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ABSTRACT

Traditional machine learning and data mining have made tremendous progress
in many knowledge-based areas, such as clustering, classification, and regression.
However, the primary assumption in all of these areas is that the training and testing
data should be in the same domain and have the same distribution. This assumption is
difficult to achieve in real-world applications due to the limited availability of labeled
data. Associated data in different domains can be used to expand the availability of
prior knowledge about future target data. In recent years, transfer learning has been
used to address such cross-domain learning problems by using information from data
in a related domain and transferring that data to the target task.

The transfer learning methodology is utilized in this work with unsupervised and
supervised learning methods. For unsupervised learning, a novel transfer-learning
possibilistic c-means (TLPCM) algorithm is proposed to handle the PCM clustering
problem in a domain that has insufficient data. Moreover, TLPCM overcomes the
problem of differing numbers of clusters between the source and target domains.
The proposed algorithm employs the historical cluster centers of the source data
as a reference to guide the clustering of the target data. The experimental studies
presented here were thoroughly evaluated, and they demonstrate the advantages of
TLPCM in both synthetic and real-world transfer datasets.

For supervised learning, a transfer learning (TL) technique is used to pre-train a
CNN model on posture data and then fine-tune it on the sleep stage data. We used a
ballistocardiography (BCG) bed sensor to collect both posture and sleep stage data
to provide a non-invasive, in-home monitoring system that tracks changes in the sub-
jects” health over time. The quality of sleep has a significant impact on health and
life. This study adopts a hierarchical and none-hierarchical classification structure

to develop an automatic sleep stage classification system using ballistocardiogram

XV



(BCG) signals. A leave-one-subject-out cross-validation (LOSO-CV) procedure is
used for testing classification performance in most of the experiments. Convolutional
Neural Networks (CNNs), Long Short-Term Memory (LSTM), and Deep Neural Net-
works DNNs are complementary in their modeling capabilities, while CNNs have the
advantage of reducing frequency variations, LSTMs are good at temporal modeling.
Polysomnography (PSG) data from a sleep lab was used as the ground truth for
sleep stages, with the emphasis on three sleep stages, specifically, awake, rapid eye
movement (REM), and non-REM sleep (NREM).

Moreover, a transfer learning approach is employed with supervised learning to
address the cross-resident training problem to predict early illness. We validate our
method by conducting a retrospective study on three residents from TigerPlace, a
retirement community in Columbia, MO, where apartments are fitted with wireless
networks of motion and bed sensors. Predicting the early signs of illness in older
adults by using a continuous, unobtrusive nursing home monitoring system has been
shown to increase the quality of life and decrease care costs. Illness prediction is
based on sensor data and uses algorithms such as support vector machine (SVM)
and k-nearest neighbors (kNN). One of the most significant challenges related to the
development of prediction algorithms for sensor networks is the use of knowledge from
previous residents to predict new ones’ behaviors. Each day, the presence or absence of
illness was manually evaluated using nursing visit reports from a homegrown electronic
medical record (EMR) system. In this work, the transfer learning SVM approach
outperformed three other methods, i.e., regular SVM, one-class SVM, and one-class

kNN.
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Chapter 1

Introduction

1.1 Motivation

There is a plethora of data in many areas such as health, images, and industry; in
fact, there is an overabundance of data in these fields. However, the most significant
issues in the field of machine learning are the limitation of the labeled data sets
and heterogeneous data sources. In traditional machine learning, high accuracy and
reliability can be obtained if particular assumptions are satisfied. First, the training
and testing data should be independent and identically distributed. Second, enough
labels data are available to learn a good classification model. Nevertheless, these two
assumptions may not always hold in real-world applications due to two facts: First,
the new test data coming from fast-evolving information sources usually generate a
distribution gap, which causes the unavailability of existing labeled data. Second, in
most cases, it is tough and expensive to obtain the labeled data.

To tackle these two problems, transfer learning has become an important and
challenging research topic in recent years. Transfer learning (TL) is a new machine

learning method that applies the knowledge from related but different domains to



target domains. It relaxes the two underlying assumptions which mentioned earlier
in traditional machine learning and aims to overcome the problems when there are
few or even not any labeled data in target domains. Related data in different domains
can be used to expand the availability of prior knowledge about future target data.
In the past few years, transfer learning has been utilized to address such cross-domain
learning difficulties by using information from data in the related area and transfer
that data to the target task. This can be achieved by enhancing the learning in a
new task through transfer the knowledge from a similar but not the same task that
has already been learned. Thus, the performance of a transfer learning method can
be appropriately examined when represented as a function of several target examples

employed in the learning process.

1.2 Transfer Learning

Transferring learning is a humanistic characteristic that has been well studied across
education, philosophy, and psychology [3]. In education, Transfer Learning (TL) or
the transfer of learning is described as “prior-learned knowledge or skills that affect
the way in which new knowledge or skills are learned and performed. The transfer is
deemed to be positive if acquisition and performance are facilitated, and negative if
they are impeded” [4], [5], [6].

The aim of transfer learning is similar, when utilized to a Computational Intelligence
(CI) domain. Thus, transfer learning aims to improve learning in a target domain by
acquiring information from a different but related source domain. Transfer learning
offers the capability to use earlier acquired knowledge to enhance learning in a re-
lated area. Transfer learning can be utilized in varying domains. For instance, a web
documentation task has been undertaken to manually label web site documents into

defined categories. As a new website is created, the data features and data distribu-



tions are different from those contained within the old site. There is a lack of training
data to categorize the new pages. Transfer learning can transfer the classification
knowledge to the new domain.

Information availability creates different interpretations of problems. Hence, knowl-
edge is comprised of sourced information and the understanding that is consequently
determined [7]. However, a lack of information diminishes the ability to experience a
problem. In addition, variations in data and understanding about a problem domain
can be interpreted as being included within a knowledge gap. Transfer learning ex-
tends the ability to apply earlier acquired knowledge to areas where not much or no
information is available, improving the learning. Transfer learning has been applied
to varying domains: activity recognition [8], eye tracking [9], image classification [10],
and gaming [11]. For example, transfer learning is used in a range of high-performing
models that have been developed for image classification and demonstrated on the
annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC). A major mo-
tivation behind the supervised and unsupervised transfer learning framework comes

from environments that lack any prior knowledge in the form of labeled target data.

1.2.1 Definition and Foundation

Transfer learning comprises two principal elements, a Domain, and a Task. The
domain can be identified as consisting of two components [12]: a feature space x and
marginal probability distribution P(z) where X = {z;,...,2,} € X. A task consists
of a label space Y and a predictive function f(.). The predictive function can be
learned from training data, which is constructed as data pairs z;,y; where z; € X
and y; € Y. The source domain can be identified as Ds = {(Xs1, Y1), - -, (Xsn, Yan) }
where x, € X, is the data point and y, € Y is the corresponding label. According
to these definitions, transfer learning can be defined as: Given source domain D, and

learning task T, a target domain D; and learning task 7T}, transfer learning aims to



improve the learning of a new task 7; through the transfer of the knowledge from

related task T [13] by the learning of the predictive function in the target domain

Dy, where Dy # D, or Ty # T, [12] [7].

There are three main types of transfer learning, a brief definition of each type is

given below:

Source labels

. GX

[

Target labels

Large amount 4I,
of data
Source Model Transfer learning
knowledge Target Model

Source Data

‘ E ’ =

Target Data

Small amount
of data

Figure 1.1: Overview of the transfer learning Methodology.

1. Inductive Transfer Learning: The source task 7} is different from the target

task T; as T's # T; in this kind of transfer learning. In the inductive transfer

learning, the tasks Domain D and Task T' differ either in terms of predictive

function (fs # f), or label spaces (Y; # Y}).

2. Transductive Transfer Learning: The source and the target tasks, in trans-

ductive transfer learning which is also known as Domain Adaptation(DA), re-

main the same T, = T;. However, the source domain and the target domains are

different Dy # D;. This specific transfer learning case can further be classified

into two settings, one where the feature space between the source and the target

tasks are different X, # X; is known as Translated Learning, and the other is

where the data distribution is different Ps(X) # P.(X), known as Cross-domain

Transfer.



3. Unsupervised Transfer Learning: Unsupervised Transfer learning is simi-
lar to the other forms of transfer learning, which looks to improve the target
domain’s predictive function by extracting information from the source to assist
the target. Taking a similar stance to standard unsupervised learning, the data
within neither the target or source domain contains labels. for a given source
domain D, and source task T}, a target domain D, and a target learning task 73,
the idea is to assist in improving the learning of the target predictive function
f(.) in the target domain D; employing the knowledge in source domain Dy and
source task Ty, where T, # T; and Dy # D,. The unsupervised transfer learning
case arises where clustering the cross-domain data instances, which can be used
to cluster a small collection of unlabeled data in the target domain with the

guidance of a large amount of unlabeled data in the source domain.

1.3 Major Contribution

The contributions of this dissertation can be summarized as follows:

e A novel clustering framework is Proposed to learn target tasks from limited
unlabeled target data and related; differing source labeled data. The publication

of this contribution can be seen in [14].

— Works in applications where data are limited and insufficient for useful
clustering or are polluted by unknown noise or outliers such as the COVID-
19 dataset where it is tough to obtain sizeable data and experiments cannot

be performed.

e A novel deep learning architecture is Proposed to classify sleep stages and sleep
posture based on CNN and LSTM to benefit transfer learning. The publication

of this contribution can be seen in [15].



— It helps people to have a repetitive and regular sleep cycle for good sleep
which results in more persistent morphological templates in longitudinal

studies.

— It helps nurses in reducing changes in pressure ulcers in bed-bound pa-

tients.

e Employ a transfer learning SVM approach to address the cross-resident training
problem and compare it with the other three methods, regular SVM, one-class
SVM, and one class kNN. The publication of this contribution can be seen

in [16].

— It helps predict the early signs of illness in older adults by using a contin-
uous, unobtrusive nursing home monitoring system to increase the quality

of life and decrease the cost of care.

1.4 Dissertation Organization

The subsequent chapters of the dissertation are organized as follows:

The background and related work are introduced in Chapter 2. Its purpose is to
provide a general context for the manuscripts’ work, which comprise the next chapters.
Each manuscript includes a more thorough introduction and review of the state-of-
the-art. Chapter 3 details the implementation of the proposed Transfer Learning
Possibilistic C-Means (TLPCM) framework. This includes the experimental studies
which were thoroughly evaluated. Moreover, the advantages of TLPCM in both
synthetic and real-world transfer datasets are demonstrated. This chapter’s main
content is from the following publication: ”TLPCM: Transfer Learning Possibilistic
C-Means” [14]. Chapter 4 reports a new deep learning-based hierarchical classification

method for automatic sleep stage classification based on CNN and LSTM with the



help of transfer learning. The main content of this chapter is from the following
publication: ”Non-invasive Classification of Sleep Stages with a Hydraulic Bed Sensor
Using Deep Learning” [15]. Chapter 5, explores the practicability of using transfer
learning SVM for early illness recognition based on sensor data by using training
data from another resident. The main content of this chapter is from the following
publication: ”Early Illness Recognition in Older Adults Using Transfer Learning” [16].
Finally, Chapter 6 provides some summary remarks regarding the work described in

this dissertation and a discussion of possible future work.



Chapter 2

Background

This chapter is divided into two different sections. Section 2.1 will cover the machine

learning and Neural network background.

2.1 Machine learning and Neural network

Machine learning (ML) is a sub-field of computer engineering that develops auto-
matically through experience. It is also considered a subset of artificial intelligence.
The machine learning algorithm can be interpreted as a method to estimate a given
probability distribution. A discriminative model learns the conditional probability
distribution p(y|x), i.e., given an input, what is the probability that the label is y. A
generative model learns the joint probability distribution p(z,y) where x is the input
data, and y is the labels for z. Based on the available data, we can divide the ma-
chine learning algorithms into precisely three types of learning models. As their name
indicates, supervised learning algorithms require labeled training data, and unsuper-
vised learning algorithms do not require labeled training data, while semi-supervised

algorithms require a combination of both labeled and unlabeled training data.



e Supervised machine learning: Supervised learning describes a class of sys-
tems and algorithms that determine a predictive model using data samples with
known outcomes. The model is learned by training across an appropriate learn-
ing algorithm such as neural networks or random forests that naturally work
through some optimization routine to minimize a loss or error function [17].In
the supervised machine learning algorithm, if target data stated in some class,
then the problem is called the classification problem; however, if the target data

are continuous, then the problem is called the regression problem.

e Unsupervised machine learning: Unsupervised learning is a machine learn-
ing algorithm used to obtain inferences from datasets comprising input data
without pre-existing labels and with a minimum of human supervision. The
most typical unsupervised learning method is cluster analysis, which is used for
experimental data analysis to discover hidden patterns or categories in data [18].
Clustering is the method to divide a collection of data samples into individual
groups, called clusters. The clustering idea is to utilize the clustering algorithm
on the set of data samples without building a model for the algorithm using
training data. The algorithm attempted to group the data samples into clusters

on pre-existing associations in the data instances itself.

e Semi-supervised machine learning: Semi-supervised learning is a type of
machine learning algorithms that combines a small amount of labeled data with
many unlabeled data during training. Hence, it is a setup in which among the
training data samples available, some of the samples are not labeled, and the
learning model uses additional unlabeled data samples to describe the shape of
the underlying data distribution for the new samples in an effective way [19].
The semi-supervised learning algorithm’s goal is to understand how labeled and

unlabeled samples can enhance learning behavior.



2.1.1 Deep Learning

Deep learning is a sub-field of machine learning which has evolved from the traditional
approaches to artificial neural networks. Artificial neural networks are computational
systems initially inspired by the human brain. They comprise many computational
units, called neurons, which perform an essential operation and pass the informa-
tion to further neurons. Besides, recent deep learning improvements have surpassed
expectations of what many people thought was potentially in machine learning and
pattern recognition [20,21].

Fields such as speech recognition, computer vision, and natural language processing
have seen a significant progress forward toward solving problems once thought diffi-
cult. For example, in the computer vision field, a computer can perform better than
a human on the object recognition, and in the field of speech recognition and natural
language processing Siri and Cortana are synthetic systems that sound reasonably
lifelike.

Deep Learning is a set of methods that are a natural progression of traditional neural

network techniques. These include:

e New types of layers: The most significant difference between traditional neural
networks and deep learning is adopting new layers in the network. Traditional
neural network research focused on fully connected layers, in which every neu-
ron in one layer is connected to every neuron in the next. While many of these
layer types existed in the past, they usually could not significantly affect var-
ious issues in training. Convolutional neural networks learn filter banks that
are convolved with the original data. The filters can also be represented as a
fully connected layer where the edges of the edges are tied together to replicate
the convolution operation. This weight sharing structure allows for fewer pa-
rameters than having each weight be unique and directly accounts for structure

in the data. This procedure creates a network with only forward connections,
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letting backpropagation work as expected at the cost of limiting the impact of
the recurrent connections. Because of this, only a few architectures have seen
widespread use and success in classification tasks. Recurrent neural networks
(RNN) are a type of neural network robust for modeling sequence data such
as time series or natural language. Diagrammatically, an RNN layer uses a for
loop to iterate over the time steps of a sequence while maintaining an internal

state that encodes information about the time steps it has seen so far.
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Figure 2.1: Architecture of an LSTM network [2].

Hochreiter and Schmidhuber [22] introduced Long Short-Term Memory net-
works in 1997, usually just called “LSTMs,” which is a unique kind of RNN,
capable of learning long-term dependencies. The authors were refined and pop-
ularized by many people in the following work. They work exceptionally well
on a sizeable range of problems and are now widely used. LSTMs are explicitly
designed to prevent the long-term dependency problem. Remembering infor-
mation for long periods is practically their default behavior [21]. All recurrent
neural networks have the form of a chain of repeating modules of the neural
network. In standard RNNs, this repeating module will have a straightforward
structure, such as a single tanh layer. The architecture of an LSTM network is
shown in Fig. 2.1. LSTMs are made to function specifically with time series or

sequential data. Each time its own LSTM unit processes a point in the data,
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the results are passed to the next layer and the next time point within the same
layer. Several gates for each LSTM unit control the flow of information. The
gate is a combination of a sigmoidal activation unit and pointwise multiplica-
tion. These gates control the amount of information that flows from a one-time
point to the following one. The amount of information is the output of each

unit, and other LSTM unit functions.

Stochastic Gradient Descent (SGD) and related algorithms: Gradient descent
23] is a first-order iterative method for optimizing an objective function with
suitable smoothness properties. In neural networks, it is used in combining with
backpropagation to update the weights in the network. It is formally identified

with the update rule:

7]{; = ?k—l — an(?k_l) (21)

where:

— 74 is the current point in the space,

— 7}y is the previous point in the space,

— 7 is the learning rate,

- Vf (?k_l) is the gradient of the value of the function being optimized at

the previous point.

SGD is a derivative of traditional gradient descent, differing in that the error
function is calculated using only a few samples selected randomly instead of
the whole data set for each iteration [21]. This is both easier to use and more
efficient for training datasets that do not fit in memory. Moreover, adding ran-

domness to the optimization can avoiding local minima. In Gradient Descent,

12



a term called “batch” denotes the total number of samples from a dataset used
for calculating the gradient for each iteration. In standard Gradient Descent
optimization, like Batch Gradient Descent, the batch is taken to be the whole
dataset. Although using the whole dataset is useful for getting to the min-
ima less noisy and randomly, but the problem arises when our datasets get
big. The addition of momentum terms, which biases the gradient in the di-
rection of recently calculated gradients, significantly improved the ability to
train deep models by further increasing convergence speed [24]. Newer, SGD
derived algorithms, such as Adaptive Moment Estimation (ADAM), calculate
per parameter adaptive learning rates, allowing even more efficient training at

memory cost [25].

New Activation Functions: One of the most extensive and most persistent chal-
lenges in developing neural networks is the vanishing gradient problem. The
error is essentially multiplied with the values between 0 and 1 repeatedly, as
the gradient is propagated back along with the network. This causes the er-
ror, and hence, the update trends toward 0 exponentially, resulting in little
to no ability to update the first layers in a multilayer network. Sigmoid and
Tanh activation functions, which were historically the most prominently activa-
tion function, are particularly susceptible to this problem due to having a first
derivative that rapidly tends toward zero as a neuron saturates. The sigmoid

function is defined as: The Rectified Linear Unit (ReLU), which the

most generally used activation function in deep learning models. The function
returns 0 if it receives any negative input, but for any positive value x it returns
that value back. Hence, it can be written as f(z) = max(0,x). and other mod-

ern activation functions have larger gradients and saturate less quickly, thus

avoiding the vanishing gradient problem more effectively [26].
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Figure 2.2: Activation functions; (a) Sigmoid (logistic) function (b) Tanh function
and (c¢) ReLU function.

e Dropout and other regqularizers: Large networks typically require large volumes
of training data, and there may not be enough data available to train different
networks on different subsets of the data. In other words, deep neural nets with
a large number of parameters are potent machine learning systems. Moreover,
training many architectures is difficult because finding optimal hyperparameters
for each architecture is a daunting task, and training each extensive network
requires much computation. Dropout is a technique that addresses both these
concerns. The term ”dropout” describes dropping out units in a neural network

27].

Dropout is a technique in which a random set of neurons from each layer is
omitted from both updating and classification during a training pass through
the data. This successfully allows a single model to act as an ensemble, a
group of classifiers that act in union to produce a classification. Additionally,
since different sets of neurons will be participating from one pass to the next,
dropout avoids training data’s direct memorization. In other words, it prevents
overfitting and provides a method of approximately combining exponentially
many different neural network architectures efficiently. Overfitting is a severe

problem in such networks. It is the phenomenon of learning patterns that
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happen to be present in the training data by random chance and not present in
general, is a constant threat in deep learning due to the immense numbers of

parameters involved.

2.2 Related Work

Various papers have recently developed transfer learning frameworks tightly coupled
with supervised and unsupervised transfer learning. This section gives a brief review

of the associated work in these fields.

2.2.1 Unsupervised Transfer Learning

Hua Zuo et al. [1] proposed a fuzzy-regression transfer-learning method based on fuzzy
rules to manage the problem of approximating the value of the target for regression.
A Takagi-Sugeno fuzzy-regression model was created to transfer knowledge from a
source domain to a target domain. Experimental results confirmed that the proposed
fuzzy-regression transfer-learning method significantly improved the performance of
existing models when solving regression problems in the target domain. The methods
of [1] solve regression problems in the target domain when only a small amount of
data is available.

In [28], a novel clustering framework was designed, and the transfer learning-
based maximum-entropy clustering (TL MEC) algorithm was proposed. Historical
cluster centers are employed in the TL MEC algorithm and in the membership of
past data, which are used as references to guide the clustering of the current data,
which distinctly improves its performance in two areas: clustering effectiveness and
privacy protection.

In [29], a transfer-learning algorithm for document analysis based on the density-

based spatial clustering of applications with noise (DBSCAN) algorithm was devel-
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oped. Documents are classified into different classes using weight-adjustment strate-
gies. DBSCAN is used to extract feature clusters; then, the dataset is clustered using
KNN. The proposed algorithm showed a better performance in the experimental re-
sults.

The authors in [30] proposed a novel multitask clustering paradigm that performs
multiple related clustering tasks together and employs the relationships among these
tasks to improve clustering performance. The authors’ goal in [30] was to learn the
subspace shared by all clustering tasks to enable the transfer of information from
different tasks to other tasks. This multitask clustering method was extended to the
transductive transfer classification.

P. Qian et al. [31], inspired by transfer learning, devised a cluster prototype and
fuzzy membership jointly leveraged (CPM-JL) framework for classic cross-domain
maximum entropy clustering (CDMEC) to propose a corresponding algorithm, CPM-
JL-CDMEC. Moreover, the authors proposed the dedicated validity index, i.e., a
fuzzy membership-based cross-domain difference measurement (FM-CDDM), to aid
self-adaptive parameter setting in CPM-JL-CDMEC. The new algorithm shows ac-
ceptable clustering effectiveness and robustness in the experimental results.

A clustering-based approach was developed by Thendral et al. [32]to overcome the
problem of data sparsity by using knowledge from a denser associated domain. The
authors focus on finding a reference in a sparsely rated domain by using the knowledge
from a highly rated domain with the same users and then rating the items in both
domains. The results of [32] proved that clustering is a transfer learning technique
that can be used to mitigate the cold-start and sparsity problems in recommended
systems.

Hua Zuo et al. [33] proposed an infinite Gaussian mixture model (IGMM) with
active learning to improve the performance of the model. The authors used the

IGMM to identify the source and target domains’ data structure, thereby providing
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a promising solution to the domain selection problem. In addition, [33] exploited the
interactive query in active learning to correct imbalances in the knowledge and thus
generalized the learning model. The idea of active learning in [33] leads to an increase
in the number of labeled data in the target domain by actively labeling the target

domain’s most informative data.

2.2.2 Swupervised Transfer Learning

Wenyuan Dai et al., [34] addressed the issue of classifying text documents across dif-
ferent distributions utilizing transfer learning. The labeled training data are available,
but the problem is that this data has a different distribution from the unlabeled test
data. The authors developed a transfer-learning algorithm based on the Naive Bayes
classifiers, called Naive Bayes Transfer Classifier (NBTC). Their solution is first to
estimate the initial probabilities under a distribution D; of one-labeled data set and
then use an EM algorithm to revise the model for a different distribution D,, of the
unlabeled test data.

Sinno Jialin Pan etal. [35] presented a location-estimation method based on Man-
ifold co-Regularization, which is a machine learning technique for building a mapping
function between data using transfer learning. The authors described LeManCoR,
a system for adjusting the mapping function between the signal space and physical
location space on different periods based on Manifold Co-Regularization. Moreover,
they showed that LeManCoR could effectively transfer the knowledge between two
time periods without requiring an excessively new calibration effort.

In recent years, interest in utilizing BCG has increased.This recovery is funda-
mentally made possible by the ongoing development of piezoelectric sensors, signal
processing [36—-38], and new technology to ensure noninvasive long-term vital signs
monitoring. Rosales etal. [39] enhanced system abilities to capture a heartbeat signal

from four subjects using a new hydraulic transducer configuration. [39] also presented
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a new approach for detecting the accuracy of heartbeats from ballistocardiogram
(BCG) signals by extracting three features based on the peak-to-valley amplitude
differences in the BCG signals and then combining the fuzzy C means clustering and
k-means approaches.

In [40] researchers examined the mechanisms for BCG waveforms’ genesis and
proved their proposed model capable of assisting during surgery. The authors also
presented an algorithm to detect individual heart beats and beat-to-beat interval
lengths in BCG using healthy subjects. Wang etal. [41] proposed a new technique
for extracting respiratory signals from ballistocardiography. They also developed
a structure to detect ballistocardiography signals without the subjects’ awareness.
Besides, [42]developed an adaptive interface cancellation algorithm to derive the res-
piration component, attenuating the uncorrelated noise, and improving the shared
information. This method delivers an accurate means to monitor respiration compo-
nents without the subjects’ awareness.

In [43], the authors found that positional patients having most of their breathing
abnormalities in the supine posture and who became non-positional patients had a
significant gain in weight and a significant increase in the apnoea-hypopnoea index,
mainly in lateral apnoea—hypopnoea index. On the contrary, non-positional patients
who became positional patients had a significant decrease in weight and showed a
significant improvement in the apnoea-hypopnoea index, again mainly in the lateral
apnoea—hypopnoea index. Gardner et al. [44], have been shown that body movements,
a prominent behavioral aspect of sleep, impressively changes with age.

Daulatzai et al. [45], recorded the number of apnea and hypopnea in the supine
position and in the lateral position of sleep. The authors evaluated the number of
apnea and hypopnea in responders and non-responders. They found that avoidance
of sleep in the supine (horizontal) position positively influences on the frequency and

severity of obstructive sleep apnea. OSA patients are “Responders” when they re-
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spond to positional therapeutic measure, while those in whom sleeping vertically does
not decrease apnea hypopnea index (AHI) and is referred to as “Non- Responders.”

In [46] proposed a model that achieved the state-of-the-art performance for ECG
heartbeat arrhythmia detection on the commonly used benchmark dataset from the
MIT-BIH Arrhythmia Database. We then utilize our model in an active learning
process to perform patientadaptive heartbeat classification tasks on the non-wearable
ECG dataset from the MIT-BIH Arrhythmia Database and the wearable ECG dataset
from the DeepQ Arrhythmia Database.

Long short-term memory recurrent neural networks improve over the general re-
current neural networks, which possess a vanishing gradient problem. As stated in
Hochreiter etal. [22], LSTM RNNs address the vanishing gradient problem commonly
found in ordinary recurrent neural networks by incorporating gating functions into
their state dynamics. At each time step, an LSTM maintains a hidden vector h
and a memory vector m responsible for controlling state updates and outputs. More

concretely, Graves etal. [47] define the computation at time step t as follows :

gu = O'(Wuht_]_ + I”wt)
¢ = o(WFhy_y + I'x,)
go = O'(Woht_]_ + Ioaﬁt)
(2.2)
g = tanh(W°hy_q + I°xy)
mi= g5 ® my_1+g*0g°

hy = tanh(g°® ® my)

where o is the logistic sigmoid function, ® represents elementwise multiplica-
tion, W, W7, W°, Ware recurrent weight matrices and I, I, I°, I¢are projec-

tion matrices. While LSTMs possess the ability to learn temporal dependencies in
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sequences, they have difficulty with long term dependencies in long sequences. The
attention mechanism proposed by Bahdanau etal. [48] can help the LSTM RNN learn
these dependencies.

In [49], the authors implemented a long short-term memory (LSTM) network with
a convolutional neural network (CNN) to automatically diagnose Coronary artery
disease CAD ECG signals accurately. The system has the potential to be deployed in
clinical settings to assist cardiologists in making an objective and reliable diagnosis

of ECG signals.
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Chapter 3

TLPCM: a Transfer-Learning
Possibilistic C-Means Algorithm

3.1 Introduction

Cluster analysis has been widely used in many fields, such as image segmentation,
data mining, and unsupervised pattern recognition, as an unsupervised data pro-
cessing method. Many methods based on different concepts have been proposed for
solving these problems. The most widely used soft clustering algorithm is fuzzy c-
means (FCM) [50]. Nevertheless, FCM is sensitive to noise and outliers because of
its probabilistic constraint. Krishnapuram and Keller [51] proposed a concept of typ-
icality or possibility. Typicality values are the only constraint in this approach, and
these values must lie in the interval [0, 1]. The resulting algorithm is known as the
possibilistic c-means (PCM) algorithm. Furthermore, it has been referred to as a
mode-seeking algorithm because good clusters (dense regions) can be shaped with
a proper estimation of the scale parameters. PCM can cluster data even with an
unknown number of clusters. Traditional clustering approaches, such as k-means and

FCM, usually work well in an ideal condition where the data are sufficient and pure.

21



However, noise and interference data are omnipresent in the real world [52].

Thus, two main problems must be addressed when working with datasets. First,
the data capacity may be strictly limited for specific reasons, such as those found in
biomedical datasets or a lack of accumulated data, especially in some emerging fields.
Second, too much noise can be a problem in the original data. Several advanced
cluster models have been developed to address the problems of a lack of information
and data impurity, such as co-clustering [53], multitask learning [54], semisupervised
learning [55], and transfer learning [56,57]. We believe that transfer learning is the
most promising model due to its specific mechanisms. Transfer learning works in a
minimum of two domains, i.e., the source domain and the target domain. It first
identifies useful information from the source domain, within its classification of either
data or knowledge, and then it moves this information into the target domain to guide
the training procedure. Unsupervised transfer learning works to improve the target
domains’ predictive function of the target domains when the current data of the source
domain are insufficient or impure; it utilizes helpful information from related fields or
previous studies. Here, we will illustrate the power of our algorithm by applying it
to real-world biomedical data. Our data were collected at a large nursing home and
consist of complex data, such as ballistocardiogram (BCG) data, used to detect early
illness.

One application of this is in home monitoring systems for cardiovascular disease.
More than 37% of the United States population is affected by the cardiovascular
disease [16,58,59]. A home monitoring system has been developed to detect the
early signs of cardiovascular abnormalities and to avoid the fatal consequence of
advanced cardiovascular disease. Monitoring cardiac parameters during sleep can
provide critical information about the subject’s health. In this work, real-world data
from a hydraulic bed sensor (HBS) are used to capture BCG signals. The HBS

was positioned under the mattress and used to perform both cardiac and respiration
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monitoring in the home. Overall activity, behavioral patterns, and in-home gait
patterns were also captured using motion sensors and a depth camera. An automated
health change alert system is currently installed in 75 senior apartments and regularly
runs as part of a longitudinal study.

The hydraulic bed sensor was developed at the Center for Eldercare and Rehabili-
tation Technology (CERT) at the University of Missouri. The BCG device provides a
non-invasive, low-cost, robust solution for capturing physiological parameters during
sleep [39,60-62]. The bed sensor has a pressure sensor, a transducer, and a wa-
ter tube. The transducer is 50 cm long and 6 cm wide and is filled with 0.4 liter
of water. One end of the transducer is connected to an integrated silicon pressure
sensor for measuring the vibrations of the discharge hose. It is placed under the
mattress to provide sleeping comfort. The outputs are connected to the filtering cir-
cuit (Maxim MAX7401) that consists of a 741 op-amp amplifier and an 8th-order
integrated Bessel filter. The four-channel signal is sampled and quantized to 12-bit
precision. The BCG signal acquired from the sensor is superimposed on the respi-
ration signal. Four transducers are placed in a parallel alignment underneath the
subject’s mattress to guarantee sufficient coverage. The four matching transducers
are independent; thus, the quality of data collected by these transducers might vary
depending on the subject’s sleeping position, the type of bed (e.g., its material and
thickness) and the physical characteristics of the subject (e.g., age and body mass
index (BMI)).

In this work, we take advantage of transfer learning and combine it with PCM’s
unique features to propose a new approach, transfer-learning possibilistic c-means
(TLPCM), that works with a limited dataset. Transfer learning helps to strengthen
its clustering robustness and promote its ability to deal with more complex data.
Here, we validate our proposed algorithm with synthetic and real-world data. This

is the first work that uses transfer learning with PCM and applies it to synthetic and
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real-world data to the best of our knowledge.

Despite the achievements in the above research, there exist limitations associated
with each that are worth mentioning:

Despite the achievements in the abovementioned research (see 2.2.1), there exist

limitations associated with each that are worth mentioning.

e The numbers of clusters in the source domain and the target domain are the

same.

e Most of the research based on fuzzy clustering methods with transfer learning
has problems associated with the constraint on memberships. This constraint
causes the fuzzy clustering methods to generate memberships that can be taken
as degrees of sharing but not as degrees of typicality. Thus, the memberships of
two data points in a given cluster that are equidistant from the cluster prototype
can be significantly different, and the memberships of two data points in a given

cluster that are randomly far from each other can be the same.

In this work, the transfer-learning possibilistic c-means algorithm (TLPCM) is pro-
posed to address these challenges.

The rest of this chapter is organized as follows:

In Section 3.2, we briefly review the transfer learning concept. Section 3.3 presents
some preliminaries on clustering. The details of our approach are presented in 3.4. In
Section 3.5, the synthetic and real-world datasets used in this work are described. The
experimental results are reported in Section 3.6. Finally, some concluding remarks

and future directions are provided in Section 3.7.
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3.2 Transfer Learning

The key idea of transfer learning is to improve learning in a target domain by ac-
quiring information from a different but related domain called the source domain.
Traditional machine learning strategies work under several assumptions that entail
that the target and source domains have similar feature distributions. However, it is
necessary to relax these assumptions in practice and allow that the two domains may
have different feature distributions or that the classification task may have to change.
In this situation, traditional machine learning techniques often fail to model the test
data correctly. As shown in Fig. 3.1, transfer learning offers the ability to use previ-
ously acquired knowledge to improve learning in a related area. In addition, it can be
applied to different task domains [56,63,64]. In each transfer-learning algorithm, a
source task is related to the source domain, and the target task is linked to the target
domain. The transfer learning system procedure has two steps: First, the source task
is learned, and second, the knowledge is transferred from the first step and used to
improve the learning of the target task. If the model is not modified for new situ-
ations, the prediction accuracy will drop significantly. Transfer-learning techniques
have been proposed to handle these types of cases. The idea behind transfer learning
is that the knowledge learned previously can be applied to solve a new problem with
a better or faster solution. In the machine learning area, transfer learning has many
benefits, such as saving time when learning new tasks, requiring less information from
experts, and making the learned model more robust.

In the next section, we present preliminary elements (c-means, fuzzy c-means; and

possibilistic c-means) necessary for our proposed algorithm, TLPCM.
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Figure 3.1: Overall framework of transfer learning clustering.

3.3 C-means, FCM, and PCM

There are many partition-based clustering methods, but the three well-known algo-
rithms are the k-means clustering algorithm [65], the fuzzy c-means (FCM) clustering
algorithm [50], and the possibilistic c-means (PCM) clustering algorithm [51]. These
are the most popular approaches because of their general applicability to real life
problems. k-means clustering is a typical example of an algorithm that achieves it-
erative modification of K cluster centers. The objective function used to derive the

cluster center update is:
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where vy, is the ky, cluster’s position vector, x,, is the data point being evaluated,
and wu, is the binary membership vector for data point x,,. The FCM algorithm [50],
a generalization of the C-means (K-means), is an unsupervised clustering algorithm
in which a dataset is grouped into C' clusters with every point in the dataset belonging
to every cluster to a certain degree [66]. The FCM algorithm is nearly identical to
C-means except for one important point. Instead of a binary value of u, FCM has u €
[0,1]. This means that a data point can have partial membership in multiple clusters.

The objective function to minimize for FCM is:

FCM : mln Jrom = ZZ uj; ||z — vil? (3.2)

7j=1 =1

s.t. U € [0, 1], \V/Z"j

0< Zuij < N,Vj and

1=1

C
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j=1

Differentiating equation (3.2) with respect to w;; and v; and setting them to 0

leads to the equations

1
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(3.3)
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where C' is the number of clusters (j = 1,2,...,C), N is the number of data

(3.4)

Uj =

points, and x; € R? is the i'" data sample, where (i = 1,2,...,N). V = [v1, ..., vc]|T
is the matrix of C cluster centers with v; € R%. U = [u;]nxc is the fuzzy partition
matrix whose element u;; denotes the membership of the i"* data sample belonging
to the i class for all 4 = 1,..., n. Here, the fuzzifier parameter ¢ € (1, oo). A
standard approach for optimizing the FCM model is to randomly initialize V' and
then alternately update U and V' using the necessary conditions for the extrema of
Jrom-

FCM is a fuzzy clustering model; moreover, it is primarily a partitioning algorithm.
Consequently, it will find a fuzzy C' partition of a given dataset regardless of how many
clusters are actually present in the dataset. In other words, each component of the
partition may or may not correspond to a cluster.

In contrast, PCM is a mode-seeking algorithm; i.e., each component generated
by PCM corresponds to a dense region in the dataset. In PCM, the prototypes
are automatically attracted to dense regions in the feature space as the iterations
proceed [67]. Additionally, PCM has a significant advantage for anomaly detection
compared with FCM. The noise points and outliers are often very distant from the
primary clusters. In PCM, the farther a noise point is from a dense area, the smaller
the membership degree. Noise points and outliers will be assigned a small degree of
membership when using PCM, which gives them little influence on the estimation of
the prototypes and the final partition. Merely relaxing the constraint will lead to a
trivial solution of the memberships; the criterion function is minimized by assigning
all memberships as zero. Therefore, a constraint is added to the objective function of

PCM to make representative data points have high membership and unrepresentative
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points have low membership. The objective function that satisfies the requirements

can be formulated as:

PCM r(I]lm Jpem = ZZ ui; || —v|?
j=1 i=1
c N

+3 n ) (1 —uy)!
j=1 =l

(3.5)

s.t. wuy; € [0, 1], Vi’j
N
0< Zuij < N,V; and
1=1

max u;; > 0,V;.
j

The update equation (a necessary condition for a minimum) for the typicality

value was found to be:

1

N

where U = [u;;]nxc denotes the possibilistic partition matrix, u;; denotes possi-
bilistic membership, and 7n; is a “scale” parameter, which corresponds to the size of
the cluster or “zone of influence” [67].
The first term of J,,, is the same as the FCM objective function, which leads to the
minimization of the weighted distances, and the second term, which acts as a penalty,
is used to avoid the trivial solution of u;; = 0V, ;.

Although the PCM algorithm effectively solves the noise sensitivity problem of FCM,
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some new problems have been caused by the PCM clustering model. PCM is sensitive
to initialization. If there is poor initialization, PCM might converge to an insignifi-
cant partition where some or all of the clusters are coincident and other clusters may

go unobserved.

3.4 The Proposed Method, TLPCM

The existing literature and many applications have demonstrated the relatively good
performance of classic PCM. However, PCM effectiveness strictly depends on the
preconditions, i.e., abundant data and sufficient information. Without this precon-
dition, PCM might be invalid. This is a strong incentive to strive for accuracy and
thoroughness in subsequent PCM research. In this work, we adopt transfer learning,
construct an objective function by utilizing the historical matrices of cluster centers
0, and propose the corresponding transfer-learning possibilistic C-means (TLPCM)
algorithm. The historical matrices of cluster centers © are employed to construct the

novel objective function

N
TLPCM : min Jripey =y 3 ulflas = v’
" i=1 j=1
Cy N
3o
=1 =1
o (3.7)
35S - o
j=1 k=1
Cy Cs
330
j=1 k=1
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s.t. u’l] < [O; 1]7vi,j7

Zik € [O, 1]7vj,k:,

N
0< Zuij < N,Vj,

1=1
Cs

0< Zij < CS,VJ',
k=1

max u;; > 0,V;, and
j

mkax Zjk > O,VJ‘,

where:

N: number of data samples

Cy: number of cluster centers in the target data

Cy: number of cluster centers in the source data

Uy source cluster center

v;: target cluster center

q;: target data fuzzifier

qs: source data fuzzifier

u;;: possibilistic membership between the target data and target centers
i+ possibilistic membership between the source centers and target centers
[': coefficient of the term of the historical cluster centers

n; and B;: suitable positive numbers.

The first term requires that the distances from the feature vectors to the target
data prototypes be as small as possible, and the second term forces u;; to be as
large as possible, consequently avoiding a trivial solution. The first and second terms

are inherited directly from the original PCM algorithm. The third term is used to
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learn the knowledge from the source domain; it demands that the distances from the
source data prototypes to the target data prototypes be as small as possible. The
target domain will gain more knowledge from the source domain if the j** cluster in
the target domain and k' cluster in the source domain are more similar. The fourth
term forces z;;, to be as large as possible, hence avoiding the trivial solution.

It is worth noting that the first two constraints ensure that no cluster in the source
or target data is empty, while the last two guarantee that no point has zero typicality
in all clusters.

We propose TLPCM clustering algorithms whose general form is given in Algo-
rithm 1. Most of the research discussed in Section 2.2 assumed that the number of
clusters in the source data and target data are the same. However, in most practical
applications, this assumption does not always hold. The beauty of our approach is
its ability to implement transfer clustering with different numbers of clusters in the
source and target domains. By using a similar optimization strategy in PCM, the
novel update equations for u,;, z;;, and v; in TLPCM can be determined as described

below.

3.4.1 Update the Membership u;; Equation

aJ
8’&1']'

= qtuz(;zt—l)nxi — 0, |P=nqu (1 — ;) (@D

Let % = 0. Thus, we obtain
ij

< U )qt‘l_ 1
1 — wj |zi — vj||?

1 — Uyj _(HI’Z'—UJ'H2>1/(%1)
Uij nj
1 ;— ;]2\ V(@—1)
1 :(Hx uill ) ‘1
Uij nj
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3.4.2 Update the Membership z;, Equation

oJ

_ qS_l T 2 s—1
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aJ  _
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3.4.3 Update the Equation of the Cluster Centers v,

N C
8.J .
oy~ 22l =2 3 o — )
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Gt . - A s,
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i uf; + T Zkil Zj}

”Uj:

The values of n; and 3; need to be chosen depending on the desired bandwidth of
the possibility distribution for each cluster. If all clusters are expected to be similar,
these values can be the same for all clusters. In addition, n; determines the relative
degree to which the second term is essential compared with the first; A target cluster
with larger values of n; and mostly empty will have more freedom to move as the
iterations proceed since more data will lie on its domain.

In TPCM, B; determines the "zone of influence” of a target cluster. Hence, a
source cluster center v will have little influence on the estimates of the prototype
parameters of a target cluster v; if d?(y, v;) is large when compared with . Conversely,
“close” source cluster centers to a target cluster center relative to 3; exert more
influence on the target typicalities and hence prototype movement. 3; decides also
the relative degree to which the fourth term is necessary compared with the third. As
in the PCM, these parameters can be set as constants or can be iteratively updated
as weighted averages of the distances between the source and target cluster centers
at each iteration.

In this work, 7, is estimated using the following equation [67]:

iy ufid (i, v))

77j = N . (3.11)
Zz 1 qu
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In the same way, we estimate 3; using the following equation:

Cs s -
- pI i Z?de(Uka v;)

CS S
Dkl Z?k:

Algorithm 1 lists the steps of the TLPCM method. Like any clustering algorithm,

Bj (3.12)

TLPCM has a few hyper-parameters that need to be set ahead of time: the number
of clusters in the source and target data C, C;; the source and target fuzzifiers gs, g;;
the partition matrices u;;, zjx; and the regularization coefficient I'. However, all these
parameters, except I', can be chosen using strategies also employed in the PCM al-
gorithm. Hence, the only additional parameter that we need to initialize, and it is
not part of the PCM algorithm, is the regularization coefficient I". This coefficient I"
controls the influence of the cluster prototypes from the source domain on those in
the target domain, that is, the higher the coefficient I', the greater the influence of the
source values. The values of fuzzifiers determine the fuzziness of the final possibilistic
C-partition that affects the shape and overlap among the resulting membership func-
tions. When ¢, or ¢; — 1, the membership function is hard, and when ¢, or ¢ — 0o
the memberships are maximally fuzzy. By removing the last constrain of FCM (see
equation 3.2), the membership functions of ¢ clusters become independent of each
other. This makes PCM and TLPCM sensitive to the initialization of the partition
matrices since nothing prevents the algorithms from converging to degenerate parti-
tion matrices where all clusters are identical or similar to each other. Therefore, the
FCM algorithm is called to initialize the partition matrix w;; according to Krishnapu-
ram and Keller’s recommendation [51], whereas uniform random numbers are utilized
to initialize zj;. Ultimately, the values of 1; and ; are calculated utilizing equations
3.11 and 3.12, respectively. In Section 3.6, a couple of experiments were conducted

to show the effect of 77; and ; on the results.
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Algorithm 1: TLPCM

1

Input: X= Dataset, V=Source centers, q=Fuzzifier, d= Equ. distance, Stop Thresh,

Cs=No. source centers, Cy=No. target centers, MaxIter.

Output: V= Target centers, U= Partition matrix
2 Initialization

3 beg

4

© o N O o

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45 end

in

Obtain the cluster prototypes V in the source data with the original PCM algorithm;
(Skip this step if the cluster prototypes V in the source data are known beforehand)

while diff> StopThresh €€ iter < Mazlter do

foreach z; € X do

foreach v; € V do
| calculate d(z;,v;)

end

end

foreach v, € V do
foreach v; € V do
| calculate d(v,v;)
end
end
foreach z; € X do
foreach v; € V do
| update 7; utilizing equation (3.11)
end
end
foreach v; € V do
foreach v € V do
update f; utilizing equation (3.12)
end
end
foreach v; € V do
foreach v € V do
update possibilistic membership between source centers and target centers
using equation (3.9)
end
end
foreach x; € X do
foreach v; € V do
update partition matrix utilizing equation (3.8)
if d==0 then
‘ d=¢
end
end

end
foreach v; € V do
| update target cluster centers utilizing equation (3.10)
end
diff = norm (Vier—1 - V)

end
Output the final cluster prototypes V and memberships U in the target domain.

36



3.5 Dataset Description

3.5.1 Synthetic Dataset

To assess the abilities of our new approach, we created three synthetic datasets. The
first synthetic dataset is 57, which has 1500 instances in the source domain and 15
instances in the target domain, with three clusters in both the source and target
datasets. Fig. 3.2 shows that there is a good partitioning for the target data. To
show the differences between the source data and the target data, the input data in
both domains are displayed in Fig. 3.3. The S datasets is similar to the one used
in [1]. The mean values and covariance matrices of the source data and target data
are shown in Table 3.1

The second synthetic dataset isS; , which has 4000 instances with four clusters
in the source data and 18 instances with six clusters in the target data, which are
shown in Fig. 3.4. In the second synthetic dataset, we chose the case where the target
dataset has a different distribution than the source dataset from which we want to
enable knowledge transfer. The third synthetic dataset is S5 (see Fig. 3.5), where
target clusters had different densities and a larger spread; this dataset is used to test

n; and 3; parameters.

Table 3.1: Distributions of Source Data and Target Data for S; [1].

Source data Target data
Mean values Covariance ‘ Mean values Covariance
N R R N
I R A B i
RIS o B R R
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Figure 3.2: Synthetic dataset S ; (a) source data and (b) target data

Figure 3.3: Differences between the source data and the target data; source (blue)
and target (red).
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Figure 3.5: Synthetic datasetSs ; (a) source data and (b) target data

3.5.2 Real-World Datasets

Three different kinds of real-world datasets are used in this work to prove the validity

of our algorithm:

3.5.2.1 Bed Sensor Dataset

The sensor data of three different TigerPlace residents with different numbers of nor-

mal and abnormal days were used, as shown in Table 3.2. Technology has a tremen-

dous impact on the elderly by providing them with full creative and independent
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lives. Sensor technology is utilized in the TigerPlace facility to help elderly residents
manage their illness, stay healthy, and be as independent as possible. The Americare
Corporation of Sikeston, MO with the help of the Missouri Sinclair School of Nurs-
ing (SSON), established TigerPlace, a senior living community that was opened in

mid-2004 just a few miles from the MU campus [94].

Table 3.2: Data for three residents in TigerPlace.

Positive Negative
Resident No. | Total records | days (”feel | days (”feel
good”) bad”)
Resident1 441 360 81
Resident2 744 709 35
Resident3 499 164 335

An integrated monitoring system was placed in 47 TigerPlace apartments with
the University of Missouri’s IRB approval. Only non-wearable sensors were used for
monitoring because they are more acceptable to older adults and are unobtrusive.
The monitoring began in the fall of 2005, accumulating , as of 2020, an average of
two years’ worth of data for each resident. There is a data logger for each resident’s
apartment, which is used to collect the data from wireless sensors. The data logger
tags the data with the date and time, then logs it in a document that is sent to a
database on a protected server via a wired network connection. Fig. 3.6 shows the
architecture of our monitoring system.

The main components of the monitoring system are a data logger, sensor network,
and electronic health record (EHR) system; a reasoning system for decline detection
and recognition; a secure Web-based interface to display the data for clinicians and
researchers; and an alert manager to inform clinicians of possible problems. Each
sensor network consists of several types of sensors placed in the resident’s apartment,
including passive infrared motion (PIR) sensors, a Microsoft Kinect depth sensor
The PIR

and bed sensors. Newer apartments have in-house built depth sensors.
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Figure 3.6: The TigerPlace sensor network architecture comprises a data logger,
sensor network and EHR system, a reasoning system, a secure Web-based interface,
and an alert manager.

motion sensors are set in various places, such as the bedroom, the kitchen, the living
room, and the bathroom. In addition, some of the residents have sensors of this type
installed on the door of their refrigerator, kitchen cabinets, and even drawers.

A resident’s movement within the apartment is captured by the PIR sensors that
produce a signal as long as there is movement around them. The bed sensors are
arranged in sets of four pneumatic (which was replace by a hydraulic version later)
sensor strips placed under the bed mattress. Unlike the motion sensors, the pneumatic
bed sensor captures three types of signal (heart rate, respiration and bed restlessness),
which are discretized into three or four levels of severity. The newer hydraulic sensor
produces continuous sensor values, instead. Sensitivity is the key for early illness
recognition. If the resident does not feel well, the sleep and motion pattern will be
altered.

Four features are used in this study to represent residents’ behavior: the total

number of motion sensors firing, restlessness, pulse rate, and breathing for each hour
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of the day. The bed sensor can continue to track the residents’ restlessness, pulse, and
breathing as long as the person lies on the bed. The number of features is doubled by
dividing each feature into a day and night hours. Fig. 3.7 shows pairwise relationships
in a Resident1 dataset with layered kernel density estimate (KDE). It can be noticed
from this figure that breathing in the day hours has a high and wide kernel density
range compared to the other feature. Moreover, the two classes interfere with each
other, which makes them more challenging in clustering or classification.

All clinical records for these residents were collected. These records included their
medication, nursing visits, and hospitalizations. The labels for each hour (normal
and abnormal) were added manually based on the nursing visit reports and other
clinic records. These labels represent the ground truth for our data, which was later
used to calculate the Rand index and thereby check the accuracy of our proposed
algorithm. Data processing was rather simple. The steps were as follows: first, we
aggregated the sensor data. Features 1-4 were the sum of the sensor data for the
night hours (12 a.m. to 7 a.m.), and features 5-8 provided the sum of the sensor data
for the day hours (7 a.m. to 12 a.m.) and represented the sensor activity prior to a
nursing visit. Fig. 3.8 shows 3D visualization for the three residents. Then, the data
were normalized for the three residents, after which the data were passed through our

algorithms as described in Section 3.4.

3.5.2.2 Forensic Glass Dataset

This dataset includes 214 fragments of glass that were initially collected by B. Ger-
man for a study of the context of a criminal investigation [68]. Each fragment has a
measured refractive index and chemical composition (weight percent of oxides of Na,
Mg, Al, Si, K, Ca, Ba and Fe) [69,70]. After cleaning the data, 14 fragments were
discarded, and 200 were used in this work. The glass types are as follows: 1. build-

ing windows, float processed; 2. building windows, non-float processed; 3. vehicle
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windows, float processed; 4. vehicle windows, non-float processed; 5. containers; 6.
tableware; and 7. headlamps. The glass type “windows, non-float processed” is not
available in this dataset. Therefore, we ultimately used 6 types of glass in this work.
It is worth mentioning that these data are unbalanced, as shown in Fig. 3.9, which

provided us with a good challenge to test the validity of our algorithm.

3.5.2.3 Chronic Kidney Disease Dataset

The third real-world dataset used in this work is the chronic kidney disease dataset
taken from the University of California Irvine machine learning repository [70]. This

set of data was collected over two months in India with 400 rows and 25 features in
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total, among which 14 features were categorical and 11 were numeric. A total of 400
instances were stored in this dataset, which was collected from the Apollo Hospitals,
Karaikudi, Tamilnadu, India [71,72]. The features include age, specific gravity, blood
pressure, albumin, sugar, red blood cells, pus cell clumps, pus cells, bacteria, sodium,
blood glucose random, blood urea, serum creatinine, potassium, hemoglobin, packed
cell volume, red blood cell count, white blood cell count, hypertension, diabetes
mellitus, coronary artery disease, appetite, pedal edema, and anemia [73]. The output
variable has only two values, “ckd” and “notckd”, where ”ckd” denotes chronic kidney
disease. Every attribute contained missing values except the class attribute. Among
the 400 instances, there were 250 instances with the “ckd” class, which is 62.5% of
the aggregate data, and the remaining 150 instances were labeled as the “notckd”

class, which is 37.5% of the whole data.
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3.6 Experimental Results

In this section, we describe the experiments conducted with synthetic and real-world
datasets to validate the proposed method. Specifically, we evaluated the impact of
the TLPCM and the active learning technique on the performance of the constructed
models. The Rand index is used for performance evaluation, and the experimen-
tal setup is first described. Then, the performance of the proposed algorithms on

synthetic and real-world datasets is reported and discussed.

3.6.1 Experimental Results on the Synthetic Datasets

3.6.1.1 Increase the Number of Data Samples

In the first set of experimental studies, we determine the effect of increasing the
number of data samples on both the PCM and TLPCM algorithms. The S; dataset
is used by increasing the number of data samples in the target dataset gradually
and applying both the PCM and TLPCM algorithms each time until the optimum
clustering for our data is reached. Fig. 3.10 shows Target data with final cluster
centers found with TLPCM for Experiment with five samples on target data. Fig.
3.11 shows that TLPCM reached a Rand index of approximately one when it had 4
data points per cluster. However, PCM needed 14 data points to cluster the data

correctly, which is three times more than what TLPCM needed.

3.6.1.2 Shift the Location of the Clusters

The second experiment studies the effect of moving the centers of the S target dataset
in Fig. 3.2 apart and then moving them closer, as shown in Fig. 3.12. To move
the centers precisely, we calculated the main center of the three centers. Next, we

calculated the slope and the angle between the main center and the center of each
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cluster. The distances between the initial three centers were then calculated to obtain
the percentage distance needed to move the centers to the new locations. Finally, we
calculated the centers’ new locations and generated a Gaussian dataset based on the
slope, angle, and distances determined above. The general form of these steps is
described in Algorithm 2.

The proposed TLPCM algorithm and the original PCM algorithm were applied to
the S; dataset, with 14 samples per cluster in the target data at each cluster location,
starting from very close clusters, which overlapped each other with 50 percent of the
original distance between the centers. Fig. 3.13 shows that both algorithms failed
to cluster the data because the clusters overlapped. However, when we increased
the distance between the clusters, TLPCM was able to cluster the data when the
distance between clusters was 25% less than the distances between clusters in the

original dataset.
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Algorithm 2: Converging and Diverging Centers

1
Input: V= target centers, d= Euclidean distance, MD =
movement direction
Output: z_new,y new= x and y positions for the new center

location.

2 begin

3 | Load(V)

4 | main_center <= mean(V')

5 | foreach v; € V do

6 calculate the slope and the angle between main_center

and v;.

7 calculate the shifting distance (d).
8 if MD==1 then

9 r_new = vj + d * cos(¢;)

10 y-new = v; + d * sin(¢;)

11 else

12 r_new = v; — d * cos(¢;)

13 y-new = v; — d * sin(¢;)

14 end
15 | end

16 end

3.6.1.3 Coincident Clustering Feature

Coincident clustering is one of the PCM algorithm features since it relaxes the prob-
abilistic constraint in the fuzzy c-means (FCM) clustering algorithm. Hence, an
experiment is created here to test our new approach with this feature, as shown in
Fig. 3.14. Thus, the TLPCM algorithm is initialized “mistakenly” with 4 clusters for
the target data. However, the real data set S; has 3 clusters only in the source and

target data.
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Figure 3.14: Experiment of testing the TLPCM algorithm with coincidence clustering
feature..

3.6.1.4 Different Initializations

PCM might not guarantee a unique clustering result if the partition matrix and initial

cluster number are chosen randomly. For this reason, the results of the clustering are
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not consistent. Concerning cluster consistency, the TLPCM algorithm was compared
with the original PCM algorithm by applying different initializations of FCM on theS,
dataset on both algorithms. Fig. 3.15 shown target data with 6 small clusters and
final cluster centers found with TLPCM. Table 3.3 and Fig. 3.16 show that TLPCM
surpassed PCM in terms of consistency and accuracy. The average Rand index of
PCM is 0.7304 with a standard deviation of 0.0514, while the average Rand index of
TLPCM is 0.977 with a standard deviation of 0.0245. A smaller standard deviation

means greater consistency, quality, and predictability.
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Figure 3.15: Target data with 6 small clusters and final cluster centers found with
TLPCM.

Table 3.3: Consistency of TLPCM and PCM.

[ TLPCM | PCM |

Mean = 0.9778 || Mean = 0.7304
STD = 0.0245 STD = 0.0514
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algorithm has a higher average Rand index and a smaller standard deviation than
PCM, which means greater consistency.

3.6.1.5 Increase the Number of Cluster Centers

This experiment studies the effect of increasing the number of clusters on our proposed
TLPCM algorithm, comparing the original PCM algorithm results. TheS, dataset,
as shown in Fig. 3.4, is used to carry out this experiment. We started our experiment
by making the number of clusters in the target dataset less than that in the source
dataset. Then, we increased the number of clusters until we reached 10 clusters in
the target dataset.

This was greater than the number of clusters in the source dataset, which had
four clusters. Fig. 3.17 shows that PCM could not cluster the data when we set
the number of clusters at 10. In fact, we had only two clusters in the very first
trial. The accuracy of PCM increased as the actual number of clusters increased and
continued to do so until we reached our preset number of clusters, which was 10.
Nevertheless, TLPCM could cluster the data, because we inherited the information
from a similar source dataset but not the same target dataset. In this experiment, we

attempted to fix the initialization and changed the actual number of clusters in the

92



target data; then, we observed how both the PCM and TLPCM methods performed.
The TLPCM was most accurate when the source and the target data had the same

number of clusters (four clusters).
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Figure 3.17: Rand index versus the number of clusters using PCM and TLPCM,;
TLPCM was able to cluster the data regardless of the number of clusters that had
been set.

3.6.1.6 Experiments on 7; and ; Parameters

I provide here a few experiments to help understand the update of both n; and 3;. In
each experiment, we initialized each n; and 3; to a value of 2 and allowed equations
3.11 and 3.12 to update their values.
Because the cluster data and hence cluster center locations in the source and target
are consistent, there is not much change that occurs in the evolution of n; and j3;,
and as shown in Fig 3.18 and Fig. 3.19 respectively.

To show how the adaptation of n; and j; for a target data set with more clusters
than existed in the source, consider the source from data set Sy . From Fig. 3.20, we
see that the n); values are stable after a few iterations at fairly small values. This is due

to the fact that 7; controls the local cluster spread. The clusters in Fig. 3.4 are well
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Figure 3.18: Evolution of n; vs iteration on target data for all clusters using S
dataset.

separated and compact, so the points themselves are close to their respective cluster
centers, keeping 7; small. The evolution of the values for each [3; are also stable, but
the range is more varied. This is because a few of the source cluster centers need
to “stretch” into the target space to influence the extra structure there. Besides, it
can be seen from equation 3.12 that [3; is proportional to the average fuzzy distance
between the source and target cluster centers. The target cluster with a higher 3;
value will have greater mobility because it achieves more source centers and therefore
moves as the iteration proceeds. This explains why fs is significant compared to the
B; of other clusters (see Fig. 3.21). The same idea can be seen for n; in Fig. 3.20,
but with smaller range because 7); is working with the local target cluster spread (see
equation 3.11).

As a final observation, what happens when the target clusters are quite different
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Figure 3.19: Evolution of ; vs iteration on target data for all clusters using S,
dataset.

from those in the source? Consider the source and target data in Fig. 3.5. Note the
difference in both location and shape between these clusters. As a result, even though
relatively stable (see Fig. 3.23 and Fig. 3.24), there is a larger variance in both of
the parameter sets with 7; controlling the within cluster spreads, and /3, controlling
the match between source and target cluster centers. Fig. 3.22 shows the target data

with discovered cluster centers using TLPCM.
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Figure 3.20: Evolution of n; vs iteration on target data for all clusters using S,
dataset.

3.6.2 Experimental Results on the Real-World Datasets

3.6.2.1 Experimental Results on the Bed Sensor Dataset

To validate our approach, we used data from three different TigerPlace residents with
different numbers of normal and abnormal days, as shown in Table 3.2. We conducted
three experiments using the resident data to test the performance of our algorithms
for clustering on both normal and abnormal days. Conventional mathematical models
(such as classifiers) for early illness recognition are not transferable from one person
to another due to different disease-behavior associations that can vary among peo-
ple. However, our transfer-learning possibilistic C-means approach allowed us to take

advantage of one person’s data to cluster a few weeks of data from another person’s
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Figure 3.21: Evolution of ; vs iteration on target data for all clusters using S9;
dataset.
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Figure 3.22: Target data Ss; discovered cluster centers with TLPCM .
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Figure 3.23: n; vs iteration on target data for all clusters using S3 dataset.
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Figure 3.24: f3; vs iteration on target data for all clusters using Ss dataset.

58



data.

To confirm our labels for normal and abnormal days, we ran the original PCM
algorithm on each resident’s data 1000 times and then averaged the partition matrices
and compared the predicted labels with the nurse’s notes. Once we had our ground
truth, we tested our approach and calculated the Rand index. We used Resident 1
as the source data for our algorithm and Resident 2 as the target data. We fed our
proposed algorithm with target data weekly and calculated the Rand index each time.

Fig. 3.25 shows that TLPCM could correctly cluster the new resident data after 10
weeks. However, PCM could not cluster the data of Resident 2 until we had 17 weeks
of data. The same experiment was performed with the data of the other residents by
considering Resident 1 as the source data and Resident 3 as the target data; then, we
considered Resident 2 as the source data and Resident 3 as the target data, as shown
in Fig. 3.26 and 3.27, respectively. Clearly, Fig. 3.27 has the best Rand index curve
for TLPCM compared with the other two figures. The reason is that Resident 1 is the
youngest and healthiest of the three. Furthermore, Resident 1 does not use a walker,
which makes his routines different on normal and abnormal days. On the other hand,
Resident 2 and Resident 3 use walkers that affect their walking. Since Residents 2
and 3 have similar activities, TLPCM was able to cluster target data in fewer weeks
(7 weeks), as shown in Fig. 3.27. However, PCM used directly on Resident 3 could
not stabilize on the desired cluster structure until approximately 21 weeks of data.

Another experiment was performed using the same real-world dataset in case we
needed the ground truth—whether the resident would have a normal or abnormal
day. Instead of computing the ground truth by applying the original PCM algorithm
1000 times, the following steps were used: As shown in Fig 3.28, in the first step, we
considered the predicted labels of the first week as the ground truth of the first week
in the data for the second step; then, we considered the predicted labels of the two

weeks in the second step as the ground truth of the third step’s first two weeks of data,
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Figure 3.25: Weekly Rand index using Resident 1 as the source data and Resident

2 as the target data; TLPCM was able to reach a Rand index of approximately one
with fewer weeks of data.
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Figure 3.26: Weekly Rand index using Resident 1 as the source data and Resident
3 as the target data; TLPCM was able to reach a Rand index of approximately one
with fewer weeks of data.
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Figure 3.27: Weekly Rand index using Resident 2 as the source data and Resident 3
as the target data; TLPCM needs fewer data than in the previous two cases due to
the similarity between Residents 2 and 3 (source and target data).

and so on. Using our algorithm, residents are consistently checked on a weekly basis.
If there is an increase in cluster numbers, this is abnormal and could be indicative of
a potential health issue, as shown in Fig. 3.29.

All of the above experiments on the bed sensor data demonstrate how to use our
proposed algorithm to transfer the knowledge gained from one resident to another.
In the next three experiments, we tested our algorithm by combining the data of two
residents as the source data and then using the third resident as the target data.
Two of the residents (Residents 2 and 3) use a walker, and they are close in age,
while the third (Resident 1) is healthier and younger and does not use a walker. We
took different combinations of these three residents as the source and target data and
checked the effect of combining different sources of data on the clustering results of
the target data. We combined the data of Residents 1 and 2 to form our source data
and used resident 3 as the target data. In other words, we combined healthy and
non-healthy residents for the source data and used a non-healthy resident as target

data. We started feeding our proposed model with the target data weekly, as we did
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Figure 3.29: Detecting a new health issue by consistently checking on a weekly basis
using our algorithm with a small number of data samples compared to those in the
PCM algorithm.

in the previous experiments. Then, we calculated the Rand index each time. Fig.
3.30 (the solid blue curve) shows that TLPCM could correctly cluster the data in
approximately eight weeks of target data. The results are compared with those of
the other two experiments, as shown in Fig. 3.30 (the green dashed and red dotted
curves), where the source data include only one of the residents (either Resident 1 or
2) and we kept the target data as it was (Resident 3). When we combined the healthy
and non-healthy residents in the source data and used a non-healthy resident as the
target data, the results were better than they were when we had only healthy-resident
source data, because approximately half of the source data were similar to the target
data. However, the results were less accurate than when all of the source data were
similar to the target data, as shown in Fig. 3.30.

The same experiment was applied to the other two cases: when Residents 1 and
3 provided the source data and Resident 2 provided the target data, and then when

Residents 2 and 3 provided the source data and Resident 1 provided the target data.
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Fig. 3.31 and Fig. 3.32 show the results of the second and third cases, respectively. We
can conclude that adding more source data similar to the target data will improve the
clustering results, because the transfer-learning technique depends on the historical
information that we obtain from the source data. Moreover, adding source data
different from the target data will reduce the efficiency of the algorithm in clustering

the target data.
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Figure 3.30: The weekly Rand index for TLPCM using Residents 1 and 2 as the
source data and Resident 3 as the target data (solid blue curve) compared with the
Rand index for a single resident (Resident 1 or 2) as the source data and a single
resident (Resident 3) as the target data (green dashed and red dotted curves).
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Figure 3.31: The weekly Rand index for TLPCM using Residents 1 and 3 as the
source data and Resident 2 as the target data (solid blue curve) compared with the
Rand index for a single resident (Resident 1 or 3) as the source data and a single
resident (Resident 2) as the target data (green dashed and red dotted curves).
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Figure 3.32: The weekly Rand index for TLPCM using Residents 2 and 3 as the
source data and Resident 1 as the target data (solid blue curve) compared with the
Rand index for a single resident (Resident 2 or 3) as the source data and a single
resident (Resident 1) as the target data (green dashed and red dotted curves).
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3.6.2.2 Experimental Results on the Forensic Glass Dataset

This experiment analyzes our algorithm’s validity in finding the right number of
clusters in unbalanced data and compares the original PCM algorithm results. These
data, described in Section 3.5.2.2, are unbalanced, as shown in Fig. 3.9, and it will
not be easy to find the right number of clusters with a few samples of data. First, I
examine a heatmap of the correlations, as shown in Fig. 3.33. It seems to be a strong
positive correlation between RI and Ca. This could be a hint to perform principal
component analysis (PCA) [74] in order to decorrelate some of the input features.
Before applying PCA, I plot the cumulative explained variance, as shown in Fig.
3.34, and it appears that about 99 % of the variance can be explained with the first

five principal components.

Figure 3.33: Heatmap of the correlations glass dataset.
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Figure 3.34: Principal component analysis performance for glass dataset features.

Therefore, after normalizing the data by utilizing the standard score normalization
technique, the PCA algorithm is used to reduce the number of variables in our data
by extracting the essential variables. Half of the data samples are used as a source
domain to obtain the cluster centers (knowledge), and then the target data are fed
to the PCM and TLPCM models gradually by adding 20% of the total target data
each time. As shown in Table 3.4, there is consistency in the number of clusters in
TLPCM due to the knowledge inherited from the source data, while PCM is tricked

into finding the right number of clusters.
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Table 3.4: Glass dataset Results.

o T ¢ | @ d PCM PCM TLPCM | TLPCM
0 datrge tm:hn NO. of | Rand | NO. of Rand
ata ra Clusters Index Clusters Index
20% 6 3 0.56 6 0.76
40 % 6 2 0.58 6 0.78
60% 6 4 0.60 6 0.80
0% 6 5 0.64 6 0.80
100% 6 5 0.763 6 0.808

3.6.2.3 Experimental Results on the Chronic Kidney Disease Dataset

The kidney dataset, described in Section 3.5.2.3, is collected from 400 patients (250
”CKD?”, 150 "notckd”). Every individual person has certain features that differ from
the others, which makes this a good test for the transfer-learning technique in our
algorithm. Moreover, this dataset contains many missing values and categorical values
that need to be preprocessed. Thus, before utilizing the dataset in our proposed
algorithm, the data are first cleaned. Then, I plot the Box-plot as shown in Fig. 3.35
to see if all the data features are on the same scale.

However, the features are inconsistent in terms of the range of the values (i.e.,
they have various scales). Thus, the features are then normalized, as shown in Fig.
3.36. Next, I plot the cumulative explained variance, as shown in Fig. 3.37, and it
appears that variance can be explained with almost all principal components. Hence,
the PCA algorithm is not applied to this data. After the data carpentry phase, half
of the data samples are used as a source domain to determine the cluster centers
(knowledge).

The proposed algorithm (TLPCM) is then tested with various sizes of the target
dataset and compared with the PCM algorithm (see Table 3.5). First, both PCM

and TLPCM are fed 20% of the target dataset. The Rand index was 0.607 and 0.78,
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respectively. It can be seen from the Rand index that TLPCM was able to achieve a
better performance than PCM. Next, we steadily increased the target dataset’s size
by 20% of the actual data size until the full size of the target dataset was reached.
As expected, increasing the size of the target dataset improved the performance of
the algorithm. With the full target dataset, the Rand index was 0.802 and 0.906 for
PCM and TLPCM, respectively. It is worth noting that TLPCM could significantly
better cluster results than PCM with even a small portion of the dataset. Thus, the
core principle of transfer learning is satisfied since our algorithm does not need an

abundance of data to cluster correctly.
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Figure 3.35: Kidney disease dataset features before normalization.

Table 3.5: Kidney dataset Results.

Target Ground PCM PCM TLPCM TLPCM
data % truth NO. of Rand NO. of Rand
Clusters Index Clusters Index
20% 2 1 0.607 2 0.78
40% 2 2 0.605 2 0.80
60% 2 1 0.708 2 0.89
80% 2 2 0.802 2 0.872
100% 2 2 0.852 2 0.906
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Figure 3.36: Kidney disease dataset features after normalization.
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Figure 3.37: Principal component analysis performance for Kidney disease features.
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3.7 Conclusion

Based on the original PCM algorithm, and inspired by transfer learning, we de-
signed a novel clustering framework called the transfer-learning possibilistic c-means
(TLPCM) clustering algorithm. TLPCM works in applications where data is limited
and insufficient for useful clustering or is polluted by unknown noise or outliers. When
the experimental results are compared with those of the original PCM algorithm, we
can see the attractiveness and efficacy of the proposed TLPCM algorithm in both
artificial and real transfer scenarios.

The real-world data showed that for early illness recognition and analyzing the
Forensic Glass and Chronic Kidney datasets, the proposed method outperformed
individual learning in terms of consistency and the amount of data needed for clus-
tering. As more information was added to the algorithm, the performance steadily
increased, but only up to a certain limit. Once that limit was reached, performance
plateaued. Since data labeling is difficult in a real-world setting such as TigerPlace,
transfer learning can help train illness recognition classifiers across residents. Early
signs of illness could be predicted in elderly residents of TigerPlace based on unob-
trusive monitoring sensors through the use of transfer learning in TLPCM. Further
study based on this research will focus on transferring membership values from the

source domain instead of cluster prototypes.
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Chapter 4

Non-Invasive Classification of Sleep
Stages with a Hydraulic Bed
Sensor Using Deep Learning

4.1 Introduction

Sleep is a critical physiological phenomenon for recovery from mental and physical
fatigue. Lately, there has been much interest in the quality of sleep, and research
is actively underway. In particular, it is vital to have a repetitive and regular sleep
cycle for good sleep. Nevertheless, it takes much time to determine sleep stages using
physiological signals by experts. A person with a sleep disorder such as apnea will stop
breathing for a while throughout sleep. If it regularly happens, sleep disorders can be
dangerous for health. An early step in diagnosing these disorders is the classification
of sleep stages [75, 76].

Unfortunately, sleep disorders have been affecting many people around the world
in different ways. Whatever the cause of these disorders, the consequences can be
severe. The quality of sleep depends on the number and order of these stages. The

names of these stages, are Wake, Non-REM1, Non-REM2, Non-REM3, and REM.
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Detection of any sleep disorder, such as sleep apnea, insomnia, or narcolepsy, requires
a correct staging of sleep [77,78].

Classification of sleep stages is also essential for managing the quality of sleep.
Sleep studies depend on manual scoring of sleep stages from raw polysomnography
signals, which is a tedious visual task. Thus, research efforts to develop an automatic
sleep stage scoring based on machine learning techniques have been carried out in
the last several years [79]. Convolutional neural networks (CNN) [80] and Long-
Short Term Memory Recurrent Neural Networks (LSTM) [81] provide an interesting
framework for automated classification of sleep based on raw waveforms. In the past
few years, Deep Neural Networks (DNNs) have accomplished tremendous success for
time series tasks compared to traditional machine learning systems. Recently, further
improvements over DNNs have been obtained with alternative types of neural network
architectures. CNNs, LSTMs, and DNNs are individually limited in their modeling
capabilities, and we believe that time series data classification can be improved by
combining these networks in a unified framework.

The classification of time series signals presents many challenges that make it a
uniquely difficult problem in machine learning. Many feature extraction approaches
in time series face issues related to the signal’s non-stationary nature when the prob-
ability distribution does not change over time. Accordingly, features such as mean
and variance will not change. Furthermore, the physiological signals are very noisy,
susceptible to posture, mood, physical movement, and external noise [82]. Lack of
comparability between experiments is another issue that can be faced in this field.
Unlike in image classification, there are no standard time series datasets used as per-
formance benchmarks [21,83]. Some approaches use models for individuals, while
others try to make a general model, training, and testing with samples from all indi-
viduals at one time.

In this work, we propose a method for classifying sleep stages based on the CNN,
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LSTM and DNN with the help of transfer learning. More specifically, we use a
transfer learning technique to train our network model with sleep posture data for 56
subjects (source dataset) and use it for sleep stage classification (target data). The
sleep data was obtained from 5 subjects and it was collected in the Boone Hospital
Center (BHC) in Columbia, MO, USA under the University of Missouri IRB approval,
project number 2008526. The main contribution of this work is developing a new deep
model architecture that utilizes CNNs and LSTMs to classify sleep stage data. The
CNNs are trained to learn filters that extract time-invariant features from the BCG
signals while the LSTMs are trained to encode temporal information such as sleep

stage transition rules.

4.2 Sensors and Datasets

A home monitoring system using a ballistocardiography (BCG) hydraulic sensor has
been developed to monitor sleep at home (see Fig. 4.1). The hydraulic bed sensor has
been developed at the Center for Eldercare and Rehabilitation Technology (CERT) at
the University of Missouri. A BCG device provides a noninvasive, low-cost, and robust
solution for capturing physiological para<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>