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Abstract

Improving Robotic Decision-Making in Unmodeled Situations

Nicholas S. Ohi

Existing methods of autonomous robotic decision-making are often fragile when faced with in-
accurate or incompletely modeled distributions of uncertainty, also known as ambiguity. While
decision-making under ambiguity is a field of study that has been gaining interest, many exist-
ing methods tend to be computationally challenging, require many assumptions about the nature
of the problem, and often require much prior knowledge. Therefore, they do not scale well to
complex real-world problems where fulfilling all of these requirements is often impractical if not
impossible. The research described in this dissertation investigates novel approaches to robotic
decision-making strategies which are resilient to ambiguity that are not subject to as many of these
requirements as most existing methods. The novel frameworks described in this research incorpo-
rate physical feedback, diversity, and swarm local interactions, three factors that are hypothesized to
be key in creating resilience to ambiguity. These three factors are inspired by examples of robots
which demonstrate resilience to ambiguity, ranging from simple vibrobots to decentralized robotic
swarms. The proposed decision-making methods, based around a proposed framework known as
Ambiguity Trial and Error (AT&E), are tested for both single robots and robotic swarms in sev-
eral simulated robotic foraging case studies, and a real-world robotic foraging experiment. A novel
method for transferring swarm resilience properties back to single agent decision-making is also ex-
plored. The results from the case studies show that theproposedmethodsdemonstrate resilience to
varying types of ambiguities, both stationary andnon-stationary, while not requiring accuratemod-
eling and assumptions, large amounts of prior training data, or computationally expensive decision-
making policy solvers. Conclusions about these novelmethods are thendrawn from the simulation
and experiment results and the future research directions leveraging the lessons learned from this
research are discussed.
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1
Introduction



1.1 Goal andMotivations

The goal of this research is to investigate new approaches to autonomous robotic decision-making
that do not rely on many of the assumptions required by most existing decision-making frame-
works. Of primary interest is relaxing assumptions about the accuracy of the robot’s prior knowl-
edge about the distributions of uncertainty involved in the decision-making problem. This is in
an effort towards making robot autonomy more generalizable to real-world situations, as opposed
to highly structured and controlled environments custom designed to cater to the robot’s limita-
tions. Most existing methods of autonomous robotic decision-making rely on both accurate per-
ception of all relevant information to the decision-maker, as well as complete, accurate models of
the robot, its environment, and the associated distributions of uncertainty. Alternatively, if such
models are not known, then it is assumed that they can be learned accurately, and it is assumed
that the structure of the learned model will accurately capture all necessary parameters to fully
describe the decision-making problem and the distributions of uncertainty involved. Then, tra-
ditional “rational,” top-down decision-making can be performed to provide optimality. It is the
author’s assertion, however, that the real-world is far too complex to model every source of un-
certainty accurately and thereby assuming that all relevant information needed to make rational,
top-down decisions is available. Some portions of the problem can likely be modeled a priori and
other portionsmay be able to be learned online, but for many real-world tasks, it is unlikely the full
problem can be accurately modeled. There will always be unhandled edge cases and lack of com-
plete and accurate knowledge about the distributions of uncertainty. This is a concept that may be
referred to as second-order uncertainty, Knightian uncertainty, or ambiguity [1, 2]. This inability
ofmost existing decision-making frameworks to perform reliablywhen facedwith ambiguity limits
the applicability of autonomy to many real-world situations. Explicitly designing decision-making
policies to account for every possibility in complex real-world situations is infeasible. New types of
frameworks are needed that do not fully rely on these “traditional” approaches in order to provide
better “resilience to ambiguity.”

As a starting point to properly motivate the specific objectives of this research, inspiration is
taken fromvarious robotics topics, someverydifferent than roboticdecision-making,whichdemon-
strate special properties hypothesized by the author to be key in working towards the goal of this
research. The first example, while a very different subject than robotic decision-making, is “bristle-
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Figure 1.1.1: Examples of vibrobots.

bots” or “vibrobots,” an example ofwhich is shown inFig. 1.1.1. These small robotsmove aroundby
using a vibrator in combination with springy bristles on the bottom of the robot. The motion can
be directed by designing the shape of the springy bristles to favor a particular direction. While typi-
cally used for nothingmore than simple children’s toys, these robots display a remarkable resilience
to getting stuck and becoming unable to move, even in very cluttered and irregular environments.
Theyhave noprogramming or high-level reasoning to control their behavior, other than their single
mode of vibrational motion and no prior knowledge or remote sensing of their environments, but
nevertheless are able to move about almost any flat but cluttered environment, full of obstacles us-
ing one simple design thatmakes use of physical feedback from the environment. This offloading
of computing to the interaction between the body and the environment, instead of a centralized
“brain” or controller, is often referred to as morphological computing [3]. This ability to rely pri-
marily on physical feedback and generalize to many other environments, using designs that do not
encode vast amounts of prior knowledge, is highly inspiring for this research.

Another example that is often resilient to ambiguity is distributed robotic swarms. As theymove
around the environment and encounter each other, swarm agentsmay be influenced by local inter-
actionswith neighboring agents. These local interactions, however simple or complex theymay be,
result in an exchange of information between swarm agents and can create “emergent intelligence”
or “emergent behaviors” that are not explicitly designed into any of the swarm agent’s decision-
making algorithms.
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And finally, another interesting example is the approach taken by Cully, et al. known as Intelli-
gent Trial and Error (IT&E) [4]. Using this approach, walking hexapod robots are able to adapt
to new ways of walking if the robot suffers damage by attempting different, diversewalking strate-
gies provided as prior knowledge and finding which ones are successful. Offline learning of diverse
walking behaviors is provided to the robot, but adjusting its walking behavior is done quickly on-
line and without pre-programmed contingency plans for any specific failure modes. This is done
through an informed trial and errormethod, without any attempt to directlymodel the damage the
robot has suffered, which may be infinitely variable and impossible to model accurately in a “catch-
all” sense. This ability to be resilient to unknown failure modes and continue operating, even in
a limited capacity, without failing outright, is a key innovation. The use of the informed trial and
error method is also very inspiring.

1.2 ResearchObjective

It is the author’s hypothesis that these three factors: physical feedback, local interactions, and
diversity all play key roles towards improving autonomous robotic decision-makingunder ambigu-
ity. This has been considered somewhat in the context of robotic swarms, though research focused
directly on the aspect of resilience to ambiguity is lacking. Additionally, there are even fewer exam-
ples of research into resilience to ambiguity for single agents, as opposed to swarms. These gaps in
existing research motivate the objective of the research presented in this document, which is the
following:

Investigate autonomous robotic decision-making techniques that are resilient to
ambiguity, which is defined as a lack of complete and accurate knowledge about the
distributions of uncertainty involved in the problem.

The types of ambiguities investigated in this research include stochastic state transition dynamics
for which 1) the values of the parameters that define distributions of uncertainty are unknown and
2) the unknown parameters may also vary parametrically with the state (i.e., position and/or time
dependent). It is the author’s hope that the outcomes of this research will enable further research
into the creationof roboticdecision-makers that aremore resilient to ambiguity thanexisting frame-
works.
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1.3 ExpectedOutcomes and Broader Impacts

The expected outcomes of this research are both theoretical contributions to the study of robotic
decision-making, as well as more application focused results with prototype frameworks devel-
oped to solve a variety of case study problems. In terms of theory, the expected outcomes are
to provide insights into the concept of resilience to ambiguity for robotic decision-making. These
insights will provide a foundation on which future work on this topic may leverage. On the ap-
plication side, the expected outcomes are prototype decision-making frameworks and results from
case-study problems, focused primarily on robotic foraging, demonstrating the benefits of the tech-
niques presented in this research, in terms of resilience to ambiguity. Specifically, this includes a
trial and error based decision-making framework named Ambiguity Trial and Error (AT&E) that
can be applied to complex decision-making under ambiguity problems withoutThese case-studies
may serve as benchmarks for evaluating future work on these topics, and the frameworks as base-
line techniques upon which further improvements can be demonstrated.

The broader impacts of this research relate back to the initial motivations: making robot au-
tonomy more generalizable to real-world environments and situations, instead of only being used
with close human supervision in highly controlled environments like laboratories, warehouses, and
factories. Many robots outside of these setting are very fragile in terms of their decision-making,
and therefore are not entrusted with important or complex tasks, without a human expert actively
monitoring the situation. Tremendous amounts of labor-intensive and cost-intensive work is re-
quired to make robots capable of performing even very simple tasks autonomously, in real-world
settings. This includes detailed modeling of environments robot dynamics, and distributions of
uncertainty, as well as testing and validation, which must be performed by large teams of skilled
robotics experts. As argued already, it is the author’s assertion that no amount of detailed mod-
eling can account for every foreseeable possibility and source of uncertainty in many real-world
scenarios. Even very thorough testing and validation is also unlikely to expose every possible fail-
ure mode or edge case that could be encountered during operation. Attempting to achieve more
complex autonomy through simply trying to applymore explicit modeling of every possibility and
more exhaustive testing results in diminishing returns. It is desired that the new approaches ex-
plored through this research will lay the foundation for new ways of thinking about and designing
robot autonomy that alleviate some of the rigid assumptions of “traditional methods,” and enable
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autonomous robots to operate more reliably and flexibly in real-world scenarios. The benefits of
higher reliability robot decision-making is that autonomous robots will require less human opera-
tor supervision, can be trusted to perform more complex tasks on their own, and can be expected
to operate autonomously for longer periods of time before receiving new instructions or aid from
humans. This will increase the productivity of both robot-only tasks and human-robot collabora-
tive tasks, with less supervision from expert human operators being required. This will allow the
use of autonomous robots to be extended tomany new domains and will increase the effectiveness
of the the robots in the domains in which they are already used.

1.4 Challenges and Evaluation of Results

One of the biggest challenges of this research is actually one of human nature and not of robotics at
all. Instead, the challenge is that the case-study problemsmust be designed in such a way that they
will present the robotic decision-makers with ambiguities that are known to the human designer,
but do not impact the human designer’s interpretation of the results. When evaluating the results,
the human designer must not allow their knowledge of the nature of the ambiguities to introduce
bias and influence their design of the decision-making algorithms in any way that specifically ac-
counts for these ambiguities. To do so would be in direct contradiction with the objectives of this
research. This is challenging though, because it is human nature to want to “solve problems” about
whichwe have foreknowledge. And inmost cases, for real applications, there is nothingwrongwith
doing so. In fact, any prior knowledge that can be leveraged to improve the robot’s decision-making
and help it predict things that can be accurately anticipated can and should be used. The point be-
ing made in the motivation for this research, however, is simply that this use of prior knowledge
whendesigning the decision-making algorithms is not enough to provide accurate logic aboutwhat
the robot should do in every possible situation. The prior knowledge encoded into the decision-
maker through its designmay successfully handlemany situations, but no amount of detailed prior
knowledge from the human designers will be sufficient to cover every possibility and source of un-
certainty. Returning to the point about this being a challenge for this research, however, care must
be takenbyboth the author, whendesigning these case-studyproblems and their solutionmethods,
and by the reader, when interpreting the results and conclusions of these case-studies. The author
must not allow their foreknowledge of the nature of the ambiguities built into the case-studies to
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bias their design of the decision-making algorithms used by the robots and the readermust not bias
their interpretation of the results by knowing that the ambiguities could have been specifically ad-
dressed. Demonstrating resilience to ambiguities that are not specifically addressed is the desired
outcome. Some provisions must be made to address certain aspects of the problem, however, to
make the case studies functional. Therefore, the author must clearly describe which aspects of the
problem are known to the decision-making algorithms as prior knowledge and which aspects are
not so that the case studies are correctly designed to investigate their intended hypotheses.

Another challenge is determining how to correctly evaluate the case-study results and derive
meaningful metrics. There are few examples of works that attempt to generate similar types of
results in literature; therefore there is not a well-established basis that is universally understood
as “common practice” for evaluating these types of problems. Results are generated through sev-
eral robotic decision-making case-study problems, both simulated and experimental, the details of
which are described in later chapters. While the interpretation of the results is specific to each case
study, a primary metric of interest across all of these case studies is “resilience to ambiguity,” as
defined previously. Resilience is inherently a relative concept and cannot be “measured” in an ab-
solute sense, however, so theremust be a point of comparison to consider as a baseline for each case
study. Existing decision-makingmethods, based onmore traditional approaches, are implemented
to provide a baseline for each case-study. The applicable baselinemethods are specific to each case
study problem, and are described specifically for each. It is important to keep in mind that neither
the prototype methods developed through this research, nor the baseline methods, may provide
“optimal” or even “near-optimal” solutions to the decision-making problems to which they are ap-
plied. Optimality is a condition that implies both the availability of all necessary information and
accurate models that the decision-maker can use to predict likely outcomes and make fully “ratio-
nal” decisions. Violations of these conditions are the main premises of this research and therefore,
this must be kept in mind when interpreting the results.

1.5 Scope of Research

It is important to point out the limitations of the scope of this research, however. This research
is not intended to work towards solving the problem of general artificial intelligence (AI), where
embodied AI (i.e., sentient robots) can reason at the level of human intelligence, perform complex
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real-world tasks that currently can only be performed by humans, and communicate and interact
with humans as another sentient being. Nor is the intent to enable robots to reason at the level of
animals such as mammals, birds, or insect colonies. The potential applications of this research will
still be limited to very constraineddecision-makingunderuncertainty problemswhere the robot(s)
can perform only a small set of actions and reason over only a small number of states, likely fewer
than necessary to accurately describe the full decision-making problem and all related factors. One
key example application, which is used for the case studies presented later, is robotic foraging tasks,
where robots must search for food, retrieve it, and return it to a home base. The incremental step
this research intends to provide is to reduce the dependence of robotic decision-making problems
of this level of complexity on the assumption that it has complete and accurate knowledge about the
distributions of uncertainty involved in the decision-making problem. There are stillmany assump-
tions and limitations involvedwith the prototype frameworks developed through this research and
it is not presumed that these methods will enable robots to operate reliably with all variations of
ambiguity in any general sense. All scientific progress happens incrementally, and it is the author’s
hope that this research serves as a starting point for future work into this topic, which as of this
moment is under-explored.

1.6 Summary of ResearchContributions and Innovations

For ease of reference, the contributions and innovations of this research are summarized here.

• Provide insights into the concept of resilience to ambiguity for robotic decision-making.

• Develop a prototype decision-making framework known as Ambiguity Trial and Error
(AT&E).

• Evaluate the AT&E framework by comparing it to baseline methods for a variety of robotic
foraging case-study scenarios, for both swarms and single agents, which demonstrate that
AT&E has improved resilience to ambiguity.

– Ambiguity is defined as a lack of complete and accurate knowledge about the distribu-
tions of uncertainty involved in the problem.
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1.7 DissertationOutline

Theremainder of this document is organized as follows. Literature review is presented inChapter 2.
Preliminaries on autonomous robotic decision-making, summarizing relevant existing methods
and presenting examples from the author’s prior work is presented in Chapter 3. The proposed
methodologies, simulation and experimental results from case studies implementing the proposed
methods, and discussion analyzing these results is presented in Chapter 4. And finally, concluding
remarks and discussions on future research directions is presented in Chapter 5.
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2
Literature Review



Making decisions can be loosely described as the process of evaluating what you know about
the current situation and choosing to take a particular course of action that you expect will achieve
the best outcome. For humans, we do this almost implicitly for most aspects of our lives, without
needing a detailed understanding of the mechanisms by which we do so. Enabling automated ma-
chines, computer algorithms, and autonomous robots to make decisions, even about very small,
constrained problems, however, has required considerable research over many decades.

2.1 Decision-Making Foundations

Much of the basis for modern decision-making theory comes from the field of operations research,
whichwas first recognized as a field of study during the early 20th century, due to themilitary needs
of World War II [5, 6]. Work on operations research was intended to provide a “quantitative ba-
sis” for people in executive positions to guide their decisions and choose the best course of action
for the inherently complex operations under their control. Examples of such operations include
the deployment of military forces [5, 6], planning and management of cities [7], and inventory
management and scheduling [8]. Many of the mathematical formalisms about game theory and
optimization problems, which are widely used today, originated from works done as a part of op-
erations research. All of this work was focused on providing information to human executives to
make informed decisions, however. As technology progressed, the concept of computing began to
emerge and these formalisms were then taken up by research into automata theory [9, 10], which
laid the foundation for much of modern computer science, long before anything resembling mod-
ern digital computers existed. Many of the frameworks developed through this research form the
basis of mostmodern computer algorithms. These include finite statemachines [11, 12], temporal
logic [13, 14], dynamic logic [15], and more.

2.2 Robotic Decision-Making and Planning

Moving into thefieldof early robotics, these frameworks anddecision-making formalisms served as
the basis formuch of early robot autonomy. One prime example of an autonomousmobile robot is
the robot Shakey, which was designed to navigate andmove boxes in an indoor office environment
[16]. Shakey’s decision-making capabilities were primarily based on a planner known as STRIPS,
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which is a formal “action language” solver used to plan actions to be taken in order to transition
through various “world models” (i.e., states) in order to arrive at the desired goal state [17]. The
way thiswas implementedonShakey is inwhat is known as the sense-plan-act paradigm[18]. Sense-
plan-act works by first sensing the environment to determine the current state of the robot and the
environment, planning a sequence of actions that will transition the robot through a set of states
that will end with reaching the goal state, and then executing this sequence of actions. Another
important planning algorithm in this category, used extensively in robotics is Dijkstra’s Algorithm
[19], which is used to find the shortest path between two vertices in a graph. Dijkstra’s Algorithm
serves as the basis for many robotic planning frameworks.

The methods for searching through the state space to find the correct sequence of actions to
arrive at the goal state range from exhaustive search methods such as bredth-first and depth-first
search, to heuristic search methods to improve efficiency. Some key heuristic algorithms are A*
[20] and D* [21], which are derivatives of Dijkstra’s Algorithm. These heuristic search algorithms
may provide optimal solutions, given certain assumptions, but they are generally not guaranteed
to be able to find the “globally optimal” solution, with respect to the problem’s objective function
in all cases.

If the problem can be broken down and solved as a set of recursive sub-problems (i.e., the Bell-
man equation), then a globally optimal solution, for every possible state can be found, using Dy-
namic Programming [22–24]. Regardless of which of these planningmethods is used, however, in
the sense-plan-act paradigm, execution of the plan (the “act” step) occurs blindly, assuming that
the sensing step determined the initial state accurately, that themodel defining the state transitions
is completely accurate, and that there are no dynamic elements in the environment. Additionally,
if the state space is large, significant time may be required for the planner to search through large
numbers of states and construct a plan, even using more efficient search algorithms. These limita-
tions led to the development of alternative approaches, including reactive planning, or sense-act [18].
For reactive planning, instead of blindly following a full start-to-end plan, computed once at the be-
ginning of the task, actions are generated directly in response to sensing. This occurs very quickly
in response to dynamic or even potentially unknown situations, but this only works for very simple
problems, where instantaneous greedy decisions are likely to solve the problem well. Many classes
of decision-making problems are more complex and require deliberation on possible future states,
rather than simply reacting to the instantaneous sensing input. A large number of approaches exist
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for combining deliberative and reactive decision-making, including behavior-based robotics [25]
and layered architectures [26–29].

2.3 Decision-Making underUncertainty

Many of the methods discussed above (reactive planning being an exception in some cases) rely
on one key assumption, however, that is often not valid in many real-world situations. This is that
the outcome of any action taken by the decision-maker is deterministic, meaning that the same
outcome always occurs. In many real-world situations, however, the outcome of actions may be
stochastic, or random. One of the most important stochastic decision-making paradigms is the
Markov Decision Process (MDP). MDPs are an extension of Markov Chains, which represent a
stochastic process, where the probability distribution function (or probability mass function for
discrete problems) specifying the probabilities of the possible state transitions depend only on the
current state and not on any previous state. This “historyless-ness” is known as the Markov Prop-
erty. Non-Markovian processes exist as well, where the state transition probabilities depend on the
full history of prior states. This framework allows for the description of more complex stochastic
problems than Markov processes, but due to the need to track the entire state transition history,
decision-makers using this framework suffer from the curse of history and quickly become compu-
tationally intractable. Further investigations into the theoretical aspects of solving non-Markovian
problems are beyond the scope of this research, however.

Returning to MDPs, as an extension of Markov Chains, MDPs add another dimension to the
specification of the transition probability, which is an action that can be selected by the decision-
maker to influence the outcome. The outcome is still stochastic, but it is now conditionally depen-
dent on the action chosen. Additionally, since there is now the possibility of choosing actions, a
reward function is required to quantify the value of taking every possible action, given every possible
state. Therefore, an MDP is fully specified by its state space S, action space A, transition function
T, and reward function R, as ⟨S,A,T,R⟩. Stochastic outcomes, dependent on both the current
state and the action, model many classes of decision-making problems well. Therefore, finding so-
lutions to MDPs is a major focus of decision-making research for robotics as well as other fields.
Given the full specification of the MDP, action policies (i.e., the decision-making algorithm) that
are optimal in probability can be found for many classes of MDPs, offline, for every possible state
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and action combination, using classical methods such as value iteration [30], policy iteration [31],
or other related methods derived from these concepts. Solving for an offline policy, ahead of time,
and simply querying a fully specified action policy π(s), to determine the next best action to take,
is related to the sense-plan-act paradigm discussed earlier for deterministic decision-making; how-
ever, a new actionmust be selected at each step since the state evolution is stochastic. So while the
decision-maker is reactive to however the state changes, the policy determining the best action to
take from any possible state is fixed and already known. Even if solving for offline policies is pos-
sible for some MDPs, it is not always practical to do so. This is especially true if the state space is
large, since finding the solutions will be computationally prohibitive. Therefore, formany practical
MDP applications, online solvers are used. One of the most important online solution methods is
Monte Carlo Tree Search (MCTS), which is an informed sampling search method that focuses on
branches of possible decision trees that are the most likely to have high reward payoff [32, 33]. Fo-
cusing the search on likely high payoff branches, instead of exhaustively searching the entire space
can significantly reduce the computational expense needed to find good solutions, especially for
problems where the majority of the state space is not useful and only small segments are of inter-
est.

While MDPs cover a large class of decision-making problems, they still make an assumption
that is often not valid in many situations. This is that the robot always has accurate knowledge of
the states, which is often difficult to assume in real-world environments. This leads to an exten-
sion of the MDP, known as the Partially Observable Markov Decision Process (POMDP). As the
name implies, the states are now partially observable, meaning they cannot be known with cer-
tainty. They can, however, be estimated, with uncertainty, based on observations. POMDPs aug-
ment the definition of MDPs by adding an observation function O and the observation space Ω
and the decision-maker must maintain a belief b(s) over all possible states. The observation func-
tion provides a likelihood estimate of the occurrence of an observation event, conditioned on the
posterior state and the action chosen. This can then be used to update the state belief, every time a
new observation occurs. Therefore, a POMDP is fully specified by its state space S, action space A,
transition function T, and reward function R, observation space Ω, and observation functionO as
⟨S,A,T,R,Ω,O⟩. Under certain conditions, optimal policies for POMDPs can be found [34–36],
but generally these problems are computationally intractable and approximate solution methods
must be used. Thesemethods include point-based approximate solvers [37–41], andMonte-Carlo
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planning [42, 43].
The “classic” structure ofMDPs and POMDPs, as described above, covers many classes of prob-

lems, however, it is often necessary to extend the definition of certain elements to describe more
complex types of problems. Methods for solving “classic” MDPs and POMDPs have been well
understood for decades, but solutions to extensions of these frameworks tend to bemore challeng-
ing and are a very active focus of decision-making research. One important class of problems is
time-dependent MDPs. In these problems, time is usually considered as a state and actions have a
duration. The durationmay be known or unknown, but the outcomes of the state transitionmodel
may be time dependent, the reward function may be time dependent, or both. Many methods
exist for solving time-dependent MDPs [44–47], as well as for problems with time-dependent un-
certainty [48, 49]. However, these methods require accurate knowledge of the time-dependent
parameterization of the problem, so that predictions based on time can be made, for all possible
times. Having accurate models of the time-dependence may be possible for some problems, but
many real-world scenarios are too complex to model accurately in this way. Existing methods as-
sume the time-dependencemodel is accurate and they do not have the capability to reason outside
of this assumption.

2.4 Decision-Making under Ambiguity

Another classof problems thatdiffers fromthe traditional decision-makingunderuncertainty struc-
ture is that of decision-making under ambiguity [50–53]. Whereas “uncertainty” represents a lack
of complete information about the values of the states, “ambiguity” represents a lack of knowledge
about the distributions of uncertainty or models that describe the decision-making process [1, 2].
Some works exist which incorporate ambiguity into MDPs [54, 55] and POMDPs [56, 57], but
these works tend to assume that the structure of the models is accurate and ambiguity only repre-
sents a lack of knowledge of the values of the parameters of themodels. Whether considering a lack
of knowledge about model parameters, or model structure, or both, there is a clear lack of existing
research into this field of “decision-making under ambiguity.” Ambiguity is in fact a very common
situation encountered by robotic decision-makers in the real-world, however, since fully accurate
modeling of the environment and all possibilities cannot be guaranteed.

The work described by Ross, et al. [56] connects back to another family of approaches to solv-
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ing decision-making problems known as Reinforcement Learning (RL) [58], where the rewards
and models defining the problems are initially unknown. Contrary to “supervised learning” ap-
proaches, RL does not learn the model from a set of training data with labeled truth. RL also dif-
fers from “unsupervised learning” approaches, which are generally intended to learn the unknown
structure and parameters of a model as accurately as possible. Instead, most RL implementations
attempt to learn the value function, describing the long-term rewards, by taking actions and interact-
ingwith the environment in real-time. Thegoal ofRL is simply tomaximize the long-termexpected
reward, as actions are taken, as is generally the fundamental objective of any decision-making pro-
cess. The difference is that an RL-based decision-maker has knowledge that its mapping between
states, actions, and rewards are initially unknown and it must take this into account when select-
ing actions. While not necessary, RL implementations may also attempt to learn the unknown
models that describe the environment in which they are acting. Model-freeRL decision-makers are
simply trial-and-error learners that leverage prior experience to choose the highest-value actions,
whereasmodel-based RL decision-makers attempt to learn the model, as well as the value function
to performmore informed predictive decision-making [58]. RL has awide range of applications to
autonomous robotic decision-making, including learning new skills [59–62], dexterous manipula-
tion [63, 64], navigation [65–69], control [70–73], and more. Also in RL-based decision-making,
there is a trade-offbetweenexploration (i.e., gatheringnew information about theunknownmodel)
and exploitation (i.e., leveraging what information has already been gathered to make decisions
with high expected reward) thatmust be considered for every action that is chosen. Somemethods
focus on incorporating this “exploration vs. exploitation” trade-off directly into the action policy
by weighting actions by balancing their expected reduction in uncertainty (exploration) and their
expected reward payoff (exploitation) [74]. The challenge with RL and other machine learning
methods for robotic decision-making is that significant quantities of data are required. Addition-
ally, in order for these methods to produce reliable solutions, this data must usually represent a
diverse sampling over the space of possible outcomes. Model-based RL attempts to build a model
to describewhy outcomes occur the way they do and then use traditional “top-down” reasoning to
plan, based on these learnedmodels. While this can be successful in many cases, it is generally not
possible tomodel every possibility, even through learning. These learnedmodels also tend to “con-
verge” to assuming a particular model is true and significant counterexamples are generally needed
to “unlearn” a highly converged upon model. Many sources of uncertainty in the real-world are
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non-stationary and such convergence, while beneficial in cases of controlled environments with
limited sources of uncertainty, can be detrimental in more complex scenarios where the sources
of uncertainty may vary parametrically. Another challenge is that many problems, except for very
simple problems, suffer from the curse of dimensionality and solving these problems may be com-
putationally challenging. One strategy for addressing this in the context of RL is the incorporation
of deep neural networks to more efficiently handle high-dimensional state spaces [75]. While this
“deep reinforcement learning” has proven to be an effectivemethod at solvingmanyproblems, even
more so than other RL methods in some cases, it often requires a large amount of training data,
which is prohibitive in many situations where such quantities of data are not easily available [76].
Overall, RL is a very powerful tool, but it is not well suited for all types of problems. Other ways of
approaching these challenges are still needed.

Another approach tohandling this conceptof ambiguityor “modeluncertainty” aremulti-model
methods, also called ensemble methods. These methods are often used in the context of machine
learning “prediction” and “classification” [77–79] and in stochastic estimators when fusing data
from multiple sources that may have different uncertainty models [80–84]. Another related con-
cept is theprincipleofMinimumDescriptionLength (MDL)whichcanbeused to interpret stochas-
tic information and discriminate between competing models to describe the information [85, 86].
Multi-modelmethods are also used in “decision-making,” [87, 88] butmany of the underlying prin-
ciples of these concepts, in both paradigms, are generally very similar. In the context of decision-
making these methods, different models of the problem are used, based on the assumption that
onemodel is not sufficient to describe the complexity of the problem. An “arbitration” step is then
used to combine their outputs to result in one final output. Weighted voting is one of themost com-
mon approaches to arbitrate ensemblemethods [89]. Other applications of thesemethods include
information management to support human decision-making [90, 91], predictions about difficult
to diagnosemedical conditions [92, 93], economics [94–96], andmore. Turning the focus back to
autonomous robotic decision-making, however, a number of methods exist that incorporate these
concepts [97–99], but themajority of them use thesemethodsmainly to improve their perception
performance or to learnmodels of the decision-making problem and then use traditional decision-
making methods to carry out actions. Some examples exist of using multiple models directly in
the decision-making process [100], but this is an underexplored area of robotic decision-making
research.
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A similar concept, more closely related to decision-making, however, is adaptive control, which
assumes that the parameters that define a system are non-stationary and not initially known. The
controller must estimate the parameters during execution and adjust the control law to adapt to
the present best estimate of the parameter values [101]. A contrasting method, robust control,
handles uncertainty by using a fixed control scheme that is known to maintain the desired perfor-
mance as long as the uncertainties stay within prescribed bounds [102]. While applicable tomany
problems, both of these methods hinge upon a set of strong assumptions about the nature of the
problem that are often violated in real-world scenarios. Adaptive control assumes that the set of
parameters which define the problem are known ahead of time and it is just their values that are un-
known. For constrained problems in controlled environments, this may be a valid assumption, but
this can be very difficult if not impossible to assume for more complex real-world scenarios. And
for robust control, the assumption that the uncertainty is bounded also is difficult if not impossible
to guarantee outside of very controlled conditions. These methods also typically apply to “con-
trol” problems, as opposed to “decision-making” problems. While related, control problems are
generally more focused on controlling a set of physical states whose dynamics can be described by
continuous differential equations, whereas decision-making problems can extend tomore abstract
problems where the description of the dynamics may not be as succinct.

2.5 ReducingDependence on Prior Knowledge

The overall paradigm of most of the topics discussed thus far is that some kind of model that de-
scribes the dynamics and/or uncertainties of the problem is either provided as prior knowledge, or
can be learned through training data or experience. In other words, these methods operate based
on the assumption that the reason why outcomes happen the way they do can be explained and
therefore reasoned over in a logical manner. A course of action is then selected as the one that
is believed to best achieve the objective, given the model that explains why that course of action
is the best. Taking a step back and thinking about the broader purpose of autonomous robotic
decision-making, however, raises the question: is finding a model that explains the dynamics and
sources of uncertainty always necessary to make decisions that work towards achieving the objec-
tive? Can a decision-maker instead find a way to decide what actions to perform, based on only
howwell those actions work to achieve the objective, regardless of why they do? One key example
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of a decision-making framework following this alternative paradigm is an algorithm known as Intel-
ligent Trial and Error (IT&E) [4]. In this work, amulti-leggedwalking robot is shown to be able to
overcome varying types of damage to its limbs and find new ways to walk that still enable it to con-
tinue moving forward successfully, even in a reduced capacity. This is accomplished by sampling
a space of diverse walking behaviors, testing how well those behaviors perform, and then scoring
those behaviors, and closely related ones, based on their performance. Weighted sampling is per-
formed based on the behaviors’ expected performance, so with very few iterations, new behaviors
that perform well can be found. The robot does not need to understand why it can no longer walk
successfully as it did before and perform top-down reasoning to find a new way to walk that agrees
with a model. Instead, it simply performs “whatever works best” to continue its task, without an
explicit understanding of why the new behavior works. This is similar in concept tomodel-free RL
but is a different approach, since there is no attempt to learn the full value function.

A similar phenomenon, based on this paradigm of finding what works best without needing to
find amodel to explainwhy, can be exhibited by robotic swarms. What is oftendescribed as “swarm
intelligence” is the ability of a swarm of robots to accomplish tasks that are more complex than
any agent in the swarm is designed to be capable of individually [103–105]. Through exchang-
ing information between agents to influence the swarm’s collective behavior, swarms are able to
demonstrate “emergent intelligence” or “emergent behaviors” that overcome unmodeled dynam-
ics and/or uncertainties without explicitly modeling them [106, 107]. These properties of swarms
are highly pertinent to the objectives of this research proposal andmotivate many of the proposed
methods being explored.

2.6 Literature Review Summary

In summary, the key gaps in existing research, with regard to decision-making that is resilient to
ambiguity, are methods that can overcome unexpected sources of uncertainty or altered system
dynamics without relying on a model that describes the situation being experienced. Therefore,
this research focuses onmethods of decision-making that can perform better at the task, without a
need to directlymodel the ambiguity being encountered. As a baseline, however, existing decision-
making methods, applicable to the case studies upon which the proposed methods will be tested,
must first be explored in more detail.
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3
Decision-Making Preliminaries



3.1 ChapterOverview

The objective of the work described in this chapter is to provide an overview of the baseline meth-
ods used in autonomous robotic decision-making. This includes both theoretical presentations of
eachmajor framework as well as specific examples, showing implementations of each of the frame-
works. Discussion about the challenges and limitations for each of these frameworks, based on
each of the examples, is provided, along with a comprehensive discussion at the end of this chapter
about the limitations of these frameworks, motivating the need for the research objectives of this
proposal, which are presented in the remaining chapters.

This chapter begins with a discussion of finite state machines. Two finite state machine exam-
ples are provided, one for a robot foraging task, from the author’s work on the robot Cataglyphis,
which was built by the West Virginia University (WVU) team that won the NASA Sample Return
RobotCentennial Challenge, and another from the author’s work on the robot BrambleBee, which
autonomously pollinates bramble (i.e., blackberry and raspberry) flowers in a greenhouse. Next,
the framework of Markov Decision Processes (MDPs) is discussed, presenting the formal defini-
tion of the MDP framework and the MDP solution method used in this research. Afterwards, the
Partially Observable Markov Decision Process (POMDP) framework is discussed, presenting the
formal definitionof thePOMDP framework, as an extensionof that ofMDPs and abrief discussion
of solutionsmethods. And finally, a summary discussion about the limitations of these frameworks
is presented to motivate the concepts proposed in the following chapters.

3.2 Finite StateMachines

A finite state machine (FSM) is a computational model of a discrete decision-making problem. It
encodes both a model of the problem, as the system’s possible states, inputs, and state transitions
(i.e., actions), as well the decision-making logic used to solve the problem as themapping between
each state, input and state transition. This mapping may be deterministic, meaning that given a
particular current state s and input u, the new state s′ is always the same, or the outcomes may be
stochastic, meaning there exists a probability distribution over possible new states.

FSMs are widely used in robotics and many forms of industrial automation where a fixed au-
tomated procedure must be followed. Examples include manufacturing robots in factories, the
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on-board software on robotic spacecraft, automatic transmissions in cars, turnstiles at public tran-
sit stations, and even drink vending machines. The case of a drink vending machine is used as an
illustrative example. The machine starts in the idle state, waiting for a user to insert money. Once
sufficient money has been inserted, the machine transitions to the selection state, where the user
selects their desired drink. In this state, the user may also press the refund button and the machine
will refund their money and return to the idle state. If the user proceeds to purchase a drink, how-
ever, the button pressed determines which drink is vended. Once a drink has been vended, the
machine returns to the idle state. This FSM is illustrated in Fig. 3.2.1.

Sufficient money 
inserted

Any drink 
button

Idle

Button A

Button B

Button C

Refund

Selection

Vend Drink A

Vend Drink B

Vending complete

Vend Drink C

Figure 3.2.1: Vending machine FSM example

FSMs are simple to understand and easy to implement for problems such as this, where the
number of states and state transitions are small and such a paradigm accurately describes the pro-
cess being controlled. Formore complex problems, specifically defining every possible state transi-
tion for every possible state and input combination becomes difficult and needing to increase the
number of states to describe increasingly complex problemsmakesmanaging very large FSMs diffi-
cult. FSMs are still useful for controlling the decision-making of complex tasks, however, especially
when they are used in a hierarchicalmanner, where reasoning is performedover varying levels of ab-
straction. Lower-level processes are encapsulated in their own FSMs, which themselves maymake
up the components of higher-level state machines which control more abstract levels of decision-
making. Presented next are two examples of FSMs developed by the author for complex robotic
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systems, performing high-level mission planning, enabling the robots to operate autonomously.

3.2.1 Example: NASA Sample Return Robot Challenge

One example of FSM decision-making is the mission planning algorithms developed for the robot
Cataglyphis, built by the WVU team that won the NASA Sample Return Robot Centenntial Chal-
lenge. The objective of the challenge was analogous to the upcoming Mars Sample Return rover
mission, which is to retrieve “samples” scattered over a large outdoor area and return them to a
starting platform. This simulated the robot loading the sample into a rocket on theMars rover’s lan-
der for transport back to Earth. Cataglyphis needed to operate fully autonomously for two hours,
traverse a large portion of an approximately 20,000 m2 outdoor area to search for samples, visually
recognize and collect several objects (e.g., a small plastic cylinder with a hook, colored rocks, and
small blocks of metal), and return these objects to the starting platform. A map of the challenge
field and an image of Cataglyphis picking up a sample are shown in Fig. 3.2.2 and Fig. 3.2.3, respec-
tively.

This search and retrieve task (i.e., robot foraging task)was especially challengingdue to themany
sources of uncertainties inherent to real-world environments that are difficult tomodel andbecause
the challenge rules prohibited the use ofGPS,magnetic compasses, or any other “Earth-based tech-
nologies” that would not be applicable on Mars [108, 109]. During the final challenge in the year
2016, Cataglyphis retrieved five samples and autonomously traversed a total distance 2,692meters
during the two hour challenge duration. Cataglyphis’ path and the locations where samples were
acquired are shown in Fig. 3.2.4.

In the end, Cataglyphis was the only robot to successfully complete the final challenge and the
WVU team won $750,000 in prize money (final total of $856,000, including completing previous
levels of the challenge in prior years). Despite Cataglyphis’s success, several unexpected failure
modes were encountered, which helped inspire the research objectives of this proposal. One of
the most interesting of these was the failure of Cataglyphis to pick up one of the samples, due to
its own shadow covering up the sample and the computer vision algorithms not recognizing the
sample, due to lighting, shown in Fig. 3.2.5.
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Figure 3.2.2: Map of the challenge field for the NASA Sample Return Robot Challenge, lo-
cated at Institute Park in Worcester, MA. The large black circles indicate regions of interest in
which samples may be located and the red numbers indicate this distance from starting zone 2
to the center of each region of interest, in meters.

When the robot was initially approaching the sample, its shadow was not covering it, so it de-
tected the sample reliably. But as it got closer, while approaching the sample to attempt to grab it,
its shadow then covered up the sample and the computer vision algorithms no longer detected the
sample with high enough confidence to classify it as a possible true sample. The robot would then
back up, thinking it lost sight of the sample (perhaps by having driven too far forward). It would
then reacquire sight of the sample, once it backed up, and try to approach it again. While repeated
failures to approach was a handled failure condition in Cataglyphis’ decision-making software (the
robot would give up and continue searching elsewhere), significant time was wasted during this
process and the challenge ended before Cataglyphis would have a chance to return and pick up
this sample, had it just been “lucky enough” to approach it from a different direction where its own
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Figure 3.2.3: Cataglyphis picking up a sample during the NASA Sample Return Robot Cen-
tennial Challenge (photo credit: NASA/Joel Kowsky, © CC BY-NC-ND 2.0)

shadow would not have interfered. It also may not have failed if the time of day had been different,
meaning the angle of the sun above the horizon, and therefore the shape of the robot’s shadow, was
different. Thepoint is that this specific failuremodewas never encountered during themanyweeks
of testing prior to the challenge, so there were no specific measures programmed into Cataglyphis’
decision-making to attempt to mitigate a situation like this. And further, attempting to both iden-
tify and handle every possible edge-case, like this, is simply impossible, whether through explicit
handling of specific failure modes, or through creating a sufficiently detailed mathematical model
of the problem, such that all of the necessary dynamics are captured in the model. Such a list of
specifically handled failuremodes would be impractically exhaustive to capture and such a fully en-
compassingmathematical model would be impossibly difficult to derive. Therefore, this highlights
the need for autonomous robotic decision-making that is resilient to these kinds of ambiguities
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Figure 3.2.4: Overlay of the path driven by Cataglyphis during the first 80 minutes of the fi-
nal challenge in 2016. The black line shows Cataglyphis’ perceived path, based on its primary
localization system, and the red line shows a solution maintained in parallel from simultaneous
localization and mapping (SLAM). The purple circles represent the regions of interest and the
locations from where samples were retrieved, up to this point in the challenge run, are shown.

that cannot be explicitly handled. The design of Cataglyphis’ autonomy did include some small
innovations in this regard, but it was still far from a sufficient case-study into this topic. However,
this initial work does motivate some of the proposed methods and the design of the case studies
presented in this research. Thedesign ofCataglyphis’ autonomous decision-making algorithms are
therefore presented next.

Cataglyphis’ autonomywas structuredhierarchically to separatehigh-level decisionmaking from
low-level subsystems control, as shown in Fig. 3.2.6. The layer at the top level of the hierarchy,
known as the Mission Planning State Machine (MPSM), was responsible for deciding the high-
level tasks that the robot should perform. Cataglyphis had a total of 17 unique tasks, such as
choosing new regions of interest (ROIs) to search, searching an ROI, approaching and collecting
samples, and returning home to drop off samples. A complete list is provided in Tab. 3.2.1. Execu-
tion of these high-level tasks consisted of sequences of individual robot actions, such as actions to
drive the robot, manipulate samples, and search for samples. These sequences of actions were then
passed down to the execution layer to carry out the detailed robot control. Cataglyphis had a total
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Figure 3.2.5: Cataglyphis attempting to approach a sample (can be slightly seen in the bot-
tom left) during the challenge, but failing to do so, due to its own shadow causing the com-
puter vision algorithms to lose track of the sample, as it got into grab position.

of nine unique actions, such as driving towaypoints in global or local coordinates, performing grab
or drop sequences with the grabber, and searching for samples with the vision system. A complete
list is provided in Tab. 3.2.2. Each action itself is a small, encapsulated FSM, sometimes requiring
several steps to complete. For example, the Drive Global action consists of first pivoting in place to
face the goal coordinate and then driving straight while maintaining the heading required to keep
the robot aimed at the goal coordinate. Each task is also an encapsulated FSM, operating on actions
as their states, though generallymore complex than the actionFSMs. Some tasks, such asNextBest
Region, simply consist of a sequence of Drive Global actions, while others such as Approach have
muchmore complex state transition logic, where the outcomes are dependent on the location and
confidence of detected sample candidates from the vision system. And again, the MPSM itself is
yet another FSM, but even more abstract. It is at the top of the hierarchy, with tasks as its states.
This hierarchical separation made the autonomy software easier to develop and manage, as well
as providing the modularity, flexibility, and resilience to ambiguity needed to make Cataglyphis
functional when faced with challenging real-world uncertainties and unmodeled situations, all of
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which are too complex to be completely and accurately described by the FSM hierarchy.

Sequences of actions

Mission Planning
State Machine

Subsystem commands Subsystem commands Subsystem commands

Executive State
Machine

Drive Subsystem Grabber Subsystem Vision Subsystem

Figure 3.2.6: Cataglyphis autonomy architecture

Theaction and task level FSMs are fairly standardFSMs, but a number of innovationsweremade
in theMPSM to attempt to handle the ambiguities that were not able to be explicitly accounted for
in the design of theMPSM.TheMPSM’s state transition logic is very complex and depends on nu-
merous inputs, which are condition flags representing various conditions aboutCataglyphis and its
mission, such as whether the robot sees a candidate sample, if the robot is in possession of a sample,
if the robot is at the home waypoint, and more. When a task is complete (or when a task is inter-
rupted, such as when obstacle avoidance is triggered), a truth table over the configuration of the
condition flags is used to determine the next state transition. This implementation is not only less
cumbersome than defining each state transition explicitly, but it also enabled a key feature of the
MPSM that increased Cataglyphis’ resilience to ambiguity: fallthrough conditions. Many combi-
nations of condition flags were considered to be invalid and should never occur. For example, the
robot should not be in drop-off position on the starting platform and also performing a reorient
maneuver to approach a sample from a different angle. This condition does not make sense and
should never occur during normal operation, but if a bug in the MPSM software was encountered
that was never found during testing, or an unexpected condition occured, that was never antici-
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Task Description
Initialize Back the robot off the starting platform and initialize pose
Emergency Escape Back up and drive to an offset position to avoid severe hazard
Avoid Avoid obstacle in front of robot
Bias Removal Remain stationary and remove IMU bias
Next Best Region Choose next region of interest to search
Search Region Plan waypoints to search region of interest
Examine Drive to a favorable observation position of a candidate detected sam-

ple
Approach Maneuver to grabbing position for detected sample
Collect Attempt to pick up sample with grabber
Confirm Collect Take another observation to confirm sample is no longer on the

ground
Reorient Move to approach sample from different direction after multiple

failed approach attempts
Go Home Return to the home waypoint in front of the starting platform
Square Update Drive a sequence of waypoints around the homing beacon to attempt

to remove localization error
Deposit Approach Precisely drive onto starting platform to sample drop off location
Deposit Sample Drop sample on ground
Safe Mode If localization is lost, perform random drive maneuvers in hope of

finding homing beacon
SOS Mode Alternative to SafeMode; stay in place andperform randomrotations

to signal SOS mode to human operators

Table 3.2.1: List of Cataglyphis high-level tasks

pated when designing the condition flag truth table, an invalid condition such as this could occur.
If such a condition did occur, however, the condition flag truth table would default to a fallthrough
condition, which would perform a “soft reset” on the condition flags, setting them a “safe” configu-
ration that would enable the robot to return to a “normal” line of decision-making. This may result
in very suboptimal behavior in achieving the mission, such as repeating search of a region that has
already been searched, but this is preferable to completely failing due to an undefined condition.

These undefined conditions are a type of ambiguity that may be encountered by autonomous
robots in the real-world and if their decision-making is not designed to consider that unmodeled
situations may occur, then the robots’ decision-making will be very fragile and may fail as soon as
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Action Description
Idle Command drive system to stop
Halt Command drive system to stop and hold position on a slope
Drive Global Command drive system to drive to a global coordinate
Drive Relative Command drive system to drive to a position relative to its current

position
Grab Command grabber system to go through grabbing sequence
Drop Command grabber to go through drop-off sequence
Open Command grabber to open without dropping
Search Command vision system to capture an image and search for nearby

samples
Wait Keep all subsystems idle for a period of time

Table 3.2.2: List of Cataglyphis actions

an unanticipated situation occurs. Handling this with the fallthrough condition implemented for
Cataglyphis may be a very naïve approach, but understanding the root problem it was designed to
address was an important inspiration for the research objectives of this proposal.

3.2.2 Example: Autonomous Robotic Pollination

Another example of robotic decision-making, based on FSMs, is the mission planning state ma-
chine developedby the author for the autonomous precision pollination robot, BrambleBee. Bram-
bleBee is a robot developed by an interdisciplinary team atWVU to autonomously pollinate bram-
ble plants (e.g., blackberries and raspberries) in a greenhouse [110]. As shown in Fig. 3.2.7, it is
a mobile manipulation platform, equipped with perception systems for both localizing itself and
identifying andmapping the locations of flowers to be pollinated, and a robotic armwith a custom-
built end-effector for precisely pollinating individual flowers. BrambleBee’s objective is to operate
fully autonomously in a greenhouse, during the dayswhich the bramble plants are flowering, search
the greenhouse for flowers that require pollination, and then individually pollinate them.
This is a complex problem and there are many sources of uncertainty and aspects of the problem
that aredifficult tomodel accurately, such as the limitedpollination viability timeof flowers, reliably
keeping track of flowers that have already been pollinated to avoid wasting time pollinating them
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Figure 3.2.7: Precision pollination robot BrambleBee pollinating blackberry flowers in the
WVU greenhouse

again, and the inherently difficult problem of reliable flower detection and mapping.
Similar to Cataglyphis, as described previously, BrambleBee’s autonomy is hierarchical, with

lower-level encapsulated FSMs controlling more specific functions, such as the operation of the
manipulator, with an overall high-level mission planning FSM controlling the mission level tasks.
The mission planner decides waypoints for the robot drive base as well as when to begin the pol-
lination procedures, which are carried out by an encapsulated manipulation FSM. BrambleBee’s
mission consists of two phases: the survey phase and the pollination phase. During the survey
phase, the robot drives around the rows of plants in the greenhouse, attempting to detect unpolli-
nated flower clusters and record their locations in a map of the greenhouse. After the survey phase
is complete, the robot moves on to the pollination phase, where it must decide where to park the
drive base to enable the pollination of reachable flowers by themanipulation system. The detected
flower map is binned into several “plant row sectors” on each side of each plant row, each of which
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are the approximate width of the arm’s reachable space. Each sector has an associated “parking
pose” to which the robot can drive to position itself so that the flowers within that sector are easily
reachable. The mission planner must decide the order in which the robot should visit the parking
poses of sectors with unpollinated flowers. This is currently accomplished using a simple one-step
greedy heuristic, which minimizes a cost function based on the number of reachable, unpollinated
flowers in each plant row sector and the distance from the robot’s current location to the parking
pose for each sector, as shown in (3.1).

argmin
i

Cf

Fi
+ Cd ∥xi − x̂r∥2 (3.1)

Where i is the plant row sector index, Fi is the number of flowers in sector i, xi the position of the
parking pose of sector i, x̂r is the robot’s estimate of its current pose, and Cf and Cd are weighting
constants for the number of flowers and the distance, respectively.

Once the robot arrives at a parking pose in front of a plant row sector, the manipulation subsys-
tem is then commanded to begin pollinating flowers. The drive base remains stationary while all of
themanipulation actions are performed. Then, once themanipulation subsystem reports that it has
completed the pollination procedures, another sectorwith unpollinated flowers is chosen as shown
in (3.1) and this process repeats until all the sectors with unpollinated flowers have been pollinated.
The FSM implemented by themission planner that carries out this sequence of decision-making is
illustrated in Fig. 3.2.8.

While the BrambleBeemission planner is just a standard FSM, lacking the innovations added to
the Cataglyphis MPSM to attempt to make it more resilient to ambiguity, there are still some im-
portant conclusions from this work in regard to the research objectives. One is that a simple design
that is purposefully based on lower-fidelity, incomplete models can in fact be more resilient to am-
biguity than a more complex design that considers many more states and uses more sophisticated
decision-making strategies. The more states describing highly specific details of the problem that
are considered by the decision-maker, the more the decision-maker depends on the value of each
state and themodels of theproblembeing accurate. And formore states tobeuseful, generallymore
sophisticatedmodels are required as well. If these models are inaccurate or insufficient to describe
the problem, then this just introduced more possible points of failure into the decision-maker. In
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Figure 3.2.8: Flowchart describing the BrambleBee mission planner

other words, sometimes less specialized designs are more resilient to ambiguity than very complex
and highly specialized ones. Of course, these simplistic methods are likely to suffer in terms of per-
formance, compared to more sophisticated methods, but only when there are no ambiguities and
the more sophisticated methods are accurate characterizations of the problem. When unmodeled
situations occur, the simplistic methods may be less fragile, simply because there are fewer states
and models that may be wrong.

3.3 MarkovDecision Processes

Building on the concept of FSMs, if a problem can be formulated as a Markov Decision Process
(MDP), then an action policy can be found algorithmically, based on the objective of maximizing
the total expected reward, computed from the given reward function. This results in a decision-
maker thatmore fully considers the possible long-term implications of chosen actions, given knowl-
edge of the distributions of uncertainty. It does, however, add more complexity to both the defi-
nition of the problem and the implementation of the decision-maker. Solving for MDP policies
may not always be trivial and significant computational resources may be required. This section
will first describe the definition of an MDP and will then discuss MDP policy solution methods.
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3.3.1 MDP Definition

An MDP is fully specified by its state space S, action space A, transition function T, and reward
function R, as ⟨S,A,T,R⟩. As described previously in Chapter 2, the transition function T repre-
sents a probability distribution over possible posterior states s′, given the prior state s and action
chosen a. This is shown formally below.

T(s, a, s′) = P(s′|s, a) (3.2)

In themost general case, the reward functionR is defined as amapping from the posterior state s′,
the action chosen a, and the prior state s to an instantaneous reward value r. This is shown formally
below.

r = R(s, a, s′) (3.3)

More specific cases may only depend on the action and the prior state R(s, a), or simply only on
the prior state R(s), but the above form is the most general.

The objective of any algorithmic MDP solution is to find an action policy π(s) that returns an
action a, based on the current state s. Note that in this research, only discreteMDP problems are
considered, meaning that the values of all states and actions are discrete, rather than continuous.
This is an important condition for the methods to be discussed below. In order to find the optimal
action policy π∗(s), the concept of a value function must be introduced. The value function V(s)
is defined as the expected value of the discounted sum of all future rewards, given current state s,
equal to the state at current time st. This is shown formally as follows:

V(s) = E [Rt+1 + γRt+2 + γ2Rt+3 + . . .] : s = st (3.4)

Where γ is a discount factor in the range [0, 1]. The discount factor used to weight near-term re-
wards higher than rewards further in the future. This can be simplified using a recurrence relation,
resulting in the widely used form of the value function, known as the Bellman Equation, which is
shown as follows:

V(s) = E [Rt+1 + γV(st+1)] : s = st (3.5)
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SinceMDPs involve stochastic state transitions as a function of both the state s and the action a,
the Bellman Equation is extended to state-action pairs as follows:

Q(s, a) = E [Rt+1 + γQ(st+1, at+1)] : s = st, a = at (3.6)

WhereQ(s, a) is the state-action value function. From here, a the expectation in (3.6) can be eval-
uated as follows

Q(s, a) =
∑
s′∈S

T(s, a, s′)
(
R(s, a, s′) + γV(s′)

)
(3.7)

Where T(s, a, s′) is the transition function, as defined in (3.2), R(s, a, s′) is the instantaneous re-
ward, and V(s′) is the value of the posterior state s′. Maximizing Q(s, a) over a yields the optimal
value function V∗(s):

V∗(s) = max
a∈A

Q(s, a),∀ s ∈ S (3.8)

And the optimal action policy π∗(s) corresponds to the action awhich results in the optimal value:

π∗(s) = argmax
a∈A

Q(s, a),∀ s ∈ S (3.9)

Solving for π∗(s) is the challenge of anyMDP solution. Presented next are two exhaustive search
methods, value iteration andpolicy iteration, which are iterative solutions, but are known to con-
verge to the globally optimal policy, given sufficient iterations. These methods are computationally
intractable for problemswith large state and action spaces, however, somore informed searchmeth-
ods are also important for solving more complex problems. One of the key informed search meth-
ods, whichwill be presented, isMonteCarlo Tree Search. While not guaranteed to converge to the
optimal solution, Monte Carlo Tree Search can perform significantly more efficiently than exhaus-
tive searchmethods, because only state-action pairs that are likely to lead to desirable outcomes are
considered. This algorithm estimates online (i.e., during execution)which branches of state-action
pairs are likely to have high reward payoff and focuses searching those branches of the decision tree,
as opposed to other branches that are not likely to have high payoff, or that are detrimental. Each
of these approaches are summarized in the following sections.
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3.3.2 Value Iteration

The optimal value function (3.8), thereby defining the optimal policy (3.9) can be found by ini-
tializing the optimal value over all states to zero and then iterating over every viable state-action-
state combination and updating the value for each state using (3.8). The policy is also evaluated
at each time step by finding the action that maximizes the value function. At each iteration of the
algorithm, the maximum difference between the previous value function and the updated value
function is computed. If the difference is smaller than a user selected threshold ε, the algorithm is
considered to have converged. The value iteration algorithm is presented below.

Algorithm 3.1:MDP Value Iteration Algorithm
1 Procedure ValueIteration(γ, ε,N, S,A,T,R)
2 V← [0, 0, . . . , 0] : |V| = |S|
3 π ← [0, 0, . . . , 0] : |π| = |A|
4 for i← 1 toN do
5 for s ∈ S do
6 for a ∈ A do
7 v←

∑
s′∈S T(s, a, s

′) (R(s, a, s′) + γVi−1(s′))
8 if v > Vi−1(s) then
9 Vi(s)← v
10 π(s)← a

11 if maxVi − Vi−1 < ε then
12 return (V, π)

13 return (V, π)

3.3.3 Policy Iteration

Alternatively to iterating on the value function to find the optimal policy, an arbitrary initial policy
can be iterated upon to find the optimal value function. This is known as policy iteration. Sim-
ilarly to value iteration, the algorithm iterates until the difference of the value function between
iterations drops below a threshold. Instead of considering the algorithm to have converged at this
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point, however, the policy from the previous iteration is compared to the “optimal policy” evalu-
ated from the current value function. If the policies are the same, the policy is considered stable
and the algorithm terminates. Otherwise, the previous policy is updated with the current policy
and the algorithm repeats. The policy iteration algorithm is presented below.

Algorithm 3.2:MDP Policy Iteration Algorithm
1 Procedure PolicyIteration(γ, ε,N, S,A,T,R)
2 V← [0, 0, . . . , 0] : |V| = |S|
3 π ← random : |π| = |A|
4 for i← 1 toN do
5 for s ∈ S do
6 Vi(s)←

∑
s′∈S T(s, pi(s), s

′) (R(s, π(s), s′) + γVi−1(s′))
7 if maxVi − Vi−1 < ε then
8 policy_stable← PolicyImprovement(V, π)
9 if policy_stable then
10 return (V, π)

11 return (V, π)
12 Procedure PolicyImprovement(V, π)
13 policy_stable← true
14 for s ∈ S do
15 b← π(s)
16 π(s)← argmaxa∈A

∑
s′∈S T(s, a, s

′) (R(s, a, s′) + γVi−1(s′))
17 if b ̸= π(s) then
18 policy_stable← false
19 return policy_stable

20 return policy_stable

3.3.4 Monte Carlo Tree Search

Whilemanyother types of solutionmethods exist andwork into solving challengingMDPs is an ac-
tive areaof research, theparticular solutionmethodused in thiswork is apopular frameworkknown
as Monte Carlo Tree Search (MCTS). Given (3.7), (3.8), and (3.9), a variant of MCTS, based on
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the Upper Confidence Bounds (UCB) applied to Trees (UCT) [33] algorithm is described. The
core algorithms of this implementation of MCTS are shown in Alg. 3.3.

Algorithm 3.3: Functions used in the Monte Carlo Tree Search Algorithm

1 Procedure Expand(τ, v)
2 {a, s′} ∼ uniform({A, S} \ v.{A, S})

τ ← AddChild(τ, s′, a)
3 return τ
4 Procedure Select(τ, v,C)
5 if FullyExpanded(v) then

6 a← argmaxa
Q(v.c(a),a)
v.c(a).n + C

√
log (v.n)
v.c(a).n

7 s′ ∼ P(s′|v.s, a)
8 v← GetChild(τ, v, a, s′)
9 else
10 τ ← Expand(τ, v)
11 return v

12 Procedure Rollout(s, q,M)
13 if AtMaxDepth(M) then
14 return q+ q̂
15 a← RolloutPolicy(s)
16 s′ ∼ P(s′|s, a)
17 q← q+ R(s, a, s′)
18 M← M+ 1
19 return Rollout(s′, q,M)

20 Procedure Backpropagate(τ, v, q)
21 v.n← v.n+ 1
22 v.q← v.q+ q
23 τ ← UpdateTree(τ, v)
24 if IsRoot(v) then
25 return τ
26 else
27 vp ← GetParent(τ, v)
28 return Backpropagate(τ, vp, q)

As shown on line 6 of Alg. 3.3, actions are chosen using the UCB1 algorithm [74], which provides
a trade-off between exploration and exploitation. The overall MCTS algorithm, whichmakes use of
these functions, is shown in Alg. 3.4.

After performingMCTS for as many iterations as desired, as shown in Alg. 3.4, theMDP action
policy π is then implemented as follows in Alg. 3.5, to find the next best action, based on the tree
that has been built up through the MCTS algorithm. After an action is taken and the decision-
maker arrives at a new state, the root of the tree must be updated to the vertex that corresponds to
the state-action pair that occurred after choosing an action. Branches of the tree other than the one
resulting from the state action pair which occurred may now be pruned, since they are no longer
relevant and maintaining branches that will never be visited is a waste of computational resources.
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Algorithm 3.4:Monte Carlo Tree Search Overall Algorithm
1 ProcedureMCTS(τ,N,M,C)
2 q← 0
3 for i← 0 toN do
4 v← GetRoot(τ)
5 while !IsTerminal(v) & !IsLeaf(v) do
6 v← Select(τ, v,C)
7 q← Rollout(v.s, v.q,M)
8 τ ← Backpropagate(τ, v, q)

Algorithm 3.5:Monte Carlo Tree Search Action Policy
1 Procedure π(v)
2 a← argmaxa v.c(a).q
3 return a

3.4 PartiallyObservableMarkovDecision Processes

An important extensionof theMarkovDecisionProcess (MDP) is thePartiallyObservableMarkov
Decision Process (POMDP). In MDPs, the states are are fully observable, but POMDPs assume
that there is uncertainty about the states and the decision-maker must maintain a probability dis-
tribution over all possible states, representing its belief in which states may be the true state. The
belief is updated through observations that provide information about the true state, but still with
uncertainty. As with MDPs, POMDPs can be solved to find algorithmically defined action poli-
cies that consider all possible outcomes, defined by the states and transitions, and that attempt to
maximize the total expected reward, based on a given reward function. POMDPproblems are gen-
erallymuchmore complex to solve thanMDPproblems, however, and exact solutions are generally
computationally intractable.

3.4.1 POMDP Definition

A POMDP is fully specified by its state space S, action space A, transition function T, and reward
function R, observation space Ω, and observation function O as ⟨S,A,T,R,Ω,O⟩. As with an
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MDP, the transition function T represents a probability distribution over possible posterior states
s′, given the prior state s and action chosen a, and is the same as shown in (3.2). The reward func-
tion R is also the same as for anMDP and is the same as shown in (3.3). The observation function
O represents the likelihood estimate of the occurrence of an observation event o, given on the pos-
terior state s′ and the action chosen a. This is shown formally below.

O(s′, a, o) = P(o|s′, a) (3.10)

Since the states are not fully observable, a belief b(s)must be maintained over all possible states
s ∈ S. The belief represents a probability distribution over the state space. Every time an action is
taken, the POMDP decision-maker must update its belief b′(s′), based on the previous belief b(s),
the action taken a, and theobservation o. This belief update is computedusingBayesianprobability,
as follows [36]:

b′(s′) = ηO(s′, a, o)
∑
s∈S

T(s, a, s′)b(s) (3.11)

Where η is a normalization constant, ensuring the belief sums to one, over all states.
As withMDPs, the objective of any algorithmic POMDP solution is to find an action policy that

prescribes an action for any possible state in which the decsion-maker may be. Since the decision-
maker does not have full knowledge of its state s, it must instead base the policy on the belief π(b).
Note that in this research, aswithMDPs, onlydiscretePOMDPproblemsare considered,meaning
that the values of all states, actions, and observations are discrete, rather than continuous. This is
an important condition for the methods to be discussed below. As with MDPs, the value function
V(s) is defined as the expected value of the discounted sumof all future rewards, given current state
s, equal to the state at current time st, as was shown in (3.4) and (3.5) and is similarly extended
to state-action pairs as shown in (3.6). Since the states are not fully observable and there is an
additional stochastic process governing the observations, however, the expectation for state-action
valueQ(s, a) for POMDPs is evaluated as follows:

Q(s, a) =
∑
s′∈S

T(s, a, s′)
(
R(s, a, s′) + γ

∑
o∈Ω

O(s, a, o)V(s′)
)

(3.12)

Additionally, since the states are not fully observable, the exact value cannot be computed andmust

40



instead be computed based on the belief, as follows:

Q(b, a) =
∑
s∈S

b(s)
∑
s′∈S

T(s, a, s′)
(
R(s, a, s′) + γ

∑
o∈Ω

O(s, a, o)V(b′)
)

(3.13)

Where b′ is computed as shown in (3.11). And similar to with MDPs, maximizingQ(b, a) over a
yields the optimal value function V∗(b):

V∗(b) = max
a∈A

Q(b, a),∀ b ∈ B (3.14)

Where B is the belief simplex of beliefs over all states s ∈ S. The optimal action policy, based on
the belief, π∗(b), then corresponds to the action awhich results in the optimal value:

π∗(b) = argmax
a∈A

Q(b, a),∀ b ∈ B (3.15)

Solving for π∗(b) is the challenge of any POMDP solution. This is even more challenging than
forMDPs, because the belief b(s) is a continuous probability distribution over all states. Even when
the state space is discrete, as is considered in this research, this is still computationally prohibitive.
Exact solutions only exist for a special case of discrete problems where the state, action, and obser-
vation spaces are not only discrete, but finite. These methods still suffer greatly from the curse of
dimensionality and only very small problems are feasible to be solved using exact methods. These
exact methods, value iteration and policy iteration operate similarly to their MDP counterparts in
that they are known to converge to the globally optimal solution, given sufficient iterations. Since
only a very limited set of problems can be feasibly solved using these methods, however, there
is significant interest in approximate methods which are more computationally efficient. A brief
overview of value iteration, policy iteration, and a select group of widely used approximate meth-
ods will be given in the following sections.

3.4.2 Value Iteration

For discrete state POMDPs, the POMDP can be transformed into a belief state MDP, where the
states of the MDP are the continuous belief states of the POMDP.The belief stateMDP is defined
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as the tuple ⟨B,A,Tb,Rb⟩where the belief transition function Tb is defined as follows.

Tb(b, a, b′) =
∑
o∈Ω

P(b′|a, b, o)
∑
s′∈S

O(s′, a, o)
∑
s∈S

T(s, a, s′)b(s) (3.16)

Where

P(b′|a, b, o) =

1 if bao = b′

0 otherwise
(3.17)

Where bao is the posterior belief from the belief update function in (3.11). The belief reward func-
tion Rb is defined as follows.

Rb(b, a) =
∑
s′∈S

∑
s∈S

b(s)R(s, a, s′) (3.18)

The optimal value V∗(b) and optimal policy π∗(b) can then be found using value iteration as
normally used for MDPs, where the policy is represented as a set of piecewise linear α-vectors [34,
36].

3.4.3 Policy Iteration

Policy iteration forPOMDPsoperates similarly to theMDPpolicy iteration algorithm, butwith the
value function represented as piecewise linear α-vectors. The value function is iteratively updated
and the policy resulting from that value function is compared to the current policy. If the policy
does not improve, the algorithm terminates. Otherwise, the policy is updated and the algorithm
continues [111].

3.4.4 Approximate Methods

Solving POMDPs using the exact methods described above is often computationally intractable
due to the curse of dimensionality. Many approximate methods for solving POMDPs exist, which
include point-based approximate solvers [37–40], andMonte-Carlo planning [42, 43]. The details
of these methods are beyond the scope of this research, but the concept behind many of these
methods is to use sampling to only solve for policies in relevant subsets of the belief space. Many
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regions of the belief space will likely never be reached, due to the structure of the transition and
observation models, and therefore computational resources are wasted searching and evaluating
policies over them. These approximate methods do not provide as strong of guarantees at finding
optimal polices as the exact methods, but they are often the only choice for problems with any but
the most trivially small state and action spaces.
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4
Methodology



4.1 ChapterOverview

As discussed in Chapter 1, this research focuses on three factors in improving the resilience to am-
biguity of autonomous robotic decision-making: diversity, physical feedback, and local interac-
tions. This chapter begins with a discussion of these three factors and how they are hypothesized
to be key to achieving the objectives of this research and how they will be leveraged in the design
of the proposed methods. Following this discussion is a summary of the expected outcomes of
the proposed methods. Then, a series of descriptions of problem formulations, case studies imple-
menting these problems in simulation, and proposed methods, along with research hypotheses to
be tested through the case studies for each proposed method will be presented. The conclusions
from the results of these case studies are discussed incrementally and then summarized at the end
before moving on to the overall concluding remarks and discussions on future work in the next
chapter.

4.2 Key Factors and ExpectedOutcomes

Physical feedback is information the decision-maker gets from the environment in response to
taking actions. The utility of such information is dependent, however, on the decision-maker’s
ability to interpret the information. In many cases, this is encoded into the decision-maker’smodel
of the problem. It is common in real-world scenarios that the decision-maker’s model may be in-
complete and such information gained through physical feedback may not be very informative in
and of itself. It may be possible for this information to be indirectly informative of how to solve the
decision-making problem more effectively, however, without the decision-maker explicitly under-
standing the underlying reason. The decision-maker may not need to understand the cause of the
better utility of one course of action versus another, but if it can simply understand the correlation
between information gained through physical feedback and the potential for success of carrying
out a particular course of action, then it is possible for the decision-maker to reason outside of the
limitations of its models, at least in a very limited way. Building an effective understanding of these
correlations requires large amounts of information gained through physical feedback, from a vari-
ety of conditions in the environment, however. This is where the concept of local interactions is
leveraged. In scenarios where there are distributed robotic swarms, different agents will experience
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different parts of the environment and gain different information through their own physical feed-
back. If different agents are able to exchange information with each other, then theymay be able to
more effectively find correlations between the information from physical feedback and the poten-
tial for successful actions, since each agentwill gain different experience. This ability to successfully
understand these correlations may be further improved through swarms with diversity. If differ-
ent agents in the swarmmake decisions differently, they are likely to experience different outcomes
andgaindifferent physical feedback, whichmay lead to abetter understandingof the action-success
correlations, in conjunctionwith information exchanged through local interactions, thanwould be
achieved otherwise.

Again, the objective is not to develop a top-down understanding of the decision-making prob-
lem and attempt to create a more complete model that reduces the ambiguity and accurately de-
scribes the distributions of uncertainty and anymissing information from the initialmodel. Rather,
the idea is to enable the decision-makers to overcome ambiguity without needing to understand
why an outcome is not occurring as expected, but simply identify how a better course of actionmay
be taken. It is also not assumed that the ambiguity decision-makers encounter will be fixed and
invariant with time. Therefore, decision-makers should not “converge” on behaviors to compen-
sate for the ambiguity that cannot be quickly “unlearned”when the characteristics of the ambiguity
change. This is what differentiates the underlying concept of the proposedmethods in this research
from other existing techniques, such as reinforcement learning.

To summarize the important points from the discussion above and tie these together with the
objectives presented inChapter 1, the expected outcomes of themethods proposed in this research
are:

• Robotic decision-making frameworks that operate with incomplete/inaccurate models of
the distributions of uncertainty involved in the decision-making problem (i.e., ambiguity)
that suffer less degradation in performance at the objective of the problem than existing base-
line methods, when faced with ambiguities.

• Robotic decision-makers that exhibit emergent behaviors which solve the problem in ways
that were not explicitly programmed into the decision-making framework and without a
full understanding of the problem, in terms of a state/model structure enabling the problem
to be directly solved in such a way.
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4.3 ResearchHypothesis: Sensitivity to Ambiguity

Most decision-making under uncertainty frameworks assume that the decision-maker has accu-
rate knowledge about the distributions of uncertainty involved in the decision-making problem.
In other words, there is no ambiguity. If such methods are applied to problems where there is
ambiguity and the distributions of uncertainty may not match those assumed to be correct by the
decision-maker, then it is likely that the decision-maker’s performance will suffer. While this is not
a surprising expectation, it is important to establish this as aworkinghypothesis toboth groundand
motivate the proposedmethods incorporating ambiguity to follow. Therefore, the author poses the
following hypothesis about sensitivity to ambiguity:

Decision-making strategies that do not account for ambiguity will generally suffer a
reduction in performance at their objective when faced with ambiguities.

In order to investigate this hypothesis, a simulated case study problem is first described and then
state-of-the-art decision-making under uncertainty strategies that do not account for ambiguity are
tested with ambiguities injected into the problem.

4.4 ProblemDescription: Simulated Robot Foraging

Inspired by the author’s initial work on autonomous robot foraging with the robot Cataglyphis,
as described previously, robot foraging serves as a key case study problem for this research. There-
fore, a simplified robot foraging scenario has been developed, in simulation, to rapidly test different
decision-making frameworks. Cataglyphis facedmany sources of difficulty tomodel real-world un-
certainty, and this is one of themainmotivations for this research. For example, Cataglyphis’ ability
to pick up samples on the ground often depended on the direction fromwhich it approached them.
This was due to a variety of factors, including the slope of the terrain and local terrain features,
as well as lighting and shadows, which affected perception. While these factors demonstrate the
kind of difficult-to-model real-world complexities upon which the outcomes of this research are
focused, this level of complexity is not necessary to demonstrate the expected outcomes of the pro-
posed decision-makingmethodologies. In addition to the benefit of more rapid testing of different
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decision-making frameworks, as mentioned above, the simulation allows for specific types of am-
biguities to be introduced into the simulation and trials performed both with andwithout them, to
establish baselines for points of comparison. The desired outcome of this simulated robot foraging
problem is test the resilience to ambiguity of the proposeddecision-making frameworks, compared
to baseline frameworks, based on existing methods. The frameworks will be tested against several
variations of ambiguity in the form of unmodeled source of uncertainty that is not accounted for
in the decision-makers’s model. An MDP problem formulation for the simulated robot foraging
problem is presented next.

The foraging robot exists in a two-dimensional discrete grid world, where it must find food, pick
the food up, return to its home base, drop off the food, and continue this process until the time
limit expires. At each time step, the robot can choose to perform an action to move to any of its
eight neighboring grid cells, attempt to grab food located in the robot’s grid cell, or drop food, if it
is carrying any. It is assumed that the robot is holonomic and can move in any of these directions
without needing to pivot. The robot also has a limited amount of energy stored in its battery and
each action it performsexpends energy. Itmay recharge its batteryby returning to its home location.
The robot knows themap of all food locations as well as its own location at all times. Themap used
in the case studies implementing this problem is 5 by 5 grid cells in size, with the robot’s starting
position and home location located one grid cell to the east of the south-west corner (i.e., position
[x,y] = [1,0]). There are two clusters of food located in the north-west and north-east corners of
the map. Each cluster consists of 3 food, for a total of 6 food in the map. This configuration is
illustrated in Fig. 4.4.1.

Formally, the robot’s state space S and action space A are defined as follows:
The robot’s transition functionT(s, a, s′)defines theprobability of the robot transitioning fromone
state s to another s′, given the chosen action a. The robot’s motion in the grid world is considered
to be deterministic, so for example, when the robot chooses tomoveNorth-East, the next state will
always result in the robotmoving to the grid cell location [x+ 1, y+ 1] from its current location (as
long as the new position is not beyond the grid world boundary). Move actions also incrementally
deplete the robot’s battery.

The stochastic element, which makes this problem an MDP, is the robot’s ability to grab food.
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Figure 4.4.1: Grid world configuration used for the single robot foraging case study. The red
grid represents the robot location, the black grid the home location, and the green grids are
food. Different shades of green food represent different food headings.

When the grab action is performed, there exists a probability of the robot successfully picking up
food Pgrab, if there is food at the current location. As far as the robot knows, Pgrab is fixed and
does not depend on any other states or parameters. In the back end of the simulation (i.e., the true
environment) the robot’sPgrab is actually a function of an additional heading state of both the robot
and each food in themap. If the robot’s heading aligns with the food heading, then Pgrab is high and
the robot is likely to successfully pick up the food. The more the robot’s heading and the food’s
heading differs, however, the lower Pgrab becomes. This is the source of ambiguity introduced into
this problem, which is inspired by witnessing a similar situation occur with the robot Cataglyphis
during real-world testing. An additional state and aspect of the state transition dynamics that the
robot does not model affects the outcomes of its actions. Along with the move actions, the drop
action is also considered to be deterministic, however. If the robot drops the food, it will always be
dropped, but it is only allowed to drop food at its home location. Finally, based on these transition
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X position
Y position
Has food? (true/false)
Battery charge
Food map

States

Stay
Move East
Move North-East
Move North
Move North-West
Move West
Move South-West
Move South
Move South-East
Grab food
Drop food

Actions

Table 4.4.1: Definition of robot foraging states and actions.

dynamics, the reward function is defined as follows:

R(s, a, s′) =



−1, 000 : s′.bat = 0

−1 : a ∈ Amove

0 : a = stay

−20 : a = grab& !s′.has_food

20 : a = grab& s′.has_food

100 : a = drop& s.has_food& !s′.has_food& at home

(4.1)

With this reward function, the robot gets a large reward if it drops food off at home, a large penalty
if the battery runs out, a small incremental penalty for each move action, a small penalty for failing
to grab food and a small reward for successfully grabbing food.

4.5 Case Study: Simulated Single Robot Foraging

The robot foraging problem described above in Section 4.4 is solved using two methods. One
through an FSM solution and the second as an optimal MDP policy, using value iteration as pre-
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Model NE Heading NW Heading NE true Pgrab NW true Pgrab
Tt

0 east east 0.9 0.9
Tt

1 east north 0.9 0.1
Tt

2 north west 0.9 0.0

Table 4.5.1: True Robot Foraging Transition Models, given a robot heading of East

sented in Section 3.3.2. Three different ambiguity scenarios (i.e., true models) of the simulation
world, with different food headings for the two food clusters, which are unknown to the robot, are
tested to investigate how resilient each decision-making solution is to ambiguity in the food grab
probability. Both the FSM and the MDP solutions assume that Pgrab is 90% for all food in the map.
The first true model matches the robot’s model of the grab probability, so there is no ambiguity in
this case. The second true model presents a slight difference from the robot’s model, where one
of the food clusters has a slightly different food heading, resulting in a reduced grab probability for
that cluster. And finally, the third true model presents a much stronger difference, where the head-
ing of the food in one of the clusters is opposite that of the robot and is impossible for the robot to
pick up. These true model scenarios are summarized in the table below.

While both the FSM and MDP solutions have incorrect models in the second and third cases,
theFSMsolution contains a rudimentaryheuristic for handling ambiguity, while theMDPsolution
does not and cannot, without formulating an entirely differentMDPproblem. The performance of
the FSMandMDP solutions, for all three truemodel cases are compared, based on 1000 simulated
Monte Carlo trials of each method, simulated for 100 time steps each. The performance of each
decision-making strategy, for each true model, is compared by examining the distribution of the
accumulated rewardU, defined below, summed over all time steps, for each Monte Carlo trial and
each scenario.

U =
tmax−1∑
t=0

r(st, at, st + 1) (4.2)

The accumulated reward U is compared across all of these scenarios in two ways. First, it is com-
pared through the empirical cumulative distribution function (eCDF) F̂n(U), which represents the
fraction of Monte Carlo trials that perform less than or equal to a certain value of accumulated re-
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ward. The eCDF representation essentially shows the distribution of the accumulated reward over
all Monte Carlo trials, sorted in ascending order. And second, the results are compared through
box and whisker plots ofU to examine the upper and lower extremes, compared to themedian per-
formance. These are two representations of the samedistributions of outcomes and simply provide
different visualizations. Conclusions about the resilience to ambiguity are drawn from these data.
An explanation on how to interpret these representations of the results, in terms of resilience to
ambiguity, is presented in Appendix B.

4.5.1 FSM Solution

The FSM solution consists of four decision-making states, with the state transition diagram as
shown in Fig. 4.5.1.

Target food selected

Battery lowSelect Target

Grab attempted

Approach

Grab failed

Grab successful

Confirm Collect

At home

Go Home

Figure 4.5.1: State transition diagram for the FSM action policy implemented as the base-
line solution to the foraging MDP

The Select Target state chooses which particular food the robot will approach and attempt to grab
next. The target food is selected randomly with the probability of a particular food being inversely
proportional to the food’s distance from the robot’s current location. The target food selection
process also has knowledge of the cluster to which each food belongs. Once the target food is
selected, however, the FSM then transitions to the Approach state, which commands the robot to
move to the location of the target food. Once the robot arrives at the food location, it then attempts
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to grab the food, which transitions the FSM to the Confim Collect state. If the robot successfully
picked up the food, the FSM then transitions to the Go Home state, to drop off the food at home
and get a battery recharge in the process. If the robot fails to grab food, however, it transitions back
to the Select Target state to select a new food to approach and attempt pick up. During Approach, if
the robot’s battery drops below aminimum threshold, before arriving at the food location, however,
the FSMalso transitions to theGoHome state, to recharge its battery by reaching the home location.

4.5.2 MDP Solution

The MDP solution is solved simply by taking the problem formulation as described in Section 4.4
and solving for a policy using value iteration, as described in Section 3.3.2. For the first true model
scenario, theMDP solution is expected to perform better than the FSM solution, but only because
the model happens to be correct. Unlike the FSM solution’s rudimentary handling of food grab
ambiguity by selecting target food with a weighted random heuristic, however, MDP solution is
likely to be fragile when faced with ambiguity presented in the second and third true model cases
and it is expected to keep performing actions that are not effective, simply because it does not un-
derstand how to reason outside of its fixed model. This method lacks any resilience to ambiguity
based on the physical feedback of repeatedly failing to pick up the same food, should such a situation
occur.

4.5.3 Results and Conclusions

Results from the simulations performed for both the FSM and the MDP solution are presented
in the Fig. 4.5.2. The percent change in the major statistics of the Monte Carlo trials, from the
FSM solution as baseline to the MDP solution, for each true model scenario, are also presented in
Tab. 4.5.2. It can be seen that performance suffers for both the FSM and the MDP the more the
true model differs from the model the decision-makers are expecting. The MDP solution slightly
outperforms the FSM solution when the model is correct (Tt

0), but the MDP solution is more
sensitive to ambiguity than the FSM solution and its simple heuristic method of selecting different
target food after failed grab attempts. In the case of true model Tt

2, where the north-west food
cluster cannot be grabbed, the robot based on the MDP solution goes to one of the food in this
cluster first, because it is the closest distance to its starting location and just repeatedly keeps trying
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to pick up this one food that it cannot pick up, until the endof the simulation. In everyMonteCarlo
trial of the MDP solution with true model Tt

2, the robot goes to the closest food in the north-west
cluster and keeps trying to pick it up for the entire durationof the simulation, never trying anyother
actions. This is whyU for every trial of this scenario results in the same large negative value. All that
theMDP decision-maker is doing is repeatedly incurring the failed grab penalty, at every time step.
The heuristic in the FSM solution may be less optimal when the model is correct, but it provides
an element of diversity, due to its randomness, that prevents the robot from getting completely
stuck in a “mission failure” situation, like the MDP solution does with true model Tt

2. The FSM’s
performance is degraded, but it can still achieve “partial completion” of themission due to its better
resilience to ambiguity. Specific handling of these types of failures could be encoded into theMDP
formulation, but these would likely increase the size of the state space dramatically, resulting in
the problem quickly becoming computationally intractable for such methods. And again, specific
handling of failure modes in such a way is antithetical to the objectives of this research, because it
is not feasible to predict all of them ahead of time.

While this demonstration of a simple heuristic FSM solution having more resilience to ambigu-
ity than an “optimal” MDP solution is a very rudimentary example, it demonstrates that diversity
in decision-making may increase its resilience to ambiguity. Based on this outcome, more sophis-
ticated methods for including diversity in decision-making are desired. This leads to the research
hypothesis and the family of proposed methods, presented in the following sections.

Tt
0 Tt

1 Tt
2

Max 0% 3.05% -1719%
Upper Quartile 0% 18.77% -7872%
Mean 0.14% -42.33% -2531%
Median 0.15% 20.55% -2637%
Lower Quartile 1.23% -356.0% -1222%
Min 5.11% -292.0% -285.5%
Std Dev -7.82% 90.02% -100.0%

Table 4.5.2: Percent change between the MDP and FSM (baseline) of major statistics for
three different true models: [Tt

0,Tt
1,Tt

2].
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Figure 4.5.2: FSM and MDP foraging solution results for three different true models:
[Tt

0,Tt
1,Tt

2].

4.6 Multi-Model Decision-Making

As demonstrated thus far, the traditional MDP framework is sensitive to ambiguity. While the
examples presented thus far may seem trivial to address by simply reformulating the problem to ac-
count for these unmodeled states and state transition dynamics, this is not the point. These exam-
ples are simple on purpose so that controlled experiments in simulation can be performed and the
point is that this type of situation is likely to occur in a more complex, real-world situation, where
there are additional factors that create unmodeled sources of uncertainty aboutwhich the decision-
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maker is unaware. The objective, as stated previously, is to investigate decision-making strategies
which are resilient to these types of ambiguities. One way to extend the MDP and provide some
rudimentary handling of ambiguity is to provide it with a set ofmultiple possible transitionmodels,
instead of a single model.

Though a brief aside from the primary focus of this research, this initial work done on multi-
model decision-making was key to exploring some of the concepts of this research. A family of
extensions to the classic MDP and POMDP frameworks are presented in this section, which in-
clude decision-making based on multiple models. The first in this family of methods is known as
the Multi-Model Markov Decision Process (MM-MDP) and the second method is an extension
of this same strategy to partially observable cases, known as theMulti-Model Partially Observable
MarkovDecisionProcess (MM-POMDP).Thesemethods are related to a similar, butmarkedlydif-
ferentmethod, also namedMulti-modelMarkovDecisionProcess (MMDP), proposed by Steimle,
et. al [100]. While this method combines rewards from different models into a single weighted
value function and then solves for a single policy, themethods proposed in this research solve for a
policy for each model separately and then combine their proposed actions through an arbitration
scheme online, during execution.

4.6.1 Multi-Model Markov Decision Process (MM-MDP)

A traditional Markov Decision Process (MDP) is defined by the tuple ⟨S,A,R,T⟩, where S is the
state space, A is the action space, R is the reward function, and T is the state transition function.
The definition of MDPs is discussed previously in Section 3.3. In contrast an MDP, the proposed
Multi-ModelMarkovDecisionProcess (MM-MDP) framework is definedby the tuple ⟨S,A,R,T⟩
where instead of a single state transition model T(s′, a, s) a set of multiple state transition models
T = {T1(s′, a, s), . . . ,TN(s′, a, s)} is utilized. All of these models follow the same structure, but
they differ in terms of parameters. Each model T ∈ T, along with the other MDP elements, can
each be considered as separate, individual MDPs and separate, individual action policies can be
solved for every model (i.e., ∀ T ∈ T,∃ πT (s)).

Each individual MDP policy πT (s), based on a particular uncertainty model T is referred to
herein as a decision-maker D(T). The set of all decision-makers D(T) ∈ D(T) is the realization
of an MM-MDP. The remaining MM-MDP elements ⟨S,A,R⟩ are assumed to be common to all

56



decision-makers, so only the uncertaintymodelTneeds to be specified to distinguish one decision-
maker from another.

The challenge now is to develop a way to arbitrate, or combine the outputs of each action pol-
icy from each decision-maker. Each policy πT (s) will output an action to perform, based on its
particular model T and the current state s, which is common to all MM-MDP policies. In the end,
however, the system can only perform one action at each time step, so the outputs must be com-
bined in an informed way that leverages the potential benefits that multiple decision-makers may
provide. A naïvemethod of combining the policies is to use “majority voting.” Each policy’s output
aT is considered as a “vote” for that particular action and the action that receives the most votes
a∗, over the space of possible actions A, is the one that will be taken at that time step. This can be
formally stated by the following.

Algorithm 4.1:MM-MDP Action Majority Voting
1 Function MajorityVote(T,Π, s, A):
2 z← [0, 0, . . . , 0] : |z| = |A|
3 for i← 1 to |T| do
4 a← πi(s)
5 z[a]← z[a] + 1
6 return argmax

a
z[a]

Where z is the vote tally for each action a ∈ A. One of the main limitations of this approach,
however, is that every decision-maker gets an equal vote. Some decision-makers’ models may not
match the true, underlying model very well and the actions they suggest may result in detrimental
outcomes. Therefore, there is a need to estimate the “quality” of each model, in terms of how well
it matches the true, underlying model, and use this information to select actions that are likely to
achieve the best outcomes.

Theproposedmethod for estimating amodel qualitymetric is to use the concept of “uncertainty
of the uncertainty model” (UoU). Inspired by the fundamental concept of maintaining a belief
distribution over all possible states, b(s), as is done in POMDPs, UoU is quantified bymaintaining
a belief distribution over all possible models b(T), also referred to as “belief of the uncertainty
model” (BUM). Similar to the standard POMDP state belief update shown in (3.11), the model
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belief update is performed as a Bayesian belief updated. The concept is to update the belief of each
model b(T)∀Twith the probability of the particular state-action-state tupleT(s, a, s′) = P(s′|a, s)
as a way to describe how well the state-action-state tuple fits each model. This is done as follows.

b′(T) = ηT(s′, a, s)b(T),∀ T ∈ T (4.3)

Where η is a normalization constant to ensure the updated belief b′(T) sums to one.
Using BUM as a metric of model quality, the majority voting concept introduced above can be

modified to include weights, based on the BUMdistribution. Since b(T) ∈ [0, 1], the BUMvalues
can be used directly as weights. This “weighted majority voting” scheme can be formally stated by
the following.

Algorithm 4.2:MM-MDP Action Weighted Majority Voting
1 Function WeightedMajorityVote(T,Π, s, A, b(T)):
2 z← [0, 0, . . . , 0] : |z| = |A|
3 for i← 1 to |T| do
4 a← πi(s)
5 z[a]← z[a] + b(Ti)

6 return argmax
a

z[a]

Where z is the weighted vote tally for each action a ∈ A. The advantage of this approach is that it
gives decision-makers whose models are estimated to better match the unknown true underlying
model stronger influence over the action selection, lessening the chance that detrimental actions,
selectedbydecision-makerswithmodels that donotmatch the current situationwell,maybe taken.
While this kind of weighting can be beneficial when one or more of the models closely match the
true underlying model, it comes with the disadvantage that, over time, due to being a Bayesian
belief update, the BUM will tend to converge entirely towards a single model (unimodal BUM
distribution), or subset of the models (multimodal BUM distribution), that best match the true,
underlying model, if that model is constant. The effect being that all decision-makers, except the
one or small subset converged upon, will be essentially “locked out” of having any influence over
the decision-making, meaningmany of the advantages of theMM-MDP are lost, and the decision-
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maker will behave as a singleMDPor only a small set ofMDPs, losing the benefit of diversity. If the
converged upon decision-maker (or decision-makers) havemodels thatmatch the true, underlying
model very closely, then the effect of locking out all other decision-makers is fairly benign, since a
singleMDP that closely matches the truemodel is likely the best solution in terms of performance.
Given real-world sources of uncertainty, however, it is unlikely that any single MM-MDP model
matches the true, underlying model closely enough to ensure beneficial actions are likely to be
chosen. This is a caveat of the proposedMM-MDPmethodology and partially motivates the other
proposed methods, which do not suffer from this issue, to be described in later sections.

4.6.2 Multi-Model Partially Observable Markov Decision Process (MM-POMDP)

The MM-MDP framework presented in the previous section can also be extended to the Partially
ObservableMarkovDecisionProcesses, resulting in theMulti-Model PartiallyObservablyMarkov
DecisionProcess (MM-POMDP) framework. APOMDPisdefinedby the tuple ⟨S,A,R,T,Ω,O⟩,
where S is the state space, A is the action space, R is the reward function, T is the state transi-
tion function, Ω is the observation space, and O is the observation function. In contrast, the
proposed MM-POMDP is defined by the tuple ⟨S,A,R,T,Ω,O⟩, where instead of a single state
transition model T(s′, a, s) and a single observation model O(s′, a, o), a set of multiple state tran-
sition models T = {T1(s′, a, s), . . . ,TN(s′, a, s)} and a set of multiple observation models O =

{O1(s′, a, o), . . . ,OM(s′, a, o)} are utilized. All of thesemodels follow the same structure, but they
differ in terms of parameters. Each unique combination of T ∈ T and O ∈ O forms an uncer-
tainty model state ξ, or simplymodel for short. Each ξ ∈ Ξ, along with the remainingMM-POMDP
elements, can each be considered as separate, individual POMDPs. Therefore, separate, individ-
ual action policies can be solved for every model (i.e., ∀ ξ,∃ πξ (bξ(s))). Each individual POMDP
decision-maker also tracks its own state belief bξ(s) separately, using its specific transition model
Tξ(s′, a, s) and observation model Oξ(s′, a, o), but based on the single action a selected by the ar-
bitration step, combining the outputs of multiple decision-makers, and single observation event o
that occurs, based on the unknown, true, underlying model. For every decision-maker, the state
belief is updated via the standard POMDPbelief update equation, as shown in (3.11), but for every
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model ξ ∈ Ξ.

b′ξ(s
′) = ηOξ(s′, a, o)

∑
s∈S

[Tξ(s′, a, s)bξ(s)] ,∀ ξ ∈ Ξ (4.4)

Where η is a normalization constant.
Each individual POMDP policy πξ (bξ(s)), based on a particular uncertainty model ξ, and it’s

associated state belief bξ(s) is referred to herein as a decision-maker D(ξ). The set of all decision-
makersD(ξ) ∈ D(Ξ) is the realizationof anMM-POMDP.The remainingMM-POMDPelements
⟨S,A,R,Ω⟩ are assumed to be common to all decision-makers, so only the uncertainty model ξ
needs to be specified to distinguish one decision-maker from another.

The challenge now is to develop a way to arbitrate, or combine the outputs of each action policy
from each decision-maker, as was the case for the MM-MDP framework. Each policy πξ (bξ(s))
will output an action to perform, based on its particular model and its particular state belief. In the
end, however, the system can only perform one action at each time step, so the outputs must be
combined in an informed way that leverages the potential benefits that multiple decision-makers,
that can approach a problem in different ways, can provide. The same set of proposed methods
for the MM-MDP (majority voting, weighted majority voting, highest preference, and weighted
highest preference) can be extended to the MM-POMDP. The modified versions of these meth-
ods, based on the same concepts as for the MM-MDP, are presented below, starting with majority
voting.

Algorithm 4.3:MM-POMDP Action Majority Voting
1 Function MajorityVote(Ξ,Π, bξ(s), A):
2 z← [0, 0, . . . , 0] : |z| = |A|
3 for i← 1 to |Ξ| do
4 a← πi(bξi(s))
5 z[a]← z[a] + 1
6 return argmax

a
z[a]

Where z is the vote tally for each action a ∈ A. Again, as with the MM-MDP, this gives every
decision-maker an equal vote and does not incorporate any information about which decision-
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makers’ models better match the true underlying model. Therefore, the same concept of “belief
of the uncertainty model” (BUM) is extended to the MM-POMDP. The concept is to weight the
probability of the observation event o, given the state s and the action taken a with the state belief
of a particular decision-maker bξ(s), to describe howwell the observation fits that decision-maker’s
model ξ. This is done as follows.

b′(ξ) = η
∑
s′∈S

[
Oξ(s′, a, o)

∑
s∈S

[Tξ(s′, a, s)bξ(s)]

]
b(ξ),∀ ξ ∈ Ξ (4.5)

Where η is a normalization constant.
And again, as the MM-MDP, this BUM metric can be used as weights to create a weighted ma-

jority voting arbitration scheme, shown below.

Algorithm 4.4:MM-POMDP Action Weighted Majority Voting
1 Function WeightedMajorityVote(Ξ,Π, bξ(s), A, b(ξ)):
2 z← [0, 0, . . . , 0] : |z| = |A|
3 for i← 1 to |Ξ| do
4 a← πi(bξi(s))
5 z[a]← z[a] + b(ξi)
6 return argmax

a
z[a]

Where z is the weighted vote tally for each action a ∈ A. Again, as with theMM-MDP, this results
in a loss of diversityupon convergence to a singlemodel, or subset ofmodels, whichmotivates other
proposed methods discussed in later sections.

4.7 RevisitedCase Study: SimulatedMulti-Model Single Robot Forag-

ing

Thepossible improved resilience to ambiguity of multi-model decision-making is investigated first
by implementing anMM-MDP solution to the robot foraging problem as described in Section 4.4
and comparing this solution to the heuristic FSM solution and the traditional singleMDP solution
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Model NE cluster Pgrab NW cluster Pgrab
T0 0.9 0.9
T1 0.5 0.5
T2 0.3 0.9
T3 0.7 0.1
T4 0.5 0.0

Table 4.7.1: MM-MDP Robot Foraging Transition Models

results shown in Section 4.5. Recall that in the foraging problem described in Section 4.4 as far
as the robot knows, its probability of successfully acquiring food is a fixed probability and does
not depend on any other factors. In the true system, implemented by the simulation, however, the
robot’s ability to grab food is dependent on an additional “heading” state of both the robot and the
food. If the robot’s heading and the food’s heading are aligned, the robot’s probability of picking
up the food is high and the probability decreases as the difference in heading is greater. The robot’s
decision-maker does not know about this additional state which causes this source of uncertainty,
however, in order to give the MM-MDP solution the chance to account for this ambiguity, the
definition of the problem described in Section 4.4 is extended to enable the MM-MDP robot to
make awider range of choices. This is done by giving the robot knowledge that foodmay be located
in one or more clusters and that food in different clusters may have a different Pgrab. The reason this
knowledge of clusters and their possibly different Pgrab is necessary is to enable the robot to make
decisions aboutwhich clusters to visit and attempt to grab food. One clustermay be closer to home
than another, enabling the robot to traverse less distance, but it may have a lower probability of
successfully grabbing food at that cluster and it would bemore successful at its mission traveling to
the farther cluster. But since Pgrab is dependent on a hidden heading state, the robot’s assumption
about the Pgrab value for a cluster may be incorrect, leading to ambiguity.

To define an MM-MDP, a set of multiple transition models are used to consider different possi-
bilities for the grab success rate. The underlying reasons for these different grab probabilities are
not understood by the robot’s decision-maker; it simply understands that a fixed assumption about
the grab success probability may be incorrect. A set of five transition models {T0,T1, . . . ,T4} are
considered by the MM-MDP decision-maker and their specific values of Pgrab assumed for each
cluster are described below in Tab. 4.7.1.
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Using the same foodmap and gridworld configuration aswas used in the case study described in
Section 4.5, a set of separate MDP policies πT(s) are solved for each T ∈ T. Each of these policies
are tested using both the majority voting (MV) and weighted majority voting (WMV) arbitration
schemes for three different true underlying model conditions. The true underlying models are
three different cases of the unknown food heading for each of the two food clusters. These true
models are the same as were used in the case study in Section 4.5 and have the same parameters as
presented in Tab. 4.5.1

The performance of each decision-making strategy is compared by examining the distribution
of the accumulated rewardU, the same as described in the case study presented in Section 4.5 and
(4.2). These results are presented in Fig. 4.7.1 and Tab. 4.7.2. For the majority voting method, the
performance across all three true scenarios follows a similar trend to that of the single MDP sce-
nario, presented in Section 4.5.3. It does, however, have more outliers, especially for true model
Tt

1. And again, the same failuremode is encountered for truemodelTt
2, where the robot repeatedly

tried to pick up food it cannot pick up and incurs nothing but failed grab penalties, for the entire
duration of the simulation, for all Monte Carlo trials. This is worthy of note, because one of the
decision-maker’s models, T5, does describe the scenario where food in the north-west cluster can-
not be picked up. However, this decision-maker’s proposed actions get out-voted each time, during
the majority voting arbitration process, due to the other four decision-makers believing that there
is a chance to pick up food from the north-west cluster. The decision-maker based on model T5

essentially gets treated as an outlier, by the other decision-makers, based on the other models and
even if the physical feedback the robot is getting about repeated failures to grab is demonstrating
that this model may better describe the situation than any of the other models.

The weighted majority voting strategy is a way to incorporate this physical feedback. It can be
seen that the scenarioswithweightedmajority voting generally performedbetter thanmajority vot-
ing, especially for the case of true model Tt

2. In this case, unlike with the single MDP and majority
voting, the robot is able to perform the mission in a limited capacity and not get stuck trying to
pick up food that is impossible for it to pick up. The robot must first experience some failures to
gain some information through physical feedback, but once this information is gained, the votes
of models that agree with the physical feedback are given stronger influence over decision-making,
since they better describe the situation the robot has encountered. This combination of diversity
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Figure 4.7.1: MM-MDP foraging solution results, comparing majority voting (MV) and
weighted majority voting (WMV), for three different true models: [Tt

0,Tt
1,Tt

2].

and physical feedback, using physical feedback to arbitrate diverse decision-makers, based onwhich
ones are more likely to propose successful solutions, is a key outcome for the objectives of this
research. This method’s resilience to ambiguity, however, is highly dependent on having a set of
sufficiently diverse models to create sufficiently diverse decision-makers. An additional case study
on a different decision-making problem, a simulated traffic intersection controller, is provided in
Appendix A. This problem is modeled as partially observable and implements the MM-POMDP
framework. Some final conclusions about the multi-model decision-making frameworks investi-
gated thus far are presented next.
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Tt
0 Tt

1 Tt
2

Max 0% -2.96% 116%
Upper Quartile 0% -17.02% -116.1%
Mean -5.46% 233.0% 116%
Median 0% 59.18% 116.0%
Lower Quartile 0% 588% 115%
Min -52.78% 120.0% 111.9%
Std Dev 551.9% -90.21% ∞%

Table 4.7.2: Percent change between WMV and MV (baseline) of major statistics for three
different true models: [Tt

0,Tt
1,Tt

2].

4.8 Multi-Model Decision-MakingConclusions

Themulti-model decision-making frameworks described and demonstrated through the case stud-
ies above partially address the research objective of increasing the resilience of decision-making
to ambiguity through the addition of physical feedback and diversity to aid the decision-maker in
choosing actions based on differentmodels, using an estimate of its “uncertainty of the uncertainty
model” (UoU).This UoU estimate encodes the physical feedback and the library of different mod-
els to arbitrate provides the diversity. With all of these scenarios, however, the different proposed
actions by each diverse decision-maker must be arbitrated down to one action to be taken at each
time step, because it is one system that can only take one action at a time. While diversity is used to
propose several different possible actions, some of the benefit of diversity is lost in the arbitration
step.

Also, these multi-model frameworks only operate within a limited space of models, provided to
them by the human designer. They cannot handle ambiguity that is not at least partially described
by one or more of the models they are provided with. While this is an interesting approach to con-
sider for some types of decision-making problems, it does not fully satisfy the motivations of this
research. What is of more interest is investigating ways in which decision-makers can overcome
ambiguity without needing to explicitly estimate the ambiguous distributions of uncertainty. Dis-
cussions leading to a proposed framework that works towards achieving this are presented next.
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4.9 The Curse of Ambiguity

The use of multiple uncertainty models in the decision-maker is a naïve way to provide resilience
to ambiguity, but one that can be effective if enough of the space of possible ambiguity scenarios
is considered. Other methods exist as well which also attempt to incorporate an estimate of the
parameters defining the ambiguity [54–57] and some make use of an “ambiguity attitude” [57] to
guide the selection of actions. Inmany cases, however, these existing decision-making under ambi-
guity methods suffer greatly from the curse of dimensionality and are often only applicable to the
simplest of problems. Even decision-making under uncertainty methods that do not incorporate
ambiguity suffer from the curse of dimensionality, because outcomes are represented over proba-
bility distributions. Considering ambiguity only compounds this problem, because nowoutcomes
are represented over distributions of distributions. This is referred to as the “curse of ambiguity”
[57]. Therefore, most existing methods do not sufficiently address the motivation of this research,
which is to improve robotic decision-making in the real-world, where problems can be assumed to
be simple enough to solve with these methods. Further research into other methods that work to
mitigate these limitations is needed.

4.10 ResearchHypothesis: Trial and ErrorMethods

The curse of ambiguity makes solving problems involving ambiguity computationally challenging.
Methods that exhaustively search the state-action space to find optimal solutions are generally in-
tractable and approximate methods are needed. Even for approximate methods that use informed
search, such as MCTS, addressing high-dimensionality problems, this curse of ambiguity is still a
challenge. For these methods, the challenge tends to arise from the need to sufficiently sample the
state-action space of the problem in order to either attempt to model the ambiguous distributions
of uncertainty or attempt to indirectly model them through directly approximating the “optimal”
state-action value functionQ(s, a). This is the classical philosophy of the field of decision-making:
attempt to develop a globally consistent, top-down understanding of the problem and then apply
a decision-making strategy based on that understanding and an estimate of the “quality” of that
understanding, if applicable (e.g., similar to estimating “belief ” in a POMDP). In order to explore
other solutions to the curse of ambiguity, a step must be taken outside of this paradigm.

66



Onecategoryofdecision-making strategies that, whenutilized correctly, canescape this paradigm
are trial and errormethods. Trial and error decision-making is defined in this context as a decision-
making method that uses a source of randomness to alter the decision-making strategy when out-
comes are judged to benot providing sufficient payoffor notmaking sufficient progress towards the
objective [112]. It is hypothesized that trial and errormethods can be applied to complex decision-
making under ambiguity problems to both address the computational issues of the curse of ambi-
guity and to investigate decision-making that is resilient to ambiguity. Therefore, the following
research hypothesis is posed:

Informed trial and error methods can solve complex decision-making under ambigu-
ity problems while providing resilience to ambiguity and without significant compu-
tational cost.

A common challenge with trial and error methods, however, is informing the sampling to select
new strategies in an informed way that is not just uniformly random. In the context of decision-
making under ambiguity and the objectives of this research, the three key factors outlined earlier
(physical feedback, diversity, and swarm local interactions)will be used to inform the trial and error
methods proposed next.

4.11 Proposed Framework: Ambiguity Trial and Error (AT&E)

Let a decision-making problem be defined in a similar manner to a Markov Decision Processes
(MDP), with a set of states S, a set of actions A, a transition function T and a reward function
R. Only discrete problems are considered, for simplicity. The transition function T describes the
model of how actions, taken from a current state, map to new state outcomes. Some outcomesmay
be deterministic, but in general, the transition functionT represents probabilistic outcomes. How-
ever, the transition function is also parameterizedbyoneormore finite valued ambiguity parameters
θ ∈ Θ. This results in a transition function defined as follows.

T(s′, a, s; θ) = P(s′|s, a; θ) (4.6)

Different values of these ambiguity parameters θ result in different probability mass distribu-
tions that affect the outcome of stochastic state transitions. Parametric distributions in decision-

67



making processes are not a new concept; parametricMDPs or pMDPs are an existing field of study
[113]. Most existing methods assume, however, that the decision-maker has full knowledge of the
transitionmodelT(s′, a, s; θ) for every value of θ. AT&E relaxes this assumptions by only assuming
that the decision-maker has knowledge of the number of ambiguity parameters θ ∈ Θ and their
ranges of possible values. It does not know the true values of θ, nor does it necessarily know how
the state transition model is defined for all values of θ. The decision-maker may have an initial esti-
mate of the probabilities of the possible state transition outcomes for one or more values of θ, but
not for all values of θ. Additionally, even for the known values of θ, the initial estimate of the state
transition probabilities could be incorrect. It is also possible that the values of θmay be parametri-
cally dependent on the state θ(s). For example, they may vary with position or time. These are the
sources of ambiguity in this problem framework. The robot must decide how to choose actions to
attempt to achieve its objective, defined by the reward function R, given that the distributions of
uncertainty involved in the problem are not fully known, that the initial knowledge of the known
portions may be incorrect, and that the distributions may vary parametrically.

The proposed framework to solve this problem is known as Ambiguity Trial and Error (AT&E).
Thecore conceptof this framework is different thanmost “top-down”decision-making frameworks.
The objective is not to attempt to jointly estimate explicit values of the state transition probabilities
inT(s′, a, s; θ) as well as attempt to develop amodel of θ(s) over all states. Rather, the idea is to use
informed trial and error methods, sampling over different possible values of θ, to find actions that
lead to desirable outcomes, in terms of R, when the initial knowledge of a portion of T(s′, a, s; θ)
(if any) is not leading to successful outcomes. Essentially, try different actions, based on sampling
different values of θ, and find ones which lead to action strategies that work better at achieving the
objective. The key source of prior knowledge here is that the space of ambiguity parameters Θ is
known, so the sampling occurs over a finite space of possible values.

There are two key innovations presented byAT&E.Thefirst is amission progress monitor (MPM)
function that estimates if the robot’s current decision-making strategy, based on the current values
for the ambiguous parameters θ, is making sufficient progress towards the robot’s objective, or if
ambiguity parameter sampling should be triggered for the parameters associated with the current
subtask. Thedefinition of theMPM is specific to the decision-making problem towhich this frame-
work is applied; however, the general purpose of it is always the same: recognize that progress is
not beingmade and choose when to sample a new value for a particular ambiguity parameter. This
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aspect of AT&E could be an entire field of study on its own, since deciding that sufficient progress
towards the objective is or is not being made may be challenging in some problems. It is not the
aim of this research to investigate this aspect thoroughly, so it is acknowledged that some of the
methods used in the MPM in the case studies may be overly simplistic.

The second innovation, which is the larger focus of this work, is informing the ambiguity pa-
rameter sampling strategy, based on information observed about the problem, to be more likely to
find successful action strategies. Retaining a full history of outcomes and repeatedly incorporating
new experience into an attempt at modeling the distribution over θ in an attempt to develop the
“most accurate” sampling strategy is not in linewith the philosophy of this framework andwould be
very computationally expensive. Instead, heuristic strategies are employed to weight the sampling
of θ to be more informed than uniform random sampling, when possible. This is where the three
key factors of physical feedback, diversity, and swarm local interactions come into play. The
decision-making agent uses its ownmost recent experience of succeeding or failing at the task, and
themost recent experienceof other agents itmayencounter if it is part of a swarmofmultiple agents,
to bias the sampling of θ towards successful outcomes and away from unsuccessful outcomes. The
operation of is shown in Alg. 4.5.

Algorithm 4.5: Ambiguity Trial and Error
1 Procedure AT&E(s, θ)
2 a ∼ π(s, θ)
3 s′ ∼ W(s, a)
4 so ← C(s′)
5 r← R(s′, a, s)
6 if MPM(r, s′, a, s) then
7 P(θ|s′, so)← weightSampling(θ, s′, so)
8 θ ∼ P(θ|s′, so)
9 return s′, r, θ

Where π(s, θ) is the agent’s action policy, given the current state and currently assumed values of
the ambiguity parameters θ,W(s, a) is the interface to the real world, where an action is taken and
a new state outcome is returned based on an ambiguous stochastic process, C(s′) is the commu-
nication function, which gets the states of the other agents so within communication range, if any,
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when the agent is at state s′,R(s′, a, s) is the agent’s reward function,MPM(r, s′, a, s) is themission
progress monitor function, and weightSampling(Θ, s′, so) produces a probability distribution
over θ, based on the robot’s own state s′ and the states of the other visible agents so, to be used for
sampling a new value of θ. BothMPM andweightSamplingmust be specifically defined for the
particular problem to which this framework is applied. The action policy π(s, θ)may in general be
a stochastic policy, though this is not a strict requirement of the AT&E framework. This means
that for a given prior state s and ambiguity parameter value θ, the chosen action may be stochastic.
This is not a strict requirement and a determinisitc policy may be used if it is more appropriate to
the problem. The reason for allowing stochastic policies is that problems involving ambiguity may
be better addressed by a stochastic policy (i.e., trying different actions in order to explore different
outcomes, since the distributions of uncertainty are not known). In the case of AT&E, the ambigu-
ity parameters θ can be used to weight the stochastic action choices, biasing them towards actions
that lead to more successful outcomes.

The weighting of the ambiguity parameter sampling, based on the agent’s own experience, and
that communicated to it by other swarm agents as it encounters them, is the key focus of this algo-
rithm. The most recent experience is the only experience kept to avoid computational issues due
to retaining long histories and to enable the agent to react faster to non-stationary ambiguity that
may be changing rapidly. This is leveraging physical feedback from the environment to influence
the agent’s decision-making. Avoiding becoming locked into making decisions only one way is im-
portant to remain resilient to ambiguity, especially when the ambiguitymay be non-stationary and
may not remain constant with location or time. The agent must be able to maintain diversity in
its choice of actions in order to explore other possibilities or overcome non-stationary ambiguity.
This is why a sampling strategy for newparameters of θ is used. Sampling new values onlywhen the
decision-making strategy is not making sufficient progress towards the goal, however, enables the
agent to explore new strategies when it is not performing well, but keep the strategy it has when it is
performingwell and exploit its ability, at least at thatmoment, to achieve the objective as best it can.
And finally, the incorporation of the same type of experience from other agents, in the case of the
agent being a part of a swarm, can help to augment the agents own experience and provide more
information than it would have gathered through its own physical feedback alone, possibly improv-
ing its ability to overcome ambiguities even further. This exchange of information and influencing
of behavior through swarm local interactions also enables more complex behaviors to arise that may
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not be possible in the case of single agents. The properties of swarms and the local interactions are
discussed more next, since this is a key area where AT&E can leverage its full potential.

4.12 Swarm Local Interactions

In a distributed robotic swarm, every agent in the swarmdoes not have full knowledge or the ability
to communicate with the entire swarm at any one time. The agents act mostly independently, at-
tempting to achieve their objectives, based on their own knowledge, but the group of robots would
not be considered a “swarm” if therewas not at least some level of interactionbetween agents. In this
work, swarm agents are able to interact by communicating with other agents in their local neigh-
borhood (i.e., with other agents that are physically nearby) and exchanging information. This in-
formation exchanged during these local interactions may influence the agent’s decision-making,
resulting in different actions being chosen than would have been chosen otherwise, had there not
been an exchange of information between the agent and its neighbors. An individual agent makes
decisions based on its own objectives and knowledge (e.g., models) and physical feedback from the
environment, gained from observations after taking actions. Local interactions between swarm
agents enable the influence of physical feedback to spread beyond just one agent and indirectly in-
fluence the decision-making of other agents as well. This concept of information from different
agents being exchanged and influencing their decision-making, if leveraged correctly, may result in
what is known as emergent behaviors, which are actions of the swarm as a whole (or local neighbor-
hoods within the swarm) that are not explicitly designed into any of the individual swarm agents’
decision-making capabilities. Emergent behaviors are not straightforward to design into a swarm
decision-making framework in a predictable way and attempting to do so is often contradictory
to the purpose of emergent behaviors in the first place. Their purpose is to help the swarm solve
the problem in ways it was not explicitly programmed to do and it is hypothesized that this is the
mechanism through which a robotic swarm may demonstrate resilience to ambiguity.

This concept is related to and partially inspired by the Particle Swarm Optimization (PSO) al-
gorithm [114, 115]. PSOuses swarms of “particles” distributed throughout the space of a problem
to work to solve the problem by each particle sampling the objective function at their different “lo-
cations” within the problem space. They then use their own experience, plus that of other particles
nearby in the search space, to influence their iterative movement through the search space to find
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the “best fit approximation” at solving the objective. Thekey difference in how the proposed swarm
AT&E framework operates, compared to traditional PSO, is in how the “objective” and “problem
to be solved” is defined. Rather than solving for a “best fit” solution to scalar function defined over
some space, as is done is PSO, AT&E is used to guide the selection of actions of each agent (or
particle) in the swarm to carry out an evolving, stochastic, ambiguous decision-making process.
Classical decision-making theorymay argue that finding a “policy” to solve a decision-making pro-
cess is simply a matter of finding a best-fit solution to the “value function” over all the space of
state-action outcomes (i.e., approximating Q(s, a)) and that the purpose of a framework such as
AT&E is fundamentally no different than that of PSO. As explained previously, however, doing so
requires a considerable amount of accurate prior knowledge about the structure and parameters
that define the dynamics of the problem (i.e., accurate models). When outcomes are randomly
distributed (i.e., stochastic problems), then models must describe probability distributions over
outcomes, increasing the complexity of the problem. This increase in complexity is significantly
compounded when it cannot be assumed that this knowledge of the distributions of uncertainty is
accurate, or in other words, when there is ambiguity. Attempting to model this explicitly leads to
“distributions of distributions” over outcomes, which is computationally challenging, as described
earlier when discussing the curse of ambiguity in Section 4.9. This generallymakes finding solutions
to decision-making under ambiguity problems, using classical methods, intractable for all but the
simplest problems. It is the objective of AT&E, therefore, to use the concept of exchanging diverse
information through swarm local interactions, in a similarmanner to that of PSO, to solve complex
decision-making under ambiguity problems without computational challenges of methods more
directly based on classical decision-making theory. Therefore, to explore these concepts and evalu-
ate theproposedAT&Eframework, the robotic foragingproblemthathasbeenused in theprevious
case studies is extended both to enable the use of swarms, but also to add additional challenges and
sources of ambiguity tomake the problem a better approximation of a complex real-world situation
that requires the use of these techniques.

4.13 ProblemDescription: Simulated Robotic Swarm Foraging

Thegridworld foraging problemdescription originally presented in Section 4.4 can be extended to
include multiple robots, all trying to perform the same objective: pick up food and bring it home.
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Each robot chooses its own actions to solve the foraging problem collectively, forming a distributed
swarm. In order to give the robots the ability to have local interactions and the potential to develop
emergent behaviors that provide resilience to ambiguity, collectively as a swarm, different robots in
the swarm need to be able to communicate with their neighbors and exchange information. It is
assumed that the robots have a limited communication range and can only exchange information
with their neighbors when they are within a certain distance of each other. This distance threshold
will be specified in the descriptions of the case studies that implement this problem formulation.
The information the robots exchange with each other includes at a minimum their: x,y position,
state of possessing food or not, and an identification (ID) number unique to each robot in the
swarm. Additional information may be needed for later case studies and will be specified in the
case study descriptions.

Some additional constraints are needed for simulating this swarm foraging problem. One is that
robots are not allowed to occupy the same grid cell as other robots and robots are prohibited from
selectingmove actions whichwouldmove them to the same grid cell as another robot. For simplic-
ity, it is also assumed that each robot in the swarm performs its actions sequentially, rather than
all agents performing their actions simultaneously. In other words, robot ID 0 perceives the state
of the environment, chooses its action, carries out that action and updates its states and the state
of the environment first, then robot ID 1 performs the same sequence, and so on. Once all robots
have performed their actions, then one time step in the simulation is complete. It is understood by
the author that this sequential execution framework is limiting and gives preference to the earlier
robots in the sequence, but optimizing the execution of swarm simulations is beyond the scope of
this research, so this simple formulation is considered sufficient.

Also, in order to make the problem a better approximation of a real-world foraging problem,
some of the assumptions that were made in the original formulation are removed. These assump-
tions were necessary previously in order to make the problem computationally tractable as an
MDP, but the solution methods that will be applied moving forward are low computational cost
methods, implemented within the AT&E framework Therefore, increasing the dimensionality of
the problem to make it more realistic is not a significant concern. Specifically, the aspects of the
problem that are being changed are:

1. The robot no longer has full knowledge of themap. It can only detect food within a “percep-
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tion range,” which is the same as the swarm local interaction communication range.

2. The robot no longer has an explicit concept of “food clusters.” Without full knowledge of
the locations of food in the map, this is of little use and significantly reduces the amount of
prior knowledge the robot must be provided with about the problem. As described later in
this section, the robot does assume the properties of food to be spatially correlated, but less
directly than in the previous formulation.

The consequences of relaxing these assumptions is the robotmust now search for food, rather than
directly approach it at already known locations. This essentially splits the foraging decision-making
problem into two subtasks: search and approach, whereas previously it was just one approach task.

The foraging problem is also further extended to include additional sources of ambiguity. The
original source of ambiguity, food grab probability due to the unconsidered “heading” state, is still
present, but an additional source of ambiguity, food approach direction, is added. This ambiguity
parameter describes a phenomenon where the probability of the robot successfully grabbing food
may also depend on the direction from which the robot approaches the food. The inspiration for
this approach direction ambiguity comes fromanunexpected situation thatwas encounteredwhen
performing initial tests of real-world foraging experiments, whichwill bedescribed in a later section.
Nonetheless, due to observing this phenomenon, it was decided to include it as a key part of the
problem description. In terms of formally defining ambiguity parameters, as is needed to define
an AT&E problem, the ambiguity parameter space Θ consists of a set of two parameters, the food
grab probability θG and the food approach direction θA. Both of these ambiguities are considered
to possibly vary with location and with time. The parameters are formally defined as follows:

1. Food grab probability θG: A scalar probability value between 0 and 1, representing the prob-
ability of grabbing food.

2. Food approach direction θA: A discrete integer ranging from 0 to 8, each corresponding to
a direction (E, NE, N, NW, etc.) from which the robot is to approach food it is attempting
to grab.

Presented next is a case study implementing a simulated swarm foraging scenario with this up-
dated foraging problem. The focus of this case study is to investigate the resilience to ambiguity
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Figure 4.14.1: State transition diagram for the AT&E FSM action policy

of the proposed AT&E framework. The specific decision-making strategies used to implement a
solution to the foraging problem, within the AT&E framework will be described, along with how
the ambiguity parameters θG and θA are used to influence the decision-making.

4.14 Case Study: Simulated Robot Swarm Foraging

The swarm foraging problem described above in Section 4.13 is solved using a heuristic FSM solu-
tion, similar to the FSM solution presented in Section 4.5.1. This FSM solution is modified, how-
ever, to account for the increased problem complexity and additional sources of ambiguity, as well
as to implement the AT&E framework.

4.14.1 AT&E FSM Solution

Instead of a Select Target FSM task, a Search FSM task is now implemented, since the map is now
unknown and the robot must search for food. Search implements a stochastic search policy where
search locations are selected in aweighted randomfashion,when information forweight is available.
The new FSM state transition diagram is shown in Fig. 4.14.1.
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Theinformation used toweight search location selection is the robot’s current assumption about
the food grab probability ambiguity parameter for every x and y location in the map (i.e., θG(x, y).
In the interest of keeping computational requirements low and providing resilience to ambiguity, a
purposefully naïve update rule is used for θG(x, y). The values of θG(x, y) areweighted based on the
robot’s ownmemory of the “last successful food location” and the “last failed food location,” as well
as those communicated to it by the other swarm agents with which it may have local interactions.
In other words, the robot remembers both the most recent location it successfully picked up food
and the location where it most recently failed to pick up food and communicates these locations
to other agents during local interactions. To avoid computational issues associated with recording
longhistories of outcomes and also to avoid strong convergence, only themost recentmemories are
kept and the memories communicated by other swarm agents are cleared every time a robot visits
home. As it encounters other swarm agents while searching, it will exchange memories with them
again. Each successful food location, from both it and communicated from other agents, creates
a peak in the distribution θG(x, y) and each failed food location creates a valley. The stochastic
search policy then samples an (x, y) pair from this distribution and sets that as the next search
location to which the robot will travel. The weighting based on the previous successful and failed
locations increases theprobability that locationsnear previously successful locationswill be chosen
and decreases the probability that locations near previously failed locations will be chosen. An
example of a particular θG(x, y) grid map used for selecting search locations is shown in Fig. 4.14.2

Also similar with the previous FSM implementation, once the robot finds food, it may choose
to approach it. There are two main differences with the implementation of the Approach FSM
task than with the previous foraging simulations. The first is that the choice to approach visible
food is based on a heuristic that compares the “value” of that food being grabbed with the distance-
discounted “value” of food that could be grabbed elsewhere. Essentially, the idea of this heuristic is
to encourage the robot to explore other areas of themap if it experiences a grab failure in a particular
location. If a failure is experienced, this will reduce the grab probability (θG) of any nearby food,
since the robot assumes spatial correlation of food grab probability. If the distance-discounted
value of food elsewhere in themap exceeds the non-discounted value of the nearby food being con-
sidered, the nearby food will not be approached. Otherwise, it will choose to approach the nearby
food, as would normally happen. This heuristic was added during testing, when it was observed
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Figure 4.14.2: Example of the food grab probability map used to select search locations. Lo-
cations with higher probability are near previously successful locations and are more likely to
be chosen by the stochastic search policy. Locations within a certain distance of the robot’s
current location are excluded in order to encourage the robot to explore farther locations.
This is visible as the large dark square region. The robot is located at the center of this re-
gion.

that the robot would keep trying to grab all nearby, visible food even after a failure was experienced
and some incentive was needed to make the robot explore other regions of the map after a failure.

The second difference with the Approach FSM task is the addition of maneuvering to an offset
location, before approaching food and attempting to grab. This functionality is based on the ap-
proach direction ambiguity parameter θA. The offset location towhich the robotmaneuvers before
moving to the food location and attempting to grab is determined by the robot’s current assump-
tion of the value of θA. For example, if the value of θA is north-east, the robot will move to the
grid cell north-east of the food, before moving to the food location itself. As was mentioned previ-
ously, this ambiguity parameter and the directional approach logic was added to the AT&E FSM
foraging problem after observing an unexpected source of uncertainty during testing of the real-
world foraging experiment, analogous to this simulation. Further details on the configuration of
the real-world experiment will be provided in Section 4.22.1, but the relevant aspect thatmotivates
the inclusion of the θA ambiguity parameter is thewheel geometry of the holonomic robots used in
the experiment. The robots used are a modified TurtleBot design that uses holonomic Kiwi drive.
The robots have a roughly hexagonal top-down footprint, with wheels on three of the six sides. In
order to grab the food pucks used in the experiment, the robot must drive over top of the food and
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Figure 4.14.3: Example of the robots used in the real-world experiment pushing the food
puck with its wheel and being unable to maneuver into position to grab the food. This was
the motivation for the inclusion of the approach direction ambiguity parameter.

use an electromagnet mounted on its underside to attempt to pick up the food. It was discovered
during testing that if the robot attempted to approach the food from any of the sides onwhich it has
a wheel, it would push the food puck with its wheel and be unable to grab it. If it approached from
a side without a wheel, however, it could successfully position the electromagnet near the food and
have a chance of grabbing it. This “wheel pushing” situation is shown in Fig. 4.14.3.
Simple food pushing dynamics, based on the TurtleBot wheel geometry, were also added to the
simulation to reflect this situation that was discovered through real-world testing. The robots are
given no knowledge of these dynamics, or the uncertainty distributions associatedwith them, how-
ever. While knowledge of this approach direction uncertainty, due to the robot’s wheel geometry,
could have been hard-coded into the decision-maker’s logic, it was decided that this represented an
excellent opportunity to include another source of ambiguity in the problem. The robot is given
the knowledge that the direction it approaches the foodmay affect its ability to successfully grab it
(i.e., it has knowledge that there is a θA ambiguity parameter), but it does not know distribution of
uncertainty over outcomes of different values for θA. Therefore, this is a source of ambiguity.
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The way the approach direction is handled by the AT&E FSM solution is the robot starts with
an initial, uniformly random choice of the approach direction. If the robot is successful at grab-
bing food, using this approach direction, it continues with it. Once it experiences a grab failure,
however, it then chooses a different approach direction, randomly. Each robot keeps a memory of
the approach direction that was used with its last successful food grab and this is another piece of
information that is shared between agents when local interactions occur. Therefore, when a robot
needs to select a new approach direction, the random choice is weighted by memories of success-
ful approach directions from other swarm agents it has encountered while searching. This means
that more successful approach directions are more likely to be chosen, when sampling occurs. The
robot does not simply mimic what the other agents do, however. It performs this trial and error
process based on weighted random choice, so that it is more likely to choose what the rest of the
swarm is finding to be successful, but sometimes it will make a different choice and explore other
values of the θA. While such a strategymay reduce the average performance of the robot, it provides
a reasonable exploration-exploitation trade-off, in the face of ambiguity. Recall that resilience to
ambiguity is more important to the objectives of this research than optimizing performance.

Both theMPMfunction andweightSampling function, used to trigger and sample newvalues
of θG and θA are separated into two pairs of functions that correspond to the two subtasks: search
and approach. The θG parameter is sampled in the context of the search subtask and θA is sampled
in the context of the approach subtask. The MPM function for θG is a “reset” function that purges
the list of last successful and last failed food locations communicated from other swarm agents
during local interactions. This reset is triggered if the number of search waypoints to which the
robot travels and fails to find any food exceeds a threshold α (chosen to be 5 in the following case
studies). This is shown in Alg. 4.6.

Algorithm 4.6: Search Subtask MPM
1 ProcedureMPMθG(r, s′, a, s)
2 if s′.numFailedSsearch > α then
3 return TRUE
4 return FALSE

TheweightSampling function for θG is what defines the discrete 2D PMF over themap, used
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to sample search waypoints. An example of this is shown in Fig. 4.14.2 and is computed as shown
in Alg. 4.7.

Algorithm 4.7: Search Subtask weightSampling
1 ProcedureweightSamplingθG(θG, s′, so)
2 Fs = [s′.Fs]
3 Ff = [s′.Ff]
4 for i← 1 to |so| do
5 Fs.append(so[i].Fs)
6 Ff.append(so[i].Ff)
7 θG ← ones(size(s′.map))
8 forall (x, y) ∈ s′.map do
9 forall (xs, ys) ∈ Fs do
10 θG(x, y)← θG(x, y)/(dist(x− xs, y− ys) + 1)
11 forall (xf, yf) ∈ Ff do
12 θG(x, y)← θG(x, y) · (dist(x− xf, y− yf) + 1)
13 if dist(x− s′.x, y− s′.y) < β then
14 θG(x, y)← 0

15 θG ← θG/sum(θG)
16 return θG

Where Fs is the list of successful food x, y locations, Ff is the list of failed food x, y locations, and
β is the minimum distance threshold for how far a new search location should be from the robot’s
current location.

The MPM function for θA triggers sampling of a new value every time the robot experiences a
failed grab attempt. This is shown in Alg. 4.8. The weightSampling function for θA uses the last
successful approach direction from each swarm agent to weight the selection of a new approach
direction, from any of the eight possible approach directions, in the discrete grid world. This is
shown in Alg. 4.9.
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Algorithm 4.8: Approach Subtask MPM
1 ProcedureMPMθA(r, s′, a, s)
2 if a == GRAB then
3 if s.hasFood == FALSE then
4 if s′.hasFood == TRUE then
5 return TRUE

6 return FALSE

Algorithm 4.9: Approach Subtask weightSampling
1 ProcedureweightSamplingθA(θA, s′, so)
2 θA = ones(numApprDir)
3 for i← 1 to |so| do
4 d← so[i].d
5 θA[d]← θA[d] + 1
6 θA ← θA/sum(θA)
7 return θA

Where d is an approach direction (i.e., E, NE, N, NW, …). The full code for running this imple-
mentation of foraging AT&E, in addition to the foraging simulation itself, can be found at https:
//github.com/wvu-irl/foraging-sim-py. The computational complexity of this imple-
mentation of foraging AT&E is driven by that of the weightSampling functions for both θG and
θA for the search and approach subtasks, as shown in Alg. 4.7 and Alg. 4.9, respectively. The com-
plexity of the search subtask isO(kn) and the complexity of the approach subtask isO(k), where k is
the number of swarm agents and n is the size of themap (i.e., n = |x||y|). So overall, the worst-case
complexity of this implementation of foraging AT&E isO(kn).

4.14.2 Simulation Configurations

Several scenarios are tested with different parameters of the simulation varied to characterize the
resilience to ambiguity of AT&E.One variable is the configuration of themap. Four differentmaps
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(a) Model 0 (b) Model 1 (c) Model 2 (d) Model 3

Figure 4.14.4: Foraging maps used for the AT&E FSM simulations. The red grids represent
robot locations, the black grids the home region, and the green grids food locations. Different
shades of green represent different food headings.

are tested, with the first three maps (model 0, model 1, and model 2) having the same geometric
configuration, but different food grab probabilities for certain food in themap. These scenarios are
analogous to those tested in the previous foraging simulations, where one of the clusters of food
has a different true “heading,” making the grab probability different for each scenario. These grab
probabilities are listed in Tab. 4.14.1.

Model NW Heading NE Heading NW true Pgrab NE true Pgrab
Model 0 east east 0.9 0.9
Model 1 east north 0.9 0.1
Model 2 north west 0.9 0.0

Table 4.14.1: True Robot Foraging Transition Models for the AT&E simulations, given a
robot heading of East

Afourthmap is also tested(model 3),whichhas adifferent geometric layout thanmodels 0, 1, and2,
inorder to verify that theAT&EFSMsolutionpresentedheregeneralizes todifferent environments.
The configurations of all four maps are shown in Fig. 4.14.4.

In addition to the maps, the other parameters varied in these simulations are the number of
robots and the perception/communication range of the robots. Scenarios with time varying ambi-
guity are also examined. All of the simulation variations are summarized in Tab. 4.14.2.
All of these variations, in addition to the performance of the AT&E FSM solution with two ambi-
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Parameter Variations
Map Model: 0, 1, 2, 3
Number of Agents 4, 8, 12
Perception/Communication Range 1, 2, 3

Table 4.14.2: Parameter variations in AT&E FSM foraging simulations

guity parameters, both separately and combined, are explored next.

4.14.3 Results and Discussion

When evaluating resilience to ambiguity, the performance of a particular solution must be com-
pared to a baseline solution and both solutionsmust also be evaluated over a large number of trials,
since the problems are stochastic. As was done previously in the initial case studies presented in
Section 4.5 and Section 4.7, each method is simulated for 1000 Monte Carlo trials and results are
characterized in terms of the eCDF over the total accumulated rewardU. Simulations are also now
run for 300 time steps. Since there are now multiple agents, however, the accumulated reward is
summed for all agents and then normalized by the number of agents (N). The normalized accumu-
lated reward Ū is computed as follows.

Ū =

∑N−1
i=0

∑tmax−1
t=0 r(st,i, at,i, st+1,i)

N
(4.7)

The baseline solution in all of the scenarios in this case study is that of a swarm that does not
communicate information to other agents via local interactions, which is the core functionality en-
abling the ambiguity resilience ofAT&E.A comparison to other existingmethods, such as anMDP
or reinforcement learning (RL) solution is not practical. In the case of the MDP, this solution is
not practical due to the computational complexity that would be required to solve the problem
with the additional factors added to make the problem more representative of real-world ambigu-
ities. The addition of multiple agents also makes the dimensionality of the problem considerably
higher, even though the agents are distributed and not centrally controlled. In the case of RL, this
solution is not practical for the purpose of this case study, because of the prohibitive amount of
training data that would be required. Some discussions on how this problemwould be approached
as an RL problem, however, are presented in Section 5.3, but solving such a complex problem in

83



−800 −600 −400 −200 0 200 400 600 800
Total reward

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Model 0
Model 1
Model 2

(a) Baseline FSM eCDF of Ū
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Figure 4.14.5: Baseline and AT&E swarm foraging results for grab probability θG ambiguity
only.

this manner is beyond the scope of this research, so a comparison against a simpler FSM solution
that does not implement the full capabilities of AT&E as a baseline must suffice for the purpose of
this research.

With this methodology of analyzing the results now established, evaluating the performance of
the swarm AT&E FSM solution scientifically requires that different factors be isolated and exam-
ined separately. First, the ability of the AT&E solution to overcome the grab probability ambiguity
θG is examined in isolation. Results fromMonteCarlo trials of the baseline FSMand the full AT&E
FSM solutions are presented in Fig. 4.14.5 and percent change in the major statistics of the distri-
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Model 0 Model 1 Model 2
Max 18.37% 38.73% 54.91%
Upper Quartile 13.42% 78.72% 83.61%
Mean 13.81% 113.05% 135.22%
Median 14.50% 110.28% 121.15%
Lower Quartile 16.22% 169.45% 229.83%
Min 66.74% 43.60% 62.22%
Std Dev 14.02% 3.25% -11.94%

Table 4.14.3: Percent change of major statistics between the baseline FSM and AT&E FSM
solution for grab probability ambiguity.

butions is presented in Tab. 4.14.3.
It can be seen that the AT&E method suffers less of a reduction in performance when faced

with ambiguity in food grab probability than the baseline FSM. This is due to the swarm agents
informing each other about the locations where they are successful and unsuccessful at picking up
food and influencing the other agents’ choices of search locations to more often choose to search
near more successful locations.

Similarly, the approach direction ambiguity is examined in isolation. Results fromMonte Carlo
trials of the baseline FSM and the full AT&E FSM solutions are presented in Fig. 4.14.6 and the
percent change in the major statistics of the distribution is presented in Tab. 4.14.4.

It can be seen again that the AT&E method suffers less reduction in performance when faced
with ambiguity in the food approach direction than the baseline FSM. This is due to the swarm
agents informing each other about what approach direction they used to successfully pick up food
and influencing the other agents’ choices of approach direction tomore often choosemore success-
ful approach directions.

Next, both the grab probability and approach direction ambiguities are enabled together in the
simulation, representing the full problemwith all aspects of ambiguity in play. Results fromMonte
Carlo trials of the baseline FSM and the full AT&E FSM solutions are presented in Fig. 4.14.7 and
the percent change in the major statistics of the distributions are presented in Tab. 4.14.5.

85



−200 0 200 400 600
Total reward

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

No Local Int
Local Int

(a) eCDF of Ū
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Figure 4.14.6: Baseline (no local interactions) and AT&E (local interactions) swarm foraging
results for approach direction θA ambiguity only.

Max 10.93%
Upper Quartile 13.89%
Mean 14.68%
Median 14.34%
Lower Quartile 16.03%
Min -30.61%
Std Dev 11.69%

Table 4.14.4: Percent change of major statistics between the baseline FSM and AT&E FSM
solution for approach direction ambiguity.
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Figure 4.14.7: Baseline and AT&E swarm foraging results for both the grab probability θG
ambiguity and approach direction ambiguity θA combined.

87



As expected given the results from testing the performance with the two ambiguity parameters
independently, the AT&Emethod suffers less of a reduction in performance when faced with both
forms of ambiguity than the baseline FSM. This is again due to the swarm agents informing each
other about their assumptions of the parameters of ambiguity that led to successful behaviors.

Model 0 Model 1 Model 2
Max 10.93% 37.65% 40.88%
Upper Quartile 13.89% 107.59% 128.32%
Mean 14.68% 170.27% 301.10%
Median 14.34% 155.40% 239.42%
Lower Quartile 16.03% 326.36% 1499.82%
Min -30.61% 45.90% 18.95%
Std Dev 11.69% 2.76% -1.66%

Table 4.14.5: Percent change of major statistics between the baseline FSM and AT&E FSM
solution for both the grab probability and approach direction ambiguities.

In order to verify that the AT&E framework generalizes to different foraging scenarios and does
not only performwell in the onemap configuration (with different ambiguities) presented thus far,
simulations are also performed on a differentmap configuration (Model 3 as shown in Fig. 4.14.4).
Results from Monte Carlo trials of the baseline FSM and the full AT&E FSM solutions are pre-
sented in Fig. 4.14.7 and the percent change in the major statistics of the distribution is presented
in Tab. 4.14.5. As expected, these results show the same trend as before.
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Figure 4.14.8: Baseline (no local interactions) and AT&E (local interactions) swarm foraging
results for both the grab probability θG and approach direction θA ambiguitiy combined for a
different map configuration.

Max 10.93%
Upper Quartile 13.89%
Mean 14.68%
Median 14.34%
Lower Quartile 16.03%
Min -30.61%
Std Dev 11.69%

Table 4.14.6: Percent change of major statistics between the baseline FSM and AT&E FSM
solution for both the grab probability and approach direction ambiguities for a different map
configuration.

In addition to examining the effects of the ambiguity parameters in isolation and combined, the
sensitivity of the AT&E solution to the number of agents in the swarm is also examined. Scenarios
are tested for 4, 8, and 12 agents in the swarm. The results above were all presented for the median
scenario of 8 agents. These scenarios are tested on the Model 1 map, representing a “median” of
the grab probability ambiguity. Results comparing the baseline FSM and the AT&E solution are
presented in Fig. 4.14.9.
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Figure 4.14.9: Baseline and AT&E swarm foraging results for different numbers of swarm
agents in terms of the normalized accumulated reward across all agents.

Interestingly, these results do not show the initially expected result. It was hypothesized that a
larger number of agents in the swarm would result in better resilience to ambiguity, because the
larger number of agents would both better sample the environment and spread information faster,
due to more frequent local interactions. These results show, however, that the larger number of
agents in the swarm has poorer performance. Initially this may look like a failure of the AT&E
method, but in fact it is actually a failure of results interpretation. All of the results thus far have
been presented in terms of the normalized accumulated reward Û as defined in (4.7). While this
quantity is “normalized” by the number of agents, this metric is not an accurate way to compare
the performance of swarmswith different numbers of agents. The number of food theymay collect
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and the number of failed grab attempts (i.e., penalties) theymay accruemay not scale linearly with
the number of agents in the swarm. Therefore, it makes sense that normalizing the accumulated
reward by the number of agents, a linear operation, may yield ametric that is not comparable, since
the effect of the number of swarm agents may be non-linear. Also, given the same environment
configuration with finite food and a traffic bottleneck when many agents are attempting to return
home at the same time, increasing the number of swarm agents may reduce the performance of
the swarm overall, since more agents may be competing for limited resources. This is difficult to
decouple from the way the results metrics are computed, however. This shows that the choice of
resultsmetrics is an important part of designing scientific experiments. It also shows that increasing
the number of swarm agents may not result in monotonically increasing resilience to ambiguity.

The concept of increasing the number of swarm agents was to increase the frequency of local
interactions, hypothesizing that would lead to better resilience to ambiguity. Another way hypoth-
esized to achieve that is to increase the perception range of the swarm agents, allowing them to
communicate at longer distances, which should result in more frequent local interactions. Return-
ing to a nominal value of 8 swarm agents, perception range scenarios of 1, 2, and 3 grid cells are
tested. Results are presented in Fig. 4.14.10 and Tab. 4.14.7.

In the baseline scenario, it can be seen that the increased perception range provides increased
performance by simply allowing the agents to detect food at a longer range, increasing their search
efficiency. With AT&E and local interactions, however, the improvement provided by increased
perception range ismuchmore pronounced, showing that, as expected, the swarm performs better
when there are more frequent local interactions.

The same trend can be seen when varying perception range is tested on the alternate map con-
figuration (Model 3), as shown in Fig. 4.14.11 and Tab. 4.14.8.
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Figure 4.14.10: Baseline and AT&E swarm foraging results for varying swarm agent percep-
tion range scenarios.

Model 0 Model 1 Model 2
Max 10.93% 37.65% 40.88%
Upper Quartile 13.89% 107.59% 128.32%
Mean 14.68% 170.27% 301.10%
Median 14.34% 155.40% 239.42%
Lower Quartile 16.03% 326.36% 1499.82%
Min -30.61% 45.90% 18.95%
Std Dev 11.69% 2.76% -1.66%

Table 4.14.7: Percent change of major statistics between the baseline FSM and AT&E FSM
solution for varying swarm agent perception range scenarios.
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Figure 4.14.11: Baseline (no local interactions) and AT&E (local interactions) swarm forag-
ing results for varying swarm agent perception range scenarios for a different map configura-
tion.
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Per Range 1 Per Range 2 Per Range 3
Max 92.97% 97.73% 69.64%
Upper Quartile 276.81% 437.13% 264.47%
Mean 111.38% 178.40% 154.72%
Median 123.69% 199.24% 169.36%
Lower Quartile 65.48% 135.36% 130.19%
Min 17.62% 24.15% 0.69%
Std Dev 15.67% -22.20% -15.30%

Table 4.14.8: Percent change of major statistics between the baseline FSM and AT&E FSM
solution for varying swarm agent perception range scenarios for a different map configuration.

Finally, the last scenario tested for the swarm case study is that of time varying ambiguity. The
ability to be resilient to this is one of the key motivations behind AT&E and one that sets it apart
from other approaches, such as other decision-making under ambiguity frameworks, as well as re-
inforcement learning. In this scenario, the heading state that the swarm agents are not aware of that
governs the food grab probability ambiguity changes half way through each simulation trial and the
agents have no knowledge of this. A real-world analogy for the robot’s changing their heading is so-
lar powered robots that must change their orientation over time in order to keep their solar panels
aligned with the sun. It is plausible in such a scenario that unmodeled dynamics, due to their head-
ing, may exist and their effects on the foraging task are unknown, however, so this is still a source
of ambiguity in this problem. Regardless, in this case study, their change in heading changes the
grab probability of different food in themap,meaning that food clusters that oncewere easy for the
robots to pick up may now be harder and ones that were harder or impossible may now be easier.
The desired behavior in this case is that the swarm agents quickly “forget” the locations of food that
have nowbecomedifficult to pick up and instead find and focus on food locations that have become
easier for them to pick up. The results of this time varying scenario are presented in Fig. 4.14.12
and Tab. 4.14.9.

As expected, after the robot’s heading changes, resulting in an ambiguity that is no longer sta-
tionary with respect to time, the AT&E method is able to react to this change and not remain
“converged” to the strategy that was working well initially. A before and after example from one
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Figure 4.14.12: Baseline (no local interactions) and AT&E (local interactions) swarm forag-
ing results for time varying ambiguity.

simulation trial of the swarm agents shifting their focus to the other food cluster at which they now
have the higher grab probability is shown in Fig. 4.14.13.

Before drawing conclusions about the swarm foraging implementation of AT&E, there is an-
other case study to investigate. The swarm agents thus far have all been identical or homogeneous.
Given that they implement stochastic policies, the agents do not choose identical actions, but they
are affected by the ambiguities of the problem in the same way. Some additional swarm emergent
behaviors, resulting in resilience to ambiguity can be observed in swarms with diversity in the way
they are affected by and respond to ambiguity.
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Model 0 Model 1 Model 2
Max 21.11% 45.46% 79.69%
Upper Quartile 79.18% 120.62% 85.76%
Mean 256.34% 820.45% 48.90%
Median 898.67% 289.90% 60.34%
Lower Quartile 51.52% 163.79% 38.46%
Min 11.58% 17.93% -30.64%
Std Dev 15.36% 19.63% 12.44%

Table 4.14.9: Percent change of major statistics between the baseline FSM and AT&E FSM
solution for time varying ambiguity.

Figure 4.14.13: Example of AT&E overcoming time varying ambiguity. The figure on the
left is before the robots’ heading changes and they are focusing on the north west cluster,
which at this time they have the highest grab probability and is where they are informing each
other of the most success. After the heading change, however (indicated by the robots’ color
changing to blue) they begin experiencing failures at the north west cluster and after some
brief exploration, shift their focus to the north east cluster, at which they discover they now
have the higher grab probability.
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4.15 SwarmswithDiversity

As seen in the case study above in Section 4.14, swarms with the ability to exchange information
through local interactions tend to be more resilient to ambiguity than the baseline solution. The
swarms discussed so far, however, are homogeneous swarms, meaning all of the agents in the swarms
share the same models, the same decision-making strategy, and are considered equally capable of
performing all of the same tasks. It is possible, however, that different swarm agents may be de-
signed such that they use different models and different decision-making strategies and that some
agents may be better at performing certain aspects of their task than others. This is the concept of
a heterogeneous swarmwhich is explored briefly here.

It should be noted that many discussions of swarms in existing research use homogeneity as a
defining characteristic of a swarm. In otherwords, the fact that all agents are identical is whatmakes
thema swarm. Theauthor relaxes this definition for the purposes of this research, however, in order
to better explore the objectives of this research, which are focused on resilience to ambiguity. The
precise definition of what is or is not a robotic swarm (or additionally, a multi-agent system vs. a
swarm) is not of importance here.

Swarms may be diverse in many ways. Different agents may use different models, they may
have different objective functions, or they may have different properties which result in different
decision-making strategies, even when using the same models and objective functions. One pos-
sible outcome of this diversity is that certain swarm agents may be more effective at performing
their mission in a certain way and other agents may be more effective in a different way. This spe-
cialization of different swarm agents may be purposefully intended, so that different agents focus
on different parts of the mission. While this is a very useful property of diverse swarms, what is
of particular interest in this research is how unintended specialization may emerge when diverse
swarms are faced with ambiguity. In addition, it is possible that a swarm may be intended to be
homogeneous, but a source of ambiguitymay be that sources of uncertainty do not affect all agents
in the same way. This results in an implicitly heterogeneous swarm, that was intended to be homo-
geneous. If the implicitly heterogeneous swarm is resilient to ambiguity, however, specialization can
still emerge. This case of implicitly heterogeneous swarms is of particular interest, because the case
of swarm agents not knowing in which ways ambiguity may affect them differently is a very likely
scenariowhen facedwith real-world ambiguities. Developing emergent specialization to overcome
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these challengeswould be an interesting desirable outcomeof this research. Regardless of the cause
of the diversity, however, emergent specialization is the desired outcome of the following case study.

4.16 Case Study: Simulated Robotic Swarm ForagingwithDiversity

The same simulated swarm foraging problem as described in Section 4.13 and implemented in Sec-
tion 4.14 is implemented in this case study, but with a few specific additions. A total of 12 agents
exist in the swarm for these simulations, but now two subgroups exist within the swarm. All these
subgroups know is that they have a different personality type from other subgroups, but they do not
directly know how this difference in personality changes their ability to perform the foraging task.
This configuration of the swarm foraging grid world problem with swarm agents of two different
personality types is illustrated in Fig. 4.16.1.

Figure 4.16.1: Grid world configuration used for the diverse swarm foraging case study. The
red grids represent the robots of personality type 1, the blue grids robots of personality type 2,
the black grids the home region, and the green grids are food. Different shades of green food
represent different food headings.

This personality type is an additional piece of information that swarm agents communicate with
eachotherduring local interactions and is used todeterminehowthe informationexchanged through
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local interactions is utilized. The true situation is that robots with different personality have differ-
ent hidden heading states. The red robots have a heading of east, as all robots have in all previous
foraging case studies. The blue robots, however, have a heading of north. The result of this is that
the robots whose heading aligns with the north-east cluster will be more successful if they attempt
to pick up food from the north-east cluster and vice versa for the robots whose heading aligns with
the north-west cluster. The robots are not aware of these differences in their properties, however.
All they know is that they are “similar” to robots that have the same personality type as them, and
“dissimilar” to any others.

The difference in the decision-making strategy in this case study, compared to the previous one,
is that robots only influence their decision-making with information from local interactions with
other agents that are of the same personality. When they receive information from local interactions
from dissimilar agents, they do not let this information influence their decision-making. The mo-
tivation for leveraging this knowledge of personality similarity to influence actions is inspired by
models of social interactions between animals. Animals that behave collectively are more likely to
imitate the behavior of other similar animals and less likely to imitate that of different animals. For
example, if herds of both sheep and cattle are located in the same pen, the sheep are more likely to
follow each other to find food than they are to follow any of the cattle, and vice versa [116]. The
expected outcome for the robots in this simulated foraging problem, however, is that their local
interactions will result in emergent behaviors where the robots of one personality type will focus
more on attempting to grab food from the clusters of food where they have a high probability of
success and the other personality type will focus on other clusters, where they have a higher prob-
ability of success. The agents do not understand why they are more successful at one cluster than
another, but the information gained through physical feedback with the environment and commu-
nicated to other “similar” agents results in an emergent specialization that overcomes the ambiguity
with which the swarm agents are presented. The results are presented in Fig. 4.16.2 andTab. 4.16.1.
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Figure 4.16.2: Baseline (no local interactions) and AT&E (local interactions) swarm foraging
results for diverse swarms.

Model 0 Model 1 Model 2
Max 17.13% 52.14% 598.48%
Upper Quartile 406.05% 126.43% 52.20%
Mean 26.85% 302.21% 31.59%
Median 73.91% 190.12% 40.79%
Lower Quartile 18.92% 1771.81% 28.85%
Min -18.39% 1.33% -9.20%
Std Dev 18.24% 18.53% 12.75%

Table 4.16.1: Percent change of major statistics between the baseline FSM and AT&E FSM
solution for swarms with diversity.
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As expected, the results show that diverse swarms utilizing AT&E demonstrate resilience to am-
biguity and can develop emergent specialization. This can be seen in an example from one of the
simulation trials, shown in Fig. 4.16.3, where the red agents focus on the one cluster at which they
have the highest probability and the blue agents focus on the other cluster.

Figure 4.16.3: Example of emergent specialization within a diverse swarm, with different
types of agents focusing on the food clusters for which they find they have a higher probabil-
ity of success. The one gray grid is a robot whose battery ran out of power before it arrived
back home.

In order to further verify the performance of diverse swarms, this scenario was also tested on the
alternate map configuration of Model 3. The results from these trials are shown in Fig. 4.16.4 and
Tab. 4.16.2. These results show the same trend as before.
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Figure 4.16.4: Baseline (no local interactions) and AT&E (local interactions) swarm foraging
results for diverse swarms on a different map configuration.

Max 81.73%
Upper Quartile 298.77%
Mean 149.65%
Median 161.08%
Lower Quartile 100.19%
Min 40.36%
Std Dev 15.90%

Table 4.16.2: Percent change of major statistics between the baseline FSM and AT&E FSM
solution for diverse swarms on a different map configuration.

Additionally, the diverse swarm is tested in the same time varying ambiguity scenario as pre-
sented in Section 4.5. These results are presented in Fig. 4.16.5 and Tab. 4.16.3.

As expected, the results show that diverse swarms utilizing AT&E demonstrate resilience to am-
biguity and can develop emergent specialization even with time varying ambiguity. And again, in
order to further verify the performance of diverse swarms with time varying ambiguity, this sce-
nario was also tested on the alternate map configuration of Model 3. The results from these trials
are shown in Fig. 4.16.6 and Tab. 4.16.4. These results show the same trend as before.
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Figure 4.16.5: Baseline (no local interactions) and AT&E (local interactions) swarm foraging
results for diverse swarms with time varying ambiguity.

Again, as expected, thediverse swarmsutilizingAT&Edemonstrate resilience to ambiguity, even
when the ambiguity is time varying. Some overall conclusions about all of the swarm foraging case
studies examined thus far are presented next.
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Model 0 Model 1 Model 2
Max -10.64% 234.45% 711.42%
Upper Quartile 4.27% 116.73% 48.34%
Mean -2.46% 40.19% 21.25%
Median 1.41% 50.92% 28.34%
Lower Quartile -4.82% 27.04% 12.61%
Min 19.73% -0.34% -13.70%
Std Dev 12.47% 11.37% 19.88%

Table 4.16.3: Percent change of major statistics between the baseline FSM and AT&E FSM
solution for swarms with diversity and time varying ambiguity.
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Figure 4.16.6: Baseline (no local interactions) and AT&E (local interactions) swarm foraging
results for diverse swarms on a different map configuration with time varying ambiguity.

Max 228.42%
Upper Quartile 96.70%
Mean 61.64%
Median 63.29%
Lower Quartile 45.69%
Min 21.87%
Std Dev 12.81%

Table 4.16.4: Percent change of major statistics between the baseline FSM and AT&E FSM
solution for diverse swarms on a different map configuration with time varying ambiguity.
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4.17 Simulated Swarm Foraging AT&EConclusions

Overall, it can be seen that the swarm foraging implementation of the AT&E framework tends to
provide the intended benefit of resilience to ambiguity, compared to a baseline FSM solution of
distributed swarm agents that do not communicate information to each other through local inter-
actions. While there are many limitations to this method, the most significant of which is that a
fair amount of prior knowledge is still required (e.g., knowledge of the space of parameters gov-
erning the ambiguity), this method does, however, show promise as an initial starting point for
further investigations into this line of research. This framework is significantly less computation-
ally intensive and generally requires less modeling and accurate prior knowledge than most other
methods that would be applied to these types of problems, however. These benefits make this
framework (and future derivatives of it) much more deployable onto systems working in complex
real-world situations. Also, as demonstrated through the time varying scenarios, the AT&E frame-
work is able to overcome time varying ambiguitywithout being “stuck” converged to a solution that
was “learned” with repeated evidence, prior to experiencing a sudden change. Many other compet-
ing frameworks, such as reinforcement learning, would likely not be able to “unlearn” the previous
configuration of the ambiguity as quickly, at least not without special prior knowledge provided
to the framework that such a task might be necessary, if certain hard-coded conditions arise. No
additional provisions are necessary for AT&E to handle this situation, however. The same, unmod-
ified framework is used in both the time invariant case studies as well as the time varying ones. No
explicit prior knowledge about the time varying nature of the problem is provided.

One possible drawback of the AT&E framework, as presented thus far, is that its primary benefit
comes from being deployed onto a distributed robotic swarm. Some problems are better suited
to single agents. This raises the question of whether a variation of AT&E can be applied to single
agent decision-making that retains the resilience to ambiguity properties demonstrated on swarms.
Considerations for this are discussed next.

4.18 Transferring SwarmResilience to Single Agents

While robotic swarms can indeed be more resilient to ambiguity, as shown previously, swarms
are not always applicable to particular problems. First, swarms are more complex, because there
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are now many robots, instead of just one. Because of this, they can also be cost prohibitive and
deploying a swarm is generally more expensive than a single robot. And finally, swarms simply
take up more physical space than a single robot and some environments may be too small to sup-
port swarms. Formany reasons, single robots may be preferred over swarms for many applications.
Therefore, it is desirable to investigate whether the underlying properties of swarms that makes
them resilient to ambiguity can be integrated into single robot decision-making frameworks.

Fundamentally, what is theorized tomake the swarmdecision-makingbasedon theAT&Eframe-
work presented thus far more resilient to ambiguity is the exchange of multiple sources of physical
feedback, based on diverse experience and decision-making strategies, through local interactions of
different swarm agents, resulting in emergent behaviors of the swarm as a whole, that overcome the
ambiguities they may encounter. A single agent on the other hand can only attain physical feed-
back through its own interactions with the environment, the diversity is limited to what the agent
itself has experienced and how it chooses tomake decisions, and there are no other agents through
which to gain additional information through local interactions. The question then becomes: how
can analogous factors be developed for single agent decision-making, that does not rely on other
agents in a swarm? This is a challenging question and developing a general case that handles all of
these factors is a significant research task. Therefore, incremental stepsmust bemade on an achiev-
able subset of this objective. One proposed strategy to begin investigating this concept, however,
is for a robot to leverage its own prior experience through a “virtual” swarm-like structure of ex-
changing information from past experiences. A proposedmethodology for doing this is presented
next.

4.19 ProposedMethod: GroundhogDay: Utilizing Prior Experience

In the swarm case studies explored thus far, physical feedback from different agents gaining diverse
experience is communicated to different agents via local interactions. Utilizing the AT&E frame-
work, this information is used by each agent to influence its individual decision-making to attempt
to better solve the task and overcome ambiguity. For single agents, however, there are no other
agents with which to exchange information and the possible benefits of these factors, in terms of
resilience to ambiguity, cannot be directly applied to a single agent. While a single agent may not
be part of a swarm, it can however, assume that it is part of a virtual swarm. The virtual swarm exists
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entirely in the single agent’s decision-making software and the one true single agent simulates its
interaction with virtual swarm agents. The challenge is to determine what information drives the
behavior of the virtual agents and how they could be useful if the one real agent is the only one able
to interact with the true environment and receive physical feedback.

The method proposed here is to use the single agent’s own prior experience at performing previ-
ous iterations of the same decision-making task as the information that drives the virtual agents.
Specifically, each virtual agent is a recording of a past version of the single agent performing the
same decision-making task. The name of this method, Groundhog Day, is inspired by the 1993
movie of the same name [117], in which the main character is stuck in a loop of experiencing the
same day and the same events repeatedly, but has full memory of each prior version of the day,
helping him to improve his future decisions. This aspect of the movie is very similar to the pro-
posed Groundhog Day single agent decision-making method, because the agent will repeat the
same scenariomany times, each time experiencing different outcomes due to the stochastic nature
of the decision-making problem and choosing to take different, diverse actions. In order for this to
be effective, diversity in the agent’s decision-making is hypothesized to be key. If the agent simply
repeats the same set of actions each time, little new information is gathered about the decision-
making problem during each iteration and the benefit of this method is lost. The Groundhog Day
method is tested in the same simulated robotic foraging problem presented in Section 4.13.

In the context of this foraging problem, once the prior iterations have been recorded, however,
GroundhogDay operates very similarly to the swarm foraging decision-making strategy with local
interactions, presented previously in Section 4.14. Functionally, Groundhog Day uses the exact
same framework of AT&E used in the swarm case studies, as described in Alg. 4.5. The only differ-
ence is the information communicated from “other swarm agents” comes from replaying the single
agents own past experience. As the one true single agent takes actions to carry out the task, it “sim-
ulates” the virtual agents, operating in the same environment, by playing back a recording of each of
their states and actions as they carried out the same task. Should the true single agent comewithin
communication range of one of the virtual agents, it exchanges information with that agent via a
local interaction, as discussed previously in Section 4.14. The virtual agent is simply a playback of a
recording, so its behavior will not be influenced by the true agent, but the true agent’s behavior will
be influenced. The idea is that the true agentwill gaindiverse knowledge fromthephysical feedback
experienced by past versions of itself, through virtual local interactions with these past versions of
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itself. This is somewhat analogous to the use of experience replay in reinforcement learning, where
past experiences are remembered and are presented again during the learning process [118].

Given that the agent has full knowledge of the entire history of each previous trial of solving
the same decision-making problem, one question is: why is this prior knowledge not used instead
to “learn” a model of the decision-making problem in an attempt to characterize the ambiguity?
The reason is that this type of “convergence” to one model that describes everything is contrary
to the objectives of this research. It is not the intent for a set of prior iterations to collect enough
diverse information to form a “complete” model (this is assumed to be a nearly impossible task for
complex, real-world problems), nor are the decision-making strategies presented in this research
intended to “reason” over models assumed to be complete and accurate. Even if such a model
could be “learned” through these prior iterations, it is challenging to formulate the structure of the
model in a way that retains the beneficial properties of the history and diversity of different trials.
Evenwith such a formulation, it is likely to be computationally challenging to update andmaintain
such amodel, given the spatio-temporally varying nature of the information that is being captured.
Thus, while the virtual swarmapproach ofGroundhogDaymaybe “simplistic” and fails to consider
some types of prior knowledge that could be leveraged to improve the performance, it represents
a “good enough” solution that can be applied to complex problems to further explore resilience to
ambiguity, without significant computational challenges. The proposed Groundhog Day method
is expected to have many limitations and is not intended to be a highly-developed, ready to deploy,
decision-making strategy for complex real-world decision-making problems for a single robot. It is
simply an incremental step in investigating a different paradigm of decision-making strategies that
attempt to overcome some of the limitations of existingmethods. The next section presents results
fromGroundhogDay simulations and compares its performance to a single agent implementation
of the foraging AT&E FSM.

4.20 Case Study: SimulatedGroundhogDay Robotic Foraging

The Groundhog Day foraging AT&E solution uses the same decision-making implementation as
was described for the swarm case study in Section 4.14.1. Similarly, the same foraging grid world
configurations described in Section 4.14.2 are used to test the single agent decision-making meth-
ods. The difference is there is now only one (real) agent in the environment at a given time. Sim-
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ulations are performed in each grid world model for a true single agent scenario as a baseline and
for two variations of the Groundhog Daymethod. The first variation is calledGroundhog Day Indi-
vidual, meaning that each of the prior trials that are played back as the virtual agents are completely
independent single agent trials of the problem. The second variation is called Groundhog Day Re-
cursive, meaning that each successive training trial plays back each of the previous trials before it
and incorporates their experience recursively into outcomes of that trial. In other words, the first
training trial is a lone single agent, but the second training trial consists of the one real agent and
one virtual agent, which is the playback of the first trial. Subsequently, the third trial consists of
the one real agent and the replay of the first and second trials, and so on. This recursive training
method better approximates the behavior of a real swarm, since the other virtual agents are also
influenced by the information from other agents and are likely to find better ways to overcome the
ambiguity they are facing. The way information from previous trials is recorded and used in both
the individual and recursive methods, compared to how the evaluation trials are performed after
the training trials have been recorded is illustrated in the diagrams in Fig. 4.20.1.
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Start

For i in [1,...,N]

Perform trial i Save states of trial i
End

(a) Groundhog Day Individual Training

Start

For i in [1,...,N]

Perform trial i Save states of trial iLoad trials 1 to i-1 as
virtual swarm

End

(b) Groundhog Day Recursive Training

Start

For i in [1,...,N]

Perform trial iLoad saved trials as
virtual swarm

End

(c) Groundhog Day Evaluation

Figure 4.20.1: Illustrations of how training trials are recorded and used for both the Ground-
hog Day Individual and Groundhog Day Recursive methods, as well as how the evaluation
trials are performed for both cases.

Both the individual and recursivemethods are tested for a varying number of training iterations,
which is analogous to a different number of swarm agents from the swarm case study, presented
previously. As was done for the swarm case study, scenarios of 4, 8, and 12 training trials (i.e., the
number of virtual swarm agents) are tested. The results are then evaluated over 1000 Monte Carlo
trials, for each scenario, as was done in the previous case study. The baseline result is a single agent
implementing the baseline FSM solution presented in the previous case study. The Groundhog
Day Individual andRecursive solutions are then compared to this single agent baseline. The results
from simulation, with the median number of 8 prior trials, of both the Groundhog Day Individual
and Groundhog Day Recursive solutions, compared to the single agent baseline, are presented in
Fig. 4.20.2, Tab. 4.20.1, and Tab. 4.20.2.
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Figure 4.20.2: Baseline single agent, Groundhog Day Individual, and Groundhog Day Recur-
sive foraging results for varying grab probability ambiguity.

111



Model 0 Model 1 Model 2
Max 1.50% 1.63% 0.00%
Upper Quartile 7.07% 27.16% 35.68%
Mean 8.98% 53.17% 91.16%
Median 10.63% 46.65% 65.47%
Lower Quartile 15.94% 118.15% 271.60%
Min 3.26% 7.25% 7.96%
Std Dev 0.51% -15.65% -31.73%

Table 4.20.1: Percent change of major statistics between the baseline single agent and
Groundhog Day Individual solution for varying grab probability ambiguity.

Model 0 Model 1 Model 2
Max 0.00% 1.63% 1.66%
Upper Quartile 7.07% 33.66% 32.53%
Mean 8.85% 67.15% 79.09%
Median 10.76% 58.62% 57.44%
Lower Quartile 15.94% 147.56% 246.91%
Min 6.88% 7.40% 3.55%
Std Dev 8.73% -14.38% -18.98%

Table 4.20.2: Percent change of major statistics between the baseline single agent and
Groundhog Day Recursive solution for varying grab probability ambiguity.

It can be seen that overall, both Groundhog Day methods provide an increase in performance
compared to the single agent baseline. The recursive method generally provides a slight increase
in performance, compared to the individual method, but the results are not significant. It should
be noted, however, that these results are sensitive to the outcomes of the small number of training
trials upon which they are based. Only having access to the same 8 prior trials, for both methods
respectively, could result in poor performance in some cases, because it is possible that the major-
ity of the 8 trials (very small number in statistical terms) could have suffered poor outcomes and
not provided much benefit to the evaluation runs. A more statistically complete study with more
diverse prior trials is considered for future work, and will be discussed further in Chapter 5.
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Figure 4.20.3: Baseline single agent, Groundhog Day Individual, and Groundhog Day Recur-
sive foraging results for varying grab probability ambiguity on a different map configuration.

As before, both Groundhog Day methods were also tested on a different map configuration
(Model 3). The results from these trials are shown in Fig. 4.20.3 and Tab. 4.20.3.

Individual Recursive
Max 7.84% 9.47%
Upper Quartile 51.51% 66.67%
Mean 367.65% 460.74%
Median 185.54% 252.05%
Lower Quartile 250.51% 306.94%
Min 32.80% 31.39%
Std Dev -30.30% -31.86%

Table 4.20.3: Percent change of major statistics between the baseline single agent and
Groundhog Day Individual and Recursive solutions for varying grab probability ambiguity on
a different map configuration.

The sensitivity of both the individual and recursive methods to the number of prior trials is also
examined. The “median” case of ambiguity Model 1 is used to examine this sensitivity. Results
from these trials are shown in Fig. 4.20.4, Tab. 4.20.4, and Tab. 4.20.5.
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Figure 4.20.4: Baseline single agent, Groundhog Day Individual, and Groundhog Day Recur-
sive foraging results for varying number of previous trials.

4 Prev Trials 8 Prev Trials 12 Prev Trials
Max 0.00% 1.63% -1.48%
Upper Quartile 11.87% 27.16% 17.46%
Mean 22.95% 53.17% 26.99%
Median 22.11% 46.65% 25.76%
Lower Quartile 61.12% 118.15% 76.67%
Min -2.18% 7.25% -4.75%
Std Dev -4.13% -15.65% 8.77%

Table 4.20.4: Percent change of major statistics between the baseline single agent and
Groundhog Day Individual solution for varying number of previous trials.
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4 Prev Trials 8 Prev Trials 12 Prev Trials
Max 0.16% 1.63% 0.16%
Upper Quartile 18.63% 33.66% 33.63%
Mean 36.09% 67.15% 64.64%
Median 30.02% 58.62% 56.29%
Lower Quartile 77.07% 147.56% 146.36%
Min -2.03% 7.40% 7.40%
Std Dev -8.74% -14.38% -10.30%

Table 4.20.5: Percent change of major statistics between the baseline single agent and
Groundhog Day Recursive solution for varying number of previous trials.

As expected, increasing the number of prior trials, and therefore the number of local interactions
the real agent has with the virtual agents, tends to increase the performance of the single agent. The
recursive method also shows a slight increase in performance, compared to the individual method
as well. Some final discussions about the simulation case studies as a whole are presented next.

4.21 SimulationDiscussions and Key Take-Aways

Overall, the proposed methods, implemented through the AT&E framework do tend to provide
added resilience to ambiguity, compared to the established baseline methods. The primary mech-
anism that enables AT&E’s resilience is based on the three key factors that are central to the con-
cepts of this research. These are: the gathering of diverse information through physical feedback,
and then propagating this information through local interactions. In the case of swarms, these lo-
cal interactions occur between other swarm agents and in the case of single agent decision-making
with the Groundhog Day method, they occur between the real single agent and virtual agents that
are replayed prior memories of itself performing the same task. While providing promising results
as exploratory concepts, as shown in the previous case studies, both the swarm and single agent
Groundhog Day implementations of AT&E still have many limitations and required assumptions.
First, they are limited to problems where a swarm of agents attempting to perform the same task
is applicable, or to single agent scenarios where multiple previous trials of the same problem with
the same environment configuration can be performed. These case studies also assumed that the
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robots do not have any localization uncertainty and that they operate in a discrete grid world envi-
ronment. Additionally, the AT&E frameworkmust be provided with prior knowledge of the space
of ambiguity parameters involved in the problem and how different values of these parameters af-
fect distributions of uncertainty involved in the problem. The innovation of AT&E is that there is
no need to estimate the precise values of these parameters with a traditional “top-down” estima-
tion framework. What is important is finding decision-making outcomes that lead to better perfor-
mance at the objective, when faced with ambiguity. This is also not an optimal method, as it often
experiences failures and even when experiencing success, it will sometimes choose to explore less
successful courses of actions in order to remain resilient to ambiguities that may be non-stationary.
It is also important to note that the severity of a lot of these failures canbe seenwith the long tails on
many of the eCDF plots and the large number of low outliers in the box and whisker plots. These
low performing outliers are primarily due to the scale of the different values returned by the reward
function, however. Primarily, these are caused by the large penalty for a robot exhausting its battery
before being able to return home and recharge. This happened to about 1% to 5% of the robots in
the trials with 8 or less swarm agents and in 10% to 13% of the robots in the trials with 12 agents. It
makes sense that the rate of battery depletion in the trials with larger numbers of agents would be
higher because there aremore robots in the same environment and they are competing, not just for
food to pick up, but also for the availability of the home region in order to recharge their battery.
In any case, the reason this causes the low outliers to have such extreme low values is because the
penalty for a robot depleting its battery (-1,000) is ten times larger in magnitude than the reward
for successfully delivering food home (+100). Therefore, if a robot’s battery is depleted, it receives
a penalty that is much larger than the rewards it is likely to have accrued thus far. Thus, the “per-
ceived severity” of these low outliers in theMonte Carlo trials is simply due to the definition of the
reward metric. If the penalty for battery depletion had a smaller magnitude, the distributions may
look much different, at the low performing end.

In the end, the key take-away from the simulation results of both the swarm and single agent
GroundhogDay implementations of AT&E is that this appears to be a promising initial framework
that can be further developed by subsequent research. The author predicts at least two possible
future research directions. In the case of the better availability of prior information about the struc-
ture of the problem and ambiguities involved, the decision-making policies and ambiguity param-
eter estimationmethods (performed via trial and error in this research) can be replaced withmore
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sophisticatedmethods thatmay result inmore optimal outcomes. Cautionmust be taken, however,
because these problems quickly become computationally intractable due to the curse of ambiguity,
as discussed before. Mitigating computational challenges that arise from this will likely be a key
focus of this research direction. Another future research direction would be to go in somewhat
the opposite direction and attempt to reduce the amount of prior knowledge available to the robot
about the problem. This would include attempting to relax the assumption that the robot has accu-
rate prior knowledge of the space of ambiguity parameters involved in the problem. This intersects
with another area of research known as problem solving, which contrastedwith decision-making, gen-
erally means the agent does not know the full definition of the problem [119] and its exploratory
actions are aimed at not only attempting to estimate the values of parameters that define the prob-
lem, but also to “estimate” the structure of the problem and the existence of new parameters and
dynamics that it may not have previously considered. This is an extremely challenging problem in
general, but constraining such a problem to finding the “parameters of ambiguity” while assuming
other factors are known could be a plausible direction for future research.

Before moving on to the final conclusions of this research, however, one additional case study
is performed, considering the initial motivations of this research. That is, to perform a real-world
experiment of a similar robot foraging problem, with real-world sources of ambiguity. The simula-
tion case studies examined thus far have purposefully designed sources of ambiguity that aremeant
tomimic a small subset of real-world situations, but an investigation of how themethods proposed
in this research perform in a real-world setting is necessary to better connect this research with its
initial motivations: providing resilience to ambiguity in complex real-world situations. The experi-
mental setup and results from a set of real-world experiment examining theGroundhogDay single
agent implementation of AT&E is presented next.

4.22 Case Study: Real-World Robot Foraging Experiment

4.22.1 Experiment Setup

A real-world robot foraging experiment is performed to evaluate the resilience to ambiguity of the
Groundhog Day single agent solution presented in Section 4.20. This experiment is configured
similarly to the simulation environment, with a holonomic robot that operates in a 2D environ-
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ment that must find and retrieve “food” located throughout the environment. The map used in
this experiment is 40 by 20 grid cells (fitting the 2:1 aspect ratio of the air hockey table), with two
clusters of food located near the north east and north west corners, similar to the simulation maps.
A top-down view of the experiment setup is shown in Fig. 4.22.1.

Figure 4.22.1: Top-down view of the robotic foraging experiment on the air hockey table
testbed.

The robot used in this experiment is a modified 3-wheeled TurtleBot, which implements Kiwi
drive, enabling it tomove holonomically. The robot has an electromagnet on its underside which it
uses to pick up “food pucks”, which are made from thin disks of steel sheet metal, with 3D printed
bases to raise them up near the height of the electromagnet. The robot, next to one of these food
pucks, is pictured in Fig. 4.22.2.
To detect whether it has successfully picked up a food puck, a thin force sensitive resistor is placed
over the tipof the electromagnet. This is used todetect thenormal forcebetween the electromagnet
and the food puck if the robot has successfully picked up a food puck. The underside of the robot,
showing the electromagnet and force sensitive resistor, along with a food puck successfully picked
up by the robot is shown Fig. 4.22.3
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Figure 4.22.2: TurtleBot and two of the food pucks used in the foraging experiment.

The robot operates on a flat 2D surface located in an instrumented test environment known
as the WVU Interactive Robotics Laboratory (IRL) Air Hockey Table. This testing environment,
built on top of an air hockey game table, is equipped with a Vicon multi-camera motion tracking
system, used to provide real-time pose feedback for the robot and each of the food pucks. The
robot and the food pucks are equipped with retro-reflectivemarkers, enabling themotion tracking
system to track their pose in real time. It is assumed for the purposes of this experiment, as was
done for the simulation, that the robot has full knowledge of its x,y position in the environment at
all times and that it can accurately localize any food that is within its perception range. Themotion
tracking system is used to implement this functionality. The air hockey table and motion tracking
system are shown in Fig. 4.22.4.

The table is equipped with two computers, one for running the Vicon motion tracking system
and another for running the robot, over a local WiFi network. The robot carries a Raspberry Pi
which runs the drivemotors and actuates the electromagnet. Commands are sent to the robot over
WiFi from the main computer, which runs the robot decision-making software and other software
needed to perform the experiments. Much of the same software used to run the robot foraging
simulations is directly used to run the robots, but with different interfaces for driving and receiving
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Figure 4.22.3: Electromagnet with force sensitive resistor (left) and an example of the robot
picking up a food puck with the electromagnet (right).

feedback from the real robot and the Vicon system, instead of from the back-end of the simulation.
The air hockey table also has an overhead projector, so that the grid world representation used
inside the robot’s decision-making software can be visualized in real-time, as experiments are being
performed. This is what is displaying the grid world visualization shown previously in Fig. 4.22.1.
Theonly interaction the humanhaswith the experimentwhile it is running is to remove foodpucks
that the robot successfully drops off at the home location. This is analogous to the simulation,
because any food successfully dropped off at home essentially “dissapears” from the environment
and is recorded as food that has been successfully delivered home.

As was mentioned previously in Section 4.14, the physical geometry of the TurtleBot used in
this experiment drove the inclusion of the approach direction ambiguity in the simulation. The
roughly hexagonal shape of the TurtleBot, with wheels on three of the six sides, will push the food
pucks and prevent the robot from picking them up, if the robot approaches the food from one of
its sides with wheels. If it approaches from one of the sides with gaps, however, it may be able to
successfully pick up the food. This is not the only source of uncertainty (nor ambiguity), however.
Even with the high precision of the Vicon motion tracking system, the robot still experiences mo-
tion uncertainty 1) due to control errors and 2) due to the fact that its decision-making software
operates over a discrete grid world, but the real-world scenario is inherently continuous. The food
pucks are purposefully designed to be approximately the size of the robot’s motion control error
tolerance (2.̃5cm radius). Due to the motion uncertainty introduced by discretizing the continu-
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Figure 4.22.4: The WVU IRL Air Hockey Table testbed.

ous real-world into a grid world representation in the robot’s decision-making software, however,
the robot is not always able to position itself accurately to pick up the food pucks. If the food puck
is located near the center of one of the robot’s grid cells, it will likely maneuver to the correct loca-
tion and pick up the food puck. If the food puck has been pushed by the robot’s wheels, however,
it may be partially between grid cells, and due to only being able to move by discrete grid cell in-
crements, the robot may sometimes fail to align the electromagnet with the food. While not the
same type of unmodeled uncertainty as the grab ambiguity due to the food and the robot having
an unmodeled “heading” state, as in the simulation, this additional source of ambiguity due to un-
modeled food grab uncertainty, resulting from the discretization, is in fact a desired property of the
experiment and is purposefully not “designed out” of the experiment by providing the robot with
a higher-fidelity model of the environment.

As described earlier, the same decision-making software as used for the GroundhogDay simula-
tions is used for this real-world experiment. Theobjective andexpectedoutcomeof this experiment
is the same as the simulation. Due to the practical limitations of running trials of a real-world exper-
iment, compared to the ease of running many computerized simulations, however, the real-world
experiment results cannotbeevaluated in termsof adistributionover a largenumberof trials, aswas
done with the simulation results. The same quantitative metrics as were used to evaluate the sim-
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ulations are available, but due to the limited number of trials of the real-world experiments, these
results cannot be considered statistically significant. Since there are many uncertainties involved
in this experiment and the robot’s decision-making policy is also stochastic, the quantitative out-
comes of any single trial or small set of trials is not indicative of the performance of the algorithms
being tested. Therefore, while the numeric results will be presented the interpretation of the results
of these experiments must be done qualitatively. They are analyzed as qualitative extensions of the
simulation results, showing that the proposed methods discussed in this research have the poten-
tial to be useful frameworks for robot autonomy that is faced with complex real-world ambiguities.
The results of the real-world experiments are discussed next.

4.22.2 Results and Discussion

Three scenarios of real-world experiments are performed. The first is an isolated single agent sce-
nario, which serves as the baseline, the second implements the GroundhogDay Individual variant,
and the third implements theGroundhogDay Recursive variant. For each of these scenarios, eight
trials, 200 timesteps long, were performed. Results from these trials, in terms of the total rewardU
are shown in Fig. 4.22.5 and Tab. 4.22.1. Given the small number of trials, the total reward for each
individual trial is also shown in Fig. 4.22.6.
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Figure 4.22.5: Baseline single agent, Groundhog Day Individual, and Groundhog Day Recur-
sive results from real-world foraging experiment on the WVU IRL Air Hockey Table.
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GD Indiv GD Recur
Max 215.38% -73.85%
Upper Quartile 257.81% -95.70%
Mean 82.31% -1.82%
Median 65.25% 24.50%
Lower Quartile 2.26% 8.67%
Min 71.24% 7.24%
Std Dev -31.00% -12.09%

Table 4.22.1: Percent change of major statistics between the baseline single agent, Ground-
hog Day Individual, and Groundhog Day Recursive solutions from real-world foraging experi-
ment on the WVU IRL Air Hockey Table.

0 1 2 3 4 5 6 7
Trial

0

1

2

3

4

5

Nu
m
 F
oo

d 
Re

tri
ev

ed

(a) Single Agent
Baseline

0 1 2 3 4 5 6 7
Trial

0

1

2

3

4

5

Nu
m
 F
oo

d 
Re

tri
ev

ed

(b) Groundhog Day
Individual

0 1 2 3 4 5 6 7
Trial

0

1

2

3

4

5

Nu
m
 F
oo

d 
Re

tri
ev

ed

(c) Groundhog Day
Recursive

Figure 4.22.6: Baseline single agent, Groundhog Day Individual, and Groundhog Day Recur-
sive number of food collected for each trial from real-world foraging experiment on the WVU
IRL Air Hockey Table.

As expected, due to the small number of trials, these results are not statistically significant andno
clear trend can be observed from the distribution over the total reward. Looking at just the num-
ber of food retrieved alone (without the penalties for failed grabs, distance driven, and depleted
battery) shows that both Groundhog Day methods tended to retrieve more food than the single
agent baseline. The single agent baseline retrieved 8 total, Groundhog Day Individual retrieved 14
total, and Groundhog Day Recursive retrieved 11 total, summed across all trials. This is still not a
statistically significant result, however, and as stated earlier, these experiments must be evaluated
qualitatively, as extensions of the results from the simulation trials. Even though not statistically
significant, these results do show that the Groundhog Day methods tend to be more resilient to

123



the real-world ambiguities present in this experiment than a single agent operating without the
benefit of AT&E. The most distinct difference observed between the Groundhog Day trials and
the baseline method trials is that the Groundhog Day methods tended to choose an approach di-
rection that was on one of the robot’s open sides more often than the baseline method, resulting
in more frequent successful food pickups. There were many occasions, especially during the trials
for both Groundhog Day methods, when the robot successfully picked up a food puck, but due
to grabbing it near its edge and not its center, the force sensor used to detect food pickup would
report a false negative reading. This led the robot to set the food puck back down, thinking it had
failed to pick one up. If these false negatives were not experienced, the number of food retrieved in
bothGroundhogDay scenarioswould have been higher, possibly showing amore clear trend in the
distribution of the total reward. The reason for the more frequent false negatives food pickups was
due to the robot more frequently choosing a successful approach direction with the Groundhog
Daymethods, giving the robot more opportunities for successful food pickups. This is not directly
observable from the collected data, but this qualitative result does show that the Groundhog Day
methods were providing their expected benefit.

Less distinct, but still noticeable was also that the Groundhog Day methods tended to choose
search locations that were closer to the real locations of the food on the table. Both of these obser-
vations are consistent with the expected behavior of the Groundhog Day AT&E foraging solution.
Prior experience communicated to the robot from the virtual agents is used to inform the sampling
of the ambiguity parameters θG and θA, which help guide the robot’s actions towards ones that bet-
ter solve the task, involving these known ambiguities. These same behaviors were observed in the
simulation results as well, so the experimental results are in agreement with those from the simula-
tion.

As explained previously, the mapping from the discrete grid world representation in the robot’s
software to the continuous real-world caused considerable variance in picking up food successfully,
due tomotion uncertainty. Also, as expected, there aremany other sources of uncertainty thatwere
observed in the real-world experiment that were not modeled in the simulation. The robot would
sometimes flip food pucks over with its wheels, thereby obscuring the retro-reflective markers and
causing the food pucks to no longer be visible to the motion tracking system. These food would
“disappear” from the environment, due to the robot driving into them and flipping them over. The
robotwould also occasionally push food pucks outside the boundary of themap, also causing them
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to disappear from the environment. A wide range of complex, uncertain motion dynamics due to
the interaction between the robot’s wheels and the food pucks was observed in all of the trials.

Many of the experiment trials for all methods had long periods (or the entire length of the trial,
in some cases) of experiencing failures, pushing food pucks around the table with their wheels and
just generally performing poorly at the task. This is again, in agreement with the simulation results.
The eCDF plots of all of the simulation scenarios showed long tails on the low performance end
of the trials, showing that some very poor performances occurred in the simulations as well. This
is expected, however, in a problem with not just many sources of uncertainty, but also ambiguity.
And again, optimality at solving the task is not the intended outcome of the methods explored
through this research. What was successfully demonstrated through the experiments, as was also
done through the simulations, is that robots that implement the AT&E framework tend to have
better resilience to ambiguity than the established baseline methods. Some final discussion and
key take-aways from the experiment results are presented next.

4.23 ExperimentDiscussion and Key Take-Aways

Much of the same conclusions and key take-aways from the simulations, as were previously dis-
cussed in Section 4.21, also apply to the real-world experiments. The AT&E framework success-
fully demonstrates its expected outcomes and shows promise as a starting point for future research
into resilience to ambiguity for autonomous robotic decision-making. One additional key take-
away from the experiments is to further acknowledge the limitations of methods proposed in this
research. The experimental setup providedmany additional sources of ambiguity than simulations,
however, it was not without some effort of fine tuning parameters that the experiment was brought
up to the level of functionality to produce the results presented in this document. The design of the
food pucks, for example, required several iterations before an “acceptable” amount of grab uncer-
tainty could be achieved. Too small in diameter and the probability the robot could maneuver to
a precise enough location to pick it up was so small that a successful pickup would rarely happen.
Too large in diameter and the robot would pick themup too frequently to give the problem enough
uncertainty to be challenging. While this is a very specific example, the broader concept is that this
level of detail in setting up the environment is still required for an experiment that is intended to re-
duce the amount of prior knowledge about thedistributions of uncertainty involved in theproblem.
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On the one hand, it is necessary to tune the parameters of problems to be “realistic and representa-
tive” of the scientific principles they are intended to investigate. On the other hand, requiring the
distributions of uncertainty to be carefully designed for a problem in which the solution methods
are intended to work with a lack of knowledge about the distributions of uncertainty may seem a
bit contradictory. This field of decision-making under ambiguity, where the decision-maker has
incomplete knowledge of the distributions of uncertainty, is an under-explored field, however, es-
pecially when applied to robotics and uncertainties arising from the physics of how robots perceive
and interact with their environments. Therefore, there is not a large base of existing works upon
which to design experiments and evaluation metrics. Most of the concepts behind designing the
simulations, experiments, and evaluation metrics presented in this research come from the well
established field of robotic decision-making under uncertainty. While decision-making under am-
biguity is a fairly straightforward extension of decision-making under uncertainty into a more ab-
stract realm, it does introducemany additional challenges not only in solving the problem, but also
in understanding how the results are to be interpreted and quantified. In the end, the key take-away
here is that not only is further research needed to find better methods of solving decision-making
under ambiguity problems, but that more research is also needed in defining decision-making un-
der ambiguity as a field of study in the context of robotics and in establishing commonly agreed
upon descriptions of frameworks, metrics, and evaluation strategies. It is the author’s hope that
this research helps set the stage for decision-making under ambiguity to become an increasingly
studied field in the context of robotics and that future research will work to solve some of the chal-
lenges described here in further formalizing this field of study.
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5
Concluding Remarks



5.1 ChapterOverview

This chapter summarizes the conclusions and key take-aways from the research presented in this
document and draws additional conclusions about their broader impacts. Discussions are also pre-
sented about future work and how this research can be used as a starting point for further studies
into the new concepts that have been explored thus far.

5.2 Overall Conclusions and Lessons Learned

As discussed in about the results of the simulations in Section 4.21 and the results of the real-world
experiments in Section 4.23, it can be seen that the three factors of physical feedback, diversity, and
swarm local interactions can be leveraged to provide resilience to ambiguity in decision-making prob-
lems that involve ambiguity. Recall that ambiguity is defined in this research as a lack of accurate
knowledge about the distributions of uncertainty involved in a stochastic decision-making prob-
lem. The three key factors listed above are used to develop a novel decision-making framework
known as Ambiguity Trial and Error (AT&E), which is then implemented in several robotic forag-
ing case studies involving ambiguity, both simulated and as real-world experiments. These factors
are used to inform the trial and error sampling of new candidate values for the unknown valued am-
biguity parameters that define the ambiguity involved in the problem. The resilience to ambiguity
of this framework comes from gathering information about outcomes that lead to success or failure
through physical feedback with the environment, based on diverse experiences that occur through
taking diverse exploratory actions, and communicated through swarm local interactions to gain a bet-
ter understanding of what actions are more likely to lead to success, over the space of the problem.
The implementations of the AT&E framework in this research are able to provide this resilience
without significant computational expense, from which many other existing methods of decision-
making under ambiguity would suffer. The low computational cost of these implementations of
AT&E come from the use of informed trial and error sampling strategies that are not focused on ac-
curatelymodelingwhy outcomes occur theway they do, but instead attempts to guide the selection
of actions toward ones that are more likely to provide higher near-term payoffs.

While explored in this research through the context of solutions to a robot foraging problem,
the lessons learned through this research can be related to the broader context of robotic decision-
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making. One important lesson learned is that resilience to ambiguity requires gathering informa-
tion about outcomes over a wide variety of conditions and across a wide range of the problem
space. Given the existence of ambiguity, however, it cannot be assumed that this information is
always accurate, and there must be a way to quickly unlearn “bad” or “outdated” information. This
is especially necessary when ambiguity may vary parametrically (e.g., vary with location and/or
time). Rather than trying to maintain a globally consistent estimate of the values of the unknown
ambiguity parameters, what ismore effective in terms of resilience, and less computationally costly,
is to be able to quickly “adapt” to the local variations in ambiguity. Such globally consistent infor-
mationmay be necessary to achieve what could be consideredmore “optimal” outcomes, but such
an objective for an autonomous robotic system may not be realistically achievable when dealing
with complex parametrically varying ambiguity, as is likely to be encountered in many real-world
situations. Suboptimal, butmore resilient solutions are often amore appropriate and achievable ob-
jective in these cases. This relates to the concept of satisficing, whichmeans that in situations where
there is insufficient information or resources to find “optimal” solutions, the objective should not
be to remain stuck in the paradigm of needing to find such an optimal solution, but that finding
“good enough” solutions is instead the correct objective [120, 121]. This paradigm of “satisficing”
instead of “optimizing” is an important foundational concept when making decisions under com-
plex, parametrically varying ambiguity in real-world situations.

Quickly adapting to the local variations in ambiguity is the key challenge, however, and is where
novel solutions, such as the ones presented in this research, are required. The gathering and ex-
change of information about the local ambiguity “conditions” through swarms of agents operating
in the same environment or through recordings of prior experience of the same agent performing
the same task, in the same environment, is the solution that was found to achieve this through this
research. While it is likely there are other methods to achieve this as well, the key point here is that
this informationmust come from actual outcomes of interactions with the true environment. One
of the fundamental assumptions here is that the information the agent may have at any given time
may be incorrect and it may need to forget that information and learn new information. The use of
a “model” or “black box simulator” breaks this assumption and the “predictions” that are provided
by such tools are not capable of providing informed estimates of complex, varying ambiguities. Re-
mote sensing of the local environment is also not sufficient at addressing this either, because it
cannot provide information about “outcomes,” because there is no interaction with the local envi-

129



ronment. It can instead only provide “observations,” which is not sufficient to gather information
about the local variations in ambiguity. The use of swarms through the AT&E framework fills this
gap which black box simulators and remote sensing cannot, because each swarm agent is another
entity that exists within the same true environment and can take actions, outcomes, and then com-
municate that information to each other. It is acknowledged, however, that the use of swarms can
be prohibitive in terms of system complexity and available resources and therefore swarms are not
applicable to all problems. This is where the motivation for working to replicate the same prop-
erties of swarms with single agents, through the Groundhog Day method came from. Instead of
using a swarm of multiple agents, the single agent’s own prior experience at performing the same
task can be used to provide the same type of “feedback about outcomes”when played back as a “vir-
tual swarm.”The class of problems to which the single agent GroundhogDaymethod is applicable
is limited compared to the swarmmethod, however. The use of prior experience at performing the
same task with GroundhogDay is based on the assumption that the ambiguity in the environment
is identical at each time step. Spatial variations in ambiguity can be handled, but the ambiguity
must be either stationary in terms of time (i.e., temporally invariant) or cyclo-stationary in terms
of time, meaning that the temporal variations are periodic and occur cyclically at consistent time
intervals. The swarm methods on the other hand are constantly gathering “up-to-date” feedback
about outcomes and can be expected to remain resilient to a temporally non-stationary process. In
the end, however it is achieved, the lesson here is that feedback about actual outcomes that occur
through interaction with the environment, obtained from multiple sources is what is needed to in-
form the agent about the local variations in ambiguity that can be used to provide resilience in its
decision-making strategy.

As mentioned before, however, there are still many limitations to the methods proposed in this
work. One of the most important is that knowledge about the space of parameters defining the
ambiguity in the problem and the way in which different values of these parameters may affect out-
comes is required. While knowing the value of these parameters accurately is not required, needing
their definition to be knownduring the design of the decision-making algorithms is still a challenge
that requires significant prior knowledge about the problem to be provided to the decision-making
framework. Another limitation is that these frameworks only provide their intended benefit in
terms of resilience to ambiguity when deployed onto distributed robotic swarms or onto single
agents that can record prior knowledge of outcomes through its own experience at performing the
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same task, repeatedly. Some tasks are not suitable for swarms and not all single agent tasks can
be “practiced” repeatedly beforehand to gain knowledge from prior experience. Overall, the meth-
ods explored through the case studies in this research have worked towards reducing the amount
prior knowledge robotic decision-making needs to have about the distributions of uncertainty in-
volved in the problem. However, some knowledge, specifically the definition of the ambiguities
and prior experience of outcomes from interacting with the real environment, and not a black box
simulator or a predictive model, are required for these methods to provide resilience to ambiguity.
Another important limitation in regards to this is the types of problems to which the methods dis-
cussed in this research are applicable and those to which they are not. These trial and error based
methods, likemany other decision-makingmethods for stochastic problems as well, must perform
exploratory actions to gain information about the unknown aspects of the problem. This means
that some detrimental outcomes, or partial failures, may occur. The severity of these partial fail-
ures that may be found through exploratory actions must be small enough that experiencing one
or more of them is not catastrophic to the decision-maker’s overall mission objective. In the robot
foraging examples presented in this research, occasionally failing to pick up individual food is not
a very severe failure, so it is acceptable for the robot to experience occasional failures in this re-
gard and leverage the information from those failures to improve its decision-making in the future.
Another hypothetical example applicationwhere partial failures are not very severe is a robot deliv-
ering mail in an office building. If the robot runs into a closed door and cannot deliver a particular
piece of mail at that moment, it is not very detrimental if it has to come back and try again at a later
time. In all of these cases, the trial and error based methods presented in this research are appli-
cable, because experiencing a few partial failures is not catastrophic to the mission. However, an
example application where these trial and error based methods would not be applicable would be
a domain like autonomous driving. Failing to turn or to apply the brakes on a moving vehicle at
the correct time could result in the injury or death of people in the vehicle or the surrounding area.
Another example application where the failures are severe is motion planning for planetary rovers.
If a rover operating on another celestial body gets stuck driving on terrain that was not known to be
hazardous, there is likely noway to free the rover and such an eventwould likely end the rover’smis-
sion. These types of failures are catastrophic andunacceptable, so the trial and error basedmethods
presented in this research are not applicable to problems where the severity of failures that may be
experienced through exploratory actions is very high. Regardless of these limitations, however, the
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case studies investigated in this research have provided great insight into the concept of resilience
to ambiguity, but there are a number of directions for future work that build upon the outcomes of
this research. These are discussed next.

5.3 FutureWork

One of the challenges of this research was determining the correct methods to use as the baselines
for comparison in the case studies. Decision-making under ambiguity is not currently a widely
explored topic so there are few examples of comparable existing methods. Especially lacking are
existing methods that operate under the same assumptions about the extent of the lack of knowl-
edge of the distributions of uncertainty used in this research. The few that do tend to suffer from
computational complexities and also require large amounts of prior data. Applying them to the sim-
ulated foraging problem used in the majority of the case studies, let alone the real-world foraging
problem, was not found to be practical for the purposes of this research. However, as a direction
for future work, an investigation into how other existing methods that may be applicable as points
of comparison should be performed.

One method that has been identified as a candidate for comparison is Deep Reinforcement
Learning, or Deep Q-Networks (DQN) [75]. In order to apply a DQN solution method, the def-
inition of the foraging problem investigated in the swarm and Groundhog Day case studies must
be in a format that is compatible with such methods. The problem is cast as an RL problem, be-
cause due to the ambiguities, it is assumed the state transitionmodelT is not known. The foraging
problem used in the initial single agent case studies, where an MDP value iteration solution was
applied, assumed the robot had full knowledge of the entire map, including the locations of all
food. The updated problem used in the swarm and Groundhog Day case studies removed this as-
sumption, however, and the robot could only perceive the map within a perception range around
its current position. While it is assumed the robot can perceive anything in this perception range
with certainty (i.e., the perceived locations of the food or other agents are accurate), the fact is that
the rest of the environment still exists outside of the robot’s perception range and the state of the
environment beyond this range affects the outcomes of actions taken over time. This can be re-
garded as a form of partial observability, and therefore the problem now falls into the category of
a POMDP. Some additional aspects of the problem (e.g., the approach direction ambiguity) may
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also make the present description of the problem non-Markovian, so additional work may be re-
quired to define additional states that can make the problem Markovian. Regardless, assumming
the problem can be cast as a POMDP, the dimensionality of the state space is going to be large and
will present challenges for finding a solution. This is where the neural network aspect of a DQN
becomes beneficial, since these methods are capable of solving problems with high dimensional-
ity. It is hypothesized that a method similar to the Action-specific Deep Recurrent Q-Network
(ADRQN) [122]methodmay be able to solve such a challenging POMDPRLproblem. It is likely
many changes to this framework will be required to make it applicable to the ambiguous foraging
problem presented in this research, however, given the complexity of this problem. It is also possi-
ble that amethod such as thismay only be applicable to a single agent solution, rather than a swarm
solution. Adding other agents into the environment significantly increases the dimensionality of
the problem. The proper framing of an experiment comparing the single agent Groundhog Day
solution to a solution using a method similar to ADRQN would be to see how the ADRQN-like
method, as a purely single agent solution, would compare in terms of resilience to ambiguity to
Groundhog Day with its virtual swarm of prior experience. Again, it is expected, however, that
modifying the definition of this problem to be compatible with a POMDP RL framework is going
to be challenging due to the curses of dimensionality and ambiguity and that finding a solution,
even with the ability of DQN-like methods to handle high dimensionality problems, may be very
computationally expensive.

Another direction of future work is to further investigate other methods of decision-making un-
der ambiguity in order to gain a better understanding of how they might incorporate the concept
of resilience to ambiguity. Much of the existing research on these topics has been in the context
of other fields of study, such as economics, and it has not been significantly explored for robotics
and engineering, so there is additional motivation to investigate how these concepts may apply to
robotic decision-making. For example, there are methods for creating additive models that com-
bine risk and ambiguity through linear combinations [123]. Decision-making under risk, uncer-
tainty, and ambiguity may have conflicting definitions, depending on the literature, but in this con-
text, decision-making under risk is defined as the same as what has been termed decision-making
under uncertainty in this document. That is, decision-making under risk/uncertainty iswhen there
is knowledge about the distributions of uncertainty. Ambiguity is the lack of knowledge about the
distributions of uncertainty, but in many cases the problem may not be entirely ambiguous and
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knowledge about the distributions of uncertainty in some aspects of the problemmay be available.
In these cases, such knowledge should be utilized where available and ambiguity about the other
aspects of the problem needs to be considered in conjunction.

Additionally, many existing decision-making under ambiguity methods focus on handling am-
biguity through “robust” decision-making or planning [124, 125], which maximize the worst-case
outcomes over a set of known models of uncertainty. These include methods that incorporate am-
biguity into MDPs [54], but the limitation of these methods is that ambiguity is factored into the
states (e.g., parameters defining the ambiguity are included in the state space), increasing the di-
mensionality and therefore the complexity of the problem. Therefore, a direction for future work
here is to investigate methods that do not require the addition of such complexities. This would be
done by taking the concept of parameterizing a set of state transition models by a set of ambiguity
parameters θ, as was introduced with the AT&E framework in Section 4.11 and (4.6), and incor-
porating that into a robust decision-making framework. A further extension of this, though a chal-
lenging one, would be to apply this concept to problemswith partial observability (e.g., POMDPs)
as well.

Many of thesemethods suffer the common problem of high dimensional state spaces, especially
in complex real-world problems, however. Finding ways to address this challenge is a key area of
research. Oneof themethods used to do this is state abstraction (or state aggregation), where states
that may be irrelevant in certain situations are grouped together into “abstract” states, reducing
the dimensionality of the problem, compared to that of the the original “ground” representation
[126, 127]. Different abstractions may be used in different contexts and interpreting information
through different abstractions can lead to ambiguity. Albeit a different strategy of addressing the
computational issues of complex real-world problems than the trial and error strategy of AT&E,
investigating how to address ambiguity through having different state abstractions could be a way
of approaching decision-making under ambiguity for complex real-world problems.

And finally, another direction of future work is to extend the work that was done on the con-
cept of estimating the “belief of the uncertainty model” (BUM) as was presented in Section 4.6.
Beyond simply improving the estimation framework used to compute BUM over a fixed set of ini-
tial models, an interesting way to reframe this problem would be to investigate robotic decision-
making that can estimate its proficiency at the task it is performing and then modify its behavior
to attempt to achieve better proficiency. Focusing on the estimation side, a promising approach
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that could be leveraged is “assumption-alignment tracking” (AAT), where the robot can self-assess
its performance at the task by estimating the veracity of the assumptions encoded into its decision-
making algorithms, based on observing outcomes and evaluating how well it is performing at the
task [128]. The robot can then use its own prior experiences and the estimate about how well its
assumptions match its ability to perform the task to use alternate assumptions to change its behav-
ior and attempt to increase its performance. The AAT method could likely be extended to include
prior experience frommultiple agents in a swarm scenario aswell, and incorporate that information
to help each agent in the swarm to collectively estimate the veracity of their assumptions. Addition-
ally, as a longer-term goal, this concept could be further extended to enable the robot to propose
new assumptions online, as it is running and discovering that its current assumptions may not be
valid. Overall, however, this aligns with the core concept of AT&E, which is to update the robot’s
assumptions about the nature of the ambiguity in the problem, based on its own experience and
the experience of other agents if part of a swarm. Such a framework could be effective at solving
complex decision-making under ambiguity problems.

5.4 Broader Impacts and Final Remarks

As stated in Section 1.3, the broader impacts of this work are tomake robot autonomymore gener-
alizable to complex real-world environments and situations, without the need for close human su-
pervision. The real-world is full of ambiguity and attempting to overcome this challengewithmore
modeling and more training data is simply not a scalable solution to making robots that can work
in the real-world. While the exact methods presented in this research are not ready-to-deploy solu-
tions to solve complex real-world problems, they help lay the foundation for future work by estab-
lishing an understanding of the problem and baseline frameworks. This investigative research into
decision-making that is resilient to ambiguity describes a new type of objective that is not consid-
ered bymost other existing works. Most decision-making research focuses on finding “optimal” so-
lutions to problems, but given the difficulty presented by complex real-world situations, is optimal-
ity the correct objective to be pursuing? Based on the discussions in Section 5.2, the author argues
that inmany cases it is not the correct objective and that possibly suboptimal, but resilient solutions
may be a better objective to pursue in these cases. Robot autonomy that is based on this objective
may not be capable of performing complex or highly specialized tasks, but it will be capable of per-
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forming simple tasks reliably andwithout close human operator supervision. Reliability in the face
of real-world complexities that are impractical to model explicitly in the robot’s decision-making
algorithms is one of the key factors limiting the applicability of autonomous robots in real-world
situations. Resilience to ambiguity does not fully capture a way of handling all of these real-world
complexities, but it is an in incremental step towards improving the reliability of robots in these
situations. The benefits of autonomous robots that are able to operate more reliably in complex
real-world environments are that robots can be used to perform tedious, repetitive, or dangerous
tasks that must currently be performed by humans. Human society will benefit from automating
these types of tasks so that the people whowould have been performing themotherwise can spend
their time onmore personally satisfying tasks instead. Robotics and automation is not the solution
to every problem, but where appropriate, it can improve people’s lives.
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A
Traffic Intersection Controller Case Study



A.1 ProblemDescription: Simulated Traffic Signal Controller

A traffic signal (i.e., a stoplight) controller is a simple, intuitive example of a problem that can be
described and solved as a POMDP. Most traffic signal controllers in the real world are based on
heuristic FSM or optimization problem implementations, solved offline for one set of fixed model
parameters, with little consideration of uncertainty during execution [129–131]. This is not to im-
ply these are poor solutions, however. Itmay be cost prohibitive, and potentially unsafe in the event
of failure, to provide traffic signal controllers with the necessary computing hardware and sensing
capabilities to implement more complex decision-making algorithms, such as POMDPs. There-
fore, it is logical why simpler solutions are preferred. For the purposes of autonomous decision-
making research, however, a simulated traffic signal problem, that can incorporate uncertainty, is a
useful and intuitive case study to investigate.

This simulated traffic signal controller case study consists of a single, isolated traffic light in a
four-way road intersection. In order to keep the problem easily solvable as a discrete state POMDP,
the number of states, actions, and observationsmust be kept small. Therefore, themodels of traffic
flow through the intersection used in this work are very simple. Cars turning at the intersection
are not modeled and the only two possible states of the traffic light are considered. The arrival and
departure of cars at the traffic intersection through the the north-south (NS) direction and the east-
west (EW) direction is stochastic. The states consist of three elements: the state of the traffic light
L and the total number of cars waiting in the NS direction and that of the EW direction, m and n,
respectively. The state of the light L can be one of two symbols: l0 (NS open, EW closed) and l1
(NS closed, EW open) andm and n range from zero to a maximum number of cars cmax. The two
possible actions are to set the state of the light to l0 (a0) or to l1 (a1). An illustration of this concept
is shown in Fig. A.1.1.

The possible observations represent the outputs of uncertain, low-fidelity traffic sensors in both
the NS and EW directions. The traffic sensor outputs can be one of the discrete symbols: none,
low, or high number of cars waiting. Therefore, an observation event o at each time step consists
of an ordered pair of symbols representing the measurement from the NS and EW traffic sensors,
respectively (e.g., o = {low, high}). The state transitionmodelT(s′, a, s) describes the probability
of how the number of cars waiting in each direction (m, n) may change at each time step. For
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NS: m = 2
EW: n = 4
L = l0 (NS open)

Figure A.1.1: Illustration of four-way traffic signal problem, showing an example set of states

simplicity, the problem is constrained such that at each time step, there is a probability that the
number of cars waiting at the intersection may increase by one, stay the same, or decrease by one.
Therefore, the transitionmodel is of the following form, where all other transition probabilities not
explicitly defined are equal to zero.

T(s, a, s′) =P(m
′ = m− 1, n′ = n− 1) P(m′ = m− 1, n′ = n) P(m′ = m− 1, n′ = n+ 1)

P(m′ = m, n′ = n− 1) P(m′ = m, n′ = n) P(m′ = m, n′ = n+ 1)
P(m′ = m+ 1, n′ = n− 1) P(m′ = m+ 1, n′ = n) P(m′ = m+ 1, n′ = n+ 1)

 (A.1)

In the case where the state of the light is l0, meaning NS open, all entries where n′ = n − 1 are
zero, because the number of cars waiting in the EWdirection cannot decrease. And similarly, when
the state of the light is l1, meaning EW open, all entries where m′ = m − 1 are zero, because the
number of cars waiting in the NS direction cannot decrease. When a traffic direction is open, the
number of cars waiting in that direction is likely to decrease rapidly to zero and very likely to stay at
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zero. When a traffic direction is closed, the number of cars cannot decrease, but is similarly likely to
stay the same, or increase. This represents cars arriving and needing to wait at the closed direction
of the intersection at a reasonable rate, over time. To make the decision-making problem more
interesting, the transition probabilities for the NS and EW directions are not symmetric, meaning
there ismore traffic in one direction than the other. In this case, it was chosen that theEWdirection
generally has heavier traffic than the NS direction.

The observation model O(s′, a, o) describes the uncertainty of the traffic sensors, meaning the
probability that the observation will be a pair of the traffic sensor symbols (none, low, or high), for
each direction, given that the number of cars waiting in each direction is a particular value. In other
words, the observation model is defined as follows.

O(s′, a, o) = P(o|m, n) (A.2)

Since the objective is to minimize the number of cars waiting at the intersection, the reward
function is defined simply as follows, applying an incremental penalty at each time step based on
the total number of cars waiting at the intersection in both directions.

R(s) = −m− n (A.3)

A.2 Case Study: Simulated Traffic Signal Controller

The traffic signal problem described previously in Section A.1 is implemented in simulation as de-
scribed here. As a baseline, a traditional POMDP solution, based on a single model of traffic un-
certainty, is compared to the MM-POMDP solution, based on multiple models.

The single POMDP solution assumes a single state transition model, describing the “expected”
traffic conditions, and a single observation model describing the uncertainty of the traffic sensors.
The normal traffic conditions described by the transition model states that when a traffic direction
is open, the number of cars waiting in that direction is likely to decrease rapidly to zero and very
likely to stay at zero. When a traffic direction is closed, the number of cars cannot decrease, but is
similarly likely to stay the same, or increase. This represents cars arriving and needing to wait at the
closed direction of the intersection at a reasonable rate, over time. The traffic flow models for the
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NS direction and the EW direction are identical in this case. The observation model represents a
low uncertainty in the traffic sensors.

The MM-POMDP solution, however, uses multiple transition and observation models to solve
for separate POMDP policies, representing different traffic conditions and traffic sensor uncer-
tainty, assuming that it is possible the single models used by the single POMDP solution may be
incorrect. All of these models follow the same structure, as described in Section A.1, but they dif-
fer in terms of parameters. The first transition model T0 is the same normal traffic conditions as
described above for the single POMDP. The second transition model T1 represents rush hour traf-
fic conditions. Compared to the normal traffic model, this model is more likely for the number of
cars waiting to increase while a direction is closed and the number of cars waiting in the open direc-
tion is less likely to decrease to zero as quickly. This represents a higher volume of traffic moving
through the intersection, in both directions, due to rush hour traffic. The third transitionmodelT2

represents game day traffic conditions, a hypothetical situation of amajor sporting event happening
in the city that day, where traffic volume is elevated in theEWdirection, but not in theNSdirection.
The state transitionmodels in this case are not symmetric. The traffic volume in theEWdirection is
more similar to that of the rush hour conditions, but the traffic volume in theNS direction remains
similar to normal traffic conditions. The fourth transitionmodelT3 represents late night traffic con-
ditions, where the number of cars out on the road is minimal. This model is symmetric, like the
first two, but the probability of cars accumulating at the intersection when a direction is closed is
much smaller than normal traffic conditions. The fifth and final transition model T4 represents an
additional unknown traffic condition, for which a POMDP policy is not solved, representing that
the traffic intersection controller has no prior knowledge of this situation. This model may repre-
sent an unexpected situation, such as road work, or a traffic accident and is similar to the game day
traffic conditions, except that NS is biased more heavily instead of EW. Three observation mod-
els are also used, to represent different levels of traffic sensor uncertainty. The first model O0 has
low uncertainty, the second modelO1 has higher uncertainty. The specific numeric values of these
models are included in Section A.3.

The trueunderlying transitionandobservationmodels used in the simulation for all threedecision-
making methods (FSM, single POMDP, and MM-POMDP) are varied across all combinations of
each transitionmodel{T0, . . . , 4} and eachobservationmodel{O0,O1}, forming the set of uncer-
tainty models Ξ = T × O = {ξ0, ξ1, . . . , ξ9}. Uncertainty models {ξ0, . . . , ξ4} represent transi-

152



tionmodels {T0, . . . , 4} for observationmodelO0 and {ξ5, . . . , ξ9} represent the same transition
models for observation model O1. Each POMDP policy is solved offline using the SolvePOMDP
program [132], implementing the incremental pruning method [133]. For the single POMDP, a
single policy is solved usingT0 andO0. For theMM-POMDP, transitionmodelsT0 throughT3 are
considered known to the decision-maker, as are all the observation models and each combination
of these pairs of transition andobservationmodelsmake up the the set ofmodels forwhich policies
are solved. Transition model T4 is considered to be unknown to the decision-maker and it is not
contained in any of the decsion-maker’s models and therefore none of the policies have knowledge
of this transition model. This case of the unknown model is used to evaluate the resilience of the
MM-POMDPdecision-maker to unmodeled forms of uncertainty. Each decision-makingmethod
was tested in simulation by performing 1000MonteCarlo trials, for 200 timesteps, of the fifteen dif-
ferent traffic scenarios, representing each model combination. For the MM-POMDP, two action
arbitration methods, majority voting and weighted majority voting, are tested for each scenario.
The performance of each decision-making strategy is compared by examining the distribution of
the accumulated reward U, defined in (4.2), for each time step, over the Monte Carlo trials and
each scenario.

Since the states are partially observable, the decision-makers cannot evaluate this for themselves,
but since the truth states can be easily recorded from simulation trials, this can be evaluated exter-
nally, as is done here. The accumulated rewardU is compared across all of these scenarios in terms
of the empirical cumulative distribution (eCDF) F̂n(U), which represents the fraction of Monte
Carlo trials that perform at less than or equal to a certain value of accumulated reward. These re-
sults are presented in Fig. A.2.1.

It can be seen that some true model scenarios expose the sensitivity of certain arbitration strate-
gies more than others. For example, the single POMDP decision-maker, based on the “normal”
trafficmodel, clearly performs worse in the “rush hour” scenario, but it does not perform as poorly,
relative to the two MM-POMDP arbitration methods, in others. It can also be seen, however, that
when the model matches the true model, the single POMDP performs well, as is seen in the “nor-
mal” traffic scenario. This is expected, since the single POMDP matches the true model. Interest-
ingly, however, the majority voting MM-POMDP strategy performs poorly in the “normal” traffic
scenario. This can be attributed to all decision-makers, based on all knownmodels, having an equal
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vote, and the other decision-makers out-voting the likely more informed actions that would have
been selected by the single decision-maker based on the correct model. The “normal” and “game
day” scenarios showsensitivity to this, while theother scenariosdonot show it as strongly; however,
it is expected that not all scenarios have the same types of sensitivities. The addition of the BUM
weights to the majority voting scheme shows that it helps the MM-POMDP behave more like a
single POMDP that matches the true model, since the BUM is able to converge on the true model
and weight the actions selected by the decision-maker based on the correct model more highly
than others. The scenarios with the higher observation model uncertainty tend to follow mostly
the same trends, but with degraded performance, as expected when the uncertainty is higher.
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Figure A.2.1: Traffic signal results for each true model scenario and for each action arbitra-
tion strategy. S = single POMDP, MV = majority voting, WMV = weighted majority voting.
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A.3 Traffic IntersectionUncertaintyModels

Action: NS Open
n′ = n− 1 n′ = n n′ = n+ 1

m′ = m− 1 0.00 0.73 0.20
m′ = m 0.00 0.05 0.01

m′ = m+ 1 0.00 0.01 0.00

Action: EW Open
n′ = n− 1 n′ = n n′ = n+ 1

m′ = m− 1 0.00 0.00 0.00
m′ = m 0.73 0.05 0.01

m′ = m+ 1 0.20 0.01 0.00

Table A.3.1: Normal traffic conditions transition probabilities

Action: NS Open
n′ = n− 1 n′ = n n′ = n+ 1

m′ = m− 1 0.00 0.50 0.40
m′ = m 0.00 0.05 0.04

m′ = m+ 1 0.00 0.01 0.00

Action: EW Open
n′ = n− 1 n′ = n n′ = n+ 1

m′ = m− 1 0.00 0.00 0.00
m′ = m 0.50 0.05 0.01

m′ = m+ 1 0.40 0.04 0.00

Table A.3.2: Rush hour traffic conditions transition probabilities
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Action: NS Open
n′ = n− 1 n′ = n n′ = n+ 1

m′ = m− 1 0.00 0.50 0.40
m′ = m 0.00 0.05 0.04

m′ = m+ 1 0.00 0.01 0.00

Action: EW Open
n′ = n− 1 n′ = n n′ = n+ 1

m′ = m− 1 0.00 0.00 0.00
m′ = m 0.73 0.05 0.01

m′ = m+ 1 0.20 0.01 0.00

Table A.3.3: Game day traffic conditions transition probabilities (EW worse than NS)

Action: NS Open
n′ = n− 1 n′ = n n′ = n+ 1

m′ = m− 1 0.00 0.90 0.07
m′ = m 0.00 0.02 0.01

m′ = m+ 1 0.00 0.00 0.00

Action: EW Open
n′ = n− 1 n′ = n n′ = n+ 1

m′ = m− 1 0.00 0.00 0.00
m′ = m 0.90 0.02 0.00

m′ = m+ 1 0.07 0.01 0.00

Table A.3.4: Late night traffic conditions transition probabilities
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Action: NS Open
n′ = n− 1 n′ = n n′ = n+ 1

m′ = m− 1 0.00 0.73 0.20
m′ = m 0.00 0.05 0.01

m′ = m+ 1 0.00 0.01 0.00

Action: EW Open
n′ = n− 1 n′ = n n′ = n+ 1

m′ = m− 1 0.00 0.00 0.00
m′ = m 0.50 0.05 0.01

m′ = m+ 1 0.04 0.04 0.00

Table A.3.5: Unknown traffic conditions (i.e., road work) transition probabilities (NS worse
than EW)

onone olow ohigh
num cars < 1 0.95 0.2 0.01

1 >= num cars < 5 0.2 0.75 0.15
num cars > 5 0.1 0.25 0.75

Table A.3.6: Low uncertainty observation model

onone olow ohigh
num cars < 1 0.75 0.25 0.05

1 >= num cars < 5 0.25 0.5 0.2
num cars > 5 0.2 0.35 0.6

Table A.3.7: High uncertainty observation model
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B
Interpreting Resilience to Ambiguity

Results



B.1 EvaluatingResiliencetoAmbiguityfromDistributionsoverMonte

Carlo Trials

The performance of any decision-making problem involving stochastic outcomes must be evalu-
ated in terms of the distribution of outcomes over a large number of Monte Carlo trials. In this
work, the outcomes are evaluated in terms of the total accumulated reward U, as defined in (4.2).
Distributions of U over the Monte Carlo trials are represented as the empirical cumulative distri-
bution function (eCDF) F̂n(U) of the accumulated reward, as defined in (B.1).

F̂n(U) =
1
n

n∑
i=1

1ui≤U (B.1)

Where n is the number of trials and 1ui≤U is an indicator function, returning 1 if the trial value ui
is less than or equal to the query value U and 0 otherwise. An example pair of eCDF plots of U
comparing two decision-making strategies is shown in Fig. B.1.1a. Another representation of these
same distributions, in terms of a box and whisker plot (or just box plot) is shown in Fig. B.1.1b.
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Figure B.1.1: Example distributions of outcomes of two decision-making strategies being
compared.

These plots show a comparison between two decision-making strategies, performing the same
task. In this case, theNo Local Int strategy is considered the baseline, while the Local Int strategy is
the one being evaluated. Multiple characteristics of this plot are used to judge whether the strategy
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in question is more resilient than the baseline. The first is to compare the difference between the
median and lowerquartile (0.25 eCDFprobability) regions. The further to the right (i.e., thehigher
value ofU) these regions of the strategy in question are than those of the baseline, themore resilient
this strategy is considered to be, relative to the baseline. If these regions had similar values or if they
were to the left of the baseline, then this strategy would not be considered resilient, relative to the
baseline. Another characteristic that is considered in conjunctionwith this is the slope of the curve
between the lower and upper quartile (0.25 to 0.75 eCDF probability). The more “vertical” the
slope, compared to that of thebaseline, the less variance in theperformanceof the trials. Thismeans
that multiple trials are more consistent and the probability of degraded performance, compared to
other trials is low. In the case study problems considered in this research, there is a chance of very
low performing trials, so the sharp tails at the minimum end of the eCDF plot, representing all
of the low outliers as can be seen in the box plots, are not considered when evaluating resilience.
Bounding theworst case performance, as is done in robust decision-making, is a different objective
than resilience to ambiguity.

Also in this example, the upper quartile region and the max region is also to the right of the
baseline, so this strategy is alsohigher performance, in addition tobeingmore resilient to ambiguity.
A strategy can be bothmore resilient to ambiguity and higher performance, but it does not need to
be higher performance in order to be more resilient to ambiguity. The upper regions of the eCDF
may be similar, but as long as the lower regions tend to be further to the right than the baseline and
the slope of the lower to upper quartile region is at least as steep as the baseline, then that strategy
is considered to be resilient to ambiguity.
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