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Abstract

Cyber-physical systems (CPSs) comprise networked computing units that monitor and control
physical processes in feedback loops. CPSs have potential to change the ways people and
computers interact with the physical world by enabling new ways to control and optimize systems
through improved connectivity and computing capabilities. Compared to classical control theory,
these systems involve greater unpredictability which may affect the stability and dynamics of the
physical subsystems. Further uncertainty is introduced by the dynamic and open computing
environments with rapidly changing connections and system configurations. However, due to
interactions with the physical world, the dependable operation and tolerance of failures in both
cyber and physical components are essential requirements for these systems.

The problem of achieving dependable operations for open and networked control systems is
approached using a systems engineering process to gain an understanding of the problem domain,
since fault tolerance cannot be solved only as a software problem due to the nature of CPSs, which
includes close coordination among hardware, software and physical objects. The research
methodology consists of developing a concept design, implementing prototypes, and empirically
testing the prototypes. Even though modularity has been acknowledged as a key element of fault
tolerance, the fault tolerance of highly modular service-oriented architectures (SOAs) has been
sparsely researched, especially in distributed real-time systems. This thesis proposes and
implements an approach based on using loosely coupled real-time SOA to implement fault
tolerance for a teleoperation system.

Based on empirical experiments, modularity on a service level can be used to support fault
tolerance (i.e., the isolation and recovery of faults). Fault recovery can be achieved for certain
categories of faults (i.e., non-deterministic and aging-related) based on loose coupling and diverse
operation modes. The proposed architecture also supports the straightforward integration of fault
tolerance patterns, such as FAIL-SAFE,  HEARTBEAT,  ESCALATION and SERVICE MANAGER,  which are
used in the prototype systems to support dependability requirements. For service failures, systems
rely on fail-safe behaviours, diverse modes of operation and fault escalation to backup services.
Instead of using time-bounded reconfiguration, services operate in best-effort capabilities,
providing resilience for the system. This enables, for example, on-the-fly service changes, smooth
recoveries from service failures and adaptations to new computing environments, which are
essential requirements for CPSs.

The results are combined into a systems engineering approach to dependability, which includes an
analysis of the role of safety-critical requirements for control system software architecture design,
architectural design, a dependability-case development approach for CPSs and domain-specific
fault taxonomies, which support dependability case development and system reliability analyses.
Other contributions of this work include three new patterns for fault tolerance in CPSs: DATA-
CENTRIC ARCHITECTURE,  LET IT CRASH and SERVICE MANAGER. These are presented together with a
pattern language that shows how they relate to other patterns available for the domain.
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1 Introduction

ITER is an international nuclear fusion engineering and research project that is currently building
the world’s largest experimental tokamak-type fusion reactor in Cadarache, South of France. ITER
is playing a significant role in the transition from plasma physics experiments to full-scale fusion
power plants by demonstrating the availability and integration of technologies essential for the
reliable generation of electricity [1]. One of these technologies is remote maintenance. Nuclear
fusion releases high-energy ionizing radiation that causes the degradation of in-vessel components
of the ITER machine, necessitating several replacements during the project’s lifetime. However,
due to the activation and heavy weight of the reactor components, hands-on inspections and
maintenance are not possible. Remote handling (RH) systems are, therefore, used to perform
maintenance tasks inside the machine, without the potential for direct human intervention.

RH systems include heavy robotic transporters and manipulators that are used to inspect and
replace reactor components using man-in-the-loop teleoperation. The systems must be capable of
moving heavy components, such as nine-tonne divertor cassettes, in pitch-black maintenance
tunnels with clearances of only a few millimetres. Mechanical and electrical design constraints are
introduced by need to maintain in-vessel cleanliness and tolerate radiation levels of approximately
100 Gy/h. The challenges of designing reliable mechanical structures and operating procedures for
this environment are immediately obvious. Designing and creating the software to control this
equipment is similarly challenging; however, the related risks are significantly more difficult to
identify due to the abstract nature and complexity of software. Further challenges are introduced
by flexibility requirements of ITER’s RH systems.

The supervisory RH system must integrate seven RH systems, containing a heterogeneous mix of
equipment, parts and software, into a coherent plant system that is operated from standardized
work cells in the RH control room. This plant system enables central monitoring and coordination
among different RH systems, while facilitating its integration into the ITER central control and
data access system. The seven RH systems of the ITER machine are shown in Figure 1. These
include a blanket RH system for the replacement of 440 blanket modules, a divertor RH system for
the replacement of 54 divertor cassettes, a neutral beam RH system for the maintenance of three
neutral beam injectors, a multi-purpose deployer for in-vessel tokamak operations, a cask and plug
RH system to provide a platform for the transportation and deployment of in-vessel systems, and
a hot cell RH system for the maintenance and commissioning of all the other RH systems. These
systems are put out to tender for different consortiums by the national fusion agencies or the ITER
Organization. While the role of the ITER Organization is to standardize interfaces and common
components, the ultimate implementation of systems is carried out by a large number of
independent suppliers and contractors. The environment, which combines several engineering
disciplines, specialized technologies and stakeholder organizations, including all of the different
vendors, is typical of cyber-physical systems (CPSs) (i.e. networked embedded feedback systems
interacting with the physical environment and operating in open computing environments). The
ITER RH systems will utilize a mix of specially developed and off-the-shelf technologies, including
cranes, transporters, robotic manipulators and tooling, controllers, data management, structural
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simulators, visualizations and operational subsystems, plant-level supervisory systems, etc. To
maximize a project’s chance of success, the reuse of software and the capability to integrate various
RH technologies is necessary. For these ends, software architecture plays a key role, defining
variation points and how flexible or rigid the integration will be. The architecture should enable
the independent deployment of software organized into components around system operational
capabilities and avoid forcing specific technology platforms.

Figure 1. Some of the different physical systems that need to be managed and operated from the ITER remote
handling control room; the ITER tokamak is shown in the middle

The heterogeneous and distributed operating environment of ITER RH systems is characteristic for
CPSs,  the  study  of  which  combines  elements  from  embedded  systems,  networking  and  control
engineering. CPSs have emerged from a combination of several technological trends: namely,
increasingly powerful computing capabilities, declining instrumentation costs, the prevalence of
Internet Protocol (IP)-based communication technologies and increasing control of physical
dynamics. These trends are moving embedded control systems towards co-operative models and
composable components. The utilization of open standards and ecosystems can potentially enable
CPSs to provide intelligent and value-adding composite services over networks, made available
through dynamic connectivity capabilities. Key issues for the integration of networked systems—
both in ITER and CPSs in general—include a scalable management of complexity, an
interoperability (to function in heterogeneous environments) and a capability to gracefully handle
unexpected faults, since failures of components in both cyber and physical domains must be either
tolerated or contained [2]. To contribute to the management of these challenges, we use the ITER
Divertor RH system as a target CPS for the evaluation of new approaches to the development of
dependable and flexible control systems. These include the integration of existing prototype



3

software into service-based teleoperation systems, as well as the empirical evaluation of
contributions using an electric industrial manipulator.

Failures in any of the complex, distributed, real-time systems shown in Figure 1 could cause
unexpected maintenance delays, reducing the availability of the ITER device for scientific
experiments. The successful integration and operation of RH systems, therefore, plays a significant
role in illustrating the feasibility of remote maintenance of a large-scale fusion device. ITER has an
expected minimum operational lifetime of 30 years, making changes in the operational
environment or in system functionality very likely. Consequently, the long-term success of remote
maintenance systems depends on the capability to standardize the architecture, while maximizing
its flexibility.

The target level of reliability and the use of rigorous development methods are balanced against
the risks of failures, including financial losses and setbacks on project goals. However, evaluating
probabilities of failures and failure modes for software-based systems is challenging, especially in
dynamic environments. The complexity of CPSs, such as the ITER RH systems shown in Figure 1,
is not sufficiently matched with best practices of building dependable embedded systems (e.g., a
cleanroom mentality, verifying every line of code, utilizing redundant channels, etc.) alone. Use of
current best practices is a viable approach if the system can be considered to be a closed box, with
limited interaction with the surrounding world; however, it is impossible to foresee and test all
possible combinations of how a software program written for a CPS will be used. Therefore, a
systems engineering approach is needed to combine the most effective methods to build a
dependable and resilient system.

The main contribution of this compendium thesis is the description and empirical evaluation of the
fault-tolerant service-based architecture, which is verified using ITER RH system requirements to
represent a demanding, real-world test case. In addition to evaluating the use of a real-time
service-oriented architecture (RTSOA) in a CPS, this thesis contributes to the field by
demonstrating a systems engineering approach to dependability to show how results are related to
the development of CPSs, analysing ITER remote handling control system (RHCS) requirements,
evaluating “let it crash” approach for real-time fault detection and recovery, confirming the
RTSOA style’s applicability for building resilient real-time systems, and identifying three patterns
for the fault tolerance of CPSs.

The remainder of this section describes the research background, motivations, objectives, scope,
methodology and contributions of this thesis. The current state of the art for dependability and
systems engineering is analysed in Section 2. Software architectures for building CPSs are
discussed in Section 3. A general overview of ITER RH systems is presented in Section 4. Section 5
presents the systems engineering approach for achieving dependability, as well as the
contributions of the papers, including the architectural design and an outline of the roles of the
author in each paper. Finally, a discussion of the results and conclusions is presented in Section 6.

1.1 Background
RH plays an important role in the ITER plant because deuterium-tritium fusion produces high-
energy neutrons, which are absorbed by the components inside the reactor vessel, leaving the
components in an activated state. Since humans do not have access to the reactor, all maintenance
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tasks are performed indirectly through remotely operated robots using man-in-the-loop
operations, making RH critical for the maintenance of the ITER.

RHCSs consist of heterogeneous subsystems, including equipment controllers, operator interfaces
and supervisory systems that are used to carry out complex, multi-phase operating scenarios in
coordination with other work cells and RH systems using several types of equipment, ranging
from cameras to manipulator arms, specialized end-effectors and hydraulic movers. Some of the
subsystems used in this study can be seen in Figure 2, which shows a prototype RHCS being used
to test divertor remote handling operations at Divertor Test Platform 2 (DTP2)1. The RHCSs must
be combined into a single cohesive RH plant system that can be used to perform all maintenance
operations flexibly and reliably from multiple work cells located in the RH control room. This kind
of diverse operation environment is a typical challenge for CPSs.

Figure 2. High level control system for ITER divertor remote handling operations at DTP2; shown: operator
interfaces, input devices, virtual reality and camera feed

Due to radiation, RH systems and equipment must be protected against single points of failure
(SPoF). They must also be recoverable, since the loss of equipment inside the reactor could have
catastrophic consequences for the ITER research project. Due to the potential financial losses
caused by failures, RH systems can be considered to be safety- or mission-critical. However, the
complexity and scale of such systems makes fail-operate fault tolerance techniques, which are
typically used in nuclear power plants and aviation systems, financially impractical. The basic
approach and requirement, therefore, in the case of a hazardous event is a fail-safe behaviour: The
system is transferred to a safe state, such as a power off, through an interlock or safety systems, if

1 A  full  scale  model  of  a  bottom  region  of  the  ITER  fusion  reactor,  located  at  Tampere,  Finland,  and  used  for
developing equipment, methods, and software for ITER RH operations.
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necessary. The problem with this approach is that a complex system, such as RHCS, is likely to
have residual faults, especially since flexibility and interoperability increase factors of uncertainty.
Without fault tolerance and resilience, these faults will have a negative impact on availability
especially early in the operational lifecycle or when the operational profile of the system changes.

Most of the work presented in this thesis has been carried out through the Goal-Oriented Training
programme on Remote Handling (GOT-RH) project, which is supported by the European Fusion
Development Agreement (EFDA). Objectives for the GOT-RH include implementing a structured
RH system design and development-oriented tasks in a multidisciplinary systems engineering
framework. This project served as the starting point for this thesis, providing the objective of
developing a fault-tolerant concept architecture that could be used to evaluate and suggest
approaches for the actual ITER RHCS design.

The ITER RH systems, which are still under development, were used as sources of requirements
and evaluation criteria to evaluate the developed design. Due to the conceptual nature of the
design,  it  is  not  possible  for  the  prototype  to  be  fully  compliant  with  ITER  RHCS  requirements
(e.g., with regard to radiation resistance). The relevant features of the RH systems selected for this
research include a heterogeneous environment, a high availability requirement for RH systems
and for the plant, a need to manage complexity, a long operational phase (expected to last 20 to 30
years), a safety-oriented/mission-critical nature of operations, a high level of system distribution
and real-timeliness (i.e., time-sensitive, low latency and high throughput).

1.2 Need for Dependability
This thesis uses the definition for dependability given by Avizienis et al. [2], in which
dependability is defined as the ability to deliver service that can be justifiably trusted.
Dependability encompasses attributes of reliability, availability, maintainability, integrity and
safety, and it is closely connected to reliability, availability, maintainability and safety (RAMS)
requirements in systems engineering. A fault is a defect in a system, whereas a failure is an
instance in time during which a system displays behaviour that is contrary to its specifications [2].
A fault, when activated, can lead to an error (i.e., an invalid state), and the invalid state generated
by an error may lead to another error or a failure. Means for achieving dependability can be
categorized into four groups: fault prevention, fault tolerance, fault removal and fault forecasting
[2]. While the key results in the publications of this thesis focus on fault tolerance, an inclusive
systems engineering approach to dependability is necessary. Connections of dependability and the
systems engineering approach are analysed in Section 2.1.

One of the main threats to dependability is complexity. Functional safety standards tend to guide
the development of safety-related systems towards full-separation and closed systems in order to
minimize the potential for error propagation and limit complexity. However, this kind of approach
has limited applicability for the open environments of CPSs, in which the system consists of a large
number of intercommunicating nodes, and there may be no single organization with sole
ownership of the end-to-end system.

The typical approach for achieving a high availability level is based on the use of active or passive
redundancy, with hot or cold spares [3]. For example, in telecommunication systems, the
availability requirements are very high: Availability levels of six or even nine 9s are not unheard of
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[4] [5]. An availability of six 9s (99.9999%) corresponds to downtime of just 31.5 seconds per year.
These systems are designed to tolerate single failures with duplicated components, so that the
failure of a switching unit does not cause a system failure. This demonstrates how failures can also
occur as partial failures, in which the system has capability to provide a subset of services or
degraded performance to users. The Mars rovers Spirit and Opportunity have achieved
remarkable levels of reliability against system-level failures, lasting several times longer than their
planned 90-day mission durations, despite partial failures [6].

Redundancy has served as a central tenet of reliability engineering for over 50 years; however, it is
important to understand its limitations. For example, it can be argued that even the hard numbers
used for quantitative proof of aeroplane reliability are based largely on numerous immeasurable
factors, such as “isolation” and “independence” [7]. Redundancy also increases complexity due to
the extra elements required to manage and implement the redundant system—and, if
implemented improperly, may detract from the reliability of a system [7]. Therefore, new
approaches that support the development of dependable CPSs are needed. The rest of this section
explores the motivation for the research and outlines the research problem.

1.2.1 Software Failure Case Studies
The following four short case studies of software failures aim to highlight some of the challenges
encountered in CPS-relevant applications.

F-22 Raptor Squadron Shot Down by the International Date Line
F-22 Raptor is a tactical fighter introduced into service in 2007. The F-22's avionics software has
some 1.7 million lines of code. While attempting the aircraft’s first foreign deployment to the
Kadena Air Base in Okinawa, Japan, on 11 February 2007, six F-22s of 27th Fighter Squadron flying
from Hickam Air Force Base, Hawaii, experienced multiple software-related system failures,
including failures of navigations and parts of communications, while crossing the International
Date Line. The fighters had no communication or navigation and could not reset their systems.
Serious consequences were avoided, however, because the aircraft were able to return to Hawaii
by following tanker aircraft. [8]

Germany’s Super Train Arrives Two Years Late
At end of 2013, Siemens AG delivered the first four Intercity-Express 3 (ICE3) trains to Deutsche
Bahn [9]. The initial goal had been to deliver the trains more than two years earlier; however,
delays occurred when problems with the control system for the brakes prevented the project from
receiving authorization from rail authorities. The trains had communication problems in their
software, which manifested during the testing of the ICE3 double trains. Specifically, the command
to stop an ICE3 double train was delayed by about one second by the computer until it was
executed, adding 70 meters to the stopping distance (given a speed of 250 km/h). [10]

Packets of Death
In 2014, Start2Star Communications, LLC adopted a new Ethernet controller for a piece of on-
premises equipment, but then noticed that units seemed to be failing randomly. Only a power
cycle, requiring a physical visit to the equipment, would bring a failed device back. However,
when a faulty unit was shipped back, it would perform correctly when tested. The company began
to work with a reseller to debug the problem and eventually found out that the specific content in
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a Session Initiation Protocol packet was crashing the controller—even though, theoretically, the
packet contents should not have affected the operation of the network adapter. Eventually the
company determined that the interface shutdown was being triggered by a specific byte value at a
specific offset—a condition that occurs only intermittently on a network. The issue was caused by
misconfigured read-only memory chip of the network controller, resolved with a memory update.
[11]

U-2 Caused Widespread Shutdown of US Flights
In April 2014, a U-2 spy plane flying at a high altitude caused a system failure at a California air
traffic control centre, leading to the halting of take-offs at several airports in the southwestern
United States. The plane’s altitude and route apparently overloaded a computer system called En-
Route Automation Modernization (ERAM), which searches for potential conflicts between aircraft.
The flight plan data lacked planned altitude, so it was manually entered by an air traffic controller
as 60000 feet (about 18 km). However, the system ignored these data and began evaluating all
possible altitudes along the U-2’s planned flight path for potential collisions with other aircraft,
causing the system to exceed the amount of memory allotted to handling the flight’s data. This, in
turn, resulted in system errors and restarts, eventually crashing the ERAM look-ahead system and
affecting the conflict handling of the Federal Aviation Administration for all the other aircraft in
the zone. [12]

***

A shared theme in these cases is that systems often fail in unexpected ways. In the situations
described above, would it have been possible to recover failures or limit fault propagation to a
specific subsystem? The case of the ICE3 trains demonstrates the difficulties that can be
encountered when integrating complex distributed control systems. Redundancy (e.g., triple
modular redundancy) is an effective form of protection against foreseeable failures with known
probabilities, but it is less effective against common mode failures and so-called “black swan”
events, which are almost impossible to foresee before the actual incident. Black swan events can
render all redundant versions useless at the same time, as in the infamous Jakarta incident of 1982,
when all engines of a British Airways 747 failed simultaneously when the passenger jet flew into a
cloud of volcanic ash [7]. The aircraft was able to glide out of the ash cloud, restart its engines and
land safely. In such cases, resilience [13], or the ability of the system to cope with unforeseen
disturbances and events, becomes a key system attribute. This thesis studies how systems can be
designed to provide service regardless of faults, by improving system resilience through fault
tolerance and diversity.

1.2.2 Cyber-Physical Systems
A CPS integrates computing and communication capabilities with the monitoring and control of
entities in the physical world through a communication network, and it does so dependably,
safely, securely, efficiently and in real-time [14]. Based on such a broad definition, CPSs are almost
synonymous with networked digital control systems and embedded systems. To emphasize that
the computational elements of a CPS collaborate and interact across the network to achieve system
goals, we complement this definition with the one from CPSoS – Towards a European Roadmap
on Research and Innovation in Engineering and Management of Cyber-physical Systems of
Systems support action project from the European Union’s Seventh Framework Programme for
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Research, which takes CPSs to mean large, complex physical systems that are interacting with a
considerable number of distributed computing elements for monitoring, control and management
which can exchange information between them and with human users [15]. Although the
manipulation of the physical world occurs locally, control and management tasks are not carried
out in a centrally authorized manner (Figure 3). Due to the large number of computational units
with independent decision making, the connections made by a system or its subsystems are
expected to change. This increases the need for systems to cope with unexpected situations. There
are challenges in developing software for such systems, since the systems’ physical components
introduce safety and reliability requirements, while their distributed nature introduces complexity
and  randomness.  The  ITER  RH  plant  system  can  be  considered  an  example  of  such  a  system,
involving a need to interface with the RH equipment, including tools, heavy movers,
manipulators, cameras, virtual reality (VR) software, control systems, etc. provided by different
suppliers.

Figure 3. CPSs are composed of computational units that communicate and collaborate over the network topology
and interact with the physical system through sensors and actuators (adapted from [16])

Current real-time embedded systems are built using programming abstractions with few or no
temporal semantics  [17]; however, they must cope with the unpredictability introduced by
networks and software, which may affect the stability and dynamics of their physical subsystems.
Their interaction with physical processes, on the other hand, means that these systems are
typically mission- or safety-critical. Therefore, CPSs must be capable of balancing dynamic
behaviours with a need for dependability and temporal predictability. This capacity to function,
despite unexpected changes in the environment—also known as resilience—is a fundamental
requirement for CPSs. Resilience is needed to survive unexpected changes without failures and to
maintain correctness in the context of improperly coordinated controls of cyber and physical
resources [18]. A resilient system should be capable of providing other levels of utility besides
binary “broken” and “working” states through diversity, dynamic resource allocation or some
other  means,  so  that  a  single  failure  does  not  bring  down  the  whole  system.  Examples  of  such
design include the limp-home pattern [19] and other alternative operation modes, such as the
fault-tolerant automobile steer-by-wire system by Hayama et al. [20] based on diversity. This
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system uses braking and acceleration to provide limited steering capability as an emergency
backup in the event of a failure of the actual steer-by-wire system.

Another integral feature of CPSs is their flexibility to evolve, including adapting to changes in
computing environments and being cost-effective to maintain, reconfigure and re-target. Flexibility
is seen as essential for systems to successfully interact and survive in a world of on-going and
increasing digitalization. The digitalization trend has the potential to improve the efficiency of
existing processes; however, it requires intelligent devices capable of providing useful services for
people and software alike. However, there are challenges in completing systems in time and fault-
free using the current “rigid” system designs; thus, achieving this for the even more complex
systems of systems in the Industrial Internet will be a challenging task. Benefits such as utilization
rate optimization, improved usability, condition monitoring and support for business decisions
will not be realized in practice if the bases for these functionalities do not exist, since they will
introduce more complexity to be managed in a dynamic computing environment.

From a technological viewpoint, CPSs are closely related to the concepts of the Internet of Things
(IoT) and the Industrial Internet (see Sections 1.3.3 and 3.2). Wireless and Internet communication
mechanisms provide increased connectivity options for distributed systems, making CPSs part of
the IoT trend. The main drivers behind the IoT are the predicted cost-savings achieved through
improved efficiency and decision-making capabilities enabled by advanced analytics, data sharing
for collaboration, the ability of smart machines to provide more sophisticated services for users,
inter-machine co-operation, remote operation capabilities, systems customizable to customer needs
on-the-fly, etc. To achieve these capabilities, a fundamental requirement for automation systems is
the provision of real-time access to information for interested parties. This transformation can be
supported by moving from monolithic designs with proprietary interfaces to more open and
modular architectures. One potential approach to implementing such flexible systems is service-
oriented architecture (SOA)—an architectural style that has emerged as a dominant architectural
paradigm for creating enterprise and consumer systems capable of cost-effectively adapting to
carry out new business tasks by utilizing existing services.

1.2.3 CPSs and Dependability
It is possible to verify or extensively test the code of closed control systems with limited
connectivity. For example, the automotive industry uses an approach in which each function of a
vehicle has its own electronic control unit (ECU), which can be developed and tested separately
(Figure 4 on the following page). This is necessary in order to manage the large amounts of
software coming from multiple vendors that are required in modern cars to control safety,
emissions, communications, convenience and entertainment functions, among others. Retaining
test coverage over growing functionalities of new ECUs leads to longer test periods [21] and the
complexity of integrating tens of ECUs means that the system integration phase becomes the major
source of challenges. The downsides of increasing the number of ECUs include also the increased
component costs, weight, heat and power-consumption. Therefore, it is unclear how well the
historical approach of using separate hardware modules to isolate safety-certified applications
scales to the need for integrating more networked and complex functionalities in CPSs.

To manage software and hardware complexity in vehicles, the automotive industry has developed
the open AUTomotive Open System ARchitecture (AUTOSAR) standard, which can be used to
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integrate a high amount of functionality into a single ECU in a controlled way; however, the
migration process to adopt it is still underway [22]. Other proposed approaches in the industry
include using language-, location- and platform-independent middleware (e.g., Common Object
Request Broker Architecture (CORBA)), to connect and manage tasks [22].

However, the added intelligence and advanced features, such as x-by-wire applications and
machine-to-machine (M2M) communications, mean that CPSs become more vulnerable to software
faults caused by, for example, timing or integration issues that have potential to cause severe
damage or economic losses; in such cases, the smart car in Figure 4 could just as well be a forest
harvester or an ITER RH robot. The networked CPSs require new approaches to real-time fault
tolerance and reasoning about consequences of faults because the fault tolerance of CPSs cannot be
solved solely as a software problem—since, by their nature, these systems function on the tight
coordination among hardware, software and physical elements.

Further challenges faced in the development of CPSs are introduced by their cross-disciplinary
natures, since engineers must define requirements, interfaces and error management for
components that bridge engineering disciplines both horizontally (subsystems and functions) and
vertically (software, computers, physical platform). For a hydraulic divertor cassette mover, these
subsystems would include, at a minimum, electrical, pneumatic, hydraulic, mechanical, power
unit and user interface subsystems. Components and subsystems are likely coming from multiple
vendors from diverse engineering disciplines with specific domain expertise; thus, they must be
somehow integrated to an effective and dependable system.

Figure 4. A smart car as a CPS functioning within a larger ecosystem (system of systems) (adapted from [160]; vehicle
image courtesy of Mobile Devices)
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CPSs are networked computing units that monitor and control physical processes (often in
feedback loops). This is a particularly cogent issue when considering that, compared to classical
control theory, these systems include dynamics introduced by networks and software (e.g., the
timing jitter in communications and computation, packet losses in networks and resource
contention) that may affect the stability and dynamics of the physical subsystems. If timing affects
the system, small changes in environment, software or hardware can cause unexpected changes in
timing for a brittle design. As a consequence, manufacturers of embedded systems with long
lifecycles need to stockpile components. They cannot take advantage of improvements in
computing capabilities because the testing costs for new hardware would be too high. This can
lead to an outdated system architecture, obsolete hardware and unsupported software.

The claim that software does not decay is a fallacy, as pointed out by the 1st law of Lehman [23],
which  states  that,  since  the  environment  of  the  real  world  is  constantly  changing,  in  order  for  a
system that performs real-world activity to continue to be relevant, it must adapt and evolve as the
world as well. The alternative is for the system to become progressively less applicable and useful.
The 2nd law of Lehman states that, as an evolving program is continually changed, its complexity
increases unless work is done to maintain or reduce it. These laws are highly relevant for
automation systems with long expected lifetimes, especially when moving to increasingly
distributed designs. Since the systems will need to be maintained (changed) in order to retain
functionality and security, the system dependability may degrade. Therefore, the evolvability of
the architecture, which can be supported through a high level of decoupling between subsystems
and components, is needed to facilitate the capability to maintain software.

1.2.4 Safety-Critical Software and Related Standards
Software and control systems are usually categorized in the following way, using a vehicle
application as an example [24]:

· Safety-critical software (e.g., brake control).
· Safety-related software, intended to maintain safe conditions or prevent risks (e.g.,

seatbelt pre-tensioning and airbag control).
· Non-safety-related software (e.g., air conditioning control).

As can be seen from the categorization, not all control software is safety-critical. The scope of what
is considered safety-critical depends from the context; for example, it can cover the whole control
system software if a fault can cause economic losses (e.g., losing a satellite) or endanger human
lives (e.g., through haywire mobile machinery). Moreover, a non-critical component that can
influence the safety-critical components becomes safety-critical itself [25]. Mission-critical systems
may have a combination of the abovementioned software modules; therefore, partitioning (i.e., the
separating of different software units) is usually used so that a failure in a multimedia system does
not cause a crash in brake control software [24].

Standards can be used to show compliance with legal requirements, which in the case of the ITER,
may include the European Union machinery directive, French nuclear laws, etc. IEC 61508 is a
standard for developing software-based safety-related systems. It sets out the requirements for
ensuring that these systems are designed, implemented, operated and maintained to provide the
required safety integrity level (SIL), which ranges from 1 to 4 (highest reliability). The standard
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also has domain-specific variants, such as IEC 62061 for machinery. In the United States, the “DO-
178C Software Considerations in Airborne Systems and Equipment Certification” document and
the “MIL-STD-882E Standard Practice for System Safety” military standard are commonly used
references. According to a report completed for U.S. National Academies [26], certification of the
dependability of software-based systems is considered to typically rely more on assessments of the
development processes than on properties of the system itself, due to the difficulty of assessing the
dependability of software.

Restrictions set by the safety standards can conflict with the vision of creating CPSs that can
function in dynamic computing and physical environments, perform autonomously or in co-
operation with humans, etc. It is still unclear how software-based safety functions could be
implemented cost-efficiently; current approaches rely on separating safety and control systems
[27], but this approach prevents the utilization of the increasingly larger amounts data available in
the control systems of the machines to support the safety systems. Currently, such reuse of
information in the safety system is avoided in order to prove that the safety system is independent
from other systems and not affected by fault propagation. However, this kind of information could
provide an improved level of safety as part of a layered safety approach.

1.3 Objectives and Scope

1.3.1 Objectives
The objective of this thesis is to develop a fault-tolerant control system software architecture and to
provide contributions to cost-effective practices for a dependable and resilient design based on the
requirements of CPSs. The architecture should be standards-based and implemented with open
and interoperable platforms. ITER RHCS is used as a target CPS that has requirements for fail-safe
and recoverable design against any SPoF.

SOAs are used to build highly interoperable systems, since services can act as uniform and
ubiquitous information distributors for a wide range of computing devices [28]. Services must be
technology-neutral, loosely coupled and supportive of location transparency [28], making them
ideal building blocks for CPSs. This thesis investigates the use of SOA as a real-time and fault-
tolerant platform, since there is limited research available on the subject of the fault tolerance
capabilities of RTSOAs, despite the fact that loose coupling and modularity are recognized as
integral parts of fault tolerance.

In addition to the fault tolerance capabilities of an RTSOA, a systems engineering methodology is
used and investigated to achieve a dependable design. This approach is used to gain an
understanding of the research problem, develop a concept design and prototypes, and evaluate the
applied solutions.

1.3.2 Research Questions
Based on the research objectives, the following research questions are presented. These are the
refined research questions that this thesis aims to answer within the scope described in the next
section. The questions are numbered and referred to as Q1-Q7.
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· Q1: What methods and practices are used to achieve dependable designs for control system
software?

· Q2: How can CPSs be designed to provide service, regardless of faults—and, especially,
how can fault tolerance be implemented without the extensive use of diverse redundancy
(cf. N-version programming [29])?

· Q3: What requirements for system dependability exist for RH systems? How can
architecture support the implementation and verification of these requirements?

· Q4: Can a modular and loosely coupled (service-based) architecture support the
dependability of distributed and heterogeneous real-time systems?

· Q5: What mechanisms can be applied to detect and recover faults in such loosely coupled
systems?

· Q6: How can fault propagation between services be stopped?
· Q7: What is the overhead of using fault tolerance based on loose coupling?

1.3.3 Scope
The  main  challenges  of  CPSs  are  defined  by  Kim  and  Kumar  [30],  as  follows:  1)  modelling  and
analysis of dynamics, 2) real-time computing and networking, 3) wireless sensor networks, 4)
security and 5) design and development. Contributions of this thesis relate mainly to the topic of
design and development, as well as, to some extent, real-time computing and networking. Since
the performance, reliability, and production costs of control systems are becoming more
dependent on those of software systems, managing complexity to make it easy to design and
implement software systems for CPSs is becoming an important software technology research
issue [30].

Figure 5 illustrates the relationships among CPSs, consumer-oriented IoT devices and fail-operate
safety-critical systems. The Industrial Internet emphasizes top-down development, where
enterprise business processes drive connectivity to subsystem and equipment levels. The
Industrial Internet, therefore, incorporates, not only industrial automation, distributed robotics
and “things that spin”, but also the systems that interact with them, such as resource management
and planning systems, into systems of systems.

Figure 5. CPSs compared to consumer IoT devices and fail-operate safety-critical systems

The applicability of the results in this thesis is aimed at the middle layers, since these represent
systems that have high dependability requirements but typically include separate interlock and
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safety systems providing fail-safe functionality or can be reconfigured to have simpler
functionality. IoT devices, on the other hand, represent a bottom-up approach to using
connectivity, sensors and data analysis to provide new product features and services for
consumers. However, mass-marketing-oriented consumer devices tend to be low-margin and low-
cost, with limited viability to use high-performing CPUs, operating systems and middleware
solutions. More powerful and expensive consumer IoT devices have limited value for customers,
especially if the connectivity does not provide sufficient meaningful value to offset the increased
price.

Many cyber-physical and information systems can be considered safety-critical because significant
financial  losses  or  even  the  loss  of  lives  could  result  from their  failures  and downtime.  Since  the
difference between safety-critical and mission-critical systems is a fine line, for the research
purposes of this thesis, the exact type of the control system (i.e. high availability, safety-related,
embedded, etc.) is not considered. Instead, the focus is on finding methods and technologies that
have potential to improve trade-off between system-level dependability and costs, while
acknowledging the need to support the verification of the safety and timeliness aspects of control
systems. The test case for the research is an RH system for a scientific facility with some safety
related aspects; however, the primary object of the research is to study distributed and open real-
time systems (i.e. CPSs) in general. The applicability of the results is analysed in Section 6.

Cost efficiency is used to narrow the scope of the research by leaving, for example, formal methods
and the so-called roll-forward fault tolerance techniques outside.  The use of formal methods can
be cost-efficient for systems with high dependability demands [31]; however, their use would limit
the potential to use commercial off-the-shelf (COTS) solutions, 3rd party libraries, etc., that are
almost impossible to formally verify. A key problem for CPSs is that traditional real-time
programming models specify timing properties indirectly, by associating priorities with tasks. The
development of programming models for timed systems is an essential research topic, but it is also
outside the scope of this research.

From the means to attain dependability, fault prevention and fault removal are considered to be
part of the systems engineering approach, although the study’s main contributions are to the
topics of architecture and fault tolerance. Fault forecasting is covered, since an understanding of
failure modes (fault taxonomies, Section 5.1.2) is essential to focus dependability efforts on the
most serious and probable failures. Fault forecasting is also related to the estimation of the present
number of faults.

System lifecycle scope is limited to the concept and development stages in the application of the
systems engineering approach—that is, the operations period, including maintenance and disposal
activities, is not evaluated in this thesis. However, system evolvability and the reusability of
services affect requirements and system design, and are, therefore, considered in this thesis.
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1.4 Methodology
The research methodology of this thesis is based on design science and systems development,
including prototype implementations. Moreover, the research is carried out using a systems
engineering process (shown in Figure 6), derived from the ITER quality assurance processes to
develop and research new approaches to the research questions. The figure also shows how the
publications [P1] through [P6] are related to the systems engineering process.

The process consists of following steps:

· Pre-project analysis of the research problem and domain.
· System requirements—research of the subject matter.
· Concept study—initial system architecture, prototyping and verification of the prototype

vs. requirements.
· Final design—refining and extending the architecture and the prototype, evaluation of the

system.

Figure 6. Major phases in the applied systems engineering process and the publications included in this thesis

Software engineering research, including the study of software architectures, is affected by factors
that complicate the scientific evaluation of experimental results of software systems [32]. The skill
factor means that the result of an experiment is vulnerable to subject and experimenter bias. The
lifecycle factor means that the behaviour of the system may change once the system is deployed.
Similar problems are encountered with systems engineering research, in which the application of
systems engineering methods and expertise typically happens out in the field [33]. This makes
objective evaluation of the specific methods difficult, since every situation is different. Due to these
challenges, the research in this thesis uses a constructive research methodology of systems
development, instead of the empirical research methods (e.g., case study, action research,
controlled experiment, survey [34]) usually applied in software engineering research.

The idea of constructive research involves the construction of artifacts based on existing
knowledge used in novel ways [35]. Construction proceeds through design thinking into the
envisioned solution, and it fills conceptual and other knowledge gaps by purposefully tailoring
building blocks to support the whole construction [35]. The artifacts—constructs, models, methods
or instantiations—are then tested in laboratory and experimental situations to evaluate the utility,
quality and efcacy of the design artifact [36].
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The systems development research methodology used in this thesis is similar to the research
process for constructing artifacts proposed by Nunamaker et al. [37]. The process, shown in Figure
7, is similar to conventional systems and software engineering development models. The key
differences between design science and the practice of building IT systems would, thus, be the
scientific evaluation of the artifacts and the rigorous constructive design method [36].

Figure 7. Process for systems development research [37]

To use the constructive research method, it is necessary to first gain an understanding of the
domain and the problem. Therefore, the initial phases of the systems engineering process and the
papers [P1] and [P2] focus on understanding the problem and the requirements, as well as on
setting the research questions. Then, the system architecture is developed and analysed ([P3] and
[P4]). [P3] evaluates capability (feasibility) of real-time services as building blocks for the
architecture and includes an implicit hypothesis that the platform can be used to implement an
RTSOA. [P4] has a working hypothesis that mission-critical real-time systems can use service
management to recover from transient faults. After building and evaluating the initial prototypes
in papers [P3] and [P4], the final prototype system is built and empirically evaluated in [P6], based
on the requirements and research goals, stating explicit null hypothesis that let-it-crash approach
cannot support real-time fault detection and recovery, which is disproved. The patterns presented
in [P5] can be seen as additional artifacts, which document the insights gained from the system
development research process.

1.5 Contributions
The research contributions of this thesis focus on presenting an architectural approach for building
resilient CPSs using fault tolerance, evolvability and diversity. The architecture has been designed
to meet the needs for interoperability and the timely dissemination of data in open environments.
Furthermore, this thesis shows how the fault-tolerant architecture can be incorporated into a
holistic systems engineering approach for the building of dependable systems.

System resilience is improved by utilizing loosely coupled architecture, dynamic reconfiguration
and recovery based on the fine-grained restarting of processes (i.e., services), rather than focusing
on  robustness  and  the  mean  time  to  failure  (MTTF).  Loose  coupling  is  achieved  by  relying  on  a
service-oriented architectural style and dedicated communication buses. Based on the results
presented, SOA can support the fault tolerance of real-time distributed systems through the use of
services as units of fault isolation and recovery without significant overhead, diversity (i.e.,
utilizing existing diverse operating modes and backup services) and the straightforward
application of fault tolerance patterns.

The proposed systems engineering approach is based on combining evidence from qualitative and
quantitative evaluations, VR model-based dynamic testing, and the use of proven-in-use
components and domain-specific fault taxonomies to build and maintain a dependability case for
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system under development. Cost-effectiveness is supported through the use of COTS components,
reuse of services and subsystems, and the ability to flexibly incorporate appropriate fault tolerance
techniques and patterns into the architecture. In detail, the claimed contributions are the following.

Service-oriented architectural style (Q4, Q5, and Q6):

· Architectural specification of RTSOA based on the use of middleware and real-time
operating system (RTOS), including more detailed specifications of services, fault tolerance
and service management when compared to the reference RTSOA (Sulava architecture
publications [38] [39]).

· RTSOA implementation for a CPS application to evaluate its fault tolerance capabilities by
allowing partial failures.

· Application of distributed microservice design principles in a demanding mission/safety-
critical real-time application, which is verified empirically through the implementation of a
distributed closed-loop control system.

Fault tolerance of CPSs (Q5, Q6, and Q7):

· Documentation of the patterns DATA-CENTRIC ARCHITECTURE, SERVICE MANAGER and LET IT

CRASH and the pattern language for CPS fault tolerance.
· Evaluation of fault tolerance (i.e., detection and recovery) based on loose coupling and

services as units of fault isolation and recovery for CPSs, including evaluation of overhead
for the approach.

· Evaluation of fault tolerance based on applying the “let it crash” and supervision approach
to real-time fault detection and recovery for CPSs.

· Implementation of resilience based on diversity (i.e., diverse operation modes and backup
services) and services as fine-grained units of fault tolerance for CPSs.

Systems engineering of CPSs (Q1, and Q2):

· Evaluation of cost-efficient methods and practices for developing dependable CPSs.
· Proposed systems engineering approach for developing CPSs by combining different

dependability methods into a dependability case.
· Support for verification of the system, based on loosely coupled and autonomous services

that can be used as units for dependability methods and techniques, including
dependability case, and can be tested with VR models.

Systems engineering of RH systems (Q3):

· Analysis of the role of software requirements for RH system reliability, including a
comparison of ITER’s RAMI process and general software dependability requirements.
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· Categorization of RH faults using fault and failure taxonomies for RH systems, developed
by analysing control system architectures and real operational data (i.e., bottom-up
approach) from Joint European Torus2 (JET) RH systems.

2 Fusion research facility located in Culham in the United Kingdom.
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2 Dependability and Systems Engineering

This state of the art review aims to answer the research question Q1, how to achieve dependability
for control systems. The approach is to analyse how the dependability and resilience of CPSs can
be improved from the systems engineering perspective, with focus on ability to build systems that
can dependably function in open and networked environments. Fault tolerance and architectural
solutions are emphasized, which reflects the results and the contents of the publications. However,
since the approach of this thesis is based on achieving dependability, which relies on having an
overall solid development process, fault prevention, fault removal and fault forecasting are also
evaluated from the systems engineering perspective.

Dependability and especially fault prevention methodologies (categorized as “part of general
engineering” in [2]) have much in common with systems engineering approach (Section 2.1), while
fault forecasting has strong ties to safety analysis (Section 2.4). Fault tolerance is used to avoid
service failures when some part of the system fails (Section 2.2), which is essential for guaranteeing
the reliability of safety-related subsystems and limiting fault propagation. Fault removal (Section
2.3) is tightly coupled with the development process, and thus also with fault prevention.
Dependability case and safety case are systematic approaches that can be used to collect evidence
for proving the dependability or safety of the system; they are studied in Section 2.5.

2.1 Systems Engineering
Systems engineering is defined by the International Council on Systems Engineering to be an
interdisciplinary approach and means to enable the realization of successful systems [40]. This is
achieved through processes on enterprise, technical and system life cycle levels. In this thesis the
focus is on the technical processes and especially development-related activities, that is,
requirements definition and analysis, architectural design, V&V and integration (e.g., interface
design) [40]. These phases are captured in the V-model, which is an idealized model of the
development process.

An example is  shown in Figure 8 on the following page of  how the different methods to achieve
dependability could be applied in the different development phases in the V-model. The
qualitative fault forecasting methods are typically used for hazard and risk analyses before the
realization of the system [41], whereas other fault forecasting methods, such as fault injection, can
be used to support testing efforts and collecting data from the actual system. Results of the fault
forecasting evaluations affect system requirements and needed level of fault tolerance. Adoption of
fault tolerance methods is a design issue to be solved in the design phases [25, p. 114]. Fault
prevention and fault removal methods can have potential uses during all phases (e.g. validation of
requirements), but are also associated strongly with implementation and testing phases,
correspondingly. Finally, data collected from testing and field experience can be used to
quantitatively estimate reliability of the system (e.g., number of found and fixed faults).
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Figure 8. V-model compared with methods for achieving dependability

The objective that was set in the beginning of the research was how to improve system fault
tolerance cost-efficiently. The objective of systems engineering is to see that the system
accomplishes its purpose safely in a cost-effective manner, taking into account factors such as
performance, cost, schedule and risks [42]. Figure 9 shows the trade-off space for costs and
effectiveness. The graph illustrates the maximum achievable effectiveness of designs with current
technologies [42].

Figure 9. Enveloping surface of non-dominating designs [42]

Exact positioning of designs would be arbitrary and application-specific, but the graph is useful as
a conceptual tool for comparisons. For example, a fault-tolerant design based on N-version
programming (NVP) would be further right on the costs axis of the graph, compared to a simpler
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monitor-actuator-based fail-safe design. Goal of this research is to find solutions that exist on the
low-cost part of the effectiveness axis and push the envelope, if possible. Alternatively, cost
efficiency could also be improved by reducing costs of the existing solutions, but applicability of
such results would likely be limited, even if verifiable cost reductions for a design were achieved.

2.2 Fault Tolerance
Fault tolerance is used to make systems more resilient to unanticipated faults, such as residual
software faults (i.e., bugs). A fault tolerance solution consists of error detection and recovery [2],
although some techniques address only one of these phases. According to Somani and Vaidya the
hardware is getting more reliable and fault-tolerant but there is an increasing demand for tolerance
of design, operator, environmental and reconfiguration faults [43]. This development is hardly
surprising, since hardware faults are mostly physical faults whereas software faults are typically
design faults, which are harder to visualize, classify, detect, and correct [44].

2.2.1 Fault-tolerant Architectures
Architecture and system structure have key roles in how the final system fulfils the quality
attribute requirements, such as dependability and its sub-attributes. Examples of architectural
design approaches that can be used to improve dependability include redundancy and modularity
(see [41, pp. 91, 93, 107] or [3]). Modular approach entails design principles to implement
information hiding, well-defined interfaces, loose coupling and strong cohesion, and to limit
module size and structural complexity. Highly decoupled architectural styles and patterns (e.g.,
SOA and publish-subscribe) could improve dependability in control systems, since the designers
of the consumer services cannot make the assumption that a service provider is available all the
time, thus forcing them to take this situation into account in the design and implementation [45].
Decoupling limits fault propagation and also increases simplicity of the system, thus improving
dependability [31]. These aspects are looked into more closely in Section 3.

Fault tolerance techniques applied in the architectural level make use of redundancy in one form
or another, to the extent that redundancy is almost synonymous to fault tolerance. In order to
make the system able to tolerate faults, it needs to be able to detect and react to errors and
implementing these features adds redundancy to the system (e.g., code to detect faults). However,
this thesis also uses redundancy as a shorthand for forward recovery techniques based on multiple
versions (e.g., NVP [29]) or active/passive node redundancy [3].

Effectiveness of software redundancy techniques requires that redundant modules must be
diverse—otherwise the software faults are replicated in all of the modules. This is typically
avoided by using design diversity. NVP is an example of a well-known fault tolerance approach
based on design diversity, in which two or more functionally equivalent programs are
independently created from the same initial specifications and run on separate hardware channels
[46]. This form of redundancy can be especially effective at tolerating intermittent faults. However,
most of the software faults are design faults [47] and NVP does not solve the problems related to
incorrect specifications. NVP has been criticized, for example, in [48] because programmers tend to
make same kinds of mistakes. This may result in the different versions having the same types of
faults, regardless of independent development. Faults do not need to be identical, it is sufficient
that they are coexistent to cause a failure. Diverse software redundancy can create further
problems due to slightly different behaviours between versions, especially when an abnormal
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input occurs into the system. Although Laprie et al. [49] show that an N-variant software module
is less costly than N times a non-fault-tolerant software module, the costs of using design diversity
are often hard to justify, unless necessitated by a fail-operate application (e.g., flight controller) or
required by the functional safety standards. For example, in the IEC 61508 standard, diverse
redundancy is “recommended” on SIL 3 and “highly recommended” on SIL 4.

Recovery blocks scheme, another commonly used form of design diversity, is based on backward
recovery instead of forward recovery. Recovery blocks have better overall performance than NVP
[50]. This is because NVP has to always wait for the slowest variant, whereas recovery block-based
solution causes execution time overhead only when the system is recovering from an error. In hard
real-time systems it should be noted that this overhead can cause the system to miss execution
deadlines, whereas NVP has more consistent performance. Another similar solution to recovery
blocks is retry blocks in which the fault tolerance is based on re-expressing input data on error
detection. Unlike NVP, recovery blocks and retry blocks do not use multiple hardware channels
for redundancy and they are recommended as cost efficient fault tolerance schemes in [51].

Triple modular redundancy (used as a hardware fault tolerance solution), NVP and other
redundant systems also need a voting algorithm (e.g., 2 out of 3). The voter acts as an adjudicator
that determines the correct output. This part of the system, implemented either in software or
hardware, needs to be as simple as possible in order to avoid the need for introducing fault
detection for the voter (“Who watches the watchmen?”).

Dunn [52] presents a practical approach to implementing fail-safe systems without extensive
redundancy. If a fault is detected, system can be guided to a known non-operating safe state. The
fail-safe system can be implemented, for example, with the monitor-actuator pattern, in which a
separate sensor channel watches over the actuator channel, looking for an indication that the
system should be commanded into its fail-safe state [53, pp. 432-438]. NASA calls this type of
systems failure-tolerant [25, pp. 114-115]. Even though the fail-safe approach can improve safety,
the system reliability may decrease compared to fault masking techniques. Another threat for
reliability with the fail-safe approach is false positive errors.

Erlang [5] programming language/runtime system uses a low-cost process based model to
implement loosely coupled communication for processes, supporting a large number of small
processes to carry out tasks. Initially developed for telecommunication systems, it has been used to
achieve high system-level availability. Even if a single process terminates, it does not affect
availability of the whole system. For example, Erlang-based implementation in web server has
been shown to be more resilient and to have better availability than a similar C++ implementation.
Erlang has been used for mobile robot control [54], to provide separation of processes and ability
to recover crashed drivers. However, this research does not give information about system real-
time or dependability performance.

Sotirovksi [55] uses object-oriented design approach based on encapsulation and exception
mechanism for developing a fault-tolerant software architecture. The downside of using objects as
units for fault containment is that a failure affects the execution of the whole application, including
other objects.
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Fault tolerance solutions have been documented also in the pattern format. Hanmer [4] covers
patterns for fault-tolerant software in general, whereas Eloranta at al. [19] focus on distributed
control systems and have documented fault tolerance patterns applicable for this domain. Nygard
[56] documents patterns targeted for design and deployment of enterprise applications and
includes patterns that can be used to improve system stability.

2.2.2 Approaches to Achieving Fault Tolerance Cost-efficiently
Single version fault tolerance techniques offer cost-efficient ways for error detection, confinement
and handling without extensive replication of system functionality. Single-version fault tolerance
can be efficient at detecting faults and subsequently moving the system to a fail-safe state (i.e.,
maintaining safety at the cost of system availability). Examples of single version fault tolerance
include system structuring, checkpoint & restart, atomic actions, error detection codes and
exception handling [57]. The downside of implementing fault tolerance without multi-version
redundancy is naturally that the system is likely to be less capable at tolerating faults while
meeting real-time requirements. Reliability requirements can thus be in conflict with real-time
constraints in control systems [58] and more research is needed on how real-time systems can
handle transient service failures in software components and subsequently restore the full level of
service in a safe manner.

In [59], Kreutzfeld & Neese present a methodology called Data Fusion Integrity Process (DFIP)
which aims to be a simple but effective technique by being designed to tolerate inconsistent errors
with simplified recovery mechanisms. However, another paper did not manage to show any
meaningful results achieved with DFIP [60]. This shows that it can be hard to verify the
effectiveness of fault tolerance solutions in actual use and also that a system with ineffective fault
tolerance is probably better without that solution because of the increased complexity and costs.

Hayama et al. [20] present a solution to implement fault-tolerant automobile steering using a
diversified design. Cost and volume increases that are usually associated with diverse redundancy
are avoided by using an existing subsystem (breaking) to perform functionality of another
subsystem (steering). Their paper considers only a very specific case, but the diversified design
principle could be generalized by considering how to reproduce the service provided by a system.
In SOAs, diverse design can be achieved with alternative service compositions, especially if the
services are deployed on different nodes.

Tai et al. [61] propose message and confidence-driven error containment and recovery to
mitigating the effect of software design faults in distributed embedded systems. Basically, the
approach uses checkpointing and rollback as a low-cost solution for error recovery. Confidence
refers to the long onboard execution times for backups that are used for recovery. The approach
enables implementation with generic middleware and application of the fault tolerance only to
critical software components, allowing different integrity levels coexist in a system. Although the
performance overhead of the algorithm is relatively low (roughly 5-35% depending on algorithm
variant and message sending rate), potential challenges are related to using dynamically changing
applications and reliable implementation of confidence tracking for complex systems.
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2.2.3 Use of COTS Solutions
COTS solutions are non-developmental hardware or software items that are sold commercially
and have a substantial user base, as defined by the U.S. Federal Acquisition Regulation. This
definition covers also free software if it has commercial support. Free and open source software
(FOSS) are commonly available for use as off-the-shelf solutions, typical use cases including
software development tools, server software, operating systems and libraries. In the last 15 years,
FOSS RTOS solutions based on general purpose operating systems such as RT_PREEMPT Linux
and Xenomai-Linux have become viable alternatives for commercial RTOSs [62]. Use of general
purpose operating systems has benefits that can potentially bring cost-savings: lower acquisition
costs, large user base (increased likelihood of continued support), number of available tools and
libraries.

Quality-wise open source software are on similar level with commercial software—many open
source applications have been developed and maintained by expert-level developers for a long
time, meaning that most of serious flaws and bugs have been fixed. The 2012 Coverity Scan report
shows  a  defect  density  of  0.69  per  thousand  lines  of  code  (kloc)  for  118  open  source  software
projects, which is same level as proprietary code used for comparison (only counting confirmed
and potential defects identified by the Coverity software) [63]. In the 2013 report, open source code
quality (0.59 per kloc) surpassed proprietary code quality (0.72 per kloc) in C/C++ projects [64].

New embedded multicore processors can also support use of different operating systems on
separate processor cores, enabling configurations in which, for example, the RTOS executes timing
critical code and Linux runs web server and other non-critical applications (Figure 10). This
execution model could be used to provide separation of safety/mission-critical software from non-
critical software, especially when combined with a hypervisor or other trusted execution
environment technologies, enabling combination of connectivity requirements for the Industrial
Internet with the mission and safety-critical nature of CPS on a single physical node.

Use of COTS-based software solutions is usually associated with improvements in responsiveness,
reduced time-to-market and affordability with respect to custom-made software [65]. However, in
the domain of certifiable safety-critical applications the benefits are not clear since extra efforts and

Figure 10. Supervised asymmetric multicore processing (adapted from [159])
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costs should be factored for certification of the COTS components. In a case study about civil air
transport systems done in 2007, it was found out that development and certification of COTS-
based software is possible in a safety-critical domain, but the previously mentioned benefits were
not observed for this particular case [65]. Another possible drawback of using common,
inexpensive or free off-the-shelf software packages is increased security threats, since they can
make the control system an easy target for cyber threats. According to Leveson [66], COTS
software components are not suitable for safety-critical systems because using custom-built
software, developed to fulfil the specific system safety properties from the beginning, would be
cheaper and safer. However, there are safety-certified operating systems, middleware, etc.
available, enabling developers to focus on core functionality and providing a potentially cost-
efficient solution even for software that aims to fulfil safety certification requirements.

A research study completed for the UK Health and Safety Executive focused in the use of software
of uncertain pedigree (SOUP), i.e. off-the-shelf software components, in safety-related applications
[67]. The authors saw SOUP as an effective way to reduce development costs and also showed that
extensive use will result in increased reliability (see Figure 11) with long term use strongly
correlating with improved MTTF, even reaching a level that corresponds to IEC 61508 SIL 1. The
challenge comes from identifying the proven components and demonstrating the reliability in new
systems. To accomplish this they propose an approach based on evidence-based safety case (see
Section 2.5).

Figure 11. Software failure data from nuclear, chemical and aerospace (control and protection) industries [67]

Other notable publications and uses of COTS components include:

· For use in mission-critical systems, COTS software components can be seen as black boxes
that usually do not have any guarantees for their behaviour and may have serious faults,
etc. Integration of such components in the architecture would, therefore, benefit from
additional fault tolerance mechanisms. In [68] Guerra et al. present an architectural solution
of turning COTS components into “idealised COTS components” by adding a protective
abstraction layer to them. They have developed and tested this approach with a self-
developed layer-based architectural style.
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· The JET facility uses COTS products designed for industrial applications to implement the
unique remote handling control systems. This has the benefits of using commercially
proven motion control software, easily upgradable hardware and ability to develop new
features more quickly and confidently [69].

· Generic fault-tolerant computer architecture GUARDS was developed to tackle the cost
and rapid obsolescence issues in real-time systems [70]. This architecture model, which
uses  fault  containment  to  deal  with  faults,  is  based  on  the  use  of  COTS  components  and
allows the designer to choose redundancy dimensions for the system and determine
differing fault tolerance mechanisms for components of different criticality level.

2.3 Fault Prevention and Removal
Fault prevention is a combination of general engineering expertise and use of specific development
methodologies, that is, it resembles the systems engineering approach. The use of fault prevention
to achieve dependability relies on rigour in the design and implementation to prevent introduction
and occurrence of faults [2]. Fault prevention approaches include good programming practices
and principles, such as information hiding and modularization, as well as development
methodologies, such as use of modelling or formal methods. Building of the dependability case for
a system—supported in [26]—is also a fault prevention approach.

Another way to affect cost efficiency of control system development would be to adopt modern
and efficient platforms (including operating systems and programming languages), development
infrastructure, better processes and tools to the development process, all of which can dramatically
improve quality of software [31]. Agile development methods can also be applied to the
implementation of safety-critical systems [71] [72], supporting cost efficiency indirectly with
iterative and incremental methodology.

Formal methods (e.g., Z notation) are mathematically based techniques that can be used to
describe system properties unambiguously. The use of formal methods might not be cost efficient
if lower levels of confidence suffice, but with higher dependability demands, formal methods
could be a better alternative than traditional software development [31]. Regardless of promised
increases of dependability and possible cost savings, formal methods have yet to make a
breakthrough. Some researchers, such as Sotirovski [55], suggest that the trend of increasing
complexity will beat the advances in development of formal methods. Especially the use of a large
number of COTS software or 3rd party libraries can potentially hinder formal verification.
Nevertheless, use of formal methods is recommended for safety-critical systems in many
standards, including IEC 61508 (recommended for SIL 2-3 and highly recommended for SIL 4).

Fault removal can be carried out during the development or use phases of a system. Former is
verification and validation, latter maintenance. Software maintenance has an important role in
improving performance and reliability, but by fixing faults this late in the development process is
expensive. Nevertheless, components and software that has seen extensive use, in the form of long
period of use and/or large amount of users, can be said to be proven in use [67]. Verification
includes comparing the system to specifications to find out the quality of the system. Static
verification (e.g., model checking) does not include execution of code whereas dynamic
verification (i.e., traditional software “testing”) does [2].
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Verification can also be performed on specifications to ensure that requirements are correct,
concise, traceable etc. Validation tries to find out if the system—or its specifications—matches the
actual needs and constraints of the customer. Requirements validation can uncover faults in
requirements, and is thus extremely useful since the cost of finding and removing faults is more
expensive the later it is done. According to Boehm and Basili, fixing a fault after delivery is often
100 times more expensive than finding and fixing the same fault during the requirements and
design phase [73]. After the requirements have been validated, the software can be verified against
them.

For systems operating in dynamic environments, pre-deployment V&V may not provide sufficient
trust for the dependability of the system in the live environment. Therefore, run-time assessability
becomes an important feature for both fault forecasting and fault removal [13]. Simulators can
support testing of service compositions and system configurations with full scale service
deployments prior to moving to a live environment testing. For example, Devices Profile for Web
Services, a specification for implementing Web services with minimal set of implementation
constraints, has been used for simulated testing of an intelligent conveyor system in [74].
Vepsäläinen and Kuikka have used model-in-the-loop simulations to support model-driven
development of industrial control systems, demonstrating the technique with a simulated crane
system [75]. In enterprise systems, service virtualization can help companies to develop testing
environments, based on using virtual services to emulate production services. Testing
environments can be used to increase the frequency of integration testing and decrease testing
costs [76].

2.4 Fault Forecasting and Fault Taxonomies
Fault forecasting is conducted by evaluating dependability of the system, which includes
estimating the present number, the future occurrence, and likely consequences of the faults. Fault
forecasting methods can be used for requirements specification, design analysis and V&V
activities, with different types of methods suitable for each purpose. The methods for forecasting
faults can be divided into two approaches: qualitative evaluation that aims to identify failure
modes (e.g., failure mode and effects analysis FMEA) and quantitative evaluation that aims to
evaluate probabilities (e.g., Markov chains), with some methods like fault-trees combining both
aspects. [2]. Especially the qualitative methods are commonly used as part of safety analysis
processes, but the probabilistic risk assessments are also used, for example, in the nuclear and
aviation industries, to evaluate how likely some undesirable consequences are. Research of
quantitative software reliability methods is related to the topic of this thesis in the sense that they
could, at least theoretically, be used to evaluate reliability of services. If the architecture could
guarantee fault isolation, it would directly benefit software reliability estimation in probabilistic
risk assessments.

Risk assessment (sometimes called hazard assessment and/or analysis) is used in the design
process of safety-critical and safety-related systems to produce safety requirements and proposals
for design changes based on the analysed risks. The methods for risk assessment (e.g., failure
mode, effects and criticality analysis (FMECA), hazard and operability study, etc.) can be
quantitative or qualitative or these can be used in combination. The use of risk assessment
techniques is not common outside of safety or mission-critical systems, but the application of the



28

FMEA process has been suggested for business critical services in SOAs [77]. Challenges of
applying  FMEA to  such  systems  include  dynamic  service  compositions,  analysis  of  the  effects  of
the failure modes, lack of knowledge on services and environment prior to implementation, SOA
complexity, analysis results becoming quickly outdated and ability to agree to common scales for
occurrence, severity and detectability of failures between teams developing different services.

Fault and failure taxonomies can be used to document domain-specific failure mechanisms and
support fault-based analysis methods to prevent and identify faults prior to implementation.
Domain-specific fault taxonomies are necessary because the failure modes of a system can be
complicated to analyse. For example, feedback from the plant needs to be considered when
developing control system failure modes [78]. Fault taxonomies can also support test planning of
the system, especially for fault injection [79]. Taxonomies have been developed, for example, for
SOAs [77] [80], NASA [81] and digital instrumentation and control systems of nuclear power
plants [78], but not for RH systems according to the author’s knowledge. In robotics, a systematic
approach to choosing fault tolerance methods based on fault types expected in a given context and
situation has been suggested [82].

According to Melchers [83], the problem with qualitative risk assessments, such as As Low As
Reasonably Practicable (ALARP), is that the applied expressions are very subjective (low,
reasonably, etc.) and they are best suited to dealing with established technologies in which
potential problems have been already identified. Modelling and quantifying software failures and
quantitative methods can be used to quantify software failure rate and probabilities for use in
probabilistic risk assessments [84], but there is no consensus for modelling of digital systems in
probabilistic risk assessments. Current software reliability estimates in the probabilistic
assessments for nuclear power plants are often engineering judgments without proper justification
[85]. Similarly, there is a lack of systematic reporting of software-related system failures in general
which makes it more difficult to evaluate the risks and costs of software failures [26].

Reliability requirements presented for software in the format of probabilistic measurements can be
a challenge to verify, if applied to software at all. Current approaches for quantifying software
reliability rely on a combination of expert judgment, experience of similar systems and real-world
data, if available. Requirements concerning the design procedure, coding practices and other
qualitative requirements can be found from related standards, but addressing reliability
requirements in a numerical format is an open challenge. Although SIL type requirements have
been presented for systems that include software, those are always more or less accurate estimates.
These estimates, however, are usually the best quantitative reliability requirement that can be
given for software and, since they are presented as a number of allowed failures in a unit of time,
they can be considered a probabilistic measure.

Software reliability prediction is usually based on stochastic methods, assuming that a population
of supposedly identical systems, operating under similar conditions, fail at different points in time,
thus necessitating use of probability theory. Probabilistic approaches to evaluating software
reliability include:
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· Bayesian networks, i.e. directed acyclic graphical models [86].
· Execution time based models, such as Musa’s basic execution time model [87] and

logarithmic Poisson model developed with Okumoto [88].
· Markov models—a type of stochastic model—including Markov Chains [89].
· Weibull or exponential distribution based estimation models.

Whether analysing software with stochastic methods (e.g., with Poisson process) is a reasonable
approach is a valid question since software failures are often deterministic and faults are dormant
until a specific functionality or sequence of events is executed, in the case of an internal fault. Dick
et al. [90] analysed this question and found supporting evidence to their claim that software
failures are a deterministic, chaotic process instead of a stochastic one. They analysed datasets
from different software testing processes, and concluded that no standard distribution describes
them well, thus assuming that the data sets had emerged from a deterministic process. The results
showed improvements of 25% over the best stochastic models for two datasets.

Unfortunately, the models resulting from probabilistic analysis are complex to analyse accurately,
so reliability modelling is not always a viable option [43]. Research on reliability models has been
conducted over three decades and numerous models have been proposed, but not many software
developers actually utilize them. In a survey conducted in the late 90s, the number of positive
answers was around 4% when asking participants if they could use a software reliability model
[91, p. 5]. According to Immonen and Niemelä [92], the biggest shortcomings for reliability and
availability prediction methods are lack of support for tools, weak reliability analysis of software
components and weak validation of the methods. Similar problems exist for component reliability
prediction and certification in component-based software engineering, with a need for a way to
predict component properties and a component quality model, to establish what kind of
component properties can be certified [93].

2.5 Dependability and Safety Cases
The difficulty of predicting software failure rates has led to many certification standards adopting
the approach of emphasizing the use of specific development methods and practices to achieve
sufficient level of dependability. Jackson [31] considers this approach to be inefficient, since
following the specified techniques imposes burdensome demands that produce large amounts of
documentation and may prevent the choice of optimal development methods. The journal article is
based on a larger report by a committee of dependability experts from academia and industry [26].
As a solution to more cost-efficient dependability, the committee proposes three things. First, a
change of approach to “goal-based”, in which developer must provide direct evidence (e.g., by
testing, analyses, inspections and formal methods) that the system satisfies its dependability goals
by building a dependability (assurance) case for the system. Second, making dependability claims
explicit, since no system can be dependable under all conditions, and third, use of expertise to
increase flexibility in development process by allowing experts the freedom to employ new
techniques or deviate from best practices if necessary. Jackson argues that since the approach
based on building the dependability case gives developers the incentive to use whatever tools are
most economic and effective, it rewards innovation, especially when compared to conservative
certification schemes and standards.
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Dependability case is defined as “a structured argument providing evidence that a system meets
its specified dependability requirements” that can be used to communicate information inside the
organization or to a third party (e.g., certification authority) [94]. The concept is a generalisation of
safety case, addressing attributes related to the dependability of the system, such as reliability,
safety, security, real-time performance, interoperability, etc. A key difference is that the safety case
is required for the certification of safety-critical systems, for example, in automotive, railway and
defence sectors [95], whereas dependability cases have not yet seen widespread use.

To communicate a comprehensive and defensible argument that the system is acceptably
dependable for a specific context, a structured argument notation can be used. The assurance case
consists of three principal elements: requirements (claims about the system), arguments and
evidence—arguments are used to link the evidence to the dependability requirements and
objectives [96]. The goal of the notation is to show how objectives are successively broken down
into sub-goals until claims can be supported by direct reference to available evidence [96]. Two
major graphical notations for assurance cases are Goal Structuring Notation (GSN) [97] and
Claims, Arguments and Evidence notation [98]. Object Management Group (OMG) has developed
a standardized meta-model for assurance cases called Structured Assurance Case Metamodel,
making both notations interchangeable [99].

A simple example of using GSN notation to develop a goal structure is shown in Figure 12 on the
following page, including most of the principal symbols of the notation. G1 is the top level goal, C1
and C2 are contexts, S1 and S2 strategies, G_1, G1_2 and G_1_1_2 goals and S1_1_2 a solution.
Furthermore, S2 and G1_2 are marked as “undeveloped”. Additional notation includes
justifications and assumptions, marked with ellipses accompanied with a letter J or A,
correspondingly.

Arguments are necessary to link the evidence to the requirements; they provide the rationale how
the evidence supports fulfilling of requirements. Arguments can be related to, for example, fault
elimination and quantification, error activation, failure containment or failure effects estimation
[97]. Evidence to support arguments could be based on the development process (documentation,
testing, formal methods, etc.), system design or field experience [97].
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Figure 12. An example of using GSN to assure the quality of a critical software module (adapted from [96])

Weaver argues that GSN provides a lightweight approach to determining what evidence is
required to satisfy the requirements [96]. Claimed benefits of using GSN originate from identifying
specific low-level requirements for evidence and combining different types of evidence to meet the
requirements. The notation is used to develop the assurance case throughout the system
development, allowing the low-level requirements for evidence to be identified and the need for
testing and analysis determined during system design phases [96].
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3 Architecture for CPSs: Towards Resilient and Dependable Software

Enterprise systems have already moved from siloed applications to open architecture [100] and
this change is likely to affect embedded real-time systems as the prices for devices and
communication costs are diminishing [101] and customers come to expect features enabled by
collection and processing of data. The move to open architectures for devices is generally seen as
part of the evolution of machine to machine (M2M) communications to IoT [102]. M2M refers to
both wireless and wired technologies, but typically M2M communication standards are wireless
with emphasis on low power [101, pp. 4, 14, 254].

CPSs benefit from the availability of low-cost, low-power, high-capacity small form-factor
computing capabilities of general-use computing devices [18] and can potentially facilitate higher
abstraction level architectures, middleware and operating systems even if they introduce some
overhead. Transmission Control Protocol/Internet Protocol (TCP/IP) stacks and web server
capabilities can be added even to low-cost embedded systems, enabling integration of CPSs into
other systems with IP-based protocols. This section aims to answer research question Q2, how to
implement fault tolerance in CPSs.

3.1 Challenges
Increasing computing power means that embedded systems have more processing capability for
“intelligence” in the form of processing data into more meaningful information before sending it
forward (e.g., smart sensors) to conserve bandwidth and support more flexible connectivity.
Processing of data can reduce network load and improve efficiency of bandwidth usage, an
essential feature for devices and systems deployed to remote locations, such as unmanned aerial
vehicles (UAVs). Complexity of the interactions increases when communications change from
basic actuation signals to complete movement sequence commands and from point-to-point
measurement samples to data structures combining diagnostics data, especially since the logic is
not necessarily centralized to back-end servers. However, this enables system experts to
implement their know-how in a reusable form, for example, by sending notifications about
predicted failures and need for maintenance from a device. To support implementation of
intelligent services, systems should be extensible and facilitate independent deployment of new
services, whereas currently changes in embedded system software typically require recompilation
and re-programming of the complete software to read-only memory.

Resources are also not without limits, especially in real-time applications: running out of
bandwidth, memory or CPU may result in consequences in the physical world. Development of
safety-critical CPSs could move to the same direction as automotive industry so that units would
be verified independently. However, in automotive applications the ECUs are separated on the
hardware level. Independent verification of software components requires a high degree of
independence and design for failure unless interfaces and potential interactions between nodes are
known beforehand. Verification of software units is, therefore, still an open research question.
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Challenges for software architecture of CPSs include the following:

· sharing of large amounts of data to optimize processes, utilization levels and predictive
maintenance while having predictable timing for end-to-end latencies

· V&V, especially security and safety, of evolving systems
· scale increase from closed network to integrated system of systems
· flexible allocation of resources needed for scalability
· stakeholders want systems to be easy to use, build, maintain and repurpose [103]
· wide range of timing requirements [103]
· stakeholders want to use whatever communication network best meets application specific

requirements
· increasingly large and complex systems (e.g., Airbus A380 and big science projects such as

Large Hadron Collider) that need more people and organizations to develop them; systems
will, therefore, be composed from more fragmented modules (cf. Conway’s law) delivered
at various time points

· support for evolvability, including modifiability and maintainability
· product variation for mass-produced systems (e.g., mobile working machine variants and

options),
· mixed criticality embedded systems (e.g., infotainment system combined with rear view

camera  display in vehicles, similar challenges exist also in RHCSs, see [P2])
· rise of browser-based computing—integrating operational systems and Web-based

applications
· architectural style should not limit the logical architecture (e.g., sense-plan-act or layered

robot control architectures) or technology platforms

3.2 Approaches
Scalability and modularity of the architecture have significant roles when addressing almost all of
the challenges mentioned in the previous section. Modularity of the architecture has been
recognized early as an elementary part of building dependable systems. For example, software
modularity and fault containment through fail-fast software modules are identified by Grey [104]
in 1986 as key factors for fault tolerance. Modular design itself is a long-running development
trend in the software engineering field, with the goals of managing software complexity,
increasing software reusability and shortening time-to-market. Examples of this trend range from
using modules for information hiding in 1972 by Parnas [105] to object-orientation, component-
based software engineering (CBSE) and SOA.

CBSE  emphasises  use  of  reusable  off-the-shelf  and  custom-built  components  to  compose  a
software system, enabling systematic reuse of existing solutions, and the SOA paradigm is in a
sense an extension of CBSE to more distributed computing environments. SOA can mean a variety
of things—there are claims that the term has become too ambiguous [106]—but in this thesis we
use SOA to describe an architectural style that consists of self-describing, platform-agnostic
computational elements that support rapid, low-cost composition of distributed applications [28].
Services must be loosely coupled, technologically neutral (comply with widely accepted
standards) and support location transparency [28]. The technological neutrality means that the
services can be accessed without knowledge of their underlying technologies. Services are
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typically implemented as autonomous applications that can be composed into collections
(compositions) to carry out complex tasks, enabling efficient reuse. The status of SOA as de facto
standard approach for building enterprise IT systems can be at least partly attributed to its
capability to support integration of the applications built using different technologies, both on
implementation platform and communication levels. Platform integration is supported in SOAs
through open communication standards, such as Simple Object Access Protocol (SOAP) over
Hypertext Transfer Protocol (HTTP) and Extensible Markup Language (XML), whereas different
communication platforms can be integrated with enterprise service bus (ESB) and gateway
solutions.

M2M communication and IoT are technological trends that are related to CPSs; this relationship is
illustrated in Figure 13, which extends the model from Figure 5 and emphasizes the viewpoint that
CPSs and M2M communication are enabling technologies for IoT [102]. Other similar notions such
as Internet of Everything, Industrial IoT, etc. have been proposed in the recent years, but ISO/IEC
JTC 1 IoT workgroup predicts that is unlikely that these other notions will survive because they
are too similar to IoT [103]. M2M includes technologies that can be used to provide connectivity for
a group of devices with decentralized, mesh networking or telecommunications networks.
Typically, M2M connections are wireless, with some of the devices acting as gateways and
providing connectivity to business applications. CPSs can utilize M2M technologies to support
mobile machines, integrate wireless sensors, provide remote connection capabilities, improve
reliability by omitting central servers, etc.

Figure 13. M2M technologies and CPSs in the scope of IoT

As a trend, beginnings of the IoT are in the possibility to connect things into Internet through
Radio Frequency Identification (RFID) technology in the end of 1990s [107]. Over the time and
through the advancements in technology, the concept of IoT has extended to cover the connectivity
further to a “connect anything and anywhere” level, enabling physical objects to integrate
seamlessly into communication networks and Internet. Industrial Internet is application of the
Internet protocols to enable communication and cooperation between uniquely identifiable
embedded devices and information systems in the industry sector, but the devices connected to the
IP network may not always be visible to the global network for obvious reasons. CPSs can be seen
as part of this trend, integrating physical processes and their control (computation) into networks.
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3.3 Robotic Frameworks, Component Systems, Middleware and
Communication Protocols

A basic need in software development is to create maintainable software for new systems by
composing  it  from  reusable  blocks.  This  goal  can  be  achieved,  for  example,  with  CBSE  and
component frameworks. Component frameworks can be used to build the system from smaller
pieces obtained in various ways and to manage the complexity of the system by breaking it down
into more manageable chunks.

In the robotics domain there are several frameworks available that aim to reduce the time and
complexity of developing robotics systems by providing often-used functionality, such as
kinematics, filtering, vision, planning, etc. as libraries. Other typically provided functions include
process support and messaging interfaces for inter-process communications. These frameworks
provide a way to organize the code into modules, while not dictating the arrangement of the
modules (i.e., the logical architecture); although, the framework may affect the architecture
indirectly, based on how modularity is supported or what middleware solution (if any) is used to
implement the communication. Some of the more established robotic frameworks include Orca,
Orocos, Player 2.0 and Robot Operating System (ROS). The frameworks also typically include tools
to help development and a concurrency model for scheduling of the components. The concurrency
model affects, for example, interoperability and data-sharing between components. While some
frameworks support reusability with component-based or object-oriented approaches, others like
ROS use processes as a unit of reuse and deployment [108]. Processes in ROS communicate by
sending messages to topics with publish-subscribe semantics and could potentially be utilized to
implement a domain-specific RTSOA model. Finally, the framework may provide capabilities to
execute components in hard real-time, but not all robotic frameworks have this feature because for
some applications, such as small mobile research robots, soft real-time is adequate.

Distributed generic component frameworks, such as the proprietary Distributed Component
Object Model (DCOM) technology by Microsoft and the OMG standard CORBA provide a
distributed component model. These days, some people consider CORBA to be a niche technology,
largely due to its complexity [109], but it still sees use in real-world systems. DCOM technology
was used to implement OLE for Process Control (OPC), providing real-time communication for
control systems. OPC had limited configurability and support limited to Microsoft platforms.
Some of the distributed component frameworks also have strong coupling between
communicating components (component holds a direct reference to another component), which
limits their usability as a basis for service-based system development. In order to stay competitive,
OPC Foundation released an updated, service-based specification OPC Unified Architecture (OPC
UA) [110] in 2008, which provides an SOA model targeted at process control, adding security and
cross-platform support to OPC.

Middleware is a technology for enabling collaboration between nodes of a distributed system,
abstracting the low-level infrastructure details for developers. By providing an abstracted
communication layer for applications, middleware allows developers to focus on the application
logic instead of platform specific communication systems or network topology. The raised level of
abstraction also aims to isolate the system software from processor and network changes. There
are various ways to categorize middleware based on the key abstractions provided, including
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transactional, message-oriented (which can be based on queues or publish-subscribe model),
remote procedure calls (RPC), object/component oriented and service oriented [111]. DCOM and
CORBA are object-based middleware, whereas Java Message Service (JMS) is a message-based
middleware that supports both point-to-point and publish-subscribe communication models.

Data-centric middleware, such as Data Distribution Service for Real-Time Systems (DDS) [112],
extend the message-based approach by making messages “transparent” for the middleware, so
that it has more control over their delivery and prioritization. This enables, for example, extension
of topics with new data types, while retaining backwards compatibility. When comparing
message-based and data-centric models, data-centric middleware enables new subsystems joining
the network to directly read the latest relevant data, whereas in a message-centric system messages
have to specifically be resent to the new participant. The data publisher does not need information
about the subscribers and vice versa. In other words, publishers are not required to know anything
about receivers, only the specific data types being communicated. The data-centric approach is
decoupled and scalable, since publishers and subscribers can join and leave the communication
channel at runtime. DDS is also decentralized and supports explicit configuration of resource
usage and reliability with QoS policies. Cross-vendor compatibility is achieved by using an
interoperable wire transfer protocol.

TCP/IP  is  widely  used  as  a  basis  for  implementing  messaging  protocols,  such  as  AMQP  and
MQTT (binary publish-subscribe protocols), Representational State Transfer (REST), SOAP (RPC
protocol for Web services) and Devices Profile for Web Services (DPWS), which defines Web
services implementation for resource constrained devices [113]. The protocols are complementary,
serving different purposes and can be combined if necessary, for example, using JMS to send
SOAP packages or using MQTT for sending telemetry and DDS to provide M2M connectivity.
REST typically focuses on resources and state (data), but uses request-reply operations (client-
server model), most commonly over HTTP. REST with Constrained Application Protocol (CoAP)
can also be used to provide SOA capabilities for resource-constrained devices [113].

Middleware can be wrapped as an ESB to provide a communication platform for SOAs. For
example, Mule ESB supports JMS in addition to several other protocols [114]. The ESB provides
additional functionality when compared to a middleware platform, such as management and
service orchestration capabilities, commodity services for protocol translations, etc. This has the
effect of abstracting some of the complexity and message protocols from developers, but
introduces  coupling  and  risk  of  vendor  lock-in  to  the  system.  An  approach  to  building  service-
oriented system without complex ESBs and central orchestration (e.g., WS-Choreography) using
REST or lightweight messaging buses from small and independently deployable services is called
“microservices” [115]. Microservices refer more to the implementation style, rather than
technology, and can be seen as evolution of SOA. The approach emphasizes ability of multiple
teams to work on services independently (vs. monolithic server applications) and deploy them
using continuous delivery, allowing frequent updates to services while keeping the rest of the
system available. This enables rapid prototyping and lean development of services with less
consideration paid to extending them in the future, avoiding over-engineering. However, this
approach might be in conflict with safety-critical CPSs, thereby necessitating identification of
safety-critical system components as suggested in [P2]. Also, the complexity is pushed to a higher
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level in terms of managing a large number of services, necessitating good operations support and
automation for testing, deployment and orchestration of services, which might require custom-
built tooling. SERVICE MANAGER [P5] pattern and its implementation in [P3], [P4] and [P6] can be
seen as examples of solving the management problem of microservices in a real-time environment.

3.4 RTSOA
Generally, SOA style is associated with a number of potential benefits, including [116]:

· Ability to develop new function combinations rapidly.
· Organizational flexibility—the service-based architecture is easier to change than large,

monolithic programs.
· Configuration flexibility—service communication is decoupled through messages. Services

can, therefore, be moved between computer systems and compositions to meet changed
business needs.

· Ability to integrate existing assets.
· Improved co-operation capabilities—use of fine-grained services supports information flow

within and between enterprises when compare to the use of monolithic applications.
· Improved reliability through service virtualization.

These potential benefits have been recognized in CPS-related research and commercial sectors,
including domains such as industrial automation, robotics and embedded devices. Applying of
SOA in these domains can enable operation in the open and networked IoT environments and
faster reconfiguration of the system for different products or tasks. However, to be applicable for
CPSs, service architecture communications and service management must be dependable and
predictable for interacting with the physical world in a timely manner. Therefore, the
implementation technology should support QoS parameters to set and monitor priorities,
deadlines and resending of the messages, and use standards-based, efficient encoding of the
transmitted data. As standard SOA technologies have not been designed with strict timing
limitations or QoS needs in mind, a distinction is made between SOA and RTSOA technologies.
Despite the differences, there are common foundations especially in the design principles of the
services, including service granularity, use of concurrency, deployment, etc.

Service orientation has the potential to support evolvability of the system, since services are
loosely coupled components that can be analysed, replaced, reused, distributed and parallelized
autonomously. Evolvability is defined as a system’s ability to easily accommodate changes [117],
having strong similarity to the concept of resilience, although from the development and
maintenance point of view, whereas resilience has an operational emphasis. Benefits of SOA to
system evolvability are clear in the enterprise applications sector where SOA has seen wide-spread
adoption, but one of the research topics in this thesis is how it can support resilience of the system
[P6].

An integral part of implementing service-orientation is the use of dynamic discovery and binding
between services [118]. The dynamic nature of services supports reusability, discoverability and
composability, at the cost of predictability. An SOA implementation targeting a CPS application
needs, therefore, to provide means for application developers to support predictability of service-
to-service communications, for example by allowing for negotiation of the quality of service (QoS).
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Most of the current RTSOA approaches, such as [119], are based on the existing message-based
Web service standards or the more streamlined REST style. Web services and REST style services
are often implemented using standardized application layer protocols for message transmission,
exposing the capabilities of the service over the standard Internet languages and protocols. Web
services face challenges when used in embedded systems, since messages need to be serialized in
real-time [120], and QoS must be managed at transport layer. Other challenges include the
complexity of networking with HTTP, XML and SOAP, constraints imposed by embedded system
architecture and the verbosity of HTTP and XML. For example, in a study applying Web service-
based SOA to a wireless sensor network, the return time average was 1.3 s [121]. Although there
are a number of factors that affect the performance (e.g., use of wireless technology, network
topology and additional encoding for Efficient XML Interchange), the performance was sufficient
for the target application of district heating substations. However, the general consensus seems to
be that Web services are not suitable for applications with significant time constraints, such as RH.

The SOA style can support event-driven approach (i.e., asynchronous and non-blocking sending of
events (messages) to interested parties), although an SOA is not automatically even-driven.
Typically in the SOA services make calls for specific service providers in a point-to-point fashion,
whereas using an event-driven approach the services publish events but do not know what service
consumers are interested about that specific event. The event-driven communication needs a
middleware or ESB to take care of notifying the interested parties about events (cf. event-driven
architecture). Event-driven approach is suitable for event and state based interactions (publish
events on state changes, sensor data, commands, etc.), whereas request/reply transactions are
more challenging. They key benefits of the event-driven approach for implementing SOA are the
support for scalability and resilience, due to the lack of service coupling.

3.4.1 Service Design
Service  is  the  key  abstraction  in  both  SOA  and  RTSOA,  acting  as  a  basic  building  block  for
software reuse and enabling further architectural abstractions, such as service composition and
service buses. Service is defined here as a self-contained and independent software
implementation supporting a specific functionality or a task. Independence means that the services
are units of deployment and integration that they can be developed, deployed, managed and
maintained as separate entities. Due to the independent nature of services, implementation can be
done using different languages and environments, moving some of the complexity from writing
the services to configuring, monitoring and managing the service compositions.

Key difference to components is that instead of remote procedure calls, which imply some level of
coupling between components, communication is based on asynchronous messages. The
consequence of building systems using loosely coupled services is that the services need to be
designed so that they can tolerate the failure of other services. This necessitates additional logic
(and complexity) to handle these situations which may seem like a disadvantage. However, this
has the outcome of making the overall system more robust, which is a fundamental requirement
for a CPS. Some of the logic may also be externalized to middleware, libraries and service
templates, helping to keep the core service logic simple.

The functionality of the service can represent a device (e.g., sensor, actuator), hardware abstraction
(e.g., fieldbus), a basic computation task (e.g., kinematics, trajectory generation), or a complete
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(sub)system through a composite service, depending on the granularity level of services.
Granularity has high impact on reusability of services, since smaller services are easier to reuse,
but increase the communication and configuration overheads.

An integral part of the service architecture is the interface for the syntax and the semantics of
message exchange. For example, in enterprise SOA implementations services typically use Web
Services Description Language (WSDL) for Web services [122]. For services implemented with
REST style, service interfaces may be documented manually or with the help of tools and metadata
formats, such as WSDL 2.0 or JavaScript Object Notation (JSON) based Swagger [123] for better
scalability.

RTSOA technologies are still in immature development phase and there are no standardized or
widely adopted RTSOA-specific interface description languages. Possible alternatives include, for
example, OMG Interface Definition Language (IDL) used with DDS and CORBA, SOA standards
(WSDL and WS-*) and ontology based technologies. The challenge is describing the real-time
properties of services, which may require V&V of these properties and strict specification of the
environment. Cucinotta et al. have extended WS-Agreement protocol to support QoS and real-time
attributes [124], but manual documentation in combination with existing standards (as in [P3]-[P6],
see also Section 4.2) seems to be a common option.

Embedded systems are characterized by an application-inherent parallelism, since they consist of
many concurrent, independent processes [125]. This is true especially for CPSs in which the system
may need to interact and sense the physical world through a number of sensors and actuators in
addition to communicating with peripherals and other systems in real-time. Traditionally small-to-
medium scale embedded systems have utilized programming models based on shared memory
[126]. However, recent introduction of multicore systems-on-chip favour use of message-based
communication infrastructure for systems with high computation/communication ratio, typical
for many industrial systems [126] [125]. Use of message-based architecture provides better
function encapsulation and fault containment, and enables implementation of additional dynamic
power management techniques when compared to shared memory or monolithic architectures.
This thesis considers application of SOA style architecture in CPSs, building the communication
over message-based infrastructure and loosely coupled components (i.e., services). Embedded
systems represent a large application sector of CPSs which can potentially benefit from the RTSOA
style, enabling the full exploitation of hardware capabilities.

3.4.2 RTSOA Research Challenges and Implementations
Research on RTSOAs ranges from the application of the service-based architectural style to
industrial automation to the development of real-time composition and reconfiguration
algorithms. This section presents key research challenges and research results relevant to
development of CPSs. Different communication standards available for RTSOA implementation
have been covered in the previous sections.

Application of SOA in industrial automation for reconfiguration of intelligent devices to support
flexibility and agility for manufacturing has been suggested by Cândido et al. [127] to overcome
issues such as centralized implementations, lack of fault tolerance, vendor and legacy system
incompatibility issues and time-consuming reconfiguration. They list middleware, devices &
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services setup, control, self-* capabilities, dynamic reasoning, simulation/validation and IT
integration as necessary research topics for implementing SOA-based industrial automation
devices. Several similar topics are identified by Rajkumar et al. [18], according to whom the key
challenges for CPS research include composition, architecture, computational abstractions, real-
time embedded system abstractions, robustness (cf. resilience), safety and security of CPSs, model-
based development, control of hybrid time/event-based systems, V&V and certification of CPSs.
There is overlap in these proposed research topics and several of them are touched on in this
thesis, although the resilience and fault tolerance issues are mainly approached from the
architectural point.

Tsai et al. [128] argue that service reconfiguration needs to be carried out in real-time to satisfy the
timing constraints and propose an RTSOA framework including a search algorithm for service
compositions using pre-verified services. The algorithm is verified with simulations.

Time-bounded reconfiguration for service-oriented distributed systems is achieved in iLand
middleware, developed by Gárcia Valls et al. [129]. The middleware achieves time-bounded
reconfiguration of services using a graph-based algorithm, which is empirically evaluated with a
high-definition video application.

De Deugd et al. [130] present the results of a workshop for service-oriented device architecture for
integrating embedded devices with distributed enterprise systems. The architecture provides
monitoring and controlling capabilities for physical environment and is based on applying a
device adapter layer to encapsulate device-specific programming interfaces for the services and
using a bus adapter for presenting the device data as SOA services over an ESB. Similar model is
applied in the Sulava RTSOA reference architecture (see Section 5.2).

Tiderko et al. [131] present a service-based framework for a wireless multi-robot systems controller
over wireless networks using a specialized publish-subscribe message protocol. Although the
research focuses on achieving an efficient throughput over a mobile ad hoc network and has
limited scalability, it presents a practical application of SOA in robotics. Accomplishments in the
paper include:

· Use of a service manager to control services on a single host
· Centralized configuration management with a configuration manager
· Robot locomotion details abstracted with motor control services
· Odometry/location estimation and sensor services
· Robot simulation service

Cucinotta et al. [124] propose RTSOA for industrial automation to enable building the automation
system out of flexible autonomous components. The architecture allows for negotiation of the QoS
requested by Web service clients and provides temporal encapsulation of individual activities.
Supported APIs include a common API based on Web services and a non-standard custom API for
real-time services. To provide guarantee for the service real-time properties, a priori analysis is
used. The architecture has been demonstrated in a scenario in which Modbus messages are sent
from a programmable logic controller (PLC) and translated into DPWS messages to be sent to the
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recipient of the original Modbus frame. Empirical evaluation was performed with object detection
and image rotation in a video application. System reconfiguration capabilities were not evaluated.

Panahi et al. [132] present the RT-Llama RTSOA framework for real-time enterprise systems. The
architecture includes a global resource manager for scheduling and orchestration of services in
business processes. RT-Llama allows end-to-end deadline guarantees for business processes
through advance reservation of resources.

Moussa et al. [119] propose a three-phase composition approach for Web services to address the
issues of admission control and estimating communication latencies between services in the
service composition phase. Admission control is needed since a service may be selected for
workflow, but cannot cope sufficiently with the workload when deployed. Latency estimation
provides an alternative to obtaining latencies during composition (which can be costly) or
maintaining a full table of latencies for all service pairs. The three-phase approach consists of using
an efficient algorithm to reduce the number of candidate compositions for a more accurate
algorithm which selects the components for the final grounding phase. The work is based on using
and extending Semantic Markup for Web Services (OWL-S) for the specication of service
compositions and timing-related specications.

3.5 Identified Gaps in the Existing Knowledge
Many of the challenges in the development of CPSs are related to managing the system
complexity, size and number of interacting components. These factors drive development time and
costs up, especially for safety-critical systems because proving that the system fulfils necessary
requirements becomes more and more challenging. SOA has been identified as an approach that
has potential to support building of CPSs correctly, affordably and flexibly. Although the dynamic
nature of SOA may not seem to be suitable for safety-critical systems, there has been some research
on applying the architectural style in safety-critical embedded systems. Rodriguez et al. have
applied Web services in non-critical parts of UAV avionics [133] and mission execution [134], but
the topic has still relatively little research available.

Research on fault-tolerant architectures is typically based on different forms of redundancy, such
as checkpointing or active/passive redundancy, which do not solve the abovementioned issues.
On the other hand, RTSOA can provide architectural basis for CPSs, but fault tolerance capabilities
of SOA, especially in real-time applications, is a significant gap in existing research. As CPSs are
typically composed of interacting nodes, the units of the system must be able to operate in
heterogeneous computing environments, without relying on point-to-point connections. This
enables, for example, the reconfiguration of the system and sharing of data to interested parties.
However, to achieve this, research on CPSs faces challenges in configurability, ability to guarantee
real-time performance and fault tolerance of real-time services. Effects of failover on real-time
deadlines, consequences of faults for CPSs controlling complex physical processes with stochastic
behaviour, fine-grained services in control system architecture, auto-scaling and optimization of
(distributed) resources, guaranteeing schedulability and physical stability are some of the topics
related to fault tolerance which need further research.

Common theme with the RTSOA frameworks is that they emphasize benefits of SOA as a tool to
provide system reconfigurability and flexibility for achieving improved agility and more
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efficiency, typically in the form of factory floor level reconfiguration [124] [127] [135]. Although
these evolvability-related aspects are some of the key drivers for RTSOA, their potential benefits
for fault tolerance and resilience have not been explored.

Decoupling and modularity support fault tolerance without diverse redundancy, as discussed for
example in 1985 by Gray [104]. Without modularity, a failure in any component implies a total
system failure. Potential solution for fault tolerance could, therefore, be provided by architectures
that promote loose coupling between software components and enable system to survive partial
failures. The modular approach can be implemented, for example, with standardized component
frameworks or service-orientation. BULKHEADS pattern [56] is an example of partitioning
enterprise systems and allowing partial failures without losing the service provided by the whole
system. However, there is not enough research about the actual effects of modular architecture on
reliability in distributed real-time systems. SOA can be implemented without a central server,
which would be a SPoF, having a negative impact on reliability. On the other hand, reliability
estimation of SOA-based systems is difficult, because services might be used in unseen ways
which complicates testing [136]. Evaluation of SOA overall impact on reliability needs, therefore,
to be evaluated in real-time systems, including exploring how failures and restoring of services
could be handled.

Existing research on time bounded reconfiguration in service-oriented systems has focused in
resource management, latency estimation and choosing a solution from tentatively pre-scheduled
solutions, as noted in the previous section. However, there is a knowledge gap in fault tolerance
capabilities of RTSOAs, as noted earlier. In the event of a detected error, time-bounded operation
of the system cannot necessarily be guaranteed, since the very definition of an error is that the
external state of the system deviates from correct service state [2] (i.e., it is operating outside its
specifications). The existing approaches presume the availability of an alternative service
composition already in execution and the capability to react to the faults before they activate on
the service or system levels. The research presented in papers [P4] and [P6] presents an alternative
approach, evaluating the use of architectural properties of RTSOA for providing resilience for the
system and using the services as a unit of fault tolerance, instead of service graphs or
compositions. The proposed approach does not try to guarantee recovery within specific
deadlines, leaving partial responsibility of detecting and reacting to (service) failures to the
services themselves. Further insight could be gained by extending this research approach to
service compositions.

There is also a need to bridge the gaps between the different models, methods and tools that are
used to improve the design and the operation of dependable systems, especially when being
adapted to control systems. Development of a dependability case in the context of systems
engineering would seem a promising approach for combining fault prevention, removal, tolerance
and forecasting methods to collect evidence for the case of a CPS. However, existing research on
use of dependability cases is limited to a small number of case studies including an e-learning
system [137], IP network assessment [138] and US Department of Defense projects [139]. For CPSs,
the case could include architectural design choices (e.g., redundancy), requirements as a
dependability argument about timing properties of the system and models (control model, formal
models, etc.).
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4 Main Test Case: Remote Handling Control System

4.1 RHCS in ITER
Remote handling has an important role in the maintenance and operation of the ITER plant since
humans will not have access to the reactor and all maintenance tasks will be performed indirectly
with remotely operated robotic manipulators and movers using man-in-the-loop teleoperation. In
this respect ITER RHCSs have similar requirements to nuclear and space systems, needing either
capability to recover equipment regardless of single failures or to provide adapted operability
under failures. However, RH system computers are not located in the hostile environment, unlike
Mars rovers or satellites, and do not have the fail-operate requirement. This is a significant
difference, since there is no need for (diversely) redundant channels. Similarities to plant
automation systems in general include the long expected operational period, since the RHCSs need
to be designed with a minimum of operational lifetime of 30 years.

Development of the RHCS in a waterfall-like development process, as is typical for large-scale
automation projects, can pose challenges for software integration. Some of the risks are related to
the large number of control systems that need to be managed by the ITER Organization. The
control systems should form a coherent and consistent system that is maintainable and usable by
the RH operators. This was an issue in the early years of JET RH system development, as the
development of control systems was left to external companies after the definition of the functional
requirements [69]. The approach led to a situation in which every device had a custom-built
control system with different architecture and user interface, complicating maintenance and
operation. However, at low level the controls required in RH systems are similar to industrial
applications. Therefore, widely available commercial products could be configured to handle
motion control and integrated in a uniform control system framework. The current version of the
control software (Mascot 4.5) was developed in-house in the late 90s using a new, unified
approach based on shared high-level control software and use of COTS controllers [69].

For ITER RHCSs, development of a dependable and flexible control system architecture that can be
integrated in the plant systems to control maintenance robots and equipment is essential. The plant
system must integrate several systems provided by domestic agencies in-kind and developed by
different suppliers. For example, Fusion for Energy (F4E) is the domestic agency of the European
Union, responsible for securing the delivery of Divertor RH system, among others. ITER will
feature several RH systems, all of which will have their own equipment controllers (ECs). In order
to be economically viable, these controllers must be based on a common architecture that is able to
deliver key features, such as configurability, maintainability during the long expected life-cycle,
reliability and interoperability between different subsystems. The different RH equipment need to
be operated flexibly from multiple work cells in the RH control room, which means that the
subsystems must be capable of forming connections dynamically and in ad hoc manner when
using the system, without needing an intervention by system administrators.

Erratic or uncontrolled movements have potential to damage the expensive and delicate
components within the reactor, causing significant financial losses and maintenance period to
exceed schedule. This may cause cascading delays and force changes to experimental operations,
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reducing operational time and lowering the plant availability, which is crucial for showing that
ITER and magnetic fusion devices in general can be efficiently maintained. The ITER project needs
to achieve a high level of dependability to succeed in its mission to produce the expected scientific
data, meaning that it needs to be safe to operate and available for experiments as scheduled. Since
a failure in a RHCS may cause or be a contributing factor in damage or loss of  property,  parts of
the system fulfil the criteria for being safety or mission-critical.

Incorrect movement can be caused by software, especially on contact and near singularities. This
could  be  a  problem especially  during  the  commissioning  testing  when people  could  be  working
near the equipment. Another typical cause for unexpected movement is incorrect parametrization
of configuration, which can easily result from human error, parameter reset to default values, etc.
Also a non-recoverable “no movement” failure can lead to a loss of the mission, forcing a rescue
operation for the equipment. In such case, most likely cause would be a hardware failure. In the
case of any failure, leaving the RH equipment in the reactor is not an option, since this would
cause a critical or catastrophic unavailability or potentially violate ALARP principles which aim
minimizing the risk of radioactive exposure for workers.

Against hazardous mechanical failures, system design should avoid SPoFs, although a casket-
based rescue system is planned for use in recovery situations. However, rescue scenarios
themselves increase demands for flexibility in the control system, since collaboration might be
required, for example, between an RH system manipulator, Multi-Purpose Deployer and a rescue
cask. Although ITER is a nuclear machine with need for a high availability, it is also an ambitious
experimental device which will likely see several upgrades, emphasizing the need for evolvability.

ITER has a reference architecture for the RHCSs, provided as the ITER RHCS design handbook.
This reference architecture is used as a baseline for implementing the RTSOA-based prototype
control systems. IHA also has experience of developing software subsystems for RH operations
based on the ITER reference architecture and some of these applications were used to demonstrate
interoperability of the RTSOA in papers [P3], [P4] and [P6]. Therefore, a brief overview of the
reference architecture is given in Appendix A.

4.2 Information Modelling and Interface Design
Service-based software development can be seen to emphasize interface design over component
design,  since  the  emphasis  shifts  from  describing  the  components  to  designing  on  how  the
components interact with each other. In order to use the interfaces between the diverse
applications and systems, a common information model must be shared, either implicitly or
explicitly. Information models can be used to define the semantics of data that are exchanged over
component interfaces, capturing the relevant concepts from the domain [140].

The information model is a conceptual, abstract model that should not depend on protocols or
implementation details [141]. Information models specify relationships between objects with
techniques ranging from natural language to formal structured languages, as in the partial
information model for DTP2 shown in Figure 14 using Unified Modeling Language (UML) class
diagram. The full information model is given in Appendix B.



47

Figure 14. Part of the information model for DTP2

The data models, on the other hand, are used to describe implementation of the information model
for different protocols and typically include implementation details. Since the conceptual models
can be implemented in different ways, multiple data models can be derived from an information
model [141]. A data model based on a well thought-out information model can be expected to have
good consistency, enabling it to survive system modifications with minimal changes. The data
model can decouple the system from hardware, supporting implementation of technical refresh
cycles with less effort and cost, enabling to keep the system up-to-date.

An excerpt of the DTP2 information model translated to a data model, expressed with IDL, is
given in Listing 1 on the following page. The example is used in the DDS-based GSB
implementation in the prototype RH system. The IDL listing defines the structures and data types
for the operations management system (OMS) commands topic used to send movement
commands to EC from OMS; the corresponding objects in the information model from Figure 14
are EquipmentController, Manipulator and CartesianPosition. A minor disadvantage of a data
model designed for general use is demonstrated by the example, as there are some data types that
are not used in this prototype application. In the case of OMS commands the overhead is
insignificant because of the low rate of commands being sent, whereas for more timing-critical
topics it can be worthwhile to optimize the size and number of data types. The DTP2 IDL data
model and the information model have been developed as part of the DTP2 research. The full IDL
description is given in Appendix B.
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Listing 1. Example of defining a structure for OpenSplice DDS IDL Pre-processor

struct OmsCommand
{

long cmd_id;
long cmd_type;
long object_id;
long parent_id;
Location3D location;        // x, y, z
Orientation3D orientation;  // roll, pitch, yaw
boolean flags[5];
string msg;

};
#pragma keylist OmsCommand cmd_id

For a RHCS, most important communication needs include sending motion commands,
configuration data, status updates, position and sensor data, virtual guiding forces, diagnostics
data, events and alarms. This translates to large amounts of data being transferred, some of it
cyclic and some acyclic. Especially VR, computer assisted teleoperation (CAT) and input device
require real-time position data from the equipment. Asynchronous communication is especially
suited for building distributed control systems, which need to react to external stimuli and events
[142, p. 28]. Using synchronous RPCs for sending of commands might be more straightforward to
implement compared to designing commands as part of the data-model, sending them as
messages and then monitoring updates to published status updates. However, RPC is a tightly
coupled technology, reducing the benefits from the loosely coupled data-centric approach. The
location transparency of blocking RPCs can also lead the programmer to neglect the performance
impact of the remote calls, resulting in unresponsive applications.

The requirement to be able to control more than one type of RH device adds to the complexity of
the system design, especially if all detailed requirements for these devices are not fully known at
the design time [143], as is the case with ITER RH systems. A well-designed information model can
be used to facilitate deployment of new RH devices as the new equipment can reuse existing
implementations and provide explicit extensions and adaptations by modifying data models
derived from the information model.



49

5 Results

This section summarizes the results in the papers [P1]-[P6] and shows how they are related to the
overall view of building dependable CPSs by combining the contributions to a top-down systems
engineering approach which considers issues related to identifying and managing of design
information relevant to the dependability of the architecture, including failure modes,
configuration management, identified critical requirements/subsystems, architectural decisions
and so on. While the systems engineering approach is crucial for managing dependability
systematically throughout the system lifecycle, the main contributions of this thesis are for service-
based software architecture and fault tolerance of CPSs. For the software architecture and its
prototype implementation, a bottom-up approach to dependability based on evaluating fault
tolerance capabilities of the implementation is presented.

Section 5.1 outlines the systems engineering approach for building dependable CPSs, originally
proposed in [P1]. This includes the analysis of dependability-related requirements for RH systems
[P2] and fault taxonomies for RH systems, developed during a two-month visit to JET at Culham,
UK. The approach proposes combining the development elements affecting system dependability
to a dependability case. Section 5.2 describes the fault-tolerant RTSOA developed and
implemented within the GOT-RH systems engineering framework (Figure 6 on p. 15). Results of
the prototype design and implementation include publications based on the concept study [P3],
more refined implementation for fault detection and recovery in [P4] and the design description
[P6]. Architectural insight gained from the concept design was published as patterns in [P5].
Finally, Section 5.3 presents a paper-by-paper summary of the results.

5.1 Systems Engineering Approach to Dependability

5.1.1 Development of a Dependability Case
Goal of the research, as stated in Section 1.3, was to use the top-down GOT-RH systems
engineering framework to develop architecture and methods for a fault-tolerant ITER RH
equipment control system. This section describes how the results of the research fit to the general
systems engineering practices. One result of the research is analysing how the RAMI and software
dependability approaches can be combined with systems engineering using fault taxonomies,
probabilistic methods, qualitative methods, architectural design decisions, component reuse, COTS
components, etc. to collect evidence for the arguments in a dependability case.

Major components of system development that impact dependability include:

· Requirements (fault prevention)
· Architectural design, use of patterns (fault tolerance)
· Components and services proven in use
· Analyses and operational data (fault forecasting)
· Failure modes and effects (domain-specific)
· Verification and validation (fault removal)
· Development process & methods (fault prevention and removal)
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Combining these design artefacts as requirements, arguments and evidence to develop a
dependability case is demonstrated in the context of a systems engineering process model in
Figure  15.  The  process  model  is  based  loosely  on  the  V-model  (cf.  Figure  8),  showing  the
integration of additional design elements to the condensed “requirements → design →
implementation → testing → validation” development process. Development process, design,
tools and techniques (e.g., VR-based verification) have significant impact on the dependability and
should be part of the documentation in the dependability case; this aspect is present through the
system development and verification plans if the figure below. The building of a dependability
case consists of dependability analysis, dependability goal definition, argument construction and
evidence collection [144], marked with dark grey in the figure.

Figure 15. Process model for building the dependability case in the context of the systems engineering V-model and
dependability methods

The components of the model include:

· Fault taxonomies (fault forecasting) can be used to support failure analyses and design of
fault tolerance solutions (see Section 5.1.2).

· Qualitative approach to fault prediction (fault forecasting), such as hazard analysis and
FMECA, are used in systems engineering and in the ITER RAMI process, thereby providing
a possibility to integrate software development processes to the overall systems
engineering based dependability processes, since FMEA/FMECA can also be applied to
software [145].

· Probabilistic methods (fault forecasting) such as reliability block diagrams, fault trees, etc.
if needed to evaluate reliability or availability.

· Role of the architecture and platform (fault tolerance): architectural design decisions,
trade-off point decisions, architectural solutions (patterns, interfaces, etc.)
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· Use of COTS solutions need to be considered not only against the system requirements, but
also against life-cycle costs and especially maintenance. COTS or open-source components
may require adaptation (e.g., custom-patched kernel [62]) or device drivers for the
operating system that need to be maintained.

· Repository of existing services and components with explicit dependability claims,
including intended use conditions.

· Verification (fault removal) based on empirical testing using simulated and/or virtual
models and taxonomies. The service-oriented approach supports this goal, since the
services interfacing with the real (physical) devices and plants can straightforwardly be
replaced with simulated ones. Simulated plants and virtual models can, therefore, be
dynamically connected to the service deployment being assessed.

· Used development, verification and configuration management methods (fault
prevention).

For building the dependability case, the dependability requirements need to be identified;
following aspects of control system software that affect these requirements were identified
originally in [P2]:

· dependability objectives—MTBF, hazard analysis
· operation modes (level of autonomousness: manual-supervisory-automatic, open vs. closed

loop, limp home, etc.)
· timing requirements: latencies, execution deadlines, scheduling
· fault tolerance and responses to undesired events (e.g., fail-safe behaviour)
· identification of safety-critical functions and subsystems—all software running physically

on the same platform as safety-critical software is also considered safety-critical

Additionally, the following aspects were identified later during the research process: operational
profiles, security requirements, data quality, variability, resource usage (bandwidth, CPU,
memory, power, etc. [P4]) and resilience requirements for CPS [P6].

Operational profile is a quantitative representation of how software will be used (e.g., by assigning
occurrence probabilities for system modes and functions [146]). The operational profile can then be
used to support reliability engineering by focusing testing efforts on the most used operations.

Security: As a downside for increased connectivity of CPSs, attack surface of a system is also
increased, setting a need to maintain a level of  cyber security during the intended lifecycle of the
system. This is in contrast with the commonly seen approaches of relying on security through
obscurity and separation of critical networks in automation projects. Automation systems have
had backdoors, non-encrypted network traffic, etc. even in safety-critical systems, such as
Supervisory Control and Data Acquisition [147] or traffic light control [148]. Designing the system
to fail into a safe state is of little use if an adversary can reconfigure the system or use this for
denial of service attacks. Using common off-the-shelf components and operating systems means
that the current approaches to security become even less sufficient, since the systems will have to
incorporate processes and means for security updates against common vulnerabilities, such as
Shellshock or Heartbleed, especially if the devices are to be connected to IP infrastructure. Any
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CPS must, therefore, include security architecture to minimize security risks and ensure system
integrity.

Data quality: sufficient precision and temporal correctness must be ensured to guarantee that the
system operates within specifications. Implementation may require setting and monitoring QoS
parameters, calibration of measurements, redundant sensors, etc.

Variability and expected types of change: variability points should be identified beforehand, in
order to accommodate changes in the system architecture, including potential maintenance needs
(cf. 1st and  2nd laws of Lehman). On the other hand, resilience and loosely coupled architecture
support these goals on the architectural level, as services can be used as variability points.

Figure 16 shows an example of a quantitative argument that could be used to support the claimed
level of dependability using GSN [97] for a critical service in the RHCS. By focusing the assurance
efforts for critical services, dependability argument can be built over service dependability and
focus testing on critical services for evidence.

Figure 16. Dependability argument example adapted for RTSOA from [97]

5.1.2 Domain-Specific Fault and Failure Taxonomies for Remote Handling
Domain-specific fault taxonomies have potential applications in the implementation of fault
tolerance, since it is typically a very domain specific subject and depends on understating failure
mechanisms, fault propagation and consequences of faults. Fault taxonomies can be useful in
documenting this kind of knowledge. Currently there are no RH-specific fault taxonomies
available. RH fault taxonomy could be used to develop methods for fault detection, isolation and
mitigation specific to RH domain [149]. Another significant use for fault taxonomies is related to
verification & validation of the system since testing is one of the key techniques for finding faults,
regardless of its limitations. Fault taxonomy could be used in fault analysis methods (e.g., FMECA)
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and as an aid for designing software requirements, fault tolerance, test suites and analysing
coverage of aforementioned items.

To gain better understanding of software faults and their effects in control systems, a two-month
visit to JET in Culham, UK was carried out as part of the GOT-RH project. During this researcher
visit, the control system architecture and operational logbooks of the JET RH systems were
studied. Based on the data obtained during this visit, the fault taxonomies presented in this section
were developed. Regarding the potential use of the taxonomies, it should be noted that no
complete coverage of failure modes or fault types is claimed by this thesis.

There are various possible approaches to categorizing faults (see e.g. [2]). In RH systems, these
approaches could include:

• Failure consequences: unwanted movement, fail-safe tripped, incorrect measurement
values, incorrect value for gain, etc.

• Failure causes: operator error, developer error, complex timing error, aging fault, faults
caused by incorrect assembly/manufacturing/maintenance, mechanical wear, etc.

• (Software) fault types: aging related faults, bohrbugs, mandelbugs, heisenbugs, byzantine
failures, etc.

• Level of detail: system, division, unit, processor, module, component, etc.
• Software vs. hardware, plant vs. controller, operator station faults vs. server-side faults, etc.

We chose to focus in three areas that were considered to be most interesting from the CPS point of
view, namely system failures, controller faults and software faults:

• System failures cover the failure modes of the system that are related to remote handling
systems (i.e., situations in which a fault causes a disruption in the service provided by the
system, such as movement and operation of the manipulator and tools). The consequences
of  a  system  failure  may  cause  downtime  and/or  damage.  The  fault  that  has  caused  the
failure may have occurred in hardware or software, and all faults could be
permanent/transient, internal/external, etc. as categorized in [2].

• Controller faults: hardware (mechanical and electrical components), control theory,
environment.

• Software faults focus specifically in RH control systems. Assumptions: system does not use
multi-version redundancy, since it is not a protection/safety-related system, so no voters
are needed. Controller hardware failures are not covered, except for timing and
communications, where hardware failure may trigger software faults if fault handling is
not correctly implemented.

For example, fault injection used in [P6] to kill the IDCom service would be classified as a
“dependency not available” software fault and could cause system failure “incorrect movement” if
not handled properly, instead of just “failure to move”.

Typically mechanical and hardware faults are covered well by FMECA and similar bottom-up
analysis methods used for fault prediction. Therefore, they were left outside of the scope. In order
to track relationships between faults, taxonomies use a notation in which faults can be marked as
being related to each other or a fault causing another one.
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System Failures
Failure is an event in which the service delivered by the system deviates from the correct service,
either because it does not comply with the functional specification or because the specification did
not adequately describe the system function [2]. System failures can be used to evaluate system
failure modes. We have grouped system failures into three main categories that are expanded in
Figure 17:

• Failures to move/operate manipulator at all.
• Failures caused by inadequate performance. System can be used, but operations are slowed

down and/or risk level is increased.
• Failures caused by incorrect movements/operations. Use of system might be possible in

some cases, but at a very high risk level.

Figure 17. Remote handling system failure taxonomy

Control System Faults
The cause of an error is a fault [2]. Control system specific faults have been divided into four
categories which are expanded in Figure 18 on the following page:

• Hardware faults: problems with the hardware that the control system relies on.
• Operator function faults that lead to system failures (see previous section).
• Control faults: specifically related to control algorithms and their tuning.
• Disturbances: inability to take possible disturbances into account or operating in non-

nominal environment (e.g., temperature).



55

Figure 18. Remote handling control system fault taxonomy

In JET, controller failures (e.g., in Power PMAC motion controllers) were frequently solved with
controller restart or, in severe cases, a factory reset and reloading of the configuration file. Highly
decoupled system design enables application of this approach automatically and more granularly
if a node or service has crashed. Crashes can be detected, for example, with HEARTBEAT [11].
Module/node can be restarted with SYSTEM MONITOR [11] or SERVICE MANAGER [P5].

Software Faults
The range of possible software faults is considerable, so the taxonomy focuses in faults that are
most relevant or typical for RH systems (e.g., categories for configuration and command faults).
Software faults are especially interesting in the sense that they can be a potential source of
common-cause failures (failure of two or more systems/components due to a single cause), e.g.
due to a fault in the shared software platform [150]. The taxonomy for remote handling software
faults is presented in Figure 19 on the following page.



56

Figure 19. Remote handling software fault taxonomy

As an example of plausible software fault, parameters could be lost and recovered to default
configuration values. This kind of fault could cause incorrect movement failure and can be hard to
notice beforehand, unless taken into account in the design, for example, by using invalid or zero
values as defaults.

Software faults were not a major problem in the current JET RH system compared to downtime
caused by mechanical failures, although exact rate of software failures cannot be accurately
estimated as root cause analysis was not included in most of the logged failures. Dominance of
hardware failures is to be expected, since the current system has been in use for almost 20 years.
For example, based on the analysed logs, failure entries containing the string “arm crashed” have
gone from having over 100 instances in 1996-1999 to 3 instances in 2000-2013. This is a typical
failure in which the failure is reasonably likely caused by software. Naturally system updates
could introduce new faults and change the failure rate.

An Example of Using the RH Fault Taxonomies
The taxonomies can be used to identify critical components that need dependability assurance. For
example, incorrect movement is a severe system failure that can be caused by a fault in the C4G3

3 C4G is the control unit of the Comau Smart NM45-2.0 industrial robot used in this thesis. C4G service is
responsible for abstracting the interface for the control unit.
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service, as shown in Table 1. Furthermore, when analysing failure modes of a critical component,
such as the equipment controller or C4G service, the taxonomy can be used to identify
susceptibility of the component to specific faults and coverage of fault tolerance.

Table 1. Failure analysis with taxonomies

Unit C4G service
Failure mode Incorrect movement
Possible causes Logic fault, incorrect input, configuration fault, command fault
Detect with Human operator, VR collision detection, soft limits exceeded.
Action needed to take Fail-safe (emergency stop)
Mitigation
(arguments for the
dependability case)

Extensive testing, input assertion, use of invalid default values,
configuration validation with VR models, periodic command
validity checks, no caching of commands

5.2 Architecture and Prototype Implementation
The architecture described in the included publications builds on the Sulava RTSOA for embedded
heterogeneous machine control, introduced in a short paper [39] and demonstrated for hydraulic
boom control using a single box configuration in [38]. Sulava is a high level reference architecture,
originally designed for mobile machines. Key features of the architecture include the use of P2P
networking, microservices running as Xenomai tasks and communicating with local (LSB) and
global communication buses (GSB) that are implemented with Xenomai queues, shared memory
and DDS middleware. The Sulava architecture is used as a reference architecture for the concept
study design, implemented as an automatic teleoperation system based on real-time services for
use in ITER RH scenarios, as shown in Figure 20.

Figure 20. Role of reference architectures for the implemented architecture

The concept design was extended with service management to provide fault detection and
recovery. The detailed design (final design in the research methodology, see Section 1.4) focused
especially on adding and implementing fault tolerance features. For the detailed design, input
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device controller (IDC) was also implemented to provide bilateral teleoperation mode for manual
operation. The architecture prototypes were evaluated after each phase using deployment to
distributed and heterogeneous environment, which was not part of the original Sulava architecture
research.

5.2.1 Concept Design and Target Platform
The concept design based on the Sulava RTSOA reference architecture was planned and
implemented as a prototype to evaluate benefits of service-orientation in CPSs. This was carried
out using automatic operations with OMS and VR as described in the publication [P3]. The
implementation used the 6 DOF Comau Smart NM45-2.0 industrial robot as a test platform, which
was also used in the papers [P4] and [P6]. The robot is equipped with an open control system
option “OpenC4G” which enables an external PC to participate in the low-level control of the
manipulator joints, essentially enabling PC-based control from outside of the manipulator’s own
C4G control system. OpenC4G comes with a library for RTAI Linux, which was ported to Xenomai
in order to use it on the standard platform of the RTSOA. The OpenC4G extension supports
several modes of operation, in which the PC provides position, velocity and/or current
contributions to affect target position and velocity control loops in the joint space. Position and
velocity control mode of joints was used, in which the PC provides the absolute target position for
each joint.

OMS is used to provide Cartesian target position and orientation for the robot end-effector in the
operational space. In order to move the manipulator to the target position, the inverse kinematics
problem must be solved in order to calculate the corresponding joint space values [151]. OpenC4G
control modes, Denavit-Hartenberg parameters, forward and inverse kinematics for the
manipulator are given in Appendix C.

Inverse kinematics are calculated in the TrajectoryGenerator service, which generates the desired
position ݔ ref and trapezoidal velocity profiles ݔ̇ ref for each joint according to the specified
acceleration profiles, based on the movement command received from OMS through the GSB.
Position and velocity reference values are provided constantly in real-time to the C4G service
through the LSB as the TrajectoryGenerator runs through the trajectories. Trajectory generation
and reading of trajectory commands from GSB are separated into two services (OmsCom and
TrajectoryGenerator) in order to ensure real-time performance of the trajectory generation. Finally,
position of the manipulator is updated constantly to the GSB for the subscribed nodes—such as the
VR system which is used to visualize the position of the robot—through another GSB
communication service C4GJointDataPublish. A full deployment diagram of the services is
provided in the following section.

As noted in the beginning of Section 5.2, starting point for the architecture development was the
Sulava RTSOA reference architecture, which was further developed and implemented for the
RHCS, focusing especially on the fault tolerance features of the architecture. OmsCom,
C4GJointDataPublish, VR subsystem (including IHA3D integration with a DDS plugin) and OMS
subsystem were implemented by the IHA personnel, whereas concept design, implementation of
the Service Manager and C4G service and the adaptation of TrajectoryGenerator service were
carried out by the candidate.



59

Figure 21 shows the class diagram for the C4GJointDataPub service to demonstrate the practical
implementation of the service concept. The service class is derived from the abstract base class
EskoaService and uses the JointDataGSB class to implement GSB communication. In the current
implementation, the logic related to the service manager is included in the service main function.
Services are implemented as autonomous processes which can be executed as applications or
forked by a parent process, as in the case of service manager. Typical service sizes in the
implemented RH system were approximately 1000-1500 lines of C++ code, which includes
boilerplate code for encapsulating DDS, basic service logic, state management, etc., but not auto-
generated DDS code or other libraries.

Figure 21. Class diagram for the C4GJointDataPub service (key: UML)

Based on the analysis of the quality attributes of interoperability, evolvability (focusing on
changeability, extensibility and portability), real-time performance, fault tolerance, cost efficiency
and ease of development, the implementation successfully demonstrated integration of
heterogeneous subsystems with the service-based control system. Patterns DATA-CENTRIC

ARCHITECTURE,  SERVICE MANAGER and  LET IT CRASH were published first as a conference paper
and later in [P5], based on the development of the concept design. The latter publication includes
the pattern language for fault tolerance for CPSs, showing one possible way to combine these
patterns with other fault tolerance patterns to support the development of dependable CPS
designs. Short descriptions of patterns are provided in Table 2 on the following page.

C4GJointDataPub

- jointdatagsb  :JointDataGSB*
- que_ui_joints  :RT_QUEUE
- que_ui_joints_ref  :RT_QUEUE

+ init()  :void
+ init(char*)  :void
+ reset()  :void
+ run()  :void
+ step()  :void
+ stop()  :void

EskoaService

+ init(char*)  :void
+ init()  :void
+ reset()  :void
+ run()  :void
+ step()  :void
+ stop()  :void

JointDataGSB

+ ini t()  :boolean
+ read()  :boolean
+ write()  :boolean

C4GCon service object
is created in the service
main() and passed as a
void* cookie to the
Xenomai RT task
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Table 2. Patterns and descriptions

Pattern Description
DATA-CENTRIC
ARCHITECTURE

How to implement a reliable and scalable
distributed control system? Build the system from
autonomous modules that communicate by sharing
data that is based on a well-designed and consistent
data model.

SERVICE MANAGER How to detect faults and restart modules or
processes after a failure? Implement a service
manager that can monitor, start and stop the
modules.

LET IT CRASH How to react to failures without crashing the whole
system? Terminate the process if it has failed in
order to detect failures quickly, instead of trying to
handle the fault. Processes must be designed to
tolerate failures of other services. Terminated
process can be recovered, for example, by
automatically restarting it.

5.2.2 Control System Architecture Design Description and Verification
Based on the promising results of the concept design, fault tolerance capabilities (especially the
service manager, heartbeats, fault detection and fault recovery) were refined for the next
deliverable of the GOT-RH systems engineering process, the control system architecture design
description (detailed design). Improved fault tolerance capabilities were analysed in [P4]. To
provide a more thorough estimation of overhead, scalability, fault detection and recovery
capabilities of the service-based approach, the prototype RH system was extended to support
bilateral teleoperation with a 6 DOF haptic device Phantom Omni. The results are presented in
[P6], which also includes a more detailed description of the architecture. This section presents
evaluation of the applied fault tolerance methods and their effects, and levels of safety, service-
orientation, real-time performance and computing overhead achieved.

Position-position bilateral teleoperation architecture was chosen to provide haptic feedback for the
operator. Position of the master device (Phantom Omni) is used to set the target position for the
slave device (Comau) and the position of the slave device is used to generate force feedback for the
master device (i.e., manipulators track the positions of each other). Position-position control was
chosen because it is straightforward to implement and requires no additional expensive force
sensors, although it has limited transparency (sensing of the remote environment) [152]. Because of
the large size difference between the manipulators, forces and positions are heavily scaled.
Furthermore,  Phantom  Omni  only  has  3  DOF  force  feedback,  providing  no  torque  for  the  wrist.
Although these limitations affect usability of the manipulator in delicate manipulations, the setup
nevertheless provides a demanding environment for testing of the fault tolerance capabilities.
Extending the system to support more advanced bilateral teleoperation architectures is fairly
straightforward, for example, by installing a force sensor to the slave manipulator’s end-effector
and publishing force measurements to the GSB.
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Figure 22 above shows the complete service deployment view with both OMS and IDC deployed

Figure 22. Full service deployment diagram (cf. Figure 23 in Appendix A)
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at the same time. The figure also shows the principle for integration of the CAT subsystem as a
service to demonstrate extensibility of the platform. IDCom and InputDeviceController services
were implemented by the author—previous services were re-used without needing further
modifications, besides the improvements to the fault tolerance-related functionality.

Results published in [P6] indicate that RTSOA is suitable for implementing CPSs by providing
sensors, actuators, state estimation and control processing as services. The architecture supports
extension of the system by introducing, for example, force sensors or new input devices (master
arms or joysticks) in a straightforward manner, as they could be integrated with the system
directly through existing interfaces (i.e., GSB topics and LSB queues).

Focus of the development was on the fault tolerance aspects, including analysis of how services
should react in the case of failures—e.g., not receiving data inside the deadline—without cascading
failures, but still triggering fail-safe functionality correctly. This was implemented so that services
move to a fail-safe waiting state (starting state in [P6]) if all dependencies are not available,
whereas a separate error state is used in the case of errors (and which may be used to terminate
service in the case of let it crash error handling), as described in [P6]. Therefore, the architecture
can be considered to use fail-stop approach [153] on the service level, while recovery is done on
best-effort basis.

Best-effort reconfiguration differs from the typical reconfiguration algorithms used in real-time
systems which aim to provide deterministic reconfiguration capabilities, such as those covered in
Section 3.4.2. Best-effort approach is used because deterministic behaviour cannot be guaranteed in
service failure situations and also because of verification of service real-time properties before
deployment for heterogeneous and dynamic CPSs is challenging. In best-effort recovery, service
failure scenario actually uses the same logic when the system is initialized or a service is upgraded
on-the-fly. Other services react to the missing service as a normal failure situation (dependency not
available) and resume operation after the upgraded or recovered service is running and available.
As an example, if a communication service detects a fault and moves to the error state, the service
manager chooses what action to take based on the escalation level and, for example, restarts the
service. As shown in [P4], if the service restarts before any deadlines are exceeded, other services
do not need to take any action. On the other hand, if any deadlines are exceeded, other services
will move to the starting state to wait for their dependencies.

The fault handling approach had two primary goals, to avoid failure on the system level and to
improve mean time to repair (MTTR) by rapid recovery in order to maintain system level
availability. Methods applied to achieve these goals included automatic restarts and escalation,
configurable through the service manager. Fault handling is escalated after a specified number of
faults have been triggered (detected using e.g. missing heartbeats) through fault handling levels of
soft and hard service restarts, switching to a backup service and finally a complete removal from
execution. The approach of recovering faults with restarts aims to restart only the necessary part of
the system to reduce impact on the availability of the system. As the restarts are applied on the
service level, impact depends directly from the service granularity.

Effects of the employed fault tolerance methods are evaluated in the Table 3. From the
dependability-related attributes, reliability and availability can be improved with fault detection
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and recovery mechanisms, but effects on safety are analysed separately. Effects on the resilience of
the system are evaluated as a whole with one column. For example, service manager enables
detection and recovery of failed services, but can be considered to be a SPoF. Service manager
improves resilience by providing a tool for managing a large number of services, but also adds
more complexity and a potential external risk for the services. From a pure safety perspective,
many of the methods providing partial level of functionality can be seen as risks, since they
introduce uncertainty to the system, albeit for the benefit of resilience.

Table 3. Fault tolerance methods and their estimated effects (‘+’ positive effect, ‘-‘ negative effect, ‘o’ neutral)

Method Fault detection Fault recovery Safety Resilience
service manager ++ ++ - (SPoF) +/-
heartbeat ++ o ++ o
resource monitoring + o + +
loose coupling +

(locating the fault)
o +

(limit
propagation)

++

fine-grained
recovery

+ + +/- +

let it crash + o + o
hot standby o + - +
escalation o ++ - +
switch to fall-back
service

- + - +

switch to alternative
service composition

o + - ++

fail-safe + o + -

Evaluation of other design criteria, performance, service-orientation and safety [P6]:

· Computing performance—small overhead for service management (estimated 5-10%,
around 5% for the prototype with the bilateral teleoperation service composition active
[P6]). Performance gains can likely be gained on multi-core CPUs due to the possibility to
execute services in parallel (Amdahl’s law).

· Real-time performance—although 100% real-time performance for networked
communications cannot be guaranteed, GSB and LSB communications enable monitoring
of the deadlines inside the services. Therefore, services can react accordingly and move to
the fail-safe state if necessary. In practice, system performs without spurious safety trips.

· Service-orientation—the proposed architecture generally adheres to service-orientation
principles (see Principles of Service Design by T. Erl [154] and [P6]), but when part of a
composition, the services participating in a control loop are typically not stateless,
especially in robotic or machine automation applications in which machinery cannot be
allowed to simply start along with the services. Instead, services can utilize state machines
to facilitate equipment initialization, safe state, possible simulation modes and controlled
transitions to operational mode. Use of hierarchical state machines enables composition of
states, which may be necessary to facilitate different control mode combinations.
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· Safety—in case of a failure, caching of commands is not desirable as late commands
become potentially hazardous.  The physical world state could have changed before the
command activates, resulting in unexpected behaviour. Caching may also lead to a burst of
commands when service becomes available after recovery. Middleware QoS parameters
can be used to control behaviour of safety-related data and commands. For example, in
DDS with reliability (reliable vs. best effort), history (keep last n samples), ownership
(exclusive vs. shared), liveliness of publishers, etc. Generally, fail-silent response is
preferred over stale data, default values or “best guesses” for CPS applications, making
faults visible fast and in a predictable manner.

5.3 Summary of Papers
In this section the included publications are summarized. The candidate is the main author in all
included papers, responsible for planning and writing them. A list of related publications in which
the author of this thesis is either the main author or a co-author is also presented.

Included Publications
[P1] discusses the current best practices and fault prevention, tolerance, removal and forecasting
methods for building dependable systems. An approach for the development process of
dependable systems based on systems engineering principles is proposed, with the goal of
combining dependability and systems engineering approaches. Related research question: Q1.

[P2] considers  the  role  of  software  in  RH  system  dependability  and  compares  it  to  the  risk
management codes and processes, which in the case of ITER seem to overlook software aspects of
systems. The paper analyses practices for developing dependability-related requirements and
considers the role of safety-critical functions and their effect on software requirements and
architecture. Related research question: Q3.

[P3] presents the concept design derived from the Sulava RTSOA and the evaluation of its
prototype implementation in order to assess the benefits of data-centric approach to service-based
system development for CPSs. Fault tolerance based on heartbeat, resource limits, let it crash
approach and service manager is proposed to demonstrate the capability of the architecture to
support cost-efficient fault tolerance solutions. The paper demonstrates viability of the architecture
for a heterogeneous and distributed system with real-time requirements. Related research
questions: Q2, Q3 and Q4.

[P4] analyses the fault tolerance mechanisms of the architecture in the concept design (i.e., fault
detection and recovery mechanisms in a loosely coupled system). The approach is based on
isolating and recovering the faults on a service (or component) level. For transient faults, restarting
the failed unit can be an effective strategy. The fault tolerance capabilities of the architecture are
extended and implemented into the prototype (e.g., action to be taken on a service failure). Related
research questions: Q5 and Q6.

[P5] presents three software patterns for improving control system dependability with light-
weight fault tolerance and decoupled design. The patterns are DATA-CENTRIC ARCHITECTURE,
SERVICE MANAGER and LET IT CRASH. In order to show how the patterns fit the gaps in the existing
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pattern literature and how they address CPS-specific needs, a pattern language for fault tolerance
in CPSs is also outlined. Related research questions: Q5 and Q6.

[P6] empirically evaluates the approach described in the previous papers by extending the
prototype to use a 6 DOF input device with force feedback (bilateral teleoperation). The prototype
is extended to support fault detection based on exit signals and service status updates, and fault
handling based on fault escalation, including switching to a backup service. The evaluation results
show that the service manager can successfully detect failed services with all implemented
methods without significant overhead (around 5% CPU usage for the test scenario). Fault handling
and recovery is tested with all implemented methods as well, including recovery of a critical
service participating in a closed-loop control running at 500 Hz. Based on the results, services can
be recovered without cascading failures and can, therefore, function as units of fault isolation.
Related research questions: Q6 and Q7.

Related Publications
The author has been the main author or a contributor for the following publications that are
related to the topic of this thesis, but have not been included:

Pekka Alho, Jouni Mattila, Antti Hahto, and Liisa Aha, “Planning of Dependable Remote Handling
Control System Architecture for ITER”, Proceedings of the European Nuclear Young Generation
Forum 2011 (ENYGF), May 17-22, 2011, Prague, Czech Republic. http://urn.fi/URN:NBN:fi:tty-
2011061714709

Pekka Alho and Jari Rauhamäki, “Patterns for Fault Tolerant and Cost-Efficient Design of
Distributed Control Systems”, Proceedings of the VikingPLoP 2013 conference, April 21-24, 2013,
Ikaalinen, Finland. http://URN.fi/URN:ISBN:978-952-15-3167-5

Janne Tuominen, Mikko Viinikainen, Pekka Alho and Jouni Mattila, “Using a Data Centric Event-
Driven Architecture approach in the integration of real-time systems at DTP2”, Fusion Engineering
and Design 89(9–10) 2014, pp. 2289–2293, Elsevier.
http://dx.doi.org/10.1016/j.fusengdes.2014.04.040

Mikko Viinikainen, Janne Tuominen, Pekka Alho and Jouni Mattila, “Improving the performance
of DTP2 bilateral teleoperation control system with haptic augmentation”, Fusion Engineering and
Design 89(9-10) 2014, pp. 2272-2277, Elsevier. http://dx.doi.org/10.1016/j.fusengdes.2014.04.045

Pekka Alho, “Data-centric middleware: Data Distribution Service (DDS) for real-time systems”, in
Veli-Pekka Eloranta, Johannes Koskinen, Marko Leppänen, Ville Reijonen, “Designing Distributed
Control Systems: A Pattern Language Approach”, 2014, pp. 44-47, Wiley.

http://urn.fi/URN:NBN:fi:tty-2011061714709
http://urn.fi/URN:NBN:fi:tty-2011061714709
http://urn.fi/URN:ISBN:978-952-15-3167-5
http://dx.doi.org/10.1016/j.fusengdes.2014.04.040
http://dx.doi.org/10.1016/j.fusengdes.2014.04.045
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6 Summary and Discussion

6.1 Summary
Residual faults, including faults showing intermittent behaviour, are unavoidable in complex,
large-scale CPSs, such as ITER RHCSs, that are expected to provide dynamic functionality. A
control system failure could lead to an equipment breakdown and a loss of operation time,
affecting the operations of a whole plant. However, the use of fail-operate fault tolerance is not
economically viable for these systems and cannot protect against common-cause failures.
Moreover, an RH system consists of a wide range of heterogeneous subsystems, necessitating a
high level of interoperability and an ability to adapt to changes in the computing environment (i.e.,
resilience). Flexibility and reusability are needed to improve the cost efficiency of large-scale
systems with long lifecycles. These goals are supported through modular architecture and open
platforms.

The main goal of this thesis was to develop a fault-tolerant control system architecture based on
the requirements of the ITER RH systems. To achieve this goal, the thesis presents an approach for
building resilient CPSs using fault tolerance based on loosely coupled architecture and diversity.
The resilience is achieved by relying on the properties of the service-oriented architectural style, a
real-time capable computing platform and a dedicated communication middleware. The
architecture has been designed to meet the needs of interoperability and the timely dissemination
of data in open environments. Each software module used within a CPS is considered to be a
service, which:

· communicates with other services by means of well-specified service contracts over peer-
to-peer communication buses, with support for real-time communication;

· can be in a specific state, such as stopped, started, running or error;
· can receive a set of commands (e.g., start, restart, stop) for managing its state within the

whole life cycle; and
· cannot make assumptions about the availability states of other services.

By utilizing bus-based communication, a set of generic services, called service managers, can
control the lifecycles of all services within the nodes and can be used to manage compositions and
to start, restart and stop services within the CPS.

This thesis has evaluated and discussed the management of fault tolerance within a service-
oriented CPS based on a prototype implementation of the described architecture. The proposed
approach builds on the concept of a service as a unit for managing fault isolation, transient fault
detection (via a combination of heartbeat and resource monitoring at run-time) and transient faults
recovery (via a system of fault escalation levels). This approach has been demonstrated in practice
via an empirical evaluation performed in the context of a project in the area of remotely operated
robots. The performed experiments show that the let-it-crash approach, based on terminating and
restarting services, can support real-time, service-based fault detection and recovery.

Applying fail-operate fault tolerance or software development according to the rigid
recommendations given in safety standards may not be economically viable within the scope of
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CPSs, which typically are dynamically changing systems of systems. A systems engineering
approach is, therefore, essential for building dependable CPSs; moreover, to support
dependability, other means besides fault tolerance were also considered. In particular,
dependability assurance through the building of a dependability case was seen to be a promising
approach for describing and amalgamating various methods to achieve dependability in the
context of systems engineering. The systems engineering approach presented in this thesis to
achieve dependability for CPSs presented includes:

· Fault forecasting: fault and failure taxonomies for RH.
· Fault prevention: the role of safety-critical requirements and modules considered, support

for dependability case development.
· Fault tolerance: loosely coupled architecture supporting fault tolerance patterns, fault

isolation and fault recovery.
· Fault removal: V&V and run-time assessment using virtual 3D models (or simulated

plants).

A dependability assurance approach would enable developers to focus on providing evidence for
the critical parts of the system, which would be essential for the cost-efficient development of
mixed-criticality systems. Key factors for using such an approach, as identified in this thesis,
include the identification of critical subsystems and modules and a focus on the V&V efforts on
these components, including software requirements and demonstrations of software dependability
and safety (i.e., evidence-based assurance). Moreover, there is a need to improve the resilience of
these systems so that they can dependably function as parts of future large-scale, interconnected
and evolving information infrastructures [13]. To support dependability and resilience, this thesis
has illustrated how to use a systems engineering approach to building dependable CPSs—that is,
open and interconnected systems that control physical plants—in the specific context of RH
systems. This approach is combined with fault tolerance solutions that support intrinsic system
resilience through modularity, loose coupling and diversity.

In order to take into account the systems engineering oriented dependability approach, the results
are presented as a systems engineering approach. The approach is not intended as a development
process to follow to be followed, but rather to show how the proposed approaches, COTS
components, reuse of components, quantitative and qualitative reliability analysis for software,
verification using VR models, etc. fit into the general systems engineering processes and enable
integration of fault tolerance approaches to system development.

6.2 Validity
It  is  important  to  discuss  the  generality  of  the  results,  since  the  research  was  carried  out  in  the
specific context of ITER RH systems. For the results to be applicable to CPSs, ITER RHCSs must be
accepted as CPSs; argumentation supporting this point is presented in Sections 1 and 4. RH is a
very specific domain, which is why this thesis chose to focus on CPSs in general. The results in this
thesis have been obtained using a constructive research methodology, which emphasizes the
building and evaluation of artefacts. The major contributions in this thesis, therefore, are related to
fault tolerance and software architecture; the systems engineering perspective is used primarily to
link the gained knowledge to the existing. To these aims, this thesis has analysed the use and
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performance of the architecture, methods and models in order to understand, explain and improve
the design of CPSs, which represent a significant development trend for embedded real-time
systems in general. However, it should be noted that no statistical data analysis has been
performed on the results presented in the papers.

The applicability of the results is analysed in relation to the scope of CPSs, since the research
focuses on solving problems encountered when developing and applying a service-based
architecture with real-time requirements set by interactions with physical processes and the
environment. In a sense, the specific control task the services are carrying out does not affect the
basic needs for dependability and resilience; thus, the choice of architecture and design decisions
are made based on the balancing of forces for a specific application. This is also reflected in the
patterns identified in [P5].

As pointed in the review of the state of the art, the fault tolerance capabilities of SOA—especially
RTSOA—represents a gap in the existing knowledge, and the publications in this thesis provide
evidence for the applicability of the service-based approach to building resilient CPSs. Further
research is needed to verify the generality of the results by comparing them to another
implementation (based on, for example, a robotic framework), even though the applicability of
such results would be limited by the environment and skill factors.

Instead of developing domain-specific frameworks or protocols, an approach utilizing generic
COTS and FOSS components was used to maximize interoperability and to obtain a compromise
between dependability and affordability. The dependability of these components is based on the
“proven in use” argument, which can be applied to the dependability case; however, this factor
was not extensively researched (i.e., a complete dependability case for the RTSOA-based RHCS
was not developed).

Simulations (e.g., VR IHA3D and CAT) enable the safe testing of advanced functionality and
failure modes, such as incorrect movement on contact or near singularities. Loosely coupled
services support V&V of individual services and service deployment integration testing. Such
testing can be carried out with VR models (as in the case of the developed prototypes) or with
simulated plant models (e.g., by changing a robot service to a mock version that simulates the
manipulator). However, in empirical evaluations using VR models, some functionality related
directly to the physical properties of the plant (e.g., force sensing on physical contact), cannot be
fully tested with simulations. Finally, prior verification of all possible service chains and
combinations may not be possible due to the number of potential combinations, which means that
testing new service compositions is still a potential issue, if this step is not included as part of the
normal testing and deployment process.

The objective of this thesis was to develop of cost-effective practices for dependable and resilient
designs for CPSs. Although the cost efficiency of the contributions is a subjective matter that
depends on context (e.g., downtime costs vs. development costs), some reasoning for why the
presented results might prove to be cost-efficient in actual use has been provided. Modularity does
not require extensive development costs the way that diverse redundancy does, and it supports
several system quality attributes related to evolvability, such as maintainability and scalability.



70

The Sulava reference architecture has been used in [38] and [39] for embedded machine control.
The research in this thesis extends the fault tolerance capabilities and carries out an empirical
evaluation with the RH system, using different operation modes and heterogeneous subsystems.
Although the system can be considered to feature typical CPS challenges, the author does not
claim that the results can be generalized to all CPSs. Rather, the research shows the viability of
using a loosely coupled architectural model for implementing fault tolerance and improving
system resilience in timing-constrained CPS scenarios with non-deterministic service recovery. The
goal was to prove that an approach based on loose coupling and modularity could be extended to
build dependable and resilient real-time systems. Some tasks in CPSs have significantly more
relaxed timeliness requirements—and can use, for example, Web services to implement the SOA
model—whereas some tasks have strict hard real-time requirements, necessitating solutions with
verifiable real-time properties.

Limitations
Fault taxonomies are RH-specific, based on data collected from a single facility over a long period
of time (over 10 years). Dependability case development using the systems engineering approach
has not developed empirically. The presented approach is based on research into dependability
and safety cases, research in [P2], and experiences from the GOT-RH program. The systems
engineering approach is not a new, scientifically evaluated result; however, it shows how the
results of this thesis fit into the overall field of dependability in CPSs.

Communication and real-time determinism have been empirically evaluated and rely on proven
algorithms; however, the automatic configuration or verification of real-time properties is not
supported. The design has not been formally verified, since formal verification for this kind of
system is not feasible due to the large number of external dependencies. Some parts of the work,
such as state models for services, could be used together with formal verification methods and
code generation in the future, while formal methods are generally straightforward to integrate into
a dependability case.

The architecture described in this thesis has not been developed to implement safety functions.
Such functions are theoretically feasible, if implemented with safety-certifiable middleware4 and
operating systems, but the evaluation of the cost efficiency of such an approach is beyond the
scope of this thesis. Moreover, some of the proposed functionality may not be desirable in safety-
critical systems. For example, dynamic reconfiguration is not recommended on SIL 2 or higher in
the IEC 61508 [41].

One of the goals of this thesis was to design a system that was recoverable against any SPoF. The
architecture presented in this thesis enables the use of real-time services as units of fault
containment and recovery, and the system can be operated with diverse operating modes and
subsystems. However, the architecture cannot guarantee the fault isolation of services, since a faulty
service could crash a whole node or send erroneous messages to other services. The service
manager, EC and some services (e.g., C4G) are SPoFs in the prototype system that require

4 For example, TwinOaks offers CoreDX DDS—SE Safety Critical Edition, although this is aimed at the DO-178B
aviation-related certification.
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dependability assurance, but services can also be operated independently without the service
manager, enabling a true “peer-to-peer” architecture with no SPoF. An obvious downside to this
approach is a lack of service composition management, which results in the need for other release
automation and management tools.

Self-adaptation can be used to build resilient systems that can adapt to a variety of situations,
including environment changes and faults. A self-adaptive system will change its behaviour and
structure without human intervention. For example, the automatic loading of a backup service can
be considered to be a limited form of self-adaptation. The automatic loading of alternative service
compositions would also be a potential approach to self-adaptation; however, this raises some
questions about the dependability of such a system. This would be an interesting topic for further
research—however, in the current form, no extensive self-adaptation capabilities are claimed.

6.3 Discussion
In the beginning of this thesis, four software failure cases relevant to CPSs were analysed. Software
complexity, common-cause failures, and communication among software modules (and, thus, fault
propagation) are all major challenges for CPSs. Systems must be evolvable, recoverable and robust
against incorrect data. Modularity supports dependability through the separation of concerns,
limiting fault propagation and enabling the flexible use of fault tolerance patterns; for these
reasons, an approach based on the development of a loosely coupled, real-time capable
architecture was chosen for this research. However, for CPSs, dependability is not sufficient to
describe the requirements that these systems must fulfil. This thesis argues that resilience is also a
key requirement for CPS, since there is a need to make systems more robust to unexpected
changes. In order to implement resilience with diversity-based fault tolerance, the design of the
system should be modular and loosely coupled. To achieve this goal, the research proposes and
empirically verifies an RTSOA in a critical real-time application built through the reuse of existing
and COTS software and hardware to develop an open platform. The developed open RTSOA has
been designed to support the rapid prototyping and verification of control system components,
such as force sensors, master arms, control algorithms, etc.

A publish-subscribe, data-centric communication based on real-time microservices has been used
to achieve a fail-safe and recoverable system. The publish-subscribe model removes direct
references from modules, whereas the data-centric communication makes the data payload
“visible” to the middleware, enabling the application of advanced QoS policies based on, for
example, the urgency of the data compared to message-based communication. For the sending of
commands, procedure calls provide a convenient way to ensure that commands and requests are
addressed (i.e., carried out). In a data-centric communication model, this is directly possible;
however, status updates can be published that reflect the effects of the received commands. If no
data are published, the sender of the command should presume that the service is in an incorrect
or non-active state.

The service-based approach enables teams to choose the internal architecture of the service and
implementation tools based on their expertise and on the specific needs of the task. This may result
in a need to support a wide range of platforms; however, on the positive side, small and loosely
coupled services are straightforward to replace. The obvious trade-off points include possible
restrictions based on safety (e.g., limitations related to applicable tools and environments) and the
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verification of new service compositions. Therefore, service development benefits from the use of
supporting methods (e.g., test-driven development [155], deployment automation or DevOps). The
key point is that the service-based approach supports utilizing the expertise of development teams
and integration of various services/subsystems developed by different teams into a single
system—a benefit that may support the development of large systems, such as the ITER RHCS.

On the other hand, the SOA design principle of loose coupling conflicts with the requirement for
time-bounded operation in CPSs. Automatic service contract negotiations between service
provider and consumer require knowledge of timing properties in order to decide whether an
acceptable level of QoS can be provided, thereby introducing a level of coupling between the
provider and consumer. In the approach used in this thesis, this question is left to the developer.
Similarly, the dynamic discoverability and composition of services would not currently be
admissible in safety-related systems.

Regardless of its benefits for the development of distributed systems, SOA is not a “silver bullet”
that will solve the integration of heterogeneous nodes in IoT. The diversity of such applications is
huge, and the requirements related to security, reliability, costs, performance, power, etc. can differ
significantly from one application to another. Although the success of the Internet can be
attributed to its compatibility, which is achieved through IP-based technologies and the relative
simplicity of protocols, the Industrial Internet may not necessarily have such a convergent
technology path. IP communications provide a common basis for the Industrial Internet, but there
are many different approaches, protocols and platforms available, especially on the upper stack
levels. Since many of these technologies are complementary, serving different requirements related
to energy efficiency, deterministic communication, etc., there may be no single “winner”. This
reality may be a strength, in that it will provide suitable solutions for applications with different
needs, or it may result in a highly segmented, domain-specific IoT. In such a case, there will be a
need to support several protocols for different communication purposes to ensure sufficient
flexibility of communication.

6.3.1 Cost Efficiency
One of the main benefits of the SOA approach is that the system can be cost-effectively evolved by
using existing services to implement new tasks. This thesis used SOA design principles to develop
a service-based architecture suitable for CPSs, enabling the reuse of existing software “as is” or
with minor modifications. This service-based approach makes the system flexible to adapt, for
example, from automatic teleoperation to manual teleoperation (i.e., a change from [P3] to [P4]) or
to interface with subsystems. Further changes, such as the introduction of force sensors to the
system, should be straightforward, although such changes were not conducted within the scope of
this thesis.

The results of this thesis indicate that a loosely coupled and modular design can support a resilient
CPS. However, these same features also support an evolving system. Therefore, it appears that
these features have a high level of synergy for the building of CPSs.

To summarize, solutions supporting cost efficiency in this thesis include:
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· Interoperable architecture, which supports choosing the most applicable and cost-efficient
alternatives available for each service and subsystem. Services can be developed utilizing
suitable tools and the special expertise of the development team.

· An autonomous nature of services, which facilitates relatively independent development
by separate teams.

· Resilience based on the intrinsic features of architecture, utilizing diversity and proven-in-
use services as backups.

· Modular applications that share expensive and/or limited resources and peripherals,
including RH work cells and master arms.

· Support for the reusability of existing services and special software subsystems (e.g., CAT,
OMS, VR, etc.).

· The use of open, off-the-shelf communication solutions (e.g., middleware) instead of
proprietary, in-house development.

· The flexible use of patterns to utilize existing design knowledge.

6.3.2 Patterns
SERVICE MANAGER together with loosely coupled services provides fault tolerance and enables the
management of services (e.g., deployment, fault detection and recovery). SERVICE MANAGER

answers the specific needs of CPSs by providing an automated approach to the management of the
system state through services and the monitoring of overall system health. The number of services
running  on  a  deployed  CPS  could  range  from  a  few  to  hundreds  per  node,  depending  on  the
service granularity. For an autonomous system or a system deployed in remote locations, response
time for a human operator (or a system administrator) in transient failure situations could lead to a
loss of production time, particularly in cases of numerous services.  SERVICE MANAGER solves the
problem of manually managing a large number of services by minimizing human intervention.

LET IT CRASH, on the other hand, approaches the dependability and resilience problem from the
service point of view, seeking to stop the propagation of errors to the service interfaces. In a way,
the service leaves the responsibility of reacting to a failure to other parties. This not only leverages
the strength of loose coupling, but also increases this strength. Naturally, this pattern is not
mutually exclusive with the normal practice of checking for errors and exception handling (i.e.,
defensive programming). LET IT CRASH can be also said to support the fail-safe functionality of a
safety-critical system, since it aims to expose faults rapidly and in a well-defined manner, rather
than through more complex, out-of-specification failures.

The LET IT CRASH and  SERVICE MANAGER patterns are forms of temporal redundancy that do not
require redundant hardware or software. Instead, they require time for the code to re-execute. This
approach is identified as a cost-efficient solution in [51]. Embedded systems that typically have
hard real-time constraints are not usually considered to be well-suited for this type of fault
tolerance; however, based on empirical results, a suitable architectural design can mitigate some of
the drawbacks.

6.3.3 Benefits
CPSs present a type of system for which dependability is critically important. Since this software
has the power to directly affect and alter the physical world, the consequences of faults can be
costly. Due to the interaction between software and the physical world, the systems engineering
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approach, which aims to combine different engineering disciplines, becomes even more important,
particularly when pursuing safe system design and integrating software modules into system
design processes, which commonly neglect any software reliability aspects beyond the safety-
related parts of a system (as in the case of the ITER RAMI process) [P2].

Overall, CPSs represent an important part of the on-going digitalization trend. Commonly
mentioned examples of applications of the IoT include preventive maintenance, remote operation
and system optimization to save energy; however, digitalization also has the potential to open up
completely new business models and methods of interaction with the physical world through
control systems. Although CPSs may not necessarily support a “connect everything” attitude, an
open and flexible architecture is a prerequisite for supporting this development. Such an
architecture enables rapid responses to changing markets and customer demands, whether this
involves the integration of a new type of manipulator into fusion reactor remote maintenance
systems or the reconfiguration of a factory production line.

The use of RTSOA enables a system to be built out of loosely coupled and fine-grained services
that  focus  on  accomplishing  a  single  task  well.  The  resilience  of  the  loosely  coupled  software
architecture provides a flexible platform for implementing fault tolerance techniques, such as
defence in depth and diversity, thereby providing a complementary approach to testing and
development process-centric techniques. SOA fault tolerance is already utilized in practice by such
companies as Netflix5, which seek to build systems that are prepared for inevitable failures. Loose
coupling furthermore supports the integration of simulations or VR models into systems to enable
fast prototyping and early concept validation.

Benefits of this research include the evaluation and development of the RTSOA for embedded
machine control, which provides a basis for implementing future research projects that require an
open platform that supports rapid prototyping. These experiments prove the viability of using
microservices in mission-critical real-time systems. Since humans can only consider a limited
number of things at a time, decoupled and small units improves understanding and increases
system maintainability and evolvability. Another potential benefit of building a system out of
small, independent services is support for rapid experimentation with various solutions that
combine diverse platforms, although this requires more effort in creating, collecting and utilizing
data in smarter and finely grained ways. The proposed RTSOA model, which is based on a well-
defined information model as a basis of communication, adds another layer of support to system
evolvability. First, the hardware and computing environment can be changed, since services are
not configured or verified to be dependent on these factors. Second, the individual services can be
replaced in a straightforward manner, since new services only need to comply with the
information model and with possible requirements for deterministic communication. This enables
the rapid development of the architecture and its service prototypes, according to lean principles.

5 See http://techblog.netflix.com/2012/02/fault-tolerance-in-high-volume.html
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6.4 Research Questions Revisited
These research questions were originally presented in Section 1. They seek to explore and further
explain the broader question of how to achieve dependable system operations in open computing
environments with CPSs.

Q1: What methods and practices are used to achieve dependable designs for control system
software?
A systems engineering approach can be used to support and provide fault prevention, fault
tolerance, fault removal and fault forecasting methods to achieve dependability. A systems
engineering approach can also be used to collect evidence for a dependability case that can support
the dependability validation of the software.

Q2: How can CPSs be designed to provide service, regardless of faults—and, especially, how
can fault tolerance be implemented without the extensive use of diverse redundancy?
Loosely coupled and modular architectures based on services support the recovery of faults
without diverse redundancies. Single faults can still cause system failure in service-based systems;
however, the fault can be isolated and recovered or circumvented through the use of alternative
services or service compositions, utilizing diverse operation capabilities. Therefore, the fault
tolerance implementation still uses both diversity and redundancy—which are, after all, integral
parts of fault tolerance. The difference is that, instead of creating multiple redundant and diverse
versions of the whole application, these approaches can be applied in a more fine-grained, lean
manner on the service level.

Q3: What requirements for system dependability exist for RH systems? How can architecture
support the implementation and verification of these requirements?
A key requirement is the identification and separation of critical services and subsystems from the
non-critical. Other identified requirement categories involve dependability and resilience
objectives (i.e., responses to undesired or unexpected events), operation modes, timing
requirements, operational profiles, resource usage, security, data quality and variability.

Architecture supports verification through the use of virtual or simulated models, since the
modular nature of the system suggests an easy way to connect simulated subsystems and
environments for virtual or hardware-in-the-loop simulation testing. To handle the challenge of
multiple time scales, communication has been separated into two separate communication
mechanisms: LSB and GSB.

Q4: Can a modular and loosely coupled (service-based) architecture support the dependability
of distributed and heterogeneous real-time systems?
Pre-verification of services and their real-time properties is challenging, since such systems are
affected by the locations of the service provider and the consumer, by resource availability, etc.
This reality degrades system flexibility and means that an exponential effort is required to increase
the number of services. Previous research on topic has developed time-bounded reconfiguration
algorithms, but this thesis presents an alternative approach that provides best-effort availability,
utilizing loosely coupled and independent natures of services to recover a system from failures.
The approach combines deterministic operation with minimal assumptions about other services,
connecting services in an ad hoc manner. Therefore, a service failure does not differ from normal
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service shutdown, as in the case of recovery-oriented computing [156]. A heterogeneous and
distributed real-time system was used to empirically evaluate the service-oriented approach with a
mission-critical application: however, the approach has not been formally proven.

Q5: What mechanisms can be applied to detect and recover faults in such loosely coupled
systems?
Fault tolerance patterns provide a selection of commonly used approaches. For example, the
SERVICE MANAGER pattern is based on the provision of an external fault detection and recovery
entity. The services themselves are not designed to make assumptions about the states of other
services; however, they do need to implement additional checks for deadlines and the availability
of other services. The recovery of a service uses the same path as the normal operation start-up,
and error recovery paths are executed regularly to verify their proper functionality.

Q6: How can fault propagation between services be stopped?
Fault propagation can be limited to very small modules, such as services that can act as bulkheads
(cf. BULKHEADS pattern [56]). Sanity checking, assertions and other verification methods can be
used for input values, but the architecture cannot guarantee that a service will not appear to be
alive, while providing erroneous values within expected value ranges. Failed services can also
potentially crash the computing node, which may affect other services. Critical services may,
therefore, need to be deployed on separate nodes. If fault propagation is limited to loosely coupled
services, the origin of the fault is easier to trace and fix (although complex interaction faults
between services may still be challenging to debug).

Q7: What is the overhead of using fault tolerance based on loose coupling?
Paper [P6] presents an evaluation of operational overhead, including CPU usage and the
scalability of the fault tolerance solution. For the implementation effort, the overhead is
significantly more challenging to estimate, especially since system requirements may call for a
loosely coupled design anyway. On the other hand, some complexity is related to the management
of services or modules (i.e., a service manager, in the case of the prototype).
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Appendix A: ITER RHCS Reference Architecture

The architecture for the ITER RH plant system is shown in Figure 23, representing the logical
structure that combines the RH systems shown in Figure 1. The plant system is composed of RH
supervisory control system and seven RH systems responsible for controlling different RH
equipment (the in-vessel viewing system is not shown in the figure). Each of RH systems consists
of high-level control system (HLCS) implementing operator interfaces, low-level control system
(LLCS) consisting of device and tool controllers and finally the physical devices. Physically the
HLCSs will be deployed to the RH control room, meaning that the implementation needs cyber
components of the system to be accessible on any work cell in the control room and connections to
desired low-level systems reconfigurable on-the-fly. RH Supervisory system and central
coordination systems Control, Data Acquisition and Communication system CODAC, Central
Interlock System CIS and Central Safety System CSS are left outside the scope of this work.

Figure 23. ITER RH plant system (image courtesy of ITER Organization), including Equipment Management System,
Plant System Host, Plant Interlock System, Plant Safety System, Plant Operation Network, Central Interlock
Network and Central Safety Network

RH systems share common components for supervisory and virtual reality subsystems, as shown
in Figure 24 on the following page. Input devices have also been included in the HLCS, although
they could be considered to be RH devices. The HLCS consists of following subsystems:
supervisory, VR, remote diagnostics and viewing system. Structural simulator, remote diagnostics
or viewing systems are not introduced since they are not used in the prototype implementation.
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Figure 24. High-Level Control System (supervisory system), see Figure 2 for prototype implementation at DTP2
(image courtesy of ITER Organization)

Supervisor subsystem:

· OMS is used to support operation by planning, helping and instructing execution of RH
procedures. Procedures are complete sequences of manual actions required to perform
maintenance or testing operations. The IHA prototype OMS can also be used to carry out
automatic operations.

· Command & Control provides a GUI that can be used to control RH equipment through its
equipment controller.

· Input devices include joysticks and haptic input devices (master manipulators) used to
control RH devices.

VR subsystem:

· Visualization software gives operators visual access to the virtual 3D model of the
environment. Virtual reality software, such as IHA3D [157], can be used for task planning,
practicing and simulation in addition to aiding the task execution with collision detection.

· Computer Assisted Teleoperation (CAT) [158] assists operators in teleoperation tasks that
require manual operation of remote handling devices by generating virtual forces. The
virtual forces can be used to guide the manipulators along pre-set paths or away from pre-
set force barriers to avoid collisions.

LLCS controls and powers the RH devices. Figure 25 shows EC, the basic unit for integrating the
field equipment, receiving commands from HLCS, translating them for the RH equipment and
send data from equipment back to HLCS. ECs represent a translation point between the common
HLCS subsystems and the equipment-specific control modules (PLCs, motion controllers, etc.) so
they need to be flexible to support the diverse range of equipment, while being consistent in
implementation to interface with high-level systems and support maintainability.
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Figure 25. Low-level control system (image courtesy of ITER Organization)

Key design goal for the RHCS is to have no SPoFs, which is typically a requirement for mechanical
and electrical designs, since they are more straightforward to design and analyse than software.
Combination of concurrent and distributed computing typical for CPSs can introduce seemingly
stochastic behaviour and failures. With peer-to-peer middleware and data-centric approach
presented in [P5], “no SPoF” approach can be pursued also in software. For example, connecting
multiple OMS, VR and other HLCS subsystems to EC is straightforward as there is no point-to-
point mapping between these subsystems in the implemented prototype. For the proposed service
architecture, service manager can be a local SPoF, although services can also be executed in
autonomous mode. Even though the use of peer-to-peer data-centric middleware alone does not
remove SPoFs, this design supports reconfiguration flexibility of the system and use of multiple
work cells in the control room to operate multiple robots.
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Appendix B: Information and Data Models for RHCS
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Listing 2 describes the data model used in the LSB (Xenomai queues) and Listing 3 GSB section
IDL descriptions for DDS. The GSB IDL module is  the same as used in the DTP2,  demonstrating
reusability of a well-designed information model (and the derived data models) as a basis for
communication.

Listing 2. LSB (in C++)

Que_tg_command
struct TG_command
{
    int id; // Id has to correspond with existing input
    // triggerType:
    // 0 = sample output, 1 = get scalefactor, 2 = stop profiles,
    // 3 = (NEW!) start timer and write all outputs in a 2 ms loop to rt_queue
    int triggerType;
    double scalefactor;
};
Que_tg_input
struct TG_input
{
    int id;
    double startPos;  // Starting position
    double endPos; // Desired end position
    double maxVel; // Maximum velocity (for that joint)
    double initVel; // Initial velocity
    double maxAcc; // Maximum acceleration
    double maxDec; // Maximum deceleration
    bool changed; // Flag to determine if profiling should be reinitialized
};
Que_tg_output
struct TG_output
{
    int id; // 0 = all, 1 = 1st joint, 2 = 2nd joint etc.
    double position[6];
    double speed[6];
    bool finished[6];
};
Que_c4g_joints
struct C4G_joints
{
    double position[6];
};
Que_ref_joints
struct TG_output
{
    int id; // 0 = all, 1 = 1st joint, 2 = 2nd joint etc.
    double position[6];
    double speed[6];
    bool finished[6];
    TG_output() : id(0), position(), speed(), finished() {}
};

Listing 3. GSB (Interface Description Language)

module Valvomo
{

struct Location3D
{

double x;
double y;
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double z;
};
struct Orientation3D
{

double roll;
double pitch;
double yaw;

};
struct BoxDimensions
{

double width;
double height;
double depth;

};
typedef double RotationMatrix[9];
struct OmsCommand
{

long cmd_id;
long cmd_type;
long object_id;
long parent_id;
Location3D location;
Orientation3D orientation;
boolean flags[5];
string msg;

};
#pragma keylist OmsCommand cmd_id
struct PointCloud
{

long id;
sequence<Location3D> points;
boolean enabled;
double spring;
double range;

};
#pragma keylist PointCloud id
struct CollisionBoundary
{

long id;
Location3D position;
RotationMatrix rotation;
BoxDimensions lengths;
boolean enabled;
double spring;
double damping;
boolean end_effector;

};
#pragma keylist CollisionBoundary id
struct JointData
{

long device_id;
long jointId[10];
double jointValue[10];

};
#pragma keylist JointData device_id

};
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Appendix C: Comau Smart NM 45-2.0 Kinematic Parameters and
Diagrams

This report outlines the kinematic equations and their solutions necessary for the control of the
Comau Smart NM 45-2.0 manipulator. The Smart NM 45-2.0 is a 6 DOF robotic manipulator with 6
revolute joints, including an inline wrist. This manipulator (shown in Figure 26) has a reach of 2000
mm and payload capacity of 45 kg. The actuators of the manipulator are powered by brushless AC
motors with encoders for reading motor position. Suitable applications for the manipulator
include, for example, handling, assembly and welding.

Kinematics of the manipulator are given based on the Denavit-Hartenberg (D-H) convention
described by Sciavicco and Siciliano [151]. Link frames assigned to the manipulator can be seen in
Figure 26. The D-H parameters of the manipulator are given in Table 4.

Figure 26. D-H frames and main dimensions of the 6 DOF Comau Smart NM45-2.0 robot
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Table 4. Denavit-Hartenberg parameters of the 6 joint manipulator

Link ai αi di qi

1 ଵܮ = 0.400	݉ π/2 0 q1

2 ଶܮ = 0.750	݉ 0 0 q2

3 ଷܮ = 0.25	݉ π/2 0 q3

4 0 -π/2 ݀ସ = 0.8124	݉ q4

5 0 π/2 0 q5

6 0 0 0 q6

The kinematic chain of the manipulator ends at frame {5}, located at the wrist joint. The
transformation matrix ܶ଺଴  of frame {5} with respect to fixed frame {0} is derived from the above D-
H table.

Forward kinematics

The forward kinematics function for the robot calculates the position and orientation of the end-
effector as a function of the joint values (q1, q2, q3, q4, q5, q6).

Inputs of the forward kinematics are joint values: q1, q2, q3, q4, q5, q6 (units as radians) and
outputs of the forward kinematics are obtained from the transformation matrix		 ܶ଺଴ , which is
obtained as:

ܶ଺଴ = ܶଵ଴ × ܶ ×	 ܶ × ܶ × ܶ × ܶ଺ହହ
ସ

ସ
	ଷ

ଷ
ଶ

ଶ
ଵ

ܶଵ଴ =	 ൦

cos	(1ݍ) −sin	(1ݍ) × cos	(1ߙ) sin	(1ݍ) × sin	(1ߙ) 						ܽ1 × cos	(1ݍ)
sin	(1ݍ) cos	(1ݍ) × cos	(1ߙ) −cos(1ݍ) × sin(1ߙ)	 		ܽ1 × sin	(1ݍ)

0
0

sin	(1ߙ)
0

cos	(1ߙ) 							݀1
0 																					1

൪	

ܶଶଵ =	 ൦

cos	(2ݍ) −sin	(2ݍ) × cos	(2ߙ) sin	(2ݍ) × sin	(2ߙ) 						ܽ2 × cos	(2ݍ)
sin	(2ݍ) cos	(2ݍ) × cos	(2ߙ) − cos(2ݍ) × sin(2ߙ)	 		ܽ2 × sin	(2ݍ)

0
0

sin	(2ߙ)
0

cos	(2ߙ) 							݀2
0 																					1

൪

⋮

ܶ଺଴ = ܶଵ଴ × ܶ ×	 ܶ × ܶ × ܶ × ܶ଺ହହ
ସ

ସ
	ଷ

ଷ
ଶ

ଶ
ଵ (1)
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For a given set of joint values (q1, q2, q3, q4, q5, q6), position	 ଺ܲ
଴  and orientation 	ܴ଺଴ of end-effector

frame {5}, with respect to base frame {0} are obtained from the transformation matrix ܶ଺଴  in (1) as
follows:

ܴ଺଴ = ቎
cos(ߙ) cos(ߚ) cos(ߜ) − sin(ߙ) sin(ߛ) −cos(ߙ) cos(ߚ) sin(ߜ) − sin(ߙ) sin(ߚ) cos(ߙ) sin(ߚ)
sin(ߙ) cos(ߚ) cos(ߜ) − cos(ߙ) sin(ߛ) −sin(ߙ) cos(ߚ) sin(ߜ) + cos(ߙ) cos(ߛ) sin(ߙ) sin(ߚ)

−sin(ߚ) sin(ߛ) sin(ߚ) sin(ߛ) cos(ߚ)
቏

(ߠ)ܴ = ܴ௭(ߙ) × ܴ௬′(ߚ) × ܴ௭′′(ߜ)

ܲ	଺଴ = ቎
଺ݔܲ
଴

଺ݕܲ
଴

଺ݖܲ
଴

቏

ܶ	଺଴ = ൤ ܴ	଺଴ ܲ	଺଴
0 1

൨ (2)

Position and orientation of end effector via forward kinematic functions are:

	 ଺ܲ
଴(ݔ) = ܶ଺଴ (1,4) 	 ଺ܲ

଴(ݕ) = ܶ଺଴ (2,4) 	 ଺ܲ
଴(ݖ) = ܶ଺଴ (3,4)

	ܴ଺଴(	ߠz	) = atan 2 ቀ ܶ଺଴ (2,3), ܶ଺଴ (1,3)ቁ

	ܴ଺଴(	ߚ	(ߠy′)	) = atan 2(	ට ܶ				଺
	଴ (1,3)ଶ + ܶ		଺

	଴ (2,3)	, ܶ଺଴ (3,3))

	ܴ଺଴(ߛ	(ߠz′′	)) = atan 2( ܶ଺଴ (3,2), −	 ܶ଺଴ (3,1))

Inverse kinematics

The inverse kinematics routine provides the joint values (q1, q2, q3, q4, q5, q6) required to achieve a
given position and orientation of the end-effector.

Inputs for the inverse kinematics are end-effector position and orientation, in frame {5} with
respect to the fixed base frame {0}.

	 ଺ܲ
଴:	Vector position (x, y, z) of end-effector in frame {5} with respect to frame {0} (units: meters)

	ܴ଺଴ ∶	Z (ߙ௭)-Y(ߚ௬ᇱ)-Z(ߛ௭ᇱᇱ) angles that of frame {5} measured with respect to fixed frame {0}.
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Determining anthropomorphic arm position and joint values (q1, q2, q3)

Transformation matrix of the end-effector ܶ଺଴  in frame {5} is defined by the provided position and
orientation targets 	 ଺ܲ

଴ and	ܴହ଴.  Therefore,	 ܶ଺଴ 	is built as in (2).

Position vector W of the wrist is defined as:

௫ܹ = ଺ܶ
଴(1.4)	; 			 ௬ܹ = ଺ܶ

଴(2.4);		 ௭ܹ = ଺ܶ
଴(3.4) (3)

Joint angle q1 using solution of anthropomorphic arm is determined by ௫ܹ and ௬ܹ 	as:

ଵݍ = atan 2( ௬ܹ , ௬ܹ)

The calculation of joint values (q2, q3) is reduced to a planar problem if we set frame {1} as the new
origin of coordinates for the end-effector position vector W (see Figure 26):

௫ܹ = ଺ܶ
଴(1.4) − ଵܮ	 cos(ݍଵ);		 ௬ܹ = ଺ܶ

଴(2.4) − ଵܮ	 sin(ݍଵ);	 	 ௭ܹ = ଺ܶ
଴(3.4)

The length between frame {2} and frame {3} is:

ܽ3 = ඥ0.25ଶ + 0.8124ଶ

The solution of the anthropomorphic arm shows:
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cos(ݍଷᇱ ) =
(ܲଶௐ௫ + ܲଶௐ௬ + ܲଶௐ௭ − ଶଶܮ − ܽଶଷ)

2 × ଶܮ × ܽଷ

sin(ݍଷᇱ ) = ∓ට(1 − cos(ݍଷᇱ )ଶ)

3ݍ = ଷᇱݍ)݊݅ݏ)2݊ܽݐܽ ) , ଷᇱݍ)ݏ݋ܿ )) + (812.4,250)	2݊ܽݐܽ	

sin(ݍଶ) =
ଶାܽଷܮ) × cos(ݍଷᇱ )) × ܲௐ௭ − ܽଷ × sin	(ݍଷᇱ ) × ටܲଶௐ௫ + ܲଶௐ௬

ܲଶௐ௫ + ܲଶௐ௬ + ܲଶௐ௭

cos(ݍଶ) =
ଶାܽଷܮ) × cos(ݍଷᇱ )) × ටܲଶௐ௫ + ܲଶௐ௬ + ܽଷ × sin	(ݍଷᇱ ) × ܲௐ௭

ܲଶௐ௫ + ܲଶௐ௬ + ܲଶௐ௭

2ݍ = (ଶݍ)݊݅ݏ)2݊ܽݐܽ , ((ଶݍ)ݏ݋ܿ

Determining spherical wrist position and joint values (q3, q4, q5)

Consider the spherical wrist in Figure 26, whose direct kinematic was given in (2). It is desired to
find the joint variable (q4, q5, q6) corresponding to a given end effector orientation ( ܴ	଺ଷ ). These
angles constitute a set of input Euler angles ZYZ (ߙ, ,ߚ .with respect to frame {3} (ߜ

The whole rotation matrix is:

(ߠ)ܴ = ܴ௭(ߙ) × ܴ௬′(ߚ) × ܴ௭′′(ߜ)

ܴ଺଴ = ቎
cos(ߙ) cos(ߚ) cos(ߜ) − sin(ߙ) sin(ߛ) −cos(ߙ) cos(ߚ) sin(ߜ) − sin(ߙ) sin(ߚ) cos(ߙ) sin(ߚ)
sin(ߙ) cos(ߚ) cos(ߜ) − cos(ߙ) sin(ߛ) −sin(ߙ) cos(ߚ) sin(ߜ) + cos(ߙ) cos(ߛ) sin(ߙ) sin(ߚ)

−sin(ߚ) sin(ߛ) sin(ߚ) sin(ߛ) cos(ߚ)
቏

Also

ܲ	଺଴ = ቎
଺ݔܲ
଴

଺ݕܲ
଴

଺ݖܲ
଴

቏

ܶ	଺଴ = ൤ ܴ	଺଴ ܲ	଺଴
0 1

൨

Also computing the ܶ	ଷ଴  using calculated values q1, q2, q3 yields:

ܶଵ଴ =	 ൦

cos	(1ݍ) −sin	(1ݍ) × cos	(1ߙ) sin	(1ݍ) × sin	(1ߙ) 						ܽ1 × cos	(1ݍ)
sin	(1ݍ) cos	(1ݍ) × cos	(1ߙ) − cos(1ݍ) × sin(1ߙ)	 		ܽ1 × sin	(1ݍ)

0
0

sin	(1ߙ)
0

cos	(1ߙ) 							݀1
0 																					1

൪

⋮

ܶ	ଷ଴ = ܶ ×	ଵ
଴ ܶ × ܶ	ଷଶ	ଶ

ଵ
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Hence having computed the rotation matrix:

ܶ	଺଴ = ܶ ×	ଷ
଴ ܶ	଺ଷ

ܶ	଺ଷ = )ݒ݊݅ ܶ) ×	ଷ
଴ ܶ	଺଴

q4, q5, q6 are obtained by extracting the ZYZ-Euler angles from ܶ	଺ଷ :

ସݍ = atan2( ܶ	଺ଷ (2,3), ܶ	଺ଷ (1,3))

ହݍ = atan2ቆ			ට ܶ	଺ଷ (1,3)ଶ + ܶ	଺ଷ (2,3)ଶ	, ܶ	଺ଷ (3,3)ቇ

଺ݍ = atan2( ܶ	଺ଷ (3,2), − ܶ	଺ଷ (3,1))

C4G Open control modes

C4G Open is a technology developed by Comau that allows an external PC to communicate in
real-time with the robot control and interact at different levels in the robot control (servo system)
and in the trajectory generation. The external contribution collaborates with, adds to or substitutes
the internal control.

C4G Open provides the user possibility to select control mode from several different options that
are intended for different purposes. They are different combinations of PC contributing in different
ways to joint velocity, position or current (or a combination of these). The modes with explanations
of the intended purposes are listed in Table 5.

Table 5. C4G Open control modes

Mode PC role SMP+6 role Purpose / notes

0 - target and position
and velocity loop

Default mode.

0’ target and position
and velocity loop

target and position
and velocity loop

Debugging.

1 velocity and current
loop

- Gives the external PC full control.

2 velocity and current
(motion control)

position target
(trajectory
generation)

Allows evaluating the coefficients for the
control  loops  on  the  external  PC,  while
SMP+ takes care of the trajectory
generation.

3 velocity control
(current contribution)

velocity target
(trajectory
generation)

Not currently available.

4 absolute position
target (trajectory

position and velocity
loop (motion

PC directly generates the position
referenced trajectory.

6 SMP+ is the control board where high level processing such user program interpretation, HMI management and
trajectory generation take place.



103

generation) control)

5 relative position
target (trajectory
generation)

position and velocity
loop (motion
control)

PC indirectly generates the position
Referenced trajectory.

6 target velocity
(velocity referenced
trajectory generation)

velocity loop
(motion control)

Not currently available.

7 position additional
contribution

target and position
and velocity loop

It is the modality allowing PC to supply
the trajectory (generated by SMP+) with
an additional contribution.

8 velocity additional
contribute

target and position
and velocity loop

Not currently available.

9 current additional
contribute

target and position
and velocity loop

It is the modality allowing adding a
current contribution calculated by
external PC, while SMP+ generates the
trajectory.

Out of the currently available modes, suitable modes for external motion control and trajectory
generation seem to be modes 4 and 5.

· Mode 1 seems to be too unstable and/or difficult to use, since PC is required to provide all
three of position, velocity and current references. Execution of TestMode1 (a test
application provided with the C4G Open Library) resulted in uncontrolled vibration and
subsequent shutdown of the communication link.

· Mode 2 can also be used for controlling joint currents and velocity, although it is intended
for simple control loops since SMP+ is used for trajectory generation in this mode.

· Another alternative would be to use mode 3 in which PC is used for current contribution,
but this mode is currently not available. Note that current-based control would likely be the
most difficult mode to control.

· In modes 4 and 5 the PC supplies SMP+ with target position (as motor turns) and target
velocity  (delta  motor  turns).  Since  mode  5  is  intended  to  be  used  in  a  configuration  in
which PC adds its position & velocity values on top of the SMP+ pos. & vel. values, mode 4
seems to be the more appropriate choice for PC-based motion control.

· Mode 6 could be used for velocity control, but it is not currently available. This mode could
be the most user-friendly if it would be implemented.

To summarize, mode 4 is the best choice for generic PC-based control purposes.



104



Publications





Publication 1

P. Alho and J. Mattila, Dependable Control Systems Design and Evaluation, Ninth Annual
Conference on Systems Engineering Research, 2011, Redondo Beach, USA

© INCOSE-LA. Reprinted with permission.





Dependable Control Systems Design and Evaluation
Pekka Alho

Tampere University of Technology,
Department of Intelligent Hydraulics and

Automation, Finland
pekka.alho@tut.fi

Jouni Mattila
Tampere University of Technology,

Department of Intelligent Hydraulics and
Automation, Finland

jouni.mattila@tut.fi
Abstract

Remote handling (RH) is a key technology in the ITER fusion reactor. The controller
systems used for performing mission-critical RH operations need to be dependable, as the
fundamental requirement for the ITER RH system is a fail-safe and recoverable design.
Additional design challenges include interoperability with systems and platform independence
during ITER life cycle. Contributions are especially needed for development of cost-effective
systems engineering (SE) practices and guidelines for fault-tolerant implementation. This paper
addresses the issues by presenting a survey of industrial best practices and different fault
prevention, tolerance, removal and forecasting methods. Based on the results, key findings to
achieve dependable and cost efficient design include development a SE framework that supports
reuse of components, models and analysis results; non-redundant fault tolerance; and use of
commercial off-the-shelf hardware, operating systems and communication middleware.

1 Introduction

ITER is an experimental nuclear fusion reactor, currently under construction in Cadarache,
France and planned to start operations in 2018. The ITER machine operation is based on remote
handling (RH) maintenance systems that enable the operators to safely, reliably and repeatedly
perform robotic manipulation of items without being in contact with those items. This paper
focuses on systems engineering (SE) development process of dependable RH control systems
that perform mission-critical operations in this demanding environment and presents objectives
of the current research. The research is part of a PhD thesis topic in the Goal Oriented Training

Program on Remote Handling
(GOT-RH) managed by European
Fusion Development Agreement
(EFDA). GOT-RH aim is to train
engineers for activities to support
ITER project. The research in this
paper combines SE and
dependability approaches to fulfil
the  ITER  RH  control  system
requirements in a cost-efficient
manner.

A major objective of the ITER
project is to demonstrate that a
fusion energy device can be
maintained efficiently so that theFig. 1. Divertor Test Platform 2.
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plant  availability  is  retained  at  sufficient  level.  During  the  ITER  lifetime  reactor  components
must be inspected and maintained, including replacement of the 9 tonne divertor components.
Reactor operation produces high energy neutrons which are absorbed by components inside the
reactor vessel, leaving them beta and gamma activated. Therefore RH has to be utilized to
perform maintenance tasks instead of manual operations, as there is no human access into
reactor. To test the proof-of-concept designs for the replacement of a divertor, a full scale
prototype environment, designated ‘Divertor Test Platform 2’ (Fig. 1), is operational at Tampere,
Finland. The facility is hosted by VTT and Tampere University of Technology, Department of
Intelligent Hydraulics and Automation (TUT/IHA). TUT/IHA has worked with ITER RH since
1994 developing the ITER divertor maintenance, processes, tools and equipment.

Commonly used fault-tolerance techniques employ redundancy in order to improve
reliability, but usually require significant amounts of resources. Use of these techniques is
mandatory  in safety-critical systems that need to keep operating regardless of failures, such as
flight-control or fission reactor management (fail-operate), but in systems that can be guided to a
safe state (fail-safe) the additional costs are more difficult to justify, therefore a balanced
solution is needed. A key difference between ITER and fission reactors is that the energy density
in ITER reactor cannot cause a catastrophic failure, but the economic losses in the case of an
operation failure could be significant nevertheless. Thus the RH system is safety-critical and the
design of a RH control system must be fail-safe or capable of operating in a limp-home mode,
which is a form of fail-operational system.

Application for our RH
control  system  is  a
teleoperated bilateral
master-slave manipulator
system, where the operator
controls a remote
manipulator working in a
hazardous environment (see
Fig. 2). The fundamentals
of implementing such
systems are well-known,
with commercial
manipulators and
components available.
Challenges with developing
and using such systems in

ITER are – in addition to aforementioned environment, dependability, etc. – need for
interoperability and platform independency during ITER life cycle. As a whole, ITER RH aims
to have one master system which is used to control several heterogeneous slave systems that
perform various maintenance tasks, provided by different subcontractors. All these must be able
to work harmoniously, regardless of changes to other systems and technology upgrades.

This paper includes a survey of industrial best practices developed by researchers in
organizations like IEC, NASA, etc. and compares them against ITER requirements. Our overall
target  for  EFDA  GOT-RH  is  to  propose  a  subset  of  a  generic  lean-minded  SE  framework  to
support reuse of artifacts (hardware, software, processes, models, etc.) suitable for ITER.
Additionally we seek a system design that avoids extensively redundant and tightly coupled

Fig. 2. Bilateral teleoperation system.



solutions. A proof-of-concept implementation of the architecture for Fig. 2 system is being
currently developed.

 In the next chapter we introduce research background, starting with dependability
terminology and then covering related research and the research problem. In chapter 3 we
examine how standards together with industry best practices and cost-efficiency affect the
development process when compared to ITER requirements. Chapter 4 approaches the problem
through systems development process, divided into specification, design and architecture,
implementation and evaluation. Finally the conclusions are presented in chapter 5.

2 Background

In the following sections basic dependability concepts, state of the art in dependable systems
and research problem are briefly reviewed.

2.1 Dependability
According to Avizienis et al. dependability is defined as the ability to deliver service that can

justifiably be trusted. It is an umbrella term that consists of several attributes: availability,
reliability, safety, integrity and maintainability. Researchers and the ITER requirements
emphasize especially safety and reliability. However, all attributes need to be addressed in order
to ensure delivery of the correct service – therefore the SE approach is necessary to manage all
dependability-related design aspects. Failures are events where the delivered service deviates
from the correct service. The deviations are called errors and the cause for the error is defined as
a fault. It should be noted that not all errors lead to service failures – this depends from the
structure and behaviour of the system. (Avizienis et al. 2004). As shown in Fig. 3, service
failures can cause new faults for other systems.

Applications that have dependability requirements can be categorized as fail-safe or fail-operate,
depending  from  if  the  system  can  be  brought  into  a  safe  state  or  whether  it  needs  to  continue
operation in the presence of the faults. (Avizienis et al. 2004). Different means used to attain
dependability can be categorized as fault prevention, removal, tolerance and forecasting
techniques. Fault tolerance techniques, i.e. avoiding service failures in the presence of faults, can
address one or more of the following stages of tolerating faults: error detection, damage
assessment, and recovery and continued service. A review of different techniques can be found
e.g. from NASA report Software Fault Tolerance: A Tutorial (Torres-Pomales 2000). With
software (SW) systems duplication of modules replicates errors as well, so redundant
components  need  to  be  diverse.  Even  though  the  development  costs  of  N-variant  software  are
less than N times non-fault-tolerant software (Laprie et al. 1990), it still presents a major cost
increase for the development when compared to basic software or single version fault tolerance
techniques.

2.2 Related work
Increase of complexity and amount of requirements for modern software systems present us

the problem of how to attain and estimate the dependability of these complex systems. Another

Fig. 3. Error propagation (Avizienis et al. 2004).



problem is related to interoperability of systems with long expected lifetimes. E.g. U.S. Navy
intentionally sank the Aegis cruiser Valley Forge after 18 years of service – intended service life
had been at least three decades but the integration costs of new software and weapon systems
were too high (Schneider 2010). Clearly building stovepipe systems, i.e. complex single-purpose
‘soon-to-be-legacy’ systems that consist of inter-related and tightly bound elements, is not a
viable solution. ITER will have several subcontractors providing software and has an expected
life span of several decades, so integration of distributed real-time systems is a critical design
factor.

In software systems service failures can create new faults via causation. To achieve no-
single-points-of-failure goal in a software unit, we would need redundancy (Flammini 2010),
(Hayama et al. 2010), which again increases development costs (Laprie et al. 1990). In fail-safe
systems or systems using graceful degradation, structuring can be used to limit failures inside the
architectural unit. If software safety, i.e. execution within system context without contributing to
hazards, is considered more important than reliability, i.e. low mean time between failures, then
fault tolerance techniques can concentrate on preventing catastrophic failures. Single version
fault tolerance techniques are cost-efficient way to achieve safety with possible compromises to
reliability when compared to multiversion techniques. Examples of single version fault tolerance
include system structuring, atomic actions, error detection and exception handling, among others
(Torres-Pomales 2000).

Dependable architecture designs and fault tolerant control methods tend to be too specific to
be reusable, at least outside their application domain. There has been some earlier research on
generic architectures for real-time dependable systems, e.g. architecture model developed by
Powell et al. (Powell et al. 1999) uses fault containment to deal with faults and is based on the
use of software components.  The focus for our research is not in producing architectural design
patterns or domain specific solutions to achieve dependability.

Some architectures have been developed to support use of commercial off-the-shelf (COTS)
components (Powell et al. 1999), (Asterio et al. 2003), but reuse needs to be carefully considered
to evaluate if possible cost benefits outweigh compromising effects on dependability and
possible needs for additional fault tolerance. Based on experiences with the older experimental
reactors, COTS components could be used to implement some parts of the control system in
ITER; for example, in JET (Joint European Torus) results were positive with implementing the
highly critical motion control, and integrating into a uniform control system framework. For fault
tolerance JET employed a large number of error checks, which is one of the basic single-version
fault tolerance techniques. For severe errors the system was put into safe-state by cutting all
power, engaging brakes and opening emergency stop circuit. (Haist & Hamilton 2001).

2.3 Research problem
ITER organization promotes a standardized software-module based design approach and has

an equipment controller (EC) architecture draft to improve cooperation of RH systems and
higher level systems being developed by several different contractors. However, this architecture
only outlines basic features. In addition to standard external safety features, like emergency
stops, it does neither provide nor dictate solutions for fault tolerance.

In Fig. 4 area one presents embedded hard real-time systems, i.e. ‘standard’ solution to
implementing controllers, and area two presents hard real-time systems implemented using
commercial PCs and RT operating systems (OS) which is rarer alternative (Flammini 2010). Our
purpose is to use industrial PCs to test their feasibility in implementing dependable RH systems



with strict performance
requirements.  If  the  use  of  general-
purpose  systems  proves  to  be  a
viable alternative, it could be one
way to reduce development costs for
systems with dependability
requirements.

Especially interesting from the
perspective of using open source or
commercial real-time operating
systems (RTOS) in safety-critical
applications is the report (Bishop et
al. 2001) for Health and Safety
Executive: Justifying the use of
software of uncertain pedigree
(SOUP) in safety-related

applications. The report considers the safety assurance of SOUP in the context of IEC61508.
Similar evaluation methods could be used with ITER RH systems.

In dependability research the fault-tolerant approach is often promoted over fault prevention.
The reasoning behind this being that all faults cannot be prevented or removed, so it is better to
concentrate on fault tolerance methods (Elder 2001); or fault prevention is shrugged off being
part of general engineering (Avizienis et al. 2004). However, neglecting of fault prevention is
short-sighted. First, no single mechanism can cope with all faults and anticipation of unexpected
faults can increase costs. Second, the cost of finding and removing faults typically rises by
development phase and finally, faulty specifications are major cause of software faults
(Avizienis et al. 2004). Hence, additional research is needed on use of fault prevention to
minimize  the  number  of  faults  in  the  system  as  early  as  possible  with  optimal  development
methods. Furthermore, as scientific papers usually focus in one or two of the strategies used to
achieve dependability, there is a need to bridge the gaps between the different models, methods,
and tools that are used to improve the design and the operation of dependable systems, especially
when being adapted to control systems (Bondavalli et al. 2001).

3 Standards and best practices

IEC 61508 is an international safety standard related to functional safety of
electric/electrical/programmable systems with part three related to software requirements (IEC
2010). Most of European standards for safety related control systems refer to IEC 61508, if the
implementation language is C or similar. ITER RH control system will include safety-related
systems  and  some  of  the  safety  functions  could  be  implemented  by  software  –  this  would  be
safety-related software. Safety standards introduce concept of safety integrity level (SIL) (or
performance level, PL), used to present risk reduction offered by safety functions. To achieve
target SIL levels, standards include recommendations and requirements. However, especially
software systems have the problem that SIL estimation is difficult because of systems
complexity.

Even though this paper mostly refers to IEC61508 standard because of its suitable scope and
internationality, there are a number of other well-known standards that can be used to contribute
to system dependability development and evaluation. Software testing has its own standard,

Fig. 2. A classification of critical computer
systems, adapted from (Flammini 2010).



IEEE 829-1998 and some of the American internationally recognized standards include e.g. ISA
84 series and MIL-STD-882D.

One approach to
achieving a tolerable risk is
‘as low as reasonably
practicable’ (ALARP),
mentioned e.g. in IEC61508
standard. If the evaluated risk
is  smaller  than  ‘must  be
refused altogether’, but larger
than ‘insignificant’, ALARP
principle together with a cost
benefit assessment can be
used to determine areas where
risks need to be decreased, as
shown in Fig. 5. Where the
risks are less significant, the

fewer resources are needed to be spent to reduce them and vice versa. ALARP is one of the
principles used in ITER, and in nuclear project designs in general.

Component  reuse  and  use  of  commercial  off-the-shelf  (COTS)  components  show  some
promise for achieving cost reductions in development. Especially use of commercial hardware
components gives the benefit of utilizing performance and energy efficiency of cutting edge
processor technology. Software component reuse has more problems related to it, as there is
usually no guarantee that the components have sufficient quality for mission-critical applications
and may require additional fault tolerance. Instead, use of commercial OSs has the same
potential benefits as hardware, i.e. they include the latest developments in OS technology and
have potentially better quality and less bugs than custom made software because of widespread
use. For example, QNX Neutrino RTOS kernel has been certified to confirm to IEC61508 at
SIL3 (Hobbs 2010) out of maximum level of 4. Even though implementing hard real-time
systems using commercial PCs and real-time OSs is still fairly rare, this could be an interesting
development path to cost-efficient and dependable systems.

Finally, design patterns are reusable general solutions that present best practice knowledge.
They can and should be used to improve fault tolerance, as fault tolerance has patterns of its own
– a classic example is the watch dog pattern (Hanmer 2007). However, possible design pattern
use must be traceable to requirements and patterns should not be introduced without good
reasons as they can add unnecessary complexity to system. A good general rule for architecture
design is to keep it as simple as possible, especially for safety-critical components.

4 Development process for dependability

Development process should combine all possible methods – fault prevention, fault
tolerance, fault removal and fault forecasting – to achieve sufficient level of dependability with
optimal resource use by combining different methods, according to ALARP principles. As stated
earlier, most studies focus on one or two methods and do their research within this limited scope,
whereas efficient approach would be to combine all different approaches. The role of the
development process is similar to quality assurance, i.e. reducing mistakes made by developers
and ensuring product quality.

Fig. 3. As low as reasonably practicable (ALARP)
(Melchers 2001).



Typically V model, waterfall and other software life cycle models describe only development
process (see Fig. 6). However, system life cycle also includes installation, operation, and
maintenance. For safety-critical software it is important to also take these phases into
consideration to ensure maintainability
and interoperability, because of the higher
development costs and consequently
longer expected life time of the system.

The development process
considerations presented in this chapter
combine best practices and
recommendations and discuss them in the
ITER RH context. The process analysis is
divided into system definition, design and
architecture, implementation, and
evaluation.

4.1 Specification
Specification, which in this case is considered to cover system analysis and definition,

including hardware and software, has significant role in fault prevention. It is a well-known fact
that errors made in the requirement specification phase of software cause more problems than
coding errors (Pullum 2001). Requirements come from multiple sources and usually change as
the project moves on, and the development process should offer support for this. According to
Pikkarainen, use of agile methods and practices improved communication and management of
requirements, features and project task dependencies (Pikkarainen 2008). However, agile
methods are not necessarily suited for development of safety-critical software as such and may
need additional emphasis on documentation, architectural design and traceability. IEC 61508
part 7 has a list of development methods IEC considers suitable for safety-related software.

Safety requirements are especially interesting from the dependability point of view, as they
contain information about what the system is allowed and not allowed to do, as software should
have indications and contraindications especially if reuse is planned for components.  In most
systems there are many opportunities to enhance safety, e.g. by simple value checks, but often
they are not used. Safety requirements could be used to document possible values that can be
used for safety checks, e.g. humidity, dust, vibration etc. (Herrmann 1999).

Hazard/risk identification and analysis should always be carried out for safety-critical
systems, preceding the finalization of system requirements (Douglass 1999). Risk probability
estimates can be made early, even before committing resources to hardware or software (Dunn
2002). Normal methods for risk analysis include fault modes, effects and criticality analysis
(FMEA or FMECA), fault  tree analysis (FTA) and risk analysis (RA). First  two are qualitative
and RA is quantitative (Dunn 2003). IEC61508 standard presents risk graph and hazardous event
severity matrix as qualitative methods for determination of SILs.

Pre-design hazard identification and measuring reliability of existing system have some
shared methods, e.g. FTA. Hazard identification requires significant resources and participation
of different shareholders to gain accurate and useful results so reuse of methods and previous
results  should  be  considered  for  cost  benefits.  For  ITER  RH  systems  previously  done  risk
analyses include e.g. manipulator FMECA and FTA for rescue of failed in-cask equipment.

Fig. 4. Life cycle V model.



4.2  Design and architecture
High-level design is the realization of quality requirements. It is also the first concrete form

of the system that can be analyzed and tested. Architectural choices impact software attributes
like availability, security etc., so the chosen architecture should support dependability
requirements with appropriate fault tolerance techniques and patterns (Bass & Clements 2003).
In addition to using these techniques, the actual system architecture should also be designed as
fault-tolerant (e.g. with layering and error confinement areas). Safety-critical, safety-related and
nonsafety-related software components should be isolated by partitioning the software
(Herrmann 1999). Risk probability estimates for components can be made early and designs
changed before actual commitments to hardware and software are made.

For ITER RH an initial version of the reference architecture has been developed, and after
implementation  it  will  be  used  as  a  testing  platform  for  evaluating  dependability  of  PC-based
control systems and different fault tolerance methods. Possible fault tolerance components will
combine patterns and COTS solutions, including QoS manager, network middleware,
partitioning of architecture, use of heartbeat/watchdog and more. Project will make use of
existing knowledge, hardware and software components etc. to maximum reuse of artifacts
across different RH systems and projects.

4.3 Implementation
Implementation methods are generally dictated by development process (iterative, agile etc.),

which defines the routines and support tools used in the project. Use of implementation-related
methods to ensure dependability of the product is also part of fault prevention. Following good
practices and programming methods can prevent generation of faults, e.g. NASA Software
Safety Guidebook (NASA 2004) has comprehensively listed principles for implementation of
real-time software.

4.4 Evaluation
Evaluation of software-based systems includes traditional software testing, V&V methods,

and formal inspections etc., which are considered fault removal techniques from the
dependability point of view. Another way to approach evaluation is from the fault forecasting
standpoint by estimating or predicting reliability of the system. Component reliability is an
important quality measure for system level analysis, but software reliability is hard to
characterize. Post-verification reliability estimates remains a controversial issue (Torres-Pomales
2000).

In a sense, evaluation is risk control – evaluation of the software includes mishap risk
assessment of the current implementation (‘is this safe enough?’) and finally acceptance. Risk
assessment can be supported with data from testing, e.g. detected and corrected defects, and
forecast results. Together these can be used to decide whether additional testing and fault-
tolerance techniques are needed or if the product is ‘good enough’ to be finished.

Targets for evaluation include should be on all levels, including requirements, architecture,
source code, software units and the complete system. In addition to evaluating the system under
development, evaluation can also be done for organization before the project has been started,
based on e.g. the Capability Maturity Model Integration (CMMI). Architecture evaluation
methods like Architecture Tradeoff Analysis Method (ATAM) are used to determine if the
architecture enables realization of key scenarios and identifying of potential risks (Grimán et al.
2007).



5 Conclusions

The research carried out in this paper has compared control system design against the
industrial and scientific best practices developed for safety-critical applications. The paper
presents the results phase-by-phase according to the SE process in Fig. 6. Considered viewpoints
include balancing of requirements (especially dependability vs. cost) and design artefact reuse.
Based on the analysis in this paper, the development process for dependable control system
design and evaluation has to focus in the following:

1) Fault tolerance based on non-redundancy, i.e. single-version fault tolerance. Most of
control systems are not required to be fail operate, so some compromises can be made in
achieving dependability cost efficiently, like implementing fail-safe system with single
version fault tolerance and reuse of components, as per ALARP principles. Standards for
safety-related systems have recommendations about the use of diverse programming
techniques (N-version redundancy), but e.g. in IEC61508-6 even on SIL3 they are still
only ‘recommended’.

2) Avoiding stovepipe systems, i.e. building large custom software, instead developing
systems based on well-tested COTS or open source communication middleware, OSs and
hardware to maximize interoperability, dependability and cost-efficiency. Only business-
critical SW components should be custom built.

3) SE framework that covers requirements, architecture, design and evaluation to support
reuse of software and hardware components, processes, models and analysis results (e.g.
FMECA and FTA).

The next phase of this research consists of developing a proof-of-concept implementation of
the dependable control system design for the bilateral master-slave teleoperation system
presented in Fig. 2, utilizing the developed SE framework. After this the overall target is to V&V
and propose a subset of generic lean SE framework, such as design models, processes, hardware
& software modules, suitable for ITER RH systems.
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a  b  s  t  r  a  c  t

Software  requirements  have  an  important  role  in achieving  reliability  for  operational  systems  like  remote
handling:  requirements  are  the  basis  for architectural  design  decisions  and  also  the  main  cause  of  defects
in high  quality  software.  We  analyze  related  recommendations  and  requirements  given  in software  safety
standards,  handbooks  etc.  and  apply  them  to  remote  handling  control  systems,  which  typically  have
safety-critical  functionality,  but  are  not  actual  safety-systems–for  example  the  safety-systems  in  ITER
will be hardware-based.

Based  on  the  analysis,  we  develop  a set  of  generic  recommendations  for  control  system  software
requirements,  including  quality  attributes,  software  fault tolerance,  and  safety  and  as an  example  we
analyze ITER  remote  handling  system  software  requirements  to  identify  and  present  dependability
requirements  in  a useful  manner.  Based  on  the  analysis,  we  divide  a high-level  control  system  into  safety-
critical and  non-safety-critical  subsystems,  and  give  examples  of  requirements  that  support  building  a
dependable  system.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

ITER will feature a large number of remote handling (RH) sys-
tems, including divertor, blanket, port handling, viewing, neutral
beam, transfer cask and hot cell. Proper maintenance and opera-
tion of ITER is not possible without these systems, and their reliable
operation is necessary for ensuring that the plant is available for
fusion experiments. Achieving this goal requires reliable mechani-
cal components and designs, together with a suitable maintenance
strategy. However, software failures have passed hardware as the
most common source for computer system outages already in the
last century [1], and modern control systems have complex func-
tionality implemented with software. Software failures therefore
present a major threat for ITER RH systems, which are safety-critical
in the sense that a fault could damage research equipment or cause
maintenance outages, potentially reducing experimental time.

∗ Corresponding author.
E-mail address: pekka.alho@tut.fi (P. Alho).

Software requirement specifications have an important role in
establishing safe and reliable RH operations, especially since the RH
systems will be developed by several contractors. This is because:
1) requirements set targets that are used to verify software qual-
ity, including reliability; 2) quality attributes (i.e. non-functional
requirements for “how well” the system should perform) drive sig-
nificant architectural and design decisions [2] and 3) requirement
specification is the largest source for defects in high-quality soft-
ware [3]. In order to improve dependability in control systems,
our research evaluates effective ways for RH system development
teams to present related software requirements.

2. Comparison of RAMI process and dependability

Reliability is defined as the probability of failure-free operation
for a specified period of time in specified environment [4]. It is also
one of the key attributes in the RAMI process [5] used in the ITER
project to manage risks in the facility development and design. In
the RAMI process every system undergoes a risk-analysis to eval-
uate what can go wrong and to recommend spare components,
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back-up systems, maintenance schedules, etc. to reduce the risk
level of breakdown to minimum [6]. RAMI stands for:

• Reliability (continuity of correct service),
• Availability (readiness for correct service),
• Maintainability (ability to undergo modifications and repairs)

and
• Inspectability (ability to undergo easy visits and controls) [6,7].

This is similar to the concept of dependability used in computing
and communication systems. Dependability has same attributes,
except instead of inspectability it has integrity (absence of improper
system alterations) and safety (absence of catastrophic conse-
quences on the user and environment) [7], being more relevant
for RH software.

Specifications and standards usually implicitly or explicitly
focus on hardware and are largely silent about software reliabil-
ity and other quality attributes [8], and the RAMI process seems
to be no exception. E.g. inspectability is essentially a requirement
for mechanical systems. Dependability-related requirements for
software-based systems need to take into account that failure
mechanisms of software differ from mechanical systems. Hardware
usually fails because of physical faults caused by wear and aging,
whereas software failures are typically caused by human errors
made in the development phase of the system and are determinis-
tic in nature, making software faults harder to predict, locate and
correct [4]. Because of these reasons, proving the reliability of soft-
ware is not as straightforward as for mechanical subsystems and
the related requirements for software need to reflect this.

3. System fault tolerance and dependability requirements

In this chapter we analyze the practices of developing depend-
ability requirements and apply them to RH system software. RH
systems typically need high reliability and have a combination
of safety-critical and non-critical subsystems. Software systems
are complex, which makes fault tolerant and dependable software
costly: development often includes risk assessments, verification
& validation procedures, and restrictions on design choices. How-
ever, use of a particular technique or techniques is not evidence of
software quality, and even certified systems fail [9].

For high quality software–like control systems–the require-
ments specification is the most important source of delivered
defects [3]. These defects can be due to errors, changes or omis-
sions in requirements. Errors and changes can be usually discovered
and managed with inspections (validation of requirements) and
tools, but missing requirements can be considerably more diffi-
cult to detect. Possible sources for software requirements include
system requirements specification (which includes system safety
requirements), software hazard & risk analyses, hardware & envi-
ronmental constraints and customer input [10]. To adequately
define dependability and fault tolerance requirements for a sys-
tem, several aspects of the software must be documented, including
quality attributes, intended modes of operation, timing require-
ments, failure modes, and safety-related functionality which are
briefly covered next.

3.1. Dependability objectives

The dependability objectives are documented in quality
attributes (reliability, availability etc.). For control systems, impor-
tant attributes include e.g. interoperability and evolvability (which
has longer-term focus when compared to maintainability) because
of the long expected lifetimes. Different subsystems may  have dif-
ferent target levels of reliability.

Dependability objectives must be defined for a given environ-
ment, i.e. operation conditions. No system can be dependable under
all conditions, so the claims must be made explicit [11]. These
include not only environmental factors, but also expected inter-
action with external systems and humans.

3.2. Operation modes

Modes of operation are based on operational conditions or mis-
sion phase. By specifying operation modes we  can limit the amount
of functionality that has to be considered at a time.

Operation modes can also affect enabled commands or allow-
able limits for parameters, which has safety implications. Examples
of operation modes important to dependability include automatic
& manual, degraded operation and recovery modes.

3.3. Timing requirements

Timing requirements include communication deadlines, samp-
ling rates, time to criticality etc. If the system has timing
requirements that include hard deadlines, this has major impact
for the system architecture design.

Safety and reliability can also be in odds–reliability can cause
non-determinism for communications, as resent information could
already be old. Especially in safety-critical systems it is often more
important to keep sending up-to-date information.

3.4. Fault tolerance and responses to undesired events

Even though software developers work to create correct
requirements and code, software will always have faults–and the
number of delivered defects per function point goes up with soft-
ware size and complexity [3]. Thus we  also need to consider
responses to undesired events, even if the software has low number
of defects. This includes needs for fault tolerance (error detection,
recovery, redundancy), specifying failure modes, i.e. how the sys-
tem should fail, and what the system is not allowed to do in the
case of failure.

Another factor that has to be considered in the case of errors is
the tradeoff between robustness and correctness: robust software
function tries to return some value (even if inaccurate) and correct
software will return no results, which is usually better for safety-
critical systems since faults will be easier to detect.

3.5. Safety-critical requirements

Reliability focuses in costs of failure and downtime, whereas
safety focuses in dangerous failure modes. When a potentially
unsafe command is detected, safety system inhibits the hazardous
command and initiates transition to a known safe state. E.g. ITER
will have a hardware-based plant interlock system which imple-
ments investment protection functions [12].

Safety-critical software covers software that has impact on
hazards (cf. safety systems that are used for avoidance or control
of hazards). Plant subsystems like RH may  have complex safety-
related functionality which must be implement with software.
Examples of such functions include stability of machines, anti-
collision systems and reduced speed & restricted space for robots
[13]. Any such software feature identified as a potential hazard
should be designated as safety-critical to ensure that future changes
and verification processes can take them into consideration [10].
Candidates for safety-critical items list can be found e.g. with soft-
ware FMEA.
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4. Example: ITER RH software requirements &
recommendations

4.1. Safety standards in ITER

Codes and standards applicable at ITER are French standards
for a basic nuclear plant. Main standard is IEC61513 (Nuclear
power plants–instrumentation and control systems important to
safety–general requirements for systems) [14] which has been
derived from the functional safety standard IEC61508.

Safety systems in ITER fall into three categories, which are
nuclear safety, occupational safety and personal access safety.
However, RH systems do not implement safety functions for these
categories, even though they may  have some safety-related func-
tionality (i.e. economical hazards for research equipment and plant
availability). It is therefore seen that RH systems are not “instru-
mentation and control systems important to safety” as intended in
the standards, and therefore not in their applicable domain. The
developers therefore have more flexibility to choose most efficient
practices, but also need more expertise to do so without compro-
mising dependability of the system.

4.2. Non-functional requirements

In this section we analyze some dependability-related require-
ments chosen from the system requirements document for remote
handling control systems [15].

Reliability:

• “RH operations without causing significant damaging to ITER
components shall have a target reliability of greater than 98%
over a 120 day operational period.“

• “The RH high-level control system shall have target reliability
against significant failures of greater than 90% over a 120 day
operational period.”

Target level for RH operations without significant damaging
equals safety integrity level (SIL) 1 in the IEC61508 functional safety
standard (probability of failure per hour ≥ 10−6 to < 10−5). The
high-level control system itself has lower reliability requirements
so only safety-critical operations need to be considered for higher
reliability level, instead of the whole control system. To be use-
ful, the requirements specification should also define “significant
damaging” and “significant failures” precisely.

For hardware components it is often possible to evaluate their
reliability based on their historical data and/or subcomponent
specification. However, for software components such data is not
usually available. Approach used in the IEC61508 is based on giving
recommendations on the use of specific techniques in the develop-
ment based on the target SIL. Other sources recommend building
a dependability case for the software, which should explain why
the critical properties hold e.g. with (formal) requirements, testing
results and verification [11].

Maintainability:

• “The RH high-level control system shall have a maintenance
system that ensures that significant failures have an average
recovery time of less than 1 day.”

For software, maintainability means how easy it is to cor-
rect defects and make changes. To achieve high maintainability,
software needs to be well documented and easy to understand.
Especially the latter can be hard to achieve with a complex system
like RH. Maintainability can also be greatly affected by choice of
programming environment and language, as e.g. licensed program-
ming languages are generally lacking in 3rd party tool support like
version control.

Software updates and fixes may  also increase failure rates as
new faults can be injected to the system. This is critical for ITER
because the RH systems need to be able to accommodate new and
changing functional requirements over time, caused by evolving
experimental changes.

4.3. Safety-critical subsystems

High-level control system for ITER RH [15] is used to demon-
strate division to safety-critical & non-safety-critical subsystems
in Fig. 1. Software subsystem is considered safety-critical if it con-
trols hazardous or safety-critical hardware or software or provides
information upon which a safety-related decision is made [10]. Sys-
tems that monitor safety-critical hardware or software as part of a
hazard control are considered as safety-systems and are presumed
to be implemented with hardware (interlocks).

Safety critical subsystems include:

• RH input device and computer assisted teleoperation (CAT) which
are used for control in manual control.

Fig. 1. High-level control system [15], showing safety-critical subsystems as identified in this paper.
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• Virtual reality which provides information for CAT (dependencies
are not shown in the figure).

• Command and control which is used for executing commands in
automatic operations.

Structural simulator, remote diagnostics and viewing system
are not considered safety-critical in this example because they do
not directly impact hazardous operations, but are used as sup-
porting information sources and for data analysis. However, now
the system has a combination of safety-critical and non-safety-
critical subsystems. Without decoupled system architecture and
error detection, there is a danger of fault propagation. Therefore
the system will need requirements and constraints like example 2
in the next section to reduce common-mode failures.

4.4. Example requirements

4.4.1. Example 1
Fast controllers (in a plant system) may  run Linux as the oper-

ating system and have safety-critical functionality, but Linux is
not validated for safety-critical use. However, extensively used
software may  reach reliability levels suitable for SIL1 or even
SIL2 [16]. Recommendation is to restrict allowed versions for ker-
nel and distribution to specific, well-tested versions, and gather
reliability-related evidence for building a supporting dependability
case. Constraint could be e.g.

[CO-1] Linux kernel version must be 2.6.30.8.

4.4.2. Example 2
To prevent fault propagation, add requirements to support

modularity and decoupling between subsystems:
[MA-1] No direct inter-module references (function calls, class

references etc.) to other software modules are allowed between
subsystems.

4.4.3. Example 3
Specify dependability requirements explicitly for different

properties. E.g. incorrect “stop” is significantly less dangerous than
incorrect “go” [11].

[RE-1] No more than one out of 100 RH operations using collision
detection and virtual force functionality for guiding telemanipula-
tion operations shall be incorrectly stopped.

[RE-2] No more than one out of 10 000 RH operations using
collision detection and virtual force functionality for guiding tele-
manipulation operations shall cause significant damage to ITER
components.

5. Conclusions

Requirement specification presents a major source of defects
for control systems, and thus has major impact on reliability. How-
ever, risk management processes and codes often neglect software

reliability, even though reliability requirements need to be man-
aged as a system measure that accounts for both hardware and
software, and their different characteristics taken into account.
Especially proving the reliability of software can be problematic.

Remote handling systems have safety-critical functionality like
stability and anti-collision systems implemented with software,
whereas actual safety functions are usually implemented with
hardware. Software development is therefore guided by depend-
ability requirements instead of strict safety standards, as risks are
economical ones. Cost-efficient development needs to take into
account that different subsystems therefore need different levels
of reliability (e.g. diagnostics is not as critical as command & con-
trol). Systematically developed requirements can be used to form
a dependability case for the system under development, where
requirements, architectural solutions, verification etc. is provided
to give sufficient confidence in the reliability of software.
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Abstract. Cyber-physical systems like networked robots have benefited from 
improvements in hardware processing power, and can facilitate modern compo-
nent and service-based architectures that promote software reuse and bring 
higher-level functionality, improved integration capabilities, scalability and 
ease of development to the devices. However, these systems also have very 
specific requirements such as reliability, safety, and strict timeliness require-
ments set by the physical world, that must be addressed in the architecture.  

This paper proposes a real-time capable service-oriented architecture, based 
on data-centric middleware and an open real-time operating system. A proto-
type implementation for a robotic remote handling scenario is used to test the 
approach. The architecture is evaluated on the basis of how well it fulfils the 
expectations given for the service-orientation, including: reusability, evolvabil-
ity, interoperability and real-time performance. In one sentence, the goal is  
to evaluate the benefits of a data-centric approach to service-orientation in a 
performance-critical and distributed system. 

Keywords: real-time, distributed, SOA, data-centric, middleware, robotics. 

1 Introduction 

Developing software for cyber-physical embedded systems such as networked robots 
is a demanding task, due to complex functionality that has to be realised in a distrib-
uted and heterogeneous computing environment which typically has requirements for 
real-time performance and fault tolerance. Many of the challenges in these systems 
are related to interoperability and growing scale. Typically a distributed control sys-
tem will consist of several subsystems running on different platforms that produce 
and consume increasing amounts of data. 

On a higher abstraction level, business processes are also becoming strongly net-
worked to improve efficiency by automatically transferring data, task requests etc. 
between systems. This means that robotic systems must be integrated to operations 
management systems, open for external connections, and able to connect and cooper-
ate with other machines. These requirements and challenges are not unique to robotics 
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– other domains like industrial automation, mobile machines and telecommunication 
have very similar issues.  

Service-oriented software engineering has evolved from component frameworks 
and object orientation to meet the demands of more open and networked environ-
ments. It promotes reuse by decomposing business processes into reusable core ser-
vices. The main benefits of service-oriented architecture (SOA) include high level of 
decoupling – provided by the service model – and interoperability which enables 
service providers and consumers to exist on different platforms. Two major down-
sides typically associated with SOA are complexity of developing such a system and 
increased overhead caused by communication mechanisms [6]. The latter is also re-
lated to the lack of performance guarantees, and presents a major challenge especially 
for embedded systems. An SOA implementation for robotic system therefore needs to 
place heavy emphasis on solving this problem, which is one of the key design goals 
for the architecture presented in this paper. 

Application of SOA design principles to real-time systems (RTSOA) is a research 
topic that has come up in the last decade, with research including experimental im-
plementations [3], [9], [10] and related key features like service composition [2], [4]. 
However, most of the current RTSOA approaches are based on the existing message-
based Web Service standards. Web services face challenges when used in embedded 
systems, as messages need to be serialized in real-time [2], and quality of service 
(QoS) must be managed at the transport layer. Other challenges include complexity of 
networking with HTTP, XML, and SOAP; constraints imposed by embedded system 
architecture; and verbosity of HTTP and XML.  

We believe that the service-oriented approach may be beneficial for the develop-
ment of cyber-physical systems, but there is a need to test out different implementa-
tion solutions that fulfil the specific limitations and requirements of the target domain, 
including reliable communications, limited resources, and deterministic behaviour.  
In this paper we present a data-centric approach to RTSOA and evaluate it by imple-
menting the proposed reference architecture for a robotic remote handling scenario. 
Remote handling involves human operators remotely controlling robots that perform 
tasks like maintenance or construction in dangerous environments, so reliability and 
performance of the system are vital for successful task completion. 

2 Real-Time Service Orientation for Robotic Systems 

2.1 Design Goals 

We see the following as the main design goals for the real-time service-oriented  
architecture:  

• Promote software reuse by producing reusable and decoupled software modules.  
• Enable composing a working system out of reusable and existing services. 
• Improve interoperability of heterogeneous systems (platform & programming 

language independence). 
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• Ensure evolvability [8] in the future; the architecture should support changing 
requirements and operating environments during the system lifecycle. 

• Deterministic real-time performance, despite dynamically changing environment. 
• Dependable and fault tolerant operation.  
• Improve cost-efficiency & ease of development; the implementation should be 

able to use off-the-shelf solutions for tools, software and hardware, instead of pur-
pose-built applications and devices. 

2.2 Reference Architecture  

The reference architecture, introduced in [5], is a general proof-of-concept control 
system platform for machine automation as an alternative to proprietary and special-
ized solutions. The platform is based on the ideas of real-time service orientation, 
introduced previously in this section, and emphasizes integrability, interoperability, 
maintainability and heterogeneity. Service orientation allows software components to 
be published and located locally or over a network. 

 

Fig. 1. Layered architectural view of the reference architecture 

In section 3 we will describe the actual implementation of the reference architecture 
for a remote handling scenario. A high-level layered view of the reference architecture is 
shown in Fig. 1. Key concepts of the architecture are services, communication & infor-
mation sharing mechanisms, composition, and fault-tolerance. These are described next. 

2.3 Concurrency Model and Real-Time Performance 

The choice of a concurrency model for the architecture directly affects decoupling of 
the modules and management of real-time constraints. Options for the concurrency 
model include processes, threads or call-back functions [1]. Each solution has its own 
pros and cons for ease of development and inter-process communication. For a ser-
vice-based architecture, the process-based model (services as processes) makes most 
sense, as it is the most decoupled alternative. This decoupling provided by processes 
has benefits, including the possibility to more easily manage services at runtime and 
improved robustness.  

A service can be defined as an independently developed, deployed, managed, and 
maintained software implementation that directly represents business tasks or devices.  
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A service can be defined by a verb which describes the function it implements, e.g. 
“generate a trajectory”. Our implementation of services uses object orientation: service 
is an interface (virtual class) that has methods for starting, stopping, restarting etc. the 
service, which the service developer must implement. Services can use native applica-
tions and services provided by the operating system (e.g. APIs for communication). 

2.4 Communication and Information Sharing 

In order to communicate, components need some form of visibility or references be-
tween the communicating parties. However, this can lead to a tightly coupled system 
design that scales poorly. Examples of communication methods that impose coupling 
include sockets, remote method invocation and client-server model in general. A more 
decoupled solution is to use middleware based on the asynchronous publish/subscribe 
communication paradigm, which can be implemented as message-based like Java 
Message Service (JMS), or data-centric like Data Distribution Service (DDS)1.  

Another communication problem in distributed real-time systems is that networking 
can add unpredictable delays and unreliability to connections. Therefore we need to be 
able to set and monitor quality of service (QoS) parameters like reliability and how long 
the data is valid for each topic, so that the system can react appropriately if the QoS is 
compromised. QoS can be used to define if we want reliable sending (e.g. for com-
mands) or just the most recent value as fast as possible (e.g. sensor measurements). 

 

Fig. 2. Bus-based communication in SOA 

The data-centric middleware can be used as a data bus between the services, as 
shown in Fig. 2: this is similar to the use of enterprise service bus (ESB) in enterprise 
SOAs. Another benefit of using a distributed middleware is a global data space where 
all data can be accessed; there is no central broker/repository that could act as a bot-
tleneck or a single point of failure.  

In an ideal situation we would have total location transparency for the services (no 
difference between accessing local and distributed services), but in order to achieve 
optimal real-time performance, the architecture uses separate communication methods 

                                                           
1  A standard maintained by Object Management Group,  

http://portals.omg.org/dds/ 
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for local and networked communications, termed local service bus and global service 
bus. The reference architecture itself is not committed to any specific communication 
standard, but the implementation uses DDS middleware and the communication 
mechanisms provided by the real-time operating system (RTOS) Xenomai2.  

Local connection of services as components and the use of DDS as a data-bus for 
distributed communications combine the strengths of component and service ap-
proaches, and provides optimal real-time performance in both cases. DDS can be used 
on low-end embedded systems to read and send sensor information, whereas XML-
based solutions would be too heavy, and would necessitate a separate solution.  

• Global service bus: DDS was chosen since it implements asynchronous data-
centric publish/subscribe model and provides QoS management, making it suitable 
for cyber-physical systems, which place a heavy emphasis on sending and receiv-
ing data. 

• Local service bus: services can use RTOS message queues (an asynchronous 
“mailbox”) or shared memory for local real-time communication between two ser-
vices. The queue-based local communication is similar to the component wiring 
approach used in component-based software engineering. 

2.5 Composition  

In complex systems, the number of internal components can easily grow to the range 
of hundreds or even thousands. Management of this many components or services can 
be complex and laborious if the framework-implementation of the architecture does 
not provide tools for this. Engineering of new applications from reusable components 
is supported by a repository of available components, configuration services to select 
and combine components, and run-time mechanisms that allow components to be 
dynamically changed. 

 

Fig. 3. Composite service (Key: circle denotes a service, arrow shows direction of data flow) 

In the service-oriented architecture, higher level functionality can be implemented 
by creating composite services of the existing services, as shown in Fig. 3. Different 
means of implementing composition include programmatic, publish/subscribe, events 

                                                           
2  Real time Linux kernel extension and development framework,  

http://www.xenomai.org/ 
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and orchestration engine. Since our reference architecture is based on the pub-
lish/subscribe model, this is a natural match for the composition mechanism, and 
enables flexible implementation of composite services. Services can be chained lo-
cally and globally to form new composite services. A single service can be part of 
multiple composite services and used by multiple other services, which can reduce the 
level of unnecessary redundancy in the system. 

A repository provides a way to document and list available services or compo-
nents. For SOAs this can be done by writing an interface description and saving it in 
the repository. Service registries, on the other hand, provide runtime information for 
finding and binding services. In our proposed data-centric approach, based on the use 
of a data bus, the middleware can handle registration of new publishers, and match 
subscribers to the provided data topics.  

Service composition and management at runtime is handled dynamically through a 
local service manager, which controls spawning of new services. This makes it possi-
ble to modify a service and restart it on-the-fly, enabling faster deployment process by 
updating only related services, instead of having to recompile the whole system after 
every reconfiguration or update. 

2.6 Fault Tolerance 

Fault tolerance is a key requirement for the architecture, as many cyber-physical sys-
tems perform safety-critical tasks. A fault in the control system may endanger human 
lives (either directly or indirectly), cause operational downtime or damage the envi-
ronment or equipment. Service-orientation can support error confinement with the 
modular architecture, based on the decoupling provided by the service model, al-
though the system still needs to implement error detection and recovery.  

Because of the decoupled design, developers cannot make the presumption that other 
services are always available, and must take the situation into account in their application 
code so that the service will react if a dependency goes down, e.g. because of failure or 
manual shutdown. The error handling approach based on decoupling is similar to the one 
used in the Erlang programming language, which can be summarized as “let it crash” [7]. 
In the event of an error, the process is terminated, presuming it is not an exception that 
can be handled. This forces other services to react and do error recovery, including enter-
ing their safe state. The architecture can still be prone to error propagation, so the services 
should be made fail-silent if possible, making it easier to detect faults. 

In order to implement error detection, the system can use a service manager to de-
tect crashed services based on heartbeat signals or monitoring the use of resources like 
CPU and memory. Unresponsive behaviour or unexpected increase in CPU usage for a 
service can indicate a fault in the service, and may endanger real-time performance of 
other services and cause unexpected and potentially dangerous behaviour. The service 
manager restarts the unresponsive service, which will put the system temporarily into a 
safe state by forcing other services to do error handling, according to the “let it fail” 
approach. Key principle is writing loosely coupled services, by forcing the developer 
to consider situations where the dependency services are not available or timing con-
straints are violated.  
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3 Implementation for a Remote Handling System  

In order to test the proposed data-centric real-time approach to service-orientation, we 
implemented a remote handling control system (RHCS) for automated teleoperation 
of an industrial robot Comau SMART NM45-2.0, based on the reference architecture 
described in the previous section. A basic remote handling scenario consists of an 
operator using the web-server based Operation Management System (OMS) to send 
movement commands to the equipment controller.  Virtual reality software (IHA3D) 
is used to visualize the position and movements of the robot. 

Services deployed on the equipment controller for the remote handling system im-
plementation are shown in Fig. 4. Service descriptions, real-time task priorities and 
execution periods are listed in Table 1. 

Table 1. List of services used in the remote handling control system 

Service name Service description Priority 
[0 .. 99] 

Period 
[ms] 

Trajectory-
Generator 

Generate a trajectory profile that the manipu-
lator can follow from one point to another. 

50 2 

C4G 
Interact with the low level control system of 
the manipulator. 

91 2 

C4GJoint-
DataPub 

Publish manipulator joint position data. 45 10 

OmsCom 
Read OMS commands and manipulator joint 
data; send commands to the trajectory gen-
erator to create new trajectories. 

40 50 

Measuring Measure task execution time and jitter. 20 0.1 

4 Evaluation of the Experiment 

This section presents an evaluation of the problems and benefits of the proposed ap-
proach that could be observed with the implemented experimental system. The system 
is evaluated with the following criteria: reusability, interoperability, evolvability, real-
time performance, fault tolerance, and ease of development. Dynamic composition 
performance depends greatly on the algorithm design [2] and it is not evaluated in this 
paper. Instead, a static composition is used. 

Reused software includes TrajectoryGenerator service, C4G service and 
two subsystems (OMS and virtual reality). A service-based implementation avoids 
stovepipe system antipattern3 as services are loosely coupled (no direct references to 
other services) and do not interfere with each other’s namespaces etc., simplifying 
future reuse of services. 

 

                                                           
3  http://sourcemaking.com/antipatterns/stovepipe-system 
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Fig. 4. Service deployment view for the system (Key: UML) 

Interoperability of heterogeneous systems (machines and higher-level enterprise 
systems) is supported on any platform that has a compatible DDS implementation. 
DDS is available on several programming languages, therefore good programming 
language independence is provided. Interfaces to Web services, REST-based services 
and other communication platforms can be implemented with adapters. 

Evolvability – the software must be able to accommodate new and changing re-
quirements, including connections to unforeseen external sources. Ability to do this in 
the long term is especially important for industrial automation systems, because they 
have long expected lifetimes. This can be measured with evolvability, which de-
scribes the ability of software to accommodate future changes [8]. Performing a com-
plete evolvability analysis is not reasonable in this context, so we focus on the 
changeability, extensibility and portability sub-characteristics: 

• Changeability: Data typically has better consistency in the long run when compared 
to interfaces. However, if the data topics or queue configurations are changed or 
added, corresponding modifications must be implemented to both publishers and 
subscribers, but it is possible to provide extensions topics that provide the new or 
changed data, thus retaining compatibility with old implementations. 

• Extensibility: New topics or functionality in the form of services can be added 
on-the-fly, without shutting down and recompiling the whole system. The run-
time composition can be managed with the service manager, which can also be 
used to lazily launch necessary services (service chains). 

• Portability is limited if RTOS-specific features like real-time queues are used. 
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Real-time performance – we analysed system performance by measuring cycle dura-
tions for a real-time task first unloaded and then running a full remote handling system 
with a script generating artificial CPU, network & disk loads. The real-time measuring 
task was executed 10000 times with 100 µs period on a 3.4 GHz Pentium 4 CPU. The 
measured latencies are shown in Fig. 5. Although standard deviation of cycle duration 
has increased from 172 ns to 410 ns in the heavily loaded system, graphs show highly 
deterministic behaviour in both cases. Performance of the DDS middleware in embed-
ded real-time systems has been evaluated e.g. by Xiong et al. in [11].  

 

Fig. 5. Cycle durations for single task vs. remote handling system with extra load 

Fault tolerance – the service manager can detect if services use more system re-
sources than reserved at start-up, and force a restart. Other services need to react ac-
cording to the “let it crash” error handling approach. After the services have been 
restarted, normal operation can be resumed if the fault was transient. A leaky bucket 
counter or an escalating retry timer can be used to distinguish transient faults from 
permanent ones.  

An example case of error handling: the TrajectoryGenerator service is 
killed in the middle of running a trajectory to the C4G service, which controls the 
robot. C4G service detects that there is no new data available, and stops the movement 
of the robot, by ramping down the power in a controlled and safe fashion. Normal 
operation can be resumed when the TrajectoryGenerator is restarted.  

Cost-efficiency & ease of development: the service-model is an intuitive ap-
proach for developers, as services can be interfaces to devices or related to tasks that 
must be accomplished. Linux-based development offers a variety of tools & drivers, 
reducing need for self-developed or proprietary choices. Communication configura-
tions (for local queues) are currently hardcoded, so managing a large number of local 
communications becomes cumbersome, although the service manager can be used to 
start services. The local service communications should be standardized and details 
moved to external configuration files that could also be managed with tools to sim-
plify management and reduce local coupling between services. 

5 Conclusions 

A dynamic module system based on services or components is necessary to manage 
complexity of embedded and distributed control systems. The module system should 
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abstract the communications between modules, and provide tools for managing and 
deploying the configurations in order to improve software reusability and simplify 
development process, maintenance, and integration of new devices to the system.  

In this paper we have presented our design concept for a service-based software ar-
chitecture. Our proposed approach adapts the SOA paradigm with data-centric design, 
based on topic-based publish/subscribe middleware and RTOS. The experimental im-
plementation of the architecture demonstrates integration of heterogeneous subsystems 
with the service-based control system through a scalable middleware-based data bus. 
The control system is based on an open RTOS and has deterministic real-time capabili-
ties. Although all composition features in the prototype are not fully implemented, it 
provides contribution by testing the data-centric approach to implementing RTSOA.  

References 

1. Calisi, D., Censi, A., Iocchi, L., Nardi, D.: Design choices for modular and flexible robotic 
software development: the OpenRDK viewpoint. Journal of Software Engineering for Ro-
botics 3(1), 13–27 (2012) 

2. Tsai, W., Lee, Y.-H., Cao, Z., Chen, Y., Xiao, B.: RTSOA: Real-Time Service-Oriented 
Architecture. In: Proceedings of the 2nd IEEE International Symposium on Service-
Oriented System Engineering (SOSE 2006), pp. 49–56. IEEE (2006) 

3. Cucinotta, T., Mancina, A., Anastasi, G., Lipari, G., Mangeruca, L., Checcozzo, R., et al.: 
A Real-Time Service-Oriented Architecture for Industrial Automation. IEEE Transactions 
on Industrial Informatics 5(3), 267–277 (2009) 

4. Moussa, H., Gao, T., Yen, I.-L., Bastani, F., Jeng, J.-J.: Toward effective service composi-
tion for real-time SOA-based systems. Service Oriented Computing and Applica-
tions 4(Special Issue: RTSOAA), 17–31 (2010) 

5. Hahto, A., Rasi, T., Mattila, J., Koskimies, K.: Service-oriented architecture for embedded 
machine control. In: International Conference on Service-Oriented Computing and Appli-
cations. IEEE (2011) 

6. Machado, A., Ferraz, C.: Guidelines for performance evaluation of web services. In: Proc. 
of the 11th Brazilian Symp. on Multimedia and the Web, WebMedia 2005, pp. 1–10. ACM 
(2005) 

7. Armstrong, J.: Making reliable distributed systems in the presence of software errors. Dis-
sertation. Royal Institute of Technology, Stockholm (2003) 

8. Pei-Breivold, H., Crnkovic, I., Larsson, M.: A systematic review of software architecture 
evolution research. Inf. and Software Technol. 54(1), 16–40 (2012) 

9. Panahi, M., Nie, W., Lin, K.-J.: A Framework for real-time service-oriented architecture. 
In: 2009 IEEE Conf. on Commerce and Enterp. Comput., pp. 460–467. IEEE (2009) 

10. Garces-Erice, L.: Building an Enterprise Service Bus for Real-Time SOA: A Messaging 
Middleware Stack. In: 33rd Annual IEEE International Computer Software and Applica-
tions Conference, COMPSAC 2009, pp. 79–84. IEEE (2009) 

11. Xiong, M., Parsons, J., Edmondson, J., Nguyen, H., Schmidt, D.C.: Evaluating the perfor-
mance of publish/subscribe platforms for information management in distributed real-time 
and embedded systems (2011) 



Publication 4

P. Alho and J. Mattila, Software fault detection and recovery in critical real-time systems: an
approach based on loose coupling, Fusion Engineering and Design, vol. 89, no. 9-10, pp. 2272-2277,
2014

DOI: 10.1016/j.fusengdes.2014.04.050

© Elsevier. Reprinted with permission.





Fusion Engineering and Design 89 (2014) 2272–2277

Contents lists available at ScienceDirect

Fusion  Engineering  and  Design

jo u r n al homep age: www.elsev ier .com/ locate / fusengdes

Software  fault  detection  and  recovery  in  critical  real-time  systems:
An  approach  based  on  loose  coupling

Pekka  Alho ∗,  Jouni  Mattila
Department of Intelligent Hydraulics and Automation, Tampere University of Technology, Finland

h  i g  h  l  i  g  h  t  s

• We  analyze  fault  tolerance  in  mission-critical  real-time  systems.
• Decoupled  architectural  model  can  be  used  to implement  fault  tolerance.
• Prototype  implementation  for  remote  handling  control  system  and  service  manager.
• Recovery  from  transient  faults  by  restarting  services.

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 30 August 2013
Received in revised form 7 April 2014
Accepted 22 April 2014
Available online 14 May  2014

Keywords:
ITER
Remote handling
Software
Fault tolerance
Dependability
Real-time

a  b  s  t  r  a  c  t

Remote  handling  (RH)  systems  are  used  to  inspect,  make  changes  to,  and  maintain  components  in  the
ITER machine  and  as  such  are an  example  of  mission-critical  system.  Failure  in  a critical  system  may  cause
damage,  significant  financial  losses  and  loss  of  experiment  runtime,  making  dependability  one  of  their
most  important  properties.  However,  even  if the software  for RH  control  systems  has  been  developed
using  best  practices,  the  system  might  still fail due  to  undetected  faults  (bugs),  hardware  failures,  etc.
Critical  systems  therefore  need  capability  to tolerate  faults  and  resume  operation  after  their  occurrence.
However,  design  of  effective  fault  detection  and  recovery  mechanisms  poses  a  challenge  due  to  timeli-
ness  requirements,  growth  in  scale,  and  complex  interactions.  In  this  paper  we  evaluate  effectiveness  of
service-oriented  architectural  approach  to  fault  tolerance  in  mission-critical  real-time  systems.  We use  a
prototype implementation  for  service  management  with  an experimental  RH  control  system  and indus-
trial manipulator.  The  fault  tolerance  is based  on  using  the  high  level  of  decoupling  between  services to
recover  from  transient  faults  by service  restarts.  In case  the recovery  process  is  not  successful,  the  system
can still  be  used  if the fault  was  not  in  a critical  software  module.

©  2014  Elsevier  B.V.  All rights  reserved.

1. Introduction

Remote handling (RH) systems are used to inspect, make
changes to, and maintain components in the ITER machine. Failure
in a mission-critical system like RH may  cause damage and, per-
haps even more significantly, loss of experiment runtime, therefore
making dependability one of its most important properties. How-
ever, even if the software for the RH system has been developed
using valid development processes, the system might still fail due to
undetected faults, hardware failures, etc. Critical systems therefore
need to be able to resume operation after faults have occurred, but

∗ Corresponding author. Tel.: +358 505375726.
E-mail address: pekka.alho@tut.fi (P. Alho).

design of effective fault detection and recovery mechanisms poses
a challenge. This is due to timeliness requirements combined with
growth in scale and complex dynamic interactions in RH systems
and embedded systems in general.

Several programming languages and frameworks, e.g. Erlang or
OSGi for Java, support use of decoupled architectural models that
can be used to implement fault tolerance solutions and dynamic
loading of software modules, but these approaches are typically
used in non-critical applications that do not have requirements for
deterministic response times. In this paper we evaluate effective-
ness of the decoupled architectural approach in mission-critical
real-time systems using an experimental RH control system for
an industrial manipulator. The control system is based on a real-
time service oriented architecture (RTSOA) that we have introduced
and evaluated in [1]. Services (i.e. the applications that participate
in the control of the manipulator) are managed by a prototype

http://dx.doi.org/10.1016/j.fusengdes.2014.04.050
0920-3796/© 2014 Elsevier B.V. All rights reserved.
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service manager that is used to detect faults and initiate recovery
processes.

The RH control system consists of several heterogeneous subsys-
tems, including equipment controller (EC), virtual reality (VR) and
operations management system (OMS), specified in the ITER RH
control system handbook [2]. This kind of cooperation of several
networked computational units is typical for the field of cyber-
physical systems (CPS), featuring a tight coordination between
computational and physical elements of the system. CPS research
aims to improve interoperability and openness between networked
controllers to produce more intelligent applications.

2. Background

Fault tolerance means avoiding service failures in the presence
of faults, and consists of error detection and recovery [3]. However,
recovery can introduce unpredictable delays that might be in con-
flict with the predictability requirements of real-time systems. A
typical approach for real-time fault tolerance is to use two or more
diverse versions of software. Such an approach is suitable, e.g. in
aviation, where the scope of critical systems is limited, and the cost
of creating multi-version software is distributed over a large num-
ber of aircraft [4]. However, for large and complex one-off software
systems, such as RH, use of multi-version techniques is difficult to
justify.

Key challenges for fault tolerance in RH systems include recov-
ery of state data, reliable detection of faults, fault recovery that
supports real-time requirements, and ensuring reliability of end-
to-end service chains. Safety of the system relies heavily on
reasoning about consequences of faults, which is an important open
research area due to the complex and stochastic nature character-
istic for CPS.

Previous research on real-time fault tolerance has focused
largely on redundancy-based solutions and reconfiguration. Gon-
zales et al. use adaptive management of redundancy to assure
reliability of critical modules by allocating as much redundancy to
less critical modules as could be afforded, thus gracefully reducing
their resource requirements [5]. Assured reconfiguration in case of
failures is used in [6]. This allows the primary function to fail and
then reconfigure to some simpler function – reconfiguration of the
system is a critical part, and it is formally verified. Simplex archi-
tecture by Sha et al. uses high assurance and high performance
control subsystems [7]. The high assurance subsystem is used to
keep the system within the safety envelope. ORTEGA architecture
improves the Simplex architecture by adding on-demand detec-
tion and recovery of faulty tasks [8]. An anomaly based approach
for detecting and identifying software and hardware faults in per-
vasive computing systems is proposed in [9]. The methodology uses
an array of features to capture spatial and temporal variability to
be used by an anomaly analysis engine.

Our work differs from these approaches by focusing on tran-
sient faults in a real-time system by using highly modular approach
instead of redundancy. Similar solution based on modularity
and fault isolation has been successfully used, e.g. in the non-
real-time MINIX operating system (OS) for driver management
[10].

3. Fault detection and recovery in real-time systems

3.1. System definition

Our hypothesis is that mission critical real-time systems can use
service management to recover from transient faults (discussed in
Section 5) in a loosely coupled software architecture. In this context,
we define a loosely coupled real-time system as follows:

Fig. 1. Logical system architecture.

• The system is made up of a set of periodic processes, i.e. services.
• Services are loosely coupled, having no direct interdependencies

or references to each other.
• Services can be distributed over network or located on a single

computer.
• Services communicate with a communication buses that facilitate

monitoring of communication deadlines.

Advent of modern, powerful processors to RH systems provides
a chance to mitigate the delays caused by the recovery process if
the fault is detected before deadlines. In an optimal case, a fault
can be detected and recovered before it causes service failures. If
fault recovery causes exceeding of a deadline, other services can
detect this and react accordingly by moving the system to a safe
state while simultaneously isolating the fault. Since this recovery
strategy does not rely on redundant versions, there is no need to
maintain consistency between replicas, which is a major challenge
for redundant systems [11]. We  also leave formal methods out of
the scope of our solution because of architectural limitations and
costs associated with these methods are likely to be prohibitive for
ITER.

3.2. Architecture

The system architecture in our implementation is based on
RTSOA using data-centric middleware and an open source real-
time operating system (RTOS). It provides decoupled connections
for the services via local and global service buses (LSB and GSB) and
includes a service manager to monitor and manage services (Fig. 1)
[1].

The LSB is based on real-time queues, a communication mode
provided by the RTOS. A message queue can be created by one
service and used by multiple services that send and/or receive
messages to the queue. GSB is a wrapper that uses Data Dis-
tribution Service for Real-Time Systems (DDS) middleware for
networked connections; DDS is a standard for decentralized and
data-centric middleware based on the publish/subscribe model and
aimed at mission-critical and embedded systems. The standard
is maintained by the Object Management Group (http://portals.
omg.org/dds/).

3.3. Service manager and service configuration

Service manager is a local component used to start services
and detect faults. Service manager spawns the services as child
processes, according to a configuration file – more advanced con-
figuration methods could be supported, e.g. GUIs, web interface

http://portals.omg.org/dds/
http://portals.omg.org/dds/
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or GSB-based, but have not been included in the prototype imple-
mentation at this phase. Services update their status to the service
manager through either LSB or GSB. Possible states are running,
stopped, (re)starting, and error. The local communication bus is also
used by the service manager to command services to switch states
(start, stop and restart). More extensive set of states and commands
would give a more fine-grained control over services, but also add
additional complexity to service implementation and service man-
agement logic, potentially introducing new faults.

Fault detection utilizes several methods: service status updates,
monitoring user-set resource limits for CPU and memory usage,
heartbeat monitoring, and OS features (parent process can check
the state of its child processes). Service manager can be used to
dynamically update services by terminating them and replacing
with new version, enabled by the decoupled bus-based architec-
ture.

Unresponsive behavior or unexpected increase in resource
usage for a service can indicate a fault in the service, potentially
endangering real-time performance of other services or causing
dangerous movements – this is a typical challenge for design of CPS,
needing interdisciplinary co-operation of designers and researches
from industry and academia. After a fault has been detected, the
service manager either terminates or restarts the faulty service,
according to the configuration. These actions will either recover
the fault without cascading service failures or put the system to a
safe state, according to “let it fail” approach. This method is mainly
suited to handling of transient faults. If the fault recovery fails,
system simply stays in the safe state.

The fault recovery strategy enables operator to continue opera-
tion or recover equipment by avoiding the conditions that trigger
the fault, postponing software update to later time and thus retain-
ing higher system availability. Alternatively, operations can be
suspended until the fault has been removed.

Effectively the described method of fault tolerance is a form of
fault masking. The system therefore needs an error manager com-
ponent to track number of errors so that they do not go unnoticed.
This functionality is logical to implement in the service manager.
Error data provided by the service manager can be used to give,
e.g. graphical warnings to the user about encountered faults or
send notifications via email or another message channel. Finally,
if restarting a service does not solve the fault, service manager can
utilize escalation and move the system to limp-home or recovery
mode.

Configuration of services to be started and managed by the
service manager may  include the following parameters – new
parameters can be easily added on per-need basis (parameters in
italics are not implemented in the prototype):

• Start command, including necessary command line parameters.
• CPU and memory usage limits in percentage (or bytes).
• Heartbeat timeout.
• Actions to be taken on failure: restart, terminate, execute
{program}, alert {email address}.

• Limit for the number of restarts.
• List of dependencies if they must be also restarted.

3.4. Service design

In the case of a failure, service stops execution or is terminated
by the service manager and its state data will be lost. State data
can be divided to temporary, static and dynamic: temporary data is
related to current computations and is not relevant after a failure,
static data is typically configuration data that can be reread, and
dynamic data contains results of calculations, user input, etc. Some
of the dynamic state data can also be recalculated or reread (e.g.
sensor measurements), but commonly it needs to be protected. This

means that any state data that needs to be recovered after restart
must be stored in a stable storage. However, since it is possible that
the saved state data has been corrupted, sanity-checking (typically
checksums or valid range for data) is needed. Another issue regards
how much of the state should be recovered. For example, an inter-
rupted trajectory of a remotely operated manipulator should not
be continued because of potential risks. The software may  also hit
the exactly same bug again if the full state from the time of failure
is recovered.

Another major consideration for service design is that services
should be fail-stop or fail-silent so that a failure in one applica-
tion does not cause unwanted behavior in others. Compared to
heartbeat timeouts and increased resource use, detection of erro-
neous outputs is more difficult to implement and has to be done
using more “traditional” methods including contract programming,
asserts, exceptions, etc., according to the needs of the specific appli-
cation. If the service detects an internal error (e.g. an exception), and
is still in otherwise sane state, it can report the error to the service
manager by publishing status change to error. In our implementa-
tion, services publish the status in the heartbeat signal periodically
sent to the service manager.

Service dependencies may  be unavailable at times due to faults
or even normal use scenarios. Service developer therefore needs
to implement monitoring for communication deadlines and decide
how to recover services from faults. Recovery should be taken into
account already in the specification [12]. This is a direct conse-
quence of the dynamic nature of decoupled architectures and forces
the developer to take into account situations where the dependen-
cies of a service are offline or unavailable. Although the dynamic
service connections necessitate some extra code, such as reini-
tialization of communications after faults, the final result is more
resilient to error situations. RH specific failure mode analysis is
covered in Section 5.

Another benefit of loose coupling between services is capabil-
ity to have multiple copies running on more than one computer at
once, providing redundant processing or hot backup capabilities.
This can provide cost-efficient redundancy against computer hard-
ware faults, especially for critical services. Services can also be hot
swapped to enable better maintainability and non-stop reliability.

4. Remote handling control system

We  have implemented an experimental RH control system to
evaluate the proposed approach to fault detection and recovery.
The RH control system operates an industrial manipulator (Fig. 2)
manufactured by Comau in ITER relevant RH task scenarios. The

Fig. 2. Industrial manipulator used in experiments, equipped with a pneumatic
gripper tool.
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Table  1
RTSOA services on EC (service names in Courier).

Service Service task description Period Ti [ms]

TrajectoryGenerator

(TG)

Generate a trajectory
profile that the
manipulator can follow
from one point to another.

2

C4G  Send position and velocity
reference to the
manipulator control
system at 500 Hz.

2

C4GJointDataPub Publish manipulator joint
position data to GSB.

10

OmsCom Read OMS  commands from
GSB and pass them to the
trajectory generator.

50

system architectural model from Section 3.2 is applied to imple-
ment safe management of services in the RH control system to
detect failures based on observing abnormal behavior. The RH con-
trol system is a non-trivial application that is used to test the fault
detection and recovery in critical real-time systems. Communi-
cation frequency between master and slave controllers in similar
teleoperation applications is typically 500–1000 Hz. The prototype
uses 500 Hz communication loop between EC and Comau low-level
servo controller over real-time Ethernet. Missing a communication
deadline causes the low-level controller to engage an emergency
stop and drop the communication link, necessitating a system
restart.

Test setup includes EC, VR and OMS  subsystems that are spec-
ified in the ITER RH control system architecture [2], in addition to
the Comau’s own low-level controller. VR is used to visualize robot
position, although the operator also has direct visual contact with
the manipulator in the test setup.

EC is a real-time system for operating RH equipment, i.e. the
manipulator in this case. Our EC implementation is running real-
time Linux with the RTSOA services and service manager. Services
and loop timings are listed in Table 1.

VR capabilities are provided by IHA3D, Windows-based soft-
ware developed at the Department of Intelligent Hydraulics and
Automation (IHA) [13]. IHA3D provides a simulated virtual environ-
ment for the operator and can be used for virtual force generation
in bilateral teleoperation.

OMS  is a task planner subsystem used to support operation by
planning, helping and instructing execution of RH procedures [13].
Procedures are complete sequences of manual actions and move-
ments required to perform maintenance or testing operations. We
used a web-server based OMS  implementation which provides a
browser-based GUI for the operator. Operator can use the OMS  to
send movement commands to the manipulator.

5. Fault recovery for RH system

5.1. Fault types

One way to categorize faults is permanent and transient faults
[3]. Transient faults include aging-related faults (e.g. memory
leaks), interaction faults, race conditions, attempts to exploit secu-
rity vulnerabilities, resource leaks, bit flips, temporary device
failures, etc. [3,10]. Transient faults can be difficult to find with test-
ing because their activation may  depend on complex timing, state
and runtime environment conditions. This means that even critical
systems developed with best practices can encounter them, mak-
ing error confinement and recovery capabilities important. These
faults may  be temporarily solved by rejuvenation [14], i.e. shutting
down the software item and restarting it. Although the root cause
may  not necessarily be removed by creating a fresh item, system

Table 2
RH control system service criticality & recovery. Stop = “stop manipulator move-
ment”, restart = “restart service”.

Service name Critical Restore state Failure action

TG Y N Stop, restart.
C4G Y Y Terminate TG, restart.
C4GJointDataPub Y Y Stop, restart.
OmsCom N Y Restart

would typically be usable after restart. Transient faults are detected
by service manager with resource limits, service status updates,
heartbeat timeouts and monitoring of child process status.

Our implementation uses real-time message queues to send
heartbeat signals from services to the service manager. Heartbeat
signal is combined with the status update for the service. This
functionality can be extended to the GSB, providing remote nodes
awareness of service health. Resource limit monitoring is currently
based on the proc file system, a feature in UNIX-like systems pro-
viding a method to access process data through a file-like structure.
Alternatively system calls, such as getrusage, could also be utilized.

Permanent faults, caused, e.g. by faults in algorithms or control
flow, persist after service restart. Determining if the fault is perma-
nent or transient is based on error counting implemented by the
service manager, i.e. limiting the number of restarts per service to
prevent infinite restart loops that would otherwise be caused by
former.

Severe permanent faults are typically detected in testing for
commonly used features. If new permanent faults are encoun-
tered during operations, operator can avoid triggering conditions
(if known) and recover RH equipment using reduced or alterna-
tive functionality for maintenance. For example, remote handling
systems typically offer alternative control modes in the form of con-
trollers and input modes (e.g. manual vs. OMS). If a permanent fault
prevents use of OMS, operator can recover the equipment using
manual mode. Loosely coupled service-based design supports this
kind of robustness, as faults are isolated to services (e.g. OmsCom)
and system can use alternative service configuration. Basically, a
service failure is not necessarily a system failure.

5.2. Recovery from service failures

Next we  describe services failures and recovery in the prototype
RH system (see Table 2). Fault detection and recovery are imple-
mented as previously described. Tests with the prototype system
have shown that the service manager implementation is capable
of detecting crashed services with heartbeat timeouts and process
status. Crashed service is restarted or terminated according to the
used configuration file. To be able to safely recover services, we
need to understand roles of different services, as stated in [12],
including identifying safety-critical services. For example, even if a
non-critical service such as OmsCom experiences a permanent fault,
system can retain partial operationality. VR and OMS  are stand-
alone applications that have separate software architectures and
are presumed to have relevant fault tolerance mechanisms.

Trajectory Generator (TG) failures: steps for recovery pro-
cess are outlined in Fig. 3. If a failure occurs during movement,
robot needs to be stopped with a ramp because of large masses for
remotely operated equipment, but this feature is typically imple-
mented either in mechanical design with brakes or in the service
responsible for robot movements (C4G service) as part of standard
fault handling. Recovery of interrupted trajectory would be pos-
sible, but is not desirable in order to avoid sudden unwanted
movements.

C4G failures: service failure stops all manipulator movements
and is recovered to a safe state. Service manager must terminate
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Fig. 3. Service recovering from failure; illustration simplified by showing only a
single connected service. Solid arrows indicate the direction of data flow in queues.

also the TG service to avoid unintentional movements after restart.
Service needs to recover state data for manipulator position, con-
trol mode and equipped tools. Position data can be recovered from
sensors, other data can be recovered from GSB.

C4GJointDataPub failures: service can be used for VR visualiza-
tion and haptic feedback, including virtual constraints and walls.
System operation is possible without this service if operator has
direct or video-based vision of the manipulator. However, since
manipulator position data is used by support systems such as VR
and collision detection, manipulator movement is stopped. Opera-
tion can resume safely after restart. State data restoration consists
of reading joint status data from LSB queue.

OmsCom failures: service is non-critical in the sense that it is
only used to initiate movement commands. In the case of perma-
nent faults, manual operations with input device can be used for
recovery. Command data is restored from GSB.

Compared to a non-critical application, such as a general-
purpose OS in [10], first priority for a critical system is to guarantee
safety of all operations. Fault in a critical service may compromise
this goal so the system must move to a safe (fail-stop) state. In the
case of a critical service, such as C4G, a fail-stop failure is preferred
to undetected fault recovery. Therefore, critical services could be
restarted to a stopped state. In the current implementation, services
resume execution after restart (start command issued by service
manager). In any case, services must be designed, implemented
and tested to initialize to a safe state, even after recovery.

5.3. Recovery timing analysis

We  analyze a situation where a failure occurs in the TG service.
Failure is detected by the service manager and the service is
restarted. Faulty service is presumed to report error status to the
service manager (not shown in the figure) immediately after failure
through heartbeat status updates that are sent during every service
cycle. Cycle period Ti is 2 ms  for C4G and TG services. Service man-
ager uses Ti = 1 ms  in the prototype. Worst-case jitter for periodic
scheduling was tested on our previous study to have been around
6 �s, less than 1% of the RH service cycles [1].

To maintain correct operation, the C4G service must be able to
read the updated trajectory values from TG during each period
Ti. Therefore, to retain availability while recovering from service
failure, combined time to detect failure (Tdetect), time to restart
(Trestart), and time to send and receive message (Tcom) must be less
than Ti plus possible spare time left from the previous cycle (Tspare).

Fig. 4. Timing chart for service failure and restart. Upper scenario shows restart without exceeding communication deadlines and lower scenario restart with a missed
deadline.
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Tspare is included if the service has sent a correct message to C4G’s
LSB queue during the previous period, otherwise Tspare = 0:

Tdetect + Trestart + Tcom < Ti + Tspare

If true, operation can be resumed successfully. Otherwise C4G
detects an exceeded communication deadline and the failure prop-
agates. Fig. 4 illustrates both an optimal recovery situation and a
“deadline exceeded” situation. C4G service has higher priority and
is therefore executed first.

Successful recovery within time limits is largely dependent on
fault detection time Tdetect and restart time Trestart. Service manager
cycle time is a trade-off point: if the service manager uses a fast
cycle time (<Ti of monitored services), it can react faster, but uses
more CPU time. Alternatively, choosing a slow cycle time means
that any service failure would automatically cause deadline miss
(Tdetect > Ti), forcing the system to a fail-safe state and causing a
system failure.

5.4. Performance costs

Evaluation of performance costs of fault detection and recov-
ery is challenging, since there is no comparable non-service
based implementation available, making meaningful performance
comparison problematic. However, other studies using similar
approach with operating systems have estimated performance
costs to be around 5–10% [10]. Taking into account the use of
the service manager and communication queues to services, we
estimate that the overall performance cost is around this order of
magnitude. However, the exact number depends directly from the
number of services, how often CPU and memory usage is checked
and service manager task period Ti.

6. Conclusions

The decoupled architecture model – in this case the RTSOA –
is one approach to managing challenges of complexity and scale.
Based on the evaluation of our prototype implementation, it can
support handling of transient faults and implementation of fault
tolerance design patterns in critical real-time systems such as RH
control systems. Although any architectural model cannot make the
system automatically fault tolerant, it can provide tools for hand-
ling and mitigation of errors. A system based on a loosely coupled
architecture can be in a safe state even after a service fault, without

losing all system functionalities. The system is more robust to fail-
ures, providing mid-ground between binary “works” vs. “broken”
options.

A large monolithic and tightly coupled application is difficult to
verify, validate and maintain, whereas a service can be managed
and verified individually, as long as the deployment environment
is specified. Therefore, an approach based on loose coupling (e.g.
service or component based) is recommended for ITER. Moreover,
the RTSOA allows capabilities to be dynamically introduced to the
system that were not initially planned. This is a major concern for
a long-term research project such as ITER where the systems are
likely to evolve to meet changing scientific and technical needs.
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1  Introduction

Distributed control systems are continuously gaining importance, as more and more
devices and machines are equipped with embedded systems that control their opera-
tion. Computers in these control systems are increasingly more powerful and net-
worked, providing intelligence and interoperability. Examples of such systems range
from large mobile machines to groups of robots and intelligent sensor networks.
These cyber-physical systems (CPS) interact with environment and physical process-
es, influencing many parts of our lives either directly or indirectly. Therefore they
need to be dependable, which can be measured with the attributes of availability,
reliability, safety, integrity and maintainability [1]. However, with the increased func-
tionality and intelligence, the complexity of these systems is also increased, meaning
that the development process becomes more demanding and dependability becomes
more  costly  to  achieve  and  verify.  Another  significant  feature  of  CPS  is  that  they
often have strict timing constraints, which may put limitations on the architecture.

Many critical systems that have failed catastrophically are well-known – examples
such as Therac-25 radiation therapy machine and the explosion of Ariane 5 rocket are
infamous, whereas highly reliable systems receive little recognition, even though their
study might give valuable ideas for the design and architecture of new software. One
example of such systems can be found in telephony applications, namely Ericsson
AXD301 Asynchronous Transfer Mode (ATM) switches that achieved nine nines
(99.9999999%) service availability, running software written in Erlang [2]. Erlang’s
highly decoupled actor model and fault handling based on supervisors have inspired
especially LET IT CRASH and SERVICE MANAGER patterns found in this paper.

This paper presents three software patterns that can be used to improve control sys-
tem dependability – the third pattern is called DATA-CENTRIC ARCHITECTURE –  and
shows how they fit in the existing literature by addressing the specific needs of CPS.
The approach promoted by these three patterns is based on implementing a decoupled
architectural design with supporting fault mitigation and handling. The decoupled
architecture can also be used to gradually introduce additional fault tolerance solu-
tions such as checkpointing and rejuvenation to the system, until a sufficient level of
reliability has been achieved [3]. Our patterns were originally encountered in the re-
search of remote handling control systems for robotic manipulators, but all patterns
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have examples of other known uses as well. These examples are presented in the cor-
responding sections of the patterns.

One reason why development of CPS is difficult is because the systems typically
consist of dynamic service chains that operate on wide range of platforms, which
complicates management of end-to-end deadlines. Moreover, modern middleware
provide capabilities to flexibly change service deployment on these subsystems, but
some configurations may be inefficient or even unusable if communication links be-
come overloaded. While adaptability has benefits, these uncertainties nevertheless
complicate assurance of reliability and predictability of the system. Therefore, CPS
benefit from a design that makes the overall system more robust, whereas more tradi-
tional fault tolerance solutions, such as hardware redundancy, are arguably better
suited for static safety-critical subsystems.

Data-centric approach is one way to increase decoupling between communicating
units. However, data-centric design as a central communication paradigm, as well as
the concept of CPS, is still fairly novel in the domain of distributed control systems.
Although control systems are by nature data-centric (read sensor data and desired
output, send actuator command, etc.), this has usually been from point A to point B.
The patterns in this paper capture some of the ways that reliability-related challenges
faced in developing more intelligent and adaptable distributed control systems have
been solved. Next chapter shows how our patterns fit the gaps in the existing pattern
literature, by addressing needs specific to CPS.

2 Context of the Patterns

Fault tolerance cannot be implemented without redundancy of some kind. To have
fault tolerance for e.g. computer failures, we would need at least two computers – if
one fails the other one can detect the error and try to correct it. Software faults on the
other hand are typically development faults, which are harder to detect and correct
than hardware faults. To have good coverage for software faults, diverse redundancy
(e.g. N-version programming) is needed, but it has been criticized of being susceptible
to common mode failures [4]. Moreover, development costs for design diversity are
often seen as prohibitive.

Patterns in this paper present an alternative approach to fault tolerance, based on
dividing the system into highly decoupled modules and implementing lightweight
form of fault tolerance. We present an architectural pattern called DATA-CENTRIC
ARCHITECTURE as  one  way  to  achieve  a  high  level  of  decoupling.  One  of  the  key
points of decoupling is that it should by itself improve reliability by limiting fault
propagation and improving modularity and understandability of the system. In a way,
modular approach can be seen similar to compartmentalization of ships – without
compartments,  every  leak  can  sink  the  ship.  An  example  of  a  software  system  that
uses modularity to successfully implement fault isolation and resilience is the MINIX
3 operating system released in 2005 [5]. Driver management of MINIX 3 is presented
as one of the known uses of SERVICE MANAGER.



Modular and decoupled architecture can also be used to implement other reliabil-
ity-improving patterns like SERVICE MANAGER and LET IT CRASH documented in this
paper or other well-known patterns like LEAKY BUCKET COUNTER [6], WATCHDOG [6]
[7], etc. The short descriptions of the patterns presented in this paper are listed in the
Table 1. List of all referenced patterns with descriptions can be found in an appendix.

Table 1. Pattern descriptions

Pattern Description
DATA-CENTRIC
ARCHITECTURE

How to implement reliable and scalable distributed control sys-
tem? Build the system from autonomous modules that com-
municate by sharing data that is based on a well-designed and
consistent data model.

SERVICE
MANAGER

How to detect faults and restart modules or processes after a
failure? Implement a service manager that can monitor, start and
stop modules.

LET IT CRASH How to react to failures without crashing the whole system?
Flush the corrupted state by “crashing” the process instead of
writing extensive error handling code. Let some other process
like service manager do the error recovery e.g. by restarting the
crashed process.

DATA-CENTRIC ARCHITECTURE provides the decoupled architectural model needed
to use LET IT CRASH for fault handling. The SERVICE MANAGER pattern provides a way
for trying recovery after failures, in addition to providing error detection and monitor-
ing. The idea of crashing a process suggested by LET IT CRASH may sound like a risky
action to take. However, the idea is to offer recovery from transient physical and in-
teraction faults (sometimes called Heisenbugs), ability to keep the system as a whole
functioning, even if some internal process would crash, and possibility to hot-swap
code and bug-fixes. The downside of this approach is of course that it is not suited for
fail-operate systems such as flight controllers that must be operational all the time –
this type of systems would be the right domain to apply design diversity.

In order to show how these patterns fit the existing literature, we have built a pat-
tern language for fault tolerance in CPS that references related patterns and pattern
languages,  shown in  Fig.  1.  Entry  point  to  the  language  is  the  need for  introducing
fault tolerance to the system in order to improve its dependability. The three main
starting points are MINIMIZE HUMAN INTERVENTION [6], REDUNDANCY [6] and UNITS
OF MITIGATION [6], but the REDUNDANCY branch has been not been explored in-depth
since it presents somewhat different approach from the three patterns found in this
paper. Recovery types have also been condensed to a single concept. Some of the
connections presented in the original sources have been reorganized in order to better
fit in this context, and the figure shows only one of the possible combinations of the
patterns. Connections to other patterns and pattern languages can be checked from the
references in Table 2 found in the appendix.



Fig. 1. Pattern language for fault tolerance in cyber-physical systems

The pattern language shows how the patterns presented in this paper build on top
of existing patterns and support implementing fault recovery and SAFE STATE [7] in
CPS. Gaps identified in the pattern language are related to CPS being networked sys-
tems with real-time requirements and safety concerns. Fault handling needs extra
attention since control system cannot try complex fault recovery routines that could
have unforeseen consequences. Instead, a better approach is to QUARANTINE [6] the
faults locally and stop their propagation, even if that would mean losing some func-
tionality either temporarily or permanently.

There are several existing patterns that have similar purposes as SERVICE
MANAGER,  such  as  FAULT OBSERVER [6], REPLICA MANAGER [15], SERVICE
CONFIGURATOR [16] and SYSTEM MONITOR [6]. However, CPS benefit from more
active management component that can try to react to the failures within system spec-
ifications – because they typically have timing-critical control loops and state ma-
chines – to mitigate faults and stop their propagation in the system.

Finally, to implement the fault handling, units need a loosely coupled architecture
that is robust to failures and supports fault detection. The patterns in the pattern lan-
guage work together by building on the top of features provided by other patterns as



shown in Fig. 1 but all of the patterns can also be used in other contexts besides dis-
tributed control systems. Other well-known fault tolerance patterns also work well in
combination with the presented patterns. Besides the patterns presented here, other
typical examples related to reliability of CPS include implementation for fault detec-
tion, fault reporting, sending and acknowledgement of commands, etc. but have been
left out of this paper.

3 Patterns

3.1 Data-Centric Architecture

Intent. Implement an architecture based on autonomous modules (e.g. services, pro-
cesses or applications) that communicate by sharing properly modeled data.

Context. You are developing a distributed control system that consists of several
subsystems and needs to interact with other heterogeneous systems such as mobile
machines or plant systems. The system has CPU and memory resources available to
run an operating system – rather than being based on a basic time-triggered scheduler
used in resource-constrained embedded systems. Failures in control functions (e.g.
boom or manipulator control) may cause damage to the environment and equipment,
meaning that some subsystems may be categorized as safety or mission-critical.

Problem. How to implement a reliable and scalable distributed control system?

Forces.

Throughput: Some time-critical data such as sensor measurements may be updated
with short period, producing large amounts of communication.
Scalability: New nodes and subsystems can join the system any time; assumptions
about interfaces between modules should be minimized.
Changeability: System configuration and functionality might change. Changing
interfaces in a tightly coupled system requires code changes at both ends (and at all
clients), so assumptions about expected behavior should be minimized. Point-to-
point protocol based client-server architectures (e.g. sockets or remote method in-
vocation) are not ideal because of complexity and coupling introduced.
Maintainability and long expected life-cycle: The control system has long expected
lifetime and needs to be maintainable and extensible in the future – if subsystems



are added or substituted, changes to existing modules need to be minimized. Sys-
tem should be easy to understand and modify without breaking it.
Maintainability: Implementing custom communication channels and protocols
should be avoided.
Reusability: Same modules could be used in other control system implementations.
Interoperability: Distributed control systems consist of and/or need to communi-
cate with heterogeneous platforms.
Testability: Tightly coupled modules are difficult to test because they are more
dependent on other modules.
Availability: The system as a whole should remain available, even if some subsys-
tems or processes experience failures.
Reliability: A single fault in the control system software should not endanger func-
tionality of the whole system (i.e. no single point of failures).
Reliability: Faults should be detected and their propagation prevented.
Real-time performance: Control system interacts with the real world and needs to
react in a deterministic manner.
Safety: Need to detect if a module has crashed or is down (not releasing new in-
formation) so that the system can enter SAFE STATE in a controlled fashion. Safety-
critical and non-safety-critical subsystems cannot be tightly coupled, since errors
may propagate.
Quality of service: Different subsystems may have different requirements for quali-
ty of service1 (QoS) policies. There is an impedance mismatch between e.g. real-
time control systems that operate on a timescale of milliseconds and enter-
prise/high level systems that are several orders of magnitude slower.

Solution. Build the system from autonomous modules that communicate by shar-
ing data that is based on a well-designed and consistent data model.

Implement communication between modules as sharing of data, instead of sending
point-to-point messages or request-reply service calls. Data-centric approach is based
on minimizing dependencies between modules by removing direct inter-module refer-
ences and hiding module-specific behavior. This can be achieved by delegating data-
handling to a middleware solution that supports publishing of data to topics in a dis-
tributed data space and making applications tolerate unavailability of dependencies.
Asynchronous messaging is a well-known way to reduce coupling of systems, but
data-centric approach increases this further by removing the concept of recipient from
the publisher.

Modules should be built to be autonomous and not expect that other services are
always started in a specific order and available. Service/module composition may
change during runtime; there are patterns for managing the configurations (e.g.
SERVICE CONFIGURATOR). Developer should avoid assumption about state of the de-
pendencies, i.e. other services. Dependencies may not always be available and this

1  QoS policies provide the ability to specify various parameters such as rate of publication,
rate of subscription, reliability, data lifespan, transport priority, etc. to control end-to-end
connection properties. Policies can be matched on a request vs. offered basis.



must be taken into account in the application code so that the service will react ac-
cordingly  if  its  dependency  is  down  because  it  is  in  the  process  of  starting,  failed,
manually shut down, etc.

Management of the global data space is externalized to the middleware that im-
plements a topic-based PUBLISH/SUBSCRIBE model. Middleware disseminates data to
all participating nodes, acting as a single source of up-to-date system-wide state in-
formation. It acts as a single source of up-to-date state information in the system,
instead of applications managing state separately.

Modules do not need to know recipients of the data when publishing it, which re-
duces coupling. Instead of sending data directly to a recipient, it is published to a
topic. Data can be e.g. sensor measurements, events or commands, but it must follow
a shared information model which is represented as topics in the actual system im-
plementation. Publishers register as data writers to a topic and interested subscribers
can join the topic as data readers. Single topic can have multiple instances, which are
identified by a key value, and can have multiple readers and writers, as shown in Fig.
2.

Fig. 2. Data is published to topics that can have multiple data writers and readers. Topic A has
two instances, identified by the id number key value.

Since the middleware decouples the modules, publisher might assume that a sub-
scriber is listening when it is not. If a publisher needs to know that data has been re-
ceived, it should monitor status of the subscriber (published to another topic). This
might be true, for example, with commands sequences where commands must be
completed before sending the next one.

Instead of designing callable methods for components, you must design how to
represent the state of the system and the external or internal events that can affect it.
This is captured in a common data model, which contains the essential elements of the
physical system and application logic. Conceptually the data model is similar to class
diagram in object-oriented programming since it consists of identifying entity types,
which have data attributes assigned to them, and associations. The difference is that
the data model focuses on data instead of behavior. Data model ensures that commu-



nication between modules is unambiguous and interoperable. Appropriate QoS attrib-
utes can also be attached to the data model.

Communication and application logic are separated since network communications
are delegated to a “data bus” formed by the publish/subscribe middleware (Fig. 3), so
that the application logic can focus on the core functionality. Middleware takes care
of maintaining the data up-to-date, automatically updating new nodes that join. If the
middleware uses a central server as a message BROKER [8], it becomes a single-point-
of-failure and possibly a bottleneck. Therefore, choose a decentralized middleware
solution, if possible, to avoid this problem

Fig. 3. Middleware implementation as a virtual data bus that has no central components or
brokers. Services and subsystems can join topics as publishers and/or subscribers.

Granularity of modules and interactions are important design decisions that affect
failure consequences, performance and reusability of modules. Fine-grained autono-
mous modules (large number of smaller modules) are easier to reuse and make it easi-
er to isolate faults, but limiting the number of modules and interactions helps to avoid
potential performance issues. Modules communicating only locally can be more fine-
grained than ones communicating remotely, although the data model should not in-
clude location dependencies. Fine-grained interactions give more flexibility, as it will
be possible to treat data items separately. Coarse-grained interactions are usually
preferred between remote modules in order to avoid overhead, but data that is updated
rapidly should be separated from data with slow update rates in order to avoid unnec-
essary use of bandwidth. Further control over system granularity can be achieved by
dividing it to domains.

Compared to message-centric publish/subscribe, one of the differences in data-
centric model is that data samples published to topics are transparent to the middle-
ware. In message-centric model, middleware does not know or care about message
contents and communication is point-to-point by nature which introduces coupling
between modules, although some message-centric middleware also support publishing
of messages to topics. Data-centric communication is based on a data model that ex-
presses the state of the system. Since data is interpreted through the model, it is plat-
form-independent and middleware can prioritize, filter and manage the data based on
its contents and QoS policies, replacing part of the application logic. Although devel-



oping a data model adds to upfront planning efforts, systems with long-term lifecycles
benefit in terms of maintainability and evolvability.

Consequences.
+ Publishers do not need to know about subscribers.
+ Interoperability between heterogeneous platforms since data is interpreted through
the data model.
+ Decoupled design provides error confinement and other benefits such as improved
maintainability.
+ Modules can be changed dynamically because late joiners receive new data auto-
matically; ability to hot-swap code can be easily implemented.
+ An application or subsystem can be shut down without impacting the overall opera-
tion of the system.
+ Network transport layer is abstracted as communications are externalized to mid-
dleware, which reduces communication related code and simplifies implementation.
+ Gives developers control of data delivery with QoS management; QoS can be used
e.g. to guarantee reliable delivery (eventually) or that available data is kept up-to-date
with best effort. Former would be useful for sending status changes or commands,
whereas latter could be used for sensor measurement for which guaranteeing delivery
of outdated samples makes no sense.
+ Reusability is improved since modules are using shared memory and have their own
namespaces, etc.
+ Publish/subscribe based middleware scales effectively since recipients for data are
not explicitly defined.
+ Performance gains can be achieved on multi-core machines since modules can be
easily parallelized and they communicate asynchronously.
+/- Needs good and consistent data models that must be managed and maintained, but
a well-thought-out data model improves maintainability and makes reuse of the code
easier.
- A publisher might assume that a subscriber is listening when it is not.
- Sending of commands is not as straightforward as in client-server architectures since
commands need to be parsed from the data. However, interactions can be modeled as
operation codes sent between two modules.
- Parsing of data complicates debugging because it adds another potential source for
faults. If data is parsed incorrectly, origin of fault may not be self-evident.
- Extra code needed when compared to more monolithic applications since modules
cannot presume that all dependencies are started in specific order and available all the
time.
- Serialization and deserialization of the data structures for transmission may add
overhead.
- Faults in the middleware itself complicate testing and are hard to detect.
- Middleware solutions add some overhead to message size and use system resources.
- Possible vendor lock-in to the middleware provider.



Known uses. Data Distribution Service for Real-Time Systems (DDS) is decentral-
ized and data-centric middleware based on the publish/subscribe model. DDS is
aimed at mission-critical and embedded systems that have strict performance and
reliability requirements. Therefore, its implementations have typically been optimized
and tested to suit the needs of these systems. DDS is used as the information back-
bone in the Thales TACTICOS naval combat management system that integrates
various subsystems such as weapons, sensors, counter measures, communication,
navigation, etc. to a “system of systems”. Applications are distributed dynamically
over a pool of computers in order to provide combat survivability and avoid single-
point-of-failures. System configuration can be adapted for use in various mission
configurations, on-board & simulator training, and different ship types.

Related Patterns. BUS ABSTRACTION [7], and PUBLISHER-SUBSCRIBER.
MEDIATOR [9] increases decoupling in a similar fashion, but is designed to de-

crease connections between objects locally.
Decoupled modules in DATA-CENTRIC ARCHITECTURE act as UNITS OF MITIGATION,

parts that contain errors and error recovery.

3.2 Service Manager

Also Known as. SUPERVISOR.

Intent. Service manager starts, stops, and monitors processes locally and takes care of
resource allocation for systems that need high availability and real-time performance.

Context. You are developing a system with highly decoupled architecture (e.g. using
DATA-CENTRIC ARCHITECTURE) that consists of large number of processes or tasks
(services). These processes have dependencies and therefore need to be started in
specific order. Process composition may change dynamically during runtime because
your system will have intelligent functionality, it needs to adapt to new situations, or
different functionalities need to be tested without stopping/restarting the whole sys-
tem.

You know rough upper-limit estimates for how much system resources such as
memory and CPU time the processes will use.



The system has long expected life-cycle. It is likely to be deployed on a remote lo-
cation, for example a forest or a control cubicle, making direct physical interaction
with the system a bothersome task.

If you have a real-time operating system and a task gets stuck in a while loop or
some other control structure, it freezes the whole system as other lower priority pro-
cesses (including input devices and network connections) cannot get CPU time. In
this case, the only option is usually to restart the whole computer manually.

Problem. How to ensure that all dynamic modules in your control system are
running correctly and you have enough system resources to achieve determinis-
tic real-time performance?

Forces.

Availability: The system as a whole should remain available, even if some subsys-
tems or processes experience failures, in order to able to use other parts of the sys-
tem that are not connected to the failed subsystem. The system must detect faults
and try to mitigate them automatically. If a failure needs immediate reaction from a
human operator, the system will not scale cost-efficiently and reliably.
Data logging/testability:  If  a  process  fails,  the  failure  should  be  detected  and
logged.
Real-time performance: The control system needs to respond in a deterministic and
predicable manner. Predictability includes system behavior when a fault is trig-
gered.
System resources: Control systems are typically deployed on embedded devices
that have limited memory and CPU resources available. They may need to be mon-
itored in order to guarantee the real-time performance of the system.

Solution. Implement a service manager that can monitor, start and stop local
modules.

Create a local parent process (the service manager) that is responsible for starting,
stopping and monitoring its child processes. The basic idea of the service manager is
to keep its child processes alive by restarting them when necessary. Location of the
service manager is on the same computer as the child processes in order to keep im-
plementation simple. Therefore, all computers in the system need their own, inde-
pendently functioning, service managers. The service manager is given the highest
process  priority  in  the  system or  put  in  the  kernel  so  that  a  faulty  real-time process
cannot prevent it from functioning by consuming all available CPU time.

Start the child processes based on a fixed order or a dependency table read from a
configuration file, similar to START-UP MONITOR [7], and/or implement a user inter-
face that can be used to start and stop processes.

Use the service manager to allocate resources like CPU time and memory for the
child processes and monitor their use. Expected maximum resource consumption can
be specified in the same configuration file that is used for starting services. New pro-
cesses are not started if there are not enough resources available. If a process con-



sumes more resources than expected, it can be restarted, triggering error handling
according to the LET IT CRASH pattern. Resource use can be followed e.g. with proc
filesystem or getrusage call in Unix-like systems.

Since one of the key functionalities of service manager is to monitor processes for
failures, error detection can be based on additional or alternative techniques besides
resource monitoring. This can be done with e.g. operating system features,
HEARTBEAT [6] [7] or WATCHDOG.

If fault recovery fails, service manager should mitigate the fault by QUARANTINING
the faulty module. If the fault is persistent, LEAKY BUCKET COUNTER can be used to
limit the number of restarts.

If  the  service  manager  is  deployed  on  a  system  that  uses  DATA-CENTRIC
ARCHITECTURE, service startup interfaces can be implemented through the middle-
ware. Since the middleware abstracts the location of the data, it can be used to re-
motely start dependencies. For example, service manager SM_A must start a service
called S1. However, it has a dependency called S2 which cannot be found locally, so
the service manager publishes a start request for S2. A second service manager SM_B
on another computer notices the request, starts S2 and publishes information about the
successful startup. SM_A receives information that S2 is available and starts S1.

The implementation for service manager needs to be kept fairly simple, since it
acts as a single point of failure locally. This conflicts with the need to use of configu-
ration files, making resource checks, and providing user interface, so they should be
based on external components or libraries that have been proven in use.

Consequences.
+ Detects and initializes recovery from transient faults that cause a process to con-

sume too much system resources or become unresponsive.
+ Ensures other processes stay alive and have sufficient resources.
+ Simplifies starting procedure of complex system that consists of large number of

processes, making possible to start and stop a large number of processes automatically
and in a specific order.

+ Cost-efficiency: the same service manager implementation can be reused on sev-
eral systems.

+ Supports logging and reporting of errors so that they do not go undetected.
- Cannot detect faults that cause erroneous output for monitored components.
- Cannot recover persistent faults such as development and physical faults, e.g.

computer failures.
- Potential single point of failure that may stop the entire system from working if

services are incorrectly terminated.
- Restarting a service may cause the system to behave in non-deterministic way

and miss deadlines, which is a failure for a hard real-time system. However, it should
be noted that the failure would have likely caused the system to miss the deadlines or
exhibit some other unwanted behavior even without service restart.

- Resource utilization needs to be estimated for the processes in order to set limits.
- Service manager uses system resources and may reduce performance.



Known uses. Node State Manager (NSM) for in-vehicle infotainment systems:
GENIVI Alliance (http://genivi.org/) is a non-profit consortium promoting open-
source platform for the automotive in-vehicle infotainment industry. Reference im-
plementation of the platform includes NSM that is responsible for information regard-
ing the current running state of the embedded system. NSM component collates in-
formation from multiple sources and uses this to determine the current state of the
node. It is the highest level of escalation on the node and will therefore command the
reset and supply control logic. It is notified of errors and other status signals from
components that are responsible for monitoring system health in different ways. NSM
also provides shutdown management by signaling applications to shut down.

MINIX 3.0 driver manager: MINIX is a POSIX conformant operating system,
based on a microkernel that has minimal amount of software executing in the kernel
mode. Most of the operating system runs in user mode as independent processes, in-
cluding processes for the file system, process manager, and device drivers. The sys-
tem uses a special component known as the driver manager to monitor and control all
services and drivers in the system [5]. Driver manager is the parent process for all
components, so it can detect their crashes (based on POSIX signals). Additionally the
driver manager can check the status of selected drivers periodically using HEARTBEAT
messages. When a failure is detected, the driver manager automatically replaces the
malfunctioning component with a fresh copy without needing to reboot the computer.
The driver manager can also be explicitly instructed to replace a malfunctioning com-
ponent with a new one.

Monit (http://mmonit.com/monit/) is an open source tool that can function as a ser-
vice manager in non-real time systems. Following code listing shows an example
configuration for Spamassassin daemon that restarts the daemon if its memory or
CPU usage exceeds 50% for 5 monitoring cycles:

check process spamd with pidfile /var/run/spamd.pid
   start program = "/etc/init.d/spamd start"
   stop  program = "/etc/init.d/spamd stop"
   if 5 restarts within 5 cycles then timeout
   if cpu usage > 50% for 5 cycles then restart
   if mem usage > 50% for 5 cycles then restart
   depends on spamd_bin
   depends on spamd_rc

Related Patterns. FAULT OBSERVER [6], HEARTBEAT, SAFE STATE, SOMEONE IN
CHARGE [6], START-UP MONITOR, STATIC RESOURCE ALLOCATION [7], and
WATCHDOG.

To see how to design an application in a way that it can be easily restarted at any
time, see LET IT CRASH.

MANAGER design pattern [10] can be used to manage multiple objects of same type
– the idea is similar to SERVICE MANAGER (keep track of entities and provide unified
interface for them) but the MANAGER focuses on different scope, i.e. managing enti-

http://genivi.org/


ties (objects) of the same type and does not include resource monitoring or fault de-
tection.

SERVICE CONFIGURATOR is very similar to SERVICE MANAGER in many regards.
However, the main use cases for SERVICE CONFIGURATOR are, as the name implies,
related to reconfiguration of the system, whereas SERVICE MANAGER aims to improve
fault tolerance of the system by managing (monitoring & restarting) services. In CPS,
dynamic reconfiguration of the system can often be undesirable due to possible safety
implications. An example of SERVICE CONFIGURATOR is  the  device  driver  system in
modern OSs. A comparable implementation of the to SERVICE MANAGER is the driver
manager in MINIX, which adds the management (fault detection & restart) aspect to
device drivers.

SERVICE MANAGER can QUARANTINE a module by stopping it if a fault is detected.
and recovery does not work.

SYSTEM MONITOR [6] can be used to study behavior of system or specific tasks and
make sure they operate correctly, e.g. by using HEARTBEAT or  WATCHDOG.  If  a
monitored  task  stops,  SYSTEM MONITOR reports  the  error.  Compared  to  it,  SERVICE
MANAGER has a more active role in managing the tasks.

REPLICA MANAGER [15] provides the necessary mechanisms for the replica
management in systems that use active node replication, i.e. REDUNDANCY, whereas
SERVICE MANAGER does not make presumptions about the use of redundancy.

3.3 Let It Crash

Also Known as. CRASH-ONLY [11], FAIL-FAST, LET IT FAIL or  OFFENSIVE
PROGRAMMING.

Intent. Avoid complex error handling for unspecified errors. Instead, crash the pro-
cess and leave error handling for other processes in order to build a robust system that
handles errors internally and does not go down as a whole.

Context. You are developing a distributed control system that consists of several
processes and subsystems that need to cooperate to complete tasks.



DATA-CENTRIC ARCHITECTURE or some other asynchronous decoupled architectur-
al design has been utilized so that processes are not using shared memory.

Some subsystems might have safety-critical functionality, but it is possible to move
the system to SAFE STATE (i.e. the system is fail-safe type, not fail-operate). The sys-
tem has dynamic state information from the user inputs and working environment in
the process memory, e.g. tool tracking data in the case of a robot manipulator. This
state data needs to be recovered after a failure.

The system has a mechanism to supervise and restart the processes. This can be
implemented at operating system, programming language or framework level, e.g.
with the SERVICE MANAGER.

Problem. How to implement lightweight form of error handling that improves
reliability and predictability?

Forces.

Availability: The system as a whole should remain available, even if some subsys-
tems or processes experience failures, since degraded functionality is better than no
functionality. In case of a fault, only minimal part of the system should be affected.
Recovery from failures should happen without human intervention and with mini-
mal downtime.
Reliability: Generation of incorrect outputs should be prevented, otherwise errors
may propagate and the system could cause damage to the environment.
Safety: If an error is detected, any functionality using the affected process should
be stopped and taken to a safe state in order to prevent and minimize damages.
Cost-efficiency: Design diverse fault tolerance techniques are oversized or imprac-
tical for the application, but the system needs to be able to recover from errors.
Real-time performance: Control system needs to react within a certain time-limit;
exceeding the time-limit causes a failure.
Predictability: The system should behave in a consistent manner. If the process
tries to repair its corrupted state, behavior of the system cannot be predicted, which
complicates debugging and verification of reliability. Predictability includes sys-
tem behavior when a fault is triggered.
Recovery: Because it is impossible to foresee all possible faults, specifications do
not cover all possible error situations. Various error situations occur seldom, are
difficult to handle and non-trivial to simulate in testing [11]. If the programmers try
to implement recovery, they will make ad hoc decisions not based on the specifica-
tions  (i.e.  they  cannot  know  how  the  error  should  be  handled),  possibly  causing
unwanted and undocumented behavior.

Solution. Make processes crash-safe and fast to recover; flush corrupted state by
“crashing” the process instead of writing extensive error handling code.

Commodore 64, DOS machines and other old computers were designed to be shut
down by simply turning the power off, essentially crashing the system. On the other



hand, if an operating system caches disk data in memory, workstation crash may cor-
rupt the file system, which is inconvenient and slow to repair. Control system pro-
cesses and subsystems should also be designed to be easily terminated and recovera-
ble with a simple recovery path if an error is detected, instead of guessing how error
recovery should be attempted, possibly corrupting program state further and causing
unpredictable behavior.

Therefore, implement error handling by terminating the process that has encoun-
tered the error. Only program extended error recovery routines if they are based on
the specification or it is self-evident how the error should be handled – otherwise
crash the process. However, only the module or process where the error is should be
crashed, not the whole system.

Fig. 4. Process 1 encounters an error and dies, after which it is restarted by the service manager,
represented as an eye. If the process 2 detects a deadline overrun, it needs to stop, potentially
interrupting process 3, and wait until process 1 is active again before resuming work. Alterna-

tively the process 2 does not notice any deadline overruns and continues working normally.

Processes that have been designed with LET IT CRASH can 1) help to find faults, by
making them more visible (“offensive programming”), 2) prevent software degrada-
tion with REJUVENATION [11][14], and 3) be used to implement fault tolerance (re-
covery from faults). In the final case it is possible to perform recovery without affect-
ing service availability if the recovery process is fast enough. Recovery (and rejuve-
nation) needs an external entity to initiate the procedure, since the process itself has
crashed  (see  Fig.  4).  This  pattern  focuses  mostly  on  the  final  case  since  it  is  more
problematic to implement correctly.

You have a monitoring layer that can supervise and recover processes e.g. by re-
starting. To have the monitoring layer detect a failure, you may need to implement
timeouts or the faulty process must terminate upon encountering an error in order to
send a signal for the monitoring layer (parent process knows the liveliness state of its
child processes). How the error is detected in the first place is not part of LET IT
CRASH, but contract programming or error checks could be used. Abnormal program
termination can be forced e.g. by using abort() or raise(SIGSEGV). If the monitoring
layer has implemented failure detection – based on watchdog, heartbeat, etc. – it can
also hard-fail the service using e.g. kill(pid, SIGTERM). This might be necessary if
the process is incapable of detecting its own fault.



Error recovery is performed by restarting the process. Therefore, make processes
fast and easy to restart in order to minimize service failures and downtime. To keep
recovery path simple, use the single responsibility principle, thereby minimizing re-
sponsibilities of a single process. If the process encounters an error and crashes, it
might be possible to recover from the error without causing deadline misses for other
processes and tripping the system to a SAFE STATE. However, if a control loop has a
period of e.g. 1 ms and restarting of a process that provides information for the loop
takes several milliseconds, control loop execution will be interrupted.

LET IT CRASH does not mean that error handling or exception handling should not
be implemented at all. Indeed, sanity checks and error handling are essential for con-
trol systems and should be implemented to prepare for exceptional (but expected)
circumstances, such as write operation failures or unavailable dependencies. LET IT
CRASH, on the other hand, is applicable in situations where the program experiences
an unexpected failure and cannot reliably perform its function. This can happen due to
programmer errors, complex interaction faults, intermittent faults, etc.

Recovery paths can be tested extensively by terminating the system forcibly every
time it needs to be shut down or restarted, instead of letting it run through a normal
shutdown process. This forces the system to do a recovery during the startup

Make processes crash-safe. Processes typically handle three types of state data: dy-
namic, static, and internal. Internal state is related to current computations and is usu-
ally discarded after use. If a process crashes, you must think if you want to recycle its
internal state. If you recycle everything you risk hitting the exact same fault again and
crashing, so it might be reasonable to recycle only parts of this state. Static state is
configuration data that can be easily recovered or read from other processes. Finally,
the dynamic state data is generated as the program is executed by reading user inputs,
interacting with other processes and environment, etc. Some of it can be computed
from other data or read directly from sensors, but rest cannot be reconstructed. This
data must be protected by using checkpointing, journaling or some other form of ded-
icated state store, for example databases and distributed data structures. To implement
this, you must know WHAT TO SAVE [6].

Implement a reporting functionality that reports failures so that they do not go un-
noticed. Failure information can be forwarded e.g. by using a service manager or
supervisors to send NOTIFICATION messages [12].

The corollary to the LET IT CRASH approach is that you must design your software
to be ready for processes failing.  There is now a possibility that a dependency is not
available because it has been crashed and is being restarted. To detect this situation,
add timeouts or appropriate QoS policies to interactions between components. If a
timeout is triggered, move the system to a SAFE STATE. Normal operation can be re-
sumed when dependencies are back online. A missing dependency is therefore not
considered to be an error that would necessitate a crash.

Consequences.
+ Enables simple error handling & recovery; avoids complex error handling con-
structs in code, therefore improving predictability of the system.



+ Cost-effective (lightweight) form of fault tolerance that does not require use of re-
dundancy.
+ Allows error handling to be implemented separately (externally) from the business
logic, e.g. with supervisors.
+ Supports recovery from transient faults since a restart is usually enough to handle
them.
+ Possible to achieve high availability (for the system as a whole, not necessary for all
services provided by the system).
+ Complements other fault tolerant designs such as REDUNDANCY and
REJUVENATION.
+ Processes can be updated to new versions on-the-fly, since the old process can be
killed and replaced using the normal recovery path.
+ Limits error propagation to other parts of the system (babbling idiot failure) by
acting as an ERROR CONTAINMENT BARRIER [6].
+ Errors are less likely to cause the system to perform unpredictable and potentially
dangerous or irreversible operations.
+ Finding faults should be easier, since they are made more visible by crashing and
reporting.
- Availability of some services provided by the system is lower (when compared to
redundant fault tolerance solutions) – on the other hand availability of other unrelated
services provided by the system should be unaffected.
- Cannot mitigate persistent faults.
- Processes need additional code to react to missing dependencies (i.e. other services,
when waiting for them to come back online).
- Possible performance cost if state needs to be saved to enable recovery.
- Recovery speed is non-deterministic since it depends on how fast the processes can
be restarted, loading of saved state, loading of dependencies, system load level, etc.

Known uses. Erlang actor model and supervisors (Erlang is used e.g. in Ericsson
AXD301 ATM switches) [2]: supervisors are processes that are responsible for start-
ing, stopping and monitoring their child processes. The basic idea of a supervisor is
that it should keep its child processes alive by restarting them when necessary [13].

Control system of Curiosity: Mars rovers are highly autonomous vehicles that op-
erate in high-radiation environment, relying on a low-bandwidth, high-latency com-
munication link. A warm reset can be executed by control system when it identifies a
problem with one of its operations. On November 7, 2013 Curiosity rover performed
a reset of its control software upon encountering an unexpected event (an error in a
catalog file) [17]. After the reset, rover entered safe mode, but was able to perform
operations and communications as expected and successfully resumed nominal opera-
tions mode after the fault had been analyzed.

Related Patterns. ERROR CONTAINMENT BARRIER, NOTIFICATIONS, SAFE STATE,
SERVICE MANAGER, REDUNDANCY, WHAT TO SAVE.



MINIMIZE HUMAN INTERVENTION (MHI) is about how the system can process and
resolve errors automatically before they become failures [6]. LET IT FAIL could be
implemented as part of MHI as a final resort or in case there is no specification for
error handling.

Software REJUVENATION is a proactive technique where the system has been de-
signed to be booted periodically. Microrebooting [11] refers to a technique where
suspect components are restarted before they fail.
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Appendix: List of Referenced Patterns

Table 2. Short descriptions of referenced patterns.

Pattern Pattern intent
BUS
ABSTRACTION
[7]

Nodes communicate via a message bus. The bus is abstracted so it
can be changed easily.

ERROR
CONTAINMENT
BARRIER [6]

System should stop the flow of errors from one part to another by
isolating them to a unit of mitigation and initiating error recovery.

FAULT
OBSERVER [6]

Coordinate reporting to all observers that a fault is present, report-
ed, and recovery actions escalated.

HEARTBEAT [6]
[7]

Send a status report at regular intervals to let other parts of the
system know their status.

LEAKY BUCKET
COUNTER [6]

Implement a method to ride over transients by keeping a counter
that is automatically decremented and incremented by errors.

MINIMIZE
HUMAN
INTERVENTION
[6]

System should take care of itself without human intervention.

MONITOR [10]  Support  many  entities  of  same  or  similar  type.  The  MANAGER
object is designed to keep track of all the entities. In many cases,
the MANAGER will also route messages to individual entities.

MEDIATOR [9]  Define an object that encapsulates how a set of objects interact.
Mediator promotes loose coupling by keeping objects from refer-
ring to each other explicitly, and it lets you vary their interaction
independently.

NOTIFICATIONS
[12]

Communicate noteworthy or alarming events and state changes in
the system using a dedicated message type.

PUBLISH/SUBSC
RIBE [8]

Define a change propagation infrastructure that allows publishers
in a distributed application to disseminate events that convey in-
formation that may be of interest to others. Notify subscribers
interested in those events whenever such information is published.

QUARANTINE
[6]

Take steps to isolate faulty unit in order to stop fault propagation.



REDUNDANCY
[6]

Maximize availability by having alternate hardware or software
that can perform the same function.

REJUVENATION
[11][14]

Periodically rejuvenate a software item by shutting it down and
restarting it.

REPLICA
MANAGER [15]

Hide communication algorithms from the applications to cope with
the possible non-deterministic behaviour of replicas by delaying
requests until all replicated nodes make the same request.

SAFE STATE [7] If something potentially harmful occurs, all nodes should enter a
predetermined safe state.

SERVICE
CONFIGURATOR
[16]

Decouple the behaviour of services from the point in time at which
service implementations are configured into an application or sys-
tem.

SOMEONE IN
CHARGE [6]

Every fault tolerance action undertaken by the system should have
a clearly identified entity controlling and monitoring the action.

START-UP
MONITOR [7]

During start-up all devices are started in certain order and with
correct delays. Additionally, care is taken that there are no mal-
functions.

STATIC
RESOURCE
ALLOCATION [7]

Critical services are always available when all resources are allo-
cated when the system starts.

SYSTEM
MONITOR [6]

Some errors will only manifest themselves at a system level.
Check for them at this level.

UNITS OF
MITIGATION [6]

Decide what the unit of fault tolerance is.

WATCHDOG [6]
[7]

Build a special entity to watch over another to make sure that it is
still operating well.

WHAT TO SAVE
[6]

Use checkpoints to save information of global interest to a shared,
globally accessibly data storage.
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a b s t r a c t

Cyber-physical systems (CPSs) are open and interconnected embedded systems that control or interact with

physical processes. Failures in CPSs can lead to loss of production time, damage to the equipment and

environment, or loss of life, meaning that dependability and resilience are key properties for their design.

However, existing fault tolerance and safety approaches are inadequate for complex, networked and dynamic

CPSs. Service-orientation, on the other hand, is generally considered to be a robust architectural style, but

there is a limited amount of research on fault tolerance of service-oriented architecture (SOA), especially on

distributed real-time systems. We propose an approach that utilizes the loosely coupled nature of services to

implement fault tolerance using a middleware-based real-time SOA (RTSOA) for CPSs. The approach, based on

the concepts of fault isolation and recovery at the service level, is empirically evaluated using a demanding

bilateral teleoperation (remote handling) application. The empirical evaluation demonstrates that RTSOA

supports real-time fault detection and recovery, use of services as a unit of fault isolation, and it provides

capability to implement fault tolerance patterns flexibly and without significant overhead.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Cyber-physical systems (CPSs)combine networked embedded sys-

tems controlling physical processes or devices with communication

network infrastructure. Such systems have great economical, envi-

ronmental and societal potential (Kim and Kumar, 2012; Lee, 2008)by

aiding in the development of intelligent devices, services, customiz-

able products and big science projects. For example, future trends

include networked heterogeneous vehicles and machines, equipped

with configurable tools and smart sensing capabilities, collaborating

to carry out tasks while being remotely monitored by various supervi-

sory systems. Interaction with environment means that these systems

typically have requirements for deterministic response times and that

failures can lead to loss of valuable production time, damage to the

equipment and environment, or even loss of life. However, due to the

complex and cross-disciplinary nature of CPSs, their development will

likely involve several contractors and teams, and the resulting sys-

tems are composed of heterogeneous computing nodes. These nodes

interact with each otherand the physical entities over a stochastic

communication network, which may cause delays and packet loss

(Kim and Kumar, 2012). Moreover, the computing environment is

dominated by uncertainty as participating nodes and subsystems are

changed based on the current needs and available resources.

∗ Corresponding author. Tel.: +358505375726.

E-mail addresses: pekka.alho@tut.fi (P. Alho), jouni.mattila@tut.fi (J. Mattila).

Ability to verify and validate (V&V) system reliability and safety

is one of the key research challenges for CPSs because of the charac-

teristics described above. We have processes and tools that support

achieving these qualities, but they are proving to be insufficient to

cope with the increasingly complex systems Jackson (2009)—a single

undetected human error during the development process can cre-

ate a fault with potential to cause unexpected consequences in the

physical world. Software faults are facts to be coped with and should

be contained at the application level (Patterson et al., 2002) and the

software architecture design can support localization of critical prop-

erties to components through decoupling and simplicity (Jackson,

2009). For example, modular architecture can limit fault propagation

and support verification of critical components. Fault tolerance tech-

niques based on utilizing modularity of the architecture, such as fine-

grained partitioning and microreboots (Candea et al., 2004; Patterson

et al., 2002), have been researched as complementary approaches

to redundancy-based fault tolerance, but have not been applied in

distributed real-time systems.

Service-orientationis an architectural approach originally devel-

oped to tackle the problem of complexity in enterprise systems, but

it also has potential to provide a basis for building resilient CPSs.

Possible benefits of SOA for real-time systems have been recognized,

and work has been done to apply SOA approach to distributed real-

time and embedded (DRE) systems, including Cândido et al. (2009),

Cucinotta et al. (2009), Panahi et al. (2009) and Tiderko et al. (2008).

Although service-orientation is associated with the robustness prop-

erty (Erl, 2008), there has been little research on how this could

be utilized to improve fault tolerance capabilities. Some potential

http://dx.doi.org/10.1016/j.jss.2015.03.041

0164-1212/© 2015 Elsevier Inc. All rights reserved.
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Fig. 1. An example CPS scenario, showing services deployed on several nodes and connected by local and global service buses.

approaches include recovery of Web services (Mansour and Dillon,

2011) and reconfiguration of service compositions for distributed

real-time systems (Garcia Valls et al., 2013).

Time-bounded reconfiguration has been successfully used in

iLAND middleware (Garcia Valls et al., 2013) and research by Moussa

et al. (2010). However, CPSs need resilience to maintain correct op-

eration in the context of improperly coordinated control of cyber and

physical resources (Rajkumar et al., 2010), for which we provide con-

tribution by evaluating how the system detects and recovers service

faults while being actively used in a mission-critical operation. Our

research applies to the fault recovery process, for which timing guar-

antees cannot be given. Due to an activated fault, timing properties

of the affected parts of the system are now unknown because it op-

erates in an erroneous state, outside of specification. Other service

composition changes are handled in the same manner as service fail-

ures, in order to avoid introducing coupling between services. Further,

by using the same execution paths for start-up/shutdown and fault

recovery, we can confirm that the fault handling mechanisms work

correctly during normal system operation. For normal operation, real-

time targets are met through the use of a real-time operating system

(RTOS) and real-time capable middleware.

This paper continues our earlier work on the subject of RTSOAs,

evaluating applicability of service-orientation as basis for building de-

pendable and resilient CPSs. Service-orientation by its nature is suited

for systems that face uncertainty and changes, enabling more agile ap-

proaches (Cândido et al., 2009), and having potential to support fault

tolerance capabilities. Our approach uses and extends a prototype

implementation of Sulava platform RTSOA, developed for distributed

machine control and evaluated earlier with applications including

control of mobile working machines (Hahto et al., 2011) and robotic

maintenance systems (Alho and Mattila, 2013; 2014). Compared to

our previous work in Alho and Mattila (2014), we have improved the

architecture fault tolerance capabilities, illustrated the service-based

approach in more detail and performed extensive measurements on

service fault recovery.

In this paper we explore the possibility of using fault tolerance

mechanisms that utilize key features of the Sulava RTSOA, namely

loose coupling and service autonomy, to improve fault tolerance and

robustness of systems with Quality of Service (QoS) needs. The ar-

chitecture supports connecting intelligent devices, machine control

units and supervisory system elements and integrating controlled el-

ements to supervisory and plant systems, as shown in Fig. 1. In order

to evaluate effectiveness of the service-oriented approach to fault

tolerance, we perform empirical evaluation of the architecture, test-

ing fault isolation and recoverability of services, while functioning as

part of a distributed system with QoS needs. The test case is based on

bilateral teleoperation of a remote maintenance robot, known as re-

mote handling (RH). RH is a demanding and safety-critical application,

where the remotely operated robot must be able to perform precisely

in confined and pitch-black maintenance tunnels that have no human

access. The system is controlled in a bilateral control loop that pro-

vides haptic feedback for the operator. Instead of aiming to carry out

recovery inside bound time limits, recovery is performed with best

effort, while rest of the system keeps operating normally, using QoS

and deadline parameters to detect possible failures. For the evaluation

of fault tolerance capability, our criteria include fault detection and

recovery, capability to change services on the fly and estimation of

overhead caused by management of services. Other possible benefits

of using the service-oriented approach, such as service deployment,

configuration flexibility or maintainability, are not evaluated. Inter-

operability and real-time performance have been evaluated earlier in

Alho and Mattila (2013, 2014).

The rest of this paper is organized as follows. Section 2 presents

the technical background, including the concepts of fault tolerance,

service-orientation, and CPSs. Section 3 describes the service-based

fault-tolerant architecture concept and its design goals. Empirical

evaluation of the service-oriented fault tolerance approach in

CPSs is presented in Section 4. The results of the evaluation and

discussion about significance of the results of the work is in Section 5.

Comparison with related work and limitations are presented in
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Sections 6 and 7 respectively. Finally, the conclusions are drawn in

Section 8.

2. Background

2.1. Fault tolerance, dependability and resilience

Dependability is defined as the ability of the system to deliver

service that can be justifiably trusted, encompassing the attributes of

availability, reliability, safety, integrity and maintainability (Avizienis

et al., 2004). CPSs need dependability especially because they inter-

act with the physical world, which means potential for damage. Al-

though achieving dependability requires a systems engineering ap-

proach, utilizing fault prevention, fault removal, fault tolerance and

fault forecasting (Avizienis et al., 2004), on an architectural level it

is implemented mainly through fault tolerance techniques and pat-

terns that provide error detection and recovery. A key factor of fault

tolerance is modularity, which can be used to implement fault con-

tainment (Gray, 1986). This is especially interesting for service-based

systems because they are highly modular by their nature, possibly

providing a basis for cost-efficient fault tolerance implementation.

However, dependability does not completely describe the needs

of complex, networked and evolving CPSs. Such systems need to

be able to deliver the service when facing changes (Laprie, 2008).

Capability to do this is defined as resilience. Laprie lists evolvability,

assessability, usability and diversity as technologies for achieving

resilience (Laprie, 2008).

Traditionally in machine control systems, communication

between units is facilitated hierarchically by central control (Hahto

et al., 2011). This central control is a single point of failure. Au-

tonomous, intelligent units, on the other hand, would be capable of

operating even without the guidance of high-level systems. Also, the

availability of the machines has a great impact on utilization rate of

expensive machines and equipment, affecting return on investment.

Besides minimizing Mean Time Between Failures (MTBF), higher

availability can also be achieved by improving Mean Time To Repair

(MTTR), which can be supported through fine-grained recovery

(Patterson et al., 2002).

2.2. Service-orientation

Service-oriented computing focuses on building architecture from

autonomous and heterogeneous components (services) (Huhns and

Singh, 2005), enabling reorganization of previously siloed or mono-

lithic software applications and support infrastructure into an inter-

connected set of services, each accessible through standard interfaces

and messaging protocols (Papazoglou, 2003). Adoption of SOA could

therefore provide a solution for the problem of increasing scale and

complexity in distributed control systems. In the context of CPSs, ser-

vices can abstract devices and functions of the machines, providing,

for example, motor control capabilities or access to Controller Area

Network (CAN) bus.

RTSOA implementations typically either extend the standardized

Web service approach (Moussa et al., 2010) or use middleware, such

as Data Distribution Service for Real-Time Systems (DDS) or Java Mes-

saging Service (JMS) (Garces-Erice, 2009) as an enterprise serial bus

(ESB). However, Web service technologies face challenges when ap-

plied to CPSs, especially because of timeliness requirements and ver-

bosity of XML-based protocols (Alho and Mattila, 2013). Middleware-

based approach provides a compromise between performance of

proprietary messaging and well-defined but verbose Web service

standards. Therefore, middleware is a key technology for enabling col-

laboration between control system nodes, abstracting the low-level

communication infrastructure for developers and simplifying ser-

vice development. Although middleware cannot automatically guar-

antee deterministic latencies for use in real-time control systems

Fig. 2. SOA for CPSs, adapted from Atzori et al. (2010).

(Tuominen et al., 2014), it can offer efficient distribution of data with

minimal overhead and the ability to control QoS properties that affect

predictability and used resources.

Common interfaces provided by middleware are essential tech-

nology for the service infrastructure. Layers of service infrastructure

(Fig. 2), provided by middleware, lifecycle services and other

architecture components, include composition, service management

and object abstraction layers (Atzori et al., 2010). Service composition

provides capabilities to build applications out of single services and

includes inventory of currently connected services. Service man-

agement provides the basic set of functions to manage devices and

services, such as dynamic discovery, status monitoring and service

configuration. This layer also includes management of QoS and fault

tolerance parameters and functions. Device (object in Atzori et al.,

2010) abstraction provides wrapping layer to the device, consisting

of the messaging interface and implementation logic sub-layers.

Challenges of using service-orientation include that service com-

position reliability may suffer if one service experiences a failure (Pan,

2009), which may degrade reliability of the whole system, and isola-

tion of faults. Fault isolation is one aspect of the service-based fault

tolerance that we study in this paper. Another significant challenge is

guaranteeing real-time performance of services for the dynamic and

changing environments that are typical for CPSs, because all possi-

ble combinations of environmental and computational factors cannot

be foreseen during development. Service specification should include

description of the intended use environment, but overly strict speci-

fication limits reusability of the services.

The following well-known principles for service design, presented

in Erl (2008), are also used as a basis for designing real-time services:

• Standardized service contract—Consists of general information

about the service, capabilities, QoS, etc. For middleware-based

SOA, this is mapped to an information model.
• Reusable—Services need to be generic and configurable to be used

(composed) in different applications.
• Autonomous—Services need to have control over their execution

environment and resources. Removing unpredictable outside in-

fluences will improve reliability.
• Stateless—Services should minimize the time they spend being

stateful, i.e. storing or processing task-specific data.
• Discoverable—Meta-information about service purpose and capa-

bilities, published over middleware. Service contract must be reg-

istered in the service repository in order to be discoverable (Dai

et al., 2014).
• Loosely coupled—No direct references to other services.
• Abstracted—Hide non-essential information about service.
• Composable—Service is a potential composition member, and

application is a specific service composition. Real-time service
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composition of services is an open challenge (García Valls and

Basanta Val, 2013).

2.3. Cyber-physical systems

CPSs combine computing provided by embedded systems and IT

infrastructure to monitor and control the dynamics of physical and

engineered systems. They share many concepts with DRE systems,

such as heterogeneity and transient behavior, but the CPSs inherently

also include the element of interaction with physical processes and

environment. Essentially, DRE systems provide the flexible and open

infrastructure for the implementation of a CPS.

Innovation in CPSs is powered by trends of increased comput-

ing power and connectivity of embedded systems, and availability

of highly capable low-cost sensors, often based on microelectrome-

chanical systems (MEMS) technology. CPSs hold promise to transform

how we interact with and control the physical world around us, by

providing us with building blocks to construct self-correcting sys-

tems, infrastructure that calls automatically for preventive mainte-

nance, energy-efficiency-aware buildings, vehicles capable of assist-

ing drivers, etc. (Rajkumar et al., 2010).

The technical challenge of CPSs is that understanding the com-

putational and control elements separately is not sufficient, as the

dynamics, time and concurrency must be managed in the combined

system. More specifically, the challenges include interfacing preci-

sion of the computing with the uncertainty and noise in the physical

environment, lack of synchrony across time and space, dealing with

failures of components in both cyber and physical domains, secu-

rity and privacy issues, managing system dynamics across multiple

time-scales, etc. (Rajkumar et al., 2010).

Typically both computational and physical parts of the system are

highly likely to change during the system life-cycle. Compared to the

traditional embedded systems approach, nodes and components in

a CPS must be more resilient in order to properly function as part

of the dynamic and complex computing environment. However, the

increased complexity due to the dynamic nature of the system also

means that V&V becomes more challenging. This is in conflict with the

typical applications of the CPSs, which include interaction with the

physical environment (sometimes including humans). Therefore, tra-

ditional certification processes for safety-critical systems quickly be-

come too burdensome and expensive. One possible approach to build-

ing critical CPSs is to develop a dependability case (Jackson, 2009),

which includes evidence such as models, architectural solutions, test-

ing data, etc., to build confidence in the correct functionality of the sys-

tem. To support development of dependability case, services would

ideally be units that can be verified and validated individually. If

criticality-related properties of the system can be localized to a single

service, resources can be focused on that service alone (Jackson, 2009).

Applications for CPSs range from assistive devices to electric

power grid infrastructure and large scientific experimental systems

such as the Large Hadron Collider and ITER machine (the interna-

tional nuclear fusion research and engineering project). In this paper,

we will use the ITER remote handling system as a target to provide

a real-world demanding test case scenario and requirements for the

empirical evaluation. The choice of the target application is due to the

fact that the fault-tolerant prototype system used in the empirical

evaluation has been developed as part of the research efforts of ITER

RH systems (see Acknowledgments). ITER RH systems, described

briefly in Section 4, consist of several subsystems that are used for

remote maintenance of the machine. These systems need to be highly

modular and integrate into the plant IT infrastructure. In a typical RH

scenario, the operator uses a supervisory system to operate mainte-

nance robots in an inaccessible environment using either automatic

operations or man-in-the-loop teleoperation, as shown in Fig. 1.

Requirements and characteristics for CPSs may include highly

deterministic (local) communication deadlines and distributed

communication being typically either reliable, e.g. commands and

status updates, or best effort with varying deadlines. For example,

sampling rates for bilateral (force feedback) teleoperation control

loops are in the range of 500–1000 Hz, which sets a requirement for

high data packet rate for the transmission of the sampled command

and sensor data between the human interface and the telerobot.

The RH scenario has a “99% real-time” requirement for sending

force feedback-related teleoperation signals; high packet rate is hard

to maintain constantly, but latency and overdue messages increase

the risk of instability and decrease transparency of the system(the

“feel” of the remote site;Lawrence, 1993). ITER RH systems also have

a long expected deployment life-cycle, made more challenging by

the highly dynamic technical environment as systems are likely to

receive upgrades to handle new experiments. Regardless of the up-

grades, systems must behave correctly on newer and more powerful

hardware, which has typically been a problem for certified real-time

systems, such as fly-by-wire aircraft control systems, making it nec-

essary for manufacturers to stockpile hardware components.

3. Service-based fault-tolerant architecture

In this section we describe the RTSOA, Sulava platform, designed

to meet the requirements for CPS-applications and used to implement

the remote handling system for the empirical evaluation of fault tol-

erance described in Section 4.

3.1. Requirements for CPS SOA

Dependability and resilience are critical for CPSs, as noted in the

previous section. Service-based design seems to be a promising ap-

proach to achieve these goals, but the architecture needs to support

communication deadlines and QoS parameters, which limits the pos-

sibility of using existing SOA technologies. To build an RTSOA platform

that fulfills CPS-specific needs, we focused on the following require-

ments during the architecture development:

• Decoupled and autonomous services act as units of mitigation, stop-

ping propagation of faults, and are used as units for fault detection

and recovery (Hanmer, 2007).
• Diversity—Alternative compositions and services can help to avoid

single points of failure and also provide workaround solutions.

Diverse operation modes and alternative versions of services in-

crease resilience of the system.
• Evolvability and assessability are key properties for a CPS, in order

to successfully create a resilient system (Laprie, 2008).
• Fault tolerance for transient faults, which are a significant cause of

failures.
• Let it crash and fine-grained recovery approaches to fault recovery

(Alho and Rauhamäki, 2014), based on partial restarts (microre-

boots) to recover the system (Candea and Fox, 2003; Patterson

et al., 2002), where the services will exit upon failures or return

an error—the error will be detected on the next heartbeat check.
• Service composition is one of research topics for service-based

industrial devices, enabling services to work together to create

added value (Cândido et al., 2009). However, in order to focus on

fault tolerance capabilities of the architecture, service composi-

tion management will be implemented in a lean manner through

a service manager providing lifecycle management capabilities.
• Decentralized design to avoid single points of failure. Autonomous

and intelligent services can be used to support choreography-

based service composition (Cândido et al., 2009).
• Off-the-shelf solutions for communications and platform tech-

nologies to enable rapid development of systems. Platforms

should be standards based to support interoperability between

different vendors of equipment and software (Cândido et al.,

2009) and provide QoS and real-time capabilities. Proprietary

(in-house) solutions are seen to lead to fragmented ecosystems,
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limiting possibilities for collaborative multi-machine control and

software reuse.

An evolvable system can facilitate changes, including service up-

grades, addition of new functionalities, etc. Assessability means that

verification and evaluation of the system can be carried out on a

running (deployed) system to provide justified confidence for the re-

silience of the system (Laprie, 2008). Also, if services can be verified

individually, i.e. they are capable of acting as units of fault isolation

and mitigation, fault forecasting and removal techniques can be used

more efficiently, further supporting assessability.

Interaction and timing faults are often transient faults, which are

common in distributed systems. For example, Grottke et al. (2010)

classified failures found in software anomality reports of 18 robotic

exploration space missions and found that 36.5% of failures were

caused by non-deterministic and aging-related faults (so-called

Mandelbugs). Mandelbugs are difficult to isolate and reproduce,

making them difficult to remove in the testing phase. On the other

hand, it is possible that operation will work on re-execution, making

techniques such as retrying and restarting the application effective

(Alonso et al., 2013).

This idea is applied also in the let-it-crash approach, which is

similar to reset and supervisor-integrated circuits, used in embed-

ded system design to force the microprocessor back into a safe state

and then restart the processor if its parameters are not within the

nominal operating range. Typically, bugs will cause the software to

crash, deadlock, leak memory, etc., for which restarts are an effective,

although temporary, form of recovery. Because the recovery mecha-

nisms are kept simple, the possibility of having faults in the recovery

code is reduced, and the recovery paths get executed and tested of-

ten, as they are based on the standard startup paths. According to our

knowledge, the microreboot approach is not commonly used in real-

time systems, but the decoupled design of services seems like a good

match for it. This approach also emphasizes MTTR instead of MTTF—

high MTTF cannot guarantee fault-free operation, but low MTTR can

help to resume operation after faults (Patterson et al., 2002). For a

CPS there are safety considerations regarding the use of fault recov-

ery; these are covered in Section 3.4.

3.2. Sulava RTSOA platform

The Sulava platform is based on the use of data-centric mid-

dleware and an RTOS to implement communications and provide

real-time scheduling for loosely coupled, collaborating applications,

i.e. services. The platform is intendedly very lean, providing capabili-

ties to rapidly test and develop machine control systems.

Key concepts of the architecture are global service bus (GSB), lo-

cal real-time service bus (LSB) and a local service manager. GSB is an

abstraction for middleware-based communications and LSB for local

realtime queues. The communication buses (middleware) and service

managers effectively implement the layers for composition and ser-

vice management from Fig. 2. Service status information is published

to a GSB topic, where it is available for other nodes (usable by remote

service managers) and provides a distributed repository of deployed

services.

The architecture includes a number of fault tolerance patterns,

such as heartbeat, directly implemented as part of the services, and

supports implementation of additional detection and recovery pat-

terns. Although the architecture cannot guarantee fault isolation, ser-

vices are intended to contain faults and act as units for fault detection

and handling; testing the services as units of fault tolerance is one of

the research objectives of this paper.

Additional functionality, such as employment of semantic tech-

niques, business process management or service configuration, can

be implemented by introducing additional software tools, similar to

the service manager, which is basically an RTOS application respon-

sible for managing the services. These tools can utilize existing ser-

vice information available from GSB, published by services or service

managers.

3.2.1. Communication buses

Inter-service communication is divided into two buses to bet-

ter facilitate the wide range of requirements for deadlines (Fig. 3).

The buses, GSB and LSB, are abstractions for the underlying com-

munication technologies that extend the more commonly used con-

cept of ESB. Abstraction functions to further shield developers from

the infrastructure details and to make sure that the services con-

form to the same information model and QoS parameters. The buses

can also be used to connect services to heterogeneous subsystems,

plant/worksite systems and external applications.

GSB is used as a wrapper for the DDS middleware standard

maintained by the Object Management Group (OMG), providing dis-

tributed connectivity with QoS capabilities for the services. DDS has

non-deterministic communication delays over networks, due to using

standard networking protocols, communication deadlines and QoS

Fig. 3. Communication buses in the logical system architecture.
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Fig. 4. Service states and commands.

parameters can be monitored (Tuominen et al., 2014), making DDS

suitable for use in a “99% real-time” application in which a single

deadline overrun is not catastrophic. Real-world performance of DDS

naturally depends on latency requirements, network structure and

network loads. Services using GSB can be integrated to enterprise

SOA through DDS-based adapters or service mediators. From the en-

terprise systems point of view, the RTSOA platform provides a service

subset that has been designed for a specific environment (CPSs) and

is available from its own domain inventory.

LSB is a wrapper for real-time queues, which are local point-to-

point message channels that can have multiple readers and writers.

Real-time queues are used for communication with real-time appli-

cations locally, providing sufficient performance and determinism

to qualify as real-time (Brown and Martin, 2010). The queues are

a significantly simpler communication method when compared to

middleware-based GSB, but provide sufficient capabilities to connect

services locally in a loosely coupled manner. To support evolvability,

implementation technology of LSB can be changed, depending on the

execution environment.

3.2.2. Design of services

Service is the unit that is used for abstraction of devices and con-

cepts, providing the capability to connect e.g. USB, CAN, FireWire or

RTnet based devices as services to the architecture. Service in the

Sulava platform is an independent program (process) with common

code components and a standardized structure, including connection

and identifying properties (Hahto et al., 2011). This differs from Web

services, which typically are deployed on an application server.

In order to facilitate management, services are expected to pub-

lish status data to be used by the service managers and other possi-

ble tools, and listen for management commands. The status data are

published to the LSB and includes the state of the service, which can

be stopped, (re)starting, running, and error (Fig. 4). Initially, when a

service has been started and initialization is completed, it will be in a

stopped state. After receiving a start command from the service man-

ager, service moves to the starting state where it checks availability

of its dependencies. When dependencies are available, service moves

to the running state. Restart command from service manager is an in-

dication for the service to reset its operational parameters and restart

computation. Service will move to the stopped state after receiving

stop command or after completing its task, if the service is not ex-

pected to be running constantly. If the service encounters an error that

it cannot be reasonably expected to handle, it will change its status

to error, leaving the decision about further actions to fault tolerance

mechanisms. For example, the service manager can terminate and

restart the service based on the let-it-crash fault recovery approach.

Service startup can potentially cause problems if services have

circular dependencies, which is typical in control systems (e.g. for

feedback loop participants). Therefore, all services are started in se-

quential order: services initialize after the start command, as de-

scribed in Fig. 4. Service waits for dependencies in the starting state

and starts executing normally in the running state once dependencies

are available.

The internal architecture of a service does not matter from

the perspective of the RTSOA platform, as long as it conforms to

basic service interface (states and command interfaces). Service

is responsible for implementation of commands and should be

verified to conform to the state chart in Fig. 4 in order to implement

service management and fault tolerance capabilities, although V&V

processes are outside the scope of this paper. In addition to real-time

services, non-real-time services can also participate in compositions

if the connection is done in accordance with the service contracts.
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Fig. 5. Service manager component diagram.

For example, with Web services service contract is usually composed

of WSDL document and XML schemas. For middleware-based

RTSOAs, there are no specific standards for defining the service

contract, although the data model is comparable to a contract. In the

Sulava platform, the service contract is formed by the data model

expressed with OMG specification compliant Interface Definition

Language, extended with QoS and deadline parameters.

Typical structure of a real-time service consists of a main loop,

which is executed periodically, as opposed to one-shot services. The

Sulava platform provides a service template in C + + for construction of

services in stepped-loop format, which includes setting up of the ser-

vice management LSB queues and boilerplate methods for initializing,

stepping, starting, resetting, and stopping the service execution. The

current Sulava RTSOA implementation is based on Xenomai-Linux

and uses C/C + + based real-time libraries, but can be extended to

other platforms through the GSB; interoperability is demonstrated in

the empirical evaluation.

Statelessness is one of the key design principles for service design,

aiming to maximize scalability, and also related to fault recovery as

state data lost during service restart might need to be re-retrieved.

The Sulava services have internal state (status of the service), with

the main states being running and stopped (passive vs. active). In

addition to this primary state, an active service may be stateful or

stateless, depending on whether it currently has task-related data,

e.g. context or business data (Erl, 2008). When a service is active

(running), it should aim to minimize the time spent processing state

data specific to a task. To achieve this goal, the service needs to defer

its state data temporarily, typically to a database. In the Sulava ar-

chitecture, GSB and LSB can also be used by the service to send the

state data to itself, enabling increased statelessness and fault recov-

ery. However, task-centric services deployed as part of an active con-

trol system are usually constantly performing processing and remain

stateful.

Service autonomy is another critical principle for fault tolerance—a

high level of autonomy provides flexibility to use services in compo-

sitions and isolate failures to other services. Service autonomy for

Sulava is achieved by implementing them as independent processes,

but services may still affect each other indirectly. For example, start-

ing a high-priority service can temporarily use all available processor

resources due to start-up activities and cause other services to miss

deadlines, possibly causing failures. To facilitate varying workloads

and resource availability, CPSs would benefit from development of

adaptive resource management strategies.

3.2.3. Service manager—Servicecompositions and fault tolerance

Service manager is a local lifecycle management component that

can be used to start, stop and monitor services, i.e. it provides func-

tionality of the service management layer from Fig. 2. The service

manager, component diagram in Fig. 5, has been designed to be easily

extendable to include new monitoring methods, optional user inter-

faces and fault detection. Sulava platform has a prototype service

manager GUI, shown in Fig. 6, enabling the user to start and stop an

inventory of services. Service composition can be changed on the fly,

including updating of services and switching to backup services, e.g.

hot standby or a previous version that has been proven in use.

The service manager publishes the status of local services to GSB,

available to other service managers. Other service managers can pub-

lish requests to start specific services on the basis of needed depen-

dencies of their local services. Although centralized solutions can be

detrimental to system dependability, the service manager is a com-

promise, a “locally centralized” component that is a single point of

failure but only locally.

The service manager spawns the services, therefore becoming the

parent process for them, enabling it to monitor and affect the life

cycle of the services. Although the main methods of interaction with

services are listening status updates and sending commands, termi-

nation of a service can be used as an escalated action if the service

becomes unresponsive.

Service manager detects service faults with:

1. Heartbeat (Hanmer, 2007)—Services send a heartbeat message for

the local service manager. Heartbeat deadline can be configured

for each service.

2. Service status updates—Services report their state (Fig. 4) with the

heartbeat message.

3. Resource monitoring—Services can have a per-service limits for

resources, such as CPU, memory, network, etc. In the prototype

implementation memory and CPU usage limits are supported.

4. Service exit signals are sent to the service manager, as it is the

parent process for services.

Fault handling is based on fault escalation (Hanmer, 2007):

• Escalation level I: soft restart, send restart command.
• Escalation level II: hard restart. Kill service and spawn new.
• Escalation level III: switch to backup. Kill service and spawn

backup service (if defined).
• Escalation level IV: terminate service, remove from execution.
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Fig. 6. Prototype GUI for distributed service manager.

Algorithm 1 shows key tasks for management of services per-

formed by the service manager. Services are started and stopped from

a service inventory, based on requests from users or remote service

managers. Fault handling is escalated, if the number of faults detected

exceeds the specified maximum number of faults for that service.

Algorithm 1. Logic for service management main loop.

In order to focus the evaluation efforts on services as units of fault

containment and recovery, the architecture lifecycle services, respon-

siblefor managing the lifecycle of SOA solutions, aim for simplicity in

the design. Therefore, both the composition and management layers

(Fig. 2) are implemented through the service managers. For compo-

sition layer and discoverability, service manager publishes service

names, status, and other information relevant to the use of services,

functioning as a repository of running (in memory) services. Service

startup (and stop) requests can be published to GSB topic, which is

monitored by the service manager, enabling initiation of new ser-

vice compositions (Fig.5). Service manager will launch the requested

service if it is available locally. Service management layer is imple-

mented through LSB queues, which includes status monitoring and

configuration.

3.3. Fault tolerance and service recovery

For designing the error management of services used in a CPS, we

assume that the services are well-tested and used in the specified en-

vironment, so failure should be unlikely if and that the cost of failure

is high. Therefore, the desired error handling mechanism is the op-

posite of fail silent, which could cause the errors to go unnoticed and

produce unwanted behavior. Terminating the service upon detecting

an error (i.e. let-it-crash) is a form of fail-fast response, designed to

minimize these unwanted behaviors.

Fault detection and recovery are primarily provided by single-

version techniques used by the service manager. Fault tolerance is

based on isolating the fault to the faulty service, locating the ser-

vice and either recovering the fault or at least removing the faulty

service from the system. After the recovery attempt, the system can

resume operation, change to alternative compositions and applica-

tions, or wait for the human operators to decide the correct course

of actions, which can include using the system “as is” and avoiding

conditions that trigger the fault. Alternative service compositions can

include alternative operational modes (e.g. automatic vs. manual) or

degraded operation. A set of basic services can be designed to provide

a degraded functionality mode, enabling, for example, recovery of

equipment. However, changing of service composition dynamically

is potentially a critical functionality; in this paper we have focused

on fault tolerance at the service level instead of compositions and

implemented service composition management by loading statically

configured service compositions.
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Let-it-crash fault handling and service management are based on

well-known patterns, such as fail-fast and escalation. However, their

feasibility and effectiveness have not been tested in RTSOA or CPS

applications. The goal of using let-it-crash approach is to flush the

corrupted state by terminating the process and improve system MTTR,

as only the faulty service needs to be restarted, not the whole system.

A secondary goal is to avoid writing overly complex error handling

code.

An example of handling of service recovery process by the service

manager is shown in the sequence diagram (Fig. 7). In the diagram,

Service1 encounters an error that causes it to terminate unexpectedly.

After the service manager notices a missing heartbeat, it tries to send

a restart message, but LSB queue to the service is not available. This

causes fault handling to escalate to the next level, where the service

manager will try to perform a hard restart by sending a termination

signal and spawning a new service. As the service has already exited,

the service manager proceeds directly to spawning a new service.

After the new service has performed initialization and sent the first

heartbeat message, the service manager sends the start command,

causing the service to transition directly to the running state (all

dependencies available).

As mentioned earlier, recovery of faults without cascading service

failures is necessary for achieving sufficient reliability. If a service

fails, this can potentially cause the fault to propagate and other ser-

vices to fail, depending on the failure mechanisms and design of the

services. A faulty service can, for example, transmit messages at arbi-

trary points in time (babbling idiot failure). Another typical scenario

is having a failure where service functions otherwise normally, but

output is corrupted (but inside expected values). If services have been

designed to be autonomous, it is easier to recover the situation with-

out cascading errors. In the case that dependencies are not available

(due to failures or otherwise), service transitions to starting state,

which is considered to be a non-failed state, even though the system

cannot provide full service.

3.4. Service criticality

CPSs interact with environment and physical processes. As a di-

rect result, systems are often mission- or safety-critical. For safety-

critical systems, separate safety-related systems are developed and

certified according to safety standards (e.g. IEC 61508;International

Electrotechnical Commission, 2010) that can monitor the system and

retain its safety (Rauhamäki et al., 2012). As certification is expen-

sive, only separate safety-related systems are typically certified, not

the whole control system. Especially for CPSs, this would be either

prohibitively expensive or even completely impossible, as all neces-

sary information about the intended use and environment may not

be available a priori. However, as the CPS interacts with environ-

ment and physical processes, the software still needs to be highly

reliable and safe; possible safety-related functions are only a last

resort.

Decoupled architecture can be designed to have no single points of

failure as systems can run multiple copies of services and subsystems

on different nodes. However, automatic switching to a “hot standby”

for a safety-critical component is not necessarily desirable (e.g. for

services designated critical as defined in Alho and Mattila, 2014). Al-

ternative compositions can also be utilized to provide diverse redun-

dancy, thereby improving resilience. However, having multiple com-

positions capable of sending commands deployed simultaneously can

be dangerous if not taken into account in the system design and im-

plementation. For example, ownership QoS parameter can be used to

limit the number of writers to a command topic.

By analyzing which system components are critical, V&V efforts

can be concentrated on the parts of the system where they have the

most impact (Jackson, 2009). Autonomous and decoupled services

are easier to verify than a monolithic system, as they act as indepen-

dent units of fault isolation and deployment. A service is critical if

its failure can cause damage or other significant losses. Fault prop-

agation can also be a factor in the criticality analysis of a service,

if input sanity checking, assertions and external systems (e.g. colli-

sion detection) cannot sufficiently guarantee safety. Moreover, fault

handling of critical services needs to be analyzed on a case-by-case

basis. If a service is critical only indirectly (e.g. IDCom service in the

evaluation, responsible for transmitting position and velocity com-

mands for the manipulator), fault recovery can be performed safely.

The critical actions are performed in another service (C4G service in

this case) which detects deadline overrun for input, moving to a safe

state. Otherwise services are stopped and wait for manual operator

intervention.

Validation of service deployments can be further supported with

VR models and simulation, enabling assessment of the system with an

operational configuration. Models can be used either with the system

(as in RH) or in the place of the actual plant (hardware-in-the-loop

simulation).

4. Empirical evaluation of the approach

This sectiondescribes the test scenario and experimental setup

we have used to evaluate the fault detection and recovery capabil-

ities of the RTSOA described in the previous section. We focus on

the detection and recovery of the faults in a control system applica-

tion, using services as the unit of fault isolation. Our null hypothesis

is that the let-it-crash approach cannot support real-time fault de-

tection and recovery, therefore we aim to disprove it through the

empirical evaluation. The objective of the empirical evaluation is to

validate the feasibility of implementing fault tolerance on a real-

time service-oriented platform that interacts with the physical world.

This includes testing fault detection and recovery using service man-

ager; services as a unit of fault isolation and recovery (let-it-crash

approach); capability to change services on the fly (including switch-

ing to a back-up service); and estimating overhead of the service

management.

4.1. Test scenario

To evaluate effectiveness and performance of the service-oriented

approach to fault tolerance, we use a distributed real-time control sys-

tem implemented with the previously described software architec-

ture in an ITER-relevant remote handling test scenario. Remote han-

dling systems are used in the ITER machine to inspect, make changes

to, and maintain components using automatic or man-in-the-loop

teleoperation of robots. The test scenario consists of teleoperating

an industrial robotic manipulator with a 6 DOF haptic input device

(3 DOF force feedback). The manipulator used in the tests can be used

e.g. to vacuum radioactive particles from other maintenance robots

that have been working inside the ITER reactor.

The remote handling control system (RHCS) has a 99% real-time

requirement for communications (Tuominen et al., 2014); the system

tolerates occasional deadline misses, but a failure has potential to

cause significant damage to equipment, lost experiment time, etc.

The system consists of Virtual Reality (VR) software IHA3D, Input

Device Controller (IDC), Equipment Controller (EC), and an Operations

Management System (OMS). Nodes participating in the scenario are

shown in Fig. 8; service managers and LSBs have been left out to clarify

the figure.

We have used a service composition based on using an OMS earlier

in Alho and Mattila (2013, 2014)for automatic control of the teler-

obot. In this paper, the system has been extended for a more de-

manding man-in-the-loop scenario. The service composition used is

shown in Fig. 9, with two of the four services being reused from

the previous composition. The OMS can be used to manage exe-

cution of complex event sequences and is used here to provide an
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Fig. 7. Sequence diagram for detecting and recovering service failure.

alternative operation mode. The nodes participating in the scenario

include:

• Equipment Controller is a real-time system for operating RH

equipment, i.e. the robot. Control service for robot (C4G) is

responsible for abstracting the communications with the robot,

sending position and velocity target values every 2 ms to the servo

controllers of the robot using RTnet protocol. Missing a commu-

nication deadline with the robot causes an emergency stop (hard

real-time requirement).
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Fig. 8. Participating nodes.

• Input Device Controller is a non-real-time system, responsible for

abstracting the input device. Missing several deadlines degrades

performance (transparency of the system) which increases risk of

accidental collisions.
• Virtual Reality software is used to visualize robot position, al-

though the operator also has direct visual contact with the ma-

nipulator in the test setup. VR capabilities are provided by IHA3D,

Windows-based software developed at the Department of Intel-

ligent Hydraulics and Automation(IHA;Aha et al., 2011). The VR

subsystem is connected to the remote handling system through a

middleware adapter plugin, which allows it to track the position

of the manipulator and publish virtual fixtures that can be used to

overlay guiding forces to the force feedback signals from the slave

manipulator.
• As an alternative mode of operation, Operations Management

System can also be used to send commands to the robot. OMS is a

Web server-based system, requiring different service composition

and therefore improving system resilience by providing diversity.

4.2. Control system architecture

Aim of a teleoperation system is to enable the operator to perform

precise work in inaccessible or hazardous environments, such as the

ITER machine. The system consists of two manipulators, which are

referred to as the master and the slave, and other necessary sensors

and computers for implementing the control system architecture. The

master manipulator is driven by the operator, and the slave manip-

ulator is located in the remote environment, following movement

commands given with the master (Aliaga et al., 2004).

The control system was implemented using the bilateral position–

position(PP) control architecture (Aliaga et al., 2004), shown in

Fig. 10. As demonstrated by the block diagram, system interacts phys-

ically with the operator, environment, master manipulator and slave

manipulator in real-time. Timely data for the nodes areessential for

safe operation of the system. Essentially, the architecture instructs

both manipulators to track positions of each other. If the teleoper-

ation system is not able to match the positions of the master and

the slave, e.g. because of a physical or virtual obstacle, the difference

generates a force F that drives positions of the manipulators to the

same value. Joint position Xm from the master manipulator is used to

control position of the slave, and vice versa. PP architecture is rela-

tively stable and does not need expensive and delicate force sensors.

As a downside, transparency (sensing of the remote environment)

is worse when compared to more advanced bilateral teleoperation

architectures.

Blocks in Fig. 10 denote different components affecting the control

system. Cm and Cs are the position controller nodes IDC and EC, for the

master and the slave respectively. Zm is the impedance (mechanical

resistance to motion) of the master manipulator, Zh the operator’s

hand, Zs the slave manipulator and Ze the working environment of

the manipulator.

4.3. Experimental setup

The experimental setup consisted of the following hardware units:

• Equipment controller PC: 3.4 GHz Pentium 4, Debian 5.0.8, Xeno-

mai 2.5.6. Scheduler uses preemptive priority-based FIFO policy.
• Input device controller PC: 3.2 GHz Pentium 4, Lubuntu 4.8.1
• Virtual reality PC: 3.0 GHz Pentium 4, Windows XP SP3
• Phantom Omni 6 DOF haptic input device (Fig. 11)
• Comau Smart NM45-2.0 robotic manipulator (Fig. 11)
• Comau C4G robot controller with C4GOpen option Blomdell et al.

(2005)

Services and their parameters (deployment shown in Fig. 9) are

listed in Table 1. For use with OMS, IDCom and InputDeviceController
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Fig. 9. Service composition used in the experiments (with IDC).

services are replaced with TrajectoryGenerator and OmsCom services

in the composition.

The practical implementation of the control architecture is out-

lined briefly to document the experiment setup and demonstrate the

99% real-time requirement. Due to the applied filtering, a single lost

packet has limited effect on the reference outputs, enabling the sys-

tem to tolerate a missed deadline. IDCom service reads joint positions

(i.e. position command) from the Phantom Omni, scales them based

on user settings and publishes this data to the GSB. Joint values are

scaled down because of the significant size difference between master

and slave devices. EC runs the control services for the Comau robot,

implementing the PP force feedback, as in Fig. 10: position change of

the Phantom’s joints is used to calculate position setpoint in IDCom

service. Backward difference is used to estimate the derivatives for

joint velocities. However, with small increments and high sampling

rate, the resulting differentiated signals are often noisy. Therefore,

a Geometric Moving Average (GMA) filter (Roberts, 1959) is used

to calculate the joint position reference. For joint velocities, a finite

difference method (Harrison and Stoten, 1995) is used to produce

noise-suppressed differentiated signals.

Position and velocity setpoints are then sent from IDCom ser-

vice to C4G service, which is integrated to the motor control

servo loops of the robot with RTnet network protocol stack; this

connection is timing critical and an exceeded deadline will trigger

a fail-safe mode. Correspondingly, C4G service sends slave manipula-

tor position to C4GJointDataPub service, which publishes this data to

the GSB for IDC, in accordance with the PP control architecture. IDC

reads this data to calculate forces for the master manipulator.

4.4. Evaluation criteria

Validation of the idea is based on empirical evaluation of the pro-

totype implementation of the service-based control system archi-

tecture. We estimate the viability of the let-it-crash and recovery-

oriented fault handling by performing recovery of failed real-time

services, using service as the unit of fault isolation and estimating

overhead of the active service management. Because the focus of

evaluation is in the architectural style, the efficiency or coverage of

the used fault detection and recovery mechanisms is not measured.

In the test case scenario (Section 4.1), an operator uses a haptic in-

put device connected to the IDC to control an industrial manipulator.

Faults are emulated by manually killing a service or altering service

source code.

In brief, we evaluate following for real-time services:

1. Does the SM detect faults with (i) missed heartbeats, (ii) service

status updates, and (iii) resource monitoring?
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Table 1

Service names and parameters.

Service name Task period Priority Heartbeat timeout Restart limit CPU limit

C4G 2 ms 91 - 0 -

IDCom 2 ms 40 5 ms 1 20%

C4GJointDataPub 10 ms 45 50 ms 1 40%

InputDeviceController 2 ms non-real time - 0 -

Fig. 10. Position–position control architecture.

2. Compare CPU load with service manager and using no service

manager.

3. Fault handling with escalation to levels consisting of (i) restart

command, (ii) kill and respawn service, and (iii) switch to backup

service.

4. Test recovery of a critical real-time service that participates in the

500 Hz control loop.

5. Evaluate fault isolation: does service restart cause a cascade of

failures?

5. Results and discussion

This section describes the results of the experiments we conducted

to evaluate fault tolerance of the RTSOA architecture. All fault recovery

tests were completed by running the same 120 s test sequence with

the manipulator, consisting of starting the services, enabling drives

on the manipulator, moving the manipulator, and then shutting the

system down. CPU usage was measured by reading the proc filesystem

on the EC.

Fault detection was tested to work with heartbeat, service status

update, resource monitoring and service exit signals. Fault recovery

escalation was tested to work with restart command, forced killing

combined with restarting service, and forced killing combined with

switching to backup service. The final escalation level is not consid-

ered in this test, as it simply terminates the service, necessitating

operator interference.

Fig. 12 shows the effects of fault recovery on commanded and

measured position and velocity values of the first joint of the manip-

ulator, as recorded by the C4G service. Service IDCom was manually

killed, the service manager detected the missing heartbeat, sent the

restart command, detected the missing heartbeat again and esca-

lated the fault handling to restarting of service (first fault), similar

to sequence diagram of Fig. 7. Lack of valid commanded position and

velocity are detected by the C4G service, while the IDCom is not avail-

able. Therefore, velocity output (measured velocity in the figure) is

set to zero and commanded position (i.e. state data) held until the

system is ready to resume normal execution. Second fault causes the

service manager to load the backup service. We measured recovery

of the first fault to take 1.440 s, and recovery of the second fault 2.314

s. This covers the time from detecting the fault (heartbeat timeout

triggered) to C4G receiving the first data message from the new ser-

vice, including initialization of the new service, recovering state data,

sending heartbeat message to the service manager and the service

manager sending the “start” command to the service. Most of this

delay is caused by initialization of GSB communications middleware

for the new service.

Resource usage was evaluated with the following comparisons:

CPU usage with and without service management, faulty service with

and without escalation, and scalability with different numbers of

services.

Overhead of service management: CPU usage with no service man-

ager (using services in standalone mode) and with service manager

for Fig. 9 service composition, results shown in Fig. 13. Measured

Fig. 11. Operator controlling the Comau robotic manipulator with the Phantom Omni haptic device.
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Fig. 12. Recovery from faults, detection based on missing heartbeats.

Fig. 13. Overhead evaluation, CPU usage with no service manager (SM) and with the SM using the IDC-based RH service composition.

average management overhead for the period when services were

active was measured to be 4.65%.

Fault escalation: Test case has a faulty service (C4GJointDataPub

with CPU limit set to 20%) that starts consuming too much CPU after

10 s due to a manually injected fault. Service manager escalates ser-

vice recovery through levels I–III, finally switching the faulty service

to a backup service and successfullyrecovering the fault. Fig. 14 shows

measured CPU usage with service manager and comparison to stan-

dalone services without fault recovery. Without the service manager,

the fault stays active in the system, keeping CPU usage on a higher

level.

Scalability of service management for a single service vs. a large

number of services is shown in Fig. 15. Comparison is performed with

1, 8 and 64 copies of a same dummy service. Based on the results,

service management has a moderate fixed cost and low per-service

variable cost—total CPU usage increased by a factor of 6.5 when the

number of services was increased from 1 to 64. Service management

overhead depends on heartbeat payload (for service status 4 bytes),

service update frequencies (1 ms on dummy service), the rate of re-

source utilization checks, which can cause significant resource usage

itself, and the task rate of the service manager. In this paper, we have

used 1 ms task rate for the service manager in order to keep up with

the monitoring of the managed services.

False positives are possible, e.g. due to overly strict heartbeat dead-

line combined with a (re)starting high-priority service, which tem-

porarily starves other, lower-priority services. The amount of false

positives depends on heartbeat deadline implementation and config-

uration and was not estimated in this research.

Fault propagation was not observed during experiments with the

emulated faults, as services correctly responded to suddenly killed

dependencies by moving to the restarting state to wait for resuming

of operation. Therefore degradation of service composition reliability

due to service failures was not an issue in the experiments.

To summarize, the results of our experimental evaluation validate

that the RTSOA supports fault detection and recovery in distributed

real-time systems:

• Several fault detection methods were implemented and tested to

function correctly.
• Services were successfully used as units of fault isolation.
• Let-it-crash approach (termination and restart of services upon

encountering errors) was successfully used to recover faults in a

critical real-time application.
• The system was capable of recovering from different types of faults

and continuing operation without cascading failures.
• Service compositions can be dynamically changed, including

switching to back-up service on the fly. This causes a temporary

disruption in the delivery of service by the system, which is re-

sumed after the services are in the running state.
• Overhead for service management in the RH scenario was mea-

sured to be fairly low, around 5%, and shown to scale in a manner
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Fig. 14. Recovery from faults with escalation of fault handling, CPU usage.

Fig. 15. Scalability of service management, CPU usage with 1, 8 and 64 services.

that enables deployment and monitoring of large numbers of

services.

6. Related work

Sulava is a generic RTSOA, validated with distributed working ma-

chines using hardware-in-the-loop simulation (Hahto et al., 2011),

and used as the reference architecture for the implementation in this

paper. Compared to Hahto et al. (2011), our work (Alho and Mattila,

2013) applies the Sulava architecture to a distributed robotic system

with more heterogeneous and diverse environment, more demand-

ing real-time requirements and use of physical robot with automatic

teleoperation instead of simulation models. Our previous work (Alho

and Mattila, 2014) extended the fault-tolerance features of the ar-

chitecture design and implemented them for the prototype system,

with validation based on analysis. This paper presents so far the most

complete description of the architecture, further extensions to the ar-

chitecture fault tolerance mechanisms regarding fault escalation and

service state management, and also extends the implementation to

use more demanding bilateral teleoperation, presenting an extensive

empirical evaluation of the fault tolerance approach for building of

dependable and resilient CPSs.

Although fault tolerance and resilience have been recognized as

key elements for CPSs (Bonakdarpour, 2008; Rajkumar et al., 2010),

relatively little research is available on the topic of fault tolerance

of CPS architectures, e.g. service recovery. Most work related to CPS

dependability and resilience is on the topics of resilient controllers

(based on control theory) and security. Naturally, most of the tradi-

tional fault tolerance research is directly applicable to CPSs, but the

capability to improve system resilience based on the loosely coupled

nature of SOA has been somewhat neglected. Research on this topic

includes using SOA to improve system dependability by enhancing

the process of exchanging a device in an industrial automation en-

vironment in case of device breakdowns and replacements (Cândido

et al., 2013). On the service-level, roll-back recovery of Web services

(Mansour and Dillon, 2011) and byzantine fault-tolerant Web services

(Pallemulle et al., 2008) have also been used successfully. These ap-

proaches, based on improving fault tolerance of services themselves,

should be seen as complementary to the one presented in this paper.

Dynamic resource management can be used to ensure CPS capa-

bility to adapt to dynamically changing conditions. Lardieri et al. have

developed a dynamic resource management system for enterprise

DRE systems (Lardieri et al., 2007) based on Real-time CORBA Com-

ponent Model. Their research indicates that statically provisioned DRE

systems require a great deal of manual engineering effort to create

and validate reconfigurations, whereas dynamic resource manage-

ment capabilities can be used to extend system operational flexibility

without human intervention. They also note that QoS and deploy-

ment configuration of components for DRE systems is a complex task

that has not yet been solved. The same problem has also been noticed

in the development of the Sulava platform.

An approach to cope with the dynamic behavior of distributed

real-time systems using reconfiguration of services is presented

by García-Valls et al. (2014) to achieve time-bounded real-time
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reconfigurability for RTSOA systems modeled as graphs, using a

real-time prune algorithm to search for schedulable reconfiguration

solutions. The reconfiguration approach has been used to develop the

iLAND middleware framework for time-bounded operation and re-

configuration in service-oriented soft real-time systems (Garcia Valls

et al., 2013; García-Valls et al., 2014). Although fault detection and

recovery are not specifically evaluated, the approach could be used to

provide fault recovery capabilities. Compared to the Sulava platform,

which focuses on evaluating fault tolerance capabilities on service-

level and provides best-effort service recovery, iLAND provides

time-bounded reconfiguration of service compositions, but requires

an a priori temporal analysis of the system (Garcia Valls et al., 2013).

Cloud support for real-time systems is a new development that can

provide scalability and efficient use of resources for CPSs. However,

use of cloud infrastructure can increase errors, especially because la-

tency of virtual machines is unknown. Malik and Huet (2011) propose

a fault tolerance scheme based on replication of software on multiple

virtual machines and quantification of node reliability. This approach

could potentially be combined with RTSOA to run critical services on

cloud infrastructure.

Component-based approach to fault tolerance for service robots

(viz. CPS) has been researched by Ahn et al. (2012). Their work focuses

on how typical fault tolerance mechanisms can be accommodated to a

component-based architecture and evaluates the implemented, fault

manager-based, fault detection mechanisms and their performance,

achieving fault recovery performance in the range of 20–500 ms. Sim-

ilar to our empirical results, most of the recovery time is spent while

loading components, and as a solution the authors implemented pre-

loading of components, which shortened recovery times to less than

20 ms, although no estimation for the overhead of this form of fault

tolerance is given.

7. Limitations

Our prototype implementation demonstrates that it is possible to

use a service-oriented approach in real-time systems to improve fault

tolerance and robustness, but it has certain limitations:

1. No built-in recovery mechanisms for permanent faults, as restart-

based recovery does not remove the root cause of the error. This is

handled through resilience, i.e. backup services and diverse service

compositions.

2. Safety considerations. Although a faulty service can be restarted,

it is not necessarily safe to do so (see Section 3.4).

3. Non-deterministic communication delays over networks, i.e. hard

real-time for the service connections is not guaranteed.

4. Cannot guarantee fail-silent behavior, although the service man-

ager can detect some abnormal behavior patterns; it is possible

that errors can propagate to another services in some cases.

5. High-priority service start-up can violate autonomy of lower-

priority services temporarily.

In this work we have focused on feasibility of using RTSOA ca-

pabilities as a basis for fault tolerance and have therefore omitted

schedulability analysis of the system. Also, some features that would

be expected from a finalized SOA have not been implemented in the

prototype. Specifically, we have left composition infrastructure (e.g.

for business processes), end-to-end service chain predictability, se-

curity aspects and dynamic resource management outside the scope

of this research. Service configuration was implemented using static

configuration locally, instead of dynamic configuration through GSB.

Distributed service management and service management GUI were

not used in this paper, although they have been tested in related,

on-going work using the Sulava platform.

Experiments were carried out on relatively low-performance com-

puting hardware, and therefore should be applicable to modern

embedded systems and industrial PCs, but exact performance and

overhead numbers depend on platform, computing hardware and

implementation. One benefit of using autonomous services is the

capability to utilize benefits of concurrency provided by multi-core

processors, which are becoming increasingly available even for em-

bedded systems. The experiments in this paper were carried out on

single-core CPUs; using multi-core CPUs would very likely have a pos-

itive effect on predictability and performance and enable bin-packing

solutions for real-time tasks (services) as proposed in Lakshmanan

et al. (2010).

8. Conclusions

This paper has described an approach to fault tolerance for CPSs

based on loosely coupled real-time services and presented an em-

pirical evaluation of the approach using a remote handling system

as a demanding real-world test case, which included combination of

heterogeneous and autonomous subsystems collaborating to provide

force-feedback control of a telerobot. Based on the validation, RTSOA

supports real-time fault detection and recovery, providing the ability

to implement fault tolerance patterns flexibly and without significant

overhead. The main contributions of this paper include showing that

services can function as a unit of fault isolation and recovery without

cascading failures, allowing recovery of transient faults using partial

restarts (let-it-crash approach) that should improve system availabil-

ity compared to monolithic systems. Resilience of the system is im-

proved through assessability with virtual models and diversity from

operating modes (compositions) and alternative back-up versions of

services. Our work also emphasizes evolvability of the system, sup-

ported by use of standardized middleware and open platforms.
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