475 research outputs found

    Neuro-Evolution for Emergent Specialization in Collective Behavior Systems

    Get PDF
    Eiben, A.E. [Promotor]Schut, M.C. [Copromotor

    Cognitive modeling of social behaviors

    Get PDF
    To understand both individual cognition and collective activity, perhaps the greatest opportunity today is to integrate the cognitive modeling approach (which stresses how beliefs are formed and drive behavior) with social studies (which stress how relationships and informal practices drive behavior). The crucial insight is that norms are conceptualized in the individual mind as ways of carrying out activities. This requires for the psychologist a shift from only modeling goals and tasks —why people do what they do—to modeling behavioral patterns—what people do—as they are engaged in purposeful activities. Instead of a model that exclusively deduces actions from goals, behaviors are also, if not primarily, driven by broader patterns of chronological and located activities (akin to scripts). To illustrate these ideas, this article presents an extract from a Brahms simulation of the Flashline Mars Arctic Research Station (FMARS), in which a crew of six people are living and working for a week, physically simulating a Mars surface mission. The example focuses on the simulation of a planning meeting, showing how physiological constraints (e.g., hunger, fatigue), facilities (e.g., the habitat’s layout) and group decision making interact. Methods are described for constructing such a model of practice, from video and first-hand observation, and how this modeling approach changes how one relates goals, knowledge, and cognitive architecture. The resulting simulation model is a powerful complement to task analysis and knowledge-based simulations of reasoning, with many practical applications for work system design, operations management, and training

    Cooperative coevolution of control for a real multirobot system

    Get PDF
    The potential of cooperative coevolutionary algorithms (CCEAs) as a tool for evolving control for heterogeneous multirobot teams has been shown in several previous works. The vast majority of these works have, however, been confined to simulation-based experiments. In this paper, we present one of the first demonstrations of a real multirobot system, operating outside laboratory conditions, with controllers synthesised by CCEAs. We evolve control for an aquatic multirobot system that has to perform a cooperative predator-prey pursuit task. The evolved controllers are transferred to real hardware, and their performance is assessed in a non-controlled outdoor environment. Two approaches are used to evolve control: a standard fitness-driven CCEA, and novelty-driven coevolution. We find that both approaches are able to evolve teams that transfer successfully to the real robots. Novelty-driven coevolution is able to evolve a broad range of successful team behaviours, which we test on the real multirobot system.info:eu-repo/semantics/acceptedVersio

    Governance architectures for inter-organisational R&D collaboration

    Get PDF
    Inter-organizational relationships are becoming an increasingly important source of competitive advantage and innovation. This study looks at these relationships in the context of inter-organizational R&D collaborations in the European automotive industry. Previous work led to the proposal of a competence-based portfolio framework that explains the design of the inter-organizational architecture and an indicative relationship strategy. This framework comprises four distinct types of governance architecture and relationship strategy. This paper reports on the first confirmatory transfer study, conducted at Jaguar Land Rover, in the UK. The study illustrates developmental paths and patterns in the evolution of inter-organizational relationships using empirical insights. Their configuration and dynamic evolution is contingent upon the ‘engageability’ of the partner companies’ competences based on their attractiveness, transferability and maturity. The study shows that the contingency framework is transferable and practically useful, as well as yielding further practical narrative about inter-organizational practice

    Improving Robotic Decision-Making in Unmodeled Situations

    Get PDF
    Existing methods of autonomous robotic decision-making are often fragile when faced with inaccurate or incompletely modeled distributions of uncertainty, also known as ambiguity. While decision-making under ambiguity is a field of study that has been gaining interest, many existing methods tend to be computationally challenging, require many assumptions about the nature of the problem, and often require much prior knowledge. Therefore, they do not scale well to complex real-world problems where fulfilling all of these requirements is often impractical if not impossible. The research described in this dissertation investigates novel approaches to robotic decision-making strategies which are resilient to ambiguity that are not subject to as many of these requirements as most existing methods. The novel frameworks described in this research incorporate physical feedback, diversity, and swarm local interactions, three factors that are hypothesized to be key in creating resilience to ambiguity. These three factors are inspired by examples of robots which demonstrate resilience to ambiguity, ranging from simple vibrobots to decentralized robotic swarms. The proposed decision-making methods, based around a proposed framework known as Ambiguity Trial and Error (AT&E), are tested for both single robots and robotic swarms in several simulated robotic foraging case studies, and a real-world robotic foraging experiment. A novel method for transferring swarm resilience properties back to single agent decision-making is also explored. The results from the case studies show that the proposed methods demonstrate resilience to varying types of ambiguities, both stationary and non-stationary, while not requiring accurate modeling and assumptions, large amounts of prior training data, or computationally expensive decision-making policy solvers. Conclusions about these novel methods are then drawn from the simulation and experiment results and the future research directions leveraging the lessons learned from this research are discussed

    A Framework for Collaborative Multi-task, Multi-robot Missions

    Get PDF
    Robotics is a transformative technology that will empower our civilization for a new scale of human endeavors. Massive scale is only possible through the collaboration of individual or groups of robots. Collaboration allows specialization, meaning a multirobot system may accommodate heterogeneous platforms including human partners. This work develops a unified control architecture for collaborative missions comprised of multiple, multi-robot tasks. Using kinematic equations and Jacobian matrices, the system states are transformed into alternative control spaces which are more useful for the designer or more convenient for the operator. The architecture allows multiple tasks to be combined, composing tightly coordinated missions. Using this approach, the designer is able to compensate for non-ideal behavior in the appropriate space using whatever control scheme they choose. This work presents a general design methodology, including analysis techniques for relevant control metrics like stability, responsiveness, and disturbance rejection, which were missing in prior work. Multiple tasks may be combined into a collaborative mission. The unified motion control architecture merges the control space components for each task into a concise federated system to facilitate analysis and implementation. The task coordination function defines task commands as functions of mission commands and state values to create explicit closed-loop collaboration. This work presents analysis techniques to understand the effects of cross-coupling tasks. This work analyzes system stability for the particular control architecture and identifies an explicit condition to ensure stable switching when reallocating robots. We are unaware of any other automated control architectures that address large-scale collaborative systems composed of task-oriented multi-robot coalitions where relative spatial control is critical to mission performance. This architecture and methodology have been validated in experiments and in simulations, repeating earlier work and exploring new scenarios and. It can perform large-scale, complex missions via a rigorous design methodology

    Low-cost Printable Robots in Education

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10846-015-0199-xThe wider availability of 3D printing has enabled small printable robots (or printbots) to be incorporated directly into engineering courses. Printbots can be used in many ways to enhance lifelong learning skills, strengthen understanding and foster teamwork and collaboration. The experiences outlined in this paper were used in our teaching during the last academic year, although much of the methodology and many of the activities have been used and developed over the past 8 years. They include project based assignments carried out by multidisciplinary and multicultural teams, a number of theoretical and practical classroom and laboratory activities all aimed at familiarizing students with fundamental concepts, programming and simulation, and which now form part of our regular robotics courses, and some brief descriptions of how printable robots are being used by students carrying out final projects for Bachelor and Master degrees. The online resources show many of these activities in action.Armesto Ángel, L.; Fuentes-Durá, P.; Perry, DR. (2016). Low-cost Printable Robots in Education. Journal of Intelligent and Robotic Systems. 81(1):5-24. doi:10.1007/s10846-015-0199-xS524811Criteria for accrediting engineering programs (Unknown Month 2015, 2014). http://www.abet.org/eac-criteria-2014-2015Board, N.S.: Moving forward to improve engineering education (2007). http://www.nsf.gov/pubs/2007/nsb07122/nsb07122.pdfCampion, G., Bastin, G., d’Andréa Novel, B.: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Robot. Autom. 12(1), 47–62 (1996)Carberry, A.R., Lee, H.-S., Ohland, M.W.: Measuring engineering design self-efficacy. J. Eng. Educ. 99(1), 71–79 (2010)Castro. A.: Robotic arm with 6 dof (2012). http://www.thingiverse.com/thing:30163Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge MA (2005)d’Andréa Novel, B., Campion, G., Bastin, G.: Control of nonholonomic wheeled mobile robots by state feedback linearization. Int. J. Robot. Res. 14(6), 543–559 (1995)Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME J. Appl. Mech 22(2), 215–221 (1955)Dowdall. J.: Rofi robot five (2012). http://www.projectbiped.com/prototypes/rofiEliot, M., Howard, P., Nouwens, F., Stojcevski, A., Mann, L., Prpic, J., Gabb, R., Venkatesan, S., Kolmos, A.: Developing a conceptual model for the effective assessment of individual student learning in team-based subjects. Australas. J. Eng. Educ. 18(1), 105–112 (2012)Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. Robot. Autom. Mag. IEEE 4(1), 23–33 (1997)Fuentes-Dura, P., Armesto, L., Perry, D.: Multidisciplinary projects: Critical points and perceptions in valladolid in innovation and quality in engineering education. In: Innovation and Quality in Engineering Education, pp 315–331 (2012)Fuentes-Dura, P., Cazorla, M.P., Molina, M.G., Perry, D.: European project semester: Good practices for competence acquisition. In: Valencia Global, pp 165– 172 (2014)González, J., Barrientos, A., Prieto-Moreno, A., de Frutos, M.A.: Miniskybot 2 (2012). http://www.iearobotics.com/wiki/index.php?Miniskybot_2Gonzalez-Gomez, J., Valero-Gomez, A., Prieto-Moreno, A., Abderrahim, M.: A new open source 3d-printable mobile robotic platform for education. In: Rckert, U., Joaquin, S., Felix, W. (eds.) Advances in Autonomous Mini Robots, pp 49–62. Springer, Berlin Heidelberg (2012)Gonzlez, J., Wagenaar, R. (eds.): Tuning Educational Structures in Europe University of Deusto and Groningen. Deusto (2003)Heinrich, E., Bhattacharya, M., Rayudu, R.: Preparation for lifelong learning using eportfolios. Eur. J. Eng. Educ. 32(6), 653–663 (2007)Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The Int. J. Robot. Res. 5(1), 90–98 (1986)Krassman, J.: Quadcopter hummingbird ii (2013). http://www.thingiverse.com/thing:167721Langevin, G.: Inmoov (2012). http://www.inmoov.frMadox: ecanum wheel rover 2 (2011). http://www.madox.net/blog/2011/01/24/mecanum-wheel-rover-2Miles, M.B., Analysis, A.M.: Huberman. Qualitative Data: An Expanded Sourcebook. SAGE Publications (1994)Minguez, J., Montano, L.: Nearness diagram (nd) navigation: Collision avoidance in troublesome scenarios. IEEE Trans. Robot. Autom. 20, 2004 (2004)Olalla: Caterpillator v1.1 (2011). http://www.thingiverse.com/thing:8559Ollero, A.: Robótica. Manipuladores y robots móviles Marcombo, S.A. Barcelona (2001)Price, M.: Hf08 hexapod robot (2012). http://www.heliumfrog.com/hf08robot/hf08blog.htmlRawat, K., Massiha, G.: A hands-on laboratory based approach to undergraduate robotics education. In: Proceedings of 2004 IEEE International Conference on Robotics and Automation 2, pp 1370–1374 (2004)Robotics, C.: Virtual experimentation robotic platform (v-rep) (2013). www.coppeliarobotics.comScott, B.: Principles of problem and project based learning the aalborg model. Aalbord University (2010)Teichler, U., Schonburg, H.: editors. Comparative Perspectives on Higher Education and Graduate Employment and Work Experiences from Twelve Countries. Kluwer Pub. (2004)Ulrich, I., Borenstein, J.: Vfh+: reliable obstacle avoidance for fast mobile robots. In: Robotics and Automation, 1998. Proceedings, volume 2, pp 1572–1577 (1998)Verner, I., Waks, S., Kolberg, E.: Educational robotics An insight into systems engineering. Eur. J. Eng. Educ. 24(2), 201–212 (1999)C.y.A. Vicerrectorado de Estudios: Dimensiones competenciales upv (2013). http://www.upv.es/contenidos/ICEP/info/DimensionesCompetenciales.pdfWampler, C.W.: Manipulator inverse kinematic solutions based on vector formulations and damped least squares methods. IEEE Trans. Syst. Man, Cybern. 16(1), 93–101 (1986)Weinberg, J., Yu, X.: Robotics in education Low-cost platforms for teaching integrated systems. Robot. Autom. Mag. IEEE 10(2), 4–6 (2003

    Generational Neuro-Evolution: Restart and Retry for Improvement

    Get PDF
    This paper proposes a new Neuro-Evolution (NE) method for automated controller design in agent-based systems. The method is Generational Neuro-Evolution (GeNE), and is comparatively evaluated with established NE methods in a multi-agent predator-prey task. This study is part of an ongoing research goal to derive efficient (minimising convergence time to optimal solutions) and scalable (effective for increasing numbers of agents) controller design methods for adapting agents in neuro-evolutionary multi-agent systems. Dissimilar to comparative NE methods, GeNE employs tiered selection and evaluation as its generational fitness evaluation mechanism and, furthermore, re-initializes the population each generation. Results indicate that GeNE is an appropriate controller design method for achieving efficient and scalable behavior in a multi-agent predator-prey task, where the goal was for multiple predator agents to collectively capture a prey agent. GeNE outperforms comparative NE methods in terms of efficiency (minimising the number of genotype evaluations to attain optimal task performance)

    Novel approaches to cooperative coevolution of heterogeneous multiagent systems

    Get PDF
    Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2017Heterogeneous multirobot systems are characterised by the morphological and/or behavioural heterogeneity of their constituent robots. These systems have a number of advantages over the more common homogeneous multirobot systems: they can leverage specialisation for increased efficiency, and they can solve tasks that are beyond the reach of any single type of robot, by combining the capabilities of different robots. Manually designing control for heterogeneous systems is a challenging endeavour, since the desired system behaviour has to be decomposed into behavioural rules for the individual robots, in such a way that the team as a whole cooperates and takes advantage of specialisation. Evolutionary robotics is a promising alternative that can be used to automate the synthesis of controllers for multirobot systems, but so far, research in the field has been mostly focused on homogeneous systems, such as swarm robotics systems. Cooperative coevolutionary algorithms (CCEAs) are a type of evolutionary algorithm that facilitate the evolution of control for heterogeneous systems, by working over a decomposition of the problem. In a typical CCEA application, each agent evolves in a separate population, with the evaluation of each agent depending on the cooperation with agents from the other coevolving populations. A CCEA is thus capable of projecting the large search space into multiple smaller, and more manageable, search spaces. Unfortunately, the use of cooperative coevolutionary algorithms is associated with a number of challenges. Previous works have shown that CCEAs are not necessarily attracted to the global optimum, but often converge to mediocre stable states; they can be inefficient when applied to large teams; and they have not yet been demonstrated in real robotic systems, nor in morphologically heterogeneous multirobot systems. In this thesis, we propose novel methods for overcoming the fundamental challenges in cooperative coevolutionary algorithms mentioned above, and study them in multirobot domains: we propose novelty-driven cooperative coevolution, in which premature convergence is avoided by encouraging behavioural novelty; and we propose Hyb-CCEA, an extension of CCEAs that places the team heterogeneity under evolutionary control, significantly improving its scalability with respect to the team size. These two approaches have in common that they take into account the exploration of the behaviour space by the evolutionary process. Besides relying on the fitness function for the evaluation of the candidate solutions, the evolutionary process analyses the behaviour of the evolving agents to improve the effectiveness of the evolutionary search. The ultimate goal of our research is to achieve general methods that can effectively synthesise controllers for heterogeneous multirobot systems, and therefore help to realise the full potential of this type of systems. To this end, we demonstrate the proposed approaches in a variety of multirobot domains used in previous works, and we study the application of CCEAs to new robotics domains, including a morphological heterogeneous system and a real robotic system.Fundação para a Ciência e a Tecnologia (FCT, PEst-OE/EEI/LA0008/2011
    corecore