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ABSTRACT

This paper discusses the relationship between the sequential hard c-means (SHCM), learning

vector quantization (LVQ), and fuzzy c-means (FCM) clustering algorithms. LVQ and SHCM

suffer from several major problems. For example, they depend heavily on initialization. If the

initial values of the cluster centers are outside the convex hull of the input data, such

algorithms, even if they terminate, may not produce meaningful results in terms of prototypes

for cluster representation. This is due in part to the fact that they update only the winning

prototype for every input vector. We also discuss the impact and interaction of these two

families with Kohonen's self-organizing feature mapping (SOFM), which is not a clustering

method, but which often lends ideas to clustering algorithms. Then we present two

generalizations of LVQ that are explicitly designed as clustering algorithms; we refer to these

algorithms as generalized LVQ = GLVQ; and fuzzy LVQ = FLVQ. Learning rules are derived to

optimize an objective function whose goal is to produce "good clusters". GLVQ/FLVQ (may)

update every node in the clustering net for each input vector. Neither GLVQ nor FLVQ depends

upon a choice for the update neighborhood or learning rate distribution - these are taken care

of automatically. Segmentation of a gray tone image is used as a typical application of these

algorithms to illustrate the performance of GLVQ/FLVQ.
x
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1. INTRODUCTION : LABEL VECTORS AND CI,/3STERING

Clustering algorithms attempt to organize unlabeled feature vectors into clusters or "natural

groups" such that points within a cluster are more similar to each other than to vectors

belonging to different clusters. Treatments of many classical approaches to this problem

include the texts by Kohonen I , Bezdek 2. Duda and Hart a. Tou and Gonzalez 4, Hartigan s. and

Dubes and Jain 8. Kohonen's work has become timely in recent years because of the widespread

resurgence of interest in the theory and applications of neural network structures 7

Label Vectors. To characterize solution spaces for clustering and classifier design, let c denote

the number of clusters, 1 < c < n, and set"

Nfcu=_rE _lYkelO, 1] Vk}

Nfc =LYe Nfc u I EYk= l}

N c ={ye Nfc I Yk •{0'l} V k)

= (unconstralned)fuzzy/abeLs ; (la)

= (constrained) fuzzy/abeLs • (lb)

= hard/abeLs for c classes (Ic)

N c is the canonical basis of Euclidean c-space; Nfc is its convex hull; and Nfc u is the unit

hypercube in _c. Figure 1 depicts these sets for c--3. For example, the vector y = (. 1, .6, .3) T is a

typical constrained fuzzy label vector; its entries lie between 0 and 1, and sum to I. And because

its entries sum to 1, y may also be interpreted as a probabilistic label. The cube Nfc u = [0, 1]3 is

called unconstrained fuzzy label vector space; vectors such as z = (.7, .2, .7) T have each entry

between 0 and 1, but are otherwise unrestricted.

Cluster Analysis. Given unlabeled data X = {x 1, x 2 ..... Xn} in _P, clustering in X is assignment

of (hard or fuzzy) label vectors to the objects generating X. If the labels are hard, we hope that

they identify c "natural subgroups" in X. Clustering is also called unsupervised learning, the

word learning referring here to learning the correct labels (and possibly vector prototypes or

quantizers) for "good" subgroups in the data. c-part/t/ons of X are characterized as sets of (cn)

values {Uik} satisfying some or all of the following conditions :

0 < uri c < 1 V i,k • (2a)

0 < E uri c < n V i • (2b)

T. Uik = 1 V k (2c)

2OO



Fig. I. Hard, fuzzy and probabilisUc label vectors (for c = 3 classes).

_3 = 3 '

171,_-= .2
.7

N j3 u = [0,1] 3

Using equations (2) with the values {Uik} arrayed as a (cxn) matrix U = [Uik], we define:

Mfcnu = {U • 9_cn I Uik satisfies (2a) and {2b) V i, k} "

Mfc n = {U • Mfcnu I Uik satisfies (2c) V i and k}. ;

IVIcn ={U• Mfcnl Uik=0or 1 _/ i and k}

(3a)

(3b)

(3c)

Equations (3a)0 (3b) and (3c) define, respectively, the sets of unconstrained fuzzy, constrained

fuzzy (or probabflistic), and crisp c-partitions of X. We represent clustering algorithms as

mappings A : X-+ Mfcnu. Each column of U in Mfcnu (Mfc n, Mcn) is a label vector from Nfc u

(Nfc, Nc). The reason these matrices are called partitions follows from the interpretation of

Uik as the membership of x k in the i-th partitioning subset (cluster) of X. Mfcnu and Mfc n can

be more realistic physical models than Mcn, for it is common experience that the boundaries

between many classes of real objects (e.g., tissue types in magnetic resonance images) are in

fact very badly delineated (i.e., really fuzzy) , so Mfcnu provides a much richer means for
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representing and manipulating data that have such structures. We give an example to illustrate

hard and fuzzy c-partitions of X. Let X = {x 1. x 2, x3} = {peach, plum, nectarine], and let c=2.

Typical 2-partitions of these three objects are shown in Table I:

Table 1.2-partitions of X = {x 1' x2' x3} = {peach. plum, nectarine}

I'Imfl Ule M23 Fuzzy U 2 _ Mff23 Fuzzy U 3 e Mf23u

Object x I x2 x3 xI z 2 x3 x I x2 z3

00] [00.90. 1 IO: 0.+ 1Plums I 1 0.8 0. 6 0.8 0.7

The nectarine, x 3, is shown as the last column of each partition, and in the hard case, it must

be (erroneously) given full membership in one of the two crisp subsets partitioning this data; in

U I x 3 is labeled "plum". Fuzzy partitions enable algorithms to (sometimes!} avoid such

mistakes. The final column of the first fuzzy partition in Table 1 allocates most (0.6) of the

membership of x 3 to the plums class; but also assigns a lesser membership of 0.4 to x 3 as a

peach. The last partition in Table 1 illustrates an unconstrained set of membership

assignments for the objects in each class. Columns like the one for the nectarine in the two

fuzzy partitions serve a useful purpose - lack of strong membership in a single class is a signal

to "take a second look". Hard partitions of data cannot suggest this. In the present case, the

nectarine is an hybrkl of peaches and plums, and the memberships shown for it in the last

column of either fuzzy partition seem more plausible physically than crisp assignment of x 3 to

an incorrect class. It is appropriate to note that statistical clustering algorithms - e.g.,

unsupervised learning with maximum likelihood - also produce solutions in Mfc n. Fuzzy

clustering began with Ruspini a ; see Bezdek and Pal 9 for a number of more recent papers on this

topic. Algorithms that produce unconstrained fuzzy partitions of X are relatively new; for

example, see the work of Krishnapuram and Keller m.

Prototype classification is illustrated in Figure 2. Basically, the vector v i is taken as a

prototypical representation for all the vectors in the hard cluster X c X. There are many

synonyms for the word prototype in the literature: for example, quantizer {hence LVQ),

signature, template, paradigm, exemplar. In the context of clustering, of course, we view v i as

the cluster center of hard cluster X c X. Each of the clustering algorithms discussed in this

paper will produce a set of c prototype vectors V = {Vk} from any unlabeled or labeled input data
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set X in _Rp. Once the prototypes are found (and possibly relabeled if the data have physical

labels), they define a hard nearest prototype (NP) classifier, say DNP,V:

Nearest Prototype (I-N_ CIr.

Decide z e i _ ]_.v(z) = • i

Given prototypes V = {v k I< k_ c} and z e _P"

IZ--VlIA < lZ--VjlA" l<J < c,J_i (4)

In (4) A is any positive deJ_nite pxp weight matrix - it renders the norm in (4) an inner product

norm. That is, the distance from zto any v i is computed aslz-vlL= J(z-vl} rA(z-v).

Equation (4} defines a hard classifier, even though its parameters may come from a fuzzy

algorithm. It would be careless to call DNP,V a fuzzy classifier Just because fuzzy c-means

produced the prototypes, for example, because (4) can be implemented, and has the same

geometric structure, using prototypes {v k} from any algorithm that produces them. The {v k}

can be sample means of hard clusters (HCM); cluster centers of fuzzy clusters (FCM); weight

vectors attached to the nodes in the competitive layer of a Kohonen clustering network (LVQ);

or estimates of the (c) assumed mean vectors {_k } in maximum likelihood decomposition of

mixtures.

Figure 2. Representation of many vectors by one prototype (vector quantizer).

Xi

The geometry of the 1-NP classifier is shown in Figure 3, using Euclidean distance for (4) - that

is A=I, the pxp identity matrix. The 1-NP design erects a linear boundary halfway between and

orthogonal to the line connecting the i-th and J-th prototypes, viz., the hyperplane HP through

the vector (v t - v j)/2 perpendicular to it. All NP designs defined with inner product norms use

(piecewise) linear decision boundaries of this kind.
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Figure 3. Geometry of the Nearest Prototype Classifier _or Inner Product Norms

HP Xj

Xi .........

Clustering algorithms imaged in Mfcnu eventually "defuzzify" or "deprobabil_e" their label

vectors, usually using the maximum membership (or maximum probability) strategy on the

terminal fuzzy (or probabilistlc) c-partitions produced by the data:

Maximum membership (MM) conversion of U in Mfcnu to UMM in Mfc :

1; u0¢> 1<s<c,s_i_
- usJc" - - l_<L<c; l<k__n (5)

UMM_ = O; otherw/se J

UMM is always a hard c-partition; we use this conversion to generate a confusion matrix and

error statistics when processing labeled data with FCM and FLVQ. For HCM/FCM/LVQ/FLVQ,

using (5) instead of (4} with the terminal prototypes secured is fully equivalent- that is, UMM

ts the hard partition that would be created by applying {5) with the final cluster centers to the

unlabeled data. This is not true for GLVQ.

2. LEARNING VECTOR QUANTIZATION AND SEQUENTIAL HARD C-MF..ANS

Kohonen's name is associated with two very different, widely studied and often confused

families of algorithms. Specifically, Kohonen initiated study of the prototype generation

algorithm called learning vector quantlzation (LVQ); and he also introduced the concept of

self-organizing feature maps (SOFM) for visual display of certain one and two dimensional
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data sets I. LVQ is not a clustering algorithm per se; rather, it can be used to generate crisp

(conventional or hard) c-partitions of unlabeled data sets in using the I-NP classifier designed

with its terminal prototypes. LVQ is applicable to p dimensional unlabeled data. SOFM, on the

other hand, attempts to find topological structure hidden in data and display it in one or two

dimensions.

We shall review LVQ and its c-means relative carefully, and SOFM in sufficient detail to

understand its intervention in the development of generalized network clustering algorithms.

The primary goal of LVQ is representation of many points by a few prototypes; identification

of clusters is implicit, but not active, in pursuit of this goal. We let X = {x I , x 2 .... x n} c _Pdenote

the samples at hand, and use c to denote the number of nodes (and clusters in X) in the

competitive layer.

The salient features of the LVQ model are contained in Figure 5. The input layer of an LVQ

network is connected directly to the output layer. Each node in the output layer has a weight

vector (or prototype) attached to it. The prototypes V = (v 1, v 2 ..... v c) are essentially a network

array of (unknown) cluster centers, v i e _Pfor I < i < c. In this context the word learning refers

to finding values for the {vij}. When an input vector • is submitted to this network, distances

are computed between each v r and •. The output nodes "compete", a (minimum distance)

'_mer" node, say v i, is found ; and it is then updated using one of several update rules.

X
I

X
2

x
3

x

P

Figure 5. LVQ Clustering Networks

Input Layer Output Layer
(Fanout) (Competive} ue9_

v
i
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We give a brief specification of LVQ as applied to the data in our examples. There are other

versions of LVQ; this one is usually regarded as the "standard" form.

[]m:H][ I I ........... HItML.'._fi ...... :]J[i]: Lfi ..I]][L.J ........ _[HI.IJl ....... LIL 1___ i _rLrimt.Z_HIH ................................ Y_fl5

The LVO Clusterin_ AlgorithmJ

LVQ I. Given unlabeled data set X = {x i" x2 .... x n} c _P. Flx c, T, and e > 0.

LVQ2. Initialize V 0 = ( vl, 0 ..... Vc, 0) e _Rcp , and learning rate tx0 e (I,0) .

LVQ3. For t = 1,2 ..... T;

For k = 1,2 ..... n"

b. Update the winner: Vl, t = Vl,t_l+ c_t(x k- vi.t_ 1)

Nextk

d. Apply the 1-NP (nearest prototype) rule to the data :

(6)

17)

I;ULVQa'= O; otherwise

c

e. = - =Yv -Ccx_uteE t IVt Vt-t]] r:Jlr.t Vr.t-lll

f. If E t < E stop; Else adjust le_ rate at;

Ixk-vl]-<]xk-vjl ,l<_j_<c.j_i} .l<_k<cand l<_n.

I¢=I r=l .t

(81

Next t
i _ ...... IZ_]: H[I]] _[ [ Jill ..................... L.__L_.LI _ .............................

F 1

= [ J at (8)are a cxn matrix that define a hard c-partition of X using theThe numbers ULV Q ULVQe'

I-NP classifier assignment rule shown in (4}. The vector u shown in Figure 1 represents a

crisp label vector that corresponds to one column of this matrix; it contains a I in the winner

row i at each k; and zeroes otherwise. Our inclusion of the computation of the hard 1-NP c-

partition of X at the end of each pass through the data (step LVQ3.d) is not part of the LVQ

algorithm - that is, the LVQ iterate sequence does not depend on cycling through U's. Ordinarily

this computation is done once, non-iteratively, outside and after termination of LVQ. Note

that LVQ uses the Euclidean distance in step LVQ3.a. This choice corresponds roughly to the

rule shown in (7) , since V(_x- v_/)=-2I(x-v} =-2(x- v). The origin of this ruleupdate

comes about by assuming that each • • _P is distributed according to a probability density

function f(x). LVQ's objective is to find a set of vi's such that the expected value of the square

of the diseretlzation error is minimized :
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In this expression v i is the winning prototype for each •, and will of course vary as • ranges

over _P. A sample function of the optimization problem is e = Ix - vt_. An optimal set of vi's

can be approximated by applying local gradient descent to a finite set of samples drawn from f.

The extant theory for this scheme is contained in Kohonen 12 , which states that LVQ converges

in the sense that the prototypes V t = (v l,t, v2,t ..... Vc, t) generated by the LVQ iterate sequence

converge, i.e., {V t} t_- )V, provided two conditions are met by the sequence (a t} of

learning rates used in (7) •

_o = _ • and (10o)t 6it

at2 < oo (1Ct_
t=O

One choice for the learning rates that satisfies these conditions is the harmonic sequence

a t = 1 / t for t >1; a o _ (0,I). Kohonen has shown that (under some assumptions) steepest

descent optimization of the average expected error function {9) is possible, and leads to the

update rule (7). The update scheme shown in equation (7] has the simple geometric

interpretation shown in Figure 6.

e. Updating the _tug LV9 _rototype.

V
J,t-1

Vc,t- I

x k
tX=1

t
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The winning prototype vi,t_ 1 is simply rotated towards the current data point by moving along

the vector (xk- vi,t_l) which connects it to x k. The amount of shift depends on the value of a

"learning rate" parameter at, which varies from 0 to I. As seen in Figure 2, there is no update ff

at=0, and when at=I, vi. t becomes x k (vi, t is Just a convex combination of x k and vi,t_ I). This

process continues until termination via LVQ3.f. at which time the terminal prototypes yield a

'_best" hard c-partition of X via (3).

Coaunessts ms LVg :

1. Limit point property : Kohonen 12refers to 13.14. and mentions that LVQ converges to a
unique limit if and only if conditions (10} are satisfied. However, nothing was said about what
sort or type of points the final weight vectors produced by LVQ are. Since LVQ does not model a
well defined property of clusters (in fact. LVQ does not maintain a partition of the data at all),

the fact that {Vt} t-_- ) ._ does not insure that the limit vector "¢ is a good set of prototypes

in the sense of representation of clusters or clustering tendencies. All the theorem guarantees
is that the sequence HAS a limit point. Thus. "good clusters" in X will result by applying the 1-
NP rule to the final LVQ prototypes only if. by chance, these prototypes are good class
representatives. In other words, the LVQ model is not dr/yen by a well specified clustering goal.

2. Learning rate a : Different strategies for a t often produce different results. Moreover, LVQ

seldom terminates unless at-->0 (i.e., it is forced to stop because successive iterates are

necessarily close}.

3. Termination : LVQ often runs to its iterate limit, and actually passes the optimal (clustering)
solution in terms of minimal apparent label error rate. This is called the "over-training"
phenomenon in the neural network literature.

Another, older, clustering approach that is often associated with LVQ is sequential hard c-

means (SHCM). The updating rule of MacQueen's SHCM algorithm is similar to LVQ Is. In

MacQueen's algorithm the weight vectors are initialized with the first c samples in the data set

X. In other words, yr. 0 = x r, r=l .... c. Let qr,0=l for r=l .... c (qr,t represents the number of

samples that have so far been used to update Vr,t ). Suppose xt+ 1 is a new sample point such

that vi, t is closest (with respect to. and without loss, the Euclidean metric) to it. MacQueen's

algorithm updates the Vr'S as follows (again. index i identifies the winner at this t):

vi,t+l = (vi.t qi.t + Xt+l)/(ql.t +I) ; (11a)

qi,t+ I = qi,t + I ; ( IIb)

Vr,t+ I =Vr, t for rzi, ; (llc)

qr, t+l =qr.t for r=i. (lid)

208



MacQueen's process terminates when all the samples have been used once ( i.e., when t = n). The

sample points are then labeled on the basis of nearness to the final mean vectors (that is, using

(3) to find a hard c-partition USHCM). Rearranging (I la), one can rewrite Macqueen's update

equation •

vi,t+ 1 - vi,t + (xt+ 1- vi,t ) / qi,t+ 1 "
(12)

Writing I/qi,t+l as _,t+l' equation (12) takes exactly the same form as equation (7}. However,

there are some differences between LVQ and MacQueen's algorithm: (i) In LVQ sample points are

used repeatedly until termination is achieved, while in MacQueen's method sample points are

used only once (other variants of this algorithm pass through the data set many times 161. (ii)

In MacQueen's algorithm ai,t+l is inversely proportional to the number of points found

closest to vi, t , so it is possible to have ai,tl < o_,t2 when t I > t 2. This is not possible in LVQ.

MacQueen attempted to partition feature space 9_ p into c subregions, say (S 1 ..... Sc}, in such a

way as to minimize the functional

,_t,ss

where f is a density function as in LVQ, and vt is the (conditional) mean of the pdf f i

obtained by restricting f to S i, normalized in the usual way, i.e., f i(x) = f (X) Isi/P(Si); and

"v"=(_1' v2 ..... #c) a _cp. Let V t = (Vl, t ..... Vc,t); S t = (Sl(V t) ..... Sc(Vt)) be the minimum distance

partition relative to vt; P(Sj)= prob(xiSj), PJ,t = P(Sj(vt)) = prob(x • Sj(vt)); and vJ,t' the

conditional mean of • over Sj(vt), is _j,t = fsj(Vt)xdIlx)/P(Sj) when P(Sj} > 0, or #J,t = vj,t

when PISj) = 0. MacQeen proved that for the algorithm described by equations (I la-d),

llm _ t=l "l=l I =n--_*_ _ n

0

Since { #j } are conditional means, the partition obtained by applying the nearest prototype

labeling method at (4) to them may not always be desirable from the point of view of

clustering. Moreover, this result does not eliminate the possibility of slow but indefinite

oscillation of the centroids (limit cycles).
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LVQ and SHCM suffer from a common problem that can be quite serious. Suppose the input

data X = {Xl.X2,X3,X4.X5,X6} c 3 2 contains the two classes A ={Xl,X2,X 3} and B = {x4.x5.x6} as

shown in Figure 7. The initial positions of the centroids Vl, 0 and v2, 0 are also depicted in

Figure 7. Since the initial centroid for class 2 (v2, 0) is closer to the remaining four input

points than v I . each of them will update (modify] v 2 only; v I will not be changed on the first

pass through the data. Moreover. both update schemes result in the updated centroid being

pulled towards the data point some distance along the line Joining the two points.

Consequently, the chance for Vl, 0 to get updated on succeeding passes is very low. Although

this results in a locally optimal solution, it is hardly a desirable one.

Figure 7. An initialization problem for LVQ/SHCM

X l = VI,O

X 2 ---- V2, 0

A

X 3

X 4

B

X 5

There are two causes for this problem : (i) an improper choice of the initial centroids, and (U)

each input updates only the winner node. To circumvent problem (i), initialization of the vi's

is often done with random input vectors; this reduces the probability of occurrence of the above

situation, but does not eliminate it. Bezdek et. a117 attempted to solve problem (it) by updating

the winner and some of its neighbors (not topological, but metrical neighbors in 9_p ) with

each input in FLVQ. In their approach, the leaming coefficient was reduced both with time and

distance from the winner. FLVQ. in turn, raised general two issues : defining an appropriate
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neighborhood system, and deciding on strategies to reduce the learning coefficient with

distance from the winner node. These two Issues motivated the development of the GLVQ

algorithm.

We conclude this section with a brief description of the SOFM scheme, again using t to stand for

iterate number (or time). In this algorithm each prototype Vr, t e _Rp is associated with a

display node ,say dr, t • 9_2. The vector vi, t that best matches ( in the sense of minimum

Euclidean distance in the feature space) an incoming input vector x k is then identified as in

(4). vi, t has an "image" di, t in display space. Next, a topological (spatial) neighborhood _di, t )

centered at di, t is defined in display space, and its display node neighbors are located. Finally,

the vector vi, t and other prototype vectors in the inverse image [9_Idi, t ) ]" 1 of spatial

neighborhood _di, t} are updated using a generalized form of update rule (7) :

Vr, t = Vr,t- I + °_rk, t (Xk-Vr, t- i ) ' dr, t e _dl, t ). (13)

The function CXrk,t defines a learning rate distribution on indices (r) of the nodes to be updated

for each input vector x k at each iterate t. These numbers 0rgx)se {by their definition) a sense of

the strength of interaction between (output) nodes. If the {Vr, t} are initialized with random

values and the external inputs x k -- xk(t) are drawn from a time invariant probability density

function f (x), then the point density function of Vr, t ( the number of Vr,t's in the ball B(Xk,¢)

centered at the point XkWlth radius c ) tends to approximate f [x). It has also been shown that

the Vr,t's attain their values in an "orderly fashion" according to f(x) 12. This process is

continued until the weight vectors "stabilize." In this method then, a learning rate distribution

over time and spatial neighborhoods must be defined which decreases with time in order to

force termination [to make ark,t =0). The update neighborhood also decreases with time. While

this is clearly not a clustering strategy, the central tendency property of the prototypes often

tempts users to assume that terminal weight vectors offer compact representation to clusters of

feature vectors; in practice, this is often false.
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4. GENERALIZED LEARNING VECTOR QUANTIZATION (GLVQ)

In this section we describe a new clustering algorithm which avoids or fixes several of the

limitations mentioned earlier. The learning rules are derived from an optimization problem.

Let • • 9_p be a stochastic input vector distributed according to a time invariant probability

distribution f (x), and let i be the best matching node as in (7). Let L x be a loss function which

measures the locally weighted mismatch (error) ofx with respect to the winner :

L =L(x • v I ..... vc)= _glr _x-vrl ,where {14a}
• r=I l

g/r =

1 if r=i

1 , otherwise (14b)

Let X = {x I ..... x n .... } be a set of samples from f(x) drawn at time instants t=l,2 ..... n ..... Our

objective is to find a set of c Vr'S, say V = {v r} such that the locally weighted error functional L x

defined with respect to the winner v i is minimized over X. In other words, we seek to

Minimize • F(V): J'l'.x.p I" r=!igir[X--Vrrf(x)dx' (]5)

For a fixed set of points X = {Xl ..... x n} the problem reduces to the unconstrained optimization

problem:

nc
Minimize • F(V) = t=Ir=l _I ty'Y_g • - Vr

n
(16)

Here L x is a random functional for each realization of x, and F(V) is its expectation. Hence

exact optimization of F using ordinary gradient descent is difficult. We have seen that I, the

index for the winner, is a function of • and all of v r s. The function Lx is well defined. If we

assume that • has a unique distance from each v r , then i and g_ are uniquely determined, and

hence Lx is also uniquely determined. However, ff the above assumptions are not met, then i

and g_r will have discontinuities. In the following discussion we assume that g_. does not have

discontinuities so that the gradient of L x, exists. As most learning algorithms do _a, we
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approximate the gradient of F(V) by the gradient of the sample function L x. In other words, We

attempt to minimize F by local gradient descent search using the sample function L x. It is our

conjecture that the optimal values of v r's can be approximated in an iterative, stepwise

fashion by moving in the direction of gradient of Lx . The algorithm is derived as follows (for

notational simplicity the subscript for x will be ignored). First rewrite L as :

L = r_ig_.•-v r = •-v + _ •-v r / •-vj

= Ix-vt£ + 1- _x-v+_/ j_llX-vj_" (17)

Differentiating L with respect v i yields (after some algebraic manipulations) :

VvL(vl) = -2(x-v i)  -DJ=-v,lr (18)

where D = r=_i]x - Vr_ " On the other hand, differentiation of L with respect to vj (J = i) yields:

I f
v u-j) = - 2(,,- ,) " - "" (19)

Update rules based on (17) and (18) are •

D 2- D + Ix - v,.t_,_

Vl,t = Vt,t_ I+G t [X-Vt.t_ I) D2
for the winner node i, and (20)

X -- Vi,t_l_

Vj.t = W J,t-I + [_t (X -- Wj,t_ I) D2
for the other (c-1) nodes, J_i. (2 I)
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To avoid possible oscillations of the solution, the amount of correction should be reduced as

iteration proceeds. Moreover, like optimization techniques using subgradient descent search,

as one moves closer to an optimum the amount of correction should be reduced (in fact, a t

should satisfy the following two conditions : as t _ -; at _0 and Z at _ .)19. On the other

hand, in the presence of noise, under a suitable assumption about subgradients, the search

becomes successful ffthe conditions in (I0) are satisfied. We recommend a decreasing sequence

of at ( 0 < at < I) satisfying [I0), which insure that a t is neither reduced too fast nor too slow.

From the point of view of learning, the system should be stable enough to remember old

learned patterns, and yet plastic enough to learn new patterns (Grossberg calls it the stability-

plasticity dilemma) 2o. Condition (10a) enables plasticity, while (10b) enforces stability . In

other words, an incoming input should not affect the parameters of a learning system too

strongly, thereby enabling it to remember old learned patterns (stability]; at the same time,

the system should be responsive enough to recognize any new trend in the input (plasticity].

Hence, o_t can be taken as 0c0(l-t/T}, where T is the maximum number of iterations the learning

process is allowed to execute and _0 is the initial value of the learning parameter. Referring to

(20), we see that when the match is perfect then nonwinner nodes are not updated; in other

words, this strategy then reduces to LVQ. On the other hand, as the match between • and the

winner node v i decreases, the impact on other (nonwinner) nodes increases. This seems to be

an intuitively desirable property. We summarize the GLVQ algorithm as follows:

Jl ............ LJ .. IlllJl I I JllJ[

GLV9 Clusterln_ _OHthm:

JJ ] .rill .... I[III I

GLVQ1. Given unlabeled data set X = {x 1, x 2 .... x n} c _P. Fix c, T, and e > 0.

GLVQ2. Initialize V0= (Wl, 0 ..... Vc, 0) e _q_, and learning rate oO e (1.01.

GLVQ3. For t = 1, 2 ..... T.

a. C_npute at = °O (l-t/T}.

While l_n

b l.k.,,11: iix .j,,ii
c. Update all (c} weight vectors {Vr,t} with

D2-D+Ix k - vLt_ir c r
Wi,t = Vl,t-I + _t {Xk - VLt-I) 9 2 ' D = r_l]X - v r
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Vr. t = Vr.t_ 1+ Ott

Wend

(Xk-Vr,t_l) [Xk-DV_'t-l_ (r_i)

C n C

_v - =_:]_v -

e. If E t < _ stop; Else

Next t.

GLVQ4. Compute non-iteratively the nearest prototype GLVQ c-partition of X •

, D= X-V r

{i.= , - - Vj , _

U GLVQt_ 0; otherwise

Ommumts ,,_ GLVl_ :

I. There is no need to choose an update neighborhood.

, I<L<c and l<k__n.

2. Reduction of the learning coefficient with distance (either topological or in 9_p) from the

winner node is not required. Instead, reduction is done automatically and adaptively by the

learning rules.

3. For each input vector, either all nodes get updated or no node does. When there is a perfect

match to the winner node, no node is updated. In this case GLVQ reduces to LVQ.

4. The greater the mismatch to the winner ( i.e., the higher the quantization error), the greater

the impact to weight vectors associated with other nodes. Quantization error is the error in

representing a set of input vectors by a prototype - in the above case the weight vector

associated with the winner node.

5.The learning process attempts to minimize a well-defined objective function.

6. Our termination strategy is based on small successive changes in the cluster centers. This

method of algorithmic control offers the best set of centroids for compact representation

(quantization) of the data in each cluster.
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4. FuzzY _G VECTOR gU_TXON (FLVQ)

Huntsberger and AJJimarangsee _ used SOFMs to develop clustering algorithms. Algorithm 1

in _ is the SOFM algorithm with an additional layer of neurons. This additional set of

neurons does not participate in weight updating. After the self-organizing network terminates,

the additional layer, for each input, finds the weight vector (prototype) closest to it and assigns

the input data point to that class. A second algorithm in their paper used the necessary

conditions for FCM to assign a membership value in [0, I] to each data point. Specifically.

Huntsberger and AJJlmarangsee suggested fuzzlfication of LVQ by replacing the learning rates

{Ctik,t} usually found in rules such as (7) with fuzzy membership values {Uik, t} computed with

the FCM formula 2:

-2

i_ik.t = Uk.t J_=lDjk,t )
(22}

| i

where Dac.t : Ixk - vt.,l A" Numerical results reported in Huntsberger and AJJimarangsee suggest

that in many cases their algorithms and standard LVQ produce very similar answers. Their

scheme was a partial integration of LVQ with FCM that showed some interesting results.

However, it fell short of realizing a model for LVQ clustering; and no properties regarding

terminal points or convergence were established. Moreover. since the objective of these LVQ is

to find cluster centroids (prototypes), and hence clusters, there is no need to have a topological

ordering of the weight vectors. Consequently. the approach taken in 11 seems to mix two

objectives, feature mapping and clustering, and the overall methodology is difficult to

interpret in either sense.

Integration of FCM with LVQ can be more fully realized by defining the learning rate for

Kohonen updating as •

-2m t

a_., = (Ulk.,) m' = (j=l_" D_'t_m'-lDjk.t)

m t=m o+t[{mf-m o)/T]=m o+tAm •

, where (23a)

mr. m 0 > l ; t= 1,2 .... T. (23b)

m t replaces the (fixed) parameter m in (22}. This results in three families of Fuzzy LVQ or FLVQ

algorithms, the cases arising by different treatments of paramerer m t. In particular, for
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t e {1,2 ..... T}, we have three cases depending on the choice of the initial (m o) and final (mr)

values of m:

I. m o > ms _ {mr} $ mf • Descending FLVQ {24a)

2. m 0 < mf _ {mr} $ mf •Ascending FLVQ (24b)

3. m o = my _ m t -=m o = m : FLVQ _ FCM (24c)

Cases I and 3 are discussed at length by Bezdek et. al. 17. Case 2 is fully discussed in Tsao et.

al. 21. Equation (24c} asserts that when m 0 = mf, FLVQ reverts to FCM; this results from

defining the learning rates via (23a), and using them In FLVQ3.b below. FLVQ is not a direct

generalization of LVQ because it does not revert to LVQ in case all of the Uik,t's are either 0 or I

(the crisp case). Instead, ff m 0 = rnf = 1, FCM reverts to HCM, and the HCM update formula,

which ts driven by finding unique winners, as is LVQ, is a different formula than (7). FLVQ is

perhaps the closest possible link between LVQ and c-Means type algorithms. We provide a

formal description of FLVQ :

FLVQ 1. Given unlabeled data set X = [x 1" z2 ..... Xn}. Fix c, T, ] in and 8 > 0.

FLVQ2. nitlaltze v0 = ( Vl,0 ..... Vc, 0) E 91cp . Choose m o, ms >I.

FLVQ3. For t = 1, 2 ..... T.

a. Compute all (cn) leaming rates {aik,t} with (23}.

b. Update all (c) weight vectors {vi, t} with vi, t = v i.t - I

C

Evc._uteEt=ivt-vt_li=i= J u-v,.t_l] •

d. If F,t < ¢ stop; Else

Next t.
_JH ........................................................................................i................I..............IlL....................... [ II ...........

n n

+ E¢,....{xL-vl,t_I)IE
k=l _.t _ s=l ts.t

For fixed c, {vi, t} and m t, the learning rates aik,t = {Uik,t )mt at (23a) satisfy the following •

)., f" ,< (25)

where K is a positive constant. Apparently the contribution of x k to the next update of the node

weights is inversely proportional to their distances from it. The "winner" in (29) is the vi,t_ 1
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closest to x k, and it will be moved further along the line connecting via - 1 to x k than any of the

other weight vectors. Since _ ulk.t = 1 _ _ ark _ < 1, this amounts to distributing partial updates

across all c nodes for each Xke X. This is in sharp contrast to LVQ, where only the winner is

updated for each data point.

In descend/ng FLVQ (24a), for large values of m t (near mo), all c nodes are updated with lower

individual learning rates, and as mt--_ 1, more and more of the update is given to the "winner"

node. In other words, the lateral distribution of learning rates is a function of t, which in the

descending case *sharpens" at the winner node (for each x k) as m t _ I. Finally, we note

again that for fixed m t, FLVQ updates the {viA} using the conditions that are necessary for

FCM; each step of FLVQ is one iteration of FCM.

Figure 8. Updating Feature Spaee Prototypes in FLV_ Clustering Nets.

Vc,t

Vc.t-1

aikt{X k- v/,t_ I)

vi,t-1

Figure 8 illustrates the update geometry of FLVQ; note that every node is (potentially} updated

at every iteration, and the sum of the leaming rates is always less than or equal to one.

Comments ms lq,VQ :

1. There is no need to choose an update neighborhood.

2. Reduction of the learning coefficient with distance (either topological or in _P) from the
winner node is not required. Instead, reduction is done automatically and adaptively by the
leaming rules.
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3. The greater the mismatch to the winner ( i.e., the higher the quantizatlon error), the smaller
the impact to the weight vectors associated with other nodes (recall (25) and (2c)}. This is
directly opposite to the situation in GLVQ.

4.The learning process attempts to minimize a weU-defined objective function (stepwise).

5. Our termination strategy is based on small successive changes in the cluster centers. This
method of algorithmic control offers the best set of centroids for compact representation
(quantization) of the data in each cluster.

6. This procedure depends on generation of a fuzzy c-partition of the data, so it is an iterative
clustering model - indeed, stepwise, it is exactly fuzzy c-means _7

5. _ SEGMENTATION WITH GLVQ AND FLVQ

In this section we illustrate the (FLVQ and GLVQ) algorithms with image segmentation, which

can be achieved either by finding spatially compact homogeneous regions in the image; or by

detecting boundaries of regions, i.e., detecting the edges of each region. We have applied our

clustering strategies to both paradigms. Image segmentation by clustering raises the important

issue of feature extraction / selection. Generally, features relevant for identifying compact

regions are different from those useful for the edge detection approach.

Feature selectkm f_r homogeneous region extractio_

When looking for spatially compact regions, feature vectors should incorporate information

about the spatial distribution of gray values. For pixel (i,j) of a digital image F= {(i,J) l I < i < M ;

1 < J < N}, we define the d th order ne/ghb_hood of {iJ), where d > 0 is an integer as ;

N d
'.J ={{k,l)eF} suchthat {i,J)_ N d,,j andff {k,l)eNdj thegn (i.j) eNd.l . (26)

Several such neighborhoods are depicted in Figure 9, where N di.j consists of all pixels marked

with an index < d. For example N 1 is obtained by taking the four nearest neighbor pixels to

(i,J). Similarly, N2 is defined by its eight nearest neighbors, and so on. N di.j as defined in (26} is

the standard neighborhood definition for modeling digital images using Gibbs or Markov

Random Fields. To define feature vectors for segmentation, we extend the definition of a d-th

order neighborhood at (26) to include the center pixel (i,j):

N d" = N d
i.j l.j u {(t, j)} ; Dij= I/_l.jl {27}
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Figure 9. An Ordered Neighborhood system
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Next. let L= { 1,2 ..... G} be the set of gray values that can be taken by pixels in the image, and let

_i,J) be the intensity at (iJ} in F, that is, f: F _-_ L. We define the collection of gray values of all

pixels that belong to N d"tj as:

Sdj={f(k.l_ (k.l)a N_t.j } (28}

Note that S d may contain the same gray value more than once. We say two neighborhoods
i.J

N d' N d"
i.j ar_ k._ are equally homogeneous in case S d and S d_.j k.l are identical up to a permutation.

This assumption is natural and useful as long as the neighborhood size is small. To see this,

consider two 100x100 neighborhoods that contain 5000 pixels with gray value I and 5000

with value G. Satisfaction of this property gives the impression of two perfectly homogeneous

regions ; but in fact one of these neighborhoods might have all 5000 pixels of each intensity in,

say, the upper and lower halves of the image, while other neighborhood has a completely

random mixture of black and white spots. When the neighborhood size is small, however.

spatial rearrangement of a few gray values among many more in the entire image will not

create a much different impression to the human visual system as far as homogeneity of the

region is concerned. Therefore, for small values of d we can derive features for (iJ) from S d
i.j

which are relatively independent of permutation of its elements (typically, such features

might include the mean, standard deviation, etc. of the intensity values in S di.j )"

Subsequently. these features are arrayed into a plxel vector xij for each p/xel. In this
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investigation, we used the gray values in S d_.j themselves as the feature vector for pixel (i,J);
m

thus, each (i.j) in F (excluding boundaries) is associated with xij in _ '

Since FLVQ and GLVQ both use distances between feature vectors, we sorted the values in S d
t.J

to get each xij. Sorting can be done either in ascending or in descending order, but the same

strategy must be used for all pixels. We remark that an increase in the d-size of the

neighborhood will obscure finer details in the segmented image: conversely, a very low value

of d usually results in too many small regions. Experimental investigation suggests that

3 < d < 5 provides a reasonable tradeoff between fine and gross structure.

Feature selection for edge extraction

Loosely speaking edges are regions of abrupt changes in gray values. Therefore, features used

for extraction of homogeneous regions are not suitable for edge-nonedge classification. For

this approach, we nominate a feature vector xij in _a with three components • standard

deviation, gradient 1 and gradient 2. In other words, each pixel is represented by a 3-tuple xij

= (oll, J),Gl(l,J),G2(l,J)). The standard deviation is defined on S d_.j as follows:

. I _{ )2,1/2oil, J) = i,---_r-7, 2.jg- ju_., j , (29)
I Oi,jl gES_j "

where _cJ is the average gray value overS_j . Since standard deviation measures variation of

gray values over the neighborhood, using too large a neighborhood will destroy its utility for

edge detection. The two gradients are de/'med as :

Gl(i.J) =Ifl+1,j - fl_l,jl+Ifi.j_l - fl.j+ll " and

G2(L J} =I f_+n,j+l- f_-l,J-11+I fl+LJ-I- ft-1,l+l I"

(30)

[311

Note that G I measures intensity changes in the horizontal and vertical directions, while G2

takes into account diagonal edges; this Justifies the use of both GI and G2.

Implementation

FLVQ (ascending strategy} and GLVQ were used for segmentation of the house image depicted in

Figure 10(a). This image is a very complex image for segmentation into homogeneous regions,

because it has some textured portions (the trees) behind the house. For the region extraction
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scheme we used neighborhoods of order d=3 and d=5. The number of classes chosen was c=8.

The computing protocols used for different runs are summarized in Table 2.

l"abk. 2. C_pnti_ protocols far the _l_m_taUo_

Since FLVQ produces fuzzy labels for each pixel vector, the fuzzy label vector is defuzzffied

using the maximum membership rule at (5). Thus, each pixel receives a crisp label

corresponding to one of the c classes in the segmented image. Coloring of the segmented image

is done by using c distinct gray values, one for each class. Defuzzffication is not required for

the GLVQ algorithm as it produces hard labels.

Figure I0 contains some typical outputs of both FLVQ and GLVQ using the region-based

segmentation approach. To show the effect of sorting we ran both algorithms with unsorted

and sorted feature vectors. Figure lO(b) represents the segmented output produced by FLVQ

with d=3 and unsorted features; while figure 10(c} displays the output under the same

conditions, but with sorted features. Comparing figures 10(b) and (c) one sees that the noisy

patches on the roof of the house that appear in Fig. 10(b) are absent in Fig. 10(eL Similar

occurences can be found in other portions of the image. This demonstrates that sorted pixel

vectors seem to afford some noise cleaning ability. Figure lO(d} was produced with FLVQ using

sorted neighborhoods of size 5. Note that the textured tree areas have been segmented more

compactly; this illustrates the effect of increasing the neighborhood size. Figures I0 (e) and (f)

are produced by the GLVQ algorithm with sorted neighborhoods of orders 3 and 5, respectively.

FLVQ norm c mo Am T _ iterations

Fig. 10(b) Euclidean 8 1.05 0.2 80 0.5 25

Fig. 10(c) Euclidean 8 1.05 0.2 80 0.5 24

Fig. 10(d) Euclidean 8 1.05 0.2 80 0.5 29

Fi_. IIIa I Euclidean 2 1.05 0.2 80 0.5 17

CL_ norm c °O A_ T _ iterations

Fig. 10(e,f) Euclidean 8 0.6 0.06 100 0.5 100

F_. ll(b I Euclidean 2 0.6 0.06 100 0.5 I00

Comparing figures I0(c) and (e} we find that FLVQ and GLVQ are comparable for the house, but

GLVQ extracts more compact regions for the tree areas. Another interesting thing to note is

that for GLVQ with a window of size 5x5, the roof of the house is very nicely segmented with

sharp inter-region boundaries; this is not true for all other cases using either algorithm.
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Fig. lO[a) Input hn_e c/"a house Fig. 10_} FL_wl/_h N 3 (unsorted)
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We used the same image (Figure I0 [a)) to test the edge-based approach. The results produced by

FLVQ and GLVQ are shown in Figures 1 1(a} and (b), respectively. Comparing these two figures,

one can see that both algorithms have extracted the compact regions nicely. A careful

analysis of the images shows that FLVQ detects more edges than GLVQ. As a result of this FLVQ

produces some noisy edges and GLVQ fails to extract some important edges. To summarize,

both algorithms produce reasonably good results, but GLVQ has a tendency to produce larger

compact (homogeneous) areas than that by the FLVQ. It appears that GLVQ is less sensitive to

noise which might cause a failure to extract liner details.

1:Ub)ca,;v9(ed_Iooaed_

6. CONCLUSIONS

We have considered the role of and interaction between fuzzy and neural-llke models for

clustering, and have illustrated two generalizations of LVQ with an application in image

segmentation. Unlike methods that utilize Kohonen's SOFM idea, both algorithms avoid the

necessity of defining an update neighborhood scheme. Both methods are designed to optimize

performance goals related to clustering, and both have update rules that allocate and distribute

learning rates to (possibly} all c nodes at each pass through the data. Ascending and descending

FLVQ updates all nodes at each pass, and learning rates are related to the fuzzy c-means

clustering algorithm. This yields automatic control of the learning rate distribution and the

update neighborhood is effectively all c nodes at each pass through the data. FLVQ can be

considered a (stepwise) implementation of FCM. GLVQ needs only a specification of the
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learning rate sequence and an initialization of the c protoytpes. GLVQ either updates all

nodes for an input vector, or it does not update any. When an input vector exactly matches the

winner node, GLVQ reduces to LVQ. Otherwise, all nodes are updated inversely proportionally

to their distances from the input vector.
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Possibilistic Clustering for Shape Recognition I
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Abstract

Clustering methods have been used extensively in computer vision and pattern recognition.
Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering in that
total commitment of a vector to a given class is not required at each iteration. Recently fuzzy
clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also
clusters which are actually "thin shells", i.e., curves and surfaces. Most analytic fuzzy clustering
approaches are derived from Bezdek's Fuzzy C-Means (FCM) algorithm. The FCM uses the
probabilistic constraint that the memberships of a data point across classes sum to one. This
constraint was used to generate the membership update equations for an iterative algorithm.
Unfortunately, the memberships resulting from FCM and its derivatives do not correspond to the
intuitive concept of degree of belonging, and moreover, the algorithms have considerable trouble in
noisy environments. Recently, we cast the clustering problem into the framework of possibility
theory. Our approach was radically different from the existing clustering methods in that the
resulting partition of the data can be interpreted as a possibilistic partition, and the membership
values may be interpreted as degrees of possibility of the points belonging to the classes. We
constructed an appropriate objective function whose minimum will characterize a good possibilistic
partition of the data, and we derived the membership and prototype update equations from
necessary conditions for minimization of our criterion function. In this paper, we show the ability
of this approach to detect linear and quartic curves in the presence of considerable noise.

lResearch performed for NASAJJSC through a subcontract from the RICIS Center at the University of
Houston - Clear Lake
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I. Introduction

Clustering has long been a popular approach to unsupervised pattern recognition. It has
become more attractive with the connection to neural networks, and with the increased attention to

fuzzy clustering. In fact, recent advances in fuzzy clustering have shown spectacular ability to
detect not only hypervolume clusters, but also clusters which are actually "thin shells", i.e., curves
and surfaces [ 1-7]. One of the major l:actors that influences the determination of appropriate groups
of points is the "distance measure" chosen for the problem at hand. Fuzzy clustering has been
shown to be advantageous oven" crisp (or traditional) clustering in that total commitment of a vector
to a given class is not required at each iteration.

Boundary detection and surface approximation are important components of intermediate-
level vision. They are the first step in solving problems such as object recognition and orientation
estimation. Recently, it has been shown that these problems can be viewed as clustering problems
with appropriate distance measures and prototypes [ 1-7]. Dave's Fuzzy C Shells (FCS) algorithm
[2] and the Fuzzy Adaptive C-Shells (FACS) algorithm [7] have proven to be successful in
detecting clusters that can be described by circular arcs, or more generally by elliptical shapes.
Unfortunately, these algorithms are computationally rather intensive since they involve the solution
of coupled nonlinear equations for the shell (prototype) parameters. These algorithms also assume
that the number of clusters are known. To overcome these drawbacks we recently proposed a
computationally simpler Fuzzy C Spherical Shells (FCSS) algorithm [6] for clustering
hyperspherical shells and suggested an efficient algorithm to determine the number of clusters
when this is not known. We also proposed the Fuzzy C Quadric Shells (FCQS) algorithm [5]
which can detect more general quadric shapes. One problem with the FCQS algorithm is that it
uses the algebraic distance, which is highly nonlinear. This results in unsatisfactory performance
when the data is not very "clean" [7]. Finally, none of the algorithms can handle situations in
which the clusters include lines/planes and there is much noise. In [8], we addressed those issues
in a new approach called Plano-Quadric Clustering. In this paper, we show how that algorithm,
coupled with our new possibilistic clustering, can accurately find linear and quadric curves in the
presence of noise.

Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy C-Means
(FCM) algorithm [9]. The FCM uses the probabilistic constraint that the memberships of a data
point across classes must sum to one. This constraint came from generalizing a crisp C-Partition of
a data set, and was used to generate the membership update equations for an iterative algorithm.
These equations emerge as necessary conditions for a global minimum of a least-squares type of
criterion function. Unfortunately, the resulting memberships do not represent one's intuitive notion
of degrees of belonging, i. e., they do not represent degrees of "typicality" or "possibility".

There is another important motivation for using possibilistic memberships. Like all
unsupervised techniques, clustering (crisp or fuzzy) suffers from the presence of noise in the data.
Since most distance functions ane geometric in nature, noise points, which are often quite distant
from the primary clusters, can drastically influence the estimates of the class prototypes, and
hence, the final clustering. Fuzzy methods ameliorate this problem when the number of classes is
greater than one, since the noise points tend to have somewhat smaller membership values in all the
classes. However, this difficulty still remains in the fuzzy case, since the memberships of
unrepresentative (or noise) points can still be significantly high. In fact, if there is only one real
cluster present in the data, there is essentially no difference between the crisp and fuzzy methods.

On the other hand, if a set of feature vectors is thought of as the domain of discourse for a

collection of independent fuzzy subsets, then there should be no constraint on the sum of the
memberships. The only real constraint is that the assignments do really represent fuzzy
membership values, i.e., they must lie in the interval [0,1]. In [10], we cast the clustering problem
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into the framework of possibility theory. We briefly review this approach, and show it's

superiority to recognize shapes fi'om noisy and incomplete data.

II. Possibilistic Clustering Algorithms

The original FCM formulation minimizes the objective function given by

C N C

J(L,U) =i= lj=l t/t 0 ) d , subject to i= /tij = 1 forallj. (1)

In (1), L = (&l ..... &C) is a C-tuple of prototypes, d 2ij is the distance of feature point xj to cluster

&i, N is the total number of feature vectors, C is the number of classes, and U = [/tiff is a C ×N

matrix called the fuzzy C-partition matrix [9] satisfying the following conditions:

/tO _ [0,11 for all i and j,

N

O< _., U.: < N for aili.
j=1

c

i_l /tO = 1 forallj, and

Here,/tij is the grade of membership of the feature point xj in cluster &i, and m _ [1,oo) is a

weighting exponent called the fuzzifier. In what follows, /]'i will also be used to denote the ith

cluster, since it contains all of the parameters that define the prototype of the cluster.

Simply relaxing the constraint in (1) produces the trivial solution, i. e., the criterion
function is minimized by assigning all memberships to zero. Clearly, one would like the
memberships for representative feature points to be as high as possible, while unrepresentative
points should have low membership in all clusters. This is an approach consistent with possibility

theory [ 11]. The objective function which satisfies our requirements may be formulated as:

C N C N

Z Z--"' Z Z(- -"= _/tij) d + qiJm(L'U) i= 1 j = 1 i= 1 j = 1 l-/tiJ ) "
(2)

where r/i are suitable positive numbers. The first term demands that the distances from the feature

vectors to the prototypes be as low as possible, whereas the second term forces the/tO to be as

large as possible, thus avoiding the trivial solution. The following theorem, proved in [9], gives
necessary conditions for minimization, hence, providing the basis for an iterative algorithm.

Th¢0r_m;

Suppose that X = {x 1, x 2 ..... XN} is a set of feature vectors, L = ('_1 ..... &C) is a

C-tuple of prototypes, d_ is the distance of feature point xj to the cluster prototype &i, (i = 1,

.... C; j = 1 ..... N), and U = [/tiff is a C ×N matrix of possibilistic membership values. Then U

229



-1
may be a global minimum for Jm(L,U) only if/.t o = 1 + . The necessary

conditions on the prototypes are identical to the corresponding conditions in the FCM and its
derivatives.

Thus, in each iteration, the updated value of/.t o depends only on the distance ofxj. from

&i, which is an intuitively pleasing result. The membership of a point in a cluster should be

determined solely by how far it is from the prototype of the class, and should not be coupled to its
location with respect to other classes. The updating of the prototypes depends on the distance
measure chosen, and will proceed exactly the same way as in the case of the FCM algorithm and its
derivatives.

The value of r/i determines the distance at which the membership value of a point in a

cluster becomes 0.5 (i. e., "the 3 dB point"). Thus, it needs to be chosen depending on the desired
"bandwidth" of the possibility (membership) distribution for each cluster. This value could be the

same for all clusters, if all clusters are expected to be similar. In general, it is desirable that r/i

relates to the overall size and shape of cluster _i. Also, it is to be noted that rh determines the

relative degree to which the second term in the objective function is important compared to the first.

If the two terms are to be weighted roughly equally, then Fli should be of the order of dq . In

practice we find that the following definition works best.
N

lao

j=l (3)
/7i -- N

Z Ill

j=l

This choice makes r/i the average fuzzy intra-cluster distance of cluster A,i. The value of r/i can be

fixed for all iterations, or it may be varied in each iteration. When rli is varied in each iteration, care

must be exercised, since it may lead to instabilities. Our experience shows that the final clustering

is quite insensitive to large (an order of magnitude) variations in the values of r/i.

III. The Possibilistie C Plano-Quadrie Shells Algorithm

Suppose that we are given a second degree curve "]'i characterized by a prototype vector

T
P i = [Pi l, Pi2 ..... pit.]

to which it is desired to fit points xj obtained through the application of some edge detection

T
algorithm. Pi contains the coefficients of the second-degree curve that describes cluster i.. lf a

point x has coordinates [x I ...... rn], then let
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2 XlX2 .... _(n-1)Xn,Xl, x2 ..... 1]Tq = [x , x 2 ...... _:n' • Xn' "

T
The equation of the second-degree curve that describes cluster i is given bypi q = O.

When the exact (geometric) distance has no closed-form solution, one of the methods
suggested in the literature is to use what is known as the "approximate distance" which is the first-
order approximation of the exact distance. It is easy to show [ 12] that the approximate distance of a

point from a curve is given by

d2Aij = dA2(Xj,_i) = _Qij d2Qij (4)

iV d2Qijl2 = piTDjDjTpi ,

where VdZ'-'ijt,_is the gradient of the distance functional

2 XlX2 ..... r(n- 1)Xn,Xl, x2, • x n, 1]T (5)piTq = [Pil, Pi2 ..... Pir][X_, x_ ...... rn .....

evaluated at xj. In (4) the matrix Dj is simply the Jacobian ofq evaluated at xj.

One can easily reforrnulate the quadric shell clustering algorithm with d_Aij as the

underlying distance measure. It was shown in [8] that the solution to the parameter estimation
problem is given by the generalized eigenvector problem

FiPi = liGiPi, (6)

where

Fi =

Mj = qj 4, and

N

Gi = j =E 1 (Pij) m Dj Dj T

which can be converted to the standard eigenvector problem if the matrix Gi is not rank-deficient.

Unfortunately this is not the case. In fact, the last row of Dj is always [0 ..... 0]. Equation (6)
can still be solved using other techniques that use the modified Cholesky decomposition [ 13], and
the solution is computationally quite inexpensive when the feature space is 2-D or 3-D. Another
advantage of this constraint is that it can also fit lines and planes in addition to quadrics. Our
experimental results show that the resulting algorithm, which we call the Possibilistic C Piano-
Quadric Shells (PCPQS) algorithm, is quite robust in the presence of poorly defined boundaries (i.
e., when the edge points are somewhat scattered around the ideal boundary curve in the 2-D case
and when the range values are not very accurate in the 3-D case). It is also very immune to impulse
noise and outliers. Of course, if the type of curves required are restricted to a single type, e.g.,
lines, or circles, or ellipses, simpler algorithms can be used with possibilistic updates, as will be
seen.
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IV. Determination of Number of Clusters

The number of clusters C is not known a priori in some pattern recognition applications
and most computer vision applications. When the number of clusters is unknown, one method to
determine this number is to perform clustering for a range of C values, and pick the C value for
which a suitable validity measure is minimized (or maximized) [14]. However this method is
rather tedious, especially when the number of clusters is large. Also, in our experiments, we found
that the C value obtained this way may not be optimum. This is because when C is large, the
clustering algorithm sometimes converges to a local minimum of the objective function, and this
may result in a bad value for the validity of the clustering, even though the value of C is correct.
Moreover, when C is greater than the optimum number, the algorithm may split a single shell
cluster into more than one cluster, and yet achieve a good value for the overall validity. To
overcome these problems, we proposed in [8] an alternative Unsupervised C Shell Clustering
algorithm which is computationally more efficient, since it does not perform the clustering for an
entire range of C values.

Our proposed method progressively clusters the data starting with an overspecified number
Cmax of clusters. Initially, the FCPQS algorithm is run with C=Cmax. After the algorithm

converges, spurious clusters (with low validity) are eliminated; compatible clusters are merged; and
points assigned to clusters with good validity are temporarily removed from the data set to reduce
computations. The FCPQS algorithm is invoked again with the remaining feature points. The
above procedure is repeated until no more elimination, merging, or removing occurs, or until
C=I.

V. Examples of Possibilistic Clustering for Shape Recognition

Figures 1 and 2 show the detection of a circular "fractal edge" from a synthetically
generated image. Figure l(a) is the original composite fractal image; Figure l(b) shows what a
gray-scale edge operator finds (or doesn't find); figure 1(c) is the output of the horizontal fractal
edge operator; with Figure l(d) giving the maximum overall response of the fractal operators in
four directions. Figure 2(a) depicts the (noisy) thresholded and thinned result from Figure l(d).
Figure 2(b) gives the final prototype found by the FPQCS (which, since there is only one cluster
present, is the same as the crisp version). Note how the presence of noise distorts the final

prototype. Figure 2(c) shows the possibilistic algorithm output, which is superimposed on the
original image in Figure 2(@. The results of the PPQCS algorithm are virtually unaffected by
noise. Several examples comparing crisp, fuzzy and possibilistic versions of clustering can be
found in [6,8,10].

Figure 3 depicts the algorithm applied to the image of a model of the Space Shuttle. Figure
3(a) is the original image. Figure 3(b) gives the output of a typical edge operator. Note that, due to
the rather poor quality of the original image, the edges found both noisy and incomplete. This data
was then input into the possibilistic plano-qua,'dic clustering algorithm. Figure 3(c) gives the eight
complete prototypes which WCl'e found after running the algorithm. Finally, Figure 3(d) displays
the prototype drawn only where sufficient edges points exist.

VI. Conclusions

In this paper, we demonstrated how our new possibilistic approach to objective-function-
based clustering cot, pled with our piano - quadric shells algorithm can recognize first and second
degree shapes from incomplete and noisy edge data. This approach is superior to both crisp and
fuzzy clustering, as well as to traditional methods such as the Hough Transform. Extensions of
this approach to other classes of shapes is currently undc,'way.
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Figure 1. Detection of a fractal circular edge.
(a) Upper Left. Original fractal composite image.
(b) Upper RiGht. Output of gray scale edge operator.
(c) Lower Left. Output of "horizontal" fractal edge operator.
(d) Lower Right. Results of Maxirnum rrlagnitude t)l outputs of four directions of f,'actal operators.
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Figure 2. Recognition of circular boundary.
(a) Upper Left. Figure 1(d) thresholded and thinned.
(b) Upper Right. Circular prototype found by fuzzy (or crisp) clustering.
(c) Lower Left. Circular prototype found by possibilistic clustering.

(d) Lower Right• Possibilistic prototype superimposed on original image.
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Figure 3. Recognition of Shuttle model boundaries.
(a) Upper Left. Original Shuttle image.
(b) Upper Right. Incomplete and noisy edges Ibund by edge operator.
(c) Lower Left. Prototypes Iound by Possibilistic Plano-Quadric clustering.
(d) Lower Right. Possibilistic prototypcs supe,'imposed drawn where there is sufficient edge

information.
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Abstract

Real number genetic algorithms (GA) have been applied for tuning

fuzzy membership functions of three controller applications. The

first application is our "Fuzzy Pong" demonstration, a controller that

controls a very responsive system. The performance of the

automatically tuned membership functions exceeded that of manually

tuned membership functions both when the algorithm started with

randomly generated functions and with the best manually-tuned

functions. The second GA tunes input membership functions to

achieve a specified control surface. The third application is a

practical one, a motor controller for a printed circuit manufacturing

system. The GA alters the positions and overlaps of the membership

functions to accomplish the tuning. This paper discusses the

applications, the real number GA approach, the fitness function and

population parameters, and the performance improvements achieved.

Directions for further research in tuning input and output

membership functions and in tuning fuzzy rules are described.

Introduction

A significant task in building fuzzy control systems is tuning

the membership functions (MBFs) to improve or optimize the

performance of the controller. The tuning task has been

accomplished with fuzzy systems 1, neural networks 2, and genetic

algorithms 3 (GAs). In this paper, we describe the use of real number

genetic algorithms 4 to successfully tune membership functions for

several fuzzy control systems. A significant feature of this work is

that the input MBFs are tuned whereas many previous efforts have

concentrated on tuning the output MBFs. Because both input and

output membership functions are required to define the control

surface for the fuzzy controller, this offers an added degree of
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flexibility to the tuning process. Whether such flexibility is, in fact,

beneficial to fuzzy controller tuning is yet to be determined.

We first describe some aspects of real number genetic

algorithms because that representation of genetic algorithms is less

familiar than others. Next, we describe an application of matching a

predefined control surface by tuning membership functions for the

inputs. Third, we discuss the fuzzy pong application, a controller for

an air flow driven by a fan and balancing a ping pong ball at a set

position in a plastic tube. Fourth, we briefly discuss results for

applying the technique to an AC servomotor control system. We then
conclude with remarks about future directions.

Real Number Genetic Algorithms

Many genetic algorithm applications and theorems are based

on bit string representations in which the parameters to be optimized

are encoded in binary numbers, concatenated, and treated for GA

manipulations as one continuous bit string. In tuning fuzzy

membership functions, we found it more useful to keep the real

number representation for the parameters of the MBFs and to

manipulate the numbers using crossover and mutation techniques

suitable to the real number representation 4.

Fig. 1 shows the representation of a collection of parameters

as a list of real numbers. For the applications discussed below, we

used five symmetric triangular membership functions with two

parameters each, namely, the upper and lower ends of the support,

for each universe of discourse. The fact that we need to represent

pairs of ordered numbers favors the real number representation. We

used twenty individuals in our populations, for convenience.

Because real number GAs are not extensively used, a standard

set of operators is not yet defined. Fig. 2 illustrates our genetic

algorithm operators for real number GAs: merge, crossover, mutate,

and creep. Merge averages the parameters of two individuals to form

the offspring. Crossover exchanges the real numbers between two fit

individuals, pairwise. For the problem with two MBFs, the net effect

is to replace left or right extents of the MBFs between fit individuals

to concentrate the best combinations within a single individual.

Presumably, the other individual would lose in the fitness evaluation

during the next cycle. Mutate begins by selecting which fuzzy
variable is to be selected on a random draw. For our case of two

fuzzy input variables, the probability was 50-50 of selecting either

one of the MBFs. Having selected the MBF, we perturb its
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parameters by randomly selected magnitudes. Creep is an operation

in which all parameters of an individual are randomly perturbed.

Creep is a hybridizing operation well-suited for search in the local
area of an individual if the random variations are limited to some

maximum. Our process used 5 individuals mated with the most fit of

a generation by crossover, 5 most fit individuals mutated, 5 merged

individuals from a pairwise competition, and 5 new individuals

selected by random draw as the basis for choosing a new generation.

A variant of the creep operator was used in later generations.

The input membership functions are symmetrical and

described by an upper and lower end of the support. The peak of the

triangular shape is midway between these extremes and has

membership value of one. The controller we used was a two-input

one output generic controller that could be customized to the

application. The simplest interpretation is error and error_rate for

the two inputs and control for the output. This interpretation varies

from application to application as in the control surface generator
described in the next section. With five MBFs for each fuzzy

variable, the input MBFs are characterized by 20 numbers, the size

of an individual in our population. Fig. 1 illustrates the

correspondence between the MBF support parameters and the GA

individuals.

Matching a Control Surface
The simplest of the tuning applications we performed was the

tuning of membership functions to match a prespecified control

surface. Although the control surface for a controller is

generally not known a priori, in those cases where it is, GA tuning
may be useful. One example of such a case might be the operation of

a plant by an operator in which the control commanded manually is
recorded with the plant sensors. Such relations would define a partial

control surface that might be encoded in a fuzzy controller.

To illustrate the capability to tune to a given control surface,

we tuned the MBFs of the inputs to a two-input(x,y), one-output(z)

controller to match a control surface x 2 + y2 = 10z. The fitness

criterion was the sum of squares of differences between the predicted

output for the controller and (x 2 + y2)/10. The parameters of the

GAs were adjusted to minimize the mean square error between these

quantities over the control surface as measured at 121 points chosen

in a square pattern across the center of the x-y plane.
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Fig. 3 illustrates the performance for several randomly chosen

starting populations. The mean square error converges rapidly with

generation number. The best fits we have observed converge to

approximately 15 on the same fitness scale. This suggests that the

effects of local minima are significant and that knowledge of good

initial membership functions will greatly assist convergence to

optimal controllers.

The Fuzzy Pong Controller

The fuzzy pong is a controlled plant consisting of a ping-pong

ball suspended on a column of air provided by a small fan whose

voltage is controlled by the fuzzy controller or a proportional-

integral-derivative (PID) controller. (The choice is made by which

code is loaded into the microcontroller memory.) The bali's location

in the plastic tube is determined using an ultrasonic acoustic range
sensor located at the bottom of the tube. The servocontroller

function is provided by a Hitachi H8/325 microprocessor board that

drives a conventional transistor amplifier that serves as the DC

voltage control for the motor voltage. The set point for control is

provided to the H8 by an external personal computer (PC) that also

is used as a monitor and data display device. There are two set points

provided by the PC: high and low set points. When the ping pong

ball stabilizes its position within user defined limits about either set

point for a time preset by the user, the PC commands traversal to the

other set point. The fuzzy controller commands the fan voltage based

on the error = (set point - ball location) and the rate of change of

error = (error(t) - error(t-l)), where t is the current time in units of

the sample interval. The ability of the fuzzy controller to provide

more precise control than the PID had been previously established

through manual tuning to achieve smallest time transitions with
minimal overshoot.

The GA tuning used a fitness function that measures the

number of successful transitions, up to four, that an individual can

accomplish, the rise time achieved in those transitions, and the

overshoot that the transitions possess. If an individual cannot achieve

success in stabilizing the ball within a predetermined time, the

evaluation of the fitness is terminated. The achieving of the set point
within a time limit allows the evaluation of other factors and offers a

chance to try again up to four attempts. The fitness is evaluated using

the hardware and is thus not deterministic because of the sensitivity

of the pong to ball spin, initial position, air temperature, etc. The
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fitness over a sequence of populations thus may not monotonically

decrease, even if the best individual from the preceding generation is

kept to assure monotonicity.

Fig. 4 illustrates the fitness of the best individual in a

generation as a function of generation. There is some improvement

within a level established by success in finding the set point. The

fitness is clearly dominated by the success in achieving the set point.

The loss of a best individual also clearly limits system performance

considerably. A strategy for handling this contingency such as

requiring a number of generations before a best individual can be

omitted might be useful. Development of an improved fitness

criterion that places less emphasis on the number of sequential

successes - perhaps running a fixed number of trials for each
individual - would allow better discrimination of the transition

characteristics. Achieving the commanded set point would need to

continue to play an important role, however.

Motor Controller Tuning

We conducted experiments on tuning a fuzzy controller for an

AC servomotor. The controller has been previously described 5. It is

a fuzzy PD controller capable of either control of the angular rate or

the angular position. The controller exhibits "deadbeat"

performance 6 - rapid response to unit step input without overshoot -

that is faster than critically damped PID control.

This is an application in which tuning the input MBFs is

particularly appropriate because the gains on the proportional and

velocity controls are determined by MBF placement. The overall

control gain achievable by tuning output MBFs alone does not

provide the same ability to trade off between error and error rate

that the input MBF tuning provides.

The GA tuning was able to tune a controller from a random

starting population to a controller with performance equal to a

laboriously tuned manual case within 5 generations. In only one case

did a manually tuned controller exceed the performance of the GA
tuned controllers.

Further Research

There are extensions to the techniques described here that are

needed to fully evaluate the utility of this technique to tuning in

general. First, the restriction of the population to twenty individuals
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needs to be relaxed. Second, the operators need to be chosen

randomly with parameters to determine how often the operators
should occur in the random choice, similar to the practice in bit

string based GAs. Third, in cases where the best individual from a
previous generation may not evaluate to the same fitness value, the
"fencing" of the individual to prevent loss of his data from the pool

may be useful 7. Fourth, the usefulness of using three (or more)
parameters to describe a MBF should be explored. This would allow

asymmetric MBFs. Such flexibility would be useful in permitting
variable gain systems in which the placement of the center of
adjacent MBFs determines the gain and the extent of the MBF is
determined by the location of the center of the closest MBF to one of
these. The effect of limiting the extent to half a support is to make
the gain zero over that interval. Fifth, addition of search techniques
that would allow local optimization of fitness before comparison
could be useful. In a real number space, such techniques, subject to
restrictions that will be applied to the resulting individuals (e.g., that
the membership function's center must lie between the two ends of

the support), should permit more rapid convergence of the GA
search.

Summary
We have shown the applicability of real number genetic

algorithms to the problem of automated tuning of membership
functions for fuzzy controllers. The application tunes input
membership functions which is a matching of control regions to the
controller rather than the adjustment of gain of the controller. In a

practical system, retention of the best individual may not assure
monotonic convergence due to noise in the fitness function
evaluation.

The GA search is most effective for tuning the controller in
circumstances such as simulation when the failure of a system is

inconsequential. For applications in which the stability of control
must be maintained, such as automatic optimization of performance

of an autonomous system, the applicability of a global search
mechanism is questionable if the evaluation of fitness depends on
controlling the device.
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FUZZY GENETIC ALGORITHM MERGE
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Fig. 2 Real number genetic operators defined for this tuning process

245



FUZZY GENETIC ALGORITHM MUTATE
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Fig. 2 (cont'd) Real number genetic operators
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ABSTRACT

3-D stereoscopic image recognition system based on fuzzy-

neuralnetwork technology has been developed. The system consists

of 3 parts; preprocessing part, feature extraction part, and

matching part. Two CCD color camera images are fed to the pre-

processing part, where several operations including RGB-HSV

transformation are done. A multi-layer perceptron is used for the

line detection in the feature extraction part. Then fuzzy match-

ing technique is introduced in the matching part. The system is

realized on SUN spark station and special image input hardware

system. An experimental result on bottle images is also present-

ed.

keywords: 3D image recognition, fuzzy matching, neural network

l. Introduction

The recent development of image processing and pattern

recognition technology is remarkable. Many are put into the

practical use in fields of industrial testing system, remote

sensing and so on. It is difficult, however, to make a flexible

vision system based on human experiences and human skilled knowl-

edge. On the other hand, fuzzy logic and neural network technolo-

gy are applied over a lot of fields including the control and the

image recognition, where a human like processing is introduced.

By combining the both techniques, 2-D image recognition system

has been realized and reported [I].

In this paper a newly developed image recognition system

using the technique of the binocular vision with fuzzy neuralnet-

work methodology is presented. The system is realized on SUN

spark station and special image input hardware system with 2 CCD

color cameras. It consists of the following 3 parts; the pre-

processing part where RGB-HSV transformation and other operations

are done, the feature extraction part where a multi-layer percep-

tron is used for the line detection, and the matching part where

a fuzzy matching algorithm is introduced. Finally several experi-

mental results on bottle images are presented in order to confirm

the availability of the proposed system.

2.Image recognition process

Fig.l shows the outline of the presented image recognition

process. It is roughly divided into 3 parts.

In the preprocessing part binocular images of each 512,512

pixels are taken by using 2 CCD color cameras. Several ordinary

image processing operations and the concept of color fuzzy set

are introduced in order to satisfy the quality requested in the

feature extraction part. Then the contour features are extracted

in the feature extraction part by using the multi layer type per-

ceptron and the factorization technique based on fuzzy logic.
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Finally a fuzzy matching algorithm is introduced in the matching

part, where the result is presented in terms of fuzzy set.

Original Image ]

Preprocessing Part

• Extracted Territory by Color Feature

• Preprocessing

1
Feature Extraction Part

• Extracted Feature by Neuralnetwotk

• Segment Simplification

• Segment Separation

Standard Image ,[

Matching Part

Fuzzy Matching

Fig.1 The outline of image recognition process

3.Colored region extraction based on color information

The input image from the camera is expressed by combining
the RGB (Red, Green, and Blue) density. In the case of humanbe-

ings color information is transmitted and is qualitatively recog-

nized from eyes to a large brain (perception center). And a lot

of models are proposed to explain the process. Here HSV (Hue,

Saturation, and Value) hexagon cone color model [2] is used by
introducing the RGB-HSV conversion. So the RGB color information

is converted into three attributes of the hue, the saturation,

and the value, where three attributes are defined by the member-

ship functions which are shown in Fig.2.

When humanbeings extract the color features, the color

distribution/tendency of the entire image is considered. For

instance, when the image observed is composed of rather similar

colors, then the color range to be recognized is set to be nar-

rowed. Such characteristics are expressed by fuzzy rules. An

example of fuzzy rules is shown below. By introducing the fuzzy

matching technique, the feature colors are extracted.

[one example of fuzzy rules of feature color extraction]

IF the hue of the object is closely distributed

THEN the membership function of the hue should be narrowed•

4.Llne segmentation using multi-layer perceptron

An image based on color information is converted to an llne

drawing image by using ordinary image processing technique. A

multi-layer perceptron is applied to scanning the line drawing
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Fig.2 Membership functions of three color attributes

image and extract the directionality of lines. Here it should be

noted that the non-learnlng data is generalized by the learning

data in the Back Propagation Method of the perceptron model

[3][4].

The input layer in the multi-layer perceptron corresponds to

a part of the image. The teaching pattern in the learning process

is a set of the typical lines of the input pattern, and the

output pattern is the direction reBresenting code called a chain

code.

The outline of the multi-layer perceptron is summarized as

follows: The output of the i-th neuron in the first layer is

where ]

f(s) _ 1 + exp(-s) ' (2)

Nt- l
l
8{ E It-1 l-1 l= w 0 .uj -O, . (3)

.,=1

The input of the (i, j) coordinate in the input frame is

_,;= _(i_w, i/w) , (4)

where % and / stand for the remainder and the quotient of divi-

sion, respectively. The evaluation is given by
1NL

E: - y,%
where Yi stands for the value of the i-th neuron in the teaching

pattern.

The input frame has a variable ratio which is determined by

the ratio of the dark plxels to the bright pixels in the input

frame. The position of the input frame is slightly changed in

order to adjust the position of the center of gravity of the dark

pixels to the middle of the input frame. The coordinate (G_,G v)

of the center of the gravity of the dark pixels in the inp[lt
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frame, and the ratio S of the dark pixels to the bright pixels is
calculated as follows: S W

G_ -- j=l i=1., (6)

,=1

W H

Gy = ,=1 j=l

i=!
H W

S = j=l ,=1 (8)
H-W

Based on these input values the output of the multi-layer percep-

tron is calculated. By moving the position of the input frame

taking the output value into the consideration the line segment

is traced. In the branching point of the line segment the input
frame of the multi-layer perceptron also makes a branch and the

line segment is traced in parallel.

5.The simplification of the extracted line segment data series

The output data series obtained by the multi-layer percep-

tron represents the directionality of the line segment. It is

classified into a group of straight llne, curved line, and corner

by using the membership function shown in Fig.3.

The simplified data represent the geometrical feature of the

input image. They can be understood in many ways with membership
value.

Straight

0
0 30

_]urve Angle

60 90 [deg]

Fig.3 Membership function of geometrical features

6.Binocular stereoscopic vision

6.1 Correspondence between left and right images

Three dimensional binocular stereoscopic vision is realized

by using in principle the difference between left and right

images. But it is not so easy to make a correspondence of charac-

teristic points between two images.

In this study the correspondence is made by using the sim-

plified data series of both images mentioned in section 5. The

llne segment correspondence can be made based on the distance

between llne segments[5]. The both images are divided into sever-

al llne segment blocks and the similarity between the blocks are
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calculated which generates sub blocks of line segments. Such a

procedure continues and finally the correspondence of line seg-

ments are obtained, where fuzzy logic is introduced especially in

the representation of the shape of line segment (c.f. Fig. 3) and

correspondence operation.

6.2 Separation of objects

The distance between the camera and the object is calculated

based on the information of line segment correspondence obtained

in 6.1, where the method in projective geometry [6] are intro-

duced. The position [a] in the 3D space and its corresponding

position [b] in the image is connected by a translation matrix M

The matrix M can be calculated from the data of 6 points. Then

the both images are transformed into 3D space by applying this

translation matrix M. By doing a clustering procedure in 3D space

the contour line of each object is extracted.

I Calculation of M !1

I Translatlon into 3D space I

I Clustering I

Contour line separation

Fig.4 Contour line separation in 3D space

7. Fuzzy matching

Humanbeings can recognize the target object to some extent

even if some part of it is hidden. Such functions are realized

here by introducing fuzzy matching technique. The recognition

result here is the similarity between the extracted information

mentioned in the section 6 and the standard pattern information.

The standard pattern information consists of the type of

line, the coordinates of starting point and end point, the length

in the case of straight line, the curvature and the angle in the

case of curved llne and corner, and so on.

Firstly the segment with the minimum y coordinate is found

and is checked if it is the top part of the object by observing

the left and the right segments. Then the data series are divided

into two parts. The similarity of the segment data against all

standard pattern information is calculated. Then the relation

between the segment data and the standard data with the maximum

similarity is checked if there exist contradictions by consider-

ing other relations. By repeating this kind of procedure the

final result is obtained. Table I shows the llst of comparative

features in the similarity calculation. Fig.5 shows their member-

ship functions.
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Table 1A list of comparative features

in the similarity calculation

Attribute Comparative Feature

• Start-End Coordinates Ap

Straight Length Al

Inclination AO

• Start-End Coordinates Ap

Curve • Chord Length Al

Angle at the Circumference A_

Angle • Angle A_

#

0

Ap
1

0

Apl Ap2

Al

0.0 AI:

#

A8

h01 h82

Fig.5 Membership functions of comparative features

8 Experimental result
In order to confirm the availability of this method several

experiments have been done, among which one result using bottles

is shown. Observed image of bottles consist of straight lines,

curved lines with various curvature, and corners. There exist so

many similarly looking different bottles. So they are good for

testing the presented method.

Fig 6 shows several examples of original image observed by

the CCD camera. Experiments were done for the single bottle, a

pair of bottles, and three bottles. (The aim of latter two cases

is to check the effect for occlusion.) The result is summarized

in Table 2, which shows the validity of the proposed method.

9.Conclusion

Fundamental ideas and algorithms of 3D image recognition are

proposed based on fuzzy neural network technique. A result of

experiment on bottle images is also presented. The construction

of real time 3D image recognition system for the purpose of robot

vision is a part of future studies.

This study was performed through Special Coordination Funds

of the Science and Technology Agency of the Japanese Government.
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Fig.6 Sample patterns

Fig.7 Examples of experimental data
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Abstract

A new fuzzy connective and a structure of network constructed by fuzzy

connectives are proposed here to overcome a drawback of conventional fuzzy

retrieval systems. This network represents a retrieval query and the fuzzy

connectives in networks have a learning function to adjust its parameters by

data from a database and outputs of a user. The fuzzy retrieval systems

employing this network is also constructed. Wherein users can retrieve results

even with a query whose attributes do not exist in a database schema and can

get satisfactory results for variety of thinkings by learning function.

I. Introduction

Recently, various fuzzy retrieval system'S2) had been developed. In fuzzy

retrieval systems, users can retrieve data by using queries with fuzzy

propositions 3_ such as a query "Search for a hotel of which rate is low AND is

near to the business location" in order to "Search for a hotel which is convenient

to the business trip". Fuzzy retrieval sytem is a very convenient mechanism for

users since they can write the natural language by fuzzy sets in queries, i.e.,

"Reasonable", "Long" and "Low" and so on. However, it is nearly impossible to

obtain results which satisfy us since the meanings of given operators of AND and

OR using for obtaining results in queries are quite different for every user, and

the number of usable operators 4_'_ are limited within several, i.e.,min operator,

algebraic product etc.

On the other hand, in the field of decision making problems, a method to

optimize the parameters of fuzzy connectives of AND and OR according to the

given input and output data was proposed by Dubois and Prade _ ,and Maeda et

alTM. Fuzzy connective proposed by NIaeda is based on F - operator by

Zimmermann 8). Parameters of the fuzzy connective are optimized for minimizing

the square of errors between the observed data and the estimated value of the

fuzzy connective. However, the fuzzy connective can not represent the smaller

operators more than the algebraic product or the larger operators more than the

algeraic sum since this fuzzy connective is constructed by the geometric mean of

between the algebraic product and the algebraic sum.

In this paper, first, a new fuzzy connective g_'_'=_ capable to express whole

operators from the drastic product to the drastic sum is formulated and a new

learning method to adjust parameters of fuzzy connective is proposed. The
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proposed fuzzy connective is called fuzzy connective with h.arniH,.r f't_n_-tion

here. The fuzzy connective with learning function is based on Xlaeda's _)perator.

The t-norm and t-conorm operators "_'':' with parameters are linearly combined

by using a weighting function, and parameters are adjusted for minimizing the

square of err(it by a steepest descent method.

Second, a new structure of network for representing a query is proposed

here. Since the new network represents a query, this network is called the

query network here. Query networks put the meaning of the abstractive query

into shape by attributes of a database. A query network is constructed by nodes

and links which join between nodes. Whole nodes except for in the input layer

are constructed by the fuzzy connective with learing function. ]'he retrieval

system with query networks can give results which users desire since fuzzy

connectives in querry networks have the learning function. The similar fuzzy

retrieval system is proposed by Ogawa et al __'. However, this method can not

derive the importance of attributes in a database since the membership functions

are adjusted in the learning stage. The retrieval system that we proposed can

not only obtain the importance of attributes in a database also acquire the

meanings of AND and OR in users' queries from values of parameters of the fuzzy

connective.

First, the fuzzy connective with learning function is formulated. Next, the

query network is proposed. Finally, the fuzzy retrieval system with this fuzzy

connective and the query network is explained here.

2. Conventional Fuzzy Connective

The operators for representing AND and OR are named generically t-norm and

t-conorm, respectively. The t-norm T is a function expressing an operator of

T(x_,xe):[0,1] × [0,I]--_ [0,I], satisfying the four conditions, i.e., l)boundary

conditions, 2)monotonity, 3)commutativity and 4)associativity. A typical t-norm

includes the following operators.

t)Logical product: x_ /x xe = min{x=,x:_}

2)Algebraic product: x_ x_ = x_.x_

3)Bounded product: x, ,:-i x2 = 0'.: (x,+x=-l)

x, (x_=l)

4)Drastic product: x_ xe = x_ (x_=l)

0 (x:,xs<l)

(i)

(2)

(3)

(4)

The t-conorm S is to express an operation of S(x ,xe) = 1-T(1-x:,l-x:) and

also satisfying four conditions in the case of t-norm. In the same way, t-conorm

includes the logical sum, algebraic sum, bou,,ded sum a,_d drastic sum, etc.

On the other hand, the following t-norm and t-conorm operators had been

proposed by Schweizcr"', etc.

T = 1-((1-x:)_+(1-xa,)_-(1-x_)_(1-xe)_') __

S = (x_ _-+x_'-x: _x_) ' _', p>0

(5)

(6)
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where, p is a parameter.

By value of parameter p, t-norm of Eq.5 can express logical product,

algebraic product, bounded product, drastic product and so on. In the same way,

t-conorm can express various operators.

The averaging operators"' includes arithmetic mean (A>I), geometrical mean

(GM), conjugated geometrical means (CGM) and so on.

The order of the magnitudes of these operators are expressed by a following

relationship.

Whole operators which inclues t-norm, t-conorm, and averaging operators are

called fuzzy connectives here.

3. Fuzzy Connective with Learning Function

In various fuzzy retrieval systems, fuzzy connectives play the important role

in queries since the different results of the retrieval system are obtained by

kinds of fuzzy connectives. Let us consider a query Q with fuzzy propositions

q_,q2, "",q,. For instant, a query Q is expresed as follows:

Q : {q, I"1 qe) IJ (q3 II q_) ll ... I I (q_-, II q_)

where, I'l is intersection and I I is union.

Given the data x_,x2, ...,x, for q,,qe, "",q,

membership value /z = is considered.

(8)

respectively, the following

. In the case of logical product and logical sum,

Q : ( _ q, A, ,_ q_) \J ( ,_ q3 'v ,_ q_) /_,...?,, ( ,_ q_-. '\, z q,). (9)

. In the case of algebraic product and algebraic sum,

_ Q:(_ q, _ q_) i ( /_ q3 i ,_ qa} ..... (,uq_-, i _ q_). (10}

In general,

p: Q : ( ,_ q, ,::_) /.z q2),:Z) ( ,u q3 )_:i p: q4),:j::)... :_)( /.z q__, ,:_L)_ q,). (11)

where, (_T) shows t-norm and ,:.i) shows t-conorm.

When we use the conventional retrieval systems, we can not determine the

optimum operator to obtain the results we desire since there are so many kinds

of fuzzy connectives. Moreover, since there is no operator which is capable of

representing from drastic product _,, through drastic sum ",;,' in Eq.7, and has

the learning function for adjusting parameters of itself to the meanings of AND

and OR for every user, it is difficult to employ the fuzzy connective as AND or OR

operator.

In ordert to solve this problem, we propose a following new fuzzy connective

which can represent a whole operator in Eq.7.

= m S + (l-m) T (12)
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where,

m - p_-(p_-p_)x:-(p_-p3)x2

Pt :; P2,p_. 0 P:,P2,P3 _ 1, 0-P,+p2+p= 1 (13)

and p:, p2, p3 are parameters.

T and S in Eq.12 represents t-norm and t-conorm proposed by Schweizer,

Yager, and Dombi etc, respectively. For instance, when t-norm and t-conorm

proposed by Schweizer are used, T and S are expressed by the following

equations using parameters p_ and p_.

T : 1-(( 1-x_ )_'"+(1-xa)_'"-(1-x, )_'"(1-x_) _'_) '-- _'" (1t)

S : (x_ PS+x2_¢-x PSx2P_)' _: , p_, p_>O (15)

In the fuzzy connective of Eq.12, t-norm T and t-conorm S are linearly

combined by using a value of m which can be derived from the values of x_ and

xe by Eq.13. Therefore, the weighted operator between t-norm and t-conorm is

derived according to values of x= and xe.

An example of the relationship between input and output of the proposed

fuzzy connective is shown in Fig.1 wherein the operator is set to emphasize

t-norm when the values of x, and x2 are small while the operator emphasizes

t-conorm when the values of x, and x_ are large, and it emphasizes t-conorm

further for a larger input value of x,.

Now, let's explain the learning function of the proposed fuzzy connective.

When an output y to the input x_ and xe are given, the proposed fuzzy

connective is capable to adjust its parameters by a steepest descent method for

minimizing the square E of error between the output y and the output _ of the

fuzzy connective.

Fig.1 An Example of Relationship Between Input and Output of

Fuzzy Connective with Learning Function
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E = (_-y)2/2 (16)

By using a steepest descent, the amounts of corrections of parameters p j,

j=1,2, ...,5 in Eq.12 to 15 are revised by the following equation.

p_+: : pj_ + A p_

:pj_- a ( 3 E/ ._ pj) (17)

where, p_ is the t-th revised parameter pj, and (r is a learning coefficient.

3 E/ ,3 pj which is an effect of minute change of parameter p j to the error E,

can be expressed by the following equation.

= -- X -- = (_--y) X-- (18)
a pj 3 _ _3 P_ _ P l

_/ 3 pj can be derived from Eqs.12 to 15 by the following equation.

: (1-x:-x2) X (S-T) (19)

= x, X (S-T) (20)
,_ P2

= x2 X (S-T) (21)
3 P3

= (l-m) X-- (22)
3 p4 3 p4

-mX--
,._ p_ ,,_ p_

(23)

When t-norm T and t-conorm S are defined by Schweizer's ones, Eq.22 and

Eq.23 are revised as the following equations.

1
: (1-m)(1-T)(-- log((1-x: )_':+(1-xz)_'_-(1-x: )'_"(1-x_) °4)

p4 _

1
- ((l-x:)_'qog(1-x: )

p._ ((1-x : ) "'_+ (1-x._) "'_-( 1-x : ) "4 (1-x__).4)

+(l-x2) P'qog(1-x2)-(1-x: )_':(1-x_)_':log(1-x _)(l-x_))) (24)

c) p_

1
: mS(--- log(x_'V+x2"_-x_'mx2 _)

p5 _

1
+ (x: _log(x: )+x_ P_log(x_)

p_(xl P_+X2"5-X_ _'_x_ _)

-x: _ _x_" _log(x, x_))) (25)
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Fmploying a steepest descent method, the value _Jf l.iis minimized by

repeating Eq.17. Since the proposed fuzzy connective is capable of learning

parameters, this fuzzy connective is called the fuzzy connective with learning

function here.

Next, let's consider the conditions for constituting AND and OR operators of

queries. The commutativity and associativity within four conditions for t-norm

and t-conorm are not always satisfied since there are so many kinds of operators

constructing AND and OR. Moreover, it is not need that the boundary conditions

are satisfied in this case since there are cases that the averaging operators are

considered in the queries. However, since no reliability of results would be

gained unless a monotonity between the given input data and retrieved output

can be established, the satisfaction of monotonity is a must in this case.

Since there are many kinds of fuzzy connectives with learning function in the

query network, for instance, the query Q is represented as follows:

Q - (q_ ,IZ),q2) ,:_j2(q3 Q_ 3q4) ,i_)4 "' 'Z)_-2(q_-, (_)_-, q,) (26)

where, ':Z)_, k=1,2, ...,t-I shows the k-th of fuzzy connectives with learning

function in the query network.

Since there are cases that we treat fuzzy connectives with n inputs in the

queries, let us extend the fuzzy connective with learning function to one which

is capable of representing n inputs x, ,x2, ...,x_as follows.

- m S + (l-m)- T (27)

where,

n

m : p,- jY.=l(pl-p_+,)xj, n

0 < p,,p_,...,pn+, _ l, 0 _ -(n-1)p,+j__Elp3 __<1

When t-norm T and t-conorm S are defined by Schweizer's ones,

(28)

n

T = 1-(I-_1(I-(1-x_)P_+2))_/P_+2=
n

S= (I-" (1-xj_+_)) '_+_
j6] , P_+2, p_+3>O

(29)

(30)

where p_ ,P2, "",P_+3 are parameters.

Next, let's explain the learning method of the fuzzy connective with learning

function as same as in the case of two input variables. When the output y to the

input x,,x_, ...,x_ are given, the amounts of corrections of parameters pj are

revised as same as in Eq. 17.

: pj_- _ ( ._ E/ ; pj), j:l,2,...,n+3 (311

,a E/ .a pj which is an effect of minute change of parameter p_ to the error E,

can be expressed by the following equation.

= -- × - (_-y) X-- (32)
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,_ _ n

= {1-12"x'):1 × {S-T) {33),_ p_ '=

= x___ × (S-T) (34)
,3 p_

,_ _ ,a T
= (l-m) X (35)

_ ,_ s
= m X (36)

,_ pn+3 8 Pn+3

Employing a steepest descent method, the value of E is minimized by

repeating Eq.31.

A new structure of network for representing a query is proposed here. Since

the new network represents a query, this network is called the query network

here.

Output Node }

I Cost is reasonable. ]

l

A convenient hotel I

for business trip. I

Fuzzy Connective with

Learning Function

]Building is fine. ]

Hotel rate is

reasonable.

Near tO the business[ / \

l/ \
location.

Food cost is I Building has bccn There are many

reasonable. [ recently built, rooms.

/nput Node

Fig.2 A Example of the Query Network
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Let us define the query network as follows :

I) A query network is constructed by nodes Nm, m:1,2, ...,M which are joints of

network and links L_, I=I,2, ...,M-1 which join a node to other nodes. Nodes in

each layer except for in the input and output layer have to join itself to a node

in the upper layers and some nodes in the lower layers.

2) There are no links which joint between nodes in the same layer.

3) Every node is constructed by the fuzzy connective with learning function.

4) Every node means a fuzzy proposition.

where, the node in the

output-node and nodes

called input-nodes.

most upper which is the output layer is called an

in the most lower layer which is the input layer are

4. Proposed Query Networks

A example of a query network is shown in Fig.2. Now, let us assume that n a

five kinds of attributes for searching hotels, i.e., hotel rate, food cost, access

time, yaers and rooms are stored in a database. This query network puts the

meaning of the output-node which is "Search for a hotel for business trip" into

shape by five kinds of attributes through three kinds of nodes which are "Cost

is reasonable", "Near to the business location" and "Building is fine" in the

middle layer. By using the query network, it is easy to find some hotel by the

meanings which is "Search for a hotel for business trip".

Next, let us explain how to learn parameters of fuzzy connective with learning

function in query networks when the input x and output y are given. Now, let us

represent the output of the i-th fuzzy connective with learning function ordered

from output-node as y_ with parameters Pu, j=l,2, ...,u. The learning algorithm is

based on a backpropagation method for minimizing the square E of error between

the output y and the output Y l of output-node in the query network.

E : (yl-y)_/2 (37)

In order to obtain the optimum parameters of the i-th fuzzy connective with

learning function for minimizing E, an effect of minute change of parameter to

the error E is calculated by the following equation.

,_ E ,_ E ,:_ y_
: -- × -- , i:l,2,'..,W (38)

E/ _ y_ can be derived from Eq.37 by the following equation.

: y_-y (39)
.3y_

.3 y,/ ._ p_j can be obtained as follows.

,..4 y, 3 Yl
: _ _ x- (40)

,3 p_j ,_ p'j

where, _5"_ is
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3 _ = 3 _-, X , i 2 2 (41)
,;_ pE-_ k --

Yl--!

whose input is equal to the output of i-th

function.

We can calculate Eq.40 in the case that

learning function is not the output-node.

is the output of the (i-l) th fuzzy connective with learning function

fuzzy connective with learning

the i-th fuzzy connective with

The learning method in the

output-node has been explained in the third chapter.

Since _" j is obtained by repeating Eq.41 in the upper layer more than the

i-th fuzzy connective with learning function, _) E/ ._) p'j in Eq.38 can be

calculated. Therefore, the amounts of corrections of parameters p_ in Eq.38 to 41

are revised by the following equation.

ptj_+l : p_j_ + A pt

:p'j_- /? (,_) E/ 3 p'j) (42)

where, p_* is the t-th revised parameter p'j, and _ is a learning coefficient.

The value of E is minimized by repeating Eq.42.

5. Fuzzy Retrieval System

In order to show the usefulness of the fuzzy connective with learning

function and the query network, these mechanism are applied to the fuzzy

retrieval system.

A conceptual drawing of developed retrieval system is shown in Fig.3. Data in

a database are converted into membership values by using membership functions

in the fuzzy matching part. These membership values are input to input-nodes of

the query network. The results of the retrival system from the output-node

after adjusted fuzzy connectives are obtained.

Now, let us consider here a user who search for a convenient hotel for

business trip from a database stored 100 hotels near Osaka shown in Table 1. In

the proposed fuzzy retrieval system, the following query network shown in Fig.2

is already constructed.

Search for a convenient hotel for business trip.

= Search for a hotel of which cost is reasonable

and(or) is near to the business location

and(or) whose building is fine.

= Search for a hotel of which rate is reasonable

and(or) of which food cost is reasonable

and(or) is near to the business location

and(or) whose building has been recently built

and(or) has so many rooms.
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A Part of Query Networks

A convenient hotel for business trip. /

IFuzzy Connective with

Learning Function
Cost is reasonable

Hotel rate is t

reasonable. Dinner cost
*.
i ls reasonable.
t, i

0.4 o.si
*
*

J
|

I /\ I :
I [ \Reasonable

0.4_

9830 Yen

Near to the t
business location, i

4 Building has been

recently built.

0.7 o.71 0.8 i

Building is f'me.

i
* There are

many rooms.

A Part of Fuzzy Matching

0.7

14 Min.

o.sl ,I
478 Rooms

4300 Yen

!

7 I

O. _fly

= E_I Years

Data Base

No.

2
1

100

Hotel Name Hotel rate Dinner Cost

Osaka Hilton International
IOsaka Dai-iehi Hotel

Hotel Sun Garden

17000
9830

5700

Tune Year Rooms

3700 14 61 514
4300 18 51 478

1500 58 45 120

Fig.3 Conceptional Drawing of Developed Fuzzy Retrieval System

The steps for retrieving are represented as follows.

1)The system displays 10 hotels as sample data which represent some kinds of

sets constructed by five attribute. A user gives estimations of sample data in

[0,100] according to the query which is "Search for a convenient hotel for

business trip" to the system.

2)Parameters of whole fuzzy connectives with learning function in the query

network are adjusted by learning algorithms in the third and forth chapter.
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Table 1 A Databaso of tIotel near Osaka

No. Hotel Name Hotel Dinner Access

Rate Cost Time
Year Rooms

1 Osaka Hilton International 17000 3700 14 61 514
2 Osaka Dai-ichi Hotel 9830 4300 18 51 478
3 Hotel Hanshin 7800 3000 34 57 209
4 Osaka Terminal Hotel 8500 3800 38 58 664
5 Osaka ANA Hotel Sheraton 12500 5000 54 59 500
6 Dojima Hotel 1000(3 5000 26 59 134
7 Osaka Grand Hotel 9300 1500 30 33 349
8 Royal Hotel 12500 10000 6 40 1246
9 Hotel NCB 5500 1000 42 50 174

10 Umeda OS Hotel 6500 3000 48 49 283
11 Osaka Tokyu Inn 7800 1800 20 53 402
12 Hotel Kitahachi 5500 1000 56 21 38
13 Maruichi Hotel 4800 1000 12 44 44
14 Hokke Club Osaka 6100 2000 25 41 307
15 Hotel Kansai 4800 1000 37 45 711
16 Hotel Osaka World 5500 1000 48 57 202
17 Osaka ShampiaChampagne Hotel 6100 2000 40 51 300
18 Hotel Kurebe Umeda 5500 3000 14 60 282
19 East Hotel 5200 2700 20 58 144
20 Toko Hotel 5900 2500 58 54 300
21 Hotel Plaza Osaka 5500 2000 47 56 113
22 Osaka Tokyu Hotel 9000 4500 38 54 340
23 Shin-I-Iankyu Hotel 7800 3000 31 39 993
24 Kishu Railway Hotel 5500 1500 15 55 66
25 Hotel Sunroute Umeda 6000 1500 42 58 218

26 Mitsui Aurbum Hotel Osaka 6500 3500 55 53 405
Toyo Hotel 8800 3500 60 40 528

: • : : :

100 Hotel Sun Garden 5700 1500 58 45 120

3)The membership values calculated in the fuzzy matching part are input into

the input layer of the query network. After the fuzzy connectives with learning

function are fixed in the learning stage, the system can retrieve some hotels

which users desire.

Fig.4 shows a input display for the 10 sample hotel data estimated by the

user. In Fig.4, the degrees of convenience to the business trip that the user

provided for the learning are shown.

Fig.5 shows the results after the learning stage. In order to shows the

robustness of this learing algorithm, the result of errors between the checking

data which a user estimated except for the learning data and the output of the

system is also shown. Since the errors between the user's data and the output

are small not only for the learning data but also for the checking data, we can

obtain the optimum results by this retrieval system.
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10raer Hotel Name H.Rate nc_t A.Ti=,= Y_r Room 8rad_

1 A 7500 _-=-_ 102 48 2g0 [40] J

2 B 80OO 40OO 120 _ _ [ST] I
3', C _o ..... 9o _ 3o0 [5o] I
4; D 120O0 8OO0 71 61 600 [15l m I
5 E eeoo tmo 47 48 loo [sTI I
6 F 86OO .... 7e 51 rtS _1 I

8 H 10000 -r,_=J 88 88 948 [44] I

s I 12000 4500 108 46 74 [12l BB ]
10 J ruuu .... 108 41 207 [94l J

Fig.4 Input Display and Degrees of Hotel List Proved User for the Learning

Fig.6 shows the results of weights of links in the query network. Since both

links between the output-node and the middle node which represents "cost is

reasonable" and links between this middle node and the input-node which

represents "hotel rate is reasonable" are written by bold lines, it means that the

user considers the hotel rate is more important than the access convenience of

hotel and so on. Fig.7 shows the results of hotels near Osaka. Fig.8 shows a

photograph of the eighth hotel. Fig.9 shows the other results of hotel near

Yokohama which are retrieved from the different database by the adjusted fuzzy

connective with learning function. From these results shown in Fig.7 and Fig.9,

users can determine the hotel that they want to stay at.

1 !
User's I Data for Learning I user', Retrieved
Grade 10O _Result I I Grade Result

90 .,,------____ 88 G

70 E
67

57 56 F

50 -- 51 C

44 _ 41 H
40

38 B

0

79

63

55

48

42

lOO

Data for Checking I

- "- 78 Hotel Sunroute Himeji

57 Amagasaki Union Hotel

: _ 55 Amenity Shiosaibashi

45 Hotel Monterey Kobe

38 New Miyako Hotel

Fig.5 Results of Training Data and Checking Data
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_- , _r, "(_.!.@!_._._._.!..-.._.!._.__..!."..I
_...._!.=....-.._.................i

Fig.6 Results of Weights of Links in the Query Network

HotelName
I

Hotel._x_route.HiBeji
I

Sanjo.Kar____=__.HoteI_l_yoto
I

Hobe.LInion.HOteI

Aien i t y.Sh i n_i bas/n i

Ril'_a.Royal.HotelJot sul3a._i
Hi_ej i .Castle.Hotel

12 I Mitui_Urban.Hotel|akayama
13 I Hotel_l_terey.Holoe
14 I Hiaej i_Oroen.Hotol

15 I I__Miyako.Hotel
18 I Hotel_Keihan.Kyoto

19IHimeji .;ashington_Hotel
191Hyoto_To_er.Hotel
201_..:.--':_..Terminal.Hotel

6700 I 1800 102 I 52' m I [Tel

Fi_.T Results ¢_f HoLel Ne_r Os:_ka
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II
l'rr-_-z]C_---]

HOte I .Name :Amen i t y_Sh i nsa ibash i

H. Rate :6100

O.Cost :3000

A. Time:45

Year :61

Rooms:127

Fig.8 A Potograph of the Eighth Hotel ii_ f¢c._taits

Order

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1B

19

2O

Hotel .Name IL Rate B. C_t ,m,.Ti me Y_r Room

Fe,-_ I urn_Inn Yo_oha_,a GSO0 1800 tB 52 89

4111Yokoha_,a_Pl a I a_HOt e I 6800 ++0+ 37 50 36

Tsurumu_Park _tel _ _ 25 57 315

Hal is,a_Plaza Hotel 8000 _-mzmj, 15 61 127

yoko,L_,T,aSan-Kai Hotel 6000 Nmm_ 15 52 98

Noihin_Hotel 6300 _mml 33 61 574 '

I Isez_d4i cho__a-_h;ngt on Hotel 9350 Hmmn 18 60 70

Hotel Umpire 9100 4000 3 55 366

Hotel_Dream Round 6500 _ 44 53 140

Hotel _Ri tch ie_Yokohaaa 9800 1500 1G 6;3 70

SI_i n- yol,xTm_ra_a.14,oku_ i _Hotel B000 4000 37 44 33

Tokyo_Star Ionery_Hotel 8200 .,.aman 57 52 488

T_-Ya 81)00 _ 35 48 2S0

Sui_i 7000 4000 50 51 121)

Taimutru_Hotal 4000 4000 25 56 54

Hotel .l_f Gro_rld 10600 4000 28 63 145

Ground Inter-Continental.Hotel 185Z)0 5000J G 62 115

14ak_=-,_wa_To¢3u_HOte I 9400 7._,_)u! 43 62 200

Yoko_ma _Kokx,mai Hotel B700 :ill= 48 50 100

'_;,_ Jay _Inrm_Tokyo 14700 :.¢,,dmJ 50 47 G63

Fig'.9 Results of lh_t._>[ N_,aF h-c_k_,h:_m;_

Orade

[ml J
(_l i
(531 i
Hal I
[_l I
[441 I
[42] J

[411 l
[401 ]
[981 t
[981 l
(981 l
(331 t
[asI J
(as] l
[351 ]
[a41 1
[331 I
[a21 I
[211 I
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5. Conclusion

A fuzzy connective with learning function used a steepest descent method

and a query network used a backpropagation method are proposed here.

Moreover, a fuzzy retrieval system used by these mechanism is described. In

near future, its practical effectiveness has to be proved through more practical

applications of this system.

This research is partly performed through Special Coordination Funds of the

Science and Technology Agency of the Japanese government.
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ABSTRACT

This paper presents an application of fuzzy sets and Dempster

Shafer theory (DST) in modeling the interpretational process of

organic geochemistry data for predicting the level of maturities of oil

and source rock samples. This has been accomplished by (i)

representing linguistic imprecision and imprecision associated with

experience by a fuzzy set theory, (ii) capturing the probabilistic

nature of imperfect evidences by a DST, and (iii) combining multiple

evidences by utilizing John Yen's[1] generalized Dempster-Shafer

Theory(GDST), which allows DST to deal with fuzzy information. The

current prototype provides collective beliefs on the predicted levels

of maturity by combining multiple evidences through GDST's rule of
combination.

I. INTRODUCTION

Modeling the interpretation process of an expert requires

representation and management of uncertain knowledge. This is

because nearly every interesting domain contains knowledge that is

inherently inexact, incomplete, or unmeasurable.

In this paper we explicitly treat two forms of uncertainties. One form

of uncertainty is fuzziness related to linguistic imprecision. Based on

fuzzy set theory, Zadeh[2] developed possibility theory to express

this type of imprecision. The other form of uncertainty is the

probability with which a certain evidence correctly predicts a subset

of hypotheses. Dempster-Shafer Theory[3,4] (DST) deals with this

type of uncertainty and provides a mechanism for combining

multiple evidences for an overall belief in a subset of hypotheses.

Unlike classical probability theory, DST enables the degree of
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ignorance to be expressed explicitly and does not fix hypothesis

negation probability once occurrence probability is known.

In the past, several attempts[5,6] have been made to generalize DST

to deal with fuzzy information. While these attempts fall short of

fully justifying their approaches, John Yen[l] proposed a generalized

Dempster-Shafer Theory (GDST), in which the important principle of

DST is preserved: That the belief and the plausibility functions are

treated as lower and upper probability bounds.

In this paper, we demonstrate representation and management of

two types of uncertainties by GDST as applied to the interpretation of
organic geochemistry data. In the following sections, we review the

basics of GDST, and the development of a knowledge-based system
for geochemistry interpretation

II. BASICS OF A GENERALIZED DEMPSTER-SHAFER
THEORY

This review is not intended to describe detailed theory and

developments of DST and GDST. Rather, we plan to describe their

representation of imprecise information and the rule of combination

in a qualitative way. More interested readers should refer to the
references [1,3,4] cited.

In the DST, hypotheses in a flame of discernment must be mutually

exclusive and exhaustive, meaning that they must cover all the

possibilities and the individual hypothesis cannot overlap with

others. An important advantage of DST over classical probability

theory is its ability to express degree of ignorance associated with an

evidence. Also, unlike classical probability theory, a commitment of

belief to a hypothesis does not force the remaining belief to be

assigned to its compliment. Therefore, the amount of belief not

committed to any of the subsets of hypotheses represents the degree

of ignorance. In DST, a basic probability assignment(bpa) m(A), as a
generalization of a probability, indicates belief in a subset of

hypotheses A. This quantity m(A) serves as a measure of belief
committed to the subset A.

DST also provides a formal process for combining bpa's induced by
independent evidential sources, which is called the rule of

combination. This process is a tool for accumulating evidences to
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narrow the hypothesis set. If ml, and m2 are two bpa's from two
evidential sources, a combined bpa is computed according to the rule
of combination:

mlOm2(C) = _ ml(Ai)m2(Bj)/k

AinBj= C

(1)

where k is a normalization factor,

k = 1 - _ml(Ai)m2(Bj), (la)
AitaBj=_

mlOm2(C) is a combined bpa for a hypothesis C,

$ is a null set, and

Ai, Bj axe hypotheses sets induced by the two
evidential sources.

In the GDST proposed by Yen[6], a basic probability m(A) is assigned

to a fuzzy subset of hypotheses. In this framework, each fuzzy subset

of hypotheses has bpa re(A), and fuzzy membership function gA(Xi),

where xi's are elemental hypotheses in the frame of discernment.

The rule of combination in GDST consists of two operations: a cross-

product operation and a normalization process. Basic probabilities are
first combined by performing a generalized cross-product including

fuzzy set operations:

ml2(C) = ml ® m2(C) = )'. ml(Ai) m2(Bj) (2)
Aic,_Bj--C

where m t2(C) is an unnormalized bpa induced by two

evidences, and n denotes a fuzzy intersection operator.

Then, a normalization is performed on fuzzy subsets of hypotheses

whose maximum membership values are less than one. A detailed

procedure and justification of this normalization process can be
found in the reference [1]. Yen[l] also showed that this normalization

can be postponed until the last evidence without affecting the

computational results and the commutativity of the rule of
combination.

In case of combining only two fuzzy bpa's, a combined bpa using
GDST's rules of combination is:
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ml @ m2(C) = 2 Max _I,Ac_B(Xi) ml(A)m2(B)/k
(_'_)¢C xi

(3)

where

k = 1 - '_-".( 1 MaXgAr_l;(xi)) ml(A)m2(B), and
xi

A.B

is a normalized AraB.

(3a)

As can be noticed in the equations above, GDST allows partially

conflicting evidences, while DST only allows either conflicting or

confirming evidences.

III. BIOMARKER INTERPRETATION SYSTEM

In exploration for oil and gas, it is important to be able to assess the
maximum temperatures to which sediments or oils have been

exposed in the subsurface. This is referred to as the level of thermal
maturity. Organic chemical compounds known as biomarkers enable

the geochemist to assess the level of maturity (LOM) of oils and

sedimentary organic matter. In this paper, we focus our attention on

modeling the process of interpreting biomarker data to predict LOM.

The LOM scale ranges from 1 to 20, with LOM=I being least mature
and LOM=20 most mature. There exist more than l0 biomarkers

whose intensities have definite links to the maturity with varying

degrees of resolution and prediction power.

In our approach, these varying degrees of resolution among

biomarker evidences are represented by fuzzy subsets of maturity

intervals, and the probability with which an evidence correctly

predicts a fuzzy maturity interval is represented by a basic

probability in GDST. Therefore, evidential knowledge is represented
in fuzzy rules, and the confidence for a specific rule is represented

by a bpa. Moreover, GDST's rule of combination provide collective

belief in the predicted level of maturity. In the following, detailed

representation methods are presented along with actual application
results.

(A) Representing Two Types of Imprecision

Interpretation of geochemical data is based on experience as well as

theory. This interpretational knowledge is descriptive in nature, and
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best represented by fuzzy logic and possibility theory. For example,

one may have an experience based correlation study between level

of maturity (LOM) and %C2920S, which is a ratio of the intensities of

several organic compounds. Then, the correlation curve in Figure 1

may be used by an interpreter as follow:

IF %C2920S is 40 %,

THEN expected LOM is about 8.

In the rule above, the concluding part is descriptive in that LOM = 8

is most possible, but LOM values of 6,7,9, and 10 are also possible

with lesser degree as shown in Figure 2. Another example is the case

where both premise and conclusion are best represented by fuzzy

membership functions. Based on theory and experience, Heptane

value can only predict maturity levels in four qualitative categories,

such as immature, early mature, mature, and over mature. Examples

of Heptane rules are:

IF Heptane value is medium,

THEN maturity is early mature

IF Heptane value is high,

THEN maturity is mature

IF Heptane value is very high,

THEN maturity is over mature

In the rules above, both the premise and the conclusions are

descriptive and best represented by membership functions for

Heptane value and maturity as depicted in Figure 3a and Figure 3b.

From the fuzzy rules above and the membership functions in Figures

3a and 3b, observation of a Heptane value of 19 will result in the

possibility values of 0.5, 1.0, 1.0, and 0.5 for LOM = 6, 7, 8, and 9

respectively:

l"I LOM-- {0.5/6, 1/7, 1/8, .5/9} (4)

In the current system, LOM is predicted from 10 evidences each of

which predicts LOM with different degree of resolution as shown by

the two examples above.

In addition to the imprecision in the knowledge represented by

possibility theory above, there exists another type of uncertainty

associated with evidences. For example, rules associated with

%C2920S have higher probability of being true than the Heptane
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rules. In our approach, the probability with which a proposition " If

A is al Then B is bl" is true is represented by bpa assigned to the

fuzzy subset of hypotheses induced by the proposition. The

compliment of this probability is assigned to the degree of ignorance

associated with the proposition, since our system generates only one

fuzzy subset of hypotheses for each evidence.

(B) Test Result

In order to validate the system, thirty interpretations were tested to

see if the system's interpretations conformed to those of the expert.
With reference to the test results listed in Table 1, one can notice

that the system interpreted maturities are biased towards higher

LOM. However, these errors are all higher than they should be and

consistent by itself, and can be traced to the membership function

definitions. We are currently fine tuning these membership functions
to correct the problem and plan to test the system with additional
field data..

V. CONCLUSIONS

We presented a knowledge-based system in which linguistic

imprecisions and uncertainties associated with fuzzy rules are

modeled in the frame work of a generalized Dempster-Shafer Theory.

This development is significant in that many application problems in
oil exploration requires a mechanism of combining fuzzy information
from various sources.

Even though the current biomarker interpretation system has been

tested on only 30 data sets, the system will be further tested with

additional field data and expanded to handle interpretations for

other characteristics such as source facies, depositional

environments, and the degree of biodegradation.
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Table 1. Comparison of interpretations

Data Set Number Interpreted LOM System Generated

LOM

1

2

3
4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

8-9

9

9

9

9

9

8.5-9

>10

9

9

9

7.5-8

>i0

>i0

I0-II

ii

9

7.5-8

8

10

10

10

10

9

9

10

9-10

9

10-11

10-11

9-10

i0

i0

i0-II

i0
i0-ii

9-10

II

9-10

9-10

9-10

7

II-ii .5

11-11.5

ii

ii

i0

8-9
9-10

11-11.5

11-11.5

ii

11-11.5

9

9.5-10

11-11.5

Ii

9.5-10

ii

I0-ii
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The efficient implementation of on-line adaptation in real time is an important
research problem in fuzzy control. The goal is to develop autonomous self-

organizing controllers [5] employing system-independent control meta-
knowledge which enables them to adjust their control policies depending on the
systems they control and the environments in which they operate. An
autonomous fuzzy controller would continuously observe system behavior while
implementing its control actions and would use the outcomes of these actions to
refine its control policy. It could be designed to lie dormant when its control
actions give rise to adequate performance characteristics but could rapidly and
autonomously initiate real-time adaptation whenever its performance degrades.
Such an autonomous fuzzy controller would have immense practical value. It
could accommodate individual variations in system characteristics and also
compensate for degradations in system characteristics caused by wear and
tear. It could also potentially deal with black-box systems and novel control
scenarios.

In this paper we report on our on-going research in autonomous fuzzy control.
The ultimate research objective is to develop robust and relatively inexpensive

autonomous fuzzy control hardware suitable for use in real time environments.
This would represent an advancement over most existing fuzzy control systems.
Due to the computational effort involved in implementing on-line adaptation
fuzzy controllers are usually restricted to off-line adaptive configurations. They
typically undergo extensive off-line training; once programmed, their control
policies are set and cannot be changed in real time. We specifically focus on
implementing autonomous behavior in look-up-table-based fuzzy logic
controllers [1,6]. Such a controller simplifies the standard fuzzy control
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algorithm by employing a look-up table generated off-line from an initial set of
common sense fuzzy rules. The table acts as the control surface and
represents "compiled" control knowledge. The look-up table for a two-term

controller is a discrete function mapping error and error-change inputs to
corresponding controller outputs; it gives rise to a 3-dimensional control
surface.

The main challenge when implementing on-line adaptation in look-up table
controllers is to effectively deal with the computational effort involved in
recomputing the look-up table after each change to a membership function or
fuzzy rule [2]. Adaptation typically corresponds to producing new "object-code"

(look-up table) by repeatedly recompiling "source-code" (rules and
membership functions). However, our approach bypasses the recompilation
step required during controller adaptation by appropriately modifying the look-
up table itself. Adaptation thus involves "hammering" the control surface itself.
Controlled changes to the control surface have the overall effect of fine-tuning
the control policy by quantitatively strengthening or weakening certain rules.
Simulation experiments indicate that this approach is highly effective and
robust. Moreover, it is possible to ensure that the qualitative characteristics of
the original common-sense rules are retained during controller adaptation [2,3].
In this paper we describe our efforts at implementing autonomy in look-up-table-
based fuzzy controllers. We start with a basic on-line adaptive algorithm
combining gain coefficient tuning with direct look-up table modification [2,3].
We show how this algorithm can be further refined using control meta-
knowledge to systematically guide and accelerate controller adaptation [4].
Finally, we describe our attempts at endowing the controller with common-
sense knowledge which allows it to monitor its own performance and to
autonomously trigger its own adaptation. The control algorithm for
implementing autonomy in look-up table controllers is fast and relatively robust,

but is still simple enough for hardware implementation. Simulation experiments
indicate that it can effectively deal with a variety of systems. Moreover, its
control meta-knowledge is powerful enough to effect rapid performance

improvements even when the initial control policies are derived from incorrect
n,des or vacuous rule bases.
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Abstract

The hidden units in multi-layer perceptrons are believed to act as fea-

ture extractors. In other words, the outputs of the hidden units represent

the features in a more traditional statistical classification paradigm. This

viewpoint offers a statistical, objective approach to determining the optimal

number of hidden units required. This approach is based on a F-ratio test,

and proceeds in an iterative fashion. The method, and its application to

simulated time-series data are presented.

1 Introduction

Artificial neural nets are increasingly being used for a variety of pattern recog-

nition problems [1, 7, 8, 9]. Recently, Gallinari et al. [4] proved the formal

equivalence between the linear multi-layer perceptron (MLP) and Discrimi-

nant Analysis (DA). Specifically, they noted that in a linear MLP, the first

layer of weights realizes a DA of the input data, that is, projects the in-

puts onto a subspace so as to form well-aggregated clusters for each class.

Experiments on problems with an increasing degree on nonlinearity demon-

strated that DA on the hidden states gave similar performance as that of

MLP. This suggests that hidden units actiwtions can be interpreted as fea-

tures. Consequently, feature selection techniques such as commonly used in

statistical pattern recognition may be used to determine which hidden units

are most significant, and which hidden units may be eliminated. One such

method is presented here, and we show its usefulness in a problem involving

the detection of specific waveforms in a time-series.
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The resultspresented here are part of a largerstudy (see [2]),which

investigatedthe use of recurrent and feed-forward neural networks for the

detection of K-complexes in recordingsof the electricalactivityof the brain

during sleep (electroencephalograms or EEGs). K-complexes are relatively

large waves with a duration of between 500 and 1500 msec often seen during

Sleep Stage 2. Automated detection of K-complex activity in the EEG is an

important component of sleep stage EEG monitoring. Neural nets have been

applied before to EEG waves with some success [3, 6].

2 Methods

The experiments described here involve the use of the multi-layer perceptron

to detect bi-phasic triangular waveforms of vm-ious shapes in model-generated

time-series. Both the triangular waveform and the time-series were made to

resemble actual sleep EEG and K-complexes. The magnitude was extracted

from segments of these time-series using the Fourier transform, and used as

input to the neural nets. Once training was complete, a step-wise procedure

was applied to determine the optimal number of hidden units required. The

reduced net was then trained again, and tested using other data sets. The de-

tails of the data generation, net architecture and input, and net optimization

procedure are provided next.

2.1 Data Generation

EEG data were obtained from six subjects. Five EEG channels (Fp1, F3,

F4, T3, and T4) with observable K-complexes were used. An artificial data

set was generated by producing a time series resembling actual EEG, to

which a pattern representing a K-complex was added. EEG-like activity

was produced through an 8th-order autoregressive (AR) model. The model

coefficients were computed from actual EEG segments in the neighborhood

(within 5 sec) of K-complexes (as identified by an electroencephalographer)

to be used in generating "positive" examples, and from EEG taken far away

from K-complexes to generate "negative _ examples. "triangular patterns, re-

sembling a K-complex, were placed in the artificial, "positive" EEG segments

at various locations. No such pattern was added to the "negative" artificial

EEG segments. Each positive or negative example consisted of 1000 sam-
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pie points, representing 10 sec of data. The shape of the pattern differed

between each of the positive examples. Specifically, the peak-to-peak ampli-

tude of the pattern was varied in such a way that the ratio of the peak-to-peak

amplitude of the pattern and the root-mean-square (rms) of the background

activity would range between 0.05 and 0.15, the pattern was inserted at a

random location, and the duration of the pattern varied randomly within a

range similar to that of actual K-complexes. Three of such data sets were

generated, referred to as the Train, Testl, and Test2 set, respectively. The

Train and Testl ("seen") data sets were generated from the same AR mod-

els, but different seed points were used to generate the EEG-like data and to

control the shape and the location of the K-complex-like pattern. The Test2

data set ("unseen") was generated from the AR models obtained from EEG

examples not included in the training data set.

2.2 Net Input and Architecture

Our basic approach was to compute the magnitude spectrum of 10 sec signal

segments (using a FFT routine). These data were input to a multi-layer

perceptron, which was trained using the backpropagation algorithm. Unless

otherwise stated, the inputs to the net consisted of the magnitude at each of

64 frequency bins. A 512-point Fast Fourier Transform (FFT) was computed

to obtain the magnitude, which was subsequently smoothed and reduced

to 64 sample values by averaging over 8 adjacent points. These smoothed

magnitude and phase values were then normalized between 0 and 1 for use as

inputs to the neural network input nodes. Experiments with the hidden unit

selection technique were performed on nets with 64 input units, one hidden

layer with 8 units, and one or two output units.

2.3 Optimizing using Discriminant Analysis

The core of the optimization procedure derives from stepwise feature selection

methods often used in statistical pattern recognition. In these approaches,

the 'best' feature is selected from a pool of features using some criterion. All

the pair-wise combinations of this best feature with any of the remaining fea-

tures are explored to determine which is the 'best' pair, and if this additional

feature has any discriminating power. If the answer to the last question is

yes, triplets are formed by combining the best pair with any of the remaining
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features.This process is repeated untilitisfound that adding a feature to

the ones already selecteddoes not lead to significantimprovements in the

criterionfunction.

In the present application,the outputs (activations)of the hidden units

are treated as features. The Wilks' A isused as the criterionfunction to

determine which featureshould be selected.The Wilks' A isa multi-variate

statisticthat teststhe equalityof group means for the selectedfeatures [5].

The A may be converted to an approximate F-ratio.In the present method,

the conditionalF-ratioisused. The lattermeasures how much a given feature

contributesto the group differencesgiven the variablesalready selected.At

each step the conditionalF-ratiosare computed for each feature. Ifa feature

which has already been selectedhas a non-significantF-ratio,itisremoved. If

none of the featuresare removed, then the featurewhich createsthe largest

change in the criterionfunction is added to the selection. If none of the

remaining featureshave a significantF-ratio,the procedure halts.

3 Results

In the first experiment, magnitude data were used to train a single output

net with the Train data set. Upon convergence, training was halted, and the

Train, Test1, and Test2 data sets were input to determine the classification

performance of the net. A correct classification rate of 100% was found for

Train, 92% for Test1, and 87% for Test2, respectively. Following this stage,

the activations of the 8 hidden units for each example in the Train data

set were recorded and subjected to the F-ratio test. The results shown in

Table 1. Hidden units are listed in the order in which they were selected,

together with their F-value at the time of selection.

The relatively large difference in F-value between unit 3 and 7 suggests

that unit 3 is a very important feature. The scatter plot of the activations

of unit 3 and 7, in response to the presentation of the training examples,

is shown in Figure 1. It can be observed that the two classes are very well

separated, except for a few positive examples that fall in the negative class

cluster.

Mamelak, et al. [7] found that the overall performance of a single output

net is usually worse than a 2 output net for a two-class problem. Even though

each example can be assigned an unique pattern, with no indeterminate pat-
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Figure 1: Scatter plot of the activations of 2 hidden units (3rd and 7th), for

the net with 8 hidden units and 1 output unit trained on the power spectra of

ezp.4.
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Table 1:

outputs of a single-output net.

Hidden

Unit

3

7

8

2

5

6

1

F-values obtained by performing an F-test on the 8 hidden unit

F-vo.lue

155.88

37.77

68.73

43.43

43.51

34.28

4.25

terns, if a single output unit is used for a two-class problem, they found that

the mapping between input and output patterns is actually too restricted,

limiting the ability of the single-output net to fine-tune the threshold levels

for all remaining patterns. We decided to explore this issue by applying the

same training set as used above to a net with 8 hidden units and 2 output

units. The net converged in 1187 cycles. The results of the F-test on the 8

hidden unit outputs are presented in Table 2.

Table 2: F-values obtained by performing an F-test on the 8 hidden units

activations of a net with 2 output units

Hidden F-value

Unit

5 203.22

8 106.47

1 193.73

7 12.12

3 34.13

2 9.66

Observe that units 5, 8, and 1 produce large F-values, indicating their

relative importance. Figure 2 shows the scatter plot for the first two selectcd

hidden units. As shown, both classes are well clustered and are sitting well
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in the corners of the square box. Compared to the results obtained with

the net with one output unit (see Figure 1), the separation between the two

classes is better defined. This confirms the observations made by Mamelak

et al..

1.0
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Figure 2: Scatter plot of the activations of 2 hidden units (5th and 8th), for

the net with 8 hidden units and 2 output units.

Both of the aforementioned experiments suggest that a net with just two

hidden units would perform as well as a net with 8 hidden units. This was

explored in the next experiment involving a net with 2 hidden units and 2

output units. Again, training was done using the magnitude data, and it

was found that the net converged in 1503 cycles. The scatter diagram of the
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activations of the two hidden units is shown in Figure 3. As one can see,
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FETI I. 0

Figure 3: Scatter plot of the activations of 2 hidden units/or the net with 2

hidden units and 2 output units.

the two classes are well-separated and occupying the corners of the feature

space. The negative examples (N) are grouped into one comer, whereas the

positive examples (P) are distributed over the other 3 corners. There was no

specific relationship between the positive examples within one corner. This

strongly suggests that a net with two hidden units should be sufficient to

classify all the examples correctly. This was tested on the Train, Testl, and

Test2 data sets, and although not perfect classification results were obtained

for the two testing sets, the results were not significantly different from those
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obtained with a net with 8 hidden units and 2 output units, and with a net

with 8 hidden units and a single output.

4 Conclusions

We have presented a simple technique for the a posteriori determination of the

hidden units required in a multi-layer perceptron. The method uses the fact

that the hidden units appear to perform a discriminant analysis, essentially

extracting features from the neural net input. The relative importance of

each hidden unit can be assessed using an F-ratio test. In addition, the

absolute value of the F-ratio provides insight in the degree of confidence one

may place in the classifications produced by the net. For example, if the most

significant hidden units have F-values barely above the level of significance,

the classifying power of the net will be small.

The method described here is part of most widely available software pack-

ages for multi-variate data analysis, including BMDP and SPSS, making it

very easy to apply this method.
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Abstract

There is tremendous interest in the design of intelligent machines capable of autonomous

learning and skillful performance under complex environments. A major task in designing

such systems is to make the system plastic, and adaptive when presented with new and

useful information and stable in response to irrelevant events. A great body of knowledge,

based on neuro-physiological concepts, has evolved as a possible solution to this problem.

Adaptive resonance theory (ART) is a classical example under this category. The system

dynamics of an ART network is described by a set of differential equations with nonlinear

functions.

An entirely new approach for designing self-organizing networks characterized by non-

linear differential equations is proposed in this paper. Similar to the neuro-physiologicai

approach, the method presented here relies upon another area - that of passive nonlinear

network theory. A passive nonlinear network is formed by proper interconnection of various

nonlinear elements where each and every nonlinear element is constrained to be lossless or

lossy. When energy storing elements are present in such a network, we can obtain a set of

Input/Output relationships as nonlinear differential equations. The basic property that the

network is lossy (consumes energy) ensures that the nonlinear differential equations obtained

from the network would represent absolutely stable systems and this property holds as long

as the individual element values are maintained in their permissible range of values. Thus,

to deign complex nonlinear systems (a complex nonlinear plant plus a controller to optimize

its performance, for example) and self-organizing systems, one simply has to force the sys-

tem dynamics to mimic the dynamics of a properly constructed passive nonlinear network,

a process akin to reverse engineering.

In our research which is in its early stages, we have developed the basis for the above

approach and applied it with relative ease to a number of problems leading to encouraging

results. The fruits of such an approach seem to be endless. For example, the approach can

be applied to linear and nonlinear controller design (for linear and nonlinear plants), self

tuning controllers, model reference adaptive controllers, self-organizing networks, adaptive

IIR filter design, adaptive beam-forming, two-dimensional systems, fuzzy systems etc. In

this paper, we provide some details of this approach and show results from some of these

topics to show the power of this approach.
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1 Introduction

There is currently tremendous interest and research activity in the areas of neural networks

and fuzzy logic. The major driving force behind all these efforts is the hope that they can

provide creative and novel solutions to the design of complex, autonomous and self-organizing

systems. Fuzzy logic tries to mimic human approach to decision making when presented with

fuzzy and often conflicting data and rules. Neural networks have originated from efforts to

mimic neuro-physiological behavior.

From a functional point of view, both neural networks and fuzzy expert systems imple-

ment a mapping f: u ---, y, where u is an input vector, y the output vector and f is the

mapping function which in general is a highly nonlinear function. In the case of fuzzy expert

systems, the mapping is achieved through higher order logical relations between the inputs

and the outputs where as in the case of neural networks, it is achieved through simple but

repetitive linear and nonlinear operations. Fuzzy expert systems by themselves are feed-

forward systems but their use in applications such as control lead to systems with feedback.
Neural net architectures can either be feed-forward architectures or architectures with feed-

back. The system dynamics of feedback (also known as recurrent) neural networks are in

general represented by a set of differential equations with nonlinear terms. Self-organizing

techniques through which fuzzy rules and membership functions are learnt or improved are

conceptually similar to the learning or training procedures in the neural network domain.

When we deal with systems with feedback, the object of this paper, stability becomes

an important issue and has to take precedenc e over learning or self-organizing. However, it

is not easy to establish stability of large-scale nonlinear systems. In fact, it is known that

a first-order nonlinear equation with just one parameter can lead to stable, unstable and

chaotic situations depending upon the value of that parameter. In this paper, we establish a

frame work for designing such feedback or recurrent systems that are guaranteed to

be stable with relative ease and show how it can be incorporated into fuzzy expert systems

and neural networks with self-organizing capability.

2 The Basic Philosophy

As indicated before, our desire to mimic human cognition and functioning of neuro-physiological

architectures has led to the two areas: Fuzzy logic and neural networks. The basic philos-

ophy behind our new approach is to use "Passive Nonlinear Network Theory" to build new

neural architectures with internal feedback. As will be shown, it leads to a new paradigm

that is easier to handle (at least for engineers and computer scientists) than neuro physiology

or human cognition.

A passive nonlinear network is simply an electrical network formed by proper intercon-
nection of various nonlinear elements.The nonlinear elements in the network are constrained

to be either lossless or lossy and the interconnections are such that the basic circuit laws are

obeyed. As an example, the equation
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iR(t) = a ta_-'(_R(t))
represents a two-terminM passive nonlinear resistor since

(1)

p(t) = iR(OvR(O> o for all t

indicating that the element consumes power all the time. In addition to the already

known passive nonlinear resistors, we have defined a number of passive nonlinear elements.

When such elements are interconnected with dynamic elements as shown in Fig.l, we can

write down the dynamic equations for the network as a set of stable nonlinear equations:

[PIIX = F[X, u] (e)
where

X = [iL,, iL2, ..., iLL, VC_, vc2, ...Vvc] T

P = [L1, L2,...,LL, C1,C=,...,Cc]

u = [,,, h, ...,/,, v,, v_,..., vvl

I, an identity matrix of size (LL + Cc) * (LL + Cc)

iv, a vector of nonlinear functions of X and U

and

'.' indicates differentiation.

It can be observed that the set of equations given in (2) represents a stable network or

system as long as the element values are in the permissible range so as to retain the lossy or

lossless property. The stability property holds good even if we incorporate complex, exotic

nonlinear elements. If such a system is turned on with only initial stored energy in the

dynamic elements, the state variables will all go to zero as time progresses.

Reader familiar with the ART networks [1-4] will recognize immediately the similarity in

the structure of the set of equations (2) obtained from the passive network and the set of

equations characterizing ART networks:

e./ck=--xk+(1--Axk)J + - (B + Cxk)J[ k= 1 to M + N (3)

2iS = k,f(xs)[-EijZis + h(x;)] i = 1 to M; (4)

Z,ji = k2f(xj)[-EjiZji + h(xi)] j = i to M + 1 (5)

where the descriptions of the various terms can be found in the references. However,

a major difference between ART dynamic equations and the set of equations derived from
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the passive networks is that the former has been derived from an understanding of difficult

cognition processes and slow evolution (ART-1 to ART-2 and so on). The passive network

approach enables us to come up with a number of entirely different sets of equations with

relative ease as will be obvious from the examples given. Another difference is that the ART

equations are written in such a way that some state variables are forced to reach saturation

(similar to introducing activity or nonlossy property in some of the elements in the network).

The "Winner-Take-All" portion of the ART network belongs to this category.

The basic philosophy behind our design approach is to 1) define a number of nonlinear

elements obeying the lossless or lossy condition, 2) form a generic network architecture that

would lead to most general form of nonlinear state equations and 3) force the state equations

corresponding to the system under consideration to obey the form given in equation (2). The

property that the equations represent a stable network whether they are set to a fixed mode

or in a self-organizing mode makes this approach unique and promising.

3 Simulation Examples

In this section, we provide a number of examples to illustrate the applicability of the ap-

proach to a number of problem domains.

3.1 Nonlinear/Adaptive Controller Design

Consider a single-degree-of-freedom manipulator represented by a 2nd - order transfer func-

tion as shown in Fig.2. The task is to design an adaptive controller which will force the

manipulator to follow a desired trajectory.

The classical approach in adaptive control is to define a control input

T(t) = -klq - k2il

and adapt the coefficients K=[kl, k2] r using

(6)

Oe 2

[k]= -C-bT

where e corresponds to the tracking error.

(7)

A network based controller using the same form for control input as in (6) is given by

k, = -(k, + 4tan-'(k,)) + qdl + k2 + 1
7r

ks = + ks + 3
_r

(8)
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where the controller equations have been obtained so as to force the plant and the controller

combination mimic a fourth-order passive nonlinear dynamic network 1 and assuming that

the desired output of the plant as qd, Od = O. The constants in the equations are chosen to

let kl,k2 to 1 as t --* _.

Another set of controller equations based on the network approach is given by

kl = -(k, + 4tan-'(k,)) + qil + k2 + 1
_r

(9)

= + 4-tan-'(k,)) + 0 - + 3
7r

We provide this addition controller expression simply to illustrate how easy it is to derive

alternate forms.

We have shown some simulation results in Figs. 3A-C using the controller expressions

in (8) . The simulations were carried out assuming different initial values for q, 0 and some

initial values for kl and k2 and the task of the controller is to move the manipulator to

location zero. Figs. 3A and 3B shows q, 0 as a function of time and Fig 3C shows a phase

plane plot (q V, _) of the manipulator. It can be noted that the adaptive controller does a

good job of controlling the manipulator. Though we are not including the results, we have

performed the simulations with a) error in the plant coefficient values, b) a sudden change in

the values of the friction and compliance coefficients and c) unmodeled dynamics represented

by another second-order transfer function. The results were really impressive and showed

the robustness of the nonlinear adaptive controller obtained using the network approach. It

should be noted here that nonlinear functions such as tan-l(kl), initial and final values for

kl and k2 etc were chosen randomly with no efforts to optimize anything.

3.2 Application to Fuzzy Control

Fuzzy logic [5] has been used to design controllers for various systems and processes [ref. 6,

for example]. The classical approach is to find the difference between the actual and desired

outputs and the derivatives of the outputs and use a fuzzy expert system to generate the

control input(s) (see Fig. 4A). Thus, the plant and the controller form a closed loop and

the stability of the feedback system could become an issue. The architecture could be easily

modified to mimic a passive network (as shown in Fig. 4B) and hence guarantee stability.

To illustrate this concept, we have taken a third order model example used in ref.[7],

retained only the two dominant poles and used the fuzzy look-up table given in that paper

with some modifications to generate the fuzzy controller output F(e, _). Denoting the trans-

fer function of the plant as

1We are not going into complete details of deriving the equations as we are in the process of patenting some of

the nonlinear elements and their applications.
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b Y(s)
H(s) - s2 + as + b - U(s) (10)

with u as input to the plant, and y the output of the plant, the dynamics of the complete

system is given by

Y----Yl

_)1 = -by - ayl -'}- u (11)

u = kF(e, 4)

t = -yiF(e, _)- k- 4tan-l(k) + ul
_r

where Ul is chosen to force k to a particular value as the plant output moves to the target

value. The responses of the plant using the classical fuzzy control approach and the new

network based approach for two values of k(c¢) are shown in Fig 5. It can be noted that

there is some improvement in the response 2. However, the key point here is that the system

represented by equation (11) will remain stable and robust for external disturbances.

3.3 Application to Model Reference Adaptive Control (A Simple Self-Organizing

System)

Here we consider the application of the passive network approach to model reference adap-

tive control (MRAC) where the aim is to design a controller such that the combined system

(plant + controller) mimics a given model. The problem is quite simple if the plant model

and the parameters are known precisely. If that is not the case or if the parameters vary with

respect to time, an adaptive controller is the preferred solution. The set-up for the classical

adaptive control as well as the new network based approach are shown in Fig. 6 . The

classical approach is to use a gradient based technique to update the controller parameters

but is known to be prone to instability etc.

The set of equations comprising the whole adaptive system based on the network ap-

proach is given by footnoteWe used subscripts m, p, t to denote closed-loop-model, plant

and time-evolving model respectively.

8,7, = Or(t) + k (closed- loop- model requirement)

Jcp = -Opxp - kxp + r (plant dynamics)

_t = -Otxt - kxp + r = k(xt - xp) - O,,,xt + r

(dynamics of the time-evolving model of the plant)

_ 2k = zpxp+ (zp- z,)z,- F,(z_ x,)(k+ 4tan-'(k)) - z_
7r

2It appears that the original fuzzy controller h_ already been optimized very well.

(12)
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where
(controller dynamics)

F_(xp- xt) = f l whenlz p - xt} > 1

Ixp - xt[ otherwise

Again, the expression for the controller dynamics was obtained by forcing the three dif-

ferent dynamics to mimic a highly coupled passive network. The set of equations were

simulated using some initial values for xp, x,,,, xt, k and r(t), a sinusoidal function. The time

evolution of k(t) is shown in Fig.7. It can be noted that k tends to its expected value of

0.5 in nearly 1500 iterations, a nice feat for an almost randomly chosen controller function.

The key point to be noted from this example is that self-organizing networks can also be

designed very easily using the new approach.

It is noted above that the classical MRAC approach can lead to instability under certain

conditions. This could probably be explained using network concepts by noting that there

are two closed loops in the whole system, one involving the plant and the controller and

the other involving the plant, adaptive control law and the controller. The two loops were

formed by some mathematical considerations and do not seem to be coupled as well as a

network based approach and the complete system is not constrained to be passive and lossy.

Hence the possibility for instability.

4 Summary

An entire new and exciting approach for designing nonlinear systems and self-organizing

networks is proposed in this paper. The approach is based on a simple yet powerful con-

cept that of using properties of properly constructed nonlinear passive networks. We have

shown examples from different areas indicating how the approach can be applied to many

different areas and the possible applications seem to be endless. The preliminary results

obtained so far are very encouraging. We believe that it is just the beginning of a new era

for a powerful methodology which can compete with approaches mimicking human cognition.
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PROJECT SUMMARY

A novel adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type

neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification

of cluster centers has been developed.

The Adaptive Fuzzy Leader Clustering (AFI._ architecture is a hybrid neural-fuzzy system which

learns on-line in a stable and efficient manner. The system uses a control structure similar to that found

in the Adaptive Resonance Theory (ART-I) network to identify the cluster centers initially. The initial

classification of an input takes place in a two stage process; a simple competitive stage and a distance

melric comparison stage. The cluster prototypes are then incrementally updated by relocating the cenlroid

positions from Fuzzy c - Means (FCM) system equations for the cenlroids and the membership values.

The operational characteristics of AFLC and the critical parameters involved in its operation are

discussed. The performance of the AFLC algorithm is presented through application of the algorithm to

the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully

classifies features extracted from real data, discrete or continuous, indicating the potential slrength of

this new clustering algorithm in analyzing complex data sets.

This hybrid neuro-fuzzy AFLC algorithm will ehnance analysis of a number of difficult recognition

and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude

controller.
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I. INTRODUCTION

Cluster analysis has been a significant research area in pattern recognition for a number of years[I]-

[4]. Since clustering techniques are applied to the unsupervised classification of pattern features, a neural

network of the Adaptive Resonance _ (ART) type[5],[6] appears to be an appropriate candidate for

implementation of clustering algorithms[7]-[10]. Clustering algorithms generally operate by optimizing

some measures of similarity. Classical, or crisp, clustering algorithms such as ISODATA[11] partition

the data such that each sample is assigned to one and only one cluster. Often with data analysis it is

desirable to allow membership of a data sample in more than one class, and also to have a degree of

belief that the sample belongs to each class. The application of fuzzy set theory[12] to classical

clustering algorithms has resulted in a number of algorithms[ 13]-[ 16] with improved performance since

unequivocal membership assignment is avoided. However, estimating the optimum number of clusters in

any real data set still remains a difficult problem[ 17].

It is anticipated, however, that a valid fuzzy cluster measure implemented in an unsupervised neural

network architecture could provide solutions to various real data clustering problems. The present work

describes an unsupervised neural network architecture[ 18],[ 19] developed from the concept of ART-1 [5]

while including a relocation of the cluster centers from FCM system equations for the centroid and the

membership values[2]. Our AFLC system differs from other fuzzy ART-type clustering algorithms

[20],[21] incorporating fuzzy rain-max learning rules. The AFLC presents a new approach to

unsupervised clustering, and has been shown to correctly classify a number of data sets including the Iris

data. This fuzzy modification of an ART-1 type neural network, i.e. the AFLC system, allows

classification of discrete or analog patterns without a priori knowledge of the number of clusters in a data

set. The optimal number of clusters in many real data sets is, however, still dependent on the validity of

the cluster measure, crisp or fuzzy, employed for a particular data set.
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II. ADAPTIVE FUZZY LEADER CLUSTERING SYSTEM AND ALGORITHM

A. AFLC System and Algorithm Overview

AFLC is a hybrid neural-fuzzy system which can be used to learn cluster structure embedded in

complex data sets, in a self-organizing, stable manner. This sy_aem has been adapted from the m3ncepts of

ART-I structure which is limited to binary input vectors[5]. Pattern classificaficm in ART-I is achieved

by assigning a prototype vector to each cluster that is incrementally updated[ 10].

Let Xj = { Xj 1, Xj2 .... Xjp } be the j th input vector for 1 < j < N where N is the total number of

samples in the data set and p is the dimension of the input vectors. The initialization and updating

procedures in ART-I involve similarity measures between the bottom-up weights (bki where k = 1,2,...,p)

and the input vector (Xj), and a verification of Xj belonging to the i th cluster by matching of the top-

down weights (tik) with Xj. For continuous-valued features, the above procedure is changed as in ART-

2[6]. However if the ART-type networks are not made to rewesent biological networks, then a greater

flexibility is allowed to the choice of similarity metric. A choice of Euclidean metric is made in

developing the AFLC system while keeping a simple control structure adapted from ART-I.

Figure 1

Figures l(a) and l(b) represent the AFL_ system and operation for initialization and comparison of

cluster prototypes from input feature vectors, which may be discrete or analog. The updating procedure in

the AFLC system involves relocation of the cluster prototypes by incremental updating of the cenlroids

v i, (the cluster prototypes), from FCM system equations[2] for v i and _j as given below :

N I

J='
j=l

l<i<C (I)
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1- v,[
l__i__C; I__j__N-- = :4., (2)

where N i is the number of samples in cluster i and C is the number of clusters. The vi's and gij's ate

recomputed over the entire data sample N.

As described here, AFLC is primarily used as a classifier of feature vectors employing an on-line

learning scheme. Figure l(a) shows a p-dimensional discrete or analog-valued input feature vector, X to

the AFLC system. The system is made up of the comparison layer, the recognition layer, and the

surrounding conlroi logic. The AFLC algorithm initially starts with the number of clusters (C) set to zero.

The system is initialized with the input of the first feature vector X. Similar to leader clustering, this first

input is said to be the prototype for the first cluster. The normalized input feature vector is then applied to

the bottom-up weights in a simple competitive learning scheme, or dot product. The node that receives

the largest input activation Y is chosen as the prototype vector as is done in the original ART-I.

Y_= max{£Xjkbe} ; 1 < j < N (3)
k=l

Therefore the recognition layer serves to initially classify an input. This f'wst stage classification

activates the prototype or top-down expectation (tik) for a cluster, which is forwarded to the comparison

layer. The comparison layer serves both as a fan-out site for the inputs, and the location of the

comparison between the top-down expectation and the input. The control logic with an input enable

command allows the comparison layer to accept a new input as long as a comparison operation is not

currently being processed. The control logic with compare imperative command disables the acceptance

of new input and initiates comparison between the cluster prototype of Yi i.e., the centroid v i and the

current input vector, using equation (4). The reset signal is activated when a mismatch of the first and
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second input vectors occurs according to the criterion of a distance ratio threshold as expressed by

equation (4)

Id 2 (X j, V i )
R= < "r (4)N,

.1. __,4d2(X,,vi)
Ni _.l

where : k = 1....N i the number of samples in class i and Idz(Xi,vi) is the Euclidean distance m

indicated in equation(5).

d2(x,-v,)-lx, -v,I2 (5)

If the ratio R is less than a user-specif'_! threshold x, then the input is found to belong to the cluster

originally activated by the simple competition. The choice of the value of x is critical and is found by a

number of initial runs. Preliminary runs with '_ varying over a range of values yield a good estimate of the

possible number of clusters in unlabeled data sets.

When an input is classified as belonging to an existing cluster, it is necessary to update the

expectation (prototype) and the bottom-up weights associated with that cluster. First, the degree of

membership of X to the winning cluster is calculated. This degree of membership, St, gives an indication,

based on the current state of the system, of how heavily X should be weighted in the recalculation of the

class expectation. The cluster prototype is then recalculated as a weighted average of all the elements

within the cluster. The update rules are as follows: the membership value laij of the current input sample

Xj in the winning class i, is calculated using equation (2), and then the new cluster cen_roid for cluster i is

generated using equation (1). As with the FCM, m is a parameter which defines the fuzziness of the

results and is normally set to be between 1.5 and 30. For the following applications, m was

experimentally set to 2.

The AFLC algorithm can be summarized by the following steps :

1. Start with no cluster prototypes. C = O.

2. Let Xj be the next input vector.
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3. Find the trot stage winner Yi, as the cluster prototype with the maximum dot-product.

4. If Yi does not satisfy the distance ratio criterion, then create a new cluster and make its

prototype vector be equal to Xj. Output the index of the new cluster.

5. Otherwise, update the winner cluster prototype Yi by calculating the new centroid and

membership values using equations (1) and (2). Output the index ofY i. Go to Step 2.

A flow chart of the algorithm is shown in Figure 2.

Figure2

HI. OPERATIONAL CHARACTERISTICS OF AFLC

A. Ma_h-bused Learning and the Search

In match-based learning, a new input is learned only after being classified as belonging to a

particular class. This process ensures stable and consistent learning of new inputs by updating parameters

only for the winning cluster and only after classification has occurred. This differs from exror-based

learning schemes, such as backpropagation of error, where new inputs are effectively averaged with old

learning resulting in forgetting and possibly oscillatory weight changes. In [5] match-based learning is

referred to as resonance, hence the name Adaptive Resonance Theory.

Because of its ART-like control structure, AFLC is capable of implementing a parallel search when

the distance ratio does not satisfy the thresholding criterion. The search is arbilrated by appropriate

control logic surrounding the comparison and recognition layers of Figure 1. This type of search is

necessary due to the incompleteness of the classification at the first stage. For illustration, consider the

two vectors (1,1) and (5,5). Both possess the same unit vector. Since the competition in the bottom-up

direction consists of measuring how well the normalized input matches the weight vector for each class i,

these inputs would both excite the same activation pattern in the recognition layer. In operation, the

comparison layer serves to test the hypothesis returned by the competition performed at the recognition
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layer. If the hypothesis is disconf'umed by the comparison layer, i.e. R • x, then the search phase

continues until the correct cluster is found or another cluster b created. Normalization of the input

vectors (features) is done only in the recognition layer for finding the winning node. This normalization

is essential to avoid large values of thedot products of the input features and the bottom-up weights and

also to avoid initial misclassification arising due to large varialions in magnitndes of the cluster

prototypes. The search wocess, however, renonnalizes only the cenlroid and not the input vectors again.

B. Determining the Number of Output Classes

AFLC utilizes a dynamic, self-organizing structuretolearnthe characteristicsofthe input data. As a

result, it is not necessary to know the number of clusters a priori; new clusters are added to the system as

needed. This characteristicis necessary for autonomous behavior in practicalsituationsin which

nonlinearitiesand nonstationarityarefound.

Clusters are formed and trained, on-line, according to the search and learning algorithms. Several

factors affect the number, size, shape, and location of the clusters formed in the feature space. Although

it is not necessary to know the number of clusters which actually exist in the data, the number of clusters

formed will depend upon the value of x. A low threshold value will result in the formation of more

clusters because it will be more difficult for an input to meet the classification criteria. A high value of 'g

will result in fewer, less dense clusters. For data structures having overlapping clusters, the choice of _ is

critical for correct classification whereas for nonoverlapping cluster data, the sensitivity of _g is not a

significant issue. In the latter case the value of x may vary over a certain range, yet yielding correct

classification. Therefore the sensitivity of x is highly dependent on specific data sa'ucture as shown in

Figure l(c). The relationship between _ and the optimal number of clusters in a data set is currently

being studied.

C. Dynamic Cluster Sizing
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As described earlier, "_is compared to a ratio of vector norms. The average distance parameter for a

cluster is recalculated after the addition of a new input to that cluster:, therefore, this ratio (R) represents a

dynamic description of the cluster. If the inputs are dense around the cluster prototype, then the size of

the cluster will decrease, resulting in a more stringent condition for membership of future inputs to that

class. If the inputs are widely grouped around the cluster prototype, then this will result in less stringent

conditions for membership. Therefore, the _ clusters have a self-scaling factor which tends to keep

dense clusters dense while allowing loose clusters to exist.

D. The Fuzzy LearningRule

In general, the AFLC architecture allows learning of even rare events. Use of the fuzzy learning rule

in the form of equations (1) and (2), maintains this characteristic. In weighted rapid learning[5], the

learning time is much shorter than the entire processing time and the adaptive weights are allowed to

reach equilibrium on each presentation of an inpuL but the amount of change in the lm3totype is a

function of the input and its fuzzy membership value (ttij). Noisy features which would normally

degrade the validity of the class prototype are assigned low weights to reduce the undesired affect. In the

presence of class outliers, assigning low memberships to the outliers lead to correct classification.

Normalization of membership is not involved in this process. However, a new cluster of outliers only can

be formed during the search process[22]. Development of such outlier/noise cluster in AFLC is currently

under progress.

Weighted rapid learning also tends to reinforce the decision to append a new cluster. This is due to

the fact that, by definition, the first input to be assigned to a node serves as that node's fast prototype,

therefore, that sample has a membership value of one. Future inputs are then weighted by how well they

match the prototype. Although the prototype does change over time, as described in the algorithm, each

sample retains its weight which tends to limit moves away from the current prototype. Thus the clusters

possess a type of inertia which tends to stabilize the system by making it mote difficult for a cluster to

radically change its prototype in the feature space.
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Finally, the fuzzy learning rule is stable in the sense that the adaptive weights represent a normalized

version of the cluster centmid, or prototype. As such, these weights are bounded on [0,1] and are

guaranteed not to approach infinity.

E. AFLC as a General Architecture

As with mint otherclusteringalgorithms,thesizeand shape of theresultantclustersdepends on the

metricused. The use of any metricwilltend to influencethe data toward a solutionwhich meets the

criteriafor thatmetricand not necessarilytothe bestsolutionforthe data. This statementimpliesthat

some metrics are better for some problems than are others. The use of a Euclidean metric is convenient,

but displays the immediate Woblem that it is best suited to simple circular cluster shapes. The use of the

Mahalanobis distance accounts for some variations in cluster shape, but its non-lineanty serves to place

constraintson the stabilityof itsresults.Also,as with othermelxics,the Euclidean and Mahalanobis

distance metrics lose meaning in an anisotmpicspace.

IV. TESTS AND RESULTS: FEATURE _ CLASSIFICATION

A. Clusteringof the Anderson Iris Data

The Anderson Irisdata set[23],consistsof 150 4-dimensional featurevectors. Each pattern

corresponds to characteristics of one flower from one of the species of Iris. Three varieties of Iris are

represented by 50 of the feature vectors. This data set is popular in the literature and gives results by

which AFLC can be compared to similar algorithms.

We had 52 runs of the AFLC algorithm for the Iris data for 13 different values of _, with 4 runs for

each _. Figure l(c) shows the _-C graph. With Euclidean distance ratio and _ ranging between 4.5 and

5.5, the sample data was classified into 3 clusters with only 7 misclassifications. The misclassified

samples actually belonged to Iris versicolor, cluster ,92, and were misclassified as Iris virginica, cluster
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#I. From Figure l(c) it can be observed that the optimal number of clusters can be determined from the x

dC
-C graph as the value of C that has m : 0; for C _ 1, for the maximum possible range ofx.

dx

Figure 3, shows the input Iris data clusters using only three features for each sample data point.

Figure 4a shows the computed centroids of the three clusters based on all four features. The intercluster

Euclidean distances are found to be 1.75 (d12), 4.93 (d23), and 3.29 ((113). dij is the intercluster

distance between clusters i & j. The comparatively smaller intercluster distance between clusters 1 and 2

indicates the proximity of these clusters. Figure 4b shows a confusion matrix that summarizes the

classification results.

Figure 3

Figure 4

B. Classification of Noisy Laser-luminescent Fingerprint Image Data

Fingerprint matching poses a challenging clustering problem. Recent developments in automated

fingerprint identification systems employ primitive and computationally intensive matching techniques

such as counting ridges between minutae of the fingerprints[24]. Although the technique of laser

luminescent image acquisition of latent fingerprint provide often identifiable images[25], these images

suffer from amplified noise, poor contrast and nonuniform intensity. Conventional enhancement

techniques such as adaptive binarization and wedge filtering provide enhancement at the expense of

significant loss of information necessary for matching. Recent work[26] presents a novel three stage

matching algorithm for fingerprint enhancement and matching. Figure 5b shows the enhanced image of

5a subsequent to selective Fourier spectral enhancement and bandpass filtering. We used the AFLC

algorithm to cluster three different classes of fingerprint images using seven invariant moment

features[26],[27] computed from images that are enhanced[26]. A total of 24 data samples are used, each

sample being a 7-dimensional moment feature vector. These moment invariants are a set of nonlinear

functions which are invariant to translation, scale, & rotation. The three higher order moment features
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are given less weights thus reducing the affect of noise and leading to proper classification. The x-C

graph for the fingerprint data in Figure l(c) shows a range of _ from 3.0 to 4.5 for which proper

classification resulted. The fingerprint data has also been correctly classified by a k-nearest neighbor

clustering using only four moment featares[26]. Euclidean distances of these clusters indicate that the

clusters are well separated which is consistent with the comparatively larger range of x found for proper

classification. Figures 5a and 5b represent one fingerprint class before and after enhancement. Figure 6a

shows the computed centroids of three fingerprint clusters. Figure 6b shows a confusion matrix that

indicates correct classification results.

Figure 5, Figure 6

V. CONCLUSION

It is possible to apply many of the concepts of AFLC operation to other control structures. Other

approaches to Fuzzy ART are being explored[20],[21] that could also be used as the control structure for

a fuzzy learning rule. Choices also exist in the selection of class prototypes. With some modification,

any of these techniques can be incorporated into a single AFLC system or a hierarchical group of

systems. The characteristics of that system will depend upon the choices made.

While AFLC does not solve all the problems associated with unsupervised learning, it does possess a

number of desirable characteristics. The _ architecture learns and adapts on-line, such that it is not

necessary to have a wiofi knowledge of all data samples or even of the number of clusters present in the

data. However the choice of _ is critical and requires some a priori knowledge of the compactness and

separation of clusters in the data structure. Learning is match-based ensuring stable, consistent learning of

new inputs. The output is a crisp classification and a degree of confidence for that classification.

Operation is also very fast, and can be made faster through parallel implementation. A recent work[28]

shows a different approach to neural-fuzzy clustering by integrating Fuzzy C - means model with

Kohonen neural networks. A comparative study of these recently developed neural-fuzzy clustering

algorithms is needed. Future work will involved further modification of the AFLC system and algorithm

for analyzing simulation data of the TSS system[29] and for automated attitude conltoller design of on-

orbit shuttle[30].
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FIGURECAPTIONS

Figure1. OperationcharacteristicsofAPLCArchitecture.l(a) showstheinitialstageof identifying
aclusterprototype,l(b)showsthecompm_sonstageusingthecriterionofEuclidiandistance
ratioR> x to reject new data samples to the cluster prototype. The reset control implies the

deactivation of the original prototype and activation of a new cluster prototype and l(c)

shows the x - c graph for choosing 'gfor unlabelled datasets.

Figure 2. Flow-chart of the AFLC Algorilhm

Figure 3. Iris Data Represented by Three-Dimensimml Features

Figure 4a. Computed Cenlroids of Three Iris Clusters Based on All Four Feature Vectors

Figure 4b. Iris Cluster Classification Results shown as a confusion matrix

Figure 5a.

Figure 5b.

Figure 6a.

Figure 6b.

A Noisy Laser-luminescent Fingerprint Image

The Enhanced Image of 5a. by Selective Fourier Spectra] Filtering

Computed Centroids of Three Fingerl_nt Clusters in Seven-Dimensional Vector Space

Fingerprint Data Classification Results
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Fuzzy Logic Path Planning System for Collision Avoidance
by an Autonomous Rover Vehicle

Michael G. Murphy, Ph.D. 9University of Houston-Downtown _ _ , _ c!, ';_-'-]_ P_

The Space Exploration Initiative of the United States will make great demands
upon NASA and its limited resources. One aspect of great importance will be
providing for autonomous (unmanned) operation of vehicles and/or subsystems
in space flight and surface exploration. An additional, complicating factor is that
much of the need for autonomy of operation will take place under conditions of
great uncertainty or ambiguity. This report addresses issues in developing an
autonomous collision avoidance subsystem within a path planning system for
application in a remote, hostile environment that does not lend itself well to
remote manipulation by Earth-based telecommunications. A good focus is
unmanned surface exploration of Mars. The uncertainties involved indicate that
robust approaches such as fuzzy logic control are particularly appropriate.
Four major issues addressed in this report are: avoidance of a fuzzy moving
obstacle; backoff from a deadend in a static obstacle environment; fusion of

sensor data to detect obstacles; and, options for adaptive leaming in a path
planning system. Previous work dealt with stationary obstacle scenarios.
Examples of the need for collision avoidance by an autonomous rover vehicle

on the surface of Mars with a moving obstacle would be: wind-blown debris,
surface flow or anomalies due to subsurface disturbances, another vehicle, etc.

The other issues of backoff, sensor fusion, and adaptive learning are important
in the overall path planning system.

For true autonomy of operation, higher-level path planning is necessary to

ensure integrity of the physical system, allow for conservative modification of
guidance rules based on experience, and facilitate efficient backoff from
deadend approaches. A consideration is to seek generalized features that
encourage extension or adaptation of this path planning system to other
environments (e.g., autonomous collision avoidance for space vehicles with
respect to other space vehicles, space debds, etc.)

Using the simplest approach to a complicated problem, it is best not to try to
project the exact path of a moving obstacle. Instead, fuzzy rules and a fuzzy
inferencing mechanism are used to assess the likelihood of collision. The
architecture for a fuzzy avoidance system for a moving fuzzy obstacle is
addressed. In general, this will be a subsystem of a general path planning

system for autonomous exploration with collision avoidance.

Sensor fusion, combining information based on more than one sensor
operating simultaneously, promises to give a significant improvement in
obstacle detection over the use of a single sensor source. The problem is to
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have a computationally reasonable means of combining and interpreting
sensor data from dissimilar sources.

There are several approaches to backoff from deadends in a static environment
that is not fully mapped and where uncertainty of information is a regular
element of the environment. One technique is based on reversing direction
coupled with extending the critical distance for sensor processing and synthesis
to avoid oscillatory travel patterns. Another approach is to store a modified
world model that would map approximate information regarding the explored

environment. It is likely that the first approach may have an advantage in the
sense of a lesser degree of complexity. Other possibilities are storing a limited
map of the explored region or blocking one or more sectors from being chosen
until new data is available.

One of the most promising options for adaptive leaming in control environments
is the use of neural networks; e.g., to tune (adjust) the membership functions of
fuzzy variables. A bigger problem is to develop an adaptive system that will
operate on data being generated as the system performs and continually
update parameters of the system to improve or maintain optimal (or near

optimal) performance.
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INFERENCING VLSI CHIPS AND BOARDS
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Center for Engineering Systems Advanced Research
Oak Ridge National Laboratory
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ABSTRACT

Vehicle control in a-priori unknown, unpredictable, and dynamic environments requires

many calculational and reasoning schemes to operate on the basis of very imprecise,

incomplete, or unreliable data. For such systems, in which all the uncertainties can not be

engineered away, approximate reasoning may provide an alternative to the complexity

and computational requirements of conventional uncertainty analysis and propagation

techniques. Two types of computer boards including custom-designed VLSI chips have

been developed to add a fuzzy inferencing capability to real-time control systems. All

inferencing rules on a chip are processed in parallel, allowing execution of the entire

rule base in about 30 #sec (i.e., at rates much faster than sensor data acquisition),

and therefore, making control of "reflex-type" of motions envisionable. The use of these

boards and the approach using superposition of elemental sensor-based behaviors for the

development of qualitative reasoning schemes emulating hmnan-like navigation in a-priori

unknown environments are first discussed. We then describe how the human-like navigation

scheme implemented on one of the qualitative inferencing boards was installed on a

test-bed platform to investigate two control modes for driving a car in a-priori unknown

environments on the basis of sparse and imprecise sensor data. In the first mode, the

car navigates fully autonomously, while in the second mode, the system acts as a driver's

aid providing the driver with linguistic (fuzzy) commands to turn left or right and speed

up or slow down depending on the obstacles perceived by the sensors. Experiments with

both modes of control are described in which the system uses only three acoustic range

(sonar) sensor channels to perceive the environment. Simulation results as well as indoors

and outdoors experiments are presented and discussed to illustrate the feasibility and

robustness of autonomous navigation and/or safety enhancing driver's aid using the new

fuzzy inferencing hardware system and some human-like reasoning schemes which may

include as little as six elemental behaviors embodied in fourteen qualitative rules.
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I. INTRODUCTION

One of the greatest challenges in developing motion planning and control systems

for vehicles operating in a-priori unknown, unpredictable, and dynamic environments is

to design the methods for handling the many imprecisions, inaccuracies, and uncertainties

that are present and pervasive in the perception and reasoning modules. Thcse imprecisions

typically are caused by: (1) errors in the sensor data (current sensor systems are

far from perfect) which lead to inaccuracies and uncertainties in the representation

of the environment, the robot's estimated position, etc., (2) imprecisions or lack of

knowledge in our understanding of the system, i.e., we are unable to generate complete

and exact (crisp) mathematical and/or numerical descriptions of all the phenomena

contributing to the environment's and/or the system's behavior, and (3) approximations

and imprecisions in the information processing schemes (e.g., discretization, numerical

truncation, convergence thresholds, etc.) that are used to build environmental models

and to generate decisions or control output signals. In such systems, for which it is

not currently feasible to fully engineer all the uncertainties away from the perception

subsystems, approximate (or "qualitative") reasoning may provide an alternative to

the complexity and prohibitive computational requirements of conventional uncertainty

analysis and propagation techniques.

In cooperation with MCNC, Inc. and the University of North Carolina, two

types of VME-bus-compatible computer boards including custom-designed VLSI chips

have been developed to add a qualitative reasoning capability to real-time control

systems [1],[2],[3],[4]. The methodologies embodied on the VLSI hardware utilizc the Fuzzy

Set Theoretic operations [5],[6],[7],[8] to implement a production rule type of inferencing

on input and output variables that can directly be specified as qualitative variables

through membership functions. All rules on a chip are processed in parallel, allowing full

execution of the rule base in about 30/_sec. This extremely short time of operation makes

real-time reasoning feasible at speeds much faster than typical sensor data acquisition

rates, therefore, making envisionable the control of very fast processes such as sensor-

based "reflex-type" motions.
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The basic operation of these boards and a formalism merging the fuzzy and behaviorist

theories for the development of qualitative reasoning schemes emulating human-like

navigation have been discussed in [4]. The approach using superposition of elemental

sensor-based fuzzy behaviors has been shown to allow easy development and testing

of the inferencing rule base, while providing for progressive addition of behaviors to

resolve situations of increasing complexity. This fuzzy behavior formalism has been

used to demonstrate the feasibility of autonomous robot navigation in a-priori unknown

environments on the basis of sparse and very imprecise sensor data [9]. For these feasibility

experiments, a small omnidirectional robotic platform prototype [10] equipped with a ring

of acoustic range finders (sonars) was used in a laboratory environment. In this paper,

we present further developments on the feasibility of autonomous navigation in a-priori

unknown environments using appro_dmate reasoning and very inaccurate sensor data.

Section 2 describes how the "human-like reasoning" navigation rule base of the small

omnidirectional platform was extended to allow for the kinematic limitations of a car

(non-holonomic and steering constraints) and was applied to the autonomous navigation

of a car in laboratory simulations. The operation of the system in driver's aid mode is

also described in this section. The entire perception and fuzzy inferencing system was

then positioned on a car and Section 3 presents the operation of the system in outdoor

environments. The last section discusses the results of these feasibility studies and presents

the concluding remarks.

2. FUZZY BEHAVIORS FOR CAR DRIVING

In the experiments with the small omnidirectional platform, fuzzy rule bases embodying

six basic navigation behaviors [9] were developed to control the turn rate (TR) and the

translational speed (TS) of the platform as a function of the goal direction (GD) and

obstacle proximity (OP). The single chip board [1] was used which allows inferencing on

four input variables to produce two output variables. The four input variables were selected

as the goal direction and obstacle proximity in sectors at the left, center, and right of the

travel direction. As shown on Fig. 1, each sector encompasses five sonars. In each sector,
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the distance returns from each of the five sonars are weighed by a factor proportional

to their firing direction, and the smallest value is utihzed to indicate obstacle proximity

within the sector. Effectively, this corresponds to giving the platform the equivalent of

three "very wide and blurry" eyes. The navigation goal can be specified in the current

system as a goal point or as a heading to be maintained. When the goal is a point,

the odometry system updates the position of the robot at each loop rate and calculates

the relative direction to the goal point as input to the inferencing system. When the

goal is a heading, a compass is used to directly provide the relative goal direction as the

difference between the platform current heading and the goal heading. As explained in [4],

membership functions representing the levels of uncertainty with which the values were

obtained are applied to the four input values. Very robust navigation characteristics were

obtained in the laboratory experiments using these very sparse and imprecise sensor data

(purposefully selected as such to emphasize the feasibility demonstration), and as little as

fourteen fuzzy rules representing the six basic behaviors controlling the platform's turning

rate and speed (see [4] or [9]): GD --, TR, GD ---, TS,OP _ TS, "far" OP _ TR, "near"

OP --* TR, "very near" OP --* TR.

Travel Direction

left center

right

re/at/re_rec_/on

24 sonar ring

Fig. 1. Schematic of the three 5-sonar sectors providing obstacle proximity input data,
and the two methods for calculating the goal direction depending on the mode of goal
specification.

33,1



2.1 APPLICATION TO CAR DRIVING

One of the expected strengths of our proposed "Fuzzy-Behaviorist" approach using

"human-like" behaviors is that the linguistic logic embodied in the behaviors should

be invafiant among systems of similar characteristics. In other words, for robots with

similar perceptive and motion capabilities, the linguistic expression of given behaviors, and

therefore their representation in the fuzzy framework, should be the same for compatible

input and output. For example, a "goal tracking" behavior connecting the perceived goal

direction to a rate of turn [e.g. IF (goal is to the fight) THEN (apply increment of

turn to the right)] should be invariant for any robot which has a means to perceive the

goal direction and to perform the required turn. Using this property (and realizing that

the rate of turn of a car is proportional to the steering angle of the wheels), all navigation

behaviors developed for the laboratory omnidirectional platform appear directly applicable

to the driving of a car of similar size, except for those behaviors which require a rate of

turn too large for the car to perform because of its limited steering angle. The "very near"

OP _ TC behavior, which requires the platform to perform high rates of turn (using its

omnidirectional capability) when obstacles are detected at dangerously close ("very near")

distances, is the only behavior which therefore could not be considered invariant from the

platform to the car.

As a demonstration of the transportability of invariant behaviors from one system to

another, the same behaviors (except for the "very near" OP --* TC behavior) and the

very same fuzzy rules that were utilized for the omnidirectional platform were used to

implement the autonomous control of a car on the basis of the same "three wide blurry

eyes" and goal direction input. Figure 2 shows a simulation example of such a navigation

in which the car has to reach a goal (in the upper right section) and then return to its start

position (in the lower left section). Note that the out and return paths are different. Also

note that a large maximum steering angle has been selected for the car in this simulation

to allow very small radii of turn (e.g. see the sharp turn in the upper right section) and

therefore prevent situations with "very near" obstacles.
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Fig. 2. Simulation example of the autonomous navigation of a car using three "wide"
sonars and the same invariant navigation behaviors than for the omnidirectional platform.

2.2 ADDITION OF A MANEUVERING BEHAVIOR

To complete the navigation rule base for the driving of the car, a behavior has to

be included to handle the situations where "very near" obstacles are detected. Another

strength of our proposed "Fuzzy-Behaviorist" approach is its capability for superposition

of elemental behaviors along a "subsumption-type" of architecture (e.g. see [11]),

allowing for progressive addition of behaviors to the system to resolve situations of

increasing complexity. Since the five other basic behaviors assure collision-free navigation

amidst "far" and "near" frontal obstacles, the situations involving "very near" obstacles

would occur when the car does not have enough space to complete a turn away from

obstacles because of its limited steering angle and radius of turn, and thus would require
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some maneuvers using reverse gear. By observing human reactions to such stimuli, a

"human-like" response was created which can be expressed as follows: IF (obstacle is

"very near" on right (left)) THEN (steer right (left)) AND (back up). This response was

further divided into a steer control behavior: "very near" OP -+ TR, and a speed control

(back up) behavior: "very near" OP _ TS, to respect our approach's requirement for

independence of behaviors [4]. Note that this latter behavior is intrinsically "human-like"

since it implements a human reaction which implicitly utilizes the inertia present in the

car in order to produce the desired effect.

Figure 3 displays sample results showing several maneuvers generated by the two "very

near" OP behaviors in a simulation of the autonomous navigation of a car using the three

"wide sonar" eyes as a perception system. Note that in this simulation, the "front" of the

car, where the three wide-sonar perception eyes are mounted, corresponds to the axle with

non-steering wheels, while the axle with the steering wheels is to the "back" of the ear.

This was done to closely duplicate the configuration utilized in the outdoor experiments in

which the perception system was positioned on the back trunk of the vehicle, as explained

in the next section.
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Fig. 3. Simulation example of the autonomous navigation of a car using three "wide"
sonars and a maneuvering behavior to overcome the limited radius of turn.
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2.3 ADDITION OF A DRIVER'S AID MODE

Once the development of the fuzzy rule base for autonomous navigation was completed

and had been tested in various sinmlated environments, the system was investigated for

use as a "driver's aid." In the sinmlation system, the output of the fuzzy inferencing was

conveniently displayed on the screen, as is shown on the left-hand side of Fig. 3. The

horizontal and vertical bar scales respectively represent the steering and speed commands

which are calculated by the fuzzy inferencing and, in the autonomous navigation mode,

are sent to the controls of the vehicle emulator. The schematic of the car below the bars

shows the steering of the wheels implemented by the controller. Recall that the car moves

"backwards" so that to perform a turn to the right, the wheels have to be steered to the

left. In the driver's aid mode, the very same rule base, commands and displays are used

to guide the operator in driving the car. In the simulations, the driver uses the keyboard

arrow keys to add or subtract increments of speed or steering. In the implementation of

the system on one of the company's cars, the driver conventionally uses the gas and brake

pedals and the steering wheel to implement the commands.

For the testing and verification experiments, the driver was prohibited from seeing the

environment while driving. This was done by covering the vehicle motion display part of

the screen in the graphic simulations, and in the outdoor experiments by positioning the

sensing platform on the rear trunk of the car and having the operator drive backwards

while looking at the portable computer screen located on his/her lap. From this came the

requirement for the "backwards" driving in the simulations and the corresponding reverse

of the commands. Note that the commands are not displayed to the operator as crisp

control values, but as bars of variable lengths over the generic speed and steering scales,

effectively providing only the direction of the command (left or right, forward or back) and

the relative strength (i.e., more steering, faster, slower, etc.) which the driver should apply

on the controls between the maxinmm steering and speed values. It was interesting to

observe each operator develop his/her own interpretation of and response to these relative

commands, leading to quite different routes and maneuvering situations for the same start

and goal positions. From the system's development point of view, this inclusion of the
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human in the control chain eff('ctivclv c(msist,,d in including a sourc," of unpredictable

noise and delays in the actuation system. The successflll operation of the rule base in this

mode of driving provided a very stringent robustness test of the inferencing rule base.

3. OUTDOOR DRIVING EXPERIMENTS

Figure 4 shows the experimental set up for the outdoors experiments. The wheels of the

omnidirectional platform which was used in previous laboratory experiments [9],[10], have

been removed, and its upper plate supporting the sensors, batteries, and computers has

been mounted on the trunk of one of the coml)any's cars. Since the car was not equipped

with wheel encoders, odometry could not be used and an electric compass provided the

goal direction input with the navigation goal specified as a heading (e.g. North). To

take into account the relative width of the real car with respect to that used in the

sinmlations (of the same 2 foot width than the omnidirectional platform), the x axis of

all membership functions involving distance were linearly scaled by a factor of three. The

same input, rules, and behaviors developed in the simulation studies were used in these

outdoor experiments. The output of the fuzzy inferencing was sent to a portable computer

located in the cabin. The steering and speed commands were displayed on the computer

screen using the same format than shown in Fig. 3 for the simulations. Since the car is not

currently equipped with automated actuators on the steering colunm or the speed control

system, these experiments were perfi)rmed using the driver's aid mode of operation. The

driver sat in a normal position in the car and was prohibited to look at the environment

by having to constantly watch the c()mmands on the coml)uter screen located on the floor

in the front compartment.

The type of enviromnents in which the tests were preformed were the diversely occupied

parking lots of O1RNL. as can be seen in the background of Fig. 4. In this type of

non-engineered environments, the car was very succ_'ssflllly driven in the '%lind" driver's

aid mode. Our fllture plans include' the integration of _'nco(l('rs and servo controls on the

wheels, steering, accel(,rator, mM braking systems of th(' car to experiment with. t,,st, anal

de,nonstrate the autonom(ms c(mtrol ill()([(' ill ()ut(l()()rs ('llvir()lllll(,nt.
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Fig. 4. Experimental set up during the outdoor experiments with d,'ive,"s aid mode
in one of the ORNL parking lots.

4. CONCLUSION

VLSI fllzzy inferencing chips and a "'fuzzy behaviorist" apl)roach have boon used to

demonstrate the feasibility of driving a car under sensor-based autonomous navigation

or driver's aid mode using (rely sl)ar_ • data fionl very inaccm",m, sensors. The

"subs,unption-tyl)c" flwmalism proposed for the (h'v,'lolmlent of fitzzy behavi(,r-I)a_(1

systems has been found to allow easy dex'elol)mCnt of the 1)ehaviors and 1)rogressive

augmentation of the filzzx" ruh' base to deal with situatitm,- (_f incr_,a.-in_ c_,ml)l_,xity.

such as in the exanlph' treated here (,f a ,lt','(l fOl" lll_llll'll\','I'iIlJ r (I'I,' t(_ th,' ,:_v'._

limited radius of turn. Additicmally. th(. fi'amew(wk has 1)r_.n shtm'n to ;_lh,w the, S_lllll.

l_ehaxitws, rules, and infi'rencing c_de t_ 1)e use(t flw svst,,ms with similar i_,wc(.ptix-_.

and ]dtJ,'nmti," chmm't,,ristics, tllt'rt'f'_)r_. _¢i_.;_tlx ,'nha,wi,_g ,',)th. tr;,nSl)(n-tal_ilitv am(m_
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robots and systems. As shown in the driver's aid feasibility study, the straightforward

"linguistic" interfacing capability of the fuzzy behavior-based system is also of great appeal

for telerobotics and man-machine decisional systems. Our ongoing activities are focusing

on the use of a recently developed multi-chip fuzzy inferencing board, in conjunction with

additional on-board image sensors, to increase the car's autonomous navigation capabilities

with behaviors such as road following or highway driving, and correspondingly augment

the safety enhancing driver's aid system for a variety of outdoor environments.

5. REFERENCES

[1] H. Watanabe, J. R. Symon, W. D. Dettloff, and K. E. Yount, "VLSI Fuzzy Chip and

Inference Accelerator Board Systems," in Proceedings of the International Symposium

on Multivalued Logic, Victoria, Canada, May 1991, pp. 120-127.

[2] J. R. Symon and H. Watanabe, "Single Board System for Fuzzy Inference," in

Proceedings of the Workshop on Software Tools for Distributed Intelligent Control

Systems (September 1990), pp. 253-261.

[3] H. Watanabe, W. Dettloif, and E. Yount, "A VLSI Fuzzy Logic Controller with

Reconfigurable, Cascadable Architecture," IEEE J. of Solid State Circuits 25(2), 376-

382 (1990).

[4] F. G. Pin, H. Watanabe, J. R. Symon, and R. S. Pattay, "Using Custom-Designed

VLSI Fkxzzy Inferencing Chips for the Autonomous Navigation of a Mobile Robot" in

Proceedings of IROS 92, the 1992 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Raleigh, North Carolina, July 7-10, 1992.

[5] L. A. Zadeh, "Fuzzy Set," Information and Control 8, 338-353 (1965).

[6] L. A. Zadeh, "Outline of a New Approach to the Analysis of Complex Systems and

Decision-Making Approach," IEEE Transactions on Systems, Man, and Cybernetics

SMC-3(1), 28-45 (January 1973).

[7] L. A. Zadeh, "Fuzzy Logic," IEEE Computer 21(4), 83-93 (April 1988).

341



[8] "Fuzzy Sets and Their Applications to Cognitive and Decision Processes,"

eds. L. A. Zadeh, K. S. Fu, K. Tanalm, and M. Shinmra, Academic Press, Inc.,

New York (1975).

[9] F. G. Pin, H. Watanabe, J. R. Symon, and R. S. Pattay, "Autonomous Navigation

of a Mobile Robot Using Custom-Designed Qualitative Reasoning VLSI Chips and

Boards," in Proceedings of the 1992 IEEE International Conference on Robotics and

Automation, Nice, France, May 10-15, 1992, pp. 123-128.

[10] S. M. Killough and F. G. Pin, "Design of an Omnidirectional and Holonomic Wheeled

Platform Prototype," in Proceedings of the 1992 IEEE International Conference on

Robotics and Automation, May 10-15, 1992, Nice, France, pp. 84-90.

[11] R. A. Brooks, "Elephants Don't Play Chess," Robotics and Autonomous Systems

6(1-2), 3-1,.5 (1990).

342



Autonomous Vehlcle Motion Control, Approximate Maps,
and Fuzzy Logic

Enrique H. Ruspini
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We present progress on research on the control of actions of autonomous
mobile agents using fuzzy logic. The innovations described encompass
theoretical and applied developments.

At the theoretical level, we present results of research leading to the combined
utilization of conventional artificial planning techniques with fuzzy logic

approaches for the control of local motion and perception actions. We examine
also novel formulations of dynamic programming approaches to optimal control
in the context of the analysis of approximate models of the real world. We
review also a new approach to goal conflict resolution that does not require
specification of numerical values representing relative goal importance.

Applied developments include the introduction of the notion of approximate
map. We propose a fuzzy relational database structure for the representation of
vague and imprecise information about the robot's environment. We discuss
also the central notions of control point and control structure and present a short
video of the application of these techniques in the platform provided by SRI's
Autonomous Mobile Vehicle.
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A Fuzzy Logic Controller for an Autonomous Mobile Robot

John Yen and Nathan Pfiuger

Computer Science Department
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College Station, TX, 77840

The ability of a mobile robot system to plan and move intelligently in a dynamic

system is needed if robots are to be useful in areas other than controlled
environments. An example of a use for this system is to control an autonomous
mobile robot in a space station, or other isolated area where it is hard or

impossible for human life to exist for long pedods of time (e.g. Mars). The
system would allow the robot to be programmed to carry out the duties normally
accomplished by a human being. Some of the duties that could be
accomplished include operating instruments, transporting objects and
maintenance of the environment.

There are many limitations of current approaches. Methods based on potential
fields and stimulus--response paradigms have problems finding paths, even

when they exist. The standard graph decomposition method always gives a
path, but requires complete knowledge of the environment, and gives a path
that is not easily followed. Finally, there are no approaches that have
adequately addressed the problems involved with interleaving task planning,

path generation and path execution.

The important issues that any realistic robot path planning system must address
are:

1.
2.
3.

.

Plan several tasks concurrently.

Deal with a dynamic environment.
Deal with the problems of incomplete and/or inaccurate
knowledge about the environment.
Work with the hindrance of limited sensing capability.

The main focus of our eady work has been on developing a fuzzy controller that
takes a path and adapts it to a given environment. The robot only uses
information gathered from the sensors, but retains the ability to avoid

dynamically placed obstacles near and along the path.

By using fuzzy logic, our project has been able to address the limitations of
existing approaches. Our controller is able to use graph-decomposition
methods in a dynamic environment. Fuzzy logic techniques, in general, allow

experts to express their planning and control rules in natural-language form.
This makes the system easier to develop and more compact than standard logic

systems.
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OVERVIEW OF ALGORITHM

Our fuzzy logic controller is based on the following algorithm:

Rt

2.

3.

Determine the Desired Direction of Travel.
Determine the Allowed Direction of Travel.
Combine the Desired and Allowed Directions in order to

determine a direction that is both desired and allowed.

The Desired direction of travel is determined by projecting ahead to a point
along the path that is closer to the goal. This gives a local direction of travel for
the robot and helps to avoid obstacles.

The Allowed direction is found by combining a set of sensors that give the
distance to the nearest obstacle along a set of directions, say 0, 45, 90, -45 and
-90 degrees from the robots current heading.

The process of combining the Desired and Allowed directions uses the fuzzy
operator 'and' to obtain a fuzzy command that corresponds to the desired
control command. We then use defuzzification to obtain a crisp command.
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Efficacy of existing on-board propulsion systems HMS are severely impacted by

computational limitations (e.g., low sampling rates); paradigmatic limitations
(e.g.. low-fidelity logic/parameter redlining only, false alarms due to
noisy/corrupted sensor signatures, preprogrammed diagnostics only); and
telemetry bandwidth limitations on space/ground interactions. Ultra-
compact/light, adaptive neural networks with massively parallel,asynchronous,
fast reconfigurable and fault-tolerant information processing properties have
already demonstrated significant potential for inflight diagnostic analyses and
resource allocation with reduced ground dependence. In particular, they can
automatically exploit correlation effects across multiple sensor streams (plume
analyzer, flow meters,vibration detectors, etc.) so as to detect anomaly
signatures that cannot be determined from the exploitation of single sensor.
Furthermore, neural networks have already demonstrated the potential for

impacting real-time fault recovery in vehicle subsystems by adaptively
regulating combustion mixture/power subsystems and optimizing resource
utilization under degraded conditions. In this paper we present a class of high-

performance neuroprocessors, developed at JPL, that have demonstrated
potential for next-generation HMS for a family of space transportation vehides
envisioned for the next few decades, including HLLV, NLS, and space shuttle.
Of fundamental interest are intelligent neuroprocessors for real-time plume

analysis, optimizing combustion mixture-ratio and feedback to hydraulic,
pneumatic control systems.This class includes concurrently asynchronous,
reprogrammable, nonvolatile, analog neural processors with high speed, high
bandwidth electronic/optical I/O interfaces, with special emphasis on NASA's
unique requirements in terms of performance, reliability, ultra-high density,
ultra-compactness, ultra-light weight devices, radiation hardened devices,

power stringency and long life terms.

Initiated with the original goal of developing content addressable, high
density, nonvolatile memories based on mathematical models of neural
networks, the research program at NASA's Jet Propulsion Laboratory (JPL) in
Pasadena, CA has evolved over the years into a major research and
technology demonstration activity in hardware implementations of highly
parallel feedback and feedforward "neuroprocessing" architectures, with
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computing speeds in excess of 10 analog operations per second and unique
capabilities not captured by conventional digital and AI technologies. Particular
emphasis is placed on development of fully parallel, cascadable "building
blocks', such as fully programmable synaptic interconnection arrays and
nonlinear analog neuron arrays based on custom-VLSI technology. Building
blocks designed to date include programmable 32 X 32 binary and gray level

(with 5, 10, and 10 bit resolution) synaptic arrays, using floating gate and
capacitor refresh technology. The evolution of neuron development has
included several implementations ranging from boards of discrete neurons
based on off-the-shelf components, to multi- neuron, cascadable VLSI chips.
Some of the neural chips that have been designed include 64-neuron fixed

gain and variable gain chips and 64-neuron winner-take-ail neuron chip.
Current efforts are focusing on wafer level integration, thru-wafer contact
technology and 3-D Z-plane interconnection technology (stacked VLSI/ULSI
wafers with metal diffused through the thickness of the wafer to provide highly
directional, dense interconnectivity between adjacent wafer surfaces).

The development of application-specific neuroprocessors and assessment of
their effectiveness on selected applications, which are not easily tackled by
conventional computing techniques, at JPL has progressed hand-in-hand with

the development of the building block hardware devices. Applications range
from fault-addressable CAMs to several classification and optimization

problems. Optimization problems such as arbitrary many-to-many (concentrator)
assignment problem are handled particularly well by neural networks. JPL
developed a new breakthrough concept for hardware implementation of a
neuroprocessor for high speed solutions to dynamic assignment problems, e.g.,
resource allocation, etc. Considerable attention has also focused on evaluation

of hardware systems with feedforward architectures. As a first step towards fully
parallel hardware with capabilities of supervised and unsupervised learning,
JPL demonstrated learning "off-chip', which involves generation of synaptic
weights using a digital computer. The weights are then loaded in the hardware.
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Abstract Fuzzy control has been recognized as an alternative to conventional control

techniques in situations where the plant model is not sufficiently well known to warrant

the application of conventional control teclmiques. Precisely what fuzzy control does and

how it does what it does is not quite clear, however. This paper deals with this important
issue and in particular shows how a given fuzzy control scheme can resolve into a

nonlinear control law and that in those situations the success of fuzzy control hinges on its
ability to com_I for__es inplant dynamics.

INTRODUCTION

Fuzzy logic control has been recognized as an
alternative to conventional control

techoiques(primarily PID, or switching type conu'ol)

for application in industrial process control and

manufacturing, automation(Sugeno 1985). More

often than not, however, empirical observation

provides the only means to a comparative study of

performance of fuzzy controllers in relation to their

conventional counterparts. While this fact is
recognized and even appreciated by practitioners in

the process control area, precisely what a fuzzy
controller does, that is from an analytical

standpoint, and how it does what it does is still of
interest.

In order to investigate this issue, we will consider

the notion of parametr/zed fuzzy sets and discuss

its implication in analysis of fuzzy control

algorithms. This idea, it turns out(Langari and

Tomizuka 1990, Langari 1990, Langari 1992) gives

rise to a framework for analysis and synthesis of

non/inear control strategies that emerge quite

naturally from an initial statement of a given control

strategy as a fitzzy linguistic control algorithm.

In this article, we will use this framework to explain

how a given fuzzy control strategy deals with

process nonlinearities that conventional controllers,

for instance PID, generally do not. In particular, we

apply this framework to the problem of control

synthesis in a typical situation where asymmetric

response characteristics of the process precludes, or

severely encumbers the application of
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conventional(linear) control theory. We fimrther

show how in this situation an appropriately designed

fuzzy conuroHer overcomes this difficulty and by in

effect compensating for the underlying

nonlinearities produces superior behavior.

We start with an overview of fuzzy control

FUZZY CONTROL SYSTEMS

The typical architecture of a fuzzy control systems

in shown in Figure 1. As a rule based control

strategy, fuzzy linguistic control is based on explicit

representation of knowledge of operation of the
process as condition action rules of the form

R.,,: ife(t) isAj andde(t) isB I thenu(t)isCj,

where e(t) denotes the instantaneous value of the

FLC

RuleBue 1

Figure i Architecture of a Fuzzy Logic Control
System



processerrorat time t and de(t) is short for

_(e;t), which stands for de or Jedx. Further, .4j,
dt

B,, and C'jj belong to collections _, _;_, and

of fuzzy subsets defined over the domains of
definition of the relevant variables, that is, E, DE,

and U respectively and Rjj denotes the j,l _ rule in

the rule set R. In particular Rj_ may be

r.__ eo t, _" tj "_ "i-,

Um _,4 UIj I_1 |. tl U:

Figure 2. Fuzzy partitioning of the domains of
definition.

be viewed as associating elements Aj of a_' and B,

of _ with element C'jj of _;, thereby forming a

fuzzy relation ] Rjj over the Cartesian product

space, E × DE x U. From this standl_int, the given

fuzzy control algorithm in effect amounts to a

disjunction of such associations, as in _ = _Rjj,

which Mamdani and Assilian(1975) refer to as the

fuzzy relation matrix.

Control Computation

Suppose, at some instance t, as shown in Figure 2,

the error e(t) has positive grades of membership,

Iz;dj(e(t)) and/z_,, (e(t)) to some pair .4j and/]j.t

in ¢_t'. Similarly, suppose de(t) belongs to some

pair B, and/},., in _. At this instant, the following

control rules apply

INote that the distinction in the notation used. that is Rj. I vs. Rj.t

reflects the distinction between roles and associations. 349

Rjj: ife(t)isAj andde(t)isB l then u(t) is Cjj

Rj.,j: ife(t)isAj, andde(t) isB I then u(t)is Cj.v

Rj.u.,: ife(t) is Aj. t and de(t) is Bt. , then u(t) is Cj.u. l

Rj.,.,: ife(t)isAj and de( t ) is B, , then u(t)isCjj.,

with each rule satisfied to some degree. The

corresponding truth value is defined, for instance

for the first rule, by

lljj =min(_t_, (e(t)),12i, (de(t))) (1)

or, alternatively by

Izjj =#_,(e(tl)'#i,(de(t)) (2)

The truth values of other rules in the above set are

similarly defined.

Note that the product instead of m/n results in

interactivity between the truth values of the

components of the antecedent clause. This fact is

essential to our analytic treatment(L_mgari and

Torn/zuka 1990.)

Now, representing the consequent clause of each

Rjj rule, that is , by its single representative, or

defuzzfffied, value that is U jj, defined as

the control action, u(t), is computed as:

(3)

u(t) = '_ l_j.,_.. (4)
Jr

where j and 1 range over the indices of all

applicable rules. Note that this approach is based on
a variation of the Centroid of Area(COA)

defuzzification rule(Zimmermann 1991), but has

improved analytical properties(L gari and

Tomizuka 1990).

ANALYSIS OF FUZZY LOGIC CONTROL

ALGORITHMS.

Consider the single input, single output fuzzy

linguistic control system shown in Figure 1. Here

we develop an analytic description of the control

law in the form, u = FLC(e, de).



Definitions and Auumption$

Let us denote the domains of definition of e, de,

and U by E, DE, and U respectively. Then, as

Figure2. coHoc o.shown in

_={_,}, and ofunimo al. onv ,
and normal fuzzy subsets(Dubois and Prade 1980)

effectively partition E, DE, and U, respectively, as
follows.

Each element ,4j of _ is centered at some

Ej _ E and is further characterized by a pair Lj (.)

and Rj(.) of left and right characteristic

functions(cf. Appendix A). Similarly, each B, _

is centered at some DE: _ DE and is characterized

by/.1'(.) and R,'(.). Moreover, each element Cj_ is

represented by its defuzzified value, U jj .

We further place some constraints on _' and _ as

follows. First, we require that <_ and _1_ form true

fuzzy partitions of E and DE respectively.

Assumption 1. Let _'={Aj} (and _={B,}) be

collection(s) of fuzzy subsets defined over E (and

DE.) Then, for each element e E E

J

(A similar condition holds for _.)

The interpretation of Assmnption 1 is that,

externally, fuzzy classification must be compatible
with feature based classification in terms of

classical sets, where each element is categorized

under one and only one class. This assumption is

crucialto the development of our results and in

effect amounts to objectification of the con_ol law.

A sufficient condition for Assumption 1 to hold is

that the characteristic functions of Aj(and B_) be
linear2:

Assumption 2. For each j, let A/ _ _ be defined

in terms of a pair L/(.) and Rj (.) of left and right

characteristic functions. Then

2A generalizationof this condition,where nonlinearcharacteristic

functions ate allowable, is possible.The presentdiscussion,

however, does not hingeon thisfact. The interesled readermay

refer to Langari(1992). 350

R,(e)=l-(e-E/)/flj (6)

Lj(e)= l-(Ej -e)/ a, (7)

and given j, and j + 1. the line segments defined by

R_(.)and L.,(.) intersect_ preciselyat _ and

Ej. I respectively. (.4 similar condition holds for

_)

This assumption hnplies that, as shown m Figure 3,

• • ,a_

,t _'_, cZ.... _'_., t'_.....

UU UbIJ t)l.t* * Opu** |U

Figure 3. True Fuzzy Partitioning.

lSj and aj._, respectively representing the inver_ of

the slopes of the line segments defined by Rj (-)

and L.,(.) . mu_ be _q_. Let us de_e

unique slope by m/:

1 1
-- = . (8)

mj:=_ a_._

Similarly, a_., and _1_, must also be equal; let us

1 1
define m;: .... to clearly indicate this factu

_,., /_

well. Consequently, we can define AEj and ADE_

as follows:

aEj =e., - _, (9)

ADEt = DE_._ - DE_. (I0)

Let us also define K/., and K_._ as follows.

Definition 1. Let us denote the functional

relationship between U /j. E j and E _. t as:

U/j = KjjE/ + K_jDE r (11)

Then for each pair, j and 1 , K)j and K_j are

implicitly defined by (11).



Note that (I I) simply relates Us. I to g s and DE I m

a compact form and does not in any way constrain

Us j-

industrial processes; it is a relatively low order
model, and has the somewhat dubious distinction of

being non-minimum phase. The parameters, at, and

a 2 are given by

We furtherdefine AK'.u...as follows: a, = a,o+ 8a,, (20)

--K..,-K.. (12) a 2 = a=_+ 6a:, (21)

AK/.u., = Kj.,.I. , - K/. I.

a/c"..,= K;,,.,- _,

(13)

(14)

(15)

where 8a t and _a 2 reflect the variations in the plant

parameters.

Suppose now, as it is commonly done in practice,

we knew the process model and were to design a

simple proportional plus integral control law:

AK'S,.u = K_.,., - K_j, (16)

AK_.u. t = K' - K' (17)J*td*t Jd"

Now in view of the above assumptions

expression for u(t), given by (4), resolves into

_,)=,r.,,..(,),.,,(,(,)-_,)[_t,,j.,.,._,,,._,DE,I+

_,,_,)..;(._,)-_E,){_',,.,E,.._",,.,OE,.,J+

....... J(_,._,-_r,',...._',,._)_E,,.
m?_i[¢(t)-EjRd,4tJ-D£_l " ,

'I!_ .... - =r' ..,)_E,.,.
L(_r..... - _r,,.,_)_.,

the

(18)

The implication of the above formulation is that a

given fuzzy logic control algorithm in effect
amounts to a nonlinear control law that is further

described in terms of three terms: one that is linear

in each of e(t) and de(t), one that is linear in each

of e(t)-E s and de(t)-DE,, and finally one that is

bilinear in the latter two terms. In effect the control

law given by (18) reflects the capacity of fuzzy
logic control to interpolate across the situations

where individual control rules are directly

applicable. We will see next how this capacity can

be used to develop a control strategy that deals

effectively with nonlinearities that commonly occur

in process control.

APPLICATION

Let us consider the dynamic system:

Jct = alx t + a2x 2 + bu,

_72=xl, (19)

y= x 2 -x_,
which reflects the behavior of a rather broad class of

I

u = kpe + k If e dr, (22)
0

perhaps based on nominal values of the plant

panuneters, ate , and a2o, as follows.

The plant and controller transfer functions are given

by:

1- s (23)
G,(s) = sZ +atos+a_o ,

G,(s)= k,(s + 7), (24)

where T> 0, k, = kp is same as the proportional

control gain, and k_ = yk_ is the equivalent integral

gain.

Now, assuming that the closed loop system will

behave as a dominantly second order system, the

closed loop characteristic equation is given by

A(s)=(s+ p)(s' + 2_o s+oj'), (25)

where p is assumed large, we can use any number

of ways of selecting _ and _ and thus k, and y

(Franklin, Powell, and Emami-Naeini 1991). For

instance, we can simply pre-select Y and then

choose _ for desired response pattern and thus

determine the gain k_.

In practice, however, variations in the parameters of

the plant, that is cSa_and _a 2 , affect the behavior of

the process, and as a result the desired response is

not reproduced as predicted. For instance, let us
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suppose that these variations are function of the

process error 3, e :

definition of the linguistic term set defined over the

domain of definition of the process error.

,Sa,= (26)

0a2= -asgn(e), (27)

where _ > 0.

This situation happens in arc welding, for instance,

where active heating and only passive cooling is
available(Langari and Tomizuka 1985). A

consequence of this change is that a fixed set of

gains will not work well, no matter what values one

chooses. Alternatively, one may resort to adaptive

control. Generally, however, this approach requires

slow variation in the plant parameters. One could

ulso, in principle, rely on robust control, perhaps

within the H. framework. The drawback of this

approach, however, is that while robust performance

may be guaranteed, uniformly robust perfommnce

is not. These claims should not be surprising since

neither adaptive control or robust control is really

meant to compensate for strong nonlinearities in the

plant model.

Given this fact, therefore, one should at least ideally

consider nonlinear control--- global or feedback
linearization. Indeed if the nature and extent of

nonlinearity is known reasonably well, through a

reasonably accurate plant model, one would do just

that. Moreover, even in the absence of a formal

model, it is our conjecture that the human operator

of the process, having learned the peculiarity of its

behavior, develops response behavior that in

practice amounts to a nonlinear control scheme that

compensates for the dominantly nonlinear, and
undesired, characteristics of the process. In effect

s/he globally linearize the process and compensates

for the deficiencies in its dynamic response
characteristics.

In the context of the current example, in particular,

it seems plausible that a human operator would be

able to compensate for variations in the plant

parameters, as required and as shown in Figure 4
produce response pattern superior to any linear

control strategy.

Analysis of Response Pattern

Clearly, assuming that the control action of the

human operator is described in linguistic form, the

key factor would be the manner of definition of the

rule set and its constitutive linguistic term set. This

is evident, as shown in Figure 5, m the manner of

3Actually it would be more accurate to consider variation as a

function of the process input so as to reflect the coupling between

state and input variables, however, in closed loop control the input

is itsclfa function of the error. 352
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Figure 4. Response patterns of fuzz), vs. linear
control.
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' A_s6 .-_.,: =% -I=_'o**t .
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-I -S 0 .S *1 &

Figure 5. Definition of fuzzy membership
functions.

In particular, the asymmetry in the definition of

terms such as small-positive and small-negative,

denoted in the figure by SP and SN respectively,

reflects the variation in the proportional gain across

the origin of the domain of definition of e.

Now, using the formalism presented earlier, one can

show that the operator's action, interpreted above in

linguistic terms, effectively amounts to a nonlinear
control scheme

!

u = kt,e + k, Je d'r, (28)
0

where kp, is given by kp = kpo - asgn(e)l b, which

in the case of the regulation problem, in effect
cancels the nonlinear terms which we attributed

earlier to parametric variation 4.

CONCLUSION

4In reality when the setpoint is changed, this cancellation does not

hold in the exact sense, however, since the plant dynamics is still

linearized and stable, treating the setpoint change effect as a

distmbance which results in dinunishing transients is a reasonable

assumption.



In this paper we showed how fuzzy control can be

viewed as a paradigm for designing nonlinear

control s_ategies in situations where the plant

model is not a priori known-- at least sufficiently

well-- to warrant the application of conventional

control theory. In particular, we made a point

regarding the use of fuzzy control m situations that
occur frequently in industrial process control where

(nonlinear)dependence of the parameters of the

plant on its state variables precludes the application

of linear control theory and thus nonlinear control,

albeit by means of fitzzy control, seems to be the

most appropriate approach. The framework

presented here, however, is somewhat restrictive in

that it requires a specific form for pmmnetrization

of fuzzy sets(LR) and places some restrictions on
the manner of definition of the control

rules(_-_._t = 1). To be more widely applicable, this

framework needs to to allow for a wider range of
nonlInear control schemes and also to allow for

nonparametrized fuzzy sets.

APPENDIX.

A. Parametrization

Although not absolutely essential, parametrization

simplifies quantitative description of fuzzy subsets.

In LR perm_etrization(Dubois and Prade 1980), a

fuzzy subset ,4, defined on some universe of

discourse U, is characterized, in terms of its

membership function, as follows:

• x [L((uo-u)/a)ifu%uo (29)

l_A(u)=lR((u-uo)/_ ) if u>uo

where, as shown in Figure 6, L(-) and R(.)

characterize the left and right halves of A, relative

to its center value, uo, that is where the linguistic

term that ,4 represents fully achieves its meaning,

or is maximally satisfied. Moreover, (x(and /J)

parametrize L(.)(and R(-)), which typically takes

the form

[max(0l-lxr),

L(x) = l e4"l''l+[x['lor

where p > i in all cases.

or

, (30)
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/z

A

Figure 6. Parametrization of a fuzzy
subset.

Finally, it is sometimes sufficient to use a simple

linear form, based on L(x)=max(O,l-I l),in

which case, c¢(or /_), discussed above, would

represent the inverse of the slope of the
characteristic function:

R(u)=

L(u)=l-(u.-u)/=.

(31)

(32)
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Abstract

In this paper, we introduce the framework of the theory of Truth-valued-flow Inference(TVFl)
which was presented by the authors and has been successfully made into products by Aptronix, the
Fuzzy Logic Technology Company. Even though there are dozens of papers presented out on fuzzy
reasoning, we think it is still needed to explore a rather unified fuzzy reasoning theory which has
the following two features: the one is that it is simplified enough to be executed feasibly and
easily; and the other is that it is well structural and well consistent enough that it can be built into
a strict mathematical theory and is consistent with the theory proposed by L.A.Zadeh. TVFI,
introduced in this paper, is one ofthe fuzzyreasoning theories that satisfw.s the above two f_

It presents inference by the form of networks, and naturally views inference as a process of truth
values flowing among propositions.

,1. What is inference?

Inference is truth values flowing among propositions. Here, the name 'truth value' is taken by logicians and
stands for an abstract quantity who can be calculated by means of logical operations and used to evaluate the truth of
propositions.

A proposition is a sentence "u is A" which can be viewed as has to be judged (may be fail). For exampk, "John
is tall" or " John's height is tall" are propositions. Each proposition can be decomposed into two parts: A---a
concept, a subset of a universe U; u--an object or its state respects to some factor, a point of U. If u stands for an
object, like John, Mary ..... we usually denote the discussion universe U as 0 which consists of objects; if u stands
for some state of an object, like height, weight .... we usually denote the discussion universe as Xf, which is the

states space of the factor f.

f(

f x Xf

eight

A concept TALL, for example, can be represented as a fuzzy subset in an universe U. But U is not uniquely
selected, it can be selected as O or Xf (shown in the above figure). Each concept can be represented as not only one

but a class of membership functions; how to make a selection depends on what is the universe X or what is the
variable x. So that, the combination of a concept A and a variable x, denoted as A(x), determines a conceptual
representation. When x is fixed, it is the proposition 'x is A'; when x is varying, it is called a predicate. A predicat_

corresponds to a fuzzy subset in X.

A(x) offers us making judgmenl: What about the Iruth of it? It comes the truth value T(A(x)), the truth degree of

proposition 'x is A'. It is equal to the membership degree gA(X). The form of lauth values can be real numbeas in

[0,1] or linguistic values such as RATHER TRUE, VERY FAIL .... for examples, which are described as fuzzy
subsets of [0,1 ].
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A(x) also provides u_ 4 ;:ccc _,i ip.fermation; since the concept A is usually a common sense, we are concerned
chiefly with the variable x: wi_ere does it occur? In this sense, truth value T(A(x)) is the possibility of x under the
constraint A. It comes the possibility theory presented by L.A.Zadeh.

"John is tall" provides the information that the height of John is in the area of tall: it occurs at x with

possibility T(A(x))=l.tA(X).

By means of the Falling shadow theory, a possibility distribution is the covering function of a random set.
While the probability distnbuUon ol a dtscrete random variable _s also the covering function of it, so that we can
view possibility as a generalization of probability as that: possibility is probability if variable x is to have
exclusiveness.

2. Introduction of the Concept of Truth Valued Flow Inference

First let's see why can we see the inference processes a.s truth values flowing among propositions? That is how
inference channels realize inference as logic system does. Let us consider the syllogism inference as follows:

If x is a person, then it will die
John is a person

So that John will die

P _ Q implication

P f,x:t

Q conSeClWmCe

When we face an object, x=John. The fact is: "John is a person", i.e.,

T(P(x))=T(Person(John))= 1

By means of the implication "If x is a person, then it will die", denoted as P--+Q, we get

W(Q(x))=T(end in dead(John))=l.

Then we get the consequence: John will die. Here, we can see that an implicate likes a channel transferring truth
value from head to tail.

t.v. 1

\©
t.Vo |

When the fact does not qualify the head P completely but partly support it with truth value 0.7 for example,
then the consequence is not certainty, we don't accept Q with truth value 1 but 0.7. This is the uncertainty
inference, it can be also viewed as the math value of input transferred to the tail along a inference channel.

t.v. 0.7

t.v. 0.7

Of course, the truth values can be a linguistic value such as RATHER TRUE, VERY TRUE ..... the inference
channel also transfers them from its head to its tail.
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rather true [71

In this case we need the theory of Truth valued qualification(Baldwen 1979):

(y is Q)is t = Y is Q'

_t (v) = t_a (y)]
Q' Q

when the variables x, y are given, an implication

(V(x, y)) if P(x) then Q(y)

is determined by the pair of concepts P and Q. So an inference channel, through whom truth values can flow, can be
denoted as [P,Q]. We call that the channel [P,Q] connects with concepts P and Q; P is its head and Q is its tail. A
channel does not connect with propositions but concepts. The function of a channel is only transferring truth values,
it is independent of how much truth value does its head have.

Inference channels have different qualities on transferring truth values. We call a channel IP,Q] has a quality
coefficient q or call [P,Q] a q-quality channel if

t.v.output t' = t.v.input t ^* q

Where A*= × or min or others.

When ^*=x, we call channel has 1-q friction, when ^*= min, we call q the transfer capacity of the channel.

1

0.6

_-®
0.6=rain(l,0.6)
0.6= 1X0.6

0.6

0.6=rain(0.7,0.6)
0.42=0.7X0.6
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-] rain

3. Properties of channels

For simple, we consider the head and tail of channels are all ordinary subsets. There are some basic properties of
infereace channels.

PROPERTY 1. If P_Q then [p,Q] is an 1-channel, called Natural channel

U

@
A concept in the Cartesian product space of X(x-Universe) and Y(y-Univetse) is called a relation betwcca x and

y. For example, O = a group of people, factor f -- height, g = weight, X=Xf, Y=Xg. For any o_ O, define x=f(o),
,y=g(o), and denote the set of (x,y) as

R is height-weight relation respect to 0

height

R = {(x.y)Io_ol

...._S_i_iii_ii!:!i:::iiii!s!..........

Q
Y

weight

R is the promised range of the point (x,y). It means that (x,y) cannot occur outside of it. That is

(x, y)_ R= XxYAR

Because of x_ P ¢=_ (x,y)_ P×Y ¢=>(x,y)_ PxYnR,

and y¢ Q ¢:_(x,y)_XxQ ¢:>(x,y)_XxQr_R

when PxYnR _ XxQoR
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According to Property 1, we can say [P,Q] is an 1-channel. So we get the next property

PROPERTY 2. For a given relation R between X and Y, if

PxYnR _ XxQnR

then [P,Q} is an 1-channel from X to Y. It is called a channel under relation R, and R is called the ground
relation of the channel.

Property I is a special case of property 2. Indeed _ is a binary-relation

X

/

J

/
/

Q Y

P_Q

Note: A class of inference channels can be generated from a relation.

PROPERTY 3. If [P,Q] and [Q,R] are two 1-channels then [P,R] is a channel

_-- Q
p R

PROPERTY 3'. If [P,Q] is a 1-channel, P'_ P and Q_Q' then [P',Qq is a 1-channel.

P Q

:iiiiiii!iiiiiil.._ .._ --

l"

For simplicity, [P,Q]E C(X,Y) or (2 stands for [P,QI is a 1-d_nel _m X to g.

PROPERTY 4.

[PI,QI_ C and [P2,QIe 12 _[PlVP2,QI_ 12

[P,QI]EC and [P,Q2]_C _[P,QI^Q2]_C

PROPERTY 4'.

[P1,QI], [P2,Q2]¢ C _[PIvP2,QIvQ2],[PIAP2.Q1AQ2]¢ C

THEOREM. Let c I=[PI,Q 1]. c2=[P2,Q2] define

c Ivc2=[P1 vP2,Q 1vQ2],c l^C2_[Pl/d_2,Q I^Q2]

Then (C(X,Y),A,v) forms a lattice, and it is called the channel lattice.
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PROPERTY 5.

U
V

_Q,

[P, Q]E C(X.Y) _[QC pC]e C(Y, X)

DEFINITION Let cl=[P1,Q1], c2=[P2,Q2] if PI_P2, QI_'Q2 thca Cl is more valuable than c2, denoted

as c1=#c2. A channel c in C is called valuable channel if there isn't other channel c' in C such that c'_c. The subset
of valuable channels is denoted as V.

About the concepts of "information value" and "belief degree" of a channel, the bigger the head and the smaller
the tail, the more information the channel, and therefore the more valuable file channel; on the other hand, it has the

smaller belief degree. They can be represented by the following formula.

Suppose P _ Q is a channel, F_.P, Q'=_Q, then we have know that 1w -_ Q' is also a channeL And

belief-degree(F _ Q') > belief-degree(P _ Q),

information-value0 w _ Q') < infcl, mation-value(P -_ Q).

For any xe X, define

Qx=c_{Q I P--->Qe C, xE P}

and assume that for any xe X, Qx_, then we have

DEFINITION. Define

G=-u{Qxx {x} Ixe X}

G is called the background graph of lattice C.

THEOREM. Let C(X,Y) be the channel lattice generated from a ground relation R, let G be the grtmnd graph
of C(X,Y), then we have that G=R.

THEOREM. Lattice C can be determined uniquely by its background graph G. That is to say that P _ Q is a
channel in C if and only if P*_Q*.

where P*=PxY c_ G, Q*=XxQ c_ G. (As shown in the following figure)
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to

DEFINITION. Giving channel c=[P,Q],

is called inference relation of channel c.

Q

R(c)= _ u _×Y

THEOREM c=[P,Q] (Pc X, Q¢ Y) _ C if and only if R(c) _ G.

THEOREM. c=[P,Q] (Pc X,Q_ X) e C if and only if Q _ P.

THEOREM. About the relations of background graphs of channels, we have

R(cl and c_ = R(c 1)c_R(cz)

R(c I or c2) -- R(cl)u R(c2)

R([P,Q1 ] and [P,Q2]) = R([P,QIAQ2])

R([P,Q1]or[P,Q2] ) = R([P,Q1vQ2])

R([PI,Q] and [P2,Q]) = R([PIvP2,Q])

R([P1,Q]or[P2.Q]) = R([P1AP2,Q] )

These can be shown in the following figure.

I: Q1

L
::::::::::: : : :_ : :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

ii::iiiiii_iiiiiii_ii_:i::iii:_i_iiiiiiiiii_iiii::iii::ii::i::i::iiii!ili::!i_i-_iii;iiii::i:i!i::ii
i:i:i:i!_:i:_.i:i::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

!! i   Jiii! i   i   iiii iiiiiiiiiiiiiiiJiiiiiiiiiiiiiiiiiii iii:iii: iiiiii!iiiiiiiiiiii;!iiiiiiiiiiiiiiii:ii

1
PI
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4. Fuzzy channels Lattice

For given _.e [0,1], an _.-channel lattice L_. consists of those channels who wansfers truth value at least l. to the

tail whenever the head is fulfilled with truth value 1.

For every definition of truth values operations v* and ^*, a channel [P, Q] is a _.-channel if and only if the
qualify q of it is equal or larger than

A X-channel lattice satisfies axioms 1-5 as same as 1-channel lattice.

About the L X (_e [0,I]), we obviously have the following proposition:

PROPOSITION: If _. _<g, then L_. _ LIZ"

Let L_.(_._ [0,1]) be a _.-cut subset, then {L_.} (_k_ [0,1])forms a fuzzy set on L called a fuzzy charm¢l lallice,
where L is the set of all channels.

Note that

_. < I_ =* R_. _ Rg

where G_., GII and R_,, Rg are ground graph and ground relation of L_., I4t respectively.

There isa difference between 1-channel lattice and _.-channel lattice(X<l). In 1-channels, if [P,Q] and [P.Q'] are
both 1-channels then

QnQ'_

otherwise, we have [P,_]=[P,QnQ'] hold. From this, we have [P,R] (for any R) hold, especially [p,Qe]. Therefore,

we have [P,Q] and [p,Qc] are both hold in the same time, this is a contradiction in mathematics. But in _-channels

(Z.<I), QnQ'=_ may be hold.

Principles of quality qualification:

1. Let [P,Q] is a q-channel and [P,Q]=[P, Q1 or Q2 or...or Qn], then for i=1,...,11, [P, Qi] are all q/n-channels.

8
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2. Let [P,Q] is a q-channel and [P,Q]= [PI and P2 and...and Pn, Q], then for i=l ..... n, [Pi,Q] are all q/n-
channels.

Following we further discuss this problem from another view of point

DEFINITION: Given a background graph G on XxY, which is a fuzzy subset with membership function
G(x,y). We can define two fuzzy subsets N and II on P(X)xP(Y) as follows:

N(P,Q)=I-^{^{G(x,y) Iy_ Q} I xe P}

P(P,Q)=v {^ {G(x,y) I ye Q I xeP}

P --_ Q is called a X-channel if N(P,Q)>__X. x_y is calUed a X-offshoot if rI({x},{ y})>__k.

THEOREM: For any fixed xe X, Nx=N({x },.) and Flx=l-l([x},.) are necessity measure and possibility measures

on P(Y) respectively. That is: Nx(_)---0, FIx(Y)=I, and

Nx(Pc_Q) = min (Nx(P), Nx(Q) )

Nx_ ->max (Nx(P), Nx(Q))

FIx_-'Q) = max 0"Ix(P), nx(Q))

Fix(PnQ) < min 0-Ix& ), l-Ix(Q) )

Nx(r') = I- nx(r,c)

THEOREM: For any X(0<X$1), NX, the X-cut of N, is a channels lattice with respect to operations u and n.

The corresponded background graph is G(1-X)+, the 1-X open cut of G, i.e.

(P,Q)e NX _ P*=PxYc'_(1-X)+_KxQc_(1-X)+---Q*

"I I

Y

N(P--->Q) > X

THEOREM: For any X(0<X__;1), (P,Q)e FIx if and only if for any xe P there is a point y st_.h that

(x,y)_ (PxQ)c_Gx+

The membership degree of (x,y) with respect to G is equals to the necessity of offshoot x-*y:

G(x,y) = Fl({x} _ [y})

5. Truth Valued Flow Neural Networks

We call a Universe X, or corresponded variable x, is atomlizabl¢ if there are only f'mite possible atoms ai

(i=l ..... n) such that any information about x is stated through them in a problem.
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ai A aj

-
Let X,Y are atomizable, X={ai}(i=l ..... n), Y={bj}(j=l ..... m). The Cartesian product space XxY can be

represented as an nxm squares, and a ground relation (or graph) can be represented as a matrix Rnxm with elements 0

or 1. For any head ai, the valuable channel in the l-channel lattice L 1 is [ai, Bi], where the tail can be represented by
atoms of Y:

Bi=v {bjl rij=l}.

i.e., [ai,Bj]= OR{Iai,bj] ] rij=l}

=[ai,bil] or [ai,bi2] or...or [ai,bimi], where riij=l.

According to the principle of quality qualification, [ai,bij] are 1/mi-channels.

For a given ground relation matrix Rnxm of an I-channel lattice L1, normalizing each arrow of it, we get a
matrix Ln>a'n called TVF(truth valued flow) matrix of LI:

lij= {[_ j/y_krik elseif_krik_0

Truth values flow among the atoms from X to Y is a TVF Networks which consists of atom-channels(head and
tail are atoms). The weight of [ai.bj] is lij and the Propagation rule is:

nj=f(v*(m i ^* lij))

where mi-truth values at input;

nj-truth values at output,

f- threshold function,

(v*,A*)=(max,min) or (+, ×) or other fuzzy operations.

From the following specific example, we can know the general TVF Networks structme.

EXAMPLE: Let X= {al ,a2,a3,a4 } and Y= {b 1 ,b'2,b3,b4,b5 }, the ground graph is presented bythe shadow

(left of the following Fig.), and ground relation R is presented by the L4x5 matrix (right of the following Fig.),
then this TVF network has the following structure (down of the following Fig.)

!_iiiii_iiiiii_i_ti_i_iiiii_iiiii_i_ .5 .5
'::!:?:::!:?:!:!:!|?:?:]:!:i:?:!:!:i:?

!iii!!iliiiiiiii!iiiiiii!i!iiiiiiiii .25 25
i?:???_??_!!??!?:!

_iiii!!!i!iiiiiii!iliiii!!i!!ii!iii!i!i

.25

.5 .5
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F(X) X X F(Y)

0

0
0

0

s
6. Applications of TVFI

(1) TVFI Applications in AI

In the above section, we have gotten that for every ground graph, we can get a True-Value-Flow inference
network. In AI field, the ground graph is just the database, and the Truth-Value-Flow inference network is just the
knowledge base. So we actually realize the transferring from database to knowledge using Truth-Value-Flow
inference. In practice, it is also very important to get ground graph from some kinds of database. In the following we
will introduce several kinds of database, the ways to get database, and the ways to get knowledge base from database.

The kinds of database we often use are listed as follows:

1) statistical sample: {(xk,Yk)};

, 2) relation data base: R(xk, Yk, Zk,...);

3) causality rule: f=ma;

4) experts experiences: if... then...;

Below we will give a specific method how to get ground graph and ground relation from statistical samples, and
how to get TVF neural networks (knowledge base) from ground graph (database).

For each i, get a distribution {lij}

_[ mij/mi if mi_0
lij I. 1/m else

where mij = Ek(mai(xk)x mbj(Yk)), mi=Ej mij.

Note: When there is not point occurred in an arrow(for example, 3th arrow in the following Fig.) the relation

or graph is not empty but full in X_, and lij are uniformly distributed.

" iii!iiiii_i!li_!l_::i_ 0 3/7 4/7 0 0
............_'._

;:i:i:i:i:i:i:i:i:i:i:i 0 0 1 0 0
• • q .:-:-:.:.:-:.:-:.:-:-:;.;+:.:.:.:+:+:.:

.... Ht i..

',ii',!!!!iiiiiil i!ii i ix:::::.........................r il i!_,iii!i,,!!i,,;iiiiii!i!!1/5 1/5 l/s 1/5 1/s
!iiiiiiiii!iii!iiiii!ii?;iii_::!::_i!iil::!ii!ii::ii!iii!i!::ii!i_iiiiiil!ili_i::_::i

" iiiiiii::ii::]i::i]i::::i::iiiiiiiii::]::::]iiiiiii::_i_:ziiiii::i_ii::ii_i;:.iiii

• !

When our information (i.e. data base ) is not complete, we can only get a sublattiee of an unknown channel lattice.

DEFINITION. A channel lattice L' is called a sublattice of a channel lattice L if the ground graph of L'
contains the ground graph of L.

In data base, the sample of statistics or the relation form corresponded to a sublattice L' is more incomplete than
that of channel lattice L.
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Foranincompletechannellattice,wecanextenddatabasebyaddinganykindof information and knowledge.
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DEFINITION. Let Lnxm be the TVF matrix of channel Lattice L, then

lj=maxilij and l=minjlj

arc called the induct,able degree of L at bj and of L respectively. If I > l(or lj > I), we call L is l-sufficient(or for
bj').l-sufticient is called completely sufficient.

To know which head is able to infer to bj, we are natural to inversely search along the weightiest channel

(whose quality equals to lj), if lj is larger than the given threshold 1", then we fred out the head we want to know.

After adding information to L, if the inductable degree is still smaller than the given threshold 1", It means that
the factor concerned with x is not enough to infer y. We have to move X into another factor space.

Let F be the set of factors concerned with variable y. Let Lf be the channel lattice from xf to y. Set X=Xf, the

inductable degree is If. The more complex the factor f, the higher the induct,able degree of Lf.

When If is enough, suppose that

f=flv...vfk

where fl...fk are simple factors which concerned with variable Xl ..... Xk respectively, then an atom in x is in the
form:

Xl isall ^...^ Xk isalk
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According to the principle of quality qualification, we can arrange a neural network as follows:

all 1/k

at2

al

alk 1

This is a TVFI neural network taken in factor spaces. It is actually the network representation of knowledge
base. Thus we complete the transferring from database to knowledge base.

(2) TVFI Applications in Approximate Reasoning

Suppose we have a channel P_ Q, then we may execute many kinds of approximam reasoning along this
channel. Following we give the execution of two kinds of most often using approximate reasoning using TVFI
channel.

1) The input is an element x, in this case we can do approximate reasoning as follows:

P

2) The input is a fuzzy set P' (i.e. concept), in this case we can do approximate reasoning as follows:

p p'
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