

Figure 3.23: ηj vs iteration on target data for all clusters using S3 dataset.

0 5 10 15 20 25

Iteration

0

20

40

60

80

100

120

B
e

ta
j

Beta1

Beta2

Beta3

Beta4

Figure 3.24: βj vs iteration on target data for all clusters using S3 dataset.

58

data.

To confirm our labels for normal and abnormal days, we ran the original PCM

algorithm on each resident’s data 1000 times and then averaged the partition matrices

and compared the predicted labels with the nurse’s notes. Once we had our ground

truth, we tested our approach and calculated the Rand index. We used Resident 1

as the source data for our algorithm and Resident 2 as the target data. We fed our

proposed algorithm with target data weekly and calculated the Rand index each time.

Fig. 3.25 shows that TLPCM could correctly cluster the new resident data after 10

weeks. However, PCM could not cluster the data of Resident 2 until we had 17 weeks

of data. The same experiment was performed with the data of the other residents by

considering Resident 1 as the source data and Resident 3 as the target data; then, we

considered Resident 2 as the source data and Resident 3 as the target data, as shown

in Fig. 3.26 and 3.27, respectively. Clearly, Fig. 3.27 has the best Rand index curve

for TLPCM compared with the other two figures. The reason is that Resident 1 is the

youngest and healthiest of the three. Furthermore, Resident 1 does not use a walker,

which makes his routines different on normal and abnormal days. On the other hand,

Resident 2 and Resident 3 use walkers that affect their walking. Since Residents 2

and 3 have similar activities, TLPCM was able to cluster target data in fewer weeks

(7 weeks), as shown in Fig. 3.27. However, PCM used directly on Resident 3 could

not stabilize on the desired cluster structure until approximately 21 weeks of data.

Another experiment was performed using the same real-world dataset in case we

needed the ground truth—whether the resident would have a normal or abnormal

day. Instead of computing the ground truth by applying the original PCM algorithm

1000 times, the following steps were used: As shown in Fig 3.28, in the first step, we

considered the predicted labels of the first week as the ground truth of the first week

in the data for the second step; then, we considered the predicted labels of the two

weeks in the second step as the ground truth of the third step’s first two weeks of data,

59

Figure 3.25: Weekly Rand index using Resident 1 as the source data and Resident
2 as the target data; TLPCM was able to reach a Rand index of approximately one
with fewer weeks of data.

Figure 3.26: Weekly Rand index using Resident 1 as the source data and Resident
3 as the target data; TLPCM was able to reach a Rand index of approximately one
with fewer weeks of data.

60

Figure 3.27: Weekly Rand index using Resident 2 as the source data and Resident 3
as the target data; TLPCM needs fewer data than in the previous two cases due to
the similarity between Residents 2 and 3 (source and target data).

and so on. Using our algorithm, residents are consistently checked on a weekly basis.

If there is an increase in cluster numbers, this is abnormal and could be indicative of

a potential health issue, as shown in Fig. 3.29.

All of the above experiments on the bed sensor data demonstrate how to use our

proposed algorithm to transfer the knowledge gained from one resident to another.

In the next three experiments, we tested our algorithm by combining the data of two

residents as the source data and then using the third resident as the target data.

Two of the residents (Residents 2 and 3) use a walker, and they are close in age,

while the third (Resident 1) is healthier and younger and does not use a walker. We

took different combinations of these three residents as the source and target data and

checked the effect of combining different sources of data on the clustering results of

the target data. We combined the data of Residents 1 and 2 to form our source data

and used resident 3 as the target data. In other words, we combined healthy and

non-healthy residents for the source data and used a non-healthy resident as target

data. We started feeding our proposed model with the target data weekly, as we did

61

predected labels
of N weeks

2 3 N

1
2
2
2
1
1
1

1
2
2
2
1
1
1
1
2
2
2
1
1
1

1
2
2
2
1
1
1

predected labels
of 1 week

predected labels
of 3 weeks

Second
Rand
Index

1
2
2
2
1
1
1

predected labels
of 2 weeks

1

1
2
2
2
1
1
1

1
2
2
2
1
1
1
1
2
2
2
1
1
1

1
2
2
2
1
1
1
1
2
2
2
1
1
1

N Rand
Index

Third
Rand
Index

First
Rand
Index

Figure 3.28: The block diagram illustrates how to detect a new health issue using the
ground truth from earlier weeks’ data.

62

Figure 3.29: Detecting a new health issue by consistently checking on a weekly basis
using our algorithm with a small number of data samples compared to those in the
PCM algorithm.

in the previous experiments. Then, we calculated the Rand index each time. Fig.

3.30 (the solid blue curve) shows that TLPCM could correctly cluster the data in

approximately eight weeks of target data. The results are compared with those of

the other two experiments, as shown in Fig. 3.30 (the green dashed and red dotted

curves), where the source data include only one of the residents (either Resident 1 or

2) and we kept the target data as it was (Resident 3). When we combined the healthy

and non-healthy residents in the source data and used a non-healthy resident as the

target data, the results were better than they were when we had only healthy-resident

source data, because approximately half of the source data were similar to the target

data. However, the results were less accurate than when all of the source data were

similar to the target data, as shown in Fig. 3.30.

The same experiment was applied to the other two cases: when Residents 1 and

3 provided the source data and Resident 2 provided the target data, and then when

Residents 2 and 3 provided the source data and Resident 1 provided the target data.

63

Fig. 3.31 and Fig. 3.32 show the results of the second and third cases, respectively. We

can conclude that adding more source data similar to the target data will improve the

clustering results, because the transfer-learning technique depends on the historical

information that we obtain from the source data. Moreover, adding source data

different from the target data will reduce the efficiency of the algorithm in clustering

the target data.

Figure 3.30: The weekly Rand index for TLPCM using Residents 1 and 2 as the
source data and Resident 3 as the target data (solid blue curve) compared with the
Rand index for a single resident (Resident 1 or 2) as the source data and a single
resident (Resident 3) as the target data (green dashed and red dotted curves).

64

Figure 3.31: The weekly Rand index for TLPCM using Residents 1 and 3 as the
source data and Resident 2 as the target data (solid blue curve) compared with the
Rand index for a single resident (Resident 1 or 3) as the source data and a single
resident (Resident 2) as the target data (green dashed and red dotted curves).

Figure 3.32: The weekly Rand index for TLPCM using Residents 2 and 3 as the
source data and Resident 1 as the target data (solid blue curve) compared with the
Rand index for a single resident (Resident 2 or 3) as the source data and a single
resident (Resident 1) as the target data (green dashed and red dotted curves).

65

3.6.2.2 Experimental Results on the Forensic Glass Dataset

This experiment analyzes our algorithm’s validity in finding the right number of

clusters in unbalanced data and compares the original PCM algorithm results. These

data, described in Section 3.5.2.2, are unbalanced, as shown in Fig. 3.9, and it will

not be easy to find the right number of clusters with a few samples of data. First, I

examine a heatmap of the correlations, as shown in Fig. 3.33. It seems to be a strong

positive correlation between RI and Ca. This could be a hint to perform principal

component analysis (PCA) [74] in order to decorrelate some of the input features.

Before applying PCA, I plot the cumulative explained variance, as shown in Fig.

3.34, and it appears that about 99 % of the variance can be explained with the first

five principal components.

�� �� �� �� �� � ��
� ��

�
�

�
�

�
�

��
��

�
�
�

�
��

���� ����� ����� ����� ����� ����� ��
� ����� ����

����� ���� ����	 ���� ����	 ����	 ����
 ���� �����

����� ����	 ���� ����
 ����	 ���� ����� ����� ���

����� ���� ����
 ���� ����� ���� ����� ���
 ����	

����� ����	 ����	 ����� ���� ����� ����� ����� �����

����� ����	 ���� ���� ����� ���� ����� ����� �����

��
� ����
 ����� ����� ����� ����� ���� ����� ����

����� ���� ����� ���
 ����� ����� ����� ���� �����

���� ����� ���
 ����	 ����� ����� ���� ����� ����
����

���

���

���

���

Figure 3.33: Heatmap of the correlations glass dataset.

66

� � � � � � 	
 �

�������������������

���

���

���

���

��

���

��
��

��
��

��
��

���
��

��
��

���

�����������������������������
�����������������������������

Figure 3.34: Principal component analysis performance for glass dataset features.

Therefore, after normalizing the data by utilizing the standard score normalization

technique, the PCA algorithm is used to reduce the number of variables in our data

by extracting the essential variables. Half of the data samples are used as a source

domain to obtain the cluster centers (knowledge), and then the target data are fed

to the PCM and TLPCM models gradually by adding 20% of the total target data

each time. As shown in Table 3.4, there is consistency in the number of clusters in

TLPCM due to the knowledge inherited from the source data, while PCM is tricked

into finding the right number of clusters.

67

Table 3.4: Glass dataset Results.

% Target
data

Ground
truth

PCM
NO. of

Clusters

PCM
Rand
Index

TLPCM
NO. of

Clusters

TLPCM
Rand
Index

20% 6 3 0.56 6 0.76

40 % 6 2 0.58 6 0.78

60% 6 4 0.60 6 0.80

80% 6 5 0.64 6 0.80

100% 6 5 0.763 6 0.808

3.6.2.3 Experimental Results on the Chronic Kidney Disease Dataset

The kidney dataset, described in Section 3.5.2.3, is collected from 400 patients (250

”CKD”, 150 ”notckd”). Every individual person has certain features that differ from

the others, which makes this a good test for the transfer-learning technique in our

algorithm. Moreover, this dataset contains many missing values and categorical values

that need to be preprocessed. Thus, before utilizing the dataset in our proposed

algorithm, the data are first cleaned. Then, I plot the Box-plot as shown in Fig. 3.35

to see if all the data features are on the same scale.

However, the features are inconsistent in terms of the range of the values (i.e.,

they have various scales). Thus, the features are then normalized, as shown in Fig.

3.36. Next, I plot the cumulative explained variance, as shown in Fig. 3.37, and it

appears that variance can be explained with almost all principal components. Hence,

the PCA algorithm is not applied to this data. After the data carpentry phase, half

of the data samples are used as a source domain to determine the cluster centers

(knowledge).

The proposed algorithm (TLPCM) is then tested with various sizes of the target

dataset and compared with the PCM algorithm (see Table 3.5). First, both PCM

and TLPCM are fed 20% of the target dataset. The Rand index was 0.607 and 0.78,

68

respectively. It can be seen from the Rand index that TLPCM was able to achieve a

better performance than PCM. Next, we steadily increased the target dataset’s size

by 20% of the actual data size until the full size of the target dataset was reached.

As expected, increasing the size of the target dataset improved the performance of

the algorithm. With the full target dataset, the Rand index was 0.802 and 0.906 for

PCM and TLPCM, respectively. It is worth noting that TLPCM could significantly

better cluster results than PCM with even a small portion of the dataset. Thus, the

core principle of transfer learning is satisfied since our algorithm does not need an

abundance of data to cluster correctly.

Figure 3.35: Kidney disease dataset features before normalization.

Table 3.5: Kidney dataset Results.

Target
data %

Ground
truth

PCM
NO. of

Clusters

PCM
Rand
Index

TLPCM
NO. of

Clusters

TLPCM
Rand
Index

20% 2 1 0.607 2 0.78

40% 2 2 0.605 2 0.80

60% 2 1 0.708 2 0.89

80% 2 2 0.802 2 0.872

100% 2 2 0.852 2 0.906

69

Figure 3.36: Kidney disease dataset features after normalization.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Principal components

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

ai
ne

d
va

ria
nc

e
ra

tio

cumulative variance explained
individual variance explained

Figure 3.37: Principal component analysis performance for Kidney disease features.

70

3.7 Conclusion

Based on the original PCM algorithm, and inspired by transfer learning, we de-

signed a novel clustering framework called the transfer-learning possibilistic c-means

(TLPCM) clustering algorithm. TLPCM works in applications where data is limited

and insufficient for useful clustering or is polluted by unknown noise or outliers. When

the experimental results are compared with those of the original PCM algorithm, we

can see the attractiveness and efficacy of the proposed TLPCM algorithm in both

artificial and real transfer scenarios.

The real-world data showed that for early illness recognition and analyzing the

Forensic Glass and Chronic Kidney datasets, the proposed method outperformed

individual learning in terms of consistency and the amount of data needed for clus-

tering. As more information was added to the algorithm, the performance steadily

increased, but only up to a certain limit. Once that limit was reached, performance

plateaued. Since data labeling is difficult in a real-world setting such as TigerPlace,

transfer learning can help train illness recognition classifiers across residents. Early

signs of illness could be predicted in elderly residents of TigerPlace based on unob-

trusive monitoring sensors through the use of transfer learning in TLPCM. Further

study based on this research will focus on transferring membership values from the

source domain instead of cluster prototypes.

71

Chapter 4

Non-Invasive Classification of Sleep
Stages with a Hydraulic Bed
Sensor Using Deep Learning

4.1 Introduction

Sleep is a critical physiological phenomenon for recovery from mental and physical

fatigue. Lately, there has been much interest in the quality of sleep, and research

is actively underway. In particular, it is vital to have a repetitive and regular sleep

cycle for good sleep. Nevertheless, it takes much time to determine sleep stages using

physiological signals by experts. A person with a sleep disorder such as apnea will stop

breathing for a while throughout sleep. If it regularly happens, sleep disorders can be

dangerous for health. An early step in diagnosing these disorders is the classification

of sleep stages [75,76].

Unfortunately, sleep disorders have been affecting many people around the world

in different ways. Whatever the cause of these disorders, the consequences can be

severe. The quality of sleep depends on the number and order of these stages. The

names of these stages, are Wake, Non-REM1, Non-REM2, Non-REM3, and REM.

72

Detection of any sleep disorder, such as sleep apnea, insomnia, or narcolepsy, requires

a correct staging of sleep [77,78].

Classification of sleep stages is also essential for managing the quality of sleep.

Sleep studies depend on manual scoring of sleep stages from raw polysomnography

signals, which is a tedious visual task. Thus, research efforts to develop an automatic

sleep stage scoring based on machine learning techniques have been carried out in

the last several years [79]. Convolutional neural networks (CNN) [80] and Long-

Short Term Memory Recurrent Neural Networks (LSTM) [81] provide an interesting

framework for automated classification of sleep based on raw waveforms. In the past

few years, Deep Neural Networks (DNNs) have accomplished tremendous success for

time series tasks compared to traditional machine learning systems. Recently, further

improvements over DNNs have been obtained with alternative types of neural network

architectures. CNNs, LSTMs, and DNNs are individually limited in their modeling

capabilities, and we believe that time series data classification can be improved by

combining these networks in a unified framework.

The classification of time series signals presents many challenges that make it a

uniquely difficult problem in machine learning. Many feature extraction approaches

in time series face issues related to the signal’s non-stationary nature when the prob-

ability distribution does not change over time. Accordingly, features such as mean

and variance will not change. Furthermore, the physiological signals are very noisy,

susceptible to posture, mood, physical movement, and external noise [82]. Lack of

comparability between experiments is another issue that can be faced in this field.

Unlike in image classification, there are no standard time series datasets used as per-

formance benchmarks [21, 83]. Some approaches use models for individuals, while

others try to make a general model, training, and testing with samples from all indi-

viduals at one time.

In this work, we propose a method for classifying sleep stages based on the CNN,

73

LSTM and DNN with the help of transfer learning. More specifically, we use a

transfer learning technique to train our network model with sleep posture data for 56

subjects (source dataset) and use it for sleep stage classification (target data). The

sleep data was obtained from 5 subjects and it was collected in the Boone Hospital

Center (BHC) in Columbia, MO, USA under the University of Missouri IRB approval,

project number 2008526. The main contribution of this work is developing a new deep

model architecture that utilizes CNNs and LSTMs to classify sleep stage data. The

CNNs are trained to learn filters that extract time-invariant features from the BCG

signals while the LSTMs are trained to encode temporal information such as sleep

stage transition rules.

4.2 Sensors and Datasets

A home monitoring system using a ballistocardiography (BCG) hydraulic sensor has

been developed to monitor sleep at home (see Fig. 4.1). The hydraulic bed sensor has

been developed at the Center for Eldercare and Rehabilitation Technology (CERT) at

the University of Missouri. A BCG device provides a noninvasive, low-cost, and robust

solution for capturing physiological parameters such as heart rate and respiration rate,

during sleep [39, 60, 61]. The BCG sensor has four transducers. Each transducer is

composed of a water tube with a pressure sensor placed at one end. The water tube

is 50 cm long and 6 cm wide and it is filled with about 0.4 liters of water. The BCG

sensor is placed under the mattress, parallel to the body direction, to provide sleeping

comfort and not to disturb a person’s normal sleep pattern.

The pressure outputs are coupled to a Maxim MAX7401 which is a filtering circuit

that consists of a 741 operational amplifier and an 8th-order integrated Bessel filter

[16, 62]. The four-channel signal is sampled and quantized to 12-bit precision. The

BCG signal acquired from the sensor is superimposed over the respiration signal. The

74

four matching transducers are independent; consequently, the data quality collected

by those transducers might vary depending on the subject’s sleeping position, type

of bed (e.g., material, thickness, etc.) and the physical characteristics of the subject

such as age and body mass index (BMI). In this study, two kinds of datasets have

been collected utilizing our bed sensor: sleep posture and sleep stages.

Figure 4.1: Hydraulic Bed Sensor System.

4.2.1 Posture Dataset

A total of 56 young healthy subjects (75.8% of males and 24.2% of females) were

asked to lie still in our lab for one minute on each of the four main postures, supine,

prone, left lateral and right lateral. The data collection procedure was approved

by the University of Missouri Institutional Review Board (MUIRB). The bed sensor

produced data sampled at 100 Hz. The subjects age ranged between 18 and 49 years

75

(mean 29.3 years); the weight ranged between 48 and 127 kg (mean 75.9 kg); the

height ranged between 156 and 190 cm (mean 174.4 cm); the average body mass

index was 24.8 kg/m2, ranged between 18.1 and 37.9 kg/m2. Fig. 4.2 shows the

characteristics of 56 participants.

Figure 4.2: Characteristics of the 56 source participants.

4.2.2 Sleep Stage Dataset

Sleep stage data was collected from consenting patients by a sleep-credentialed physi-

cian during the regularly scheduled PSG studies conducted in the sleep lab of the

Boone Hospital Center (BHC) in Columbia, MO, USA. In addition to the regular

PSG equipment, we placed our hydraulic bed sensor under the study bed mattress.

The scoring system for staging the sleep was based on the American Academy of

Sleep Medicine Manual (AASM) [84], which is the standard for scoring sleep stages

and it provides guidelines for associated events during sleep. Sleep stage scoring in

30-second epochs is required for the AASM protocol. A program produced by Natus

SleepWorks (Natus Medical Inc., San Carlos, CA, USA) was used in the BHC sleep

lab to assist the staff in monitoring a patient throughout the night. SleepWorks not

only collects the PSG data but also performs a video recording of the entire night.

76

The technician can view the patient’s sleep video if they have any uncertainty about

the data. SleepWorks can also provide an initial analysis of the collected data and

can generate a report, which helps the sleep physicians who make treatment recom-

mendations.

Fig. 4.3 shows the PSG signals visualized in the Natus SleepWorks interface; the

orange bar is the occurrence of obstructive apnea that annotated by a technician.

The BHC sleep lab provides de-identified polysomnography (PSG) data with a sam-

ple rate of 256 Hz. PSG is a multiparametric recording method used in sleep labs to

monitor physiological changes throughout sleep. It is a consistent tool for diagnosing

sleep disorders, and it can similarly help adjust treatment. Moreover, a technician

scores each patient’s clinical events (e.g., limb movements, respiratory and cardiac

events, and arousals) using the American Academy of Sleep Medicine (AASM) stan-

dards. PSG is used in this research as ground truth for our bed sensor signals. The

hypnogram is one PSG outcome that displays the sleep stages as a function of time

(Fig. 4.4). Sleep stages are annotated in 30-second epochs. From top to bottom,

the sleep stages are Wake (W), REM(R), NREM1 (N1), NREM2 (N2), and NREM3

(N3). For the patient shown in Fig. 4.4, 742 epochs were monitored during sleep.

REM sleep happened between epoch 392 and epoch 485, also highlighted in red.

Figure 4.3: PSG signals visualized in the Natus SleepWorks interface.

77

Figure 4.4: Hypnogram of an entire night exported from a PSG system.

Those who participated in the sleep study are likely to have a sleep disorder.

The partial and the complete collapse of the airways are called hypopnea and apnea,

respectively. Lack of airflow will affect breathing patterns and then influence sleep

stage sequence. The Apnea-hypopnea index (AHI) represents the number of apnea

and hypopnea events per hour during sleep. Based on the AASM, the mild sleep

apnea AHI is between 5 and 15. In this study, we did not use the data collected

from patients with severe apnea symptoms. For this study, we selected five sleep

lab patients with a low Apnea-hypopnea index (AHI), so that each one has sufficient

REM, NREM, and Wake sleep stages during the night.

4.2.3 Data Preprocessing

We present the preprocessing steps for our data. For the posture data, we truncate

the signals utilizing the percentile method [46] to remove any noise that was intro-

duced due to the desynchronization between the time of leaving the bed and stopping

recording the signal. After denoising, we normalize the data by utilizing standard

score normalization technique. Fig. 4.5 shows the these stages of cleaning and nor-

malizing the data. Then we down-sample the data to 100 Hz and shuffle it to prepare

it for net training.

To account for the varying length of the signals, we divide the preprocessed bed

sensor signals into 5-second segments with 80% overlap (see Algorithm 3). Each

78

output label corresponds to a segment of the input. Together the output labels cover

the full sequence. The above two algorithms are applied on posture and sleep stage

data. Another algorithm is applied for sleep stages only, which are the rules from [85]

that help to improve the accuracy about 1%. These rules can be illustrated as followed

(see Algorithm 4):

� For three consecutive 30s epochs, if the center one is not the same as the other

two and the other two are the same, change the center one to the same stage

as the other two epochs. However, the center epoch is not changed if it is an

Awake stage.

� For every three 30s epochs, if the sleep stages are all different, the center epoch

is removed from the recording. Similarly, this rule does not apply to the Awake

stage.

� If REM stages show up in the first hour, these stages are removed from the

recording.

Figure 4.5: Sample of BCG signal with cleaning and normalizing stages.

79

Algorithm 3: Extract Segments

1

Input: b̃cg:= Processed bed sensor Data, win size : windows
size.

Output: Seg := segments, LB :=labeles, GR:= groups, T Seg:=
total segments, T LB:= total labels, T GR:=total
groups.

2 Initialization
3 begin

4 Load(b̃cg)

5 foreach b̃cgi ∈ b̃cg do

6 while start < length of b̃sd do
7 end = start + win size
8 start=start + stride

9 end

10 foreach (start, end) in slice(b̃cgi, win size) do

11 if size of b̃cgi (start to end) == win size then

12 signal ⇐ b̃cgi(start to end)
13 if Seg is None then
14 segments = signal
15 else
16 stack signal in Seg
17 end

18 LB ⇐ b̃cgi(0,end-1)

19 GR ⇐ b̃cgi(0,end-2)

20 end

21 end
22 T LB ⇐ stack LB
23 T GR ⇐ stack GR
24 T Seg ⇐ stack Seg

25 end

26 end

80

Algorithm 4: Preprocessing

1

Input: bsd :=Bed Sensor Data
Output: b̃sd:= Processed Bed Sensor Data

2 begin
3 Load(bsd)
4 Clean(bsd)
5 foreach δi ∈ bsd, where i = {2, size(bsd)} do
6 Perc ⇐ Percentiles (δi)
7 δi(δi ≤ Perc(1))⇒ eliminate;
8 δi(δi ≥ Perc(2))⇒ eliminate

9 end
10 foreach δi ∈ bsd do
11 Normlize the data

δi =
δi −mean(δi)

std(δi)
(4.1)

12 δ ⇐ δi
13 end

14 δ̆ ⇐ Downsample if need it(δ, 100Hz)

15
...
δ ⇐ Label&Group(δ̆)

16 b̃sd⇐ Shuffle(
...
δ)

17 end

4.3 Architecture Design

We propose a new architecture to classify BCG bed sensor data (see Fig. 4.6.). The

network takes as input the windows of time series of filtered BCG signal and outputs

a sequence of label predictions. The basic block is a convolution layer followed by

a batch normalization layer [86], Rectified Linear Unit (ReLU) activation layer, and

max-pooling layer. We similarly employ shortcut connections to those found in the

Residual Network architecture [87] to make the optimization of such a network man-

ageable. The shortcut connections between neural network layers enhance training by

81

permitting information to propagate well in deep neural networks. The convolutional

layers in the first and second blocks have 8 filters; this number of filters doubles in

successive blocks until it reaches 32 in the last block.

Moreover, the Max Pooling layer helps to subsample the input to become one-

fourth of the input sample at the top layer since Max Pool is set to size two. When a

block subsamples the input, the corresponding shortcut connections also subsample

their input using a Max Pooling operation with the same subsample size. We next

pass the CNN block output to LSTM layers with 128 units, which are appropriate

for modeling the signal in time.

Regularization techniques are employed in our architecture to reduce over-fitting

effects during training. Regularization techniques help keep the model from becoming

too complex and specific to the training data, thus reducing the tendency to overfit.

In this work, two regularization techniques were used. The first technique was a

dropout, which randomly sets the input value to zero with a certain probability [27].

A probability of 0.5 was used in the dropout layer after LSTM, as shown in Fig. 4.6.

The second technique was L2 weight decay, which adds a penalty term into the loss

function. L2 regularization is a typical technique used in many optimization methods,

in which the squared sum of the weights is applied as a penalty to the optimization

function. In essence, this weighs the advantage of increased classification of the

training data against model complexity. By preventing the model from becoming too

complicated, memorization of the training data is reduced, and a more generalizable

model is developed.

4.4 Training and Experimental Results

Transfer learning is employed in the experiments of this work to classify sleep stages.

Transfer learning is a technique wherein the knowledge gained from training a model

82

Figure 4.6: The proposed architecture of the network

83

on a dataset (source) can be reused as a starting point, when fine-tuning the model

on another dataset (target). This is usually done when the target dataset is not

as rich as the source, and hence, a complex deep network would have more trouble

training only on the target (see Fig. 4.7). Consequently, we split the network model

training into two distinct phases. First, our model is trained on the class-balanced

training posture dataset of 56 people using five-fold cross-validation. Then, the net-

work weights obtained in the first phase are used as an initialization for the second

phase of training on sleep stage data subjects.

Figure 4.7: System framework, the features of posture data were utilized to train the
sleep stages data and fine-tune the top layers of the model.

The model is trained and tested on the posture data only to check the validity

of the architecture. Five-fold cross validation is conducted to train and test posture

data. Each time (fold), 12 patient was left out for testing while the remaining 44

patients were used to train the DNN networks. Fig. 4.8 (a) and (b) show the training

and testing phase respectively for the 4 postures Supine, Left Lateral, Right Lateral,

and Prone posture. Our model was able to classify the posture data better than the

results reported by Enayati, et al. [88] which were 72% the average accuracy for the

four postures; the previous work has been done using the same data and the same

84

sensor, but with traditional machine learning algorithms.

(a) (b)

Figure 4.8: Confusion matrix of 56 patients five-fold non-hierarchical posture data
classification ; Class 0: Supine posture, Class 1: Left Lateral, Class 2:Right Lateral,
Class 3: Prone posture (a) training phase (b) testing phase.

After testing our architecture with posture data, a five-fold LOSO-CV is conducted

to fine-tune the sleep stage data. Each time (fold), one patient was left out for

testing while the remaining four patients were used to train the DNN networks. In

the testing part, we utilize a hierarchical classification scheme for our automatic sleep

stage classification system. This structure is composed of two layers as shown in Fig.

4.9.

The first layer separates wake from sleep, which is a union of REM and NREM,

in a binary classification problem. Next, all the epochs classified as sleep are fed

into the next layer to further classify the REM and NREM epochs. The last block

of the architecture, shown in Fig. 4.6 is used to fine-tune the sleep stage data. In

the first phase, the optimal hyperparameters for the model are carefully chosen for a

given dataset.The model is at that time fine-tuned on the given dataset with these

hyperparameter settings.

85

Training overnight raw sleep stage data using DNN is time-consuming which might

takes weeks or months. Moreover, the ground truth of the posture data is more reliable

than the ground truth of sleep stage data. Deep learning models with transfer learning

can, however, successfully converge on short-time data (sleep posture data) split

across multiple subjects. By training a model over multiple posture data subjects, we

obtained an initialization that is then used for fine-tuning our model on the sleep stage

data. Based on Williams et al. [21], this process is hypothesized to make convergence

on an individual’s data more likely; it should also provide more robust general filters

in the first layers of the neural network.

Fig. 4.10 (a) and (b) show the average fine-tuned training five-fold LOSO- CV

sleep stage data to classify wake from sleep and classify REM from NREM, respec-

tively. Fig. 4.10 (c) shows the average of hierarchical fine-tuned testing five-fold

LOSO-CV sleep stage data. Fig. 4.11 (a) and (b) shows PSG sleep stages ground

truth for 5 subjects and sleep stages predicted labels for 5 subjects respectively .

Clearly, our model was able to classify the sleep stage classes better than the results

reported by Yi, et al. [89] which were 79.9%, 78.8%, and 88.8% sensitivity for wake,

Sleep Stages
Data

Wake Sleep

NREMREM

Figure 4.9: Sleep Stages hierarchical classification steps.

86

REM, and NREM respectively; the previous work has been done using the same data

and the same sensor, but with traditional machine learning algorithms. Table 4.1;

shows the percentage of epochs that are correctly classified for each class Wake, REM,

(a) (b)

(c)

Figure 4.10: Confusion matrix of 5 patients leave-one-subject-out hierarchical sleep
stages classification utilizing posture data knowledge (a) Training phase, Class 0:
Wake, Class 1: Sleep (b) fine-tuning training, Class 0: REM, Class 1: NREM (c)
Hierarchical fine-tuning testing phase Class 0: Wake, Class 1: REM, Class 2: NREM

87

(a) (b)

Figure 4.11: Experimental results; (a) PSG sleep stages ground truth for 5 subjects
and (b) Sleep stages predicted labels for 5 subjects.

and NREM comparing to the percentage ground truth. From the results shown in

Fig. 4.10, and Table 4.1, it is worth to mention the misclassification of the Wake as

Sleep in the first layer in the hierarchical method is fed into the second layer, which

has a cumulative impact on the second layer classification.

Table 4.1: Selected five sleep lab patients with a low Apnea-hypopnea index (AHI).

Information Ground Truth Predicted Labels

SUBJECT GENDER AGE WAKE(%) REM(%) REM(%) WAKE(%) REM(%) NREM(%)

1 F 69 21.57 14.13 64.29 19.13 11.54 54.32

2 M 66 14.95 16.61 68.44 13.53 13.39 57.14

3 M 68 33.76 12.3 53.94 29.83 10.04 45.03

4 F 66 46.98 7.32 45.7 42.01 6.03 39.07

5 F 62 29.85 19.53 50.63 25.58 15.75 43.74

The same method is used to classify the data with the non-hierarchical classifica-

tion technique. Fig. 4.12 (a) and (b) show the average of non-hierarchical fine-tuned

training and testing five-fold LOSO-CV sleep stage data respectively to classify wake,

REM, and NREM. The REM class results were a bit better in non-hierarchical clas-

sification than hierarchical classification. In contrast, the wake and NREM classes

88

were less accurate.

(a) (b)

Figure 4.12: Confusion matrix of 5 patients five-fold LOSO-CV non-hierarchical sleep
stages classification utilizing posture data knowledge; Class 0: Wake, Class 1: REM,
Class 2: NREM (a) fine-tuned training phase (b) fine-tuned testing phase.

The same five patients are used again with the LOSO-CV method directly without

using posture knowledge. This experiment aims to see the difference between training

the five subjects using the knowledge from the posture data and using the sleep stages

data directly without. Fig. 4.13 (a) and (b) show the average confusion matrix of

five-fold LOSO-CV for the training and testing phase, respectively. Although the

results for training the sleep stages data directly without using posture knowledge is

better, the time consuming for training the 8 hours/subject data is much more than

using the posture knowledge, which was 4 minutes/subject.

Although the starting time of the two systems is synchronized, there were some

interruptions during sleep. During the study, forty-four out of 71 patients went to

the restroom. The number of restroom visits varied from one to five times. When

a patient leaves the bed, the technician must detach all the devices worn on that

person’s body surface and suspend the PSG data collection. At the same time, the

89

(a) (b)

Figure 4.13: Confusion matrix of 5 patients LOSO-CV non-hierarchical sleep stages
classification; Class 0: Wake, Class 1: REM, Class 2: NREM (a) Training phase (b)
testing phase.

bed sensors are supposed to stop collecting the data. However, the bed sensors kept

on collecting data while subjects got out of bed.

Fig, 4.14 shows an annotation example of the PSG system with the epoch number

labeled at the top left of each epoch’s starting. As shown in the figure, during epoch

55, the system was disconnected and then reconnected during epoch 62. The restroom

visit timestamp in the bed sensor system is from 22:38:19 to 22:42:10, according to

the results of data synchronization. Nevertheless, due to a hardware glitch, the bed

sensors kept collecting data while the patient was away from the bed. Since the sleep

stage is based on 30-second epochs, we do not want to keep partial sleep stages.

In the PSG system, we look for entire epochs before the disconnected time point.

In this example, the whole epoch before disconnection is epoch 54, and the entire

epoch after the reconnected time point is epoch 63. The incomplete epochs with the

yellow background in Fig. 4.15 were removed. For the bed sensor system, all the data

between epoch 54 and epoch 63 is removed. The remaining signals are the multiple

90

integral segments of 30-second epochs. We then concatenated all the signals together.

54

l I.I 11 l. I
CGL- CGR
I I I I I I I

HEST

5 62 63

11/27/2017 00:34:00

reakout box reconnected.

11212011 oo:3 ·oo t3·5t8)

break

11/27/2017 00:30:09

Breakout box disconnected.

11127/2017 00:30:09

patient 1n bathroom

11 27/20 OJ

Oxim n

11127/20 03

Pul e ven

I I

Figure 4.14: Annotation example of PSG system with break.

Figure 4.15: Incomplete epoch removed from PSG system.

Hence, The same training and testing procedure is applied again, but 27 patients

of Boone hospital sleep stages data are used. None of these 27 patients has left the

bed or interrupted the study. About 80% of them (22 patients) are used to train

the architecture. Then five-fold LOSO-CV is conducted to fine-tune the rest of the

data, about 20% (5 patients). Each time (fold), one patient was left out for testing

while the remaining four patients were used to fine-tune the top layers of the DNN

networks. Fig. 4.16 (a) shows the non-hierarchical training phase’s confusion matrix-

91

ing 22 patients from Boone hospital. Fig. 4.16 (b) and (c) show the average of non-

hierarchical fine-tuned training and testing five-fold LOSO-CV sleep stage data to

classify wake, REM, and NREM. The results show an accuracy of 80%, 76%, and

78% for awake, REM, and NREM, respectively, on this group of patients from the

sleep lab. Five patients’ results were better than the 27 patients because they have a

low Apnea-hypopnea index (AHI).

The algorithm is then applied to 71 patients; some of these people have left the

bed, and others are not, as I explained earlier. Since the sleep stage is based on 30-

second epochs, we do not want to keep incomplete sleep stages. In the PSG system, we

look for complete epochs before the disconnected time point. All the data between the

complete epoch before disconnection and the complete epoch after reconnecting are

removed from the bed sensor system. The remaining signals are the multiple integral

segments of 30-second epochs. Then all the signals are concatenated together.

A hardware malfunction caused the second exception. The bed sensor missed

some part of the data, even after the patient returning from the restroom. For some

hardware reason, the bed sensors sometimes experienced a seven-minute delay before

they could start collecting data again. However, in the PSG system, sleep stages were

labeled during this period. The synchronization process was similar to the previous

one, and the complete epoch was found to be coincident with the timestamp data.

Then, the sleep stage labels were removed to match the missing data.

Thus, 56 out of 71 patients (about 80%) are used to train the architecture. Then

five-fold is conducted to fine-tune the rest of the data, which is 15 patients (about

20%). Each time (fold), three patients were left out for testing while the remaining

12 patients were used to fine-tune the top layers of the DNN networks.

Fig. 4.17 (a) shows the non-hierarchical training phase’s confusion matrix using 71

patients from Boone hospital. Fig. 4.17 (b) and (c) show the average non-hierarchical

fine-tuned training and testing five-fold sleep stage data to classify wake, REM, and

92

(a) (b)

(c)

Figure 4.16: Confusion matrix of 27 patients non-hierarchical sleep stages classifica-
tion; Class 0: Wake, Class 1: REM, Class 2: NREM; (a) training phase for 22 patients
(b) fine-tuning training phase five-fold LOSO-CV for 5 patients (c) fine-tuning testing
phase five-fold LOSO-CV for 5 patients.

NREM.

The results of 27 patients were better than those of 71 patients because some 71

patients have left the bed as many as five times in some cases. After the patients get

back to bed, it will be hard for them to sleep, and in many cases, they stay awake

93

(a) (b)

(c)

Figure 4.17: Confusion matrix of 71 patients non-hierarchical sleep stages classifica-
tion; Class 0: Wake, Class 1: REM, Class 2: NREM; (a) training phase for 56 (about
80%) patients (b) fine-tuned training phase (c) fine-tuned testing phase.

until the morning. The testing accuracy of 71 patients were 70.07%, 63.9%, and 65%,

respectively for the Wake, REM, and NREM, The accuracy of 27 patients were 80%,

76.5%, and 78.6% for the Wake, REM, and NREM, respectively (see Fig. 4.17 and

Fig. 4.16). Moreover, the results of the 5 subjects was much better than both 27

94

and 71 patients because they have a very low Apnea-hypopnea index (AHI), so that

each one has sufficient REM, NREM, and Wake sleep stages during the night. The

accuracy of the 5 patients were 92.3%, 88.5%, and 90.5% respectively for the Wake,

REM, and NREM (see Fig. 4.13).

The last experiment compares the transfer learning method utilizing posture data

and the traditional training and testing method. The 15 patients (out of 71) are used

in testing directly without fine tunning using the last experiment’s network of the

Boone hospital data. Hence, the architecture is trained on 56 patients (about 80%)

and testing on 15 patients directly, as shown in Fig. 4.18 (a). Then, the same 15

patients are used one more time with posture network. However, the 15 patients are

used in the five-fold-CV testing phase, as shown in Fig. 4.18 (b). The testing phase

results for transfer learning and and traditional methods are close; however, training

the posture data network (4 minutes subject) requires much less time than training

the sleep stages data (8 hours patient).

(a) (b)

Figure 4.18: Confusion matrix of the testing phase for 15 patients; non-hierarchical
sleep stages classification; Class 0: Wake, Class 1: REM, Class 2: NREM; (a) Confu-
sion matrix of the testing phase for 15 patients directly (b) Confusion matrix of the
five-fold CV testing phase for 15 patients utilizing posture knowledge.

95

4.5 Conclusion

This work has developed a deep learning-based hierarchical classification method for

automatic sleep stage classification based on BCG data. The deep learning model is a

state-of-the-art algorithm that consists of a stacked CNN-LSTM model. The proposed

model was trained using a transfer learning approach that achieved a significantly

improved performance in comparison to similar studies. The results of the leave-

one-out cross-validation strategy showed potential in automatically classifying sleep

stage epochs. Our sleep monitoring system based on the BCG can indeed provide a

more natural way of diagnosing sleep problems, and make long-term sleep monitoring

possible. However, to validate our algorithms, we used a selected, balanced dataset

with a reduced noise level. We are currently working to increase our methodology’s

robustness and validate it for patients with reduced REM and high AHI.

96

Chapter 5

Early Illness Recognition in Older
Adults Using Transfer Learning

5.1 Introduction

As the US population ages, there has been a significant increase in the development

of health monitoring technologies. The likelihood of developing a health problem

increases as a person ages, but many elderly adults in the US want to live indepen-

dently for as long as possible despite conditions such as frailty and dementia and

the increased risk of falling [90, 91]. Home sensor networks have emerged as a viable

solution that can allow seniors to age in place.

Our living lab, called TigerPlace [92,93], is an aging-in-place facility in Columbia,

Missouri. Since 2005, 60 apartments at TigerPlace have been fitted with sensor

networks that include motion sensors, bed sensors, and depth cameras. In this work,

we use data from bed and motion sensors (PIR) deployed in various rooms of the

apartment (e.g., bathroom, bedroom, kitchen, and living room). The motion sensors

provide information related to resident activity around the apartment. The bed sensor

provides information related to bed motion (low, medium, high), heart rate (low,

97

high) and respiration (low, high). The data provided by these sensors are securely

sent to an off-site level-4 database. The sensor information can be visualized over a

web interface by TigerPlace clinical personnel. The sensor data capture the behavior

and physiological information of the resident, and this information is then linked to

medical records in the TigerPlace EMR.

An EMR nursing report is said to describe negative or abnormal behaviors if the

patient exhibits abnormal behaviors that can be linked to health problems, while the

EMR report is said to be positive or normal if no such behaviors are exhibited. While

this classification of behavior is imperfect, it was the only classification possible. The

main goal of this work is to predict illnesses by detecting related behaviors. To this

end, we use sensor data to train several classifiers to detect abnormal behaviors. While

training/testing a classifier with data from only one resident (apartment) provides

consistent results [94], it is not a realistic approach since the algorithm must produce

consistent results based on previous training data when a new sensor network is

deployed. There are two major challenges associated with our training approach:

the dataset is strongly imbalanced, as there are not many abnormal events, and the

distributions of the training data may vary greatly by resident due to differences in

behaviors and diseases. To overcome these problems, we investigate a solution based

on transfer learning. We compare our solution based on transfer learning with three

other methods, namely, a regular support vector machine (SVM) [95] and two one-

class classifiers, i.e., support vector domain data description (SVDD) and k-nearest

neighbors data description (KNNDD) [96].

Traditional supervised machine learning techniques assume that the training data

and test data are drawn from datasets with similar probability distributions and that

the classification task is the same for both datasets [97]. However, in practice, it is

often necessary to relax this assumption and consider the test information to have

another probability distribution or to permit the classification task to change. In this

98

situation, traditional machine learning techniques often fail to classify the test data.

Based on the motion and bed sensor data from a particular resident of TigerPlace,

a model can be learned to classify the activity occurring in the apartment. Then,

this model can be tested with a different resident in a different apartment or with

different activity labels. If the model is not modified for the new situation, then

the prediction accuracy will decrease significantly. Transfer learning techniques have

been proposed to handle these types of cases. With transfer learning, the knowledge

learned previously can be applied to obtain a better or faster solution. Compared

with traditional machine learning algorithms, transfer learning has many benefits: it

reduces the time it takes to learn new tasks, it requires little expert information, and

it improves the robustness of the learned model [97].

5.2 Methodology

Transfer learning can be defined in many ways, but in general, through transfer

learning, the training procedure is considered to be enhanced by using information

other than that from the source dataset. In each transfer learning algorithm, a source

task is related to the source domain, and the target task is linked to the target

domain. The transfer learning process has two main steps: source task training and

knowledge transfer [12, 98]. In regular linear SVM, the label of a data vector x is

determined by the sign of a linear decision function, i.e., y = sgn(f(x)) = sgn(xTw),

where w = [wi]
M
i = 1 are the model parameters. A linear SVM classifier is trained

by considering the following optimization problem:

min
w,b
‖w‖2 + C

N∑
i=1

max(0, 1− yi(wTxi + b)) (5.1)

where w is perpendicular to the separating hyperplane and the scoring function

99

that predicts the label of the test sample zi is f(zi) = sign(wTZi). ‖w‖2 encourages

margin maximization, and term hinge loss
∑N

i=1max(0, 1−yi(wTxi + b))) determines

the location of the hyperplane by minimizing the misclassification error. The hyper-

parameter C balances margin maximization and hinge loss.

Transfer learning support vector machine (SVM) is a model based on transfer reg-

ularization formulations with adaptive SVM [12,99] that was introduced for adapting

SVM classifiers to new domains. The key idea is to learn from the source model ws

by regularizing the distance between the learned model w and ws. The classifier is

linear, and it is indicated by a format vector w, with a scoring function wTx, where x

is the feature vector. The task is to learn w for the target group using a few training

instances xi, and the source group detector ws. The formulation is as follows:

LA = min
w,b
‖w − Γws‖2 + C

N∑
i=1

max(0, 1− yi(wTxi + b)) (5.2)

where Γ controls the measure of transfer regularization, C controls the weight

of the loss function, and N the number of samples. The main difference in this

formulation is the use of squared loss instead of hinge loss [100, 101]; squared loss is

more sensitive to outliers, but it also provides an analytic least squares solution for

the objective. Furthermore, it enables efficient leave-one-out cross-validation, which

is used to optimize the hyperparameter Γ, i.e., the amount of transfer. Intuitive

transfer regularization for an SVM is similar to a spring between Γws and w, and

it is equivalent to providing training samples from the source class. The transfer

can also be understood by expanding the regularization term. Assume that ws is l2

normalized to 1; then

‖w − Γws‖2 = ‖w‖2 − 2Γ‖w‖ cos θ + Γ2 (5.3)

100

where ‖w‖2 provides the normal SVM margin maximization, and −2Γ‖w‖ cos θ

induces the transfer by maximizing cos θ , i.e., by minimizing the angle cos θ be-

tween ws and w [102]. However, the term −2Γ‖w‖ cos θ also encourages ‖w‖ to be

larger, which reduces the cost and prevents margin maximization. Thus, Γ, which

should define the amount of transfer regularization, balances margin maximization

and knowledge transfer.

The support vector domain description algorithm by [103] is used in this work for

comparison with transfer learning SVM. SVDD can be used for outlier recognition.

A spherically shaped decision boundary around an arrangement of objects is built

based on a set of support vectors describing the sphere boundary; this boundary

can change the information to new feature spaces without significantly increasing

the computational burden. For a dataset with N data objects, xi, i = 1, . . . , N , a

description is required. We try to find the smallest sphere that contains as many of

the data objects as possible. This problem is extremely sensitive to the most obvious

outlier object in the target dataset. When one or a few remote objects are in the

training set, a huge sphere is obtained that will not characterize the data very well.

Therefore, we allow for some data points outside the sphere and the introduce slack

variable ζ (analogous to [103]). The formulation below is used to maximize αi:

L =
∑
i

αi(xi.xi)−
∑
i,j

αiαi(xi, xi) (5.4)

with constraints 0 ≤ αi ≤ C,
∑

i αi = 1, where the items in αi are the Lagrange

multipliers. The inner products of objects (xi, xj) can be substituted by a kernel

function K(xi, xj) when this kernel K(xi, one-class) satisfies Mercer’s theorem, which

implicitly maps the objects xi into some feature space. When a suitable feature

space is chosen, a better, tighter description can be acquired. No explicit mapping is

required; the problem is expressed entirely in terms of K(xi, xj). Therefore, all inner

101

products (xi, xj) are substituted by a proper K(xi, xj), and the problem of finding a

data domain description is now given by

L =
∑
i

αiK(xi.xi)−
∑
i,j

αiαi(xi, xj) (5.5)

with constraints 0 ≤ αi ≤ Cand
∑

i αi = 1. A test object z is accepted when

K(z, z)− 2
∑
i

αiK(z.xi) +
∑
i,j

αiαjK(xi, xj) ≤ R2 (5.6)

Different kernel functions K result in different description boundaries in the orig-

inal input space. In this work, radial basis function (RBF) kernel is used. The third

method that we used in this work for comparison to our transfer learning SVM ap-

proach is the k-nearest neighbors data description (KNNDD) [96], which is a one-class

classifier version of kNN. In this simplified version of kNN, only the distance to the

kth nearest neighbor is utilized. In the one-class classifier KNNDD, a test object z is

accepted when its local density is larger or equal to the local density of its (first) near-

est neighbor in the training set NN tr(z) = NN tr
1 (z). For local density estimation, k

= 1 is used [96]:

fNN tr(z) = NN tr(z) = I
(‖z −NN tr(z)‖
V ‖NN tr(z)−NN tr(NN tr(z))‖

≤ 1
)

(5.7)

Thus, the distance from object z to its nearest neighbor in the training setNN tr(z)

is compared with the distance from this nearest neighbor NN tr(z) to its nearest

neighbor.

102

5.3 Datasets

5.3.1 Synthetic dataset

For the synthetic dataset, we chose the case in which the target dataset has a different

distribution than the source dataset from which we want to transfer knowledge. To

simulate this scenario, we generated two imbalanced datasets: a source (or training)

dataset and a target (or testing) dataset. To generate data, we randomly sampled

500 and 200 source points from simple 2D Gaussian distributions. The first class had

a mean of (2, 3), the second had a mean of (6, 3), and both had a covariance matrix

of ((1, 1.5), (1.5, 3)). For the target dataset, we generated 500 and 50 imbalanced

data points for the first and second class, respectively. The first class had a mean of

(-10, 0), the second had a mean of (-9, 0) and both had a covariance matrix of ((0.05

,0.1), (0.1 ,8)), as shown in Fig. 5.1.

(a) (b)

Figure 5.1: Synthetic dataset: (a) Source data and (b) Target data

5.3.2 Real-world dataset

Sensor data of three residents from TigerPlace are considered in this work, as shown

in Table 5.1. In addition to the sensor data, we have all the clinical record data

103

(medications, nursing visits, hospitalizations, etc.) for these residents. Each day was

manually labeled by the authors as good or bad based on the nursing visit reports and

other clinical records, and these labels served as the ground-truth information. Fig.

5.2 shows a three-dimensional (3D) feature visualization of the data of Resident1.

Table 5.1: Data for three residents in tiger place.

Resident No. Total records
Positive

days (feel
good)

Negative
days (feel

bad)

Resdident1 441 360 81
Resdident2 744 709 35
Resdident3 499 164 335

(a) (b)

Figure 5.2: Visualization of three features for normalized data of Resident1: (a) Day
data and (b) Night data.

5.4 System Architecture and Implementation

TigerPlace [92,93] is an independent living facility for seniors planned and created as

part of a joint effort between the Sinclair School of Nursing, University of Missouri,

and Americare Systems Inc. of Sikeston, Missouri. An essential objective of Tiger-

Place is to help the inhabitants to handle their sicknesses and to remain as healthy

and independent as possible. Each resident included in the study has a data logger

104

in his or her apartment that collects data from wireless sensors. The data logger logs

the data into a document that is sent to a database on a protected server via a wired

network connection. The sensor network comprises of a few types of sensors that are

mounted in various places throughout the residents’ apartments, including counting

motion sensors, bed sensors, and stove temperature sensors. The motion sensors are

set in multiple spots, such as the bedroom, bathroom, kitchen, and living room, and

some residents have this sort of sensor installed on the refrigerator, kitchen cabinets,

and drawers.

These sensors capture resident movement over the apartment by producing a signal

when there movement is sensed. The bed sensors include certain sets of sensors,

such as a pneumatic sensor strip (on the bed) and a motion sensor (attached to the

headboard). The sensor strip and motion sensor joined are connected, and they work

in a similar way as the previously mentioned motion sensors: they identify action.

Unlike the motion sensors, the bed sensor strip records three types of activities,

which are organized based on three or four levels of severity. Early illness recognition

assumes that, if the resident does not feel well, then his/her sleep and motion patterns

will change. In this study, we used four features to represent resident behavior: the

total number of motion records, bed restlessness, pulse rate, and breath, respectively,

for every hour of the day preceding the nursing report (produced daily at 12 pm).

The number of features was doubled by splitting the data into day and night sets.

Data processing was performed as follows. First, we aggregated the sensor data:

features 1–4 were the sum of the sensor data during the night (7 pm–7 am), while

features 5–8 were the sum of the sensor data during the day (7 am–7 pm) and represent

the sensor activity prior a nursing visit. Then, the data are normalized for the three

residents; after that, the information is passed through the transfer learning SVM

algorithm described in Section 5.2. In this case, the user is prompted to control the

amount of knowledge to be transferred and the weight of the loss function by changing

105

Γ and C, respectively. The other three algorithms described in Section 5.2 are applied

for comparison with our main algorithm.

5.5 Experimental Results

5.5.1 Experiments on the synthetic dataset

The main goal of this work was to determine the practicability of using transfer

learning SVM for early illness recognition based on sensor data by using training

data from another resident. First, we apply the transfer learning SVM algorithm for

our synthetic data, which is imbalanced (i.e., the source and target data have different

distributions). The ROC obtained by classifying each target dataset is shown in Fig.

5.3. We see that the transfer learning SVM approach outscored the other three

classifiers. The AUC was 0.998 for transfer learning SVM, while it was 0.915, 0.988,

and 0.994 for regular SVM with an RBF kernel, SVDD, and KNNDD, respectively.

5.5.2 Experiments on the real dataset

For the real-world dataset, we run a set of tests to determine the best percentage

of data that we need to transfer from the target to the source. Table 5.2 shows

that the AUC increases as the amount of knowledge increases; it stops increasing

after reaching 10% bad day data. The ROC obtained by classifying resident3 after

training on resident1 using the transfer learning SVM algorithm is given in Fig. 5.4.

For comparison, we also show the ROC curves obtained for the same data with regular

SVM with an RBF kernel, SVDD, and KNNDD. Transfer learning outperforms the

other three methods. The AUC for transfer learning SVM was 0.765, while it was 0.52,

0.44 and 0.55 for regular SVM with an RBF kernel, SVDD, and KNNDD, respectively.

Table 5.3 illustrates the rest of the combinations by considering the data of specific

106

Figure 5.3: ROC curves for transfer learning SVM comparing regular SVM with an
RBF kernel, SVDD, and KNNDD run on synthetic data.

residents as the training data and testing on the data of another resident. The average

overall training/test combinations are shown for all methods in the last line of Table

5.3. The best standard was obtained for the transfer learning SVM algorithm.

Table 5.2: Amount of transfer knowledge versus AUC.

Bad Day
knowledge

transfer
AUC

1 (3%) 0.7648
2 (6%) 0.7646
3 (10%) 0.7647
7 (20%) 0.7646
11 (30%) 0.7647
14 (40%) 0.7647
17 (50%) 0.7647
21 (60%) 0.7647

107

Figure 5.4: ROC curves for transfer learning SVM comparing regular SVM with an
RBF kernel, SVDD, and KNNDD on the sensor data of Resident3 after training on
the data of Resident1.

Table 5.3: AUC results for the all combination residents.

Resident
Training → Test

AUC
Transfer
Learning

SVM

AUC
Regular

SVM

AUC
SVDD

AUC
KNNDD

Res1 → Res3 0.765 0.52 0.44 0.55
Res2 → Res3 0.799 0.52 0.43 0.48
Res1 → Res2 0.708 0.64 0.70 0.71
Res3 → Res1 0.653 0.39 0.71 0.72
Res3 → Res2 0.838 0.45 0.71 0.63
Res2 → Res1 0.66 0.61 0.64 0.65
Average 0.737 0.52 0.60 0.62

108

5.6 Conclusion

Using three resident case studies, we showed that the presented early illness recogni-

tion method based on transfer learning performs much better than individual resident

learning, even when very few target instances are available. The performance of the

transfer approach improves when additional target instances are added, but it will

stop improving after a certain point. Since data labeling is difficult in real elder care

settings such as TigerPlace, transfer learning could help to train illness recognition

classifiers for various residents. Using transfer learning SVM, we could detect the

illnesses of elderly residents of TigerPlace based on unobtrusive monitoring. The

recognition of early signs of a disease might help nursing staff provide interventions

that can prevent grave clinical events such as heart attacks or strokes.

109

Chapter 6

Conclusion and Future Directions

This final chapter summarizes the work in this dissertation by drawing together the

hypotheses and discussing the critical outcomes of the research, and presents several

possibilities for future work.

6.1 Summary

In this study, a novel clustering framework called the transfer-learning possibilistic

c-means (TLPCM) clustering algorithm has been developed based on the original

PCM algorithm and inspired by transfer learning. TLPCM works in applications

where data are limited and not sufficient for useful clustering or are polluted by

unknown noise or outliers. Hence, to evaluate the methodology presented, the first

hypothesis is initially constructed where minimal unlabeled data is available in the

target task, data in the form of a transfer learning process from contextually related,

but differing source tasks can be used to learn predictive tasks. The hypothesis was

tested through a series of experiments on both synthetic and real-world data. It

110

could achieve substantially better clustering results than PCM with even a small

percentage of the dataset. Thus, the main principle of transfer learning is fulfilled

since our algorithm does not need an abundance of data to cluster correctly. The

proposed method surpassed the PCM algorithm for individual learning in terms of

consistency and the volume of data needed for clustering.

Additionally, a new deep learning-based hierarchical classification method for au-

tomatic sleep stage classification based on BCG data with the help of transfer learning

has been developed. The second hypothesis in this work is created to evaluate our

model; where a very few labeled instances are assumed to be available in the tar-

get domain and sufficiently labeled as being similar, but not the same data which is

available in the source task. Mainly, a transfer learning technique is used to train our

proposed model with sleep posture data (source data) and use the extracted features

to classify a few sleep stages subjects (target data). The CNNs and LSTMs are uti-

lized to build the proposed architecture. While CNNs are trained to learn filters that

extract time-invariant features from BCG signals, the LSTMs are trained to encode

temporal information, such as sleep stages transition rules. The LOSO-CV strategy

is used in this hypothesis, which showed potential in automatically classifying sleep

stages epochs. The proposed architecture achieved a significantly improved perfor-

mance in contrast to similar studies. Consequently, with the application of transfer

learning, deep learning model tested was superior to traditional techniques. The re-

sults of our proposed model showed potential in classifying the sleep stages, and the

features extracted from the BCG posture signals contain characteristics associated

with sleep stages.

Moreover, the same hypothesis is deployed with a transfer learning support vector

machine approach. First, I applied the transfer learning SVM algorithm for the

synthetic data, which is imbalanced (i.e., the source and target data have different

distributions). Then, the method is validated using real-world data by conducting

111

a retrospective study on three residents from TigerPlace, a retirement community

in Columbia, MO, where apartments are fitted with wireless networks of motion and

bed sensors. The transfer learning SVM approach outperformed three other methods,

i.e., regular SVM, one-class SVM, and one-class kNN, and the average areas under

the curve (AUCs) for the four methods based on the data of three residents.

6.2 Future work

We plan to continue our research on the following potential topics:

1. In our transfer learning algorithms, we assumed that the presence of a subset

of relevant features distributed by all tasks. Nevertheless, in some practical

applications, this assumption does not always hold. There might be clusters

of tasks that share only a few futures among them. Finding these clusters, it

might enable us to share knowledge more efficiently across the tasks.

2. Although the PCM and TLPCM have a unique feature compared to most clus-

tering algorithms, which allows the algorithm to find only C dense regions out

of K actual regions based on the typicalities while the rest of the regions have

insignificant typicalities towards the existing C clusters. However, this mode

of seeking property still faces parameter selection problems and initialization

problems. Thus, for future work, we will revise our model to make it more

robust and less sensitive to the initialization.

3. In this work, a deep learning-based classification method for automatic sleep

stage classification based on BCG data is developed. The results of the leave-

one-out cross-validation strategy showed potential in automatically classifying

sleep stage epochs. However, some other designs of deep learning architecture

can be used and compare the performance with the current one to produce

112

better results for the REM stage.

4. The bed sensor signal is particularly sensitive to movement. This caused much

noise overlapping with the original signal. The BCG signals were not accurate

and clean enough compared with ECG signal. A noise removal method needs

to be applied before using BCG signals.

5. Another problem is that the subjects in this study were elderly; many had a

history of sleep disorders and medical complications. Thus collecting more data

for healthy people in the future will be useful for further investigation.

6. This dissertation investigates single cross-domain transfer learning, future di-

rection to transfer the common knowledge among multiple domains and tasks.

113

Bibliography

[1] Hua Zuo, Guangquan Zhang, Witold Pedrycz, Vahid Behbood, and Jie Lu.

Fuzzy regression transfer learning in takagi–sugeno fuzzy models. IEEE Trans-

actions on Fuzzy Systems, 25(6):1795–1807, 2017.

[2] Christopher Olah. Understanding lstm networks. 2015.

[3] David N Perkins and Gavriel Salomon. Transfer of learning. international en-

cyclopedia of education. Oxford: Pergamon Press. Retrieved April, 14:2019,

1992.

[4] Sarah Leberman and Lex McDonald. The transfer of learning: Participants’

perspectives of adult education and training. Routledge, 2016.

[5] Anne McKeough, Judy Lee Lupart, and Anthony Marini. Teaching for transfer:

Fostering generalization in learning. Routledge, 2013.

[6] Stephen M Cormier and Joseph D Hagman. Transfer of learning: Contemporary

research and applications. Academic Press, 2014.

[7] Jethro Shell and Simon Coupland. Fuzzy transfer learning: methodology and

application. Information Sciences, 293:59–79, 2015.

[8] Derek Hao Hu and Qiang Yang. Transfer learning for activity recognition via

sensor mapping. In Twenty-second international joint conference on artificial

intelligence, 2011.

114

[9] Jethro Shell, Stephen Vickers, Simon Coupland, and Howell Istance. Towards

dynamic accessibility through soft gaze gesture recognition. In 2012 12th UK

Workshop on Computational Intelligence (UKCI), pages 1–8. IEEE, 2012.

[10] Ariadna Quattoni, Michael Collins, and Trevor Darrell. Transfer learning for

image classification with sparse prototype representations. In 2008 IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[11] Manu Sharma, Michael P Holmes, Juan Carlos Santamaŕıa, Arya Irani,

Charles Lee Isbell Jr, and Ashwin Ram. Transfer learning in real-time strategy

games using hybrid cbr/rl. In IJCAI, volume 7, pages 1041–1046, 2007.

[12] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans-

actions on knowledge and data engineering, 22(10):1345–1359, 2009.

[13] Lisa Torrey, Jude Shavlik, et al. Transfer learning. handbook of research on

machine learning applications and trends: algorithms, methods, and techniques.

Information Science Reference, page 22, 2009.

[14] Rayan Gargees, James M Keller, and Mihail Popescu. Tlpcm: Transfer learning

possibilistic c-means. IEEE Transactions on Fuzzy Systems, 2020.

[15] Rayan Gargees, James M Keller, Mihail Popescu, and Marjorie Skubic. Non-

invasive classification of sleep stages with a hydraulic bed sensor using deep

learning. In International Conference on Smart Homes and Health Telematics,

pages 73–82. Springer, 2019.

[16] Rayan Gargees, James Keller, and Mihail Popescu. Early illness recognition in

older adults using transfer learning. In 2017 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), pages 1012–1016. IEEE, 2017.

115

[17] Santosh Kumar. Transfer learning for dataset shift in classification and cluster-

ing problems. 2017.

[18] Ievgen Redko and Younès Bennani. Kernel alignment for unsupervised trans-

fer learning. In 2016 23rd International Conference on Pattern Recognition

(ICPR), pages 525–530. IEEE, 2016.

[19] Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised learning.

Synthesis lectures on artificial intelligence and machine learning, 3(1):1–130,

2009.

[20] Richard Marcum. Application of deep convolutional neural networks to auto-

matic feature detection in high resolution remote sensing imagery. 2017.

[21] Jacob M Williams. Deep learning and transfer learning in the classification of

eeg signals. 2017.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[23] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[24] George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving deep neural

networks for lvcsr using rectified linear units and dropout. In 2013 IEEE inter-

national conference on acoustics, speech and signal processing, pages 8609–8613.

IEEE, 2013.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

116

[26] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun.

What is the best multi-stage architecture for object recognition? In 2009 IEEE

12th international conference on computer vision, pages 2146–2153. IEEE, 2009.

[27] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: a simple way to prevent neural networks from

overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[28] Shouwei Sun, Yizhang Jiang, and Pengjiang Qian. Transfer learning based

maximum entropy clustering. In 2014 4th IEEE International Conference on

Information Science and Technology, pages 829–832. IEEE, 2014.

[29] Wei Sun and Qian Xu. A transfer learning algorithm for document catego-

rization based on clustering. In 2012 International Conference on Computer

Science and Electronics Engineering, volume 2, pages 528–531. IEEE, 2012.

[30] Quanquan Gu and Jie Zhou. Learning the shared subspace for multi-task clus-

tering and transductive transfer classification. In 2009 Ninth IEEE Interna-

tional Conference on Data Mining, pages 159–168. IEEE, 2009.

[31] Pengjiang Qian, Yizhang Jiang, Zhaohong Deng, Lingzhi Hu, Shouwei Sun, Shi-

tong Wang, and Raymond F Muzic. Cluster prototypes and fuzzy memberships

jointly leveraged cross-domain maximum entropy clustering. IEEE transactions

on cybernetics, 46(1):181–193, 2015.

[32] S Ephina Thendral and C Valliyammai. Clustering based transfer learning in

cross domain recommender system. In 2016 Eighth International Conference

on Advanced Computing (ICoAC), pages 51–54. IEEE, 2017.

[33] Hua Zuo, Jie Lu, Guangquan Zhang, and Feng Liu. Fuzzy transfer learning us-

ing an infinite gaussian mixture model and active learning. IEEE Transactions

on Fuzzy Systems, 27(2):291–303, 2019.

117

[34] Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu. Transferring naive

bayes classifiers for text classification. In AAAI, volume 7, pages 540–545, 2007.

[35] Sinno Jialin Pan, James T Kwok, Qiang Yang, and Jeffrey Junfeng Pan. Adap-

tive localization in a dynamic wifi environment through multi-view learning. In

AAAI, volume 7, pages 1108–1113, 2007.

[36] Eduardo Pinheiro, Octavian Postolache, and Pedro Girão. Theory and develop-

ments in an unobtrusive cardiovascular system representation: ballistocardiog-

raphy. The open biomedical engineering journal, 4:201, 2010.

[37] Omer T Inan, Pierre-Francois Migeotte, Kwang-Suk Park, Mozziyar Etemadi,

Kouhyar Tavakolian, Ramon Casanella, John Zanetti, Jens Tank, Irina Funtova,

G Kim Prisk, et al. Ballistocardiography and seismocardiography: A review of

recent advances. IEEE journal of biomedical and health informatics, 19(4):1414–

1427, 2015.

[38] Octavian A Postolache, Pedro MB Silva Girao, Joaquim Mendes, Eduardo C

Pinheiro, and Gabriela Postolache. Physiological parameters measurement

based on wheelchair embedded sensors and advanced signal processing. IEEE

Transactions on instrumentation and measurement, 59(10):2564–2574, 2010.

[39] Licet Rosales, Marjorie Skubic, David Heise, Michael J Devaney, and Mark

Schaumburg. Heartbeat detection from a hydraulic bed sensor using a clustering

approach. In 2012 Annual International Conference of the IEEE Engineering

in Medicine and Biology Society, pages 2383–2387. IEEE, 2012.

[40] Chang-Sei Kim, Stephanie L Ober, M Sean McMurtry, Barry A Finegan,

Omer T Inan, Ramakrishna Mukkamala, and Jin-Oh Hahn. Ballistocardio-

gram: Mechanism and potential for unobtrusive cardiovascular health monitor-

ing. Scientific reports, 6:31297, 2016.

118

[41] Feng Wang, Yanhui Zou, Mami Tanaka, Tadashi Matsuda, and Seiji Chonan.

Unconstrained cardiorespiratory monitor for premature infants. International

Journal of Applied Electromagnetics and Mechanics, 25(1-4):469–475, 2007.

[42] Xu Wang, Fangfang Jiang, Dan Yang, and Yuan Liao. Estimation of the respi-

ratory component from ballistocardiography signal using adaptive interference

cancellation. In 2011 Chinese Control and Decision Conference (CCDC), pages

571–574. IEEE, 2011.

[43] Arie Oksenberg, Aida Dynia, Khitam Nasser, and Natan Gadoth. Obstructive

sleep apnoea in adults: body postures and weight changes interactions. Journal

of sleep research, 21(4):402–409, 2012.

[44] R Gardner. Normal motor patterns in sleep in man. Advances in sleep research,

2:67–107, 1975.

[45] Mak Adam Daulatzai, Neela Khan, Chandan Karmakar, Ahsan Khandoker, and

Marimuthu Palaniswami. Lateral decubitus posture during sleep: Sub-groups of

obstructive sleep apnea patients—therapeutic value of vertical position in osa.

In Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),

2009 5th International Conference on, pages 181–184. IEEE, 2009.

[46] Meng-Hsi Wu, Emily J Chang, and Tzu-Hsuan Chu. Personalizing a generic

ecg heartbeat classification for arrhythmia detection: A deep learning approach.

In 2018 IEEE Conference on Multimedia Information Processing and Retrieval

(MIPR). IEEE, 2018.

[47] Alex Graves. Supervised sequence labelling. In Supervised sequence labelling

with recurrent neural networks, pages 5–13. Springer, 2012.

119

[48] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473, 2014.

[49] Jen Hong Tan, Yuki Hagiwara, Winnie Pang, Ivy Lim, Shu Lih Oh, Muham-

mad Adam, Ru San Tan, Ming Chen, and U Rajendra Acharya. Application of

stacked convolutional and long short-term memory network for accurate identi-

fication of cad ecg signals. Computers in biology and medicine, 94:19–26, 2018.

[50] James C Bezdek, Robert Ehrlich, and William Full. Fcm: The fuzzy c-means

clustering algorithm. Computers & Geosciences, 10(2-3):191–203, 1984.

[51] Raghuram Krishnapuram and James M Keller. A possibilistic approach to

clustering. IEEE transactions on fuzzy systems, 1(2):98–110, 1993.

[52] Pengjiang Qian, Yizhang Jiang, Zhaohong Deng, Lingzhi Hu, Shouwei Sun, Shi-

tong Wang, and Raymond F Muzic. Cluster prototypes and fuzzy memberships

jointly leveraged cross-domain maximum entropy clustering. IEEE transactions

on cybernetics, 46(1):181–193, 2016.

[53] Inderjit S Dhillon, Subramanyam Mallela, and Dharmendra S Modha.

Information-theoretic co-clustering. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 89–98.

ACM, 2003.

[54] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[55] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learn-

ing using gaussian fields and harmonic functions. In Proceedings of the 20th

International conference on Machine learning (ICML-03), pages 912–919, 2003.

120

[56] Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. IEEE

Transactions on knowledge and data engineering, 22(10):1345–1359, 2010.

[57] Zhaohong Deng, Yizhang Jiang, Fu-Lai Chung, Hisao Ishibuchi, Kup-Sze Choi,

and Shitong Wang. Transfer prototype-based fuzzy clustering. IEEE transac-

tions on fuzzy systems, 24(5):1210–1232, 2015.

[58] Paul A Heidenreich, Justin G Trogdon, Olga A Khavjou, Javed Butler, Kathleen

Dracup, Michael D Ezekowitz, Eric Andrew Finkelstein, Yuling Hong, S Clai-

borne Johnston, Amit Khera, et al. Forecasting the future of cardiovascular

disease in the united states: a policy statement from the american heart asso-

ciation. Circulation, 123(8):933–944, 2011.

[59] Bo Yu Su, Moein Enayati, KC Ho, Marjorie Skubic, Laurel Despins, James

Keller, Mihail Popescu, Giovanna Guidoboni, and Marilyn Rantz. Monitoring

the relative blood pressure using a hydraulic bed sensor system. IEEE Trans-

actions on Biomedical Engineering, 66(3):740–748, 2019.

[60] David Heise, Licet Rosales, Mary Sheahen, Bo-Yu Su, and Marjorie Skubic.

Non-invasive measurement of heartbeat with a hydraulic bed sensor progress,

challenges, and opportunities. In 2013 IEEE International Instrumentation and

Measurement Technology Conference (I2MTC), pages 397–402. IEEE, 2013.

[61] Licet Rosales, Bo Yu Su, Marjorie Skubic, and KC Ho. Heart rate monitoring

using hydraulic bed sensor ballistocardiogram 1. Journal of Ambient Intelli-

gence and Smart Environments, 9(2):193–207, 2017.

[62] Katy Lydon, Bo Yu Su, Licet Rosales, Moein Enayati, KC Ho, Marilyn Rantz,

and Marjorie Skubic. Robust heartbeat detection from in-home ballistocardio-

gram signals of older adults using a bed sensor. In 2015 37th Annual Inter-

121

national Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), pages 7175–7179. IEEE, 2015.

[63] Ayan Acharya, Eduardo R Hruschka, Joydeep Ghosh, and Sreangsu Acharyya.

Transfer learning with cluster ensembles. In Proceedings of the 2011 Interna-

tional Conference on Unsupervised and Transfer Learning workshop-Volume 27,

pages 123–133. JMLR. org, 2011.

[64] Lilyana Mihalkova, Tuyen Huynh, and Raymond J Mooney. Mapping and

revising markov logic networks for transfer learning. In Aaai, volume 7, pages

608–614, 2007.

[65] James MacQueen et al. Some methods for classification and analysis of multi-

variate observations. In Proceedings of the fifth Berkeley symposium on mathe-

matical statistics and probability, volume 1, pages 281–297. Oakland, CA, USA,

1967.

[66] JP Marques De Sa. Pattern recognition: concepts, methods and applications.

Springer Science & Business Media, 2012.

[67] Raghuram Krishnapuram and James M Keller. The possibilistic c-means al-

gorithm: insights and recommendations. IEEE transactions on Fuzzy Systems,

4(3):385–393, 1996.

[68] Patrick M Murphy. Uci repository of machine learning databases.

ftp:/pub/machine-learning-databaseonics. uci. edu, 1994.

[69] Thierry Denoeux. A neural network classifier based on dempster-shafer theory.

IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and

Humans, 30(2):131–150, 2000.

[70] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

122

[71] Fatih Kayaalp, Muhammet Sinan Basarslan, and Kemal Polat. A hybrid clas-

sification example in describing chronic kidney disease. In 2018 Electric Elec-

tronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT), pages

1–4. IEEE, 2018.

[72] Yedilkhan Amirgaliyev, Shahriar Shamiluulu, and Azamat Serek. Analysis of

chronic kidney disease dataset by applying machine learning methods. In 2018

IEEE 12th International Conference on Application of Information and Com-

munication Technologies (AICT), pages 1–4. IEEE, 2018.

[73] Abdullah Al Imran, Md Nur Amin, and Fatema Tuj Johora. Classification

of chronic kidney disease using logistic regression, feedforward neural network

and wide & deep learning. In 2018 International Conference on Innovation in

Engineering and Technology (ICIET), pages 1–6. IEEE, 2018.

[74] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.

Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[75] Endang Purnama Giri, Aniati Murni Arymurthy, Mohammad Ivan Fanany, and

Sastra Kusuma Wijaya. Sleep stages classification using shallow classifiers. In

2015 International Conference on Advanced Computer Science and Information

Systems (ICACSIS), pages 297–301. IEEE, 2015.

[76] Ibrahim Sadek, Jit Biswas, and Bessam Abdulrazak. Ballistocardiogram signal

processing: a review. Health information science and systems, 7(1):10, 2019.

[77] M Dursun, S Gunes, S Ozsen, and S Yosunkaya. Comparison of artificial im-

mune clustering with fuzzy c-means clustering in the sleep stage classification

problem. In 2012 International Symposium on Innovations in Intelligent Sys-

tems and Applications, pages 1–4. IEEE, 2012.

123

[78] Jarno Tuominen, Karoliina Peltola, Tarja Saaresranta, and Katja Valli. Sleep

parameter assessment accuracy of a consumer home sleep monitoring ballisto-

cardiograph beddit sleep tracker: A validation study. Journal of Clinical Sleep

Medicine, 15(03):483–487, 2019.

[79] Albert Vilamala, Kristoffer H Madsen, and Lars K Hansen. Deep convolutional

neural networks for interpretable analysis of eeg sleep stage scoring. In 2017

IEEE 27th International Workshop on Machine Learning for Signal Processing

(MLSP), pages 1–6. IEEE, 2017.

[80] Tara N Sainath, Oriol Vinyals, Andrew Senior, and Haşim Sak. Convolutional,

long short-term memory, fully connected deep neural networks. In Acoustics,

Speech and Signal Processing (ICASSP), 2015 IEEE International Conference

on, pages 4580–4584. IEEE, 2015.

[81] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory

recurrent neural network architectures for large scale acoustic modeling. In Fif-

teenth annual conference of the international speech communication association,

2014.

[82] Jasmin Kevric and Abdulhamit Subasi. Comparison of signal decomposition

methods in classification of eeg signals for motor-imagery bci system. Biomedical

Signal Processing and Control, 31:398–406, 2017.

[83] Sabine Schmidt, Georg Eich, Sylviane Hanquinet, Heinz Tschäppeler, Peter

Waibel, and François Gudinchet. Extra-osseous involvement of langerhans’ cell

histiocytosis in children. Pediatric radiology, 34(4):313–321, 2004.

[84] Richard B Berry, Rita Brooks, Charlene E Gamaldo, Susan M Harding, Carole L

Marcus, Bradley V Vaughn, et al. The aasm manual for the scoring of sleep

124

and associated events. Rules, Terminology and Technical Specifications, Darien,

Illinois, American Academy of Sleep Medicine, 176, 2012.

[85] Jialei Yang, James M Keller, Mihail Popescu, and Marjorie Skubic. Sleep stage

recognition using respiration signal. In 2016 38th Annual International Confer-

ence of the IEEE Engineering in Medicine and Biology Society (EMBC), pages

2843–2846. IEEE, 2016.

[86] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In Proceedings of the

32nd International Conference on Machine Learning, volume 37, pages 448–

456, 2015.

[87] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[88] Moein Enayati, Marjorie Skubic, James M Keller, Mihail Popescu, and Nasi-

beh Zanjirani Farahani. Sleep posture classification using bed sensor data and

neural networks. In 2018 40th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), pages 461–465. IEEE,

2018.

[89] Ruhan Yi, Moein Enayati, James Keller, Mihail Popescu, and Marjorie Sku-

bic. Non-invasive in-home sleep stage classification using a ballistocardiogra-

phy bed sensor. In 2019 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM). IEEE, 2019.

[90] Rifat Shahriyar, Md Faizul Bari, Gourab Kundu, Sheikh Iqbal Ahamed, and

Md Mostofa Akbar. Intelligent mobile health monitoring system (imhms). In

International Conference on Electronic Healthcare, pages 5–12. Springer, 2009.

125

[91] Jim Rowan and Elizabeth D Mynatt. Digital family portrait field trial: Support

for aging in place. In Proceedings of the SIGCHI conference on Human factors

in computing systems, pages 521–530, 2005.

[92] Marilyn J Rantz, Karen Dorman Marek, Myra A Aud, Rebecca A Johnson,

Donna Otto, and Rose Porter. Tigerplace: A new future for older adults.

Journal of nursing care quality, 20(1):1–4, 2005.

[93] Marjorie Skubic, Gregory Alexander, Mihail Popescu, Marilyn Rantz, and

James Keller. A smart home application to eldercare: Current status and

lessons learned. Technology and Health Care, 17(3):183–201, 2009.

[94] M Popescu and A Mahnot. Early illness recognition using in-home monitoring

sensors and multiple instance learning. Methods of information in medicine,

51(04):359–367, 2012.

[95] Vladimir Vapnik. The nature of statistical learning theory. Springer science &

business media, 2013.

[96] David Martinus Johannes Tax. One-class classification: Concept learning in

the absence of counter-examples. 2002.

[97] Kyle D Feuz and Diane J Cook. Transfer learning across feature-rich heteroge-

neous feature spaces via feature-space remapping (fsr). ACM Transactions on

Intelligent Systems and Technology (TIST), 6(1):1–27, 2015.

[98] Akshay Jain, James M Keller, and James C Bezdek. Quantitative and qual-

itative comparison of periodic sensor data. In 2016 IEEE-embs international

conference on biomedical and health informatics (bhi), pages 37–40. IEEE, 2016.

126

[99] Botond Bocsi, Lehel Csató, and Jan Peters. Alignment-based transfer learning

for robot models. In The 2013 international joint conference on neural networks

(IJCNN), pages 1–7. IEEE, 2013.

[100] Jun Yang, Rong Yan, and Alexander G Hauptmann. Adapting svm classifiers

to data with shifted distributions. In Seventh IEEE International Conference

on Data Mining Workshops (ICDMW 2007), pages 69–76. IEEE, 2007.

[101] Tatiana Tommasi and Barbara Caputo. The more you know, the less you learn:

from knowledge transfer to one-shot learning of object categories. In BMVC,

number CONF, 2009.

[102] Yusuf Aytar and Andrew Zisserman. Tabula rasa: Model transfer for object

category detection. In 2011 international conference on computer vision, pages

2252–2259. IEEE, 2011.

[103] David MJ Tax and Robert PW Duin. Support vector domain description.

Pattern recognition letters, 20(11-13):1191–1199, 1999.

127

VITA

Rayan Gargees received a master’s degree in Electrical and Computer Engineering

from the University of Missouri, USA, in 2018. Additionally, he has served as a

graduate teaching assistant at the University of Missouri. The results of his works are

published in top journals such as IEEE Transaction on Fuzzy Systems. Additionally,

he has attended and presented his papers at scientific conferences, such as the IEEE

BIBM, 2017 and ICOST 2019. Besides, he authored various papers that have been

published in other avenues. He also serves as a reviewer in leading journals and

conferences such as the springer cluster computing journal. His current research

interests include machine learning, computational intelligence, transfer learning, fuzzy

systems, image processing, computer vision, bioinformatics, sensor networks, and

deep learning.

128

