
HAL Id: hal-01102094
https://hal.inria.fr/hal-01102094

Submitted on 15 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Checkpointing as a Service in Heterogeneous Cloud
Environments

Jiajun Cao, Matthieu Simonin, Gene Cooperman, Christine Morin

To cite this version:
Jiajun Cao, Matthieu Simonin, Gene Cooperman, Christine Morin. Checkpointing as a Service in
Heterogeneous Cloud Environments. 15th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CC-GRID 2015), May 2015, Shenzhen, Guangdong, China. �hal-01102094�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49434484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01102094
https://hal.archives-ouvertes.fr


1

Checkpointing as a Service in Heterogeneous Cloud
Environments

Jiajun Cao∗, Matthieu Simonin†, Gene Cooperman∗, Christine Morin†

∗College of Computer and Info. Science,
Northeastern U., Boston, MA, USA
{jiajun,gene}@ccs.neu.edu

†Inria
IRISA, Rennes, France
{Matthieu.Simonin, Christine.Morin}@inria.fr

Abstract—A non-invasive, cloud-agnostic approach is demon-
strated for extending existing cloud platforms to include
checkpoint-restart capability. Most cloud platforms currently rely
on each application to provide its own fault tolerance. A uniform
mechanism within the cloud itself serves two purposes: (a) direct
support for long-running jobs, which would otherwise require a
custom fault-tolerant mechanism for each application; and (b) the
administrative capability to manage an over-subscribed cloud
by temporarily swapping out jobs when higher priority jobs
arrive. An advantage of this uniform approach is that it also
supports parallel and distributed computations, over both TCP
and InfiniBand, thus allowing traditional HPC applications to
take advantage of an existing cloud infrastructure. Additionally,
an integrated health-monitoring mechanism detects when long-
running jobs either fail or incur exceptionally low performance,
perhaps due to resource starvation, and proactively suspends the
job. The cloud-agnostic feature is demonstrated by applying the
implementation to two very different cloud platforms: Snooze
and OpenStack. The use of a cloud-agnostic architecture also
enables, for the first time, migration of applications from one
cloud platform to another.

I. INTRODUCTION

Cloud computing provides users with the illusion of an
infinite pool of resources available over the Internet, from
which they can gain on demand and through self-service
the resources they need for their applications. In less than
a decade numerous cloud providers have flourished, each
of them operating one or several data centers in differ-
ent locations. Cloud providers target transparent failure and
maintenance management, with the twin goals of satisfying
their customers, and providing the high resource utilization
that maximizes their profit. Many failure, reconfiguration and
resource management strategies rely on the ability to migrate
virtual machines both between data centers and within a
single data center. Customers want their applications to be
executed reliably in the cloud, and they seek to escape the
vendor lock-in phenomenon by taking advantage of a market
of heterogeneous clouds.

We propose a novel Checkpointing as a Service approach,
which enables application checkpointing and migration in
heterogeneous cloud environments. Our approach is based on
a non-invasive mechanism to add fault tolerance to an existing
cloud platform after the fact, with little or no modification to

∗This work was partially supported by the National Science Foundation
under Grants ACI-1440788 and OCI 1229059, and by a grant from Intel
Corporation.

the cloud platform itself. It achieves its cloud-agnostic prop-
erty by using an external checkpointing package, independent
of the target cloud platform.

Such a cloud-agnostic checkpointing service is important
for at least three distinct reasons:

1) provision of fault tolerance for long-running tasks;
2) improved cloud efficiency (low-priority applications can

be suspended to stable storage, and restored only when
idle CPU cycles are available); and

3) migration of tasks between distinct IaaS clouds (e.g.,
between one operated by the Snooze system and one
operated by the OpenStack system).

The proposed Cloud-Agnostic Checkpointing Service
(CACS) is retro-fitted into multiple cloud platforms. This is
demonstrated for two cloud platforms: Snooze and OpenStack.

A necessary component of the CACS service is a health-
monitoring mechanism that not only detects when an applica-
tion has “died”, but generally when an application is unhealthy.
Detecting the latter is non-trivial, since only the application
developer knows if the termination or non-responsiveness of
one process is fatal to the overall computation. Hence, a hook
is provided for each application to determine its own “health”.

Our contributions are three-fold:
• We provide the first transparent checkpointing scheme for

centralized, parallel and distributed computations in the
Cloud.

• The transparent checkpointing scheme is cloud-agnostic.
The minimal assumptions of this approach allow it to be
extended to most cloud architectures.

• Migration of computations among heterogeneous clouds
is provided.

The CACS checkpointing service employs the DMTCP
package [1], a checkpointer for distributed multithreaded
applications. This was chosen for its transparent support
of distributed applications, including both TCP/IP and the
InfiniBand network [2].

Moreover, we show that our approach for computation
checkpointing and migration scales with application size and
with the number of applications hosted in a data center.

The remainder of this paper is organized as follows. Sec-
tion II presents further background and motivation for the
approach. In Section III we discuss the principles that guided
the design of the cloud checkpointing service. Section IV
provides an overview of the CACS service. Section V presents



2

some typical scenarios, from application submission through
checkpoint, recovery and/or migration to a new cloud, and
finally application termination. Section VI presents our pro-
totype implementation. In Section VII we analyze the results
from a first experimental evaluation. Section VIII describes
the related work, while the conclusions are presented in
Section IX.

II. MOTIVATION

The cloud-agnostic checkpointing service is intended to
provide a single checkpointing solution for heterogeneous
computing services. This eliminates the need for each comput-
ing service to implement its own checkpointing solution. Such
solutions are required not only for long-lived computations,
but also for numerous other use cases.

A. Context: IaaS and Heterogeneity among Clouds
IaaS clouds provide resources on demand to their customers

in the form of virtual machines. IaaS clouds are heterogeneous,
each coming with its own marketplace of Virtual Machine
Images (VMI). Customers of an IaaS cloud provider select
VMIs among those offered. Different VMIs correspond to
different, possibly customized, combinations of an operating
system kernel, an OS distribution, and a processor architec-
tures (32- or 64-bit). Instances are characterized by the amount
and type of resources they use (e.g., number of cores, memory
capacity, disk capacity).

The IaaS cloud management system manages the life cycle
of a virtual machine (VM) from submission to termination. In
particular, it allocates the server resources among the virtual
machines and performs VM scheduling. Servers and VMs are
monitored in order to determine efficient resource management
strategies. In a cloud environment, a distributed application is
executed using a set of interconnected virtual machines called
a virtual cluster.

Different cloud environments also introduce heterogeneity
among dimensions other than those described in the previous
paragraph. Servers may have different hardware configurations
(e.g., Intel versus AMD processors), and may run differ-
ent combinations of virtual machines and hypervisors (e.g.,
KVM/QEMU, Xen, and Linux containers).

A sufficiently robust checkpoint-restart package, such as
the DMTCP package used here, can overcome these sources
of heterogeneity. As a prerequisite, an end user must design
her applications for a common denominator: compiling for
the intersection of Intel and AMD instruction sets, avoiding
the most recent system calls in order to provide backward
compatibility, programming scalability to adjust for fewer or
more cores, and even compiling for a 32-bit instruction set
if a combination of 32- and 64-bit CPUs is anticipated. In
this way, a cloud-agnostic checkpointing service can directly
migrate applications among such heterogeneous resources.

Finally, a cloud-agnostic checkpointing service must be
tolerant of the different types of IaaS cloud management
systems that exist today. These include OpenStack [3] (widely
adopted in production data centers), Nimbus [4] (targeting
scientific computing), and Eucalyptus [5], OpenNebula [6] and
Snooze [7] (originating from academia), and Amazon EC2

(the most widely used public commercial cloud). IaaS cloud
systems may use different VM disk image formats (e.g.
QCOW, VMDK) and provisioning methods. They may provide
different APIs for storage and VM management. However,
some popular interfaces (EC2 for VM management and S3
for storage for example) have become de-facto standards.
Recently, there have been a number of emerging standard APIs
such as DMTF CIMI [8] or OGF OCCI [9], which have not
yet become mainstream.

B. Use Cases
Many motivating use cases demonstrate the need for a

portable efficient cloud checkpointing service. A first use
case is fault-tolerant application execution in the cloud. Long-
running jobs (such as OpenMP-based or MPI-based scientific
applications) should be periodically checkpointed, so that they
can be restored from their last checkpoint in the event of a
failure.

Ideally, it should be possible to restore an application either
in the same data center or in another one from the same
cloud provider to survive catastrophic failures affecting a
whole data center. However, although a second data center
may be available, it may be running under a different type of
infrastructure. This gives rise to the second use case: migration
among heterogeneous clouds.

A third use case occurs when the cloud provider needs to
transparently carry out maintenance operations. Providers can
stop all applications and checkpoint them or migrate them to
other clusters, before taking down a cluster for maintenance.

A fourth use case occurs in the scientific world, in the
framework of advanced VM scheduling algorithms. Periods
of low demand may lead to potentially low utilization rates.
A VM scheduler attempts to increase resource utilization.
Opportunistic preemptible leases running on backfill virtual
machines have been proposed for this case by Marshall
et al. [10]. Such leases give a user access to a resource at
an indeterminate time for an indeterminate amount of time,
but are less expensive than traditional on-demand leases.
Transparent cloud-agnostic checkpointing allows any scientific
application to use such a lease.

Proactive cloud migration provides a fifth use case. For
a cloud provider operating multiple possibly heterogeneous
data centers it is desirable to be able to migrate VMs from
one cloud to another. Energy-efficient resource management
policies such as follow-the-sun aimed at exploiting renewable
energy sources to the extent possible and cloud bursting are
two illustrating use cases [11] .

A sixth use case is vendor lock-in. Cloud customers cur-
rently face vendor lock-in issues in re-targeting their dis-
tributed applications from one cloud provider to another. A
cloud-agnostic checkpointing service would overcome hetero-
geneity issues and empower cloud users to take advantage of
the competitive cloud computing market by outsourcing their
applications to another provider.

Last but not least is the seventh use case. Migrating legacy
distributed applications to the cloud remains a tedious task
for users who don’t have system administration skills. In the
context of IaaS clouds, porting from a cluster to a virtual



3

cluster in the cloud may require the skills of a system
administrator and the domain-specific knowledge of an end-
user. The portable checkpointing service proposed here is a
key building block for a cloudification service, significantly
reducing the burden of legacy applications users in moving
their application to the cloud. In principle, a user would simply
use the CACS-based cloudification service to migrate her
application from her desktop or local cluster to a selected IaaS
provider, since the design of the CACS service will extend to
run on other resource management services, including a Linux
desktop system and the resource management system (RMS)
(e.g., batch system) of an HPC cluster.

There is no claim that the current CACS service will
satisfy all of the above use cases. Some use cases might
require specialized cloud configurations or specialized data
services [12].

III. DESIGN PRINCIPLES OF THE CACS SERVICE

To address the requirements presented in the previous sec-
tion, we developed a Cloud-Agnostic Checkpointing Service.
We discuss five principles that guided its design.

A. Why Using a Process-level Checkpointer rather than VM
Snapshots?

A key design principle of the Cloud-Agnostic Checkpoint-
ing Service is that it leverages a process-level checkpointer
for checkpointing distributed applications executed in virtual
machines. There are two primary reasons why a process-level
checkpointer was chosen instead of using the VM snapshot
mechanism offered by hypervisors. First, snapshotting a set
of virtual machines is more expensive than checkpointing a
set of processes. As in the latter case the operating system is
not checkpointed, the checkpoint size is much smaller. While
data deduplication techniques [11] can be used to reduce the
cost of live migration, our approach has a broader applicability
being hypervisor-agnostic.Second, process-level checkpointers
like DMTCP manage dependencies among communicating
multithreaded processes when saving a checkpoint. When
checkpointing a distributed application running in multiple
VMs using VM snapshots, hypervisors fail to handle the inter-
process communications of distributed processes.

VM snapshots have been extensively used to checkpoint an
application running in a single VM, since it provides a generic
checkpointing mechanism transparent to the application, which
does not need to be modified. A process-level checkpointer
like DMTCP is fully transparent to the application and generic,
including support for checkpointing sets of communicating
multi-threaded processes. Moreover, in an environment of
multiple heterogeneous clouds, an approach based on process-
level approach to checkpointing the distributed applications of
a virtual cluster provides better portability and interoperability
than one based on VM snapshots. This avoids the difficulty of
porting VM images and adapting to multiple IaaS cloud man-
agement APIs, when dealing with different cloud management
systems.

B. Eliminating the Checkpoint Management Burden
Checkpointing should come as a service, implying minimal

burden for users. In our approach, users request their VMs

from the CACS service rather than directly from the IaaS cloud
manager, and submit their application to CACS while speci-
fying the checkpointing policy (e.g., checkpoint frequency).
The CACS service obtains the VMs, installs and configures
the process-level checkpointer and the application inside the
VMs, and then automatically triggers checkpoints according
to the user-defined policy.

C. Portability and Interoperability

The CACS service has been designed to execute on top
of unmodified existing IaaS cloud management systems, to
address a broad IaaS cloud market. Thus, it relies on the
de facto standard APIs offered by most IaaS clouds systems,
namely EC2 for VM and S3 for storage management.

An important requirement is to be able to detect failures
at the level of the server, the VM and the application, within
the underlying IaaS cloud management system. For instance,
OpenStack does not provide an API to report infrastructure
failures to clients. So the CACS service must include a cloud-
agnostic monitoring system. Yet at the same time, the CACS
service should be able to exploit any existing monitoring
mechanisms of the underlying IaaS cloud where they exist,
as in the case of the Snooze VM management system.

Another portability issue arises from the fact that different
IaaS management systems may use different VMI formats and
offer different types of VM. This further motivated the first
design decision: to use application level checkpointing rather
than VM snapshots.

D. Scalability

The CACS service should scale with the number of con-
current VMs so that it can be used to tolerate failures in data
centers; and it should scale with the size of the applications
(with the number of VMs per application) so as to have
a limited impact on the execution time of large distributed
applications.

The choice of implementation for stable storage has an
important impact on these two types of scalability. Thus, the
CACS service relies on distributed parallel file systems such
as Ceph [13] in order to cope with the huge volume of data to
be stored when several checkpoints are taken simultaneously.
Similarly, efficient VM management is also essential to limit
as much as possible the recovery time.

E. Usability

Nowadays, providing a REST API to a service is a key
feature. Resources are served using various server representa-
tions. This eases the interaction with users and with third-
party software (e.g., CLI, web-based GUI). Moreover, the
statelessness of server requests in a REST API provides server
scalability, since communication between clients and server is
loosely coupled.

IV. OVERVIEW OF THE CACS SERVICE

Next, the CACS architecture and its core components are
presented. First, the underlying technology, DMTCP, is intro-
duced. Then the CACS internal components are examined.



4

A. DMTCP Application Checkpointer
The choice of DMTCP (Distributed MultiThreaded

CheckPointing) [1] for checkpoint-restart was dictated
by the maturity of that ten-year old project [14]
available as binary packages for Debian/Ubuntu,
Fedora/CentOS/Scientific Linux/Red Hat, and OpenSUSE).
In particular, DMTCP supports the types of migration of
processes among heterogeneous environments that was
described in Section II.

In DMTCP, each application is associated with a unique
DMTCP application coordinator in charge of coordinating
the checkpointing of processes running on distinct computer
nodes. The coordinator need not reside on a host hosting ap-
plication processes and communicates with DMTCP daemons
running on each node hosting application processes. When an
application is restarted, a new DMTCP coordinator is used,
thus avoiding any single point of failure.

B. Architecture of the CACS
Figure 1 depicts the overall architecture of the service. The

RESTful API allows users to manage their applications and
their corresponding checkpoints. The Coordinators database
stores all the applications information. The Application Man-
ager orchestrates application management (start and restart)
and enforces failure recovery mechanisms. It communicates
with the Cloud Manager to manage (create, destroy) virtual
clusters. The Cloud Manager interacts with the underlying IaaS
cloud system to manage the VMs. The Provision Manager
takes the burden to efficiently configure the virtual clusters.
The Checkpoint Manager component is for managing the
application checkpoint images. The Monitoring Manager com-
ponent enables VM and application process failure detection.
It is notified about application health issues and VM failures by
monitoring daemons running in each VM of the virtual cluster
executing the application. In the event of a notification, it
interacts with the Application Manager in order to stop and/or
recover the application from a previous checkpoint.

An application is executed under the control of DMTCP
whose daemons run in each VM hosting the application
processes, with one of them running the DMTCP coordinator.

V. TYPICAL SCENARIOS

We describe five scenarios of a typical CACS user, ordered
according to the life cycle of an application comprising of
n processes run in n different VMs. The section describes in
greater details some mechanisms used to handle user requests.
Table I depicts the description of the resources managed by
the API and the available operations.

A. Application Submission
We present application submission to the CACS service. A

POST request is issued to the coordinators resource
and the body contains the representation of an Application
Submission Request (ASR). ASR encapsulates the virtual ma-
chine templates and the configuration parameters of DMTCP
needed to start the application.

Once the Application Manager validates the ASR, the
application enters the CREATING phase (see Figure 2) during
which virtual resources are claimed to the Cloud Manager.

Virtual Cluster

VM

CACS

Applications Storage

user API

Cloud 
Manager

Checkpoint 
Manager

NFS

Snooze

Application 
Manager

Client Client Client Client 

Monitoring
Manager S3

DFS

EC2

coordinators

Physical StorageVM

DMTCP coordinator 
monitoring daemon

DMTCP program 
monitoring daemon

VM

VMVM VM

Provision
Manager
pSSH

Fig. 1: Cloud Checkpointing Service Architecture

coordinators resource
GET /coordinators returns the list of coordinators

known by the system
POST /coordinators add a new coordinator to the

system
coordinator resource
GET /coordinators/:id returns the information of the

coordinator with id : id
DELETE /coordinators/:id delete the coordinator
checkpoints resource
GET /coordinators/:id/checkpoints returns the list of the check-

points of the coordinator
POST /coordinators/:id/checkpoints trigger a checkpoint for the

coordinator or upload a check-
point image

checkpoint resource
GET /coordinators/:id/checkpoints/:id returns the information of a

checkpoint
POST /coordinators/:id/checkpoints/:id restart the coordinator from the

checkpoint
DELETE /coordinators/:id/checkpoints/:id delete the checkpoint

TABLE I: REST API description

Once the VMs have been given to the computation, the
PROVISION phase starts. In this phase, the Provision Manager
remotely executes specific commands to prepare the com-
putation to be run. The provision includes internal actions
(e.g creation of checkpoint directory in the virtual machines)
but also user-defined configuration (e.g. periodicity of the
checkpoints, specific initializations). The provisioning phase
may differ according to the storage back-end used.

The READY state is introduced to reflect the fact that all the
VMs are ready to start the computation. The RUNNING state
indicates that the computation is in progress. In this phase,
checkpoints can be saved.

An alternative way of starting an application is given in
section V-C.



5

B. Saving Checkpoints
Three modes of transparent checkpointing are supported:

(1) user-initiated checkpointing; (2) periodic checkpointing;
and (3) application-initiated checkpointing (for example, at
the end of each application iteration). The first case can be
fulfilled by issuing a POST request to the corresponding
checkpoints resource. In the second and third case,
DMTCP triggers the checkpoint without the need for a POST
request. CACS distinguishes between local and remote storage.
Where fast local storage is available (e.g., a local disk, an SSD,
or a RAM disk inside RAM itself), the checkpoint image is
written first to the local storage, and copied later to remote
storage (such as Ceph and NFS) on a lazy basis.

C. Application Recovery, Cloning and Migration
The API enables the following scenarios : (1) application

restarting (the application state is reset to a previous check-
pointed state and restarted); (2) application cloning (a new ap-
plication is created and restarted from a previous checkpointed
state of the original application); and (3) application migration
(an application is cloned to another cloud and terminated on
the source cloud).

In the first case, checkpoints metadata are retrieved from the
Checkpoint Manager. Then the Application Manager triggers
a passive recovery mechanism: new VMs can be restarted and
provisioned if some VMs of the original set are not reachable
anymore. Finally each VM in the computation downloads
its corresponding checkpoint images from the storage. The
process of restarting the application is delegated to DMTCP.

Cloning and migrating provide alternative ways of cre-
ating an application. In these cases, a new application is
created by issuing a POST request to the coordinators
resource. Second, n POST requests are sent to the cor-
responding checkpoints resource to upload a set of
checkpoint images. Ultimately, a POST to the checkpoint
resource will restart the application. This will trigger the
passive recovery mechanism to generate a new virtual cluster
where the application will run.

D. Application Termination
Terminating an application consists in removing all ref-

erences of the application in the system. This can be de-
composed as: (1) the deletion of the corresponding entry in
the coordinator database; (2) the removal of all the stored
checkpoint image from the storage; and (3) the release of the
allocated virtual machines back to the pool of idle VMs in the
underlying infrastructure.

The TERMINATING state is reached when an end user
issues a DELETE request to the coordinator resource
or when the ERROR state is set for the application.

VI. IMPLEMENTATION OF THE CACS SERVICE

The section describes in details technical aspects of the
CACS service.

A. Cloud Manager
The current CACS prototype supports two underlying IaaS

technologies (Snooze and EC2 compatible VM management
systems) allowing us to demonstrate the portability and in-
teroperability of the CACS service in heterogeneous cloud

READY

CREATING

PROVISIONING ERROR

DELETEDRESTARTING

RUNNING

Fig. 2: CACS Coordinator states

environments. Snooze [7] is a scalable highly available system.
It has been primarily designed as a small system easing the de-
ployment of VMs and the experimentation of VM management
strategies. The Cloud Manager uses the specific REST API of
Snooze to manage virtual clusters. Snooze provides a server
and VM failure notification API that can be directly used by
the Monitoring Manager (thus with Snooze, no monitoring
daemons need to be executed in the VMs). EC2 compatible
Cloud (like Openstack [3]) are supported as well. OpenStack
does not provide a failure notification interface and thus the
cloud-agnostic monitoring service is used.

B. Checkpoint Manager and Storage System
The Checkpoint Manager depicted in Figure 1 enables

different storage systems to be plugged into the CACS service.
The current implementation of the service is stateless and
supports two storage systems: (1) NFS and (2) S3. NFS is
suitable for small-scale deployment and mostly the prototyping
process. S3 is the de facto standard API of Amazon Web
Service for manipulating stored objects. Supporting S3 gives
CACS the compatibility with the major Cloud providers, but
also with other solutions such as Ceph.

Since checkpoint images may be generated periodically,
under application control, or by the end user, a decision was
made to save checkpoint images asynchronously. The Check-
point Manager is not aware of the existence of checkpoint
images until a restart is required. At that time, the Checkpoint
Manager will choose the most recent checkpoint image, by
default, but a user may also specify an earlier image.

C. Monitoring Manager
Some cloud platforms support an external API for moni-

toring if the virtual machines are alive. However, those cloud-
specific mechanisms are not sufficiently flexible. Our goals are
three fold: (1) being cloud-agnostic, (2) testing the liveness
of the VMs and ultimately (3) testing the “health” of the
application.

The concept of health is application-specific. An application
may fail due to unreachability of a computer node, insufficient
memory, internal busy waiting within an application, bugs in
the application code, issues induced by the execution context,
the reception of spurious signals such as SIGCHILD and SIG-



6

PIPE or a myriad of other causes. A user-defined application-
specific routine can define and test the application’s health
using a function hook offered by CACS.

The current implementation is based on a binary broadcast
tree for each application. Each node of the broadcast tree is
represented by a daemon, which calls the user’s hook function
to determine if the processes on that node are healthy. A
standard broadcast tree then allows the root node to report
a list of nodes that are unhealthy or unreachable to the
Monitoring Manager. If problems are reported, the Monitoring
Manager interacts with the Application Manager to trigger an
application recovery.

There are two cases:

1) VM failure: A VM is unreachable. The CACS reserves
a new VM from the underlying cloud infrastructure and
restarts the application from a previous checkpoint.

2) Application failure: If all virtual machines are reachable,
the application itself may still be reported as unhealthy.
As an optimization, one then kills the processes of the
application within their virtual machines, and restarts
the application processes within their original virtual
machines.

D. Resilience: Avoiding Single Points of Failure

The CACS service should be resilient to node failures. Its
managers are stateless thus they can be easily restarted in the
event of a failure. For high availability purpose, traditional
server replication and failover approaches leveraging Apache
Zookeeper [15] can extend the current design in this area.
The coordinators database could be implemented relying on
a NoSQL reliable distributed database technology such as
Cassandra or MongoDB that do not exhibit any single point of
failure. The stable storage properties of the checkpoint storage
are guaranteed through the use of a fault-tolerant distributed
file system (e.g. Ceph) that provides persistent and highly
available storage.

The Snooze IaaS cloud management system has been de-
signed to be highly available in the event of simultaneous
failures [7]. Nevertheless, it does not ensure automatic virtual
clusters recovery in the event of the failure of the server
hosting one of their VMs. By integrating the CACS service in
Snooze, computations run in virtual clusters can be automati-
cally restarted in the event of a failure. Users of the enhanced
Snooze system can enjoy both reliable application execution
and a highly available IaaS cloud tolerating multiple simulta-
neous failures of physical machines hosting VMs and/or VM
management services.

E. Other Implementation Details

The CACS service is implemented in Java and makes use of
the scalable RESTlet [16] framework to expose its API. The
users requests are mostly treated in background using a pool of
threads to optimize the parallelization and the responsiveness
of the API. In the current implementation the coordinators
database is stored in memory. The provision manager uses
parallelization of SSH connection to act on virtual clusters.

VII. EXPERIMENTAL EVALUATION

The experiments are divided into four parts: scalability
with application size up to 128 nodes using Snooze as a
testbed (Section VII-A); resource consumption of the CACS
service, including the performance of the monitoring system
(Section VII-B); a performance study of migration between
different clouds or between desktop and cloud (Section VII-C);
and a study of the cloud-agnostic feature of CACS as applied
to Snooze and OpenStack (Section VII-D).

The evaluation of the system was conducted on the
Grid’5000 [17] testbed. A typical workflow for experimenting
on the platform is to reserve physical nodes, then to deploy a
Linux-based environment, and finally to deploy and configure
the desired software stack. The Debian Wheezy distribution
(3.2.0-4-amd64 Linux kernel) served as the base environ-
ment for deploying Snooze (version 2.1.6) and Ceph storage
(Firefly). Ubuntu 12.04 (kernel version 3.2.0-24-generic) was
used for deploying Openstack (Icehouse). On the two clouds
we used an Ubuntu 13.10 x86 64 base image, preconfigured
with the DMTCP distribution (version 2.3). Both clouds use
KVM/QEMU.

A. Scalability with Application Size
The scalability test was conducted using Snooze configured

with more than 400 vCPUs and nearly 1 TB memory available,
enough for holding more than 128 VMs, each of which
requires one virtual core and 2 GB of memory. The NAS
MPI test for LU (Class C) was employed [18]. Each MPI
ran on a separate VM. We measured the performance for
three phases: time to finish the application submission, time to
perform a checkpoint, and time to perform a restart. Figure 3
shows that creation of the virtual machines and commands
execution (provisioning, checkpoint, restart) require significant
time. Time for submission depends strongly on the underlying
infrastructure used (see Section VII-D for more details), while
the latter two times are related to the number of virtual
machines involved in the application.

Figure 3a shows the performance for application submis-
sion, which includes two steps: the underlying cloud allocates
the VMs; and the CACS service provisions the VMs. The
proposed CACS implementation optimizes the command exe-
cution mechanism through: (1) the parallelization of the SSH
connections; and (2) re-use of the connections of the open
SSH sessions. As a result, increasing the number of nodes
increases only slightly the time for executing commands, up
until the configured maximum limit of SSH connections is
reached. This occurs after 16 nodes in the current setup.

Number of processes 1 2 4 8 16
Ckpt size (MB) 655 338 174 92 49

TABLE II: Checkpoint image sizes for the NAS benchmark
lu.C, under different configurations. The checkpoint image size
is for a single MPI process.

The time for a single checkpoint is shown in Figure 3b.
Also, Table II shows the checkpoint image size as the number
of nodes varies. Here, the primary workload contains two
parts: DMTCP writes the checkpoint image to local storage;



7

1 2 4 8 16 32 64 128

Number of MPI processes (lu.C)

1

10

20

40

60

80

Ti
m

e
 (
s)

Cloud processing
Provisioning
Total

(a) Submission time

1 2 4 8 16 32 64 128

Number of MPI processes (lu.C)

0

20

40

60

80

100

120

140

Ti
m
e
 (
s)

DMTCP Checkpointing
Uploading
Total

(b) Checkpoint time

1 2 4 8 16 32 64 128

Number of MPI processes (lu.C)

0

10

20

30

40

50

60

Ti
m
e
 (
s)

DMTCP Restarting
Downloading
Total

(c) Restart time

Fig. 3: CACS over Snooze

and each VM uploads the image to the remote file system.
Figure 3c illustrates the performance for restart. In this case,
the trend becomes unstable for large number of nodes. This
is due to network traffic when all nodes try to simultaneously
download the checkpoint images. As a consequence, restarted
processes do not join the computation concurrently, leading to
jitter and less reproducible timings for DMTCP restart.

B. Resource Consumption and Monitoring System
This section focuses on the resource consumption of the

CACS service, as well as the performance of the monitoring
system. They share the same experimental configuration: for
Snooze, 7 servers hosting VM management services and
12 servers hosting VMs (264 cores in total) were deployed.
The target application used was dmtcp1, a single-process
lightweight application found in the DMTCP test suite [1].
1) Resource Consumption of the Service

In this experiment, 100 applications were submitted to the
CACS service, with one new application submitted every
second. The network consumption and memory usage are
shown in Figure 4a and Figure 4b, respectively. The vertical
line at 100 seconds shows when the 100 applications had been
submitted, but were not necessarily executing yet. Both figures
show a decreasing trend as processing continues.

Figures 4a and 4b can be understood better through a review
of the CACS implementation. The CACS service maintains
a thread pool to handle incoming submissions. Theoretically,
it can concurrently handle as many applications as there are
threads in the thread pool (100 in this experiment). But the
underlying cloud infrastructure has its own limitation: most
clouds can handle a relatively small number of applications
concurrently. More generally, assume that the cloud can han-
dle n submissions concurrently, implying that there are n
threads running SSH commands on the VMs provided by the
cloud. Meanwhile, there are m threads polling the cloud front-
end as it causes the VMs to be built. Assume also that the
network resource consumed by a polling thread and an SSH
thread are both constants, namely, c 1 and c 2. Based on these
assumptions, we conclude that at any given time, the network
traffic is:

mc 1 + nc 2.

In our case, m is initially 100. Since VMs are processed at a
uniform rate, m will decrease at a uniform rate, thus explaining
the linear trend in Figure 4a. The same analysis also explains
the decreasing trend seen in Figure 4b.
2) Performance of the Health Monitoring System

The health monitoring system was discussed in Sec-
tion VI-C. To measure its performance, we submitted appli-
cations with varying numbers of VM requests, and recorded
the time required to finish one round-trip for a heartbeat (em-
ploying the binary broadcast tree described earlier). Figure 4c
shows the result: the time to finish one heartbeat round-trip
is logarithmic in the number of nodes, as expected. This pro-
vides strong evidence that the broadcast tree implementation
consumes few network resources and scales to support large
distributed applications.

C. Migration Evaluation
Migration of distributed applications are important in the

real world. The CACS service is evaluated in two migra-
tion scenarios. Section VII-C1 evaluates the cloudification of
an NS-3 [19] application. NS-3 simulations are known for
requiring long periods of time, and thus are good candi-
dates for migration from commodity hardware to the cloud.
Section VII-C2 demonstrates the migration of applications
between two distinct clouds: Snooze and OpenStack.
1) From Hardware to Cloud

Cloudification refers to migrating a conventional desktop or
laptop application to the cloud. Statistics were obtained for
migrating an NS-3 application from a physical machine to
the OpenStack destination cloud. The target application was
tcp-large-transfer from the NS-3 distribution. The parameters
of the application were set to simulate a 1 Gb transfer rate
transferring 2 GB of data over a period of 30 seconds. The
application was checkpointed after 10 seconds. A 50-line
Python script invokes the CACS service, which checkpoints on
the current machine and restarts in the destination cloud. The
application contains a single process and the checkpoint image
was approximately 260 MB. Application restart on OpenStack
required 21 seconds. Note that in the destination cloud none
of the VMs have NS-3 installed. This was not needed, since
the NS-3 libraries were transported to the destination cloud as
part of the checkpoint images.



8

100 200 300 400 500 600 700 800 900 1000 1100

Time (s)

10

20

30

40

50

60

70

80

K
B
/s

Receiving Rate

Sending Rate

Submission Ending
Receiving Rate
Sending Rate

(a) Network consumption

100 200 300 400 500 600 700 800 900 1000 1100

Time (s)

0

100

200

300

400

M
B

Submission Ending
Memory Consumption

(b) Memory consumption

1 2 4 8 16 32 64 128

Number of MPI processes (lu.C)

0

10

20

30

40

50

60

70

80

90

100

Ti
m
e
 (
m
s)

Round-trip time of monitoring

(c) Performance of the monitoring system
(Note: logarithmic x-axis)

Fig. 4: CACS resource evaluation

2) From Cloud to Cloud
Next, application migration between Snooze and Open-

Stack was studied. Two instances, CACS-Snooze and CACS-
Openstack, were deployed each relying on its corresponding
IaaS platform. The target application is dmtcp1, the same as in
Section VII-B. 40 different instances of the application were
incrementally started on CACS-Snooze and then cloned to
CACS-OpenStack using a 90-line Python script. The script
checkpoints on the current cloud and restarts on the destination
cloud. The experimental setup used a single instance of Ceph-
based storage for both services, because both clouds were
deployed on Grid’5000. Alternatively, two distinct storage
systems could have been used as well with no modification.
The application checkpoint periodicity was set to 60 seconds.
The checkpoint image sizes were approximately 3 MB each.

Figure 5 depicts the overall network utilization at the storage
level. It shows a linear increase of network utilization after
start of the submissions. A plateau indicates that the appli-
cations’ checkpoint images were received and stored and no
submissions remain. The migration phase lasts for 2.5 minutes.
The network utilization during this phase increases due to the
data transfer of the checkpoint images. Note that the time
to transfer checkpoint images from CACS-Snooze to CACS-
OpenStack is negligible in this case, due to the small size of
checkpoint images. The network utilization then reaches an-
other plateau, indicating that two instances of each application
are now running on the two different clouds (80 applications
in total). After a certain period of time, all applications are
terminated.

The experiment also demonstrates the ability of the CACS
service to handle numerous concurrent restart requests (up to
40 requests).

D. Comparison of Different IaaS Technologies
Next, we compare the performance of CACS, when targeted

toward two distinct cloud management systems: Snooze and
OpenStack. The configuration for Snooze is the same as in
Section VII-A, while OpenStack is configured with the same
computing resources. Figure 6 reports the submission times,
including both the time for the IaaS to process the VM submis-
sions, and the time for the CACS service to provision the VMs.
Figure 7 reports the checkpoint and restart times. Note that the

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Time (s)

2000

4000

4500

K
B
/s

Receiving Rate

Sending Rate

Receiving Rate
Sending Rate

submission

start / end

migration

start end

Fig. 5: Migration performance of 40 applications

same checkpoint policy was used for both clouds. Hence, the
checkpoint sizes are the same (see Table II). This implies that
the uploading time during checkpoint and the downloading
time during restart should be comparable, except to the extent
that unless different network traffic conditions exist during the
two phases. For this reason, Figure 7 reports a single time for
checkpoint/restart, since the times for checkpoint and restart
are comparable.

Figure 6 shows that although the underlying IaaS systems
are different, the time for the CACS service to provision the
VMs remains comparable. In contrast, the time for different
IaaS systems to process VM allocation differs greatly. The
preceding breakdown into CACS-specific and IaaS-specific
times illustrates that the CACS service is able to support
different cloud management systems, with little or no CACS-
specific difference in performance.

Figure 7 shows a similar trend, except that the restart
time for OpenStack is not stable. This occurs for a prag-
matic reason: normally, OpenStack recommends that network
management and application network be located on different
networks. However, the limitations of the Grid’5000 testbed
forced the placement of both types of network data on the
same network. This leads to data variability seen in the figure.



9

1 2 4 8 16

Number of MPI processes (lu.C)

1

10

20

30

40

50

60

70

Ti
m
e
 (
s)

Snooze Processing
Snooze Provisioning
OpenStack Processing
OpenStack Provisioning

Fig. 6: Comparison of submission time

1 2 4 8 16

Number of MPI processes (lu.C)

1

10

20

30

40

50

60

70

80

90

Ti
m

e
 (

s)

Snooze Checkpointing

OpenStack Checkpointing

Snooze Restarting

OpenStack Restarting

Fig. 7: Comparison of Checkpoint/Restart time

VIII. RELATED WORK

We first review previous work on application checkpoint-
ing and VM snapshot mechanisms. We then study existing
approaches for reliable application execution in clouds.

A. Options for Checkpointing Distributed Applications
In addition to DMTCP, several other checkpointing pack-

ages are in common use today. The survey [20] describes sev-
eral checkpoint/restart implementations for high performance
computing. More generally, we review the checkpoint-restart
packages in widespread use today.

For distributed computation, most checkpointing services
today were built around MPI-specific checkpoint-restart ser-
vices. Unfortunately, this was not an option for the current
work, since a cloud-agnostic checkpointing service must also
be application-agnostic. Nevertheless, historically there has
been much effort toward MPI-specific custom checkpoint-
restart service. This came about when InfiniBand became
the preferred network for high performance computing, and
there was still no package for transparent checkpointing
over InfiniBand. Examples of checkpoint-restart services can
be found in Open MPI [21] (CRCP coordination protocol),
LAM/MPI [22] (now incorporated into MVAPICH2 [23]), and
MPICH-V [24]. Each checkpoint-restart service disconnected
from the network prior to checkpoint, called on a single-node
checkpointing package such as the kernel-based BLCR [25],

and re-connected after restart.
The current work is based on a new approach, implemented

within DMTCP, which enables transparent checkpointing over
InfiniBand [2] as well as TCP. This uniformly supports both
MPI and other distributed applications.

B. Mechanisms Based on VM Snapshots
Virtual machine snapshots provide an alternative for check-

pointing. The well-known packages KVM/QEMU, Virtual-
Box, and VMware all support snapshots of virtual machines.
However, the choice of a particular virtual machine for a
particular cloud platform is contrary to the goal of a cloud-
agnostic service in this work. Furthermore, saving just the
application is more efficient than saving an entire virtual
machine, in part due to the smaller memory footprint of a
bare application.

C. Fault Tolerance and Efficiency in the Cloud
There exist several alternative approaches to fault tolerance

in the Cloud. Tchana et al. argue for shared responsibil-
ity between provider and user [26]. Zhao et al. follow a
middleware approach [27]. Egwutuoha et al. take a process-
level redundancy approach [28]. Di et al. present an adaptive
algorithm to optimize the number of checkpoints for cloud-
based applications [29].

Nicolae et al. show how to checkpoint an MPI applica-
tion using distributed virtual machine snapshots using the
BlobSeer distributed repository [30]. This approach is MPI-
specific, since it employs the MPI checkpoint-restart service
with BLCR (see Section VIII-A for a discussion of MPI
checkpoint-restart services). Kangarlou et al. [31] and Garg
et al. [32] each show how to take a distributed snapshot of
virtual machines. Kangarlou et al. base this on a modification
of Xen’s live migration, while Garg et al. employ DMTCP
to take a distributed snapshot of KVM/QEMU virtual ma-
chines. The last three investigations ([30], [31], [32]) contrasts
with the cloud-agnostic (and application-agnostic) approach
employed here by directly checkpointing the processes with
their network connections.

Several works study detection of failure modes [33], [34].
The approach of the Gamose system [35] for monitoring the
health of Grid applications can extend the CACS checks for
application health without requiring application hooks. Such
a system relies on interposing on systems calls, and does not
require any modification of the operating system.

The work of Marshall et al. [10] demonstrates the utility of
backfill virtual machines in maintaining a high utilization rate
for the processors of the cloud. The backfill virtual machines
can be combined with a checkpointing policy so as to always
guarantee a supply of checkpoint images that can be restarted
on demand to instantiate the backfill virtual machines.

IX. CONCLUSION

The Cloud-Agnostic Checkpointing Service demonstrates
checkpointing as a service on top of heterogeneous IaaS
cloud systems in an environment of multiple heterogeneous
clouds. A key design principle of CACS is that it is built
around the DMTCP mechanism for taking checkpoints of
distributed processes, rather than employing distributed VM



10

snapshot mechanisms. This creates a cloud-agnostic service
that is independent of the cloud platform, and independent of
the cloud’s choice of virtual machine technology. Preliminary
experimental evaluations demonstrate portability between two
IaaS cloud management systems and demonstrate scalability
with the number of applications and the application size. The
CACS service also supports migration between heterogeneous
clouds, and cloudification, migration from a traditional envi-
ronment to the cloud. In our next steps, we will further im-
prove the scalability of the CACS service, study its efficiency
in different computing environments varying the resource, VM
and storage management systems, and experiment it with a
broader range of distributed applications.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using
the Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other
funding bodies (see https://www.grid5000.fr).

REFERENCES

[1] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent check-
pointing for cluster computations and the desktop,” in 23rd IEEE Inter-
national Symposium on Parallel and Distributed Processing (IPDPS-09).
IEEE, 2009, pp. 1–12.

[2] J. Cao, G. Kerr, K. Arya, and G. Cooperman, “Transparent checkpoint-
restart over InfiniBand,” in ACM Symposium on High Performance
Parallel and and Distributed Computing (HPDC’14). ACM Press,
2009.

[3] “OpenStack project,” https://wiki.openstack.org/wiki/Main Page, 2014.
[4] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa,

“Science clouds: Early experiences in cloud computing for scientific
applications,” Cloud computing and applications, vol. 2008, pp. 825–
830, 2008.

[5] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The Eucalyptus open-source cloud-computing
system,” in Cluster Computing and the Grid, 2009. CCGRID’09. 9th
IEEE/ACM International Symposium on. IEEE, 2009, pp. 124–131.

[6] D. Milojičić, I. M. Llorente, and R. S. Montero, “Opennebula: A cloud
management tool,” IEEE Internet Computing, vol. 15, no. 2, pp. 0011–
14, 2011.

[7] E. Feller, L. Rilling, and C. Morin, “Snooze: A scalable and autonomic
virtual machine management framework for private clouds,” in Proceed-
ings of the 2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2012.

[8] (2013) Cloud Infrastructure Management Interface (CIMI) Model
and RESTful HTTP-based Protocol An Interface for Manag-
ing Cloud Infrastructure. http://dmtf.org/sites/default/files/standards/
documents/DSP0263 1.1.0.pdf.

[9] (2012) Open Cloud Computing Interface — OCCI. http://occi-wg.org/.
[10] P. Marshall, K. Keahey, and T. Freeman, “Improving utilization of

infrastructure clouds,” in 2011 IEEE/ACM Int. Symp. on Cluster, Cloud
and Grid Computing (CCGrid), May 2011, pp. 205–214.

[11] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe,
“CloudNet: Dynamic pooling of cloud resources by live WAN migration
of virtual machines,” SIGPLAN Not., vol. 46, no. 7, pp. 121–132, Mar.
2011. [Online]. Available: http://doi.acm.org/10.1145/2007477.1952699

[12] D. Ghoshal and L. Ramakrishnan, “Frieda: Flexible robust intelligent
elastic data management in cloud environments,” in High Performance
Computing, Networking, Storage and Analysis (SCC), 2012 SC Com-
panion:. IEEE, 2012, pp. 1096–1105.

[13] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 2006, pp. 307–320.

[14] G. Cooperman, J. Ansel, and X. Ma, “Adaptive checkpointing for
master-worker style parallelism (extended abstract),” in Proc. of 2005

IEEE Computer Society International Conference on Cluster Computing.
IEEE Press, 2005, conference proceedings on CD.

[15] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.” in USENIX Annual Technical
Conference, vol. 8, 2010, p. 9.

[16] Restlet: RESTful web framework for java. http://www.restlet.org.
[17] (2013) The Grid’5000 experimentation testbed. http://www.grid5000.fr/.
[18] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The NAS parallel benchmarks,” International Journal
of High Performance Computing Applications, vol. 5, no. 3, pp. 63–73,
1991.

[19] “Ns-3 simulator,” http://www.nsnam.org/, 2014.
[20] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of

fault tolerance mechanisms and checkpoint/restart implementations for
high performance computing systems,” The Journal of Supercomputing,
vol. 65, no. 3, pp. 1302–1326, Sep. 2013.

[21] J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdaine, “The design
and implementation of checkpoint/restart process fault tolerance for
Open MPI,” in Proceedings of the 21st IEEE International Parallel and
Distributed Processing Symposium (IPDPS) / 12th IEEE Workshop on
Dependable Parallel, Distributed and Network-Centric Systems. IEEE
Computer Society, March 2007.

[22] S. Sankaran, J. M. Squyres, B. Barrett, V. Sahay, A. Lumsdaine,
J. Duell, P. Hargrove, and E. Roman, “The LAM/MPI checkpoint/restart
framework: System-initiated checkpointing,” International Journal of
High Performance Computing Applications, vol. 19, no. 4, pp. 479–493,
2005.

[23] Q. Gao, W. Yu, W. Huang, and D. K. Panda, “Application-transparent
checkpoint/restart for MPI programs over InfiniBand,” in ICPP ’06: Pro-
ceedings of the 2006 International Conference on Parallel Processing.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 471–478.

[24] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello,
“MPICH-V project: a multiprotocol automatic fault tolerant MPI,”
International Journal of High Performance Computing Applications,
vol. 20, pp. 319–333, 2006.

[25] P. Hargrove and J. Duell, “Berkeley Lab Checkpoint/Restart (BLCR)
for Linux clusters,” Journal of Physics Conference Series, vol. 46, pp.
494–499, Sep. 2006.

[26] A. Tchana, L. Broto, and D. Hagimont, “Approaches to cloud comput-
ing fault tolerance,” in Computer, Information and Telecommunication
Systems (CITS), 2012 International Conference on, May 2012, pp. 1–6.

[27] W. Zhao, P. Melliar-Smith, and L. Moser, “Fault tolerance middleware
for cloud computing,” in Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on, July 2010, pp. 67–74.

[28] I. Egwutuoha, S. Chen, D. Levy, and B. Selic, “A fault tolerance
framework for high performance computing in cloud,” in Cluster, Cloud
and Grid Computing (CCGrid), 2012 12th IEEE/ACM International
Symposium on, May 2012, pp. 709–710.

[29] S. Di, Y. Robert, F. Vivien, D. Kondo, C.-L. Wang, and F. Cappello, “Op-
timization of cloud task processing with checkpoint-restart mechanism,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13. New York,
NY, USA: ACM, 2013, pp. 64:1–64:12.

[30] B. Nicolae and F. Cappello, “BlobCR: Efficient checkpoint-restart for
HPC applications on IaaS clouds using virtual disk image snapshots,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’11. New York,
NY, USA: ACM, 2011, pp. 34:1–34:12.

[31] A. Kangarlou, P. Eugster, and D. Xu, “VNsnap: Taking snapshots of
virtual networked infrastructures in the cloud,” Services Computing,
IEEE Transactions on, vol. 5, no. 4, pp. 484–496, 2012.

[32] R. Garg, K. Sodha, Z. Jin, and G. Cooperman, “Checkpoint-restart for a
network of virtual machines,” in Proc. of 2013 IEEE Computer Society
International Conference on Cluster Computing. IEEE Press, 2013,
8 pages, electronic copy only.

[33] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” Dependable and Secure Computing,
IEEE Transactions on, vol. 7, no. 4, pp. 337–350, Oct 2010.

[34] N. Xiong, A. Vasilakos, J. Wu, Y. Yang, A. Rindos, Y. Zhou, W.-Z. Song,
and Y. Pan, “A self-tuning failure detection scheme for cloud computing
service,” in Parallel Distributed Processing Symposium (IPDPS), 2012
IEEE 26th International, May 2012, pp. 668–679.

[35] T. Ropars, E. Jeanvoine, and C. Morin, “Gamose: An accurate monitor-
ing service for Grid applications,” in Sixth Int. Symp. on Parallel and
Distributed Computing, 2007, July 2007, pp. 40–40.


