
Santa Clara University
Scholar Commons

Engineering Ph.D. Theses Student Scholarship

9-2016

A Framework for Collaborative Multi-task, Multi-
robot Missions
John T. Shepard
Santa Clara University

Follow this and additional works at: http://scholarcommons.scu.edu/eng_phd_theses

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Student Scholarship at Scholar Commons. It has been accepted for inclusion in
Engineering Ph.D. Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Shepard, John T., "A Framework for Collaborative Multi-task, Multi-robot Missions" (2016). Engineering Ph.D. Theses. Paper 2.

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/student_scholar?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_phd_theses/2?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

A FRAMEWORK FOR COLLABORATIVE

MULTI-TASK, MULTI-ROBOT MISSIONS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF SANTA CLARA UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

John T. Shepard

September 2016

ii ii

© Copyright by John T. Shepard 2016

All Rights Reserved

iv iv

Abstract		

Robotics is a transformative technology that will empower our civilization for a new

scale of human endeavors. Massive scale is only possible through the collaboration of

individual or groups of robots. Collaboration allows specialization, meaning a multi-

robot system may accommodate heterogeneous platforms including human partners.

This work develops a unified control architecture for collaborative missions comprised of

multiple, multi-robot tasks. Using kinematic equations and Jacobian matrices, the system

states are transformed into alternative control spaces which are more useful for the

designer or more convenient for the operator. The architecture allows multiple tasks to be

combined, composing tightly coordinated missions. Using this approach, the designer is

able to compensate for non-ideal behavior in the appropriate space using whatever

control scheme they choose. This work presents a general design methodology, including

analysis techniques for relevant control metrics like stability, responsiveness, and

disturbance rejection, which were missing in prior work

Multiple tasks may be combined into a collaborative mission. The unified motion control

architecture merges the control space components for each task into a concise federated

system to facilitate analysis and implementation. The task coordination function defines

task commands as functions of mission commands and state values to create explicit

closed-loop collaboration. This work presents analysis techniques to understand the

effects of cross-coupling tasks. This work analyzes system stability for the particular

control architecture and identifies an explicit condition to ensure stable switching when

reallocating robots. We are unaware of any other automated control architectures that

address large-scale collaborative systems composed of task-oriented multi-robot

coalitions where relative spatial control is critical to mission performance.

This architecture and methodology have been validated in experiments and in

simulations, repeating earlier work and exploring new scenarios and. It can perform

large-scale, complex missions via a rigorous design methodology.

v v

Acknowledgements	

I am grateful for the support of many individuals and organizations that enabled me to

complete this research program.

First, I must thank my advisor Chris Kitts, for his tenacity and patience with me during

this long journey. This work extends his original idea for the cluster space technique and

his guidance has been invaluable. Throughout my time at Santa Clara, I have appreciated

his wit and golden insights. I also appreciate the guidance, recommendations and

oversight of the members of my PhD committee.

I am grateful for the camaraderie in the members of the Robotic Systems Laboratory. My

own research extends the earlier work of Ignacio Mas, Paul Mahacek, Jose Acain and

Thomas Adamek (who additionally kept the robots running); I stand on their shoulders.

Michael Neumann, Jasmine Cashbaugh, and Kamak Ebadi have shared the journey

towards their own PhDs; I cheer them on as they finish. Anne Mahacek and Mike Rasay

maintain order within the RSL; I respect and admire them both. I also thank Adwait

Bhalerao, from whom I learned a great deal, and who endured many hours of testing.

I am thankful to CSA Engineering and Moog Inc, for their financial support and

flexibility to accommodate my academics. I appreciate the encouragement, professional

development, and technical guidance from my colleagues there, including: Christian

Smith and Eric Anderson for their advocacy and career advice, Joe Maly for his constant

encouragement, and Paul Keas, Pete Devlin, Tim Pargett, and Chris Oesch for their

technical expertise and spirited discussions.

My family and friends have been essential for emotional support through this uncertain

process. I am eternally grateful to my wife Kristen, for her patience and her

encouragement in the form that I needed, not as I wanted. I value the guidance and

suggestions of my parents, brother, parents-in-law, siblings-in-law, the extended clan,

and Cooper and the Beans. Finally, I am appreciative of my friends and their frequent

question to which I can finally respond, “Yes.”

vi vi

Table of Contents
Abstract ... iv	

Acknowledgements ... v	

1	 Introduction ... 1	

1.1	 Motivation ... 1	

1.2	 Vision ... 2	

1.3	 Example Collaborative Missions ... 2	
1.4	 Literature Review ... 3	

1.4.1	 Control of Individual Task .. 3	
1.4.2	 Control of Multiple Tasks ... 4	

1.4.3	 Multi-Robot Control Taxonomy ... 4	
1.4.4	 Systems-of-Systems .. 5	
1.4.5	 Complexity .. 7	
1.4.6	 Robot Control Perspectives ... 7	

1.5	 Thesis statement & Contributions .. 8	
1.6	 Reader’s Guide ... 9	

2	 Individual Task Space Control .. 10	

2.1	 Description of technique .. 10	
2.2	 Background: Cluster Space Control .. 12	
2.3	 Task Design Process ... 13	

2.3.1	 Control Spaces & States .. 14	
2.3.2	 Kinematic Transformations .. 14	

2.3.3	 Jacobian Matrices .. 15	

2.3.4	 Controller Design .. 15	
2.4	 Analysis ... 17	

2.4.1	 Control Space Transformation Stability Analysis .. 17	

2.4.2	 Control Space Transformation Performance Analysis ... 18	
2.4.3	 Linearized Transfer Function Analysis ... 19	

2.4.4	 Linearized Disturbance Rejection ... 20	

2.5	 Example Task: Long Distance Communications .. 21	
2.5.1	 Spaces & States ... 21	

vii vii

2.5.2	 Kinematic Equations ... 23	

2.5.3	 Jacobian Matrices .. 25	

2.5.4	 Control Design .. 25	
2.5.5	 Experimental Results .. 25	

2.6	 Chapter Summary .. 28	

3	 Multi-Task Space Control .. 29	

3.1	 Unified Multi-Task Representation .. 29	
3.2	 Resource Allocation .. 32	

3.2.1	 Goals ... 32	
3.2.2	 Method .. 32	

3.2.3	 Analysis... 34	
3.3	 Task Coordination .. 37	

3.3.1	 Goals ... 37	
3.3.2	 Method .. 37	
3.3.3	 Analysis... 38	

3.3.4	 Example: 1-DOF, 2 Task Following ... 39	
3.4	 Mission Examples: .. 40	

3.4.1	 Long Range Communications ... 40	
3.4.2	 Remote Sampling .. 50	

3.5	 Chapter Summary .. 58	

4	 Conclusions & Future Work .. 59	

4.1	 Conclusions ... 59	
4.2	 Future Work ... 60	

Bibliography .. 62	

Appendices ... 68	

A.	 Multi-Robot Test Bed Description ... 68	

B.	 Communication Relay Test Bed ... 73	
C.	 Task examples .. 75	

1.	 Escorting .. 75	

2.	 Navigation .. 78	

3.	 Communications .. 81	

viii viii

Table	of	Figures	
Figure 1: One formulation of the cluster space control architecture ..12	

Figure 2: Target escorting and patrolling [62] ...12	

Figure 3: Object entrapment and manipulation [62] ..12	

Figure 4: Adaptive navigation 	[22] ..13	

Figure 5: Dynamic guarding [63] ...13	

Figure 6: The layered, hierarchical control space architecture utilizing robot, cluster, and task spaces to
perform a single task ...14	

Figure 7: Serial Chain Cluster Diagram ...23	

Figure 8: Long Range Communication Link State Diagram ..24	

Figure 9: Overhead view of robot R position overlay comparing trajectories in ideal transmission
environments (dashed) and trajectories responding to an encountered region of attenuation (solid) ..26	

Figure 10: Time history of key system states for simulated attenuation scenario. All robots remain in the
communication task and so quantity is constant. The robots enter the region of attenuation at time
475 and time 625 as shown by the decreases in link quality and link balance transients.26	

Figure 11: Overhead view of positions of robot R and exogenous nodes X at specified times during
hardware configuration change experiment ..27	

Figure 12: Link power and balance state time history during hardware configuration change experiment ..27	

Figure 14: Resource Allocation Depiction ...32	

Figure 15: General task coordination block diagram. Task commands t are a function Q of mission-level
goal set points m, actual task states t, and external parameters x. Task state t is a function of coalition
state c and external parameters x. These functions add cross coupling between task states which
results in explicit, closed-loop task coordination. ...38	

Figure 16: A common special case of the task coordination block diagram without modifications to task
state definitions. Task commands t are exclusively a function Q of mission-level goal set points m
and actual task states t. ...38	

Figure 17: Time history of task states for a simple coordinated following mission. The second task has a
higher order response because it follows the first task, which couples their dynamics.40	

Figure 18: Overhead view of positions of robots R and exogenous nodes E at specified times while
evaluating the link quality command response ...43	

Figure 19: Time history of key states while evaluating the link quality commanded response, forcing
configuration change ...44	

Figure 20: Overhead view of robots R and exogenous nodes X during specified times for mobile endpoint
simulation ..45	

Figure 21: Time history of key system states for mobile endpoint simulation ..46	

ix ix

Figure 22: Overhead view of robots R and exogenous nodes E during specified times for the mobile
endpoint experiment ..47	

Figure 23: Time history of key system states for the mobile endpoint experiment. This experiment
demonstrates task-level control of multi-robot systems in the real world. The system is able to
maintain desired link characteristics by sensing the non-intuitive RF environment and adding mobile
robotic relays as necessary. ...49	

Figure 25: The overhead view of robot positions in specified time windows for the multi-task collaborative
mission example. The adaptive sampling task (blue) traverses a contour of a field (gray). The escort
task (green) patrols a perimeter around the sampling task. The communication task (red) relays data
from the adaptive sampling task to the base station (black). Robots are moved to the communication
task to maintain the data link as the sampling task moves away from the base station.56	

Figure 26: Time history of select states for the multi-task collaborative mission example. The top chart
depicts the allocation of robots between the different tasks. The second chart presents
communication link quality in comparison to commanded value and the deadband that dictates if the
robots are to be reallocated. The third chart presents the measured value of the navigation field,
corresponding to the gray shading in Figure 25. The fourth chart presents the radius of the perimeter
provided by the escort task, showing transients at reallocation events. The final chart presents the
ratio of the communication relay links, also showing the transient at reallocation events.57	

Figure 27: Multi-Robot Testbed with Communications Relay Test Bed ...68	

Figure 28: Sine sweep frequency response of Pioneer-AT robot ...70	

Figure 29: Received signal strength indicator (RSSI) verses separation distance for Xbee Series 2 RF
Modules. This data suggests model RSSI = 0.5/distance2 (indicated by black line). This data was
collected by Adwait Bhalerao and Matthew Chin. ...74	

Figure 30: Composite histogram of received signal strength indicator (RSSI) verses separation distance
while running experiments. This data suggests the model: RSSI = 0.31/distance274	

Figure 31: Robots traversing constant field contours around a uniform source. ..79	

x x

	Table	of	Tables	
Table 1: Example allocation policy for a communication + idle mission ..42	

Table 2: Example cluster space and task space kinematic transformation equations. These individual tasks
are combined for the example collaboration mission. ..51	

Table 3: Resource allocation logic for the example collaborative mission ..53	

xi xi

Nomenclature	

Accents:
𝑥 Desired or commanded vector, also 𝑥
𝑥 Actual or estimated vector
𝑥 Time derivative of vector 𝑥

Spaces:
𝑟 Robot space pose vector
𝑐! Cluster space pose vector for task 𝑗
𝑡! Task space pose vector for task 𝑗
𝑚 Mission command vector

Transformations:
𝐾𝐼𝑁! 𝑥 Kinematic equations for space 𝑖
𝐽!! 𝑥 Jacobian matrix for space 𝑖 and task 𝑗

Allocation:
𝑛 Total number of robots in the system
𝑛 Vector of robot allocation
𝑛! Number of robots assigned to task or cluster i
𝑆 Robot assignment matrix

Collaboration functions
𝑄 Task coordination function
𝑃 Resource allocation function

Controllers:
𝑢!! Control effort for space 𝑖 and task 𝑗
𝐾!! Control gain for space 𝑖 and task 𝑗

Dynamics:
𝑔!! Transfer function for space 𝑖 and state 𝑗
𝐺!! Diagonal transfer function matrix for space 𝑖 and task 𝑗
𝑝 switched state index corresponding to configuration
𝑉 Candidate Lyapunov function

1 1

1 	Introduction	

1.1 Motivation	

Robotics is a transformative technology that will empower our civilization for a new

scale of human endeavors. These endeavors include scientific exploration, precision

agriculture, military force, climate engineering, and planetary colonization. Massive

scale is only possible through the collaboration of individual or groups of robots.

Collaboration allows specialization, meaning a multi-robot system may accommodate

heterogeneous platforms including human partners.

Multi-robot systems increase the scope and scale of tasks, both in quantity and quality.

More robots incrementally improve tasks where quantity matters, like manufacturing or

explorations. They also provide new capabilities like redundancy and distributed-ness,

but most importantly multi-robot systems enable specialization through collaboration.

Specialization allows robots to be different and thus better at particular tasks.

Collaboration entails sharing resources, synchronizing efforts, and providing support

services. It enables larger, multifaceted missions comprised of specialized coalitions of

agents, like assembly, search and rescue or harvesting.

Today, robotics is a hot industry. Since the financial crisis of 2007-2008, industrial robot

sales experienced a 17% compound annual growth rate (CAGR) between 2010 and 2014

and analysts predict 15% CAGR between 2015 and 2018 [1]. Consumer robots have had

a more recent boom and analysts predict a 17% CAGR between 2014 and 2019 [2],

thanks to robotic vacuums and consumer drones. Furthermore, the Internet of Things

2 2

(IoT) movement adds ubiquitous data and connected devices in the billions [3]. At the

frontier of robotics is collaboration, in industry [4] [5] [6] as well as in research [7] [8]

communities. Collaboration empowers diverse, multi-dimensional applications of

robotics.

1.2 Vision	

One goal for multi-robot research is synergy between man and multiple machines. The

human operator can intuitively specify complex, multi-faceted goals with unspecified

intermediate tasks and dependencies. The federated multi-robot controller decomposes

the mission into efficient tasks, defining the necessary task dependencies, assigns

coalitions of robots to accomplish each task, and manages changing environmental

conditions and operator commands. Each task occurs quickly and precisely to

accomplish the mission. This system can be designed in a straightforward, formulaic

manner, has tangible performance metrics and is easy to implement and repurpose for

new missions. The research summarized here is a small step towards this goal.

1.3 Example	Collaborative	Missions	

A collaborative multi-robot system enables missions in addition to independent tasks.

Missions are composed of multiple tasks, with each task performed by a coalition of

robots. Some missions emphasize a primary task with auxiliary support tasks while other

missions consist of many instances of the same task performed in parallel. Collaborative

tasks may be performed by heterogeneous multi-robot systems, mixing platform

capabilities (different sensing or actuation capabilities) or domains of operation (land,

sea, air, and space). Listed below are examples of general categories of tasks with

specific instances:

• Observation (exploration, scouting, data collection, reconnaissance)
• Transportation (harvesting, mining, forestry, oil & natural gas)
• Manipulation (manufacturing, construction, site clearing)
• Communication (long range, area coverage)
• Sensing augmentation (coverage, specialized or shared sensors)

3 3

• Protection (escort, guard, patrol)
• Relief (repair, recharging, refueling, unloading)

These tasks can be combined into missions such as:

• Aircraft manufacturing: Large mobile platforms move two aircraft sections into
place for assembly. Multiple manipulators work together to fasten the sections
together, with one robot hammering rivets into place while the other robot reacts
forces into the bucking bar. Quality inspections can also be performed by another
type of robot.

• Planetary colonization: Large soil-moving robots can prepare the terrain while
construction robots can assemble buildings. Smaller aerial or inflatable robots
can monitor work progress and provide overhead sensing capabilities to the
ground crews.

• Security: Aerial vehicles provide situational awareness to ground teams. If a
threat is detected, scouts are sent to identify their intention. If hostile, heavier
vehicles are sent to engage.

• Crop Harvesting: Aerial vehicles observe fields to assess crops and decide where
to harvest. Multiple specialized harvest robots are deployed to cut and collect the
crop based on ripeness and weather conditions. Autonomous trucks coordinate
with the harvesters to maximize throughput.

• Science: Specialized robots with a suite of instruments collect the relevant data.
Other robots patrol the area to allow safe data gathering. Communications robots
relay the data back to interested parties on the shore.

1.4 Literature	Review	

Given the broad topic of multi-agent systems control, the following subsections discuss

our research in multi-robot systems within a larger body of research.

1.4.1 Control	of	Individual	Task	
For individual task-specific coalitions, researchers have demonstrated tasks such as

foraging [14] [15], exploration [16] [17] [18] [19], field navigation [20] [21] [22], sensor

coverage [23] [24] [25], and manipulation [26] [27] [28] [29] [30]. These applications

are coordinated using algorithmic methods, decentralized strategies, implicit potential

functions, or explicit space transformations depending on task complexity, state coupling,

and performance requirements. Algorithmic search and symbolic techniques often do not

4 4

consider system dynamics and thus have limited applicability to tightly coupled or high

performance tasks. Decentralized strategies, like swarms, can be robust to robot failures

and other unexpected behaviors but are difficult to analyze and design due to emergent

phenomenon. Potential functions are simple but can require careful tuning to achieve the

desired response for complex tasks.

1.4.2 Control	of	Multiple	Tasks	
For collaborative multi-task missions with federated coalitions, the primary challenges

are task allocation, assignment of resources, and coordinated motion control.

On the topic of task allocation, robotics researchers are developing algorithms for

decomposing and assigning tasks given constraints. For example, Parker, Zhang and

Tang [31] [32] use behavior-based representations (schemas) of robots to identify

candidate coalitions that are feasible for task execution. Their most recent developments

use these representations during planning functions to enable autonomous capability

sharing. Using a different approach, Vig and Adams [33] adapted the Shehory and Kraus

distributed problem solving algorithm for multi-robot coalition formation. They address

concerns specific to multi-robot systems, such as communications, computation and other

resource constraints.

On the topic of resource allocation, robotics researchers are developing algorithms that

allow sharing of capabilities and common resources. For example, Shiroma and Campos

[34] use a bidding process and constraint functions to evaluate if resources, like operating

space, communications channels, and processor capabilities, are sufficient to complete

actions.

On the topic of coordinated motion control, we are unaware of any automated control

architectures that address large-scale collaborative systems composed of task-oriented

multi-robot coalitions where relative spatial control is critical to mission performance.

Our goal is to address this missing piece.

1.4.3 Multi-Robot	Control	Taxonomy	
Within the field of robotics, a generally accepted practice is to divide control into

execution and planning functions. The execution component manages high speed, low

5 5

complexity functions like state estimation, dynamic control, and actuation in real time.

The planning component manages low speed, high complexity functions like task

decomposition, command generation, and health management in non-real time. Multi-

robot systems and systems of systems require additional functionality for cross-platform

and cross-task collaboration

Collaboration is a broad topic with many proposed approaches. Seminal work by Gerkey

and Mataric [35] [36] proposed a formal taxonomy of task allocation in multi-robot

systems which was later extended by Korsah, Stentz and Dias [37]. Task allocation

approaches are categorized as single task (ST) or multiple task (MT) assignments to each

robots; tasks requiring single robots (SR) or multiple robots (MR); instantaneous

assignments (IA) or time-extended assignments (TA) that plan for the future; and degree

of utility interrelatedness, being no dependencies (ND), in-schedule dependencies (ID),

cross-schedule dependencies (XD) or complex dependencies (CD).

Within the given taxonomy, the architecture presented herein uses single-task (ST) robots

to perform multi-robot (MR) tasks with instantaneous (IA) assignments. The schedule

dependencies depend on the task and resource allocation policies, which were not our

focus, but can accommodate cutting edge algorithms. While valuable for comparison,

this taxonomy does not consider factors of performance, our focus, which is another key

attribute when selecting an architecture.

1.4.4 Systems-of-Systems	
A particular instance of multi-task missions is in the field of systems of systems (SOS)

engineering. DeLaurentis and Crossley state, “a system of systems arises when a set of

needs are met through a combination of several systems. Each system can operate

independently but each also must interact effectively with other systems to meet the

specified needs" [38]. Many examples exist of systems-of-systems (SOS) in military,

political, economic, civic, humanitarian, and agricultural environments, such as:

advanced transportation management [39] [40] [41], satellite constellations [42], modern

defense systems [38] [39] [43], integrated manufacturing [38], business enterprise

resource planning (ERP) systems [44], health care [38], civic policy [39], and the Internet

[39] [44].

6 6

To best address the needs of complex missions, systems within an SOS must work

together in a collaborative way. This includes synchronizing motions and activities,

sharing resources, and providing mutual support as required in order to respond quickly,

maximize benefit, minimize expendables, manage complex trade-offs, fit within given

constraints, and accommodate uncertainty. This is a matter of task coordination, resource

allocation, and unified motion control.

As a simple example of coordinated motion control for a SOS, consider precision

agriculture. When harvesting fruit, vegetables, and grains, the coordinated motion of

harvesters and transportation equipment (typically trucks) influences speed, productivity,

and safety [45]. Accurate tracking of harvesters by trucks reduces turn around time and

swapping holding containers. Controlling multiple harvesters increases the throughput of

a single operator. Maintaining separation distance avoids collisions and ensures safety.

Joint control of harvesting and transportation equipment increases overall efficiency

which is critical due to the large scale of commercial farms and the short harvest season.

In a completely separate SOS domain, highly collaborative control is cited as the future

of disaster response [46]. In wildfires, for example, coordinated deployment of

firefighting personnel and equipment enables rapid response, coverage of large areas, and

management of resource constraints [47]. Rapid response with appropriate assets (fire

engines, bulldozers, hand crews, helicopters) is key to minimizing fire size and intensity.

Maintaining coverage helps manage the uncertainty of fire location. Redistribution of

assets as the situation changes helps alleviate demands on operating bases. In these ways,

coordinated control of assets is critical to wildfire suppression.

Systems-of-systems also exist within the field of robotics, as do similar challenges of

cross-system control. For the case of multi-robot systems, the primitive system is the

robot and the system-of-systems is the group or “coalition” of robots.

SOS engineering is a developing field. Researchers are exploring a number of key topics

including: formalizing the SOS framework [41] [44] [48], developing strategies for

design and performance analysis [49] [50] [51] [52], and creating integrated control

architectures [53] [54]. This last topic, cross-system control, which we will discuss

7 7

herein, is most critical to eliciting maximum performance of SOS and is the primary

design space for SOS engineering. This architecture is applicable to SOS because it

allows integration of different yet collaborative tasks and is able to analyze emergent

behavior.

1.4.5 Complexity	
Speaking more broadly, the field of complexity studies multi-agent systems, which can

range from biological to software. “Complexity is a property of an open system that

consists of a large number of diverse, partially autonomous, richly interconnected

components, often called Agents…whose behaviour emerges from the intricate

interaction of agents and is therefore uncertain without being random.” [55] The

distinguishing characteristics of complex systems are: connectivity, autonomy,

emergence, non-equilibrium, nonlinearity, self-organization, and co-evolution [55].

Select characteristics of complexity exist within (or define) other fields such as self-

organizing systems [56], complex adaptive systems [57], and systems of systems [38].

Our particular interest is in the control of collaborative multi-robot systems for which

complex behaviors can be specified.

The complexity of multi-robot systems is determined by control hierarchy. Non-

hierarchical control architectures have greater complexity due to increased autonomy of

the individual agents. Individual autonomy increases robustness and adaptability with

lower global communications requirements. Examples of non-hierarchical architectures

include decentralized techniques [33] [34], symbolic reasoning [30] [32], and search

methods [16] [31]. Hierarchical control architectures have lower complexity due to

greater coordination between agents. Global coordination reduces uncertainty and can

increase cross-agent performance metrics but has higher communications requirements

which can reduce robustness. Examples of hierarchical control architectures include

behavior based methods [58] [25] and control space transformations [59] [19] [20] [22]

[27] [29].

1.4.6 Robot	Control	Perspectives	
This research approaches robot control from the perspective of dynamic systems but

many researchers take an algorithmic (computational) approach. Both are equally valid

8 8

and appropriate for different applications, depending on system behavior and task

complexity. Recent advances in machine learning techniques, like reinforcement

learning [60], have allowed robotic control systems to learn complex behaviors without

specific human instructions. One could argue that this capability diminishes the need for

control architecture design and exhaustive analysis of system dynamics. However, well-

designed architectures, like that presented herein, make the system “easier” to control,

thus complimenting machine learning. Using an architecture like this will require fewer

iterations to converge and allows less complex algorithms because it reformulating the

states for simpler mapping between inputs and outputs.

1.5 Thesis	statement	&	Contributions	

This research developed and verified a formal, unified control architecture for

collaborative missions comprised of multiple, tightly coupled tasks performed by

coalitions of robots. The main contributions of this work are:

• Establishing a formal design process for creating multi-spatial control

architectures, extending prior work in the cluster space to arbitrary spaces.

Unifying the representation of multiple tasks performed in parallel to simplify

analysis and implementation of collaborative missions

• Incorporating the capability for reallocating resources (robots) between tasks,

including managing definitions of tasks and clusters as coalitions change size and

establishing formal stability criteria for safely switching between configurations.

• Establishing a novel method for coordinating tasks enabling closed-loop

collaboration and rapid re-tasking, deriving a dynamic model of the collaborative

system for performance and stability analysis.

• Analyzing the stability and performance of multi-spatial control architectures

typically used by our group, providing guidance for controller design. This

includes both rigorous nonlinear Lyapunov analysis which is more general, and

linear approximations which can be more convenient using standard design tools.

9 9

• Verifying the design process, by experiment for a communications task and by

simulation for prior work by our research group, specifically: formation control,

escorting, and adaptive navigation.

• Validating multi-task missions, by experiment for a simple mission (4 robots, 2

tasks) and by simulation for a complex mission (10 robots, 4 tasks)

• Adding new definitions for a cluster taking the form of a chain which is arbitrarily

extensible, and a task of long-range communications relay.

1.6 Reader’s	Guide	
The remaining document discusses details of the control space architecture. Chapter 2

examines individual tasks. It presents background material, the design technique,

analysis approaches, and advantages. Simulations and experiments provide examples of

the individual task architecture with results highlighting different features. Chapter 3

examines collaborative tasks. It presents a unified representation of multiple tasks, the

method of resource allocation, and the method for task coordination. Simulations and

experiments again provide examples of the multi-task architecture with results

highlighting different features. Finally, Chapter 4 discusses conclusions of the research

and directions for the future. Additionally, appendices discuss the multi-robot testbed,

the communications relay testbed, and example applications.

 	

10 10

2 Individual	Task	Space	Control	

2.1 Description	of	technique	

The multi-robot control architecture is a series of cascaded control loops that each use

alternative representations of the system state. Each layer defines the system using a

complete set of states that are relevant to the scope of that layer, and kinematic

transforms are used to convert between the layers and their associated state spaces. For a

task-oriented multi-robot coalitions, we typically use pose descriptions in three different

spaces: the global pose of the individual robots, termed the robot space; the geometric

configuration of the robots, termed the “cluster space”; and the defining spatial

parameters for the intended application, termed the task space.

As an example, consider an escorting task using three robots. Traditional controllers

consider the individual robot positions; this is the robot space. Alternatively, the group

geometrically forms a triangle; this is the cluster space. Still further, establishing an

escorting perimeter can be described by centering and equalizing the triangle around a

protectee with a specific radius and phase; this is the task space. These are three different

descriptions of the same physical deployment of robots, each allowing specification and

control from different points of view.

Pose states are mapped between spaces through a set of kinematic transformation

equations. Velocity states and forces are mapped between spaces using Jacobian

matrices. A general form of these transformations is presented below from space {𝑋}

11 11

with pose 𝑥, velocity 𝑥 and control effort 𝑢! to space {𝑌} with pose 𝑦, velocity 𝑦 and

control effort 𝑢! for a system consisting of 𝑛 robots of 𝑚 degrees of freedom.

The kinematic transformation equations are:

𝑦 = 𝐾𝐼𝑁 𝑥 ≜
𝑔! 𝑥! ,… , 𝑥!"

⋮
𝑔!" 𝑥! ,… , 𝑥!"

 (1)

𝑥 = 𝐼𝑁𝑉𝐾𝐼𝑁 𝑦 ≜
ℎ! 𝑦! ,… ,𝑦!"

⋮
ℎ!" 𝑦! ,… ,𝑦!"

 (2)

The Jacobian matrices are:

𝑦 = 𝐽 𝑥 𝑥 ≜

!"!
!"!

!"!
!"!

!"!
!"!

!"!
!"!

⋯ !"!
!"!!

⋯ !"!
!"!"

⋮ ⋮
!"!"
!"!

!"!"
!"!

⋱ ⋮
⋯ !"!"

!"!"

𝑥!
𝑥!
⋮

𝑥!"

 (3)

𝑦 = 𝐽!! 𝑦 𝑥 ≜

!!!
!"!

!!!
!"!

!!!
!"!

!!!
!"!

⋯ !!!
!"!"

⋯ !!!
!"!"

⋮ ⋮
!!!"
!"!

!!!"
!"!

⋱ ⋮
⋯ !!!"

!"!"

𝑦!
𝑦!
⋮

𝑦!"

 (4)

Assuming the use of a resolved-rate control approach of the type proposed in [59], which

we typically use in practice, compensation commands are transformed:

𝑢! = 𝐽!! 𝑦 𝑢! (5)

These layer-specific computations prescribed in (1)-(5) may be successively applied such

as is shown in Figure 1. In this diagram, one set of transforms converts between the

robot space and the geometrically-oriented cluster space. Then another converts between

the cluster space and the application-oriented task space.

12 12

Figure 1: One formulation of the cluster space control architecture

2.2 Background:	Cluster	Space	Control	

Early work on this architecture focused on formation control which was often informally

extended to task control. Using the cluster space technique, the multi-robot system is

considered as virtual articulating mechanism which can be actuated along different

degrees of freedom (separation distances, relative angles). The underlying goal of the

cluster space technique is simple motion specification and control of multi-robot systems.

This is accomplished by considering multiple robots as a single geometric entity rather

than as individual robots. The pose of a cluster is described by its location and shape,

which are related to individual robot positions through a set of kinematic transforms. The

interested reader should consult [61] for the original description of this technique. Some

of these previous applications are shown in Figures 2-4.

Figure 2: Target escorting and patrolling
[62]

Figure 3: Object entrapment and
manipulation [62]

−2 0 2

−2

0

2

time = 45 sec.

−2 0 2

−2

0

2

time = 70 sec.

−2 0 2

−2

0

2

time = 96 sec.

−2 0 2

−2

0

2

time = 121 sec.

−2 0 2

−2

0

2

time = 146 sec.

−2 0 2

−2

0

2

time = 171 sec.

−2 0 2

−2

0

2

time = 196 sec.

−2 0 2

−2

0

2

time = 222 sec.

Fig. 6. Escorting test results using the multi-robot testbed showing a 3-robot
cluster (circles) following the target (star) while maintaining the triangular
formation. The axes represent global x and y coordinates in meters.

capacity or environmental interferences this may not always
be the case. We acknowledge that this approach should be
complemented with decentralized strategies in order to deal
with such situations. Furthermore, we are currently working
on variations of the cluster space approach in order for it to
operate in a distributed fashion.

−2 0 2 4
−4

−2

0

2

4

time = 20 sec.

−2 0 2 4
−4

−2

0

2

4

time = 50 sec.

−2 0 2 4
−4

−2

0

2

4

time = 81 sec.

−2 0 2 4
−4

−2

0

2

4

time = 111 sec.

−2 0 2 4
−4

−2

0

2

4

time = 141 sec.

−2 0 2 4
−4

−2

0

2

4

time = 171 sec.

−2 0 2 4
−4

−2

0

2

4

time = 201 sec.

−2 0 2 4
−4

−2

0

2

4

time = 232 sec.

Fig. 7. Patrolling mission results using the multi-robot testbed showing
a 3-robot cluster (circles) following the target (star) while rotating around
it (patrolling) and maintaining the triangular formation. The robots get in
formation around the target (time=20s) and then start tracking it. The trails
show the resulting robot motions of the patrolling while escorting task. The
axes represent global x and y coordinates in meters.

VI. FUTURE WORK AND CONCLUSIONS

Ongoing work includes the study of alternative cluster
definitions under the assumption that they may be more
convenient for specifying and monitoring requirements for
different missions. Upgrading the obstacle avoidance algo-
rithm to deal with multiple obstacles is also under study.
A new vision-based multi-robot testbed is being developed

5860

produce a rotation of the object. The robots then release the

object and leave. Figure 4 illustrates the simulation output.

−50 0 50

−50

0

50

time = 30 sec.

−50 0 50

−50

0

50

time = 45 sec.

−50 0 50

−50

0

50

time = 60 sec.

−50 0 50

−50

0

50

time = 75 sec.

−50 0 50

−50

0

50

time = 91 sec.

−50 0 50

−50

0

50

time = 106 sec.

Figure 3. Object transportation test results showing a 4-robot cluster

(circles) entrapping the target (grey box) and transporting it to a remote

location. The axes represent global x and y coordinates in meters.

4 Conclusions

A new cluster definition for a four-robot formation was in-

troduced and the resulting cluster space control framework

was successfully applied to the multi-robot manipulation of

large objects. Given the level of control abstraction intro-

duced by the cluster space variables, a single pilot or oper-

ator can effectively command and monitor the position of

the robots in the group in order to cooperatively achieve the

desired task.

References

[1] Pereira, G. A. S., Kumar, V., Spletzer, J., Taylor, C. J.,

and Campos, M. F. M., 2002. “Cooperative transport

of planar objects by multiple mobile robots using ob-

−50 0 50
−80

−60

−40

−20

0

20

40

time = 20 sec.

−50 0 50
−80

−60

−40

−20

0

20

40

time = 33 sec.

−50 0 50
−80

−60

−40

−20

0

20

40

time = 45 sec.

−50 0 50
−80

−60

−40

−20

0

20

40

time = 58 sec.

−50 0 50
−80

−60

−40

−20

0

20

40

time = 71 sec.

−50 0 50
−80

−60

−40

−20

0

20

40

time = 83 sec.

Figure 4. Object manipulation test results showing a 4-robot cluster (cir-

cles) entrapping the target (grey box) and changing its orientation.

ject closure”. In Experimental Robotics VIII, Springer,

pp. 275–284.

[2] Mataric, M., Nilsson, M., and Simsarian, K., 1995.

“Cooperative multi-robot box-pushing”. IROS-95,

Pittsburgh, PA , pp. 556–561.

[3] Wang, Z., Takano, Y., Hirata, Y., and Kosuge, K.,

2007. “Decentralized cooperative object transporta-

tion by multiple mobile robots with a pushing leader”.

Distributed Autonomous Robotic Systems 6 January ,

pp. 453–462.

[4] Song, P., and Kumar, V., 2002. “A potential field based

approach to multi-robot manipulation”. ICRA-02, 2 ,

pp. 1217 –1222.

[5] Kitts, C. A., and Mas, I., 2009. “Cluster space spec-

ification and control of mobile multirobot systems”.

Mechatronics, IEEE/ASME Transactions on, 14 (2)

April , pp. 207–218.

[6] Craig, J., 2005. Introduction to Robotics, Mechanics

and Control. Pearson Prentice Hall, Third Edition.

13 13

Figure 4: Adaptive navigation 	[22]

Figure 5: Dynamic guarding [63]

We observed a common approach in this prior work and formalized the extension of

cluster space to the task space. Layering control spaces in this way can be extended

arbitrarily. As an example, ongoing work extends [22] to follow higher order features of

a field, like ridges and trenches, using a cluster of clusters in an additional layer of

formation control.

2.3 Task	Design	Process	

There is a systematic approach to constructing each control space:

1. Identify the key control spaces for the architecture and the spanning states for

each space

2. Define the kinematic transformation equations to relate the pose state variables in

adjoining spaces

3. Compute Jacobian matrices from the kinematic equations to relate the rates of

change of the pose state variables

4. Design the space-specific controllers and evaluate their performance, integrating

the components above

The following subsections provide detail on each step.

battery, allowing three hours of standard
speeds up to five knots. Simple aluminum and PVC chassis
elements attach electronic components to the hull and provide
for rapid assembly of the system in the field.

Each kayak uses a Garmin 18 differential GPS unit and a
digital Devantech CMPS30 compass for position sensing,
providing sensing accuracy on the order of +/
respectively. For depth readings, a Garmin Intelleducer sonar
provides 1 Hz data up to a maximum depth of 275 m with an
accuracy of +/- 1 m. Two on-board BasicX microcontrollers
provide basic data acquisition and formatting
handle the parsing functions and serve as an interface between
the on-board sensors / actuators and a wireless communication
system that integrates the system with the off
control system. An isolated 12 volt battery system provides
power to the sensor, computing, and communications
components.

Fig. 6. The three kayak cluster operating in Stevens Creek

Each kayak is wirelessly connected to a remote control

station, which executes the adaptive navigation controller and
serves as an operator interface to the system. The wireless
system uses two Metrocom Ricochet transceivers capable of
128 Kbps speeds and robust communications up to 1.5 miles.
The station consists of a standard Windows
computer running the controller, which executes within
Matlab/Simulink environment. The DataTurbine streaming
software connects the Simulink controller with
port application that manages the interface with the wireless
communication equipment. We note that this software
architecture is used extensively by the research team for
several other low-cost multi-robot testbeds; although it has
performance limitations, it’s capability is more than sufficient
for the control requirements of these systems, it is easily
maintained and configured by a student research team, and it
provides simple integration with a variety of other networked
tools, interfaces and simulators available to the team.

V. EXPERIMENTAL RESULTS

To experimentally verify the gradient
navigation technique, distributed depth measurements were
made in order to perform tasks such as navigating up/down
underwater slopes and following bathymetric contours. Depth
was used as the parameter of interest for initial field testing
because such fields are static, they are easily measured using
the existing multi-robot system, and we
resolution truth data using an alternate system that performs
science-grade bathymetric mapping [14].

battery, allowing three hours of standard operations and
speeds up to five knots. Simple aluminum and PVC chassis
elements attach electronic components to the hull and provide

Each kayak uses a Garmin 18 differential GPS unit and a

CMPS30 compass for position sensing,
providing sensing accuracy on the order of +/- 3 m and 3°,
respectively. For depth readings, a Garmin Intelleducer sonar
provides 1 Hz data up to a maximum depth of 275 m with an

icX microcontrollers
formatting. They also

parsing functions and serve as an interface between
board sensors / actuators and a wireless communication

system that integrates the system with the off-board cluster
control system. An isolated 12 volt battery system provides
power to the sensor, computing, and communications

Stevens Creek Reservoir, CA.

Each kayak is wirelessly connected to a remote control
station, which executes the adaptive navigation controller and
serves as an operator interface to the system. The wireless
system uses two Metrocom Ricochet transceivers capable of

communications up to 1.5 miles.
The station consists of a standard Windows-based laptop

ntroller, which executes within a
Matlab/Simulink environment. The DataTurbine streaming
software connects the Simulink controller with a simple serial
port application that manages the interface with the wireless
communication equipment. We note that this software
architecture is used extensively by the research team for

robot testbeds; although it has
mance limitations, it’s capability is more than sufficient

for the control requirements of these systems, it is easily
maintained and configured by a student research team, and it
provides simple integration with a variety of other networked

ces and simulators available to the team.

ESULTS

To experimentally verify the gradient-based adaptive
navigation technique, distributed depth measurements were
made in order to perform tasks such as navigating up/down

following bathymetric contours. Depth
was used as the parameter of interest for initial field testing

easily measured using
we can create high

ernate system that performs

Experiments were performed at two sites. The first was
Stevens Creek Reservoir in Cupertino, CA, which is a routine
test location for various marine robotic systems developed at
Santa Clara University. As a man
bathymetric profile is a simple concave shape with contours
that follow the coastline and depths that are completely in
range of the sonar units on each boat. In addition, the main
part of this reservoir had been extensively mapped by the team
prior to navigation experiments as part of a separate research
effort. The second site was in Lake Tahoe approximately a
half mile off the coast of Camp Richardson on the
Southwestern shore of the Lake, a location known to h
descending ravine but for which detailed maps were
unavailable. After the experiments were executed, the team
used the Lab’s bathymetric mapping system to map
of the region of operation in order to verify results.

Experiments were performed to verify both
climbing/descent as well as contour following. In addition,
both cluster motion modes, nonholonomic
holonomic-like, were demonstrated; however, in this paper we
only present holonomic-like maneuvers given our preference
for that option and limitations on space.

A. Steven’s Creek Contour Following Demonstration

The Steven’s Creek tests were run during algorithm
development in order to iteratively test and improve the
control system. The lack of long paths of depth change
prohibited compelling demonstrations of gradient
ascent/descent. However, the man-made topography provided
an outstanding venue for demonstrating
capability. Fig. 7 shows the result of such a contour
experiment, with the cluster moving counter
location A to location B, around the northern edge of the
reservoir, following a depth value of z

maintaining a desired shape of [p ,q

Fig. 7. The track of the kayak cluster during a contour following operation in
Aug 2012 at Stevens Creek Reservoir, CA. A depth contour of 11.5
specified, with the cluster commanded to maintain a triangular formation of

(p, q, β) = [18 m, 18 m, 90°].

Fig. 8 shows the precise behavior of the cluster during this
experiment. In Fig. 8(a), the sensor data from each robot and

Experiments were performed at two sites. The first was
Stevens Creek Reservoir in Cupertino, CA, which is a routine
test location for various marine robotic systems developed at

ra University. As a man-made entity, the
bathymetric profile is a simple concave shape with contours
that follow the coastline and depths that are completely in
range of the sonar units on each boat. In addition, the main

extensively mapped by the team
prior to navigation experiments as part of a separate research
effort. The second site was in Lake Tahoe approximately a
half mile off the coast of Camp Richardson on the
Southwestern shore of the Lake, a location known to have a
descending ravine but for which detailed maps were
unavailable. After the experiments were executed, the team
used the Lab’s bathymetric mapping system to map a portion

the region of operation in order to verify results.
d to verify both gradient

climbing/descent as well as contour following. In addition,
both cluster motion modes, nonholonomic-like and

like, were demonstrated; however, in this paper we
like maneuvers given our preference

for that option and limitations on space.

Steven’s Creek Contour Following Demonstration

The Steven’s Creek tests were run during algorithm
development in order to iteratively test and improve the
control system. The lack of long paths of depth change

ohibited compelling demonstrations of gradient
made topography provided

an outstanding venue for demonstrating the contour-following
7 shows the result of such a contour-following

ster moving counter-clockwise from
location A to location B, around the northern edge of the

value of z = 11.5 m while

 , β] = [18 m, 18 m, 90°].

The track of the kayak cluster during a contour following operation in

Aug 2012 at Stevens Creek Reservoir, CA. A depth contour of 11.5 m was
specified, with the cluster commanded to maintain a triangular formation of

8 shows the precise behavior of the cluster during this
, the sensor data from each robot and

9

D. Shielding a mapping vessel
While the previous cases have relied on a simulated cluster

centroid, the fourth case uses an actual vessel to demonstrate
shielding with threat detection (Fig. 15). The protected vessel
is another autonomous surface vessel, a SWATH (small
waterplane area twin hull) boat, equipped with a multibeam
sonar, AHRS, GPS, and heave sensors designed for shallow
water bathymetry. Standard operation typically involves
following a preset path (mowing the lawn) to map the desired
area. More information can be found in [35]. This case uses
four robots for the shielding fleet, using an appropriately
modified set of kinematic transforms. We note that the
application specifications remain the same, independent of the
fact that only four robots are now being used.

Fig. 15 – Shielding with threat detection of a mapping vessel

The application variables for this case are set with the
standard radius at 12 m, the maximum approach at 20 m, and
the minimum fence spacing at 10 m.

The overhead view, shown in Fig. 16, is broken down into
four time steps. In the first step the fleet of four USVs have
identified a threat (out of frame to the northeast) and the
cluster has rotated to face it. For this four USV case, the
cluster heading is aligned between robots 1 and 2. The fleet
has not yet adjusted fence spacing or radius since the threat is
still far away.

In step 2, the threat approaches the protected vessel. The
kayaks begin to noticeably decrease the fence spacing. At step
3 the threat has continued to approach. The USVs are still
tracking along the heading, have come further out and are
narrowing the fence spacing.

At step 4 the threat has almost reached the max approach
and the USVs have set the fence spacing near the minimum
value as set in the application space. The kayaks loiter in
these locations, tracking the heading and distance of the threat
until it vacates the area.

The individual measured cluster variables are shown in Fig.
17. Table D shows the rms errors for the controlled
parameters; as before, all errors are under 4 meters.

V. ONGOING AND FUTURE WORK
Ongoing work on this project includes a significant level of

Matlab/Simulink-based simulation in order to explore
alternate implementations of the cluster space controller, using
different shape variables. It is worth noting that the version
reported on here fits within the leader-follower paradigm;
other versions being explored clearly do not, such as defining
a fleet centroid and using this as a reference for the center of
the barrier. We are also preparing to use a version of this

controller during a real-world Summer 2011 mission involving
protection of an underwater robot dive area in Lake Tahoe;
recreational boaters pose an extreme hazard to these
operations given the ability of a boat to catch the high-voltage
tether running from the tender boat to the robot.

In general, we continue to apply the cluster space control
approach to systems with more robots and additional degrees
of freedom in order to explore scalability issues. We are also
working to generalize the application-space-to-cluster-space

Fig. 16 – Overhead view of shielding technique with threat detection around
mapping vessel.

Fig. 17 – Cluster variables shielding with threat detection of a mapping vessel

TABLE D – SHIELDING A MAPPING VESSEL: RMS ERROR VALUES FOR THE
CLUSTER RADIUS AND FENCE SPACING VARIABLES

Cluster
Radii

RMS Error
(m)

 Cluster Fence
Spacings

RMS Errors
(m)

R1 1.58 -- --
R2 2.21 F2 2.33
R3 1.80 F3 2.56
R4 1.90 F4 3.99

14 14

Figure 6: The layered, hierarchical control space architecture utilizing robot, cluster, and
task spaces to perform a single task

2.3.1 Control	Spaces	&	States	

Each control space considers the system from an alternate perspective that will be more

useful or beneficial to the designer or operator. The states within this new space must

fully define all degrees of freedom of the system. These designations are up to the

discretion of the designer but may correspond to operator inputs or where there are

convenient distinctions in functionality (ex: different hardware). Designers can use these

spaces to compensate for non-ideal behavior in appropriate spaces like friction in an

actuator space or sensor behavior in a task space.

As an example, we typically use three spaces: robot space with states corresponding to

the pose of the individual robots; cluster space with states corresponding to the formation

parameters like centroid, separation distances and relative angles; and task space with

states corresponding to the motion specific goals of the task.

2.3.2 Kinematic	Transformations	

Kinematic transformation equations algebraically map the system pose states (or degrees

of freedom) between spaces. Forward kinematic equations (1) map the lower space states

to the higher space states (ex: robot to cluster) and the inverse kinematic equations (2)

map the higher space states to the lower (ex: cluster to robot). These equations may be

15 15

based on geometry, modeled behavior, or any arbitrary function as desired by the

designer or the operator.

2.3.3 Jacobian	Matrices	

The Jacobian matrices map system state velocities between spaces, per equations (3) and

(4). These matrices are straightforward to derive from the kinematic equations but may

be lengthy. If advantageous (ex: if the inverse kinematics are difficult to find), the

Jacobian may be computed in one space and numerically inverted to compute the inverse

Jacobian. A symbolic solver (ex: MATLAB symbolic toolbox) is highly recommended

to pre-compute these equations

Because the Jacobians are generally a function of system state, they must be updated as

the system changes pose. Certain configurations of the system may result in singular

Jacobians corresponding to degenerate geometry or loss of degrees of freedom.

Singularities can be calculated from the Jacobian determinant, below, and the designer

should consider impacts on the system workspace.

det 𝐽 𝑥!"#$%&'(= 0 (6)

2.3.4 Controller	Design	

Within each space (ex: robot, cluster, task, etc.), the architecture can accommodate any

form of controller (ex: linear time invariant, state machine, optimal, adaptive). The

previously defined control space transformations are assembled as shown by the block

diagram in Figure 6. The kinematic transformations add coupling between the system

states, but the Jacobians provide a degree of decoupling, allowing independent control of

all states until nonlinear effects become appreciable. Model-based methods can

completely cancel coupled dynamics as shown by [64]. With this structure, the state

trajectories can be well behaved (exponentially decaying) with simple (ex: linear time

invariant) controllers. Controllers can be empirically tuned or analytically designed as

described in Section 2.4.

16 16

This layered architecture simplifies controller design, facilitates system interface and

modularity, and can yield higher performance but may have some practical challenges.

Controller design is simplified by the construction of the layers. The different spaces are

effectively a series of cascaded inner loops, which conditions and linearizes the system

behavior. Non-ideal behavior, like disturbances, difficult dynamics (resonances, phase

lag, roll-off) or nonlinearities (friction, deadbands, saturation, rate limits, state cross-

coupling) can be managed within the appropriate control space. For example, if the robot

space controller can compensate for wheel friction, the communication task space

controller can focus on compensating for line-of-sight obstructions. In this way, the

higher level system behavior (related to tasks) become independent of the lower level

behavior (related to robots).

Control space abstraction facilitates interfaces for human operators and other systems.

By constructing the architecture with the spaces relevant to a human operator, system

states may be specified or monitored naturally in familiar terms. The abstraction due to

the control space approach also benefits system integration. High-level analysis can

make approximations of low-level behavior. This is especially important for systems-of-

systems where the scope of integration can become prohibitive to analyze. This layering

decouples the task from the actual hardware implementation, which allows resource

sharing as will be discussed later. In some ways, abstraction facilitates heterogeneous

coalitions, for the particular members are irrelevant so long as the task is accomplished.

Finally, this control architecture can improve performance metrics like speed, accuracy

and robustness. Well-behaved (exponentially converging, decoupled) state trajectories

are often naturally achieved in the control space through the use of simple linear

controllers. The layered multi-space controllers linearize system responses and increase

disturbance rejection through a combination of the controller design and Jacobian

transformations. The transformations between control spaces explicitly encode model

information in kinematic equations and Jacobian matrices. Model based control is

grounded in the fundamental behavior of the system. The architecture may have some

practical challenges, but so far these have been surmountable. The mathematically

intensive nature of this approach can be concerning for scaling to larger numbers of

17 17

robots. State updates and control calculations could burden real time computation and

communication. Thus far, we have not been limited in our current experiments [65]

which control up to 10 robots at 5Hz (totaling 9600 bits/sec) using non-optimized code

(MATLAB) on commercial hardware (laptops, wireless modems). System hierarchy

allows control computations to be partitioned and computed locally by each task

coalition. Global information is only necessary for cross-task coordination (discussed in

Chapter 3), which is typically at a lower rate than task control. By decentralizing the

computations and limiting global communication, the architecture likely can be scaled to

larger numbers of robots.

The following section presents rigorous analysis of the architecture which is only

possible because of the formal mathematical basis of this method. This can be compared

to implicit approaches like potential functions that can require careful tuning or swarm

techniques where the resulting emergent behavior may be unintentional. The analytic

rigor provides confidence during the design process to reduce system margins and

increase system performance.

2.4 Analysis	

Mathematical formalism is a key strength of this technique. It allows thorough analysis

of the system behavior, the impact of the control space definitions and the control system

interaction. This specific analysis assumes resolved-rate linear, time-invariant (LTI)

controllers of the form presented in Figure 6; the approach may be followed to analyze

different forms of controllers or architectures.

2.4.1 Control	Space	Transformation	Stability	Analysis	

Let us consider the stability conditions for an architecture using transformations from

space 𝑋 to control space 𝑌 . We define a candidate Lyapunov function of quadratic

error in the control space {Y} and assume the Jacobian is sufficiently far away from

singularities:

𝑉 = !
!
𝑒!!𝑒! > 0 (7)

18 18

And finding the rate of change with respsect to time:

!!
!"
= 𝑒!!𝑒! = 𝑒!! 𝑦! − 𝐽𝑥 (8)

!!
!"
≤ 𝑒! 𝑦! − 𝐽 𝑥 (9)

Then the Lyapunov rate of change is negative definite and thus stable in the Lyapunov

sense if:

!!
!"
≤ 0 → 𝑦! ≤ 𝐽 𝑥 (10)

Hence the error remains bounded as long as the commanded rate in space 𝑌 is less than

actual rate in space 𝑋 as projected into the control space by the Jacobian. This

conclusion is trivial, yet shows the influence of the Jacobians on system stability.

Substituting our specific state spaces, the maximum robot rate limits the cluster rate

command based on the cluster Jacobian and the maximum cluster rate limits the task rate

command based on the task Jacobian.

2.4.2 Control	Space	Transformation	Performance	Analysis	

Furthermore, exponential Lyapunov stability may be used to quantify the performance of

an architecture using control space transformations by bounding the error with an

exponential function with decay rate 𝛽:

𝑒 ≤ 𝛼 𝑒! 𝑒!!" (11)

Starting with the condition for Lyapunov exponential stability, we again transform states

to arrive at an expression for system responsiveness. We define a candidate Lyapunov

function of quadratic error in the control space {Y}:

𝑉 = !
!
𝑒!!𝑒! > 0 (12)

!!
!"
= 𝑒!!𝑒! = 𝑒!! 𝑦! − 𝐽𝑥 (13)

Adding the condition for exponential stability:

19 19

!"
!"
≤ −𝛽𝑉 (14)

𝑒!! 𝑦! − 𝐽𝑥 + !
!
𝛽𝑒!!𝑒! ≤ 0 (15)

< 𝑒! 𝑦! − 𝐽 𝑥 + !
!
𝛽 𝑒! ! ≤ 0 (16)

→ 𝛽 ≤ ! ! ! !!
!
! !!

 (17)

Hence the exponential decay rate is faster with smaller error, smaller command rate,

faster speed, or a stronger relationship between spaces as defined by the Jacobian. Using

this result, we can quantify the responsiveness of the system using the bounding

exponential decay rate 𝛽

2.4.3 Linearized	Transfer	Function	Analysis	

We can approximate the robot behavior with a transfer function and compute the

corresponding task-level transfer function. This allows us to design LTI feedback

controllers within each control space using standard analysis techniques. The following

analysis corresponds to the control architecture presented in Figure 6.

Starting with the robot space velocity transfer function, which we can assume as LTI

given realistic (<10 Hz) bandwidth and slowly varying trajectories:

𝑟 = 𝐺!𝑟 (18)

Transforming to cluster space and adding feedback control of cluster velocity gives the

cluster space velocity transfer function:

𝐽!!!𝑐 = 𝐺!𝐽!!!𝐾! 𝑐 − 𝑐 (19)

𝐽!!! + 𝐺!𝐽!!!𝐾! 𝑐 = 𝐺!𝐽!!!𝐾!𝑐 (20)

𝑐 = 𝐽!!! + 𝐺!𝐽!!!𝐾! !!𝐺!𝐽!!!𝐾!𝑐 = 𝐺!𝑐 (21)

20 20

Transforming to task space and adding feedback control of task state gives the task space

transfer function:

𝐽!!!𝑠𝑡 = 𝐺!𝐽!!!𝐾! 𝑡 − 𝑡 (22)

𝐽!!!𝑠𝐼 + 𝐺!𝐽!!!𝐾! 𝑡 = 𝐺!𝐽!!!𝐾!𝑡 (23)

𝑡 = 𝐽!!!𝑠𝐼 + 𝐺!𝐽!!!𝐾! !!𝐺!𝐽!!!𝐾!𝑡 = 𝐺!𝑡 (24)

where 𝐺! represents a diagonal matrix of transfer functions in space 𝑥, 𝐾! represents

control gains in space 𝑥, and 𝑢 represents control effort. The system pose is represented

by 𝑟 in robot space, 𝑐 in cluster space, and 𝑡 in task space. As subscripts, these letters

associate the variable with a space. The hat (𝑥) and breve (𝑥) accents denote the actual

and desired states respectively. The transfer functions at each layer can be approximated

as LTI with proper tuning, maintaining diagonal dominance, and avoiding singularities.

Equations (21) and (24) show the linearizing nature of multi-space control. A larger

control gain 𝐾 reduces the influence of the additional denominator term 𝐽!! and

minimizes the system dynamics.

2.4.4 Linearized	Disturbance	Rejection	
Disturbances are most likely to occur at the robot (or platform) level from environmental

effects (friction, traction, wind) or unmodeled phenomena (deadbands, saturation). We

investigate the effects of robot-space disturbances 𝛿! on the cluster and task space states.

Starting with the robot space velocity transfer function subjected to a disturbance:

𝑟 = 𝐺! 𝑟 + 𝛿𝑟 (25)

Transforming to cluster space and adding feedback control of cluster velocity:

𝐽!!!𝑐 = 𝐺!𝐽!!!𝐾! 𝑐 − 𝑐 + 𝐺𝑟𝛿𝑟 (26)

𝐽!!! + 𝐺!𝐽!!!𝐾! 𝑐 = 𝐺!𝐽!!!𝐾!𝑐 + 𝐺!𝛿𝑟 (27)

𝑐 = 𝐽!!! + 𝐺!𝐽!!!𝐾! !! 𝐺!𝐽!!!𝐾!𝑐 + 𝐺!𝛿𝑟 (28)

21 21

Assuming a regulating controller where 𝑐 = 0:

𝑐 = 𝐽!!! + 𝐺!𝐽!!!𝐾! !!𝐺!𝛿! (29)

Transforming to task space and adding feedback control of task state:

𝐽!!!𝑠𝑡 = 𝐽!!! + 𝐺!𝐽!!!𝐾! !! 𝐺!𝐽!!!𝐾!𝐽!!!𝐾! 𝑡 − 𝑡 + 𝐺!𝛿! (30)

𝐽!!!𝑠𝐼 + 𝐽!!! + 𝐺!𝐽!!!𝐾! !! 𝐺!𝐽!!!𝐾!𝐽!!!𝐾! 𝑡 = 𝐽!!! + 𝐺!𝐽!!!𝐾! !! 𝐺!𝐽!!!𝐾!𝐽!!!𝐾!𝑡 + 𝐺!𝛿! (31)

𝑡 = 𝐽!!!𝑠𝐼 + 𝐽!!! + 𝐺!𝐽!!!𝐾! !! 𝐺!𝐽!!!𝐾!𝐽!!!𝐾!
!!

𝐽!!! + 𝐺!𝐽!!!𝐾! !! 𝐺!𝐽!!!𝐾!𝐽!!!𝐾!𝑡 + 𝐺!𝛿! (32)

Assuming a regulating controller where 𝑡 = 0:

𝑡 = 𝐽!!!𝑠𝐼 + 𝐽!!! + 𝐺!𝐽!!!𝐾! !! 𝐺!𝐽!!!𝐾!𝐽!!!𝐾!
!! 𝐽!!! + 𝐺!𝐽!!!𝐾! !!𝐺!𝛿! (33)

Much like in traditional cascaded control architecture, higher control gains 𝐾 increase

disturbance rejection. In a multi-spatial control architecture, the control space

transformations also influence the system disturbance rejection as seen by the Jacobian

inverse matrices 𝐽!! in the denominator of equations (29) and (32). Large magnitude

Jacobian inverses reduce the overall gain of the transfer function. In addition, these

Jacobian inverses also add coupling between the original states which could benefit or

impact the disturbance rejection of the system, depending on the space definition. At the

task level, such as equation (33), the influence of the cluster layer is evident where

control gains and Jacobian inverse matrices from both spaces are present.

2.5 Example	Task:	Long	Distance	Communications	
As an example, consider the task of long-range communications between two exogenous

end nodes using mobile relays. To maximize the link quality, robotic relay nodes will

move to intermediate locations based on desired link characteristics.

2.5.1 Spaces	&	States	
The problem can be divided into three spaces. The robot space describes the pose of the

individual agents in the environment, defined by the global Cartesian position and

orientation global position and orientation. The robot state vector is defined as:

22 22

𝑟 ≜ 𝑥!,𝑦!,𝜃!,… , 𝑥!,𝑦!,𝜃! ! (34)

In the cluster space, the separation chain distances 𝜌! and chain angles 𝛼! are key due to

their influence of the communication states, depicted in Figure 7. The cluster state vector

is defined as:

𝑐 ≜ 𝑥! ,𝑦! ,𝜃! ,𝜌!,𝛼!,𝜙!,… ,𝜌!!!,𝛼!!!,𝜙!!! ! (35)

In the task space, the user is interested in maintaining sufficient communication quality of

service (QoS) between two end nodes, with signals being relayed as needed. QoS

proved impractical to quantify in real-time, so the system measures the link power

between nodes using the received signal strength indicator (RSSI). For line-of-sight, the

RSSI may be modeled as inversely proportional to the square of the distance between two

points, hence:

𝑠! =
!

!!!!!!! !! !!!!!!! !
= !

!!
! (36)

where 𝑘 is a constant associated with the antenna gain.

It is important to note that this quantity is measured directly; the mathematical model

only guides the derivation of the kinematics en route to computing the Jacobians. Real

world phenomenon, such as obstructions or directional antenna radiation patterns, are not

captured by this simple model, but it proves sufficiently accurate to allocate control

effort. Given a complex environment, such as non-planar terrain (hills, valleys) or

obstructions (buildings, trees), this model would fail. More sophisticated models could

be incorporated as appropriate, but that is beyond the scope of this dissertation.

As depicted in Figure 8, the quality of service between the end nodes is influenced by

both the crosstrack error, 𝑒!", and the angles of alignment, 𝛾!. Given a line of sight

model, the maximum total signal strength is achieved by minimizing the crosstrack error

and the angles of alignment. The ratio or balance, 𝐵!, of the link power in each segment

is also important to avoid data rate bottlenecks or backup in homogeneous systems, or to

allow for imbalanced transmission rates in nonhomogeneous systems. Lastly, the

23 23

orientation of the robot, 𝜓!, is included to define fully all degrees of freedom of the

system. The communication state vector is defined:

𝑡 ≜ 𝐵!,… ,𝐵!, 𝑒!" , 𝛾!,… , 𝛾!!!,𝜓!,… ,𝜓! ! (37)

2.5.2 Kinematic	Equations	
Robot states are transformed into the cluster states using kinematic equations derived

from formation geometry presented in Figure 7:

Figure 7: Serial Chain Cluster Diagram

Cluster frame:

𝑥! ≜ 𝑥! (38)

 𝑦! ≜ 𝑦! (39)

𝜃! ≜ 𝜃! (40)

Chain length:

𝜌! ≜ 𝑥!!! − 𝑥! ! + 𝑦!!! − 𝑦! ! (41)

Chain angle:

𝛼! ≜ 𝑎𝑡𝑎𝑛2 𝑦!!! − 𝑦! , 𝑥!!! − 𝑥! − 𝛼!!!!
!!! (42)

Node orientation:

𝜙! ≜ 𝜃! (43)

24 24

where 𝑎𝑡𝑎𝑛2(… ,…) is the two-argument function that calculates a four-quadrant arc

tangent with a range of [𝜋,−𝜋].

These cluster states are transformed into the task states using the measured link states and

system geometry as presented in Figure 8:

Figure 8: Long Range Communication Link State Diagram

Balance:

𝐵! ≜
!!!!
!!
= !!

!
!!!!
! (44)

Crosstrack error:

𝑒!" =
!!!!!!! !!!!!! ! !!!!!! !!!!!!!

!

!!!!!!!
!
! !!!!!!!

! (45)

Angle of alignment

𝛾! = 𝛼! for 𝑖 = 2,… ,𝑛 (46)

Orientation:

25 25

𝜓! = 𝜙! (47)

where 𝑥!! ,𝑦!! and 𝑥!! ,𝑦!! are the Cartesian positions of the base and end nodes that

are being connected by the multi-robot system.

2.5.3 Jacobian	Matrices	
The Jacobian matrices are computed from the kinematic equations to map velocities

between spaces. The solution is typically lengthy and so not shown here but easily

computed.

2.5.4 Control	Design	
The cluster space control law utilizes proportional feedforward and feedback, shown

below, for response time and error rejection respectively:

𝑢! = 𝐾!𝑐! + 𝐾! 𝑐! − 𝑐 (48)

where 𝑢! denotes cluster space control effort, 𝑐! denotes desired cluster velocity, 𝐾!

denotes proportional feedforward gain, and 𝐾! denotes proportional feedback gain.

The communication space uses proportional feedback control, shown below:

𝑢! = 𝐾! 𝑎! − 𝑎 (49)

where 𝐾! is the feedback gain and 𝑎! is the desired state. This yields sufficient

performance as the subsequent layers are well behaved.

2.5.5 Experimental	Results	
Two scenarios were examined with the single communications task: A) system response

to environmental attenuation and B) system response to hardware configuration changes

such as reductions in transmission power. Additional examples are provided in [65].

2.5.5.1 Simulated	Attenuation	
This scenario simulates system behavior from regional effects such as obstructions, fog,

or foliage. A comparison of the trajectory of the system with and without these effects

demonstrates its ability to adapt in unexpected environments.

26 26

A single overhead view is shown in Figure 9. with robot trajectories plotted from both

the ideal and attenuated scenarios. A region of power attenuation has been created at

𝑦 > 40, where any link involving a robot within this area is reduced by half. The remote

node traverses an steady arc around the base node while the multi-robot system maintains

link balance and maximizes transmission power as described before. In the ideal case,

the robots spread evenly and follow the traverse in concentric arcs. In the non-ideal case,

the multi robot system begins as before, but alters its trajectory to rebalance the links

when it senses a drop in signal strength as nodes enters the region of attenuation.

Figure 9: Overhead view of robot 𝑹 position
overlay comparing trajectories in ideal
transmission environments (dashed) and
trajectories responding to an encountered
region of attenuation (solid)

Figure 10: Time history of key system states
for simulated attenuation scenario. All
robots remain in the communication task
and so quantity is constant. The robots
enter the region of attenuation at time 475
and time 625 as shown by the decreases in
link quality and link balance transients.

This example demonstrates the value of direct measurement of communication states and

high-level task-space control. Sensing the signal strength allows the system to maintain

the desired state despite unanticipated characteristics of the environment. In contrast, an

open-loop, model-based approach would evenly distribute the nodes as shown in the first

case which would yield lesser performance in non-ideal environments. Higher

performance is achieved with simple high-level specification of the desired task with no

additional input when encountering these localized effects.

27 27

2.5.5.2 Hardware	Configuration	Change	Experiment	
This scenario examines the control system response to internal events such as component

failures or competing priorities like power reduction, using the test bed described in

Appendix A. The system is allowed to reach equilibrium in its nominal configuration,

then the power of transmitter 2 is reduced and the system achieves equilibrium.

Figure 11: Overhead view of positions
of robot 𝑹 and exogenous nodes 𝑿 at
specified times during hardware
configuration change experiment

Figure 12: Link power and balance state time
history during hardware configuration change
experiment

An overhead view of robot position traces is shown in Figure 11, where each subplot

corresponds to a different time window. The top plot for time t=[0:800] demonstrates

link balancing and position cross track control for the nominal hardware configuration.

From its initial position, the mobile relay robot turns around and moves toward a link

equilibrium near the geometric midpoint. Figure 12 shows the raw received signal

strength indication (RSSI) values and the balance ratio between them. In this first time

period, the raw values converge and the balance moves towards commanded unity. At

time t=800 seconds, the payload node transmitter power (link #2) is intentionally

reduced, decreasing the measured RSSI value and altering the equilibrium position. As

can be seen in the second overhead plot of Figure 11, for time t=[800:1600], the mobile

relay compensates by moving closer to the end node with the reduced transmission

28 28

power. This motion reestablishes link balance as indicated by the signal balance

returning to unity in Figure 12. By directly measuring the parameters of interest, the

system reacts to dynamic changes in the hardware and compensates by moving to

maintain commanded parameters.

2.6 Chapter	Summary	
In summary, this chapter presents an architecture and design methodology for controlling

multi-robot motion to perform a specific task. The original work is extended form the

cluster space control technique to an arbitrary number of control spaces. Designing a task

requires defining all spaces and states, relating these states through kinematic

transformations and Jacobian matrices, and state controllers within each space. The

system performance may be analyzed using classical and Lyapunov techniques.

29 29

3 Multi-Task	Space	Control		

With the availability of a formal method to perform individual tasks, we now turn our

attention to collaboration between multiple tasks. Each task is performed by multiple

robots which we term a “coalition”, and multiple tasks are performed by multiple

coalitions which we term a “federation”. To empower complex, motion-oriented

missions through a federation of collaborating task-level multi-robot coalitions, we

integrate multiple task-level controllers into a novel, formalized control architecture.

First, a compact and integrated mathematical model of the task-level controllers is

established. Second, re-allocation of robots among tasks is integrated through control

logic that conserves the dimensionality of the federation’s state space and kinematic

transforms. Third, task coordination is modeled explicitly, facilitating federation-level

analysis given the coupling of task-level coalitions.

3.1 Unified	Multi-Task	Representation	

Figure 13: The unified control block diagram. The layered control space architecture
utilizes robot, cluster, and task spaces. Task coordination and resource allocation functions
enable collaboration between tasks

30 30

Consider a collection of the task-specific multi-robot coalition control systems shown in

Figure 13. For a federation of 𝑜 coalitions in this architecture, the unified task-level

transfer function for multiple independently operating coalitions is:

𝐺!! =
𝐺!! … 0
⋮ ⋱ ⋮
0 … 𝐺!!

= 𝐽!!
!!𝑠𝐼 + 𝐺!!𝐽!!

!!𝐾!!
!!
𝐺!!𝐽!!

!!𝐾!! (50)

Where the federated versions of gains (𝐾!!, 𝐾!!), position kinematics (𝐾𝐼𝑁!! 𝑟! ,

𝐾𝐼𝑁!! 𝑐!), and Jacobian matrices (𝐽!!, 𝐽!!, 𝐽!!
!!, 𝐽!!

!!) are used. These quantities, as well

as the internal signals within the systems, are concatenations or block diagonal quantities

composed of the affiliated coalition quantities:

For the robot allocation vector:

𝑛 = 𝑛!,𝑛!,… ,𝑛! ! where 𝑛 = 𝑛!!
!!! (51)

For the federated pose vector concatenations:

𝑟! = 𝑟!! … 𝑟!! ! (52)

𝑐! = 𝑐!! … 𝑐!! ! (53)

𝑡! = 𝑡!! … 𝑡!! ! (54)

For the federated velocity vector concatenations:

𝑟! = 𝑟!! … 𝑟!! ! (55)

𝑐! = 𝑐!! … 𝑐!! ! (56)

𝑡! = 𝑡!! … 𝑡!! ! (57)

For the federated kinematic transformation concatenations:

𝐾𝐼𝑁!! 𝑟! = 𝐾𝐼𝑁!! 𝑟!
! … 𝐾𝐼𝑁!!

! 𝑟!
! (58)

𝐾𝐼𝑁!! 𝑐! = 𝐾𝐼𝑁!! 𝑐!
! … 𝐾𝐼𝑁!!

! 𝑐!
! (59)

31 31

For the federated Jacobian matrix block-diagonalizations:

𝐽!! =
𝐽!! … 0
⋮ ⋱ ⋮
0 … 𝐽!!

 (60)

𝐽!! =
𝐽!! … 0
⋮ ⋱ ⋮
0 … 𝐽!!

 (61)

For the federated controller gain block-diagonalizations:

𝐾!! =
𝐾!! … 0
⋮ ⋱ ⋮
0 … 𝐾!!

 (62)

𝐾!! =
𝐾!! … 0
⋮ ⋱ ⋮
0 … 𝐾!!

 (63)

For the federated control effort concatenations:

𝑢!! = 𝑢!!
! … 𝑢!!

! ! (64)

𝑢!! = 𝑢!!
! … 𝑢!!

! ! (65)

where subscript 𝑓 denotes federated elements; 𝑛! is the number of robots assigned to

task 𝑖, where there are a total of 𝑛 robots in the mission; 𝑜 is the number of tasks

spanning the mission, 𝑟!, 𝑐! and 𝑡! are the robot space, cluster space, and task space pose

vectors for task 𝑖; 𝐾𝐼𝑁!! 𝑟! and 𝐾𝐼𝑁!! 𝑐! are the cluster space and task space kinematic

equations for task 𝑖; 𝐽!!and 𝐽!! are the cluster space and task space Jacobian matrices for

task 𝑖; 𝐾!!and 𝐾!! are the cluster space and task space feedback matrices for task 𝑖; and

𝑢!! and 𝑢!! are the control efforts for cluster and task for task 𝑖. This approach maintains

consistent dimensions of the control elements despite robot reassignments. Doing so

allows the use of traditional dynamics and control system design techniques. The

32 32

implementation must manage the changing coalition and task definitions, but the form

remains the same.

3.2 Resource	Allocation	
3.2.1 Goals	

Our architecture incorporates resource allocation as one function within a collaborative

system. Although our work does not focus on innovations in resource allocation

techniques, our architecture incorporates the use of such techniques in a novel manner

and considers dynamic behavior which many existing techniques fail to address. In the

context of integrated motion control across task-specific multi-robot coalitions, there are

two allocation issues. The first is to determine how many robots to assign to each task’s

multi-robot group given a limited number of robots available within the federation.

Given this, the second is to determine which robot should be assigned to the specific

positions within each task as depicted in Figure 14.

Figure 14: Resource Allocation Depiction

3.2.2 Method	

3.2.2.1 Allocating	the	Number	of	Robots	to	Tasks	
The first challenge, determining how many mobile robots to assign to each coalition,

arises since it may be desirable to change this allocation over time. This may be due to

33 33

the need to accommodate varying mission needs, new environmental conditions, or

changes in the state of the federation. In our approach, we include all available robots in

the federation. Because all robots may not be necessary to meet mission needs, some

robots may be assigned to an idle task that maintains otherwise unused robots in a

holding state.

For our work, we use a state machine to control the number of robots assigned to each

task-specific coalition. Transition logic can be established to implement policies relevant

to the mission at hand. In general, this logic may be a function of the system’s state (e.g.,

poor performance for a task variable may necessitate an increase in robots assigned to

that task), external variables, the priorities among task, and the nature of the tasks

themselves (e.g., some may have a minimum number required in order to function). We

define the allocation policy below:

𝑛 = 𝑃 𝑡, 𝑡, 𝑥,… (66)

The allocation policy 𝑃 specifies the number of robots assigned to each task 𝑛, based on

desired task states 𝑡, actual task states 𝑡, exogenous states 𝑥, and any other relevant

factors.

As the allocation function changes the number of robots assigned to each task, it triggers

control logic that loads new gains and kinematic transforms into each of the affected

coalition controllers; in some sense, this may be considered to be an extended form of a

gain scheduling adaptive control strategy. An attractive feature of the unified

representation of the federation given by (50)-(65) is that the dimension and control

architecture of the overall federation remains constant, which aids performance analysis

and control implementation. Of course, transients can temporarily erode performance,

and stability is certainly a concern for switched controllers; we address this in Section

3.2.3.

3.2.2.2 Assigning	Specific	Robots	to	Task	Roles	
The second challenge involves determining which specific robot should fulfill what role

in each particular coalition. This may require a change over time and is a function of

34 34

considerations such as robot capabilities/limitations, functional health, the state of

consumables, and position.

For our work to date with homogeneous federations, we have adopted relatively simple

assignment strategies ranging from arbitrary selection to the use of proximity tests to the

minimization of errors. Again, our focus is not on innovations in resource allocation but

in how to incorporate the resulting allocations into our integrated motion control

architecture. For examples of state of the art methods, see [31] [32] [33].

From that perspective, we make a distinction between the robot hardware index and the

actual robot assignment index to a role and coalition within the federation. An

assignment matrix 𝑆 is used to map between these two indices. This matrix maps the

states of the numbered robots to the federation state vector; its inverse maps the robot

space command vector to the numbered robots. The matrix takes the form of a

permutation matrix consisting of quantity 𝑜 identity matrices having a dimension equal to

the degrees-of-freedom of that robot.

𝑟′ = 𝑆𝑟 where 𝑠! !!! ! !:! ,! !!! ! !:! = 𝐼! for robot I (67)

where 𝑟′ represents the assigned robot vector, 𝑟 represents the indexed robot vector, and

𝑆 represents the assignment matrix. Agent index 𝑖 is assigned to role 𝑗. 𝐼! is the identity

matrix of dimension 𝑚 corresponding to the degrees of freedom of the robot. The

lengthy subscript terms of 𝑠 maintain consistent dimensions. The remaining analysis

presented in this paper assumes these two vectors are equivalent for convienence but

without loss of generality.

3.2.3 Analysis	
We wish to establish conditions that will guarantee stability during robot reallocation.

These conditions define when it is “safe” for a resource allocation algorithm to move

robots between tasks without driving the system unstable. Even if every individual

configuration of the system is stable, the system may be driven unstable through poor

choices in switching [66]. Given a family of dynamic systems:

𝑥 = 𝑓! 𝑥 where 𝑝 ∈ 𝒫 (68)

35 35

where 𝑝 denotes the switched-state index and 𝒫 denotes the index set. From [66], a

continuous positive definite function 𝑉 is a common Lyapunov function if there exists a

continuous positive definite function 𝑊 such that:

!"
!"
𝑓! 𝑥 ≤ −𝑊 𝑥 (69)

then the switched system is stable in the Lyapunov sense. This approach requires that

equilibria do not change with switched state and there are no instantaneous changes in

state at switches (impulse effects). To meet these criteria, we select a quadratic function

of robot velocity, where the hat accent, 𝑥, represents a state value and the breve accent, 𝑥,

represents a desired value:

𝑉 = !
!
𝑟!𝑟 (70)

Finding the rate of change of the common Lyapunov function:

𝑉 = 𝑟!𝑟 (71)

Introducing the robot dynamics, assumed to be second order with mass matrix 𝑀,

damping matrix 𝐵, and a proportional velocity feedback control loop with gain 𝐾!:

𝑀𝑟 + 𝐵𝑟 = 𝐾! 𝑟 − 𝑟 → 𝑟 = 𝑀!! 𝐾! 𝑟 − 𝑟 − 𝐵𝑟 (72)

𝑉 = 𝑟!𝑀!! 𝐾! 𝑟 − 𝑟 − 𝐵𝑟 (73)

Introducing the cluster (or formation) space control with a velocity feedback control loop

with gain 𝐾!,!, noting that it is a function of switched state:

𝑟 = 𝐽!,!!!𝐾!,! 𝑐! − 𝑐! = 𝐽!,!!!𝐾!,! 𝑐! − 𝐽!,!𝑟 (74)

𝑉 = 𝑟!𝑀!! 𝐾! 𝐽!,!!!𝐾!,! 𝑐! − 𝐽!,!𝑟 − 𝑟 − 𝐵𝑟 (75)

Introducing the task space control with a state feedback control loop with gain 𝐾!,!:

𝑐 = 𝐽!,!!!𝐾! 𝑡 − 𝑡 = 𝐽!,!!!𝐾!𝑒! (76)

36 36

𝑉 = 𝑟!𝑀!! 𝐾! 𝐽!,!!!𝐾!,! 𝐽!,!!!𝐾!,!𝑒!,! − 𝐽!,!𝑟 − 𝑟 − 𝐵𝑟 (77)

Expanding and adding the condition 𝑊 for a common Lyapunov function:

𝑉 = 𝑟!𝑀!! 𝐾!𝐽!,!!!𝐾!,! 𝐽!,!!!𝐾!,!𝑒!,! − 𝐽!,!𝑟 − 𝐾! + 𝐵 𝑟 ≤ −𝑊 (78)

We can set the function 𝑊 to bound the Lyapunov function based on the robot dynamics

to cancel one of the terms.

𝑊 = 𝑟!𝑀!! 𝐾! + 𝐵 𝑟 (79)

𝑉 = 𝑟!𝑀!!𝐾!𝐽!,!!!𝐾!,! 𝐽!,!!!𝐾!,!𝑒!,! − 𝐽!,!𝑟 ≤ 0 (80)

Taking the norm of the equation allows further simplifications by canceling terms while

maintaining conservative bounds of the inequality:

≤ 𝐽!,!!! 𝐾!,! 𝑒!,! − 𝐽!,! 𝑟 ≤ 0 (81)

Finally, rearranging the terms yields a stability condition for the switched system:

𝐽!,!!! 𝐽!,!!! 𝐾!,! 𝑒!,! ≤ 𝑟 ∀𝑝 ∈ 𝒫 (82)

The switched system is stable in the Lyapunov sense if the commanded rate (in any

space) is less than or equal to the current rate (in the same space) for all configurations of

the switched system. Intuitively, this will naturally converge. Practically, this expression

provides a simple, analytic condition to ensure stable switching. If considering a switch,

candidate configurations (i.e. coalitions composed of different robots) can now be

evaluated. This result provides a rigorous basis for aggressive switching, which is far

superior to naïvely or ignorantly waiting for transients to settle as in the case of slow

switching or ad hoc methods.

Should the condition not be met, the expression also provides some suggestions.

Switching preparation could occur by moving the robots to reduce the initial error in the

new task. Switching could occur gradually, slowly transitioning to control gains of the

new configuration to maintain low control effort even if the task error is high. Switching

could occur near a singularity of the task Jacobian inverse so there is minimal authority,

37 37

though this has other practical challenges and is not recommended. Finally, switching

could change to a different configuration, allocating different quantities or assigning

different robots that meet the condition.

3.3 Task	Coordination	

3.3.1 Goals	
Coordination is a second facet of collaborative systems. Robust collaboration should be

performed with explicit coordination and feedback between tasks. Explicit coordination

provides system agility, where tasks can rapidly alter their goals. Feedback ensures

synchronization for highly coupled missions that may otherwise fail due to disturbances

or other non-ideal behavior.

3.3.2 Method	
The final element in our integrated motion control architecture consists of a task

coordination and collaboration function. The coordination aspect of this function pertains

to assigning mission-level federation goals to individual task-specific coalitions.

Collaboration implies coalition interaction, and this is accomplished by making coalition-

specific goals a function of the output states of other coalitions.

Formally, this functionality is achieved by a function that has mission-level goal set-

points and the federation state vector as an input; the output of the function is the set of

goal set-points for every task-specific coalition within the federation. The function,

shown in (83) leads to behavioral coupling between coalitions within the federation,

which is the power of a collaborative multi-robot system.

In the most general case, the coordination function may include definition of the

kinematic equations of the task, allowing task states to be defined relative to other states

or external variables. The general case, depicted in Figure 15, provides complete

freedom with state definition, which is powerful, though perhaps inelegant. This

provides complete flexibility for the system to be designed in accordance with operator

preference and intuitive behavior.

38 38

Figure 15: General task coordination block diagram. Task commands 𝒕 are a function Q of
mission-level goal set points m, actual task states 𝒕, and external parameters 𝒙. Task state 𝒕
is a function of coalition state 𝒄 and external parameters 𝒙. These functions add cross
coupling between task states which results in explicit, closed-loop task coordination.

In many common cases, task coordination defines task set points exclusively as functions

of other task states and the task states are defined exclusively by cluster states, avoiding

redefining the kinematic transformations. This common case is depicted in Figure 16 and

represented mathematically in (86).

Figure 16: A common special case of the task coordination block diagram without
modifications to task state definitions. Task commands 𝒕 are exclusively a function Q of
mission-level goal set points m and actual task states 𝒕.

3.3.3 Analysis	
The resulting behavior can be formally characterized by development of the full dynamic

model of the controlled federation, as shown in (85).

The general task coordination function, including state definition:

𝑡 = 𝑄 𝑚, 𝑡, 𝑥 (83)

𝑡 = 𝐾𝐼𝑁 𝑐, 𝑥 (84)

The coordinated dynamic model is:

𝑡 = 𝐺!𝑄 𝑚, 𝑡, 𝑥 (85)

39 39

where 𝐺! is defined as in (50). If the task coordination function is of the form (86),

where task commands are decomposed to linear combinations of 𝑚 and 𝑡 and without

external parameters 𝑥 influencing the state definition, the coordinated dynamic model

results in (87). This coordinated model shows cascading dynamics; the independent task

dynamics influence the dependent task dynamics. It is possible that mutually dependent

tasks, which would create a feedback loop, could destabilize the system. These equations

allow analysis of system stability and performance.

The linear task coordination function is:

𝑡 = 𝑄!𝑚 + 𝑄!𝑡 (86)

The linear coordinated dynamic model is:

𝑡 = 𝐼 − 𝐺!𝑄! !!𝐺!𝑄!𝑚 (87)		

Mission-level task performance is determined by the task allocation function. The

metrics may be identical to an independent task, such as transient rise time or steady state

error, but the comparison to the ideal (i.e. performance) may be influenced by coupled

states. For the given example, using the metric of following error, the following robot

may have good performance with minimal following error for a stationary leading robot

but poor performance with large following error for a leader that moves quickly or

erratically. Preferably, the task coordination function should be designed in a way that

allows intuitive specification of mission tasks and performance metrics by the operator.

3.3.4 Example:	1-DOF,	2	Task	Following	
As an example of the Q function, consider two multi-robot coalitions with one-

dimensional motion in a simple mission in which the first coalition is commanded to go

to a specific location 𝑚! and the second coalition is commanded to follow 𝑚! units

behind.

𝑡! =
𝑚!

𝑡! −𝑚!
= 1 0

0 −1
𝑚!
𝑚!

+ 0 0
1 0

𝑡!
𝑡!

 (88)

𝑡 = 𝑔! 0
𝑔!𝑔! −𝑔!

𝑚!
𝑚!

=
𝑔!𝑚!

𝑔!𝑔!𝑚! − 𝑔!𝑚!
 (89)

40 40

Using a first-order lag to represent the task dynamics, 𝑔! =
!
!!!

, and mission commands

of 𝑚 = 20 5 !, the system response below shows coupling of the tasks.

Figure 17: Time history of task states for a simple coordinated following mission. The
second task has a higher order response because it follows the first task, which couples their
dynamics.

3.4 Mission	Examples:	

3.4.1 Long	Range	Communications	
These experimental results demonstrate the control of link quality and balance with a

mobile endpoint, order to demonstrate performance of the control architecture given real-

world challenges. The experimental testbed consists of multiple mobile terrestrial robots

with onboard wireless modems capable of sensing communication link quality. A

detailed description of the testbed is provided in Appendix A.

The experiment starts with the end stations near each other and directly communicating,

with two relay robots in an idle position. As the mobile end station moves away, the two

relay robots are sequentially added to the communication task in order to maintain the

specified level of link quality and balance.

Time [s]
0 2 4 6 8 10

Ta
sk

 R
es

po
ns

e

-5

0

5

10

15

20
t1
t2

41 41

3.4.1.1 Control	Space	Definition	
As a simple example of a mission comprised of multiple tasks, consider the following

mission: maintain communication between two end points or otherwise return to idle

parking position. A subset of the federated control space elements is shown below for

two configurations of a 𝑛 = 3 robot system: 1) one robot is allocated to the

communications task and two robots are idle (𝑛 = 1,2 !) and 2) two robots are allocated

to the communications task and one robot is idle (𝑛 = 2,1 !):

The federated Cluster State Vector:

𝑐! =
𝑥! ,𝑦! ,𝜃! 𝑥!! ,𝑦!! ,𝜃!! , 𝑥!! ,𝑦!! ,𝜃!!

!
for 𝑛 = 1,2 !

𝑥! ,𝑦! ,𝜃! ,𝜌!,𝛼!,𝜙! 𝑥!! ,𝑦!! ,𝜃!!
!

for 𝑛 = 2,1 !
 (90)

The federated Cluster Jacobian:

𝐽! =

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

1
1

1
1

1
1

for 𝑛 = 1,2 !

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

1
1

1

for 𝑛 = 2,1 !

 (91)

42 42

In this example, the robot allocation policy is dictated by the added state of

communication link quality representing a characterization of the full communication

chain, defined below:

𝑍 ≜ !!!!
!
!!

!!!!
!!!

= ! !!!!
!!
!!!!!

!!!
 (92)

Allocation is done according to the policy defined below, much like the transition policy

of a state machine:

Table 1: Example allocation policy for a communication + idle mission

Link Quality Policy Current Allocation Next Allocation

𝑍 <
1
4𝑍! 𝑛 = 𝑛!,𝑛! ! 𝑛 = 𝑛! + 1,𝑛! − 1 !

𝑍 > 4 𝑍! 𝑛 = 𝑛!,𝑛! ! 𝑛 = 𝑛! − 1,𝑛! + 1 !

The policy determines whether to add or subtract robots from the communication cluster.

If the link quality falls below the lower threshold of this deadband, a robot is shifted from

the idle cluster to the communications cluster. If the link quality rises above the upper

threshold of this deadband, a robot is shifted from the communications cluster to the idle

cluster. While simplistic, this yields acceptable system behavior and is easily

accommodated by the control framework.

3.4.1.2 Experimental	Results	

3.4.1.2.1 Link	Quality	Command	Response	Experiment	

This scenario demonstrates changing user requirements for better connectivity or higher

throughput forcing a change in the cluster configuration. The communication endpoints

are fixed and the link quality command is increased, prompting robots to be reallocated

from the idle cluster to the communication relay cluster. Each newly incorporated robot

moves from its idle position to the communication task, assisting with control of the

commanded link quality and link balance states. Results were obtained using the test bed

described in Appendix A.

43 43

Figure 18: Overhead view of positions of robots 𝑹 and exogenous nodes 𝑬 at specified times
while evaluating the link quality command response

44 44

Figure 19: Time history of key states while evaluating the link quality commanded
response, forcing configuration change

The top view of Figure 18 for time 𝑡 = 0: 155 shows the fixed exogenous end points

𝐸!:! and the idle robots 𝑅!:! for configuration 𝑁 = 0,2 !. At this point, the link quality

command is increased, as seen in Figure 19, triggering a reallocation, as seen in the

middle view of Figure 18 for time 𝑡 = 155: 501 , and the newly activated robot settles

at an equilibrium point near the center of the two exogenous nodes. The command is

again increased, triggering another reallocation as seen in the bottom view of Figure 18

for time 𝑡 = 501: 800 where both relay robots 𝑅!:! move to balance the three links.

The time history plots in Figure 19 show that the sensed RSSI parameters exhibited

appreciable quantization and inconsistent sampling. Sensitivity to other parameters, such

as robot orientation (due to onboard antenna obstruction), was also noted. It can also be

seen that the robots do not move to the geometric center of the end points but instead

45 45

have a slight bias because of lower transmission fields or steady state offset from the

proportional controller. These real-world phenomena are challenging but the control

architecture is sufficiently robust to tolerate these unmodeled effects.

3.4.1.2.2 Mobile	Endpoints,	Simulation	

This simulation demonstrates control of link quality and balance with mobile endpoints,

gracefully adding and subtracting robots as appropriate for the task.

Figure 20: Overhead view of robots 𝑹 and exogenous nodes 𝑿 during specified times for
mobile endpoint simulation

46 46

Figure 21: Time history of key system states for mobile endpoint simulation

As the mobile end node progresses through an ellipse, the robots 𝑅!:! respond to

changing link values by following its motion. Initially, though not shown, all robots are

part of the idle cluster and park themselves around 10,0 . One by one the robots are

moved to the communication task as the link quality drops below the command

deadband, seen in Figure 21. The top-left overhead view shows time 𝑡 = 193: 265

during which the communications cluster has two robots and the idle cluster has three

robots, denoted 𝑁 = 2,3 !. These robots are commanded by the communication space

controller to minimize crosstrack error and balance the measured signal strength, as is

plotted in Figure 21, which results in even spacing between the end points. In this first

overhead view, robot R! can be seen moving from its previously idle position to join the

communications cluster with robot R! which raises the link quality back within the

deadband. During this time, the idle robots 𝑅!:! maintain their position at the

47 47

commanded parking location until they are needed. At time 𝑡 = 265, the link quality

state falls outside the control deadband and the allocation policy moves previously idle

robot 𝑅! to the communication task and the robots adjust to maintain balance.

This process is repeated until all robots are part of the communications tasks. As the

mobile end node returns toward the base node, the link quality increases until it rises

outside the deadband at time 𝑡 = 845 and robot R! is reallocated to the idle task which

reduces the link quality within the deadband. This process is repeated until all robots

have returned to idle. Interestingly, the deadband causes unequal times between

transitions as the robots are slower to move into the communication cluster and faster to

move out due to the task state definition and allocation policy.

This demonstrates the ability of the control architecture to respond to motion of the

exogenous end nodes based on sensed link characteristics and reallocate themselves

without any addition command.

3.4.1.2.3 Mobile	Endpoints,	Experiment	

Figure 22: Overhead view of robots 𝑹 and exogenous nodes 𝑬 during specified times for the
mobile endpoint experiment

48 48

Figure 22 shows the paths taken by the robots and endpoints and Figure 23 shows the

corresponding state trajectories. In Figure 22a, for time 𝑡 = 0: 148 , the mobile

endpoint moves away from the stationary endpoint while the link quality remains within

the deadband. The robots are allocated to idle, 𝑛 = 0,2 !, and can be seen parking

themselves.

At time 𝑡 = 148, the link quality exceeds the lower bounds of the deadband and the

allocation policy adds a robot to the communication relay task, changing the

configuration vector to 𝑛 = 1,1 !. In Figure 22b, for time 𝑡 = 148: 591 , the new

robot relay moves to balance the communication links while the mobile endpoint

continues moving away from the stationary endpoint. Though there is not significant

movement of the relay robot, the measured link states, shown in Figure 23, indicate that

the balance set point is achieved during this time. This demonstrates the complexity and

non-intuitiveness of RF fields and the benefit of communication-space measurement and

control; alternatively locating the relay node in the geometric center of the two points

would yield worse performance.

At time 𝑡 = 591, the link quality again exceeds the lower bounds of the deadband and the

allocation policy adds the second robot to the communication relay task, changing the

configuration vector to 𝑛 = 2,0 !. In Figure 22c, for time 𝑡 = 591: 1062 , both robots

move to balance the communication links. The switching transient can be seen in Figure

23, starting at t= ~600sec and settling by t= ~950sec. The final overhead plot, Figure

22d, shows the mobile endpoint arcing back towards the stationary endpoint and the relay

robots mimic its motion to maintain link balance.

49 49

Figure 23: Time history of key system states for the mobile endpoint experiment. This
experiment demonstrates task-level control of multi-robot systems in the real world. The
system is able to maintain desired link characteristics by sensing the non-intuitive RF
environment and adding mobile robotic relays as necessary.

50 50

3.4.2 Remote	Sampling	

To demonstrate a multi-task collaborative mission, we integrated previously explored

tasks of adaptive navigation, escorting, long-range communications and formation

control into the following simulated scenario. An initial coalition of three robots uses an

adaptive navigation technique to travel along a particular contour line within an

environmental scalar field, a function that could be used to determine, for example, the

size of a contaminant field. As this coalition navigates in a manner that is unknown a

priori, another coalition provides a protective escorting function by rotating about the

initial coalition. Furthermore, a third coalition of robots establishes a mobile multi-hop

communications link in order to maintain a specific quality of service for

communications between the initial coalition and a base station. In the context of this

federated mission, there is strong coupling between the motions of these three coalitions.

The mission is depicted in Figure 24, the motion of the federations is shown in Figure 25,

and key state trajectories are shown in Figure 26

Figure 24: Coordinated tasks performed by multiple coalitions of robots in the collaborative
mission example. The scientific sampling task measures a gradient and moves towards the
source. The escorting task provides protection to the scientific task. The communication
task relays data over long distance to the base station on the shore. Idle robots wait nearby,
saving energy until allocated to one of the tasks.

51 51

Table 2: Example cluster space and task space kinematic transformation equations. These
individual tasks are combined for the example collaboration mission.

3.4.2.1 Unified	Motion	Control	Architecture	
The unified motion control architecture consists of robot, cluster, and task space layers as

depicted in Figure 13. Table 2 defines the kinematic transformations between the spaces

for the selected tasks. The unified control components integrate these individual

definitions. The robot allocation vector denotes the quantity of robots assigned to each

task, in this case: 𝑛 = 𝑛!"# ,𝑛!"#$%& ,𝑛!"#,𝑛!"#$!. The unified forward kinematic

transformations are:

Task & Cluster
Diagram Cluster Space Kinematics Task Space Kinematics

Target Escorting

(n=3) [62]

𝑥!
𝑦!
𝜃!
𝜙!
𝜙!
𝜙!
𝑝
𝑞
𝛽

=

𝑥! + 𝑥! + 𝑥!
3

𝑦! + 𝑦! + 𝑦!
3

atan2
2
3 𝑥! −

1
3 𝑥! + 𝑥!

2
3 𝑦! −

1
3 (𝑦! + 𝑦!)

𝜃! + 𝜃!
𝜃! + 𝜃!
𝜃! + 𝜃!
𝑥! − 𝑥! ! + 𝑦! − 𝑦! !

𝑥! − 𝑥! ! + 𝑦! − 𝑦! !

atan2
− 𝑥! − 𝑥! sin𝛼 − 𝑦! − 𝑦! cos𝛼
− 𝑥! − 𝑥! cos𝛼 + 𝑦! − 𝑦! sin𝛼

𝑥!
𝑦!
𝜃!
𝜌!
𝜌!
𝛾!
𝜓!
𝜓!
𝜓!

=

𝑥!
𝑦!
𝜃!

1
3 10𝑝! + 2𝑝𝑞 cos𝛽 + 𝑞! − 6𝑝𝑟 sin𝛼

1
3 𝑝! + 10𝑞! + 2𝑝𝑞 cos𝛽 − 6𝑞𝑟 sin 𝛼 − 𝛽

𝜋 − 𝛽
𝜙!
𝜙!
𝜙!

where
𝑟 = 𝑝! + 2𝑝𝑞 cos𝛽 + 𝑞!

𝛼 = atan
𝑞 sin𝛽

𝑝 + 𝑞 cos𝛽
− 𝜃! − atan cot 𝜃!

Adaptive

Navigation [22]

𝑥!
𝑦!
𝜃!
𝜙!
𝜙!
𝜙!
𝑝
𝑞
𝛽

=

𝑥! + 𝑥! + 𝑥!
3

𝑦! + 𝑦! + 𝑦!
3

atan2
2
3 𝑥! −

1
3 𝑥! + 𝑥!

2
3 𝑦! −

1
3 (𝑦! + 𝑦!)

𝜃! + 𝜃!
𝜃! + 𝜃!
𝜃! + 𝜃!
𝑥! − 𝑥! ! + 𝑦! − 𝑦! !

𝑥! − 𝑥! ! + 𝑦! − 𝑦! !

atan2
− 𝑥! − 𝑥! sin𝛼 − 𝑦! − 𝑦! cos𝛼
− 𝑥! − 𝑥! cos𝛼 + 𝑦! − 𝑦! sin𝛼

𝑧!
𝑑!
𝜃!
𝜓!
𝜓!
𝜓!
𝑝!
𝑞!
𝛽!

=

𝑧! + 𝑧! + 𝑧!
3

N/A
𝜃!
𝜙!
𝜙!
𝜙!
𝑝
𝑞
𝛽

where 𝑧! is measured in the environment. Because of
this, the corresponding elements of the task Jacobian are
computed as follows:

𝑅!" = 𝑥! − 𝑥! 𝑦! − 𝑦! 𝑧! − 𝑧! !
𝑅!" = 𝑥! − 𝑥! 𝑦! − 𝑦! 𝑧! − 𝑧! !

𝑁 = −𝑅!"×𝑅!"
𝐽 !,!:! = 𝑁! 𝑁!

Long-Range

Communications
[65,65]

𝑥!
𝑦!
𝜃!
𝜌!
𝛼!
𝜙!

=

𝑥!
𝑦!
𝜃!

𝑥!!! − 𝑥! ! + 𝑦!!! − 𝑦! !

𝑡𝑎𝑛2 𝑦!!! − 𝑦! , 𝑥!!! − 𝑥! − 𝛼!

!!!

!!!
𝜃!

𝑒!"
𝐵!
𝛾!
𝜓!

=

!!!!!!! !!!!!! ! !!!!!! !!!!!!!
!

!!!!!!!
!
! !!!!!!!

!

!!
!

!!!!
!
𝛼!
𝜙!

state space switching, however this adds to the computational
load.

Our previous and ongoing work in cluster space control
includes its implementation with both human pilots and
automated trajectory controllers, use with both holonomic and
non-holonomic vehicles, use with linear and non
controllers, implementation with both resolved rate and
dynamic controllers, avoidance of obstacles,
demonstration on land/sea/air systems with up to 6
[37], [38], [10]. Supporting analytic work has included proo
of Lyapunov stability, dual-rate computational
implementations, varying the level of (de-) centralization, and
the formulation of hierarchical clusters of clusters

This following subsection defines the robot space and cluster
space representations of a multi-robot system and introduces
the kinematic transforms that relate the positions and
velocities in these spaces. The subsequent subsection reviews
the inverse Jacobian control architecture, which is a typical
way in which cluster space control is implemented. A three
robot planar cluster is used as the example throughout this
section given that the experiments presented later in this paper
use such a real-world cluster of robots.

A. The Kinematic Formulation

The general kinematic formulation for a cluster of
each with m degrees of freedom, is provided in
provide the specific formulation for a 3-robot planar system,
which is what we have used to demonstrate the gradient
navigation technique. A system of this type is shown in Fig
1.

Fig. 1. A three robot cluster, showing a cluster space representation of pose:
cluster location (xc, yc, θc), cluster shape (p, q, β), and relative robot
orientations with respect to the cluster (Ø1, Ø2, Ø3).

A conventional robot-oriented representation of this system
consists of describing the system’s pose in terms of the
position and orientation of each robot:

 !"#$ = (x1, y1, θ1, x2, y2, θ2, x3, y3

where (xi,yi,θi) is the position and orientation of robot i for
i=1,2,3 as defined within the global frame, {G}.

To consider the system as a cluster, a cluster reference frame

, however this adds to the computational

Our previous and ongoing work in cluster space control
its implementation with both human pilots and

automated trajectory controllers, use with both holonomic and
holonomic vehicles, use with linear and non-linear

controllers, implementation with both resolved rate and
tacles, and experimental

demonstration on land/sea/air systems with up to 6 robots
10]. Supporting analytic work has included proof

rate computational
) centralization, and
clusters [39], [40].

This following subsection defines the robot space and cluster
robot system and introduces

the kinematic transforms that relate the positions and
subsection reviews

the inverse Jacobian control architecture, which is a typical
rol is implemented. A three-

robot planar cluster is used as the example throughout this
section given that the experiments presented later in this paper

or a cluster of n robots,
in [13]. Here, we

robot planar system,
which is what we have used to demonstrate the gradient-based
navigation technique. A system of this type is shown in Fig.

e representation of pose:

), and relative robot

oriented representation of this system
e in terms of the

3, θ3)
T (1)

) is the position and orientation of robot i for
within the global frame, {G}.

To consider the system as a cluster, a cluster reference frame

{C} is defined; in this example, it is located at the centroid of
the formation and oriented in the direction of Robot 1. The
shape of the cluster is naturally defined as a triangle and is
expressed in this case through a side
size and shape. Given this, the system’s cluster
is given by:

 %#= (xc, yc, θc, Ø1 ,Ø

where the values (xc,yc) is the position and
of the cluster frame with respect to {G}, (p, q,
side-angle-side description of the cluster’s shape, and (
Ø3) denote the relative angle of each robot with respect to the
cluster frame. We note that, in general,
technique provides flexibility in how the cluster frame is
assigned and how the cluster shape is defined; the wide range
of options drives implementation issues such as the level of
(de)centralization, computational complexity, and the na
of geometric singularities. We note that for a three
planar system, nine position variables represent the system’s

degrees of freedom, and accordingly, both
element position vectors.

We can define a set of position kinematic
expressing cluster-oriented pose variables in terms of robot
oriented pose variables and vice versa:

 %#=KIN(G!"#)=

5

6
6
7

89(:9, :;
89(:9, :;

8<=(:9, :

 !"#$ =INVKIN(%#)=

5

6
6
7

?9(@9, @
?9(@9, @

?<=(@9,

Taking the derivative of equations (3) and (4), system
velocities can be related to one another through the use of a
linear time-varying Jacobian matrix,
(5) and (6):

%#A =

5

6
6
7

@A9
@A;
.
.
.

@A<=C

D
D
E

= F($!"

 !"#A$ =

5

6
6
7

:A9
:A;
.
.
.

:A<=C

D
D
E

= $

{C} is defined; in this example, it is located at the centroid of
the formation and oriented in the direction of Robot 1. The
shape of the cluster is naturally defined as a triangle and is

ressed in this case through a side-angle-side description of
size and shape. Given this, the system’s cluster-oriented pose

 2 ,Ø3 , p, q, β)T (2)

) is the position and θc is the orientation
of the cluster frame with respect to {G}, (p, q, β) quantify the

side description of the cluster’s shape, and (Ø1, Ø2,

) denote the relative angle of each robot with respect to the
cluster frame. We note that, in general, the cluster space
technique provides flexibility in how the cluster frame is
assigned and how the cluster shape is defined; the wide range
of options drives implementation issues such as the level of
(de)centralization, computational complexity, and the nature
of geometric singularities. We note that for a three-robot
planar system, nine position variables represent the system’s

degrees of freedom, and accordingly, both !"# and %# are nine-

We can define a set of position kinematic transforms
oriented pose variables in terms of robot-

oriented pose variables and vice versa:

:;, . . , :<=)
:;, . . , :<=)

.

.

.
:;, . . , :<=)C

D
D
E

 (3)

@;, . . , @<=)
@;, . . , @<=)

.

.

.
@;, . . , @<=)C

D
D
E

 (4)

equations (3) and (4), system
velocities can be related to one another through the use of a

varying Jacobian matrix, J, as shown in equations

!"#) !"#A $ (5)

C

FM9(!"#$$)%#A (6)

(a) Three robots sample the scalar parameter field P(x,y), thereby creating

a local approximation in the form of the plane),(ˆ yxP .

(b) The three robots define vectors within the planar field approximation,
allowing the direction of the field gradient to be computed.

Fig. 3. The three robots within the cluster compute the field’s gradient based
on their locations and samples of the scalar parameter field.

In Fig. 3b, the robots are shown again, both in the X-Y plane
of motion and in the approximated planar parameter surface,

),(ˆˆ yxPz = , at the locations (xi, yi, zi) for i=1,2,3, where (xi,

yi) is the location of robot i and zi is the measurement of the
field at this point. Because the approximated field is planar,
the contour lines are now approximated as lines in the local
region, as now shown in the X-Y plane of motion.

Given the locations of the robots on the virtual surface, we
construct the vectors !"12 and !"13, as shown in the Fig. 3b,
running from the projected robot 1 location to the projected
locations of robots 2 and 3, respectively. To compute the
direction of the field’s gradient, shown in the X-Y plane as

P̂∇ , the cross product #$$% = −!$%() × !$%(+ is computed and

projected into the X-Y plane. The resulting P̂∇ vector points
in the direction of greatest parameter increase, and it is
perpendicular to the local scalar field contour lines.

To summarize this estimation approach mathematically:

!"() = ,
-) − -(
.) − .(
/) − /(

0 (7)

!"(+ = ,
-+ − -(
.+ − .(
/+ − /(

0 (8)

	"###$ = −'#$() × '#$(+ (9)

P̂∇ =[Nx,Ny]
T (10)

 bgrad = pi/2 - ATAN2(Ny,Nx) (11)

where Nx and Ny are the x- and y-components of N, the
surface normal vector; bgrad is the bearing of the field gradient
(e.g., the direction of maximum parameter increase),
expressed as a heading angle in {G}.

For contour following, the location of the cluster in the
parameter field must be approximated. Given that the origin
of {C} represents the cluster’s location and given the planar
assumption of the field in the local area, the parameter field

value at the cluster’s location is),(ˆˆ
ccc yxPz = .

B. Gradient-Based Navigation

With an estimate of the bearing of the field gradient now
available, this knowledge can be incorporated into the
cluster’s realtime navigation strategy in order to adaptively
drive the cluster as a function of the sensed environment.
Although a variety of navigation strategies can be considered,
here we focus on two specific strategies which we believe
hold specific promise for applications we are pursuing: a)
navigating to local minima/maxima in the field, and b)
navigating along specific contour levels within the field.

To navigate to the local minimum or maximum, bgrad
provides the heading of the greatest rate of parameter increase.
The opposite direction is the heading of the greatest rate of
parameter decrease. Accordingly, for gradient
climbing/descent mode, the desired bearing of travel is:

bdes = bgrad + (d * π) (12)

where d = 0 for gradient ascent and d = 1 for gradient descent.
We note that this navigation strategy simply directs the cluster
along the local direction of maximum/minimum parameter
change; there is no attempt to remain on any specific gradient
line.

Navigating along a field contour requires more
sophistication given that this strategy implies note just the
desire to move in the direction of the contours but also the
desire to move to and follow a specific contour line with a
given parameter value. First, the direction of the contour lines
must be determined. Given that contour lines are
perpendicular to the gradient, the bearing of what we term the
Clockwise (CW) contour direction (which implies a CW
rotation around the parameter field if the field was a simple
single peak) has a value of [bgrad - (π/2)]. Similarly, the
bearing of the contour for Counter Clockwise (CCW) travel is
[bgrad + (π/2)].

To follow a specific contour of value zdes, a simple cross-
track controller is used, as is depicted in Fig 4. This strategy
specifies a heading set point equal to the desired contour
bearing plus a corrective bearing term proportional to the cross
track error, (zdes – zc), which biases travel towards the desired

52 52

𝐾𝐼𝑁!"#$%&' 𝑟,𝑛 =

𝐾𝐼𝑁!!"#(𝑟,𝑛!"#)
𝐾𝐼𝑁!!"#$%& 𝑟,𝑛!"#$%&
𝐾𝐼𝑁!!"# 𝑟,𝑛!"#
𝐾𝐼𝑁!!"#$ 𝑟,𝑛!"#$

 (93)

𝐾𝐼𝑁!"#$ 𝑐,𝑛 =

𝐾𝐼𝑁!!"#(𝑐,𝑛!"#$%&)
𝐾𝐼𝑁!!"#$%& 𝑐,𝑛!!"#$%
𝐾𝐼𝑁!!"# 𝑐,𝑛!"#
𝐾𝐼𝑁!!"#$ 𝑐,𝑛!"#$

 (94)

The unified Jacobian matrices are:

𝐽!"#$%&' 𝑟, 𝑛 =

𝐽!!"# 𝑟, 𝑛!"# 0
𝐽!!"#$%& 𝑟, 𝑛!"#$%&

𝐽!!"# 𝑟, 𝑛!"#
0 𝐽!!"#$ 𝑟, 𝑛!"#$

 (95)

𝐽!"#$ 𝑐, 𝑛 =

𝐽!!"# 𝑐, 𝑛!"# 0
𝐽!!"#$%& 𝑐, 𝑛!"#$%&

𝐽!!"# 𝑐, 𝑛!"#
0 𝐽!!"#$ 𝑐, 𝑛!"#$

 (96)

The unified controllers are:

𝐾!"#$%&' 𝑛 =

𝐾!!"# 𝑛!"# 0
𝐾!!"#$%& 𝑛!"!"#$

𝐾!!"# 𝑛!"#
0 𝐾!!"#$ 𝑛!"#$

 (97)

𝐾!"#$ 𝑛 =

𝐾!!"# 𝑛!"# 0
𝐾!!"#$%& 𝑛!"#$%&

𝐾!!"# 𝑛!"#
0 𝐾!!"#$ 𝑛!"#$

 (98)

3.4.2.2 Resource	Allocation	
For this example scenario, a state machine determines when and how many robots are

reallocated and a cost function determines which robots are reassigned.

53 53

The sampling task is the highest priority and requires three robots at all times. The

communications task has the second priority, and it is provided with the minimum

number of robots required to maintain a prescribed level of link quality. The escort task

has the third priority, using available robots to maintain a cluster size from 2-4 robots.

The idle task has the lowest priority and is used for any robots not required by the other

task.

Robots are incrementally transferred to the communication task as necessary, first from

the idle task as available, then from the escort task until the minimum is reached. Table 3

below presents the logic for robot reallocation. A reallocation occurs if the link quality 𝑍

is exceeds a factor of the desired link quality 𝑍 and the link quality link has stabilized as

indicated by a lower threshold of the rate.

Table 3: Resource allocation logic for the example collaborative mission

Link Power Condition Quantity Condition Next Allocation

𝑍 <
1
4
𝑍 & 𝑍 < 0.05

0 < 𝑛!"#$ 𝑁 =

𝑛!"#
𝑛!"#$%&

𝑛!"## + 1
𝑛!"#$ − 1

0 = 𝑛!"#$ & 2 < 𝑛!"#$%& 𝑁 =

𝑛!"#
𝑛!"#$%& − 1
𝑛!"## + 1
𝑛!"#$

𝑍 > 2 𝑍 & 𝑍 < 0.05

0 = 𝑛!"#$ & 𝑛!"#$%& < 4 𝑁 =

𝑛!"#
𝑛!"#$%& + 1
𝑛!"## − 1
𝑛!"#$

0 < 𝑛!"#$ 𝑁 =

𝑛!"#
𝑛!"#$%&

𝑛!"## − 1
𝑛!"#$ + 1

The selection process chooses the robot assignment resulting in the lowest weighted sum

of task space error, shown below:

𝑃 𝑟! = −𝑘!𝑍 + 𝑘! 𝜌! − 𝜌 !
!!"#$%&
!!! (99)

where 𝑘! are constants weighting the different terms, 𝑍 is communications link power,

and 𝜌! − 𝜌 is escort radial distance error. This approach provided acceptable results,

54 54

comparable to human expectations, where robots were assigned to new roles that were

closest in proximity to the equilibrium for the new role.

3.4.2.3 Task	coordination	
In this example scenario, task coordination guides the escort and communication tasks to

supports the navigation task while the navigation and idle positioning tasks are directly

specified by the mission goals.

The escort task tracks the navigation task by specifying the desired escort task centroid to

the actual centroid of the navigation task. Escort task parameters of heading 𝜃!"#$%& and

radius 𝜌!"#$%!! are specified by the operator using the mission state vector. The escort

spacing 𝛾!"#$%& is specified to be evenly spread around the perimeter. These

specifications are expressed by the task coordination function below for a 3-robot escort

coalition, where the left hand side is the task commands and the right had side is the

function Q of mission commands and actual task states:

𝑥!!"#$%&
𝑦!!"#$%&
𝜃!"!"#$
𝜌!"#$%!!
𝜌!"#$%!!
𝛾!"#$%&
𝜙!"#$%&!:!

=

𝑥!!"#
𝑦!!"#

𝑚!"#$%!!"#$%&'&#!%
𝑚!"#$%&!"#$%&
𝑚!"#$%&!"#$%&

!!
!!"#$%&

𝑚!"#$%&!!"#$%&

 (100)

The communication task coordination function includes defining the task kinematics,

specifically considering the link strength to the end points being connected. The state of

the end points must be included to define fully the task states of link balance 𝐵! and

crosstrack error 𝑒!". Those definitions include link signal strength 𝑠! which is a function

of many parameters including environmental conditions. In practice, the signal can be

measured directly but here we have assumed a line of sight model. Alignment of the

communication chain can be coordinated by specifying the command as a function of the

end points:

55 55

𝑒!" =
!!!!!!! !!!!!! ! !!!!!! !!!!!!!

!

!!!!!!!
!
! !!!!!!!

! (101)

𝐵! =
!!!!!!!

!
! !!!!!!!

!

!!!
 (102)

𝐵! =
!!!

!!!!!!!!! !"# !!!!! !!! !"#!!
!
! !!!!!!!!! !"# !!!!! !!! !"#!!

!

 (103)

𝛾! = atan2 𝑦!! − 𝑦!! , 𝑥!! − 𝑥!! (104)

3.4.2.4 Simulation	Discussion	
At the beginning of the simulation, the resource allocation vector is n=[3,4,0,2]. The

field value measured by the adaptive sampling task is below the desired value, so it

moves up the gradient towards the source and begins moving along the contour line. The

escort task tracks the sampling task, matching its own centroid state to the centroid state

of the adaptive sampling cluster. Simultaneously, the escort task expands its radius and

rotates to patrol at the desired perimeter. Note that the radial escort distance has steady

state error due to centripetal acceleration from the state coupling of the cluster control

(for more information, specifically on model-based nonlinear compensation schemes, see

[67]).

At time t=[1] (the initial condition), the communications link quality between the

sampling task and the base station is below the desired value which triggers resource

reassignment. The allocation vector now changes to n=[3,4,1,1] because the idle task is

lowest priority so one robot is moved from idle to communications. The selection

algorithm evaluates every resource assignment possibility, selecting the candidate

assignment with the lowest weighted error. In this case, the lowest error configuration

uses the nearer idle robot (on the right) for communication rather than the further idle

robot (on the left).

56 56

Figure 25: The overhead view of robot positions in specified time windows for the multi-
task collaborative mission example. The adaptive sampling task (blue) traverses a contour
of a field (gray). The escort task (green) patrols a perimeter around the sampling task. The
communication task (red) relays data from the adaptive sampling task to the base station
(black). Robots are moved to the communication task to maintain the data link as the
sampling task moves away from the base station.

At time t=[163], the link quality falls outside the deadband. The allocation vector now

changes to n=[3,4,2,0] because the idle task still held one robot that could be used for

communication without impacting the other tasks. The selection algorithm keeps the

existing robots assigned to the escort task and deploys the remaining idle robot to the

communication task nearest the base station.

At time t=[335], the link quality falls outside the deadband. The allocation vector now

changes to n=[3,3,3,0] because the communication task has been prioritized over the

57 57

escort task. The selection algorithm assigns the robot from the escort task that is nearest

the communications relay chain because this yields the lowest error. As a point of

comparison, this is a better choice than reassigning a robot far away from the

communications chain, which results in higher initial task error and requires the robot to

move further to join the task.

Figure 26: Time history of select states for the multi-task collaborative mission example.
The top chart depicts the allocation of robots between the different tasks. The second chart
presents communication link quality in comparison to commanded value and the deadband
that dictates if the robots are to be reallocated. The third chart presents the measured
value of the navigation field, corresponding to the gray shading in Figure 25. The fourth
chart presents the radius of the perimeter provided by the escort task, showing transients at
reallocation events. The final chart presents the ratio of the communication relay links, also
showing the transient at reallocation events.

At time t=[581], the link quality falls outside the deadband. In this case, the additional

condition of the link quality rate has not decreased sufficiently indicating the switching

transient has not settled. The switching transient finally settles and the robots are

reallocated at t=[600]. The allocation vector now changes to n=[3,2,4,0] because the

Q
ty

 [#
]

0
1
2
3
4
5
6
7
8
9

Nav
Escort
Comm
Idle

Li
nk

 Q
ua

lit
y

10-3

10-2

10-1

Command
Actual
Deadband

N
av

. F
ie

ld

#10-4

2.5

3

3.5

4

Command
Actual

Es
co

rt
D

is
ta

nc
e

[m
]

5

10

15

20

Time [s]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
om

m
 B

al
an

ce

10-1

100

101

58 58

communication task has been prioritized over the escort task. The selection algorithm

assigns the robot from the escort task that is nearest the communications relay chain

because this yields the lowest error. As a point of comparison, this is a better choice than

reassigning a robot far away from the communications chain which results in higher

initial task error and requires the robot to move further to join the task.

At time t=[1469], the link quality now rises outside the deadband. The allocation vector

now changes back to n=[3,3,3,0] because the communication task no longer needs the

additional robot to maintain the desired link quality. The selection algorithm assigns the

robot that was at the head of the communication relay to join the escort task, squeezing

into position between the nearest escorting robots. This event repeats itself at time

t=[1522], where the allocation vector changes to n=[3,4,2,0].

At time t=[1579], the link quality again rises outside the deadband. The allocation vector

now changes to n=[3,4,1,1]. The communication task no longer needs the additional

robot and the escort cluster has sufficient resources, so the unnecessary robot is shifted

into the idle task. This idle robot returns to its starting location near the base station to

wait in reserve. This event repeats itself at time t=[1658], where the allocation vector

changes to n=[3,4,0,2] and the whole cycle begins again.

3.5 Chapter	Summary	
In summary, this chapter presents an integrated motion control architecture for

collaborative tasks as part of a larger mission. This builds on the architecture from

Chapter 2. Multiple tasks are represented with concatenated state vectors and block-

diagonal matrices. Resource allocation algorithms assign quantities of robots to specific

roles within tasks, redistributing resources as necessary for the mission. Switching robot

assignments will be stable so long as the commanded robot velocity is less than or equal

to the actual robot velocity. Task coordination functions explicitly define relationships

between tasks, specifically task command set points or task states, resulting in coupled

task dynamics.

59 59

4 Conclusions	&	Future	Work	

4.1 Conclusions	
Our goal was to develop and verify a unified control architecture for collaborative

missions comprised of multiple, multi-robot tasks. Part of this goal included a

methodology for designing new tasks, including standard control metrics for performance

and stability. The integrated architecture was to be verified in simulation and experiment

by integrating a diverse set of tasks into a collaborative mission.

This effort has accomplished the initial research goals, The architecture achieves mission-

level control of multiple tasks working in a collaborative manner through resource

sharing and coordinated tasks. The approach is formal, with rigorous analysis to provide

design guidance and performance predictions. Experiments and simulations

demonstrated the architecture for individual tasks and integrated missions.

Individual task-level control provides benefits to the operator and the engineer.

Commands are specified naturally and the system responds in an intuitive manner.

Issues are managed in the appropriate space, allowing control abstraction at higher levels.

Stability and performance are influenced by state definitions (exhibited as Jacobians) as

well as control parameters.

Collaborative control provides additional dimensions to the solution space. Coordination

at the task level provides mission agility but couples the coalition dynamics which can

impact performance. Stable resource allocation is achievable by strategic or gradual

transitions between configurations to minimize errors.

60 60

For the field of robotics, this research provides a framework for control and analysis of

multi-robot system motion for large-scale, highly coupled missions. As systems grow in

scale and complexity, the dynamic interaction of subsystems must be considered.

Design tools and analysis procedures were created for new tasks and missions and the

architecture allows different control and collaboration algorithms. A formal design

process provides analytic rigor to truly engineer a robotic system instead of ad hoc

iteration.

4.2 Future	Work	
Although it is beyond the scope of this work, this research could continue by evaluating

practical strategies for task control and exploring new capabilities for collaboration.

The rigorous nature of the control analysis could be improved for practical purposes.

Approximations to the stability conditions could make controller design more tractable,

specifically dealing with the pose-dependent Jacobians. For environmentally dependent

states (ex: communications signal strength) that are directly measurable, the Jacobians

could be estimated in real time to operate in unknown environments without needing to

assume a model. Other performance metrics could be explored to determine analytically

the benefits and limitations of intermediate space definitions.

Task coordination could consider more complex or dynamic relationships. Tasking a

single robot with multiple tasks may over define the system but a best fit may be tolerable

for limited resources. Feedback between mutually dependent tasks should be analyzed to

identify stability limits. Dynamically retargeting tasks seems advantageous but may have

switched stability considerations like with resource allocation. Automatic identification

of new coordination schemes could improve resource efficiency and allows the system to

define its own needs without designer specification.

Resource allocation should incorporate advanced assignment and switching strategies.

This could include any of the suggested methods for increasing stability, like preparing

for reconfigurations by gradually transitioning robots between tasks. Perhaps there is

intersection with shared resources as suggested for task coordination.

61 61

Machine learning techniques should be explored as they relate to multi-robotic control.

Certain techniques may be able to optimize control space definitions based on error

projections between spaces, such as suggested in [68]. Reinforcement learning may find

new and better control policies and task coordination functions for improved task and

mission performance.

62 62

Bibliography	

[1] International Federation of Robotics. (2015) Industrial Robot Statistics. [Online].
http://www.ifr.org/industrial-robots/statistics/

[2] Business Insider. (2015, May) The Robotics Market Report. [Online].
http://www.businessinsider.com/growth-statistics-for-robots-market-2015-2

[3] John Greenough. (2015, April) Business Insider. [Online]. http://www.businessinsider.com/how-the-
internet-of-things-market-will-grow-2014-10

[4] Graham Winfrey. (2014, September) Inc. [Online]. http://www.inc.com/graham-winfrey/how-
collaborative-robots-are-changing-small-business-productivity.html

[5] Tanya M. Anandan. (2015, January) Robotics Online. [Online]. http://www.robotics.org/content-
detail.cfm/Industrial-Robotics-Industry-Insights/Robotics-2015-and-Beyond-Collaboration-
Connectivity-Convergence/content_id/5188

[6] Frank Tobe. (2016, March) Collaborative robots are broadening their marketplaces. [Online].
http://www.therobotreport.com/news/collaborative-robots-are-broadening-their-market-spheres

[7] National Science Foundation. (2016) National Science Foundation. [Online].
http://www.nsf.gov/pubs/2016/nsf16517/nsf16517.pdf

[8] CITRIS. (2015) Center for Information Technology Research in the Interest of Society (CITRIS).
[Online]. http://citris-uc.org/initiatives/robotics-2/

[9] Gregory Polek. (2014, July) AIN Online. [Online]. http://www.ainonline.com/aviation-news/air-
transport/2014-07-11/supplier-choices-and-production-processes-boeing-carefully-manages-risks-
777

[10] Adam Mann. (2012, Nov.) Wired. [Online]. http://www.wired.com/2012/11/telerobotic-exploration/
[11] Defense Advanced Research Agency (DARPA). DARPA. [Online].

http://www.darpa.mil/program/collaborative-operations-in-denied-environment
[12] Joseph Jones. (2013, October) Robohub. [Online]. http://robohub.org/harvey-a-working-robot-for-

container-crops/
[13] Lillian Sando. (2014, October) Technologist Online. [Online]. http://www.technologist.eu/internet-

of-underwater-things-the-next-big-wave/
[14] Dylan A. Shell and Maja J. Mataric, "On foraging strategies for large-scale multi-robot systems," in

Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on, Beijing, China, 2006.
[15] Jie Zhao, Xiangguo Su, and Jihong Yan, "A novel strategy for distributed multi-robot coordination in

area exploration," in Measuring Technology and Mechatronics Automation, International Conference
on, Zhangjiajie, China, 2009.

[16] Wolfram Burgard, Mark Moors, Dieter Fox, Reid Simmons, and Sebastian Thrun, "Collaborative

63 63

Multi-Robot Exploration," in IEEE International Conference on Robotics and Automation (ICRA),
San Francisco, CA, USA, 2000.

[17] Shuai Li, Ruofan Kong, and Yi Guo, "Cooperative Distributed Source Seeking by Multiple Robots:
Algorithms and Experiments," IEEE/ASME Transactions on Mechatronics, vol. 19, no. 6, pp. 1810-
1820, December 2014.

[18] Jack Elston and Eric W. Frew, "Hierarchical Distributed Control for Search and Tracking by
Heterogeneous Aerial Robot Networks," in IEEE International Conference on Robotics and
Automation (ICRA), Pasadena, CA, USA, 2008.

[19] Ben Grocholsky, James Keller, Vijay Kumar, and George Pappas, "Cooperative Air and Ground
Surveillance," IEEE Robotics & Automation Magazine, pp. 16-26, September 2006.

[20] Ralf Bachmayer and Naomi Ehrich Leonard, "Vehicle Networks for Gradient Descent in a Sampled
Environment," in Decision and Control, IEEE Conference on, Las Vegas, Nevada, USA, 2002.

[21] Petter Ogren, Edward Fiorelli, and Naomi Ehrich Leonard, "Cooperative Control of Mobile Sensor
Networks: Adaptive Gradient Climbing in a Distributed Environment," IEEE Transactions on
Automatic Control, vol. 49, no. 8, pp. 1292-1302, August 2004.

[22] Thomas Adamek, Christopher A. Kitts, and Ignacio Mas, "Gradient-Based Cluster Space Navigation
for Autonomous Surface Vessels," Transactions on Mechatronics, submitted, 2014.

[23] Jonathan Fink, Alejandro Ribeiro, and Vijay Kumar, "Robust Control for Mobility and Wireless
Communications in Cyber-Physical Systems With Applications to Robot Teams," Proceedings of the
IEEE, vol. 100, no. 1, pp. 164-178, January 2012.

[24] Dae-Keun Yoon, Jong-Tae Seo, Eui-Jung Jung, and Byung-Ju Yi, "Automatic Lighting Systems
Using Multiple Robotic Lamps," IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 963-
974, June 2014.

[25] Vaibhav Kumar Mehta and Filippo Arrichiello. (2013, December) Connectivity maintenaince by
robotic Mobile Ad-hoc NETwork. [Online]. arXiv:1312.2526

[26] J Escareno et al., "Task-based Control of a Multirotor Minature Aerial Vehicle Having an Onboard
Manipulator," in Unmanned Aircraft Systems, International Conference on, Orlando, FL, USA, 2014.

[27] Sebastian Earhart and Sandra Hirche, "Adaptive Force/Velocity Control for Multi-Robot Cooperative
Manipulation under Uncertain Kinematic Parameters," in Intelligent Robots and Systems (IROS),
IEEE/RSJ International Conference on, Tokyo, Japan, 2013.

[28] Sebastian Earhart, Dominik Sieber, and Sandra Hirche, "An impedance-based control architecture for
multi-robot cooperative dual-arm mobile manipulation," in Intelligent Robots and Systems (IROS),
IEEE/RSJ International Conference on, Tokyo, Japan, 2013.

[29] Dominik Sieber, Frederik Deroo, and Sandra Hirche, "Formation-based approach for multi-robot
cooperative manipulation based on optimal control design," in Intelligent Robots and Systems
(IROS), IEEE/RSJ International Conference on, Tokyo, Japan, 2013.

[30] Ross A. Knepper, Todd Layton, John Romanishin, and Daniel Rus, "IkeaBot: An Autonomous
Multi-Robot Coordinated Furniture Assembly System," in IEEE International Conference on
Robotics and Automation (ICRA), Karlsruhe, Germany, 2013.

[31] Yu Zhang and Lynne E. Parker, "IQ-ASyMTRe - Forming Executable Coalitions for Tightly
Coupled Multirobot Tasks," IEEE Transactions on Robotics, vol. 29, no. 2, pp. 400-416, April 2013.

[32] Lynne E Parker and Fang Tang, "Building Multirobot Coalitions Through Automated Task Solution
Synthesis," Proceedings of the IEEE, vol. 94, no. 7, pp. 1289-1305, July 2006.

[33] Lovekesh Vig and Julie A. Adams, "Multi-Robot Coalition Formation," IEEE Transactions on
Robotics, vol. 22, no. 4, pp. 637-649, August 2006.

[34] Pedro M Shiroma and Mario F. M Campos, "A Task Allocation Protocol Based on Constraint
Functions," in Congresso Brasileiro de Automática , 2010, pp. 4998-5005.

[35] Brian P Gerkey and Maja J Mataric, "A formal analysis and taxonomy of task allocation in multi-
robot systems," International Journal of Robotics Research, vol. 23, no. 9, pp. 939-954, September
2004.

64 64

[36] Brian P Gerkey and Maja J Mataric´, "A Framework for Studying Multi-Robot Task Allocation," in
Proceedings from Multi-Robot Systems: From Swarms to Intelligent Automata, Volume II,
Washington DC, USA, 2003, pp. 15-26.

[37] G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine Dias, "A comprehensive taxonomy for
multi-robot task allocation," The International Journal of Robotics Research, vol. 32, no. 12, pp.
1495-1512, 2013.

[38] Daniel A. DeLaurentis and William A. Crossley, "A Taxonomy-based Perspective for Systems of
Systems Design Methods," in Systems, Man and Cybernetics, IEEE International Conference on,
2005, pp. 86-91.

[39] Mark W. Maier, "Architecting principles for systems-of-systems," Systems Engineering, vol. 1, no. 4,
pp. 267-284, Februrary 1999.

[40] A. DeLaurentis Daniel, "Understanding Transportation as System-of-Systems Design Problem," in
AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 2005.

[41] Ali Mostafavi, Dulcy M. Abraham, Daniel DeLaurentis, and Joseph Sinfield, "Exploring the
Dimensions of Systems of Innovation Analysis: A System of Systems Framework," IEEE Systems
Journal, vol. 5, no. 2, pp. 256-265, June 2011.

[42] Nicos Karcanias and Ali G. Hessami, "System of Systems and Emergence," in Emerging Trends in
Engineering & Technology, International Conference on, Port Louis, Mauritius, 2011.

[43] Department of Defense, USA, Systems Engineering Guide for Systems of Systems. Washington, DC,
USA, 2008.

[44] Scott A. Selberg and Mark A. Austin, "Toward an Evolutionary System of Systems Architecture," in
INCOSE International Symposium, Utrecht, the Netherlands, 2008.

[45] Stavros G. Vougioukas, "A distributed control framework for motion coordination of teams of
autonomous agricultural vehicles," Biosystems Engineering, vol. 113, no. 3, pp. 284-297, November
2012.

[46] Nathan Schurr et al., "The Future of Disaster Response: Humans Working with Multiagent Teams
using DEFACTO," in AAAI Spring Symposium: AI Technologies for Homeland Security, 2005, pp. 9-
16.

[47] Yohan Lee, Jeremy S. Fried, Heidi J. Albers, and Robert G. Haight, "Deploying initial attack
resources for wildfire suppression: spatial coordination, budget constraints, and capacity constraints,"
Canadian Journal of Forest Research, vol. 43, no. 1, pp. 56-65, 2012.

[48] Ali Hessami, "A Framework for Characterising Complex Systems and System of Systems," in
Systems, Man, and Cybernetics, IEEE International Conference on, Manchester, England, 2013, pp.
1702-1708.

[49] Kemp H. Kernstine, "Inadequacies of Traditional Exploration Methods in Systems-of-Systems
Simulations," IEEE Systems Journal, vol. 7, no. 4, pp. 528-536, December 2013.

[50] Nicos Karcanias and Ali G. Hessami, "Complexity and the Notion of Systems of Systems: Part (I):
General Systems and Complexity," in World Automation Congress, Kobe, Japan, 2010.

[51] Jon Holt et al., "Model-based requirements engineering for systems of systems," in System of Systems
Engineering, International Conference on, Genoa, Italy, 2012.

[52] Denise Jackson, Gregory Sedrick, and Karima Tayeb, "Algorithmic Development of the
Effectiveness Prediction for Systems of Systems," in Southeastern Symposium on System Theory,
Tullahoma, TN, USA, 2009.

[53] Hamid R. Darabi and Mo Mansouri, "The Role of Competition and Collaboration in Influencing the
Level of Autonomy and Belonging in System of Systems," IEEE Systems Journal, vol. 7, no. 4, pp.
520-527, Dececmber 2013.

[54] Pablo Garcia Ansola, Andres Garcia Higuera, F. Javier Otamendi, and Javier de las Morenas,
"Agent-Based Distributed Control for Improving Complex Resource Scheduling: Application to
Airport Ground Handling Operations," IEEE Systems Journal, vol. 8, no. 4, pp. 1145-1157,
December 20014.

[55] George Rzevsky and Petr Skobelev, Managing Complexity. Boston, MA, USA: WIT Press, 2014.

65 65

[56] W. Ross Ashby, "Principles of the self-organizing system," in Facets fo Systems Science, George J.
Klir, Ed. New York, NY, USA: Springer US, 1991, pp. 521-536.

[57] E. White Bruce, "A Complex Adaptive Sytems Engineering (CASE)," in IEEE International Systems
Conference, Vancouver, Canada, 2009.

[58] Rodney A. Brooks, "A Robust Layered Conrol System for Mobile Robots," Massachusetts Institute
of Technology, Memo 1985.

[59] O. Khatib et al., "Coordination and Decentralized Cooperation of Multiple Mobile Manipulators,"
Journal of Robotic Systems, vol. 13, no. 11, pp. 755-764, 1996.

[60] Maja J. Matarić, "Reinforcement Learning in the Multi-Robot Domain," Autonomous Robots, vol. 4,
no. 1, pp. 73-83, March 1997.

[61] Christopher A. Kitts and Ignacio Mas, "Cluster Space Specification and Control of Mobile
Multirobot Systems," IEEE/ASME Transactions on Mechatronics, vol. 14, no. 2, pp. 207-218, 2009.

[62] Ignacio Mas, Steven Li, Jose Acain, and Christopher A. Kitts, "Entrapment/Escorting and Patrolling
Missions in Multi-Robot Cluster Space Control," in IEEE/RSJ International Conference on
Intelligent Robots and Systems, St. Louis, USA, 2009.

[63] Paul Mahacek, Ignacio Mas, Ogi Petrovic, Jose Acain, and Christopher Kitts, "Cluster space control
of autonomous surface vessels," Marine Technology Society Journal, pp. 13-20, March 2009.

[64] Ignacio Mas, Christopher A. Kitts, and Robert Lee, "Model-Based Nonlinear Cluster Space Control
of Mobile Robot Formations," in Multi-Robot Systems, Trends and Development, Toshiyuki Yasuda,
Ed.: InTech, 2011, pp. 53-71.

[65] John T. Shepard and Christopher A. Kitts, "Task Oriented Multi-Robot Cluster Control for
Communications Link Management (submitted)," IEEE Systems Journal, Submitted 2016.

[66] Daniel Liberzon, Switching in Systems and Control. Boston, MA, USA: Birkhauser, 2003.
[67] Ignacio Mas and Christopher A Kitts, "Dynamic Control of Mobile Multirobot Systems: The Cluster

Space Formulation," IEEE Access, vol. 2, no. 2014, pp. 558-570, May 2014.
[68] J. Kober and J. Peters, "Adaptation, Learning, and Optimization," in Reinforcement learning in

robotics: A survey, M. Wiering and M. Otterlo, Eds.: Springer Berlin Heidelberg, 2012, vol. 12.
[69] Ignacio Mas and Christopher Kitts, "Obstacle Avoidance Policies for Cluster Space Control of

Nonholonomic Multirobot Systems," IEEE/ASME Transactions on Mechatronics, vol. 17, no. 6, pp.
1068-1079, Dec 2012.

[70] Digi International, Inc , "XBee®/XBee-PRO® ZB RF Modules ," Reference Manual 2012.
[71] Robert Zlot and Anthony Stentz, "Multirobot control using task abstraction in a market framework,"

in Collaborative Technology Alliances Conference, 2003.
[72] Dae-Keun Yoon, Jong-Tae Seo, and Byung-Ju Yi, "Automatic Lighting System Using Multiple

Robotic Lamps," IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 963-974, June 2014.
[73] Michael C Yip and David B Camarillo, "Model-less feedback control of continuum manipulators in

constrained environments," IEEE Transactions on Robotics, vol. 30, no. 4, pp. 880-889, August
2014.

[74] Xie Wenlong, Su Jianbo, and Lin Zongli, "New coordination scheme for multi-robot systems based
on state space models," Systems Engineering and Electronics, Journal of, vol. 19, no. 4, pp. 722-734,
August 2008.

[75] Giuseppe Tortora, Paolo Dario, and Arianna Menciassi, "Array of Robots Augmenting the
Kinematics of Endocavitary Surgery," IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, p.
1821, Dec 2014.

[76] Bryan J. Thibodeau, Andrew H. Fagg, and Brian N. Levine, "Signal Strength Coordination for
Cooperative Mapping," Amherst, USA, 2005.

[77] John D. Sweeney, Roderic Grupen, and Prashant Shenoy, "Active QoS Flow Maintenance in
Controlled Mobile Networks," in the Fourth International Symposium on Robotics and Automation
(ISRA), Proceedings of, Queretaro, Mexico, 2005.

[78] Tuomas Sandholm, Kate Larson, Martin Andersson, Onn Shehory, and Fernando Tohme, "Coalition

66 66

structure generation with worst case guarantees," Artificial Intelligence, no. 111, pp. 209-238, 1999.
[79] Narek Pezeshkian, Hoa G. Nguyen, and Aaron Burmeister, "Unmanned Ground Vehicle Radio Relay

Deployment System for Non-Line-Of-Sight Operations," San Diego, USA, 2007.
[80] Narek Pezeshkian, Joseph D. Neff, and Abraham Hart, "Link Quality Estimator for a Mobile Robot,"

in Int. Conf. on Informatics in Control, Automation and Robotics, Rome, Italy, 2012.
[81] Garret Okamoto, Chi-Wei Chen, and Christopher Kitts, "Beamforming Performance for a

Reconfigurable Sparse Array Smart Antenna System via Multiple Mobile Robotic Systems," in
Proceedings of the SPIE - The International Society for Optical Engineers, 2010.

[82] Miles O'Brien and Kate Tobin. (2013, December) National Science Foundation. [Online].
http://www.nsf.gov/news/special_reports/science_nation/collaborativerobots.jsp

[83] James P. Minas, John W. Hearne, and John W. Handmer, "A review of operations research methods
applicable to wildfire management," International Journal of Wildland Fire, vol. 21, no. 3, pp. 189-
196, February 2012.

[84] Vaibhav Kumar Mehta and Filippo Arrichiello. (2013, Decmber) arXiv.org. [Online].
http://arxiv.org/abs/1312.2526v1

[85] Ignacio Mas and Christopher Kitts, "Multi-Robot Object Manipulation Using Cluster Space Control,"
in ASME Information Storage and Processing Systems Conference, Santa Clara, CA, 2010.

[86] I. Mas, O. Petrovic, and C. Kitts, "Cluster space specification and control of a 3-robot mobile
system," in Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on,
Pasadena, CA, USA, 2008, pp. 3763-3768.

[87] Paul Mahacek, Christopher A. Kitts, and Ignacio Mas, "Dynamic Guarding of Marine Assets through
Cluster Control of Automated Surface Vessel Fleets," IEEE/ASME Transactions on Mechatronics,
vol. 17, no. 1, pp. 65-75, 2012.

[88] Chao-Wei Lin, Mun-Hooi Khong, and Yen-Chen Liu, "Experiments on Human-in-the Loop
Coordination for Multirobot Systems with Task Abstraction," Automation Science and Engineering,
IEEE Transactions on, vol. PP, no. 99, 2015.

[89] Daniel Liberzon and A. Stephen Morse, "Basic Problems in Stability and Design of Switched
Systems," IEEE Control Systems Magazine, vol. 19, no. 5, pp. 59-70, Oct 1999.

[90] Shuai Li, Ruofan Kong, and Yi Guo, "Cooperative Distributed Source Seeking by Multiple Robots:
Algorithms and Experiments," IEEE/ASME Transactions on Mechatronics, vol. 19, no. 6, pp. 1810-
1820, December 2014.

[91] Ross A. Knepper, Todd Layton, John Romanishin, and Daniela Rus, "IkeaBot: An Autonomous
Multi-Robot Coordinated Furniture Assembly System," in IEEE International Conference on
Robotics and Automation, Karlsruhe, Germany, 2013.

[92] Farangis A Khosro, R Rehal, F Wilken, and Stavros Vogioukas, "Sensor-based Stooped Work
Monitoring in Robot-aided Strawberry Harvesting," in ASABE Annual Intl. Meeting, Montreal, 2014.

[93] Farangis Khosro, R Rehal, and S Vougioukas, "A Low-Cost, Efficient Strawberry Yield Monitoring
System," in ASABE Annual Intl. Meeting, New Orleans, 2015.

[94] O. Khatib, "A unified approach for motion and force control of robot manipulators: The operational
space formulation," Robotics and Automation, IEEE Journal of, vol. 3, no. 1, February 1987.

[95] Matthew A Joordens and Mo Jamshidi, "Consensus Control for a System of Underwater Swarm
Robots," IEEE Systems Journal, vol. 4, no. 1, pp. 65-73, March 2010.

[96] Aleksandar Jevtic, Alvaro Gutierrez, Diego Andina, and Mo Jamshidi, "Distributed Bees Algorithm
for Task Allocation in Swarm of Robots," IEEE Systems Journal, vol. 6, no. 2, pp. 296-304, June
2012.

[97] Hyun-Ja Im, Chang-Eun Lee, Young-Jo Cho, and Kim Sunghoon, "RSSI-Based Control of Mobile
Cooperative Robots for Seamless Networking," in Control, Automation, and Systems, International
Conference on, Jeju Island, Korea, 2012.

[98] Mong-ying A. Hsieh, Vijay Kumar, and Camillo J. Taylor, "Constructing Radio Signal Strength
Maps with Multiple Robots," in Robotics & Automation, Proceedings of the 2004 IEEE International

67 67

Conference on , New Orleans, USA, 2004.
[99] Brian P. Gerkey and Maja J. Mataric, "Sold!: Auction Methods for Multirobot Coordination," IEEE

Transactions on Robotics and Automation, vol. 18, no. 5, pp. 758-768, October 2002.
[100] Jack Elston and Eric W. Frew, "Hierarchical Distributed Control for Search and Tracking by

Heterogeneous Aerial Robot Networks," in IEEE International Conference on Robotics and
Automation, Pasadena, CA, USA, 2008.

[101] John J. Craig, Introduction to Robotics: Mechanics and Control, Third Edition, Ed.: Pearson Prentice
Hall, 2005.

[102] Bernd Brüggemann, Alexander Tiderko, and Markus Stilkerieg, "Adaptive Signal Strength Prediction
based on Radio Propagation Models for improving Multi-Robot Navigation Strategies," in Robot
Communication and Coordination, 2009. ROBOCOMM '09. Second International Conference on,
2009.

[103] Nicola Bezzo, Yuan Yan, Rafael Fierro, and Yasamin Mostofi, "A Decentralized Connectivity
Strategy for Mobile Robot Swarms," in 18th World Congress of the International Federation of
Automatic Control, Milan, Italy, 2011, pp. 4501-4506.

[104] Nicola Bezzo et al., "A Cooperative Heterogeneous Mobile Wireless Mechatronic System,"
IEEE/ASME Transactions on Mechatronics, vol. 19, no. 1, pp. 20-31, February 2014.

[105] Spring Berman and Vijay Kumar, "Abstractions and Algorithms for Assembly Tasks with Large
Numbers of Robots and Parts," in Conference on Automation Science and Engineering, Bangalore,
India, 2009.

[106] K Benkic, M Malajner, P Planinsic, and Z Cucej, "Using RSSI value for distance estimation in
wireless sensor networks based on ZigBee," in Systems, Signals and Image Processing, International
Conference on, Bratislava, 2008, pp. 303-306.

[107] Tucker Balch and Ronald C. Arkin, "Behavior-Based Formation Control for Multi-Robot Teams,"
IEEE Transactions on Robotics and Automation, vol. 14, no. 6, pp. 926-939, Decmeber 1998.

[108] Amit Ailon and Ilan Zohar, "Control Strategies for Driving a Group of Nonholonomic Kinematic
Mobile Robots in Formation Along a Time-Parameterized Path," IEEE/ASME Transactions on
Mechatronics, vol. 17, no. 2, pp. 326-336, April 2012.

[109] Michael Seamus Agnew, Patrick Dal Canto, Christopher A. Kitts, and Steven Q Li, "Cluster Space
Control of Aerial Robots," in IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, Montreal, Canada, 2010.

68 68

Appendices	

A. Multi-Robot	Test	Bed	Description	

Figure 27: Multi-Robot Testbed with Communications Relay Test Bed

Experimental work used the proven SCU multi-robot infrastructure, with hardware added

for this particular application. The SCU multi-robot test bed has been developed over a

number of years by various students. Control computations are performed in real-time in

the MathWorks Simulink environment. Internally developed software based upon

DataTurbine, a real-time data streaming engine, is used to route telemetry and commands

between serial COM ports and Simulink, and commands from Simulink back to COM

ports. The data on the COM ports is transmitted using wireless Ricochet modems to

BasicX microcontrollers onboard Adept Mobile Robot Pioneer robots. These

69 69

microcontrollers send translation and rotation commands to the Pioneers and acquire GPS

position, compass, and wheel speed measurements which are relayed back to the

Simulink controller via the (ancient) Ricochet communication link and DataTurbine

infrastructure. This test bed is optimized for development speed and as such has

recognized inefficiencies. Using a reasonably powerful laptop, the system maintains a 5

Hz update rate, and has been run faster using multiple networked computers for more

demanding computations.

The robot motion was characterized using sine sweeps so that most of the development

could be performed in simulation, allowing more testing time for experiments rather than

debugging. To anyone following (or concurrent with) me in this lab, I highly recommend

beginning with simulations of your system using these (or your own) robot models as

they provide repeatability and control of all parameters, which significantly aids

debugging. The robot forward and rotational velocity response given a commanded

velocity may be approximated as a second-order system with two zero order holds,

shown here as Pade approximations:

𝐺!"#$%&#!'($ 𝑠 = !
!

!!!.!

!
!! !.! !

!!!.! !!

!!!!"!!!""
!!!!"!!!""

!
 (105)

𝐺!"#$#%"& 𝑠 = !
!

!!!.!"

!
!! !.! !

!!!.!" !!

!!!!"!!!""
!!!!"!!!""

!
 (106)

70 70

Figure 28: Sine sweep frequency response of Pioneer-AT robot

If this process is unfamiliar, one can loosely follow this code:

Create stepped sine sweep:

t_end = 300; % end time [s]

t_ramp = 1; % ramp time [s]

a_ramp = 0; % ramp amplitude

a_sweep = [250]; % sweep amplitude

F = [0.05 2.5]; % frequency sweep start and end [Hz]

dt = ts;

Xi = [0:dt:t_end];

Y = [];

X = 0;

% assemble stepped sine sweep command

for i = 1:length(a_sweep)

 % ramp offset

 Yi = a_ramp*ones(size(Xi));

 Yi(find(Xi<t_ramp)) = Yi(find(Xi<t_ramp))-a_ramp/t_ramp*(t_ramp-Xi(find(Xi<t_ramp)));

 Yi(find(Xi>Xi(end)-t_ramp)) = Yi(find(Xi>Xi(end)-t_ramp))-a_ramp/t_ramp*Xi(find(Xi<t_ramp));

 % chirp

 Yi(find(Xi>t_ramp,1,'first'):find(Xi>t_end-t_ramp,1,'first')) =

Yi(find(Xi>t_ramp,1,'first'):find(Xi>t_end-t_ramp,1,'first')) ...

 +a_sweep(i)*chirp([0:dt:t_end-2*t_ramp],F(1),t_end-2*t_ramp,F(2),'logarithmic',-90);

 % concatenate

 Y = [Y,Yi];

 X = [X,Xi+X(end)];

10-2 10-1 100
C

oh
en

er
en

ce
0

0.5

1
Robot Translation: Actual / Command

10-2 10-1 100

M
ag

ni
tu

de
 [d

B]

-20

-15

-10

-5

0

5

Data
Model

Frequency [Hz]
10-2 10-1 100

Ph
as

e
[d

eg
]

-135

-90

-45

0

45

90

135

10-2 10-1 100

C
oh

en
er

en
ce

0

0.5

1
Robot Rotation: Actual / Command

10-2 10-1 100

M
ag

ni
tu

de
 [d

B]

-60

-50

-40

-30

-20

-10

0

10

20

Data
Model

Frequency [Hz]
10-2 10-1 100

Ph
as

e
[d

eg
]

-135

-90

-45

0

45

90

135

71 71

end

X = X(2:end);

t = X.';

r_cmd = zeros(length(t),2); % initialize

r_cmd(:,1) = Y; % forward velocity command (enabled)

% r_cmd(:,2) = Y; % rotational velocity command (disabled)

% figure(1);clf

% plot(t,r_cmd);grid on

% r_cmd = [t,r_cmd];

Then run the simulation, recording the actual values, and compute the transfer functions

and coherence:

nfft = 2^10;%2^(nextpow2(length(t(idx)))-1);
window = [];
noverlap = [];

G = [];
COH = [];

[G(:,1),F] = tfestimate(rdot_cmd_L(idx,2*ri-1)*Kt,rdot_act_L(idx,2*ri-1),window,noverlap,nfft,1/dt);
[G(:,2),F] = tfestimate(rdot_cmd_L(idx,2*ri)*Kr,rdot_act_L(idx,2*ri),window,noverlap,nfft,1/dt);
[COH(:,1),F] = mscohere(rdot_cmd_L(idx,2*ri-1)*Kt,rdot_act_L(idx,2*ri-1),window,noverlap,nfft,1/dt);
[COH(:,2),F] = mscohere(rdot_cmd_L(idx,2*ri)*Kt,rdot_act_L(idx,2*ri),window,noverlap,nfft,1/dt);

which can be plotted against models:

% plant estimate

ts = 1/5

s = tf('s');

z = tf('z',ts);

w = 2*pi*0.15;

Z = 0.7;

Gr = tf(B_pade,A_pade)^n_z/((s/w)^2 + 2*Z/w*s+1);

w = 2*pi*0.4;

Z = 0.7;

Gt = tf(B_pade,A_pade)^n_z/((s/w)^2 + 2*Z/w*s+1);

Gt = freqresp(Gt,2*pi*F);Gt = squeeze(Gt);

Gr = freqresp(Gr,2*pi*F);Gr = squeeze(Gr);

figure(16);clf;set(gcf,'WindowStyle','Docked');set(gcf,'Color','White')

subplot(5,2,1)

semilogx(F,COH);

ylabel('Cohenerence')

title('Robot Translation: Actual / Command')

grid on

% axis tight

72 72

ylim([0 1]);

xlim([1e-2 1e0]);

subplot(5,2,[3 5]);

semilogx(F,20*log10(abs([G(:,1),Gt])))

ylabel('Magnitude [dB]')

grid on

% axis tight

xlim([1e-2 1e0]);

legend('location','SW','Data','Model')

subplot(5,2,[7 9]);

semilogx(F,180/pi*(angle([G(:,1),Gt])));

ylabel('Phase [deg]')

grid on

ylim([-180 180])

set(gca,'YTick',[-180:45:180])

xlabel('Frequency [Hz]')

axis tight

xlim([1e-2 1e0]);

Regarding implementation, using embedded MATLAB functions within Simulink (for

calculating kinematics, Jacobians, etc) is far faster than alternative block types (ex: S-

Functions) because they are compiled on runtime. As a further benefit, these same

MATLAB functions can be used independently (outside of Simulink) for debugging,

performance analysis or even symbolic analysis.

Details on the nonholonomic heading controller may be found in [69].

73 73

B. Communication	Relay	Test	Bed	

The added communications relay test bed is comprised of a chain of Digi International

XBee Series 2 wireless modules [70] mounted upon each mobile robot. The end node

broadcasts a message which is relayed between robots until it reaches the base node. At

each node, a BASIC Stamp microcontroller measures the link quality as a received signal

strength indicator (RSSI), appends the measurement to the original message, and relays it

to the next node. Two RF modules per relay node were necessary because the RSSI

measurement only occurs for the last hop in the communication chain. Measurements

were attempted at 1 Hz (with significant effort to overcome limitations of the BASIC

Stamps), but were often inconsistent, adding a realistic challenge to the control. The data

below depicts the signal strength with respect to distance.

74 74

Figure 29: Received signal strength indicator (RSSI) verses separation distance for Xbee

Series 2 RF Modules. This data suggests model RSSI = 0.5/distance2 (indicated by black

line). This data was collected by Adwait Bhalerao and Matthew Chin.

Figure 30: Composite histogram of received signal strength indicator (RSSI) verses

separation distance while running experiments. This data suggests the model: RSSI =

0.31/distance2

Distance [m]
10 20 30 40 50 60 70 80 90 100

R
ec

ei
ve

d
Si

gn
al

 S
ig

na
l S

tre
ng

th
 In

di
ca

to
r [

dB
m

]

-90

-85

-80

-75

-70

-65

-60

-55

-50
Histogram of RSSI vs Distance

75 75

C. Task	examples	

Prior work was repeated to evaluate the proposed task design methodology. While not

exhaustive, these particular examples demonstrate some degree of generality and

relevance for the design method.

1. Escorting	

Image from [69]

Cluster	Space	Definition:	

𝑥!
𝑦!
𝜃!
𝜙!
𝜙!
𝜙!
𝑝
𝑞
𝛽

=

𝑥! + 𝑥! + 𝑥!
3

𝑦! + 𝑦! + 𝑦!
3

atan2
2
3 𝑥! −

1
3 𝑥! + 𝑥!

2
3𝑦! −

1
3 (𝑦! + 𝑦!)

𝜃! + 𝜃!
𝜃! + 𝜃!
𝜃! + 𝜃!
𝑥! − 𝑥! ! + 𝑦! − 𝑦! !

𝑥! − 𝑥! ! + 𝑦! − 𝑦! !

atan2
− 𝑥! − 𝑥! sin𝛼 − 𝑦! − 𝑦! cos𝛼
− 𝑥! − 𝑥! cos𝛼 + 𝑦! − 𝑦! sin𝛼

	

1074 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 17, NO. 6, DECEMBER 2012

Fig. 7. Reference frame definition placing the cluster center at the triangle
centroid.

Hence, the condition dV/dt < 0 is true whenever the right side
of (25) is negative. Since −−→e T

c K−→e c ≤ −λmin(K) ∥−→e c∥2 and
∥∇Vb∥ ∥K∥ ∥−→e c∥ ≤ ∥∇Vb∥ λmax(K) ∥−→e c∥, where λmin(K)
and λmax(K) are the minimum and maximum eigenvalues of
the gain matrix K, then dV/dt < 0 whenever

∥−→e c∥ >

∥∥∥−̇→c des

∥∥∥ + ∥∇Vb∥
(
λmax(K) + 1

)

λmin(K)
. (26)

Therefore, the stability of the error dynamics, and hence
tracking with bounded error are guaranteed. When an obsta-
cle is present in the detection region, ∇Vb tends to zero along
the cluster trajectories, as the formation moves away from the
obstacle. At that point, (26) becomes (9).

Furthermore, since

lim
db j →Ω+

Vb = ∞ (27)

then the collision avoidance is guaranteed. !
Remark 4: The previous theorem is valid independently of

the specific cluster definition used, as long as Assumptions 1–3
hold.

VI. CASE STUDY: CLUSTER SPACE REPRESENTATION OF A

THREE-ROBOT SYSTEM

The capabilities of the cluster space framework have been
implemented in a wide variety of holonomic and nonholonomic
systems, using two, three, and four robots, and operating on land
[47], on water surfaces [42] and in the air [48]. To illustrate the
functionality of the nonholonomic controller and the integration
of the proposed collision avoidance algorithms, we have selected
a particular planar cluster formed by three unicycle-like mobile
robots.

A. Cluster Space State Variable Selection

Fig. 7 depicts the relevant reference frames for the planar
three-robot problem. We have chosen to locate the cluster frame
{C} at the cluster’s centroid, oriented with Yc pointing toward
Robot 1. Based on this, the nine robot space state variables −→r =
(x1 , y1 , θ1 , x2 , y2 , θ2 , x3 , y3 , θ3)T , where (xi, yi , θi)T repre-
sents the position and orientation of robot i, are mapped into nine
cluster space variables −→c = (xc, yc , θc ,φ1 ,φ2 ,φ3 , p, q,β)T ,

where (xc, yc , θc)T is the cluster position and orientation, φi

is the yaw orientation of rover i relative to the cluster, p and q
are the distances from rover 1 to rover 2 and 3, respectively, and
β is the skew angle with vertex on rover 1.

Given this selection of cluster space state variables, the for-
ward position kinematics are

xc =
x1 + x2 + x3

3
, yc =

y1 + y2 + y3

3
(28)

θc = atan2 (2x1 − x2 − x3 , 2y1 − y2 − y3) (29)

φi = θi + θc , where i = 1, 2, 3. (30)

p =
√

(x1 − x2)2 + (y1 − y2)2 (31)

q =
√

(x1 − x3)2 + (y1 − y3)2 (32)

β = atan2
(
(x3 − x1)sin(α) + (y3 − y1)cos(α)

(x3 − x1)cos(α) − (y3 − y1)sin(α)
)

(33)

where α = atan2
(
y1 − y2 , x2 − x1

)
. The inverse position kine-

matics are, therefore, defined by

x1 = xc +
1
3
√

κ sin (θc) (34)

y1 = yc +
1
3
√

κ cos (θc) (35)

θ1 = φ1 − θc (36)

x2 = xc +
1
3
√

κ sin (θc) + p cos(γ) (37)

y2 = yc +
1
3
√

κ cos (θc) + p sin(γ) (38)

θ2 = φ2 − θc (39)

x3 = xc +
1
3
√

κ sin (θc) + q cos(β + γ) (40)

y3 = yc +
1
3
√

κ cos (θc) + q sin(β + γ) (41)

θ3 = φ3 − θc (42)

where κ = p2 + q2 + 2pq cos(β), and

γ = atan2
(

q sin(β)
p + q cos(β)

)
− atan2

(
− cos (θc)
− sin (θc)

)
. (43)

By differentiating the forward and inverse position kinemat-
ics, the forward and inverse velocity kinematics can easily be
derived, obtaining the Jacobian and Inverse Jacobian matri-
ces. Due to limited space, the full algebraic expressions for
J(−→r) and J−1(−→c) are not included. It can be verified that
J(−→r) ∗ J−1(−→c) = I9 .

It should be noted that this particular selection of cluster space
variables is not unique, and different sets of variables may be
chosen following the same framework when more convenient
for a given task.

B. Nonholonomic Controller

For a three unicycle-like robot system, only six cluster space
parameters can be specified independently. These parameters

76 76

Task	Space	Definition:	

𝑥!
𝑦!
𝜃!
𝜌!
𝜌!
𝛾!
𝜓!
𝜓!
𝜓!

=

𝑥!
𝑦!
𝜃!

1
3

10𝑝! + 2𝑝𝑞 cos𝛽 + 𝑞! − 6𝑝𝑟 sin𝛼

1
3

𝑝! + 10𝑞! + 2𝑝𝑞 cos𝛽 − 6𝑞𝑟 sin 𝛼 − 𝛽

𝜋 − 𝛽
𝜙!
𝜙!
𝜙!

where

𝑟 = 𝑝! + 2𝑝𝑞 cos𝛽 + 𝑞!

𝛼 = atan
𝑞 sin𝛽

𝑝 + 𝑞 cos𝛽 − 𝜃! − atan cot𝜃!

77 77

Example	Results		

Discussion	

Escorting is a simple task but it demonstrates the architecture layers. The task space

states are closely related to the geometric states of the cluster. The simulation results

show effective tracking of a target while maintaining orientation.

X Position, E-W
-30 -20 -10 0 10 20 30

Y
Po

si
tio

n,
 N

-S

0

5

10

15

20

25

30

35

40

45

50

Target
Robot 1
Robot 2
Robot 3
Start
End

78 78

2. Navigation		

Images from [22]

Cluster	Space	Definition	

𝑥!
𝑦!
𝜃!
𝜙!
𝜙!
𝜙!
𝑝
𝑞
𝛽

=

𝑥! + 𝑥! + 𝑥!
3

𝑦! + 𝑦! + 𝑦!
3

atan2
2
3 𝑥! −

1
3 𝑥! + 𝑥!

2
3𝑦! −

1
3 (𝑦! + 𝑦!)

𝜃! + 𝜃!
𝜃! + 𝜃!
𝜃! + 𝜃!
𝑥! − 𝑥! ! + 𝑦! − 𝑦! !

𝑥! − 𝑥! ! + 𝑦! − 𝑦! !

atan2
− 𝑥! − 𝑥! sin𝛼 − 𝑦! − 𝑦! cos𝛼
− 𝑥! − 𝑥! cos𝛼 + 𝑦! − 𝑦! sin𝛼

state space switching, however this adds to the computational
load.

Our previous and ongoing work in cluster space control
includes its implementation with both human pilots and
automated trajectory controllers, use with both holonomic and
non-holonomic vehicles, use with linear and non
controllers, implementation with both resolved rate and
dynamic controllers, avoidance of obstacles,
demonstration on land/sea/air systems with up to 6
[37], [38], [10]. Supporting analytic work has included proo
of Lyapunov stability, dual-rate computational
implementations, varying the level of (de-) centralization, and
the formulation of hierarchical clusters of clusters

This following subsection defines the robot space and cluster
space representations of a multi-robot system and introduces
the kinematic transforms that relate the positions and
velocities in these spaces. The subsequent subsection reviews
the inverse Jacobian control architecture, which is a typical
way in which cluster space control is implemented. A three
robot planar cluster is used as the example throughout this
section given that the experiments presented later in this paper
use such a real-world cluster of robots.

A. The Kinematic Formulation

The general kinematic formulation for a cluster of
each with m degrees of freedom, is provided in
provide the specific formulation for a 3-robot planar system,
which is what we have used to demonstrate the gradient
navigation technique. A system of this type is shown in Fig
1.

Fig. 1. A three robot cluster, showing a cluster space representation of pose:
cluster location (xc, yc, θc), cluster shape (p, q, β), and relative robot
orientations with respect to the cluster (Ø1, Ø2, Ø3).

A conventional robot-oriented representation of this system
consists of describing the system’s pose in terms of the
position and orientation of each robot:

 !"#$ = (x1, y1, θ1, x2, y2, θ2, x3, y3

where (xi,yi,θi) is the position and orientation of robot i for
i=1,2,3 as defined within the global frame, {G}.

To consider the system as a cluster, a cluster reference frame

, however this adds to the computational

Our previous and ongoing work in cluster space control
its implementation with both human pilots and

automated trajectory controllers, use with both holonomic and
holonomic vehicles, use with linear and non-linear

controllers, implementation with both resolved rate and
tacles, and experimental

demonstration on land/sea/air systems with up to 6 robots
10]. Supporting analytic work has included proof

rate computational
) centralization, and
clusters [39], [40].

This following subsection defines the robot space and cluster
robot system and introduces

the kinematic transforms that relate the positions and
subsection reviews

the inverse Jacobian control architecture, which is a typical
rol is implemented. A three-

robot planar cluster is used as the example throughout this
section given that the experiments presented later in this paper

or a cluster of n robots,
in [13]. Here, we

robot planar system,
which is what we have used to demonstrate the gradient-based
navigation technique. A system of this type is shown in Fig.

e representation of pose:

), and relative robot

oriented representation of this system
e in terms of the

3, θ3)
T (1)

) is the position and orientation of robot i for
within the global frame, {G}.

To consider the system as a cluster, a cluster reference frame

{C} is defined; in this example, it is located at the centroid of
the formation and oriented in the direction of Robot 1. The
shape of the cluster is naturally defined as a triangle and is
expressed in this case through a side
size and shape. Given this, the system’s cluster
is given by:

 %#= (xc, yc, θc, Ø1 ,Ø

where the values (xc,yc) is the position and
of the cluster frame with respect to {G}, (p, q,
side-angle-side description of the cluster’s shape, and (
Ø3) denote the relative angle of each robot with respect to the
cluster frame. We note that, in general,
technique provides flexibility in how the cluster frame is
assigned and how the cluster shape is defined; the wide range
of options drives implementation issues such as the level of
(de)centralization, computational complexity, and the na
of geometric singularities. We note that for a three
planar system, nine position variables represent the system’s

degrees of freedom, and accordingly, both
element position vectors.

We can define a set of position kinematic
expressing cluster-oriented pose variables in terms of robot
oriented pose variables and vice versa:

 %#=KIN(G!"#)=

5

6
6
7

89(:9, :;
89(:9, :;

8<=(:9, :

 !"#$ =INVKIN(%#)=

5

6
6
7

?9(@9, @
?9(@9, @

?<=(@9,

Taking the derivative of equations (3) and (4), system
velocities can be related to one another through the use of a
linear time-varying Jacobian matrix,
(5) and (6):

%#A =

5

6
6
7

@A9
@A;
.
.
.

@A<=C

D
D
E

= F($!"

 !"#A$ =

5

6
6
7

:A9
:A;
.
.
.

:A<=C

D
D
E

= $

{C} is defined; in this example, it is located at the centroid of
the formation and oriented in the direction of Robot 1. The
shape of the cluster is naturally defined as a triangle and is

ressed in this case through a side-angle-side description of
size and shape. Given this, the system’s cluster-oriented pose

 2 ,Ø3 , p, q, β)T (2)

) is the position and θc is the orientation
of the cluster frame with respect to {G}, (p, q, β) quantify the

side description of the cluster’s shape, and (Ø1, Ø2,

) denote the relative angle of each robot with respect to the
cluster frame. We note that, in general, the cluster space
technique provides flexibility in how the cluster frame is
assigned and how the cluster shape is defined; the wide range
of options drives implementation issues such as the level of
(de)centralization, computational complexity, and the nature
of geometric singularities. We note that for a three-robot
planar system, nine position variables represent the system’s

degrees of freedom, and accordingly, both !"# and %# are nine-

We can define a set of position kinematic transforms
oriented pose variables in terms of robot-

oriented pose variables and vice versa:

:;, . . , :<=)
:;, . . , :<=)

.

.

.
:;, . . , :<=)C

D
D
E

 (3)

@;, . . , @<=)
@;, . . , @<=)

.

.

.
@;, . . , @<=)C

D
D
E

 (4)

equations (3) and (4), system
velocities can be related to one another through the use of a

varying Jacobian matrix, J, as shown in equations

!"#) !"#A $ (5)

C

FM9(!"#$$)%#A (6)

(a) Three robots sample the scalar parameter field P(x,y), thereby creating

a local approximation in the form of the plane),(ˆ yxP .

(b) The three robots define vectors within the planar field approximation,
allowing the direction of the field gradient to be computed.

Fig. 3. The three robots within the cluster compute the field’s gradient based
on their locations and samples of the scalar parameter field.

In Fig. 3b, the robots are shown again, both in the X-Y plane
of motion and in the approximated planar parameter surface,

),(ˆˆ yxPz = , at the locations (xi, yi, zi) for i=1,2,3, where (xi,

yi) is the location of robot i and zi is the measurement of the
field at this point. Because the approximated field is planar,
the contour lines are now approximated as lines in the local
region, as now shown in the X-Y plane of motion.

Given the locations of the robots on the virtual surface, we
construct the vectors !"12 and !"13, as shown in the Fig. 3b,
running from the projected robot 1 location to the projected
locations of robots 2 and 3, respectively. To compute the
direction of the field’s gradient, shown in the X-Y plane as

P̂∇ , the cross product #$$% = −!$%() × !$%(+ is computed and

projected into the X-Y plane. The resulting P̂∇ vector points
in the direction of greatest parameter increase, and it is
perpendicular to the local scalar field contour lines.

To summarize this estimation approach mathematically:

!"() = ,
-) − -(
.) − .(
/) − /(

0 (7)

!"(+ = ,
-+ − -(
.+ − .(
/+ − /(

0 (8)

	"###$ = −'#$() × '#$(+ (9)

P̂∇ =[Nx,Ny]
T (10)

 bgrad = pi/2 - ATAN2(Ny,Nx) (11)

where Nx and Ny are the x- and y-components of N, the
surface normal vector; bgrad is the bearing of the field gradient
(e.g., the direction of maximum parameter increase),
expressed as a heading angle in {G}.

For contour following, the location of the cluster in the
parameter field must be approximated. Given that the origin
of {C} represents the cluster’s location and given the planar
assumption of the field in the local area, the parameter field

value at the cluster’s location is),(ˆˆ
ccc yxPz = .

B. Gradient-Based Navigation

With an estimate of the bearing of the field gradient now
available, this knowledge can be incorporated into the
cluster’s realtime navigation strategy in order to adaptively
drive the cluster as a function of the sensed environment.
Although a variety of navigation strategies can be considered,
here we focus on two specific strategies which we believe
hold specific promise for applications we are pursuing: a)
navigating to local minima/maxima in the field, and b)
navigating along specific contour levels within the field.

To navigate to the local minimum or maximum, bgrad
provides the heading of the greatest rate of parameter increase.
The opposite direction is the heading of the greatest rate of
parameter decrease. Accordingly, for gradient
climbing/descent mode, the desired bearing of travel is:

bdes = bgrad + (d * π) (12)

where d = 0 for gradient ascent and d = 1 for gradient descent.
We note that this navigation strategy simply directs the cluster
along the local direction of maximum/minimum parameter
change; there is no attempt to remain on any specific gradient
line.

Navigating along a field contour requires more
sophistication given that this strategy implies note just the
desire to move in the direction of the contours but also the
desire to move to and follow a specific contour line with a
given parameter value. First, the direction of the contour lines
must be determined. Given that contour lines are
perpendicular to the gradient, the bearing of what we term the
Clockwise (CW) contour direction (which implies a CW
rotation around the parameter field if the field was a simple
single peak) has a value of [bgrad - (π/2)]. Similarly, the
bearing of the contour for Counter Clockwise (CCW) travel is
[bgrad + (π/2)].

To follow a specific contour of value zdes, a simple cross-
track controller is used, as is depicted in Fig 4. This strategy
specifies a heading set point equal to the desired contour
bearing plus a corrective bearing term proportional to the cross
track error, (zdes – zc), which biases travel towards the desired

79 79

Task	Space	Definition	

𝑧!
𝑑!
𝜃!
𝜓!
𝜓!
𝜓!
𝑝!
𝑞!
𝛽!

=

𝑧! + 𝑧! + 𝑧!
3

N/A
𝜃!
𝜙!
𝜙!
𝜙!
𝑝
𝑞
𝛽

where 𝑧! is measured in the environment. Because of this, the corresponding elements of

the task Jacobian are computed as follows:

𝑅!" = 𝑥! − 𝑥! 𝑦! − 𝑦! 𝑧! − 𝑧! !

𝑅!" = 𝑥! − 𝑥! 𝑦! − 𝑦! 𝑧! − 𝑧! !

𝑁 = −𝑅!"×𝑅!"

𝐽 !,!:! = 𝑁! 𝑁!

Example	Results	

Figure 31: Robots traversing constant field contours around a uniform source.

X Position, E-W
-10 -5 0 5 10 15 20 25 30

Y
Po

si
tio

n,
 N

-S

-5

0

5

10

15

20

25

30
Robot 1
Robot 2
Robot 3

Time [s]
0 100 200 300 400 500 600 700 800 900 1000

Ap
pl

ic
at

io
n

St
at

e

0

0.005

0.01

0.015

0.02

0.025
Application State #1: Field Strength

80 80

Discussion	

A unique aspect of this application is its responsive nature. The system tracks

environmental conditions rather than strictly following operator commands. To do so,

the system must measure the environmental states and estimate gradients to orient itself

within the environmental field.

As can be seen in the results plot, there is a consistent undulation to the robot tracks that

was never fully understood.

81 81

3. Communications	

Cluster	Space	Definition	

Cluster frame:

𝑥! ≜ 𝑥! (107)

 𝑦! ≜ 𝑦! (108)

𝜃! ≜ 𝜃! (109)

Chain length:

𝜌! ≜ 𝑥!!! − 𝑥! ! + 𝑦!!! − 𝑦! ! (110)

Chain angle:

𝛼! ≜ 𝑎𝑡𝑎𝑛2 𝑦!!! − 𝑦! , 𝑥!!! − 𝑥! − 𝛼!!!!
!!! (111)

Node orientation:

𝜙! ≜ 𝜃! (112)

The cluster pose vector:

82 82

𝑥!
𝑦!
𝜃!
𝜌!
𝛼!
𝜙!

=

𝑥!
𝑦!
𝜃!

𝑥!!! − 𝑥! ! + 𝑦!!! − 𝑦! !

𝑡𝑎𝑛2 𝑦!!! − 𝑦! , 𝑥!!! − 𝑥! − 𝛼!!!!
!!!

𝜃!

 (113)

where 𝑎𝑡𝑎𝑛2(… ,…) is the two-argument function that calculates a four-quadrant arc

tangent with a range of [𝜋,−𝜋]..

Task	Space	Definition	

Balance:

𝐵! ≜
!!!!
!!
=

!!!!!!!
!! !!!!!!!

!

!!!
for 𝑖 = 1

!!!

!!!!!!!!! !"# !!!!! !!! !"#!!
!
! !!!!!!!!! !"# !!!!! !!! !"#!!

!

for 𝑖 = 𝑛! − 1

!!
!

!!!!
! otherwise

 (114)

Crosstrack error:

83 83

𝑒!" =
!!!!!!! !!!!!! ! !!!!!! !!!!!!!

!

!!!!!!!
!
! !!!!!!!

! (115)

Angle of alignment

𝛾! = 𝛼! (116)

Orientation:

𝜓! = 𝜙! (117)

Task pose vector:

𝑒!"
𝐵!
𝛾!
𝜓!

=

𝑥!! − 𝑥!! 𝑦!! − 𝑦! − 𝑥!! − 𝑥! 𝑦!! − 𝑦!!
!

𝑥!! − 𝑥!!
!
+ 𝑦!! − 𝑦!!

!

𝜌!!
𝜌!!!!

𝛼!
𝜙!

where 𝑥!! ,𝑦!! and 𝑥!! ,𝑦!! are the positions of the end stations that are being

connected by the multi-robot communication system.

84 84

Results	

Many results are presented in the body of this work. Here we show the end node moving

away from the origin, then beginning to return, and a series of robots tracking its motion

in the communication task space.

Discussion	

A unique aspect of this task is the state dependence on uncontrolled states. Computation

of the task states requires knowledge of these external states, much like the adaptive

navigation task. In this case, we use a model-based Jacobian to direct the robots to move

appropriately. Our chosen model is simple but it is reasonably sufficient, even for

experiments where this simplified model is inaccurate. Per a literature review, accurately

modeling communications environments is complex due to non-uniform antenna

radiation patterns, shadowing of vehicles, interference and multi-path effects.

Furthermore, these can influence system stability. If a vehicle overshoots its target

position (or communication task command) and must turn around, the measurement in its

new orientation may flip the direction of the error and cause it to turn around again. This

suggests a need for full characterization of a system prior to evaluating dynamic

response.

	

X Position, E-W
2 3 4 5 6 7 8 9

Y
Po

si
tio

n,
 N

-S

2

3

4

5

6

7

8

	Santa Clara University
	Scholar Commons
	9-2016

	A Framework for Collaborative Multi-task, Multi-robot Missions
	John T. Shepard
	Recommended Citation

	Microsoft Word - Dissertation.docx

