864 research outputs found

    Checkpointing as a Service in Heterogeneous Cloud Environments

    Get PDF
    A non-invasive, cloud-agnostic approach is demonstrated for extending existing cloud platforms to include checkpoint-restart capability. Most cloud platforms currently rely on each application to provide its own fault tolerance. A uniform mechanism within the cloud itself serves two purposes: (a) direct support for long-running jobs, which would otherwise require a custom fault-tolerant mechanism for each application; and (b) the administrative capability to manage an over-subscribed cloud by temporarily swapping out jobs when higher priority jobs arrive. An advantage of this uniform approach is that it also supports parallel and distributed computations, over both TCP and InfiniBand, thus allowing traditional HPC applications to take advantage of an existing cloud infrastructure. Additionally, an integrated health-monitoring mechanism detects when long-running jobs either fail or incur exceptionally low performance, perhaps due to resource starvation, and proactively suspends the job. The cloud-agnostic feature is demonstrated by applying the implementation to two very different cloud platforms: Snooze and OpenStack. The use of a cloud-agnostic architecture also enables, for the first time, migration of applications from one cloud platform to another.Comment: 20 pages, 11 figures, appears in CCGrid, 201

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation

    Internet of Things Strategic Research Roadmap

    Get PDF
    Internet of Things (IoT) is an integrated part of Future Internet including existing and evolving Internet and network developments and could be conceptually defined as a dynamic global network infrastructure with self configuring capabilities based on standard and interoperable communication protocols where physical and virtual “things” have identities, physical attributes, and virtual personalities, use intelligent interfaces, and are seamlessly integrated into the information network

    Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains

    Full text link
    Fabric is a modular and extensible open-source system for deploying and operating permissioned blockchains and one of the Hyperledger projects hosted by the Linux Foundation (www.hyperledger.org). Fabric is the first truly extensible blockchain system for running distributed applications. It supports modular consensus protocols, which allows the system to be tailored to particular use cases and trust models. Fabric is also the first blockchain system that runs distributed applications written in standard, general-purpose programming languages, without systemic dependency on a native cryptocurrency. This stands in sharp contrast to existing blockchain platforms that require "smart-contracts" to be written in domain-specific languages or rely on a cryptocurrency. Fabric realizes the permissioned model using a portable notion of membership, which may be integrated with industry-standard identity management. To support such flexibility, Fabric introduces an entirely novel blockchain design and revamps the way blockchains cope with non-determinism, resource exhaustion, and performance attacks. This paper describes Fabric, its architecture, the rationale behind various design decisions, its most prominent implementation aspects, as well as its distributed application programming model. We further evaluate Fabric by implementing and benchmarking a Bitcoin-inspired digital currency. We show that Fabric achieves end-to-end throughput of more than 3500 transactions per second in certain popular deployment configurations, with sub-second latency, scaling well to over 100 peers.Comment: Appears in proceedings of EuroSys 2018 conferenc

    Service-based Fault Tolerance for Cyber-Physical Systems: A Systems Engineering Approach

    Get PDF
    Cyber-physical systems (CPSs) comprise networked computing units that monitor and control physical processes in feedback loops. CPSs have potential to change the ways people and computers interact with the physical world by enabling new ways to control and optimize systems through improved connectivity and computing capabilities. Compared to classical control theory, these systems involve greater unpredictability which may affect the stability and dynamics of the physical subsystems. Further uncertainty is introduced by the dynamic and open computing environments with rapidly changing connections and system configurations. However, due to interactions with the physical world, the dependable operation and tolerance of failures in both cyber and physical components are essential requirements for these systems.The problem of achieving dependable operations for open and networked control systems is approached using a systems engineering process to gain an understanding of the problem domain, since fault tolerance cannot be solved only as a software problem due to the nature of CPSs, which includes close coordination among hardware, software and physical objects. The research methodology consists of developing a concept design, implementing prototypes, and empirically testing the prototypes. Even though modularity has been acknowledged as a key element of fault tolerance, the fault tolerance of highly modular service-oriented architectures (SOAs) has been sparsely researched, especially in distributed real-time systems. This thesis proposes and implements an approach based on using loosely coupled real-time SOA to implement fault tolerance for a teleoperation system.Based on empirical experiments, modularity on a service level can be used to support fault tolerance (i.e., the isolation and recovery of faults). Fault recovery can be achieved for certain categories of faults (i.e., non-deterministic and aging-related) based on loose coupling and diverse operation modes. The proposed architecture also supports the straightforward integration of fault tolerance patterns, such as FAIL-SAFE, HEARTBEAT, ESCALATION and SERVICE MANAGER, which are used in the prototype systems to support dependability requirements. For service failures, systems rely on fail-safe behaviours, diverse modes of operation and fault escalation to backup services. Instead of using time-bounded reconfiguration, services operate in best-effort capabilities, providing resilience for the system. This enables, for example, on-the-fly service changes, smooth recoveries from service failures and adaptations to new computing environments, which are essential requirements for CPSs.The results are combined into a systems engineering approach to dependability, which includes an analysis of the role of safety-critical requirements for control system software architecture design, architectural design, a dependability-case development approach for CPSs and domain-specific fault taxonomies, which support dependability case development and system reliability analyses. Other contributions of this work include three new patterns for fault tolerance in CPSs: DATA-CENTRIC ARCHITECTURE, LET IT CRASH and SERVICE MANAGER. These are presented together with a pattern language that shows how they relate to other patterns available for the domain

    From Resilience-Building to Resilience-Scaling Technologies: Directions -- ReSIST NoE Deliverable D13

    Get PDF
    This document is the second product of workpackage WP2, "Resilience-building and -scaling technologies", in the programme of jointly executed research (JER) of the ReSIST Network of Excellence. The problem that ReSIST addresses is achieving sufficient resilience in the immense systems of ever evolving networks of computers and mobile devices, tightly integrated with human organisations and other technology, that are increasingly becoming a critical part of the information infrastructure of our society. This second deliverable D13 provides a detailed list of research gaps identified by experts from the four working groups related to assessability, evolvability, usability and diversit

    Query Replication in Distributed Information Systems with Autonomous Participants

    Get PDF
    We consider Distributed Information Systems with Autonomous Participants (DISAP), i.e., participants (consumers and providers) may have special interests towards queries and other participants. Recent applications of DISAP on the Internet have emerged to share data, services, or computing resources at an unprecedented scale (e.g. SETI@home). With autonomous participants, the only way to avoid a participant to voluntarily leave the system is to satisfy its interests when allocating queries. But, participants' satisfaction may also be badly affected by other participants' failures or comportment. In this context, replicating queries is useful to address two different problems: tolerate providers' failures and deal with Byzantine providers. In this paper, we make the following main contributions. First, we formalize the query allocation problem over faulty participants in the context of DISAP. Second, we define participant's satisfaction and define a notion of global satisfaction, which considers participants' satisfaction and their probability of failure. Third, we propose a query replication algorithm, SbQR, which deals with the participants' failures by deciding on-line whether a query should be replicated and at which rate. Fourth, we propose another query replication algorithm, called SbQR+, which generalizes SbQR with the goal of prioritizing critical queries. Finally, we implemented both algorithms and compared them to the popular baseline algorithm. The results demonstrate that our algorithms significantly outperform the baseline algorithm from the performance and satisfaction points of view. In particular, Sb QR+ is excellent at choosing the queries that must be replicated to guarantee both participants' satisfaction and good system performance

    Conception et implémentation de systèmes résilients par une approche à composants

    Get PDF
    L'évolution des systèmes pendant leur vie opérationnelle est incontournable. Les systèmes sûrs de fonctionnement doivent évoluer pour s'adapter à des changements comme la confrontation à de nouveaux types de fautes ou la perte de ressources. L'ajout de cette dimension évolutive à la fiabilité conduit à la notion de résilience informatique. Parmi les différents aspects de la résilience, nous nous concentrons sur l'adaptativité. La sûreté de fonctionnement informatique est basée sur plusieurs moyens, dont la tolérance aux fautes à l'exécution, où l'on attache des mécanismes spécifiques (Fault Tolerance Mechanisms, FTMs) à l'application. A ce titre, l'adaptation des FTMs à l'exécution s'avère un défi pour développer des systèmes résilients. Dans la plupart des travaux de recherche existants, l'adaptation des FTMs à l'exécution est réalisée de manière préprogrammée ou se limite à faire varier quelques paramètres. Tous les FTMs envisageables doivent être connus dès le design du système et déployés et attachés à l'application dès le début. Pourtant, les changements ont des origines variées et, donc, vouloir équiper un système pour le pire scénario est impossible. Selon les observations pendant la vie opérationnelle, de nouveaux FTMs peuvent être développés hors-ligne, mais intégrés pendant l'exécution. On dénote cette capacité comme adaptation agile, par opposition à l'adaptation préprogrammée. Dans cette thèse, nous présentons une approche pour développer des systèmes sûrs de fonctionnement flexibles dont les FTMs peuvent s'adapter à l'exécution de manière agile par des modifications à grain fin pour minimiser l'impact sur l'architecture initiale. D'abord, nous proposons une classification d'un ensemble de FTMs existants basée sur des critères comme le modèle de faute, les caractéristiques de l'application et les ressources nécessaires. Ensuite, nous analysons ces FTMs et extrayons un schéma d'exécution générique identifiant leurs parties communes et leurs points de variabilité. Après, nous démontrons les bénéfices apportés par les outils et les concepts issus du domaine du génie logiciel, comme les intergiciels réflexifs à base de composants, pour développer une librairie de FTMs adaptatifs à grain fin. Nous évaluons l'agilité de l'approche et illustrons son utilité à travers deux exemples d'intégration : premièrement, dans un processus de développement dirigé par le design pour les systèmes ubiquitaires et, deuxièmement, dans un environnement pour le développement d'applications pour des réseaux de capteurs. ABSTRACT : Evolution during service life is mandatory, particularly for long-lived systems. Dependable systems, which continuously deliver trustworthy services, must evolve to accommodate changes e.g., new fault tolerance requirements or variations in available resources. The addition of this evolutionary dimension to dependability leads to the notion of resilient computing. Among the various aspects of resilience, we focus on adaptivity. Dependability relies on fault tolerant computing at runtime, applications being augmented with fault tolerance mechanisms (FTMs). As such, on-line adaptation of FTMs is a key challenge towards resilience. In related work, on-line adaption of FTMs is most often performed in a preprogrammed manner or consists in tuning some parameters. Besides, FTMs are replaced monolithically. All the envisaged FTMs must be known at design time and deployed from the beginning. However, dynamics occurs along multiple dimensions and developing a system for the worst-case scenario is impossible. According to runtime observations, new FTMs can be developed off-line but integrated on-line. We denote this ability as agile adaption, as opposed to the preprogrammed one. In this thesis, we present an approach for developing flexible fault-tolerant systems in which FTMs can be adapted at runtime in an agile manner through fine-grained modifications for minimizing impact on the initial architecture. We first propose a classification of a set of existing FTMs based on criteria such as fault model, application characteristics and necessary resources. Next, we analyze these FTMs and extract a generic execution scheme which pinpoints the common parts and the variable features between them. Then, we demonstrate the use of state-of-the-art tools and concepts from the field of software engineering, such as component-based software engineering and reflective component-based middleware, for developing a library of fine-grained adaptive FTMs. We evaluate the agility of the approach and illustrate its usability throughout two examples of integration of the library: first, in a design-driven development process for applications in pervasive computing and, second, in a toolkit for developing applications for WSNs

    Fault Tolerant Real Time Dynamic Scheduling Algorithm For Heterogeneous Distributed System

    Get PDF
    Fault-tolerance becomes an important key to establish dependability in Real Time Distributed Systems (RTDS). In fault-tolerant Real Time Distributed systems, detection of fault and its recovery should be executed in timely manner so that in spite of fault occurrences the intended output of real-time computations always take place on time. Hardware and software redundancy are well-known e ective methods for faulttolerance, where extra hard ware (e.g., processors, communication links) and software (e.g., tasks, messages) are added into the system to deal with faults. Performances of RTDS are mostly guided by eciency of scheduling algorithm and schedulability analysis are performed on the system to ensure the timing constrains. This thesis examines the scenarios where a real time system requires very little redundant hardware resources to tolerate failures in heterogeneous real time distributed systems with point-to-point communication links. Fault tolerance can be achieved by..
    corecore