
UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

Novel Approaches to Cooperative Coevolution of

Heterogeneous Multiagent Systems

Doutoramento em Informática
Especialidade Engenharia Informática

Jorge Miguel Carvalho Gomes

Tese orientada por:
Prof. Doutor Anders Lyhne Christensen
Doutor Pedro Lopes da Silva Mariano

Prof. Doutor Luís Miguel Parreira e Correia

Documento especialmente elaborado para a obtenção do grau de doutor

2017

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

Novel Approaches to Cooperative Coevolution of

Heterogeneous Multiagent Systems

Doutoramento em Informática
Especialidade Engenharia Informática

Jorge Miguel Carvalho Gomes

Tese orientada por:
Prof. Doutor Anders Lyhne Christensen
Doutor Pedro Lopes da Silva Mariano

Prof. Doutor Luís Miguel Parreira e Correia

Júri:
Presidente:

• Doutor Nuno Fuentecilla Maia Ferreira Neves
Vogais:

• Doutor Ágoston Endre Eiben
• Doutor Ernesto Jorge Fernandes Costa
• Doutor Anders Lyhne Christensen (orientador)
• Doutor João Paulo Marques da Silva
• Doutor Carlos Eduardo Ramos dos Santos Lourenço

Documento especialmente elaborado para a obtenção do grau de doutor

Instituição Financiadora: Fundação para a Ciência e Tecnologia (FCT) (SFRH/BD/89095/2012)

2017

Novel Approaches to Cooperative
Coevolution of Heterogeneous

Multiagent Systems

“As for natural evolution, consider the kangaroo. For
thousands of years, people have been drawing odd ani-
mals, like chimeras and dragons. However, these were
most often combinations and/or exaggerations of exist-
ing animals: strange – yes, original – no. In the mean-
while, before the discovery of Australia no one had imag-
ined an animal with a pouch. Thus, the kangaroo is
a metaphor for the truly original designs evolution can
come up with.”

A. E. Eiben
Grand Challenges for Evolutionary Robotics

v

Abstract

Heterogeneous multirobot systems are characterised by the morphological
and/or behavioural heterogeneity of their constituent robots. These systems have
a number of advantages over the more common homogeneous multirobot systems:
they can leverage specialisation for increased efficiency, and they can solve tasks
that are beyond the reach of any single type of robot, by combining the capabilities
of different robots.

Manually designing control for heterogeneous systems is a challenging endeav-
our, since the desired system behaviour has to be decomposed into behavioural rules
for the individual robots, in such a way that the team as a whole cooperates and
takes advantage of specialisation. Evolutionary robotics is a promising alternative
that can be used to automate the synthesis of controllers for multirobot systems, but
so far, research in the field has been mostly focused on homogeneous systems, such
as swarm robotics systems. Cooperative coevolutionary algorithms (CCEAs) are a
type of evolutionary algorithm that facilitate the evolution of control for heteroge-
neous systems, by working over a decomposition of the problem. In a typical CCEA
application, each agent evolves in a separate population, with the evaluation of each
agent depending on the cooperation with agents from the other coevolving popu-
lations. A CCEA is thus capable of projecting the large search space into multiple
smaller, and more manageable, search spaces. Unfortunately, the use of coopera-
tive coevolutionary algorithms is associated with a number of challenges. Previous
works have shown that CCEAs are not necessarily attracted to the global optimum,
but often converge to mediocre stable states; they can be inefficient when applied to
large teams; and they have not yet been demonstrated in real robotic systems, nor in
morphologically heterogeneous multirobot systems.

In this thesis, we propose novel methods for overcoming the fundamental chal-
lenges in cooperative coevolutionary algorithms mentioned above, and study them
in multirobot domains: we propose novelty-driven cooperative coevolution, in which
premature convergence is avoided by encouraging behavioural novelty; and we pro-
pose Hyb-CCEA, an extension of CCEAs that places the team heterogeneity under
evolutionary control, significantly improving its scalability with respect to the team
size. These two approaches have in common that they take into account the ex-
ploration of the behaviour space by the evolutionary process. Besides relying on the
fitness function for the evaluation of the candidate solutions, the evolutionary pro-
cess analyses the behaviour of the evolving agents to improve the effectiveness of
the evolutionary search.

The ultimate goal of our research is to achieve general methods that can effec-
tively synthesise controllers for heterogeneous multirobot systems, and therefore
help to realise the full potential of this type of systems. To this end, we demon-
strate the proposed approaches in a variety of multirobot domains used in previous
works, and we study the application of CCEAs to new robotics domains, including
a morphological heterogeneous system and a real robotic system.

Keywords: Evolutionary robotics; cooperative coevolutionary algorithms; heteroge-
neous multirobot systems

vii

Resumo

Sistemas multi-agente distribuídos, e sistemas multi-robô em particular, são sis-
temas em que vários agentes autónomos (robôs) cooperam para atingir um objectivo
comum. Os sistemas multi-robô têm como grande vantagem conseguir atingir um
nível de robustez, eficácia, e competência, que vai para além das capacidades de
qualquer robô único. O potencial destes sistemas já foi demonstrado experimental-
mente numa série de aplicações, incluindo busca e salvamento, construção, agricul-
tura, vigilância, exploração e mapeamento, etc.

Um tipo de sistemas multi-robô que ainda está na sua infância, apesar do seu
enorme potencial, são os sistemas heterogéneos, em que os robôs constituintes têm
diferentes morfologias e/ou controladores. A heterogeneidade pode ser vantajosa
para tarefas robóticas que possam ser naturalmente decompostas em sub-tarefas, e
pode ser aproveitada para resolver tarefas que estejam fora do alcance de qualquer
tipo único de robô. Em muitas situações, é preferível ter vários robôs simples com
capacidades complementares, em vez de ter um (ou vários) robôs com uma elevada
complexidade. A heterogeneidade pode, de facto, ser essencial para alcançar siste-
mas com as capacidades necessárias para realizar tarefas mais ambiciosas, e capazes
de lidar com a complexidade do mundo real.

A maioria da investigação em sistemas multi-robô foca-se, no entanto, em siste-
mas homogéneos, em que todos os robôs têm a mesma morfologia e o mesmo con-
trolador. Um dos grandes desafios em conceber sistemas heterogéneos é a síntese do
controlador para cada tipo de robô, de modo a que haja uma adequada divisão de
tarefas, e que o grupo coopere e tire partido das capacidades conjuntas. Programar
manualmente controladores para sistemas multi-robô distribuídos é, de forma geral,
desafiante, pois o comportamento que se pretende do grupo tem que ser destilado
em regras de controlo para cada um dos robôs. Este desafio é exacerbado em siste-
mas heterogéneos, pois os graus de liberdade aumentam em função do número de
agentes no sistema.

O uso de algoritmos evolutivos representa uma alternativa promissora para con-
ceber de forma automática controladores para sistemas multi-robô, tendo já sido
aplicada para solucionar uma grande variedade de tarefas robóticas. Contudo, mais
uma vez, a grande maioria da investigação tem-se focado em sistemas homogéneos.
Evoluir controladores para sistemas homogéneos é inerentemente mais simples, pois
apenas é necessário evoluir um controlador, que é depois copiado para todos os
robôs do grupo. A evolução de controladores para sistemas heterogéneos implica
a evolução de vários controladores em simultâneo, de modo a que funcionem bem
uns com os outros, o que aumenta significativamente o espaço de procura.

Os algoritmos de co-evolução cooperativa (CCEAs) constituem um tipo de al-
goritmos evolutivos especialmente adequados para lidar com grandes espaços de
procura, pois operam sobre uma decomposição do problema. Numa aplicação tí-
pica de um CCEA, os controladores dos diferentes agentes co-evoluem simultanea-
mente em populações separadas. Os agentes em evolução em cada população são
recompensados em função de quão bem eles funcionam com os agentes das outras
populações, direcionando assim o processo evolutivo para a evolução de equipas de
sucesso. Os algoritmos de co-evolução cooperativa têm, no entanto, algumas limita-
ções conhecidas:

viii

Convergência prematura para estados de equilíbrio: Num CCEA, as avaliações
dos indivíduos são relativas, uma vez que o resultado da sua avaliação é con-
textualmente dependente do estado das outras populações em co-evolução. O
mesmo indivíduo tanto pode ser considerado bom como mau, dependendo
dos outros indivíduos com o qual ele é avaliado. Devido a esta relatividade,
os CCEAs tendem a convergir prematuramente para estados de equilíbrio que
não correspondem necessariamente a soluções óptimas.

Escalabilidade com o tamanho da equipa: Tipicamente cada agente co-evolui
numa população separada, pois é a decomposição natural do problema. Esta
abordagem, no entanto, não escala muito bem para grandes equipas: a com-
plexidade computacional aumenta linearmente com o número de populações;
as diferentes populações podem evoluir comportamentos muito semelhantes,
o que é redundante; e podem surgir dificuldades em discernir o impacto de
um só agente no desempenho de toda a equipa.

Demonstração limitada em sistemas multi-robô: Os CCEAs têm sido principal-
mente estudados em problemas de optimização numérica e teoria de jogos.
Também já foram aplicados numa variedade de domínios multi-robô, mas fo-
cando sempre o mesmo tipo de sistema: morfologicamente homogéneos, e em
ambiente simulado.

O objectivo deste trabalho é avançar na direcção de métodos que possam ser
utilizados para sintetizar controladores para sistemas multi-robô heterogéneos, com
a complexidade necessária para lidar com tarefas do mundo real. Neste sentido,
focamo-nos em desenvolver novos métodos para mitigar as limitações dos algorit-
mos co-evolutivos. O nosso trabalho não se foca em solucionar nenhuma tarefa robó-
tica em particular. Procuramos, por outro lado, desenvolver algoritmos que possam
ser facilmente aplicados a uma grande variedade de tarefas multi-robô cooperati-
vas, e procuramos obter resultados que sejam indicativos do desempenho geral dos
algoritmos propostos. Respondemos a três principais questões neste trabalho:

É possível evitar a convergência prematura nos algoritmos de co-evolução coope-
rativa através da procura de novidade?

Conseguir evitar a convergência prematura é um passo essencial para que os CCEAs
possam ser aplicados a tarefas mais complexas. Uma abordagem que se tem reve-
lado valiosa para evitar a convergência prematura em algoritmos não-co-evolutivos
é a procura de novidade. Neste tipo de abordagem, o processo evolutivo é guiado
pela procura constante de novas soluções: os indivíduos são recompensados por exi-
bir comportamentos diferentes daqueles que já foram encontrados até ao momento,
em vez de serem apenas recompensados de acordo com a função objectivo. Isto re-
sulta num processo evolutivo divergente, que tipicamente evita a convergência para
um máximo local.

Nesta tese, propomos e estudamos pela primeira vez CCEAs baseados em pro-
cura da novidade. As abordagens propostas são comparadas com o CCEA tradici-
onal baseado numa função objectivo, e com outras técnicas populares usadas para
evitar convergência prematura em CCEAs. Os resultados obtidos mostraram consis-
tentemente que a melhor forma de implementar a procura de novidade em CCEAs
consiste em obter a novidade do indivíduo com base na novidade da equipa com
o qual ele foi avaliado (NS-Team). O valor de novidade é adicionalmente combi-
nado com o tradicional valor da função objectivo, usando um processo de selecção

ix

multi-objectivo. A abordagem NS-Team consegue evitar a convergência prematura
porque evita estados de equilíbrio – a métrica de novidade promove a evolução de
indivíduos que geram novos comportamentos de equipa, contrariando assim a pres-
são de as populações se acomodarem umas às outras. Além da capacidade de evi-
tar a convergência prematura, a abordagem proposta é também capaz de descobrir
uma diversidade valiosa de soluções num único processo evolutivo. A generalidade
desta abordagem é suportada pelos bons resultados obtidos em diversos domínios
multi-robô.

É possivel usar algoritmos de co-evolução cooperativa para evoluir controladores
para sistemas multi-robô reais, e para sistemas morfologicamente heterogéneos?

De modo a melhor compreender o potencial e limitações dos algoritmos co-
evolutivos, é necessário avaliá-los em novos domínios. Em primeiro lugar, demons-
tramos pela primeira vez o uso de CCEAs para sintetizar controladores para um
sistema real. O estudo baseia-se numa tarefa cooperativa de perseguição, num sis-
tema multi-robô aquático de superfície que já tinha sido utilizado anteriormente em
outros estudos de robótica evolutiva. Os controladores foram co-evoluídos em simu-
lação, e depois transferidos e sistematicamente avaliados no sistema real. De modo
geral, o desempenho das equipas em simulação correspondeu ao desempenho das
equipas quando avaliadas no sistema real, mostrando que os CCEAs podem ser
aplicados com sucesso a sistemas robóticos reais. O uso da co-evolução baseada
na procura da novidade revelou-se também eficaz, evoluindo uma diversidade de
soluções que o CCEA tradicional nunca conseguiu descobrir.

Em segundo lugar, estudamos pela primeira vez o uso de CCEAs para desenvol-
ver controladores para um sistema morfologicamente heterogéneo, composto por
um robô aéreo e um terrestre. Os resultados obtidos mostraram que, quando os
robôs conseguem facilmente cooperar um com o outro, os CCEAs conseguem evo-
luir boas soluções. No entanto, nas tarefas em que é mais difícil estabelecer coope-
ração, os CCEAs convergiram frequentemente para solução não-cooperativas com
baixo desempenho. A procura da novidade ajudou a mitigar o problema da conver-
gência prematura, mas não conseguiu ser totalmente eficaz nos casos mais extremos.
Este estudo mostra a importância do desenvolvimento mútuo das capacidades dos
robôs em co-evolução, e a importância de facilitar a cooperação entre eles. Quando
estas condições são satisfeitas, o processo co-evolutivo é capaz de lidar com hetero-
geneidade arbitrária nas populações.

É possível melhorar a escalabilidade dos algoritmos de co-evolução cooperativa
permitindo heterogeneidade dinâmica nas equipas?

Para que seja viável usar CCEAs para evoluir controladores para grandes equipas,
é necessário melhorar a escalabilidade destes algoritmos. Colocar o nível de hete-
rogeneidade sob controlo do processo de aprendizagem é uma abordagem promis-
sora para lidar com este problema. Ao permitir sub-equipas homogéneas dentro
da equipa, é possível reduzir o número de controladores que têm que ser sintetiza-
dos. Neste trabalho, propomos o Hyb-CCEA, o primeiro algoritmo co-evolutivo a
colocar a composição da equipa sob evolução, abandonando a correspondência um-
para-um entre agentes e populações. No algoritmo proposto, cada população pode
ser atribuída a vários agentes, criando assim uma sub-equipa homogênea. Durante o
processo evolutivo, as populações que estão a evoluir agentes com comportamentos

x

semelhantes são fundidas, diminuindo assim a heterogeneidade da equipa. Com-
plementarmente, as populações podem também ser divididas de forma estocástica
para aumentar a heterogeneidade, garantindo assim a exploração de diferentes com-
posições de equipa ao longo do processo evolutivo.

Os resultados mostram que o Hyb-CCEA é capaz de encontrar composições de
equipa adequadas para a tarefa em questão, desde equipas totalmente homogéneas
a totalmente heterogéneas. O algoritmo proposto é capaz de diminuir significativa-
mente o número de populações no processo co-evolutivo, mitigando o problema da
evolução redundante (diferentes populações a evoluir os mesmos comportamentos).
Estas vantagens resultam numa grande redução no número de recursos necessários
para alcançar soluções, quando comparado com um CCEA tradicional, completa-
mente heterogéneo. O Hyb-CCEA conseguiu ainda alcançar frequentemente solu-
ções com um nível de qualidade nunca alcançado pelo CCEA tradicional.

Acima de tudo, o trabalho apresentado nesta tese confirma o potencial dos algo-
ritmos de co-evolução cooperativa como uma ferramenta promissora para evoluir
controladores para sistemas multi-robô heterogéneos. Os métodos propostos nesta
tese estão alinhados com a nova corrente de investigação que defende que as téc-
nicas de robótica evolutiva devem ir para além da simples optimização numérica.
Através da análise dos comportamentos que estão a ser produzidos no processo evo-
lutivo, conseguimos evitar a convergência prematura (co-evolução baseada na pro-
cura da novidade) e melhorar a escalabilidade relativamente ao número de agentes
(Hyb-CCEA). Este trabalho aproxima-nos de métodos para sintetizar de forma eficaz
controladores para sistemas multi-robô heterogéneos. A capacidade de desenvolver
controladores para este tipo de sistemas, que é actualmente um desafio tanto para
técnicas automáticas como manuais, é um passo essencial para a adopção da he-
terogeneidade em sistemas multi-robô, e para concretizar o potencial deste tipo de
sistemas.

Palavras-chave: Robótica evolutiva; algoritmos de co-evolução cooperativa; siste-
mas multi-robô heterogéneos

xi

Acknowledgements

I would like to express my gratitude to my advisors, Anders Christensen and Pe-
dro Mariano, who guided me in this journey. Anders Christensen has been my ad-
visor since the Master’s thesis, and has shaped me as an independent researcher. He
taught me how to think critically and how to write science, he challenged my ideas,
he thoroughly revised dozens of papers, and he was always there when needed. For
all this, I am deeply grateful to him. Pedro Mariano offered different perspectives
on my work, which were very helpful and helped me think. I would also like to
thank Luís Correia, who joined the advisory team at the very end and allowed me
to conclude the PhD, for accepting to join in such circumstances.

I am also grateful to the groups and research institutes that hosted me – BioISI,
Agents and Systems Modeling group (former LabMAg), at FCUL, and Instituto de
Telecomunicações, BioMachines Lab, at ISCTE-IUL. They provided me with a place
to stay, with the necessary resources, and computational infrastructure which was
essential to this work. But most importantly, they gave me the chance to meet great
people in this journey. A sincere thank you to my fellow research colleagues and
friends Miguel Duarte, Fernando Silva, Nuno Henriques, Sancho Oliveira, Davide
Nunes, Vasco Costa, and others I’ve had the pleasure to meet.

This work would not have been possible without the financial assistance from a
number of institutions, to which I express my gratitude. To Fundação para a Ciên-
cia e Tecnologia (FCT), the agency that directly funded me for four years, with the
PhD grant SFRH/BD/89095/2012. To Instituto de Telecomunicações for funding
me during the beginning of this PhD (grant PEst-OE/EEI/LA0008/2011) and for
supporting scientific missions to several conferences (grant UID/EEA/50008/2013).
To BioISI, Biosystems and Integrative Sciences Institute (UID/Multi/04046/2013),
for also supporting me in scientific missions. To the CORATAM project (FCT grant
EXPL/EEI-AUT/0329/2013), which supported the realisation of some of the exper-
iments described in this thesis, and also supported me in scientific missions.

Finally, I must thank my family for their support, and my parents in particular.
They trusted me and always supported me in whatever path I chose, in any way
I needed. I am only at this point today because they gave me the conditions and
education to achieve so. Last but not least, I thank my life partner and my best
friend, Viviana. For enduring my doubts, my absence at times, and for always being
there for me. For everything.

To all the people who trusted me, invested in me, and helped me grow.

Jorge Gomes
March 2017

xiii

Contents

List of Figures xvii

List of Tables xxi

List of Algorithms xxiii

List of Abbreviations xxv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 4
1.3 Contributions and Publications . 6
1.4 Other Contributions to Evolutionary Robotics 8
1.5 Thesis Structure . 11

2 Background 13
2.1 Heterogeneous Multirobot Systems . 13

2.1.1 Behaviourally Heterogeneous Systems 14
2.1.2 Morphologically Heterogeneous Systems 15

2.2 Evolutionary Robotics . 17
2.3 Evolution of Heterogeneous Multiagent Systems 19
2.4 Cooperative Coevolutionary Algorithms 21

2.4.1 General Architecture . 22
2.4.2 Known Limitations and Pathologies 24
2.4.3 Extensions of the Basic Architecture 27
2.4.4 Domains of Application . 29

2.5 Evolution Driven by Behavioural Diversity 32
2.5.1 Premature Convergence and Deception 33
2.5.2 Novelty Search . 33
2.5.3 Configuring the Novelty Search Algorithm 35
2.5.4 Behavioural Distance Measures 36
2.5.5 Combining Exploration with Objectives 38

2.6 Summary . 39

3 Overcoming Premature Convergence 41
3.1 State of the Art . 41
3.2 Novelty-driven Cooperative Coevolution 43

3.2.1 Team-level Novelty . 43
3.2.2 Individual-level Novelty . 44
3.2.3 Mixed Novelty . 46

3.3 Behaviour Exploration Analysis . 46
3.3.1 Behaviour Exploration Metrics 47
3.3.2 Visualisation of the Best-of-Generation Teams 48

xiv

3.3.3 Behaviour Space Visualisation 48
3.4 Evaluation in the Predator-prey Task . 49

3.4.1 Predator-prey Task . 49
3.4.2 Evolutionary Setup . 50
3.4.3 Base Fitness-driven Cooperative Coevolution 51
3.4.4 Increasing the Number of Collaborations 52
3.4.5 Novelty-driven Coevolution . 53
3.4.6 Solution Diversity . 57
3.4.7 Scalability with Respect to Team Size 59
3.4.8 Combination of Novelty and Team Fitness 59

3.5 Validation with the Cooperative Foraging and Herding Tasks 61
3.5.1 Cooperative Foraging Task Setup 61
3.5.2 Herding Task Setup . 61
3.5.3 Evolutionary Setup . 63
3.5.4 Results . 63

3.6 Discussion . 64
3.7 Summary . 67

4 Validation in a Real Multirobot System 69
4.1 Aquatic Predator-prey Task . 70
4.2 Robotic Platform . 70
4.3 Evolutionary Setup . 71

4.3.1 Simulation Approach . 71
4.3.2 Evolutionary methods . 72

4.4 Evolving and Identifying Diverse Solutions 73
4.4.1 Quality of Solutions . 73
4.4.2 Behavioural Diversity . 73

4.5 Transferring the Teams to Real Robots 75
4.6 Discussion . 77
4.7 Summary . 78

5 Morphologically Heterogeneous Systems 79
5.1 Aerial-ground Foraging Task . 80

5.1.1 Robot Configurations . 80
5.1.2 Task Variants . 81
5.1.3 Evolutionary Setup . 82

5.2 Standard Fitness-driven CCEA . 83
5.3 Avoiding Premature Convergence . 86

5.3.1 Methods . 86
5.3.2 Results . 87

5.4 Discussion . 91
5.5 Summary . 92

6 Improving Scalability Through Dynamic Team Heterogeneity 95
6.1 State of the Art . 96
6.2 The Hyb-CCEA Approach . 97

6.2.1 Evolutionary Process . 98
6.2.2 Initialisation . 98
6.2.3 Population Merge . 99
6.2.4 Population Split . 100

6.3 Comprehensive Evaluation in an Abstract Domain 101

xv

6.3.1 Problem Definition . 101
6.3.2 Evolutionary Setup . 102
6.3.3 Comparison with Competing Approaches 103
6.3.4 Scalability with Problem Complexity 104
6.3.5 Scalability with Respect to Team Size 105
6.3.6 Initial Team Composition . 106
6.3.7 Merge Threshold and Maturation Limit 107

6.4 Validation in Simulated Multirobot Systems 109
6.4.1 Generic Agent Behaviour Characterisation 109
6.4.2 Multi-rover Foraging Task . 109
6.4.3 Soccer Task . 111
6.4.4 Evolutionary Setup . 112
6.4.5 Results . 113

6.5 Discussion . 115
6.6 Summary . 116

7 Conclusions 117
7.1 Discussion . 117
7.2 Future Work . 121

Bibliography 123

Appendices 135

A Experimental Details 137
A.1 Common Parameters . 137
A.2 Predator-prey Task . 138
A.3 Cooperative Foraging Task . 139
A.4 Herding Task . 139
A.5 Aquatic Predator-prey Task . 140
A.6 Aerial-ground Foraging Task . 141
A.7 Coverage Task . 143
A.8 Multi-rover Foraging Task . 143
A.9 Soccer Task . 144

B Evolution and Simulation Framework 147
B.1 Architecture . 147
B.2 MASE Evolutionary extensions . 148
B.3 MASE Simulation library . 149
B.4 Implemented Tasks . 149
B.5 Data Analysis . 150

xvii

List of Figures

1.1 The aquatic robotic swarm with 10 units, performing a homing task
with evolved controllers. Image from (Duarte et al., 2016b). 9

1.2 Maze navigation task (left) and the simulated hexapod (right) used in
the validation experiments of EvoRBC. Image from (Duarte et al., 2017). 10

2.1 Examples of morphologically and behaviourally homogeneous
robotic swarms. 14

2.2 Examples of morphologically heterogeneous multirobot systems. . . . 16
2.3 Principal workflow of evolutionary robotics. Image from (Doncieux

et al., 2015). 18
2.4 Cooperative coevolution with three species (populations). Image

adapted from (Potter and De Jong, 2000). 23
2.5 Behaviour exploration of fitness-based evolution and novelty search

in the deceptive maze task. Image adapted from (Lehman and Stan-
ley, 2011a). 34

3.1 Predator-prey task setup. (a) Initial conditions of the simulation. (b)
Sensors and effectors of each predator. (c) The structure of the neural
network controller of each predator. 50

3.2 Team fitness scores achieved with fitness-based evolution in task se-
tups with varying prey vision (V). 51

3.3 Behaviour of the best-of-generation teams in representative evolu-
tionary runs of fitness-driven coevolution. 52

3.4 Left: highest team fitness scores achieved in each evolutionary run,
for each task setup with varying task difficulty (prey’s vision range
– V), and a varying number of random collaborators (N). Right: be-
havioural dispersion of the best-of-generation (BoG) teams. 53

3.5 Left: Highest team fitness scores achieved in each evolutionary run
with the different methods, for each task setup with varying task dif-
ficulty (V). Right: Behavioural dispersion of the best-of-generation
teams. 54

3.6 Performance of fitness-based evolution and the novelty-based ap-
proaches in each task setup. The plots show the highest team fitness
scores achieved so far at each generation, averaged over 30 runs for
each method. 54

3.7 Behaviour of the best-of-generation teams in representative evolu-
tionary runs. The behaviour space was reduced to a two-dimensional
space with Sammon mapping. 56

3.8 Analysis of team behaviour dispersion, considering all the evolved
teams (left), and individual behaviour dispersion (right), with each
evolutionary treatment, for task setups with varying difficulty (V). . . 57

xviii

3.9 Top: trained Kohonen map, where each unit represents a region of
the team behaviour space. Bottom: team behaviour exploration in
a typical evolutionary run of fitness-based coevolution and NS-Team,
with the easiest task setup (V4). 58

3.10 Examples of solutions evolved by NS-Team in the V4 task setup, found
in the behaviour regions associated with high-quality solutions. 58

3.11 Left: Highest team fitness scores achieved with NS-Team in task setups
with multiple combinations of number of predators and prey vision
range V . Right: Mean number of participant predators in the best-of-
generation solutions evolved in each setup. 59

3.12 Comparison of pure novelty search (NS*-Team) and the multiobjectivi-
sation of novelty and team fitness objectives (NS-Team). Left: highest
team fitness scores achieved in each evolutionary run, with each ap-
proach and in each task setup. Middle: behavioural dispersion of
the best-of-generation teams. Right: behavioural dispersion of all the
evolved teams. 60

3.13 Left: an example of the initial conditions in the cooperative foraging
task. Right: initial conditions in the herding task. 62

3.14 Left: highest team fitness scores achieved with each method and task.
Right: highest fitness scores achieved so far at each generation, aver-
aged over the 30 evolutionary runs. 64

3.15 Behaviour of the best-of-generation teams in representative evolu-
tionary runs. The behaviour space was reduced to a two-dimensional
space with Sammon mapping. 65

3.16 Mean dispersion of the best-of-generation teams, team behaviour ex-
ploration, and individual behaviour exploration (see Section 3.3.1) for
each evolutionary setup. 65

4.1 Illustration of the task setup used for the evolutionary process, and
the predators’ sensory inputs (used both in simulation and in the real
robots). 70

4.2 Photo of one robot in the water. The robots are autonomous surface
vehicles equipped with Wi-Fi for communication, and a compass and
GPS for localisation. 71

4.3 Left: highest fitness scores achieved with each method in each evo-
lutionary run. Right: highest fitness scores achieved so far at each
generation, averaged over the ten evolutionary runs for each method. 73

4.4 Analysis of the exploration of the behaviour space in the evolutionary
runs, using the dispersion of the best-of-generation teams (Definition 8)
and the dispersion of all the evolved teams (Definition 9). 74

4.5 Left: trained Kohonen map, where each node represents a region of
the team behaviour space. Middle and right: team behaviour explo-
ration by the two evolutionary approaches. 74

4.6 Photo of the real-robot experiments, at Parque das Nações, Lisbon,
Portugal, in a semi-enclosed area in the margin of the Tagus river. . . . 75

4.7 Comparison of the fitness score and behaviour features obtained in
the real-robot experiments (asterisks) and in simulation (violin plots)
in similar conditions. 76

xix

4.8 Traces of one experimental trial (out of three) for each of the teams
evaluated in the real robots. Traces and videos of all real-robot
experiments are available online: https://doi.org/10.5281/
zenodo.49582. 76

5.1 Illustration of the aerial-ground foraging task, during task execution. . 80
5.2 Illustration of the robots’ sensors. See Table 5.1 for the sensors de-

scription. 81
5.3 Fitness scores achieved by the standard CCEA in each of the task vari-

ants. Left: average of the highest fitness scores achieved at each gen-
eration. Right: boxplots of the highest scores achieved in each evolu-
tionary run. 83

5.4 Examples of the highest-scoring solutions evolved in evolutionary
runs of fitness-driven coevolution. Videos available online at https:
//doi.org/10.5281/zenodo.47066. 84

5.5 Average behaviour of the best-of-generation solutions evolved by the
standard fitness-driven CCEA, grouped by successful and failed runs. 85

5.6 Top: average of the highest fitness scores achieved at each genera-
tion, for each task variant and method. Bottom: highest fitness scores
achieved in the evolutionary runs. Fitness corresponds to the number
of items collected (Fi). 88

5.7 Average behaviour of the best-of-generation solutions evolved by each
method, grouped by successful (highest fitness achieved ≥ 4) and
failed runs (fitness < 4). 89

5.8 Behavioural diversity, calculated based on the mean difference be-
tween all individuals evolved over the course of each evolutionary
run (Definition 9). 90

6.1 Illustration of the main procedures in the Hyb-CCEA algorithm. 97
6.2 Top: highest fitness scores achieved with the different methods, for

different problem instances. Bottom: number of evaluations needed
on average to achieve a fitness level of 0.995. 103

6.3 Left: highest fitness scores achieved by Hyb-CCEA in each problem
instance (number of dimensions × number of unique targets). Right:
mean number of populations during the evolutionary process, for
each problem instance. 104

6.4 Mean number of populations in Hyb-CCEA for each problem instance
(number of unique targets × number of agents). 105

6.5 Mean number of populations in Hyb-CCEA throughout the evolu-
tionary process, for the different problem instances and different ini-
tialisation conditions. 106

6.6 Highest fitness scores achieved by the evolutionary runs, averaged
over 30 runs for each configuration of Hyb-CCEA (higher is better). . . 107

6.7 Average number of evaluations needed to achieve a fitness level of
0.995, for each configuration of Hyb-CCEA (lower is better). 108

6.8 Average difference between the mean number of populations during
the evolutionary runs and the number of unique targets, for each con-
figuration. 108

6.9 Initial conditions of the multi-rover foraging task with two item types. 110
6.10 Initial conditions of the soccer task, with the left team starting. 112

https://doi.org/10.5281/zenodo.49582
https://doi.org/10.5281/zenodo.49582
https://doi.org/10.5281/zenodo.47066
https://doi.org/10.5281/zenodo.47066

xx

6.11 Highest fitness scores achieved on average at each number of evalua-
tions, for the three methods and four task variants. 113

6.12 Mean number of populations throughout the evolutionary process,
for each of the four tasks and the two variants of Hyb-CCEA. 114

A.1 Boxplots of the highest fitness score achieved in each evolutionary
run, comparing the different representative selection strategies. 143

B.1 Articulation of the software components in the MASE framework. . . . 148

xxi

List of Tables

3.1 Behaviour characterisations used in the predator-prey task. All fea-
tures have values normalised to the range [0,1]. 50

3.2 Behaviour characterisations used in the cooperative foraging task. All
means are taken over the simulation time, and all features are nor-
malised to the range [0,1]. 62

3.3 Behaviour characterisations used in herding task. All means are taken
over the simulation time, and all features are normalised to the range
[0,1]. 63

5.1 Configuration of the sensory inputs and actuators of the ground robot
and aerial robot. See Figure 5.2 for an illustration. 82

5.2 Team behaviour characterisation used in the aerial-ground foraging
task. All features are normalised to [0, 1]. 83

6.1 Default parameters for the Hyb-CCEA algorithm. 102
6.2 Agent behaviour characterisations for a given agent a, for the multi-

rover foraging and soccer tasks. All features are normalised to [0, 1]. . . 111

A.1 Default parameters of NEAT. These parameters were used unless ex-
plicitly indicated otherwise. 137

A.2 Default parameters of novelty search. These parameters were used
unless explicitly indicated otherwise. 137

A.3 Parameters used in the experiments with the predator-prey task. The
time (s – step) and space units (u – unit) are abstract. 138

A.4 Parameters for the cooperative foraging task. The time (s – step) and
space units (u – unit) are abstract. 139

A.5 Parameters for the herding task. The time (s – step) and space units
(u – unit) are abstract. 140

A.6 Parameters used for the setup of the aquatic predator-prey task. 141
A.7 Measured movement dynamics and physical properties of the robotic

platform that was used for both the predators and the prey. These
parameters were used to model the robot in simulation. The full spec-
ification of the robotic platform is published in (Costa et al., 2016). . . . 141

A.8 Parameters of the aerial-ground foraging task. The NEAT algorithm
and novelty search used the default parameters listed in Table A.1. . . 142

A.9 Evolutionary algorithm parameters used for the abstract coverage task. 143
A.10 Multi-rover foraging task parameters. 144
A.11 Soccer task parameters. 145

xxiii

List of Algorithms

1 Basic CCEA algorithm used in this thesis. 24
2 NS-Team: Novelty-driven cooperative coevolution based on team-

level behaviour characterisations. 43
3 NS-Ind: Novelty-driven cooperative coevolution based on agent-level

behaviour characterisations. 45
4 NS-Mix: Novelty-driven cooperative coevolution based on both

agent-level behaviour characterisations and team-level behaviour
characterisations. 46

5 Hyb-CCEA algorithm. 98
6 InitialisePopulations procedure. 99
7 AttemptMerge procedure. 100
8 AttemptSplit procedure. 101
9 Fitness function for the coverage problem. 102
10 Manually programmed strategy of a soccer agent. 146

xxv

List of Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Network
BC Behaviour Characterisation
CCEA Cooperative Coevolutionary Algorithms
EA Evolutionary Algorithm
EGT Evolutionary Game Theory
ER Evolutionary Robotics
MAS Multiagent System
MOEA Multi-Objective Evolutionary Algorithm
MRS Multirobot System
NS Novelty Search
QD Quality Diversity

1

Chapter 1

Introduction

1.1 Motivation

An intelligent agent is an autonomous entity which observes through sensors, and
acts upon an environment using actuators, directing its activity towards achieving
goals (Russell and Norvig, 1995). Autonomous robots are intelligent agents with a
physical body, which can autonomously sense and act upon the real physical world.
In the last decade, autonomous robots have began to be used in real-world applica-
tions, moving from fiction to reality. Autonomous robots are currently used to clean
the floor of millions of homes worldwide (iRobot Roomba1, Jones, 2006), to gather
data in the middle of oceans (Liquid Robotics Wave Glider2, Daniel et al., 2011),
to track and film people from the air (DJI Phantom 43), and they have just began
to appear in the public roads as self-driving cars (e.g. Tesla Autopilot4). All these
state-of-the-art systems, as well as the vast majority of autonomous robots, operate
as single-robot systems, in which a single robot performs the task alone, interact-
ing only with the human operator. The next step for autonomous robots, which is
gathering considerable attention5, is to move to systems composed of multiple co-
operating autonomous robots.

Distributed multiagent systems, and multirobot systems in particular, are sys-
tems where multiple autonomous agents (robots) cooperate to achieve a given goal.
These systems take inspiration from natural societies (Şahin, 2005; Nitschke, 2005b),
as they try to leverage the principles of self-organisation, division of labour, and co-
operation, to achieve distributed autonomous systems where the whole is greater
than the sum of its parts. Distributed multirobot systems have the potential to
achieve a level of robustness, efficiency through parallelism, and combined com-
petences that go beyond the capabilities of any single robot (Parker, 2008).

Multirobot systems have shown their potential in a number of domains, includ-
ing search and rescue (Sheh et al., 2016), construction (Werfel et al., 2014), security
and surveillance (Guo et al., 2004), agriculture (Pitla, 2012), and mapping and ex-
ploration of unknown environments (Howard et al., 2006). Few real-world imple-
mentations of these multirobot systems have, however, actually occurred (Parker,
2008). Multirobot systems are relatively recent, and their realisation faces a number
of technological challenges. A significant amount of research is therefore still needed

1http://www.irobot.com/
2https://www.liquid-robotics.com/
3https://www.dji.com/phantom-4
4https://www.tesla.com/autopilot
5Technical Committee on Multi-Robot Systems of the IEEE Robotics and Automation Society,

founded in 2014: http://multirobotsystems.org/

http://www.irobot.com/
https://www.liquid-robotics.com/
https://www.dji.com/phantom-4
https://www.tesla.com/autopilot
http://multirobotsystems.org/

2 Chapter 1. Introduction

to bring these systems closer to real-world application. The expectation is that mul-
tirobot systems will find their way into practical and cost-effective applications as
the supporting technologies continue to mature (Parker, 2008).

One type of multirobot systems that is still in its infancy, despite its vast po-
tential, is heterogeneous systems. Heterogeneous multirobot systems are a type of
multirobot systems characterised by the morphological and/or behavioural hetero-
geneity of their constituent robots. It has been argued that heterogeneity might be
fundamental to achieve more complex systems capable of dealing with realistic and
more ambitious tasks (Dorigo et al., 2013; Parker, 2008). Indeed, the advantages of
heterogeneity can be confirmed by looking at many natural systems and social or-
ganisations, where behavioural heterogeneity is leveraged to increase efficiency and
promote self-organisation through the division of labour and specialisation (Simp-
son, 2011). Canonical examples include eusocial insects (Wilson and Hölldobler,
2005), such as ants, bees, or wasps, where thousands of individuals cooperate under
a clear division of tasks; small teams of mammals, such as lions, that take highly
specialised roles when hunting preys (Anderson and Franks, 2001); and even hu-
man organisations, in which division of labour has long been a key concept in the
improvement of work efficiency (Smith, 1776).

Most of the multirobot studies conducted so far have, however, focused on ho-
mogeneous multirobot systems (Bayındır, 2016; Parker, 2008), in which all the robots
of the team share the same morphology, and typically also the same controller.
The potential of heterogeneity in multirobot systems has not yet been thoroughly
explored, which is pertinent given the significant advantages of heterogeneity as
demonstrated in natural societies. Previous studies have shown that morphologi-
cal and/or behavioural heterogeneity can be advantageous for robotics tasks that
can be naturally decomposed into a set of complementary sub-tasks (Balch, 1998;
Nitschke, 2008). Heterogeneity can additionally be leveraged to accomplish tasks
that are beyond the reach of any single type of robot, either due to morphological
or behavioural limitations (Kengyel et al., 2015). In many situations, it might be ad-
vantageous to have multiple simple robots with complementary capabilities, rather
than monolithic robots with a high complexity (Grabowski et al., 2000).

One challenge in designing heterogeneous systems is the synthesis of control for
each type of robot, so that the team as a whole cooperates and takes advantage of
the total set of capabilities (Parker, 1998; Parker, 2008). In fact, designing control for
distributed multirobot systems in general has proven to be a challenging endeav-
our. Manually designing the control for the individual units of a group requires the
decomposition of the system-level behaviour into behaviour rules for the individ-
ual robots (Brambilla et al., 2013). This decomposition is typically not trivial, as it
is hard to know beforehand which individual rules will result in the desired self-
organised group behaviour. The design problem is exacerbated when dealing with
heterogeneous systems, as the degrees of freedom increase as more different agents
are present in the system. This relative difficulty of conceiving control for hetero-
geneous systems might partially explain why the field of multirobot systems has
traditionally been dominated by homogeneous systems.

Evolutionary algorithms represent an effective way of automatically designing
control for multirobot systems (Trianni et al., 2008), as the candidate solutions are
evaluated according to their group-level behaviour, thus avoiding the decomposi-
tion design problem. Evolutionary robotics (Nolfi and Floreano, 2000) have been
successfully used to solve a wide range of robotics tasks, from single-robot tasks to
swarm robotics tasks with hundreds of agents. But once again, the vast majority of
the evolutionary robotics studies have focused on homogeneous systems. Evolving

1.1. Motivation 3

control for homogeneous systems is inherently easier, as only a single controller has
to be evolved, which is then copied to all the robots of the team. Evolving control for
a heterogeneous team requires different controllers to be simultaneously evolved so
that they work well with one another. This naturally causes the search space to grow
proportionally to the number of different agents (Panait and Luke, 2005a), which can
be detrimental to the performance of the evolutionary algorithm.

Cooperative coevolutionary algorithms (CCEAs) (Popovici et al., 2012; Potter
and De Jong, 2000) have shown to be a promising approach to tackle the increased
search space, since they operate over a decomposition of the problem. In CCEAs, the
different agents are simultaneously coevolved in separate populations, effectively
resulting in a solution composed of cooperating subcomponents. The individuals of
each population are rewarded according to how well they cooperate with the indi-
viduals from the other populations, thus driving the evolutionary process towards
the evolution of successful collaborations. Cooperative coevolutionary algorithms
have a number of advantages over the non-coevolutionary approaches for the de-
sign of heterogeneous multiagent systems (Panait and Luke, 2005a), such as the ca-
pability of working over a decomposition of the problem (the evolution of a team)
into more manageable sub-problems (the evolution of each agent), and facilitating
the emergence of agent specialisations.

Cooperative coevolutionary algorithms are, however, also associated with a
number of challenges, including:

Premature convergence: In a CCEA, the individual fitness evaluations are subject
to a dynamic fitness landscape, given that the result of the evaluation is con-
textually dependent on the state of the other coevolving populations. This type
of evaluation starkly contrasts with traditional evolutionary algorithms where
the fitness landscape is static. Due to this variability in the individual fitness
evaluations, it has been shown that CCEAs are especially prone to premature
convergence to sub-optimal solutions (Panait, 2010).

Scalability with the team size: In a typical application of a CCEA, each agent coe-
volves in a separate population, as this corresponds to the natural decompo-
sition of the problem. Such approach, can however, cause scalability issues
when dealing with large teams. The computational complexity increases lin-
early with the number of populations (Potter and De Jong, 2000); different
isolated populations might evolve very similar agent behaviours (redundant
learning (D’Ambrosio et al., 2010)), which is a waste of resources; and credit
assignment issues might arise (Agogino and Tumer, 2008), as the impact of a
single agent in the performance of the whole team can become unperceivable.

Limited demonstration in multirobot systems: CCEAs have been mostly studied
in test-bed problems such as function optimisation problems or abstract games
based on game theory (Popovici et al., 2012). CCEAs have also been applied
to a wide array of multirobot domains, but focusing always the same type
of system: morphologically homogeneous, and on a simulated environment
(with more or less abstraction).

In this thesis, we focus on developing novel methods for overcoming these fun-
damental challenges in cooperative coevolutionary algorithms, and study them in
the domain of multirobot systems: we propose novelty-driven cooperative coevo-
lution, which attempts to overcome premature convergence by encouraging be-
havioural novelty; and we propose Hyb-CCEA, an extension of CCEAs that put the

4 Chapter 1. Introduction

team heterogeneity under evolutionary control, significantly improving its scalabil-
ity with respect to the team size. The two proposed approaches have in common
that they take into account the exploration of the behaviour space by the evolutionary
process. Besides relying on the fitness function for the evaluation of the candidate
solutions, the evolutionary process relies on the analysis of the agents’ behaviour
to improve its effectiveness. This concept of behaviour space exploration has been
gaining increasing traction in evolutionary robotics. The field has started to move
beyond purely black-box optimisation (Doncieux and Mouret, 2014; Doncieux et al.,
2015; Silva et al., 2016a), with a large number of studies showing the importance of
promoting behavioural exploration and novelty.

We propose cooperative coevolutionary algorithms that adopt this paradigm
of behaviour exploration, and study how it can be used to effectively mitigate
coevolutionary-specific issues. The ultimate goal of our research is to achieve meth-
ods that can be more effectively used to synthesise controllers for heterogeneous
multirobot systems, thus helping to realise the full potential of this type of systems.
To this end, we demonstrate the proposed approaches in a variety of multirobot
domains used in previous works, and we study the application of CCEAs to new
robotics domains, including a real robotic system and a morphologically heteroge-
neous system.

1.2 Problem Statement

The goal of our research is to develop and study cooperative coevolutionary algo-
rithms, in the direction of methods that can be used to synthesise controllers for het-
erogeneous multirobot systems in complex real-world tasks. To this end, we work
towards circumventing key issues in this class of algorithms, and demonstrating
them in new robotics domains. We focus on three main research questions in this
thesis, stated below.

Research Question 1

How can behavioural novelty be leveraged to avoid premature con-
vergence in cooperative coevolutionary algorithms?

CCEAs have been shown to be attracted to stable states instead of near-optimal
solutions (Panait, 2010), due to the evolutionary dynamics between the coevolving
populations. Premature convergence to stable states should be distinguished from
the typical local convergence problems that plague non-coevolutionary algorithms
(Panait et al., 2006b), as it is a consequence of the interplay between the coevolving
populations, not necessarily a deceptive or rugged fitness landscape. This issue can
compromise the use of CCEAs as optimisation tools for challenging multiagent tasks
(Wiegand, 2003). Existing techniques for overcoming premature convergence have
a very high computational cost, which makes them impractical in domains where
the fitness evaluations are computationally expensive – such as multirobot systems.
Improving convergence to near-optimal solutions, without significantly increasing
computational complexity, is therefore an essential step towards CCEAs that can be
effectively applied to problems of the complexity required to solve real-world tasks.

Recent works with non-coevolutionary algorithms have shown that a promis-
ing approach to avoid premature convergence is to drive the evolutionary pro-
cess towards behavioural novelty, instead of a fixed fitness objective (Doncieux and
Mouret, 2014; Silva et al., 2016b). This type of approaches, in which the novelty

1.2. Problem Statement 5

search algorithm (Lehman and Stanley, 2011a) stands out, work by continuously en-
couraging divergence in the evolutionary process, thus promoting the exploration
of the behaviour space and preventing convergence to a single optimum. In this
thesis, we will study how novelty search can be implemented in cooperative coevo-
lutionary algorithms, and whether it can be used to prevent premature convergence
to stable states.

Research Question 2

Can cooperative coevolutionary algorithms be effectively used to
evolve controllers for real multirobot systems, and morphologically
heterogeneous systems?

The domain of application and demonstration of CCEAs has mainly been limited
to function optimisation (Potter and De Jong, 1994), abstract games (Wiegand et al.,
2002), and simulated morphologically homogeneous multirobot systems (Nitschke,
2008), with varying degrees of abstraction. To uncover the full potential and limi-
tations of CCEAs, it is necessary to evaluate them in additional types of multirobot
systems that are commonly found in the robotics state of the art (Parker, 2008). In
this thesis, we study the application of CCEAs to the control of a real multirobot
system, where the control is evolved in simulation and then transferred to a real sys-
tem operating in realistic conditions. To the best of our knowledge, this is the first
study of a real robotic system with controllers synthesised by a CCEA. We also study
for the first time the challenges of using CCEAs to synthesise control for morpho-
logically heterogeneous systems, a type of systems with considerable potential for
real-world applications (Dorigo et al., 2013; Parker, 2008).

Research Question 3

Can the scalability of cooperative coevolutionary algorithms be im-
proved through dynamic team heterogeneity?

CCEAs inherently have scalability issues with respect to the number of different
agents in the system. Using the standard coevolutionary architecture, the compu-
tational complexity increases with the number of agents in the team (Potter and De
Jong, 2000), and there is a significant amount of resources wasted in redundant learn-
ing (D’Ambrosio and Stanley, 2008). Improving the scalability with respect to the
number of agents is fundamental so that it becomes viable to use CCEAs to evolve
control for heterogeneous multiagent systems with a large number of agents.

Previous works have shown that dynamic team heterogeneity can be a pow-
erful approach to improve the scalability of multiagent learning (Bongard, 2000;
D’Ambrosio and Stanley, 2008; Hara, 1999). By allowing homogeneous sub-teams
inside the team, the number of controllers that need to be produced decreases, thus
increasing scalability. Such concept has, however, only been demonstrated with non-
coevolutionary algorithms, where the controllers for the whole team are encoded in
a single monolithic chromosome. In this thesis, we study how dynamic team hetero-
geneity can be implemented in a cooperative coevolutionary algorithm, and whether
it can offer significant advantages with respect to scalability.

Our research does not focus on solving any specific robotics task. Instead, we
strive to develop general CCEA algorithms that can be easily applied to a broad
range of cooperative multirobot tasks, and we aim at obtaining results that are in-
dicative of the algorithms’ general performance. In agreement with this principle,

6 Chapter 1. Introduction

our work respects the fundamental motivation behind evolutionary robotics (Don-
cieux et al., 2015; Harvey et al., 1997): the proposed evolutionary algorithms should
facilitate the evolution of effective solutions from scratch, introducing as few biases
from the experimenter as possible. In the next section, we summarise how the afore-
mentioned challenges were addressed in our research.

1.3 Contributions and Publications

Novelty-driven Cooperative Coevolution

In the first part of this thesis (Chapter 3), we study the problem of premature con-
vergence to stable states in CCEAs. Following the lead on the recent successes of
novelty-driven evolutionary techniques in non-coevolutionary algorithms, we pro-
pose and study the first CCEA algorithms driven by behavioural novelty. Our exper-
iments show that novelty-driven cooperative coevolution is an effective technique
for mitigating premature convergence to stable states, outperforming the traditional
CCEA algorithms and the existing techniques for overcoming premature conver-
gence. We also show that novelty-driven coevolution can yield a wide diversity of
successful solutions, as opposed to the traditional fitness-driven CCEAs that con-
verge to a single solution.

This work has resulted in publications on the leading conference on autonomous
agents and multiagent systems (AAMAS), and in one of the highest impact journal
in the field of evolutionary computation (Evolutionary Computation from MIT Press):

• J. Gomes, P. Mariano, and A. L. Christensen (2014a). “Avoiding Convergence
in Cooperative Coevolution with Novelty Search”. In: International Conference
on Autonomous Agents & Multiagent Systems (AAMAS). IFAAMAS, pp. 1149–
1156

• J. Gomes, P. Mariano, and A. L. Christensen (2017b). “Novelty-driven Cooper-
ative Coevolution”. In: Evolutionary Computation. In press

Serving as support and background work for novelty-driven cooperative coevo-
lution, we conducted a number of additional studies focused on novelty-driven al-
gorithms. The results obtained in these studies are not specific to novelty-driven
cooperative coevolution, and can be used in any algorithms driven by behavioural
novelty. We devised generic behaviour characterisations that can be used in multi-
robot tasks; we proposed an approach for systematically deriving behaviour charac-
terisations based on a formal description of the task; and we conducted a compre-
hensive empirical study on the parameters and implementation choices of novelty
search algorithms. These studies are not described in detail in this thesis for reasons
of brevity and consistency, but a summary of these contributions is presented in Sec-
tion 2.5. These studies have been published in top international conferences in the
field of evolutionary computation:

• J. Gomes and A. L. Christensen (2013). “Generic Behaviour Similarity Mea-
sures for Evolutionary Swarm Robotics”. In: Genetic and Evolutionary Compu-
tation Conference (GECCO). ACM Press, pp. 199–206
Nominated for Best Paper Award

• J. Gomes, P. Mariano, and A. L. Christensen (2014e). “Systematic Derivation
of Behaviour Characterisations in Evolutionary Robotics”. In: International

1.3. Contributions and Publications 7

Conference on the Synthesis and Simulation of Living Systems (ALife). MIT Press,
pp. 212–219

• J. Gomes, P. Mariano, and A. L. Christensen (2015c). “Devising Effective Nov-
elty Search Algorithms: A Comprehensive Empirical Study”. In: Genetic and
Evolutionary Computation Conference (GECCO). ACM Press, pp. 943–950

In an exploratory study, we also evaluated the applicability of novelty-driven
evolution to competitive coevolutionary algorithms. These results are not reported
in this thesis, since the focus is exclusively on cooperative coevolutionary algorithms.
The study resulted in the following publication:

• J. Gomes, P. Mariano, and A. Christensen (2014c). “Novelty Search in Compet-
itive Coevolution”. In: Parallel Problem Solving from Nature (PPSN). vol. 8672.
LNCS. Springer, pp. 233–242

Study of CCEAs in Additional Multirobot Domains

In the second part of this thesis (Chapters 4 and 5), we demonstrate the potential
of CCEAs in multirobot domains different of those commonly used in CCEA stud-
ies. We studied both traditional CCEA algorithms as well as novelty-driven coop-
erative coevolution, further validating the general applicability of the proposed ap-
proach. Our experiments focus on a real aquatic multirobot system, operating in
real-world conditions, and on a simulated morphologically heterogeneous system
composed of aerial and ground robots. These studies are the first application of
CCEAs to evolve controllers for such types of systems, contrasting with the pre-
vious works that focused exclusively on simulated morphologically homogeneous
systems. These experiments have been published in two international conferences in
evolutionary computation, receiving a nomination for the best paper award in both
cases, and in an international journal:

• J. Gomes, P. Mariano, and A. L. Christensen (2015a). “Cooperative Coevolu-
tion of Morphologically Heterogeneous Robots”. In: European Conference on
Artificial Life (ECAL). MIT Press, pp. 312–319
Nominated for Best Paper Award

• J. Gomes, P. Mariano, and A. L. Christensen (2016a). “Challenges in cooper-
ative coevolution of physically heterogeneous robot teams”. In: Natural Com-
puting, pp. 1–18

• J. Gomes, M. Duarte, P. Mariano, and A. L. Christensen (2016b). “Coopera-
tive Coevolution of Control for a Real Multirobot System”. In: Parallel Problem
Solving from Nature (PPSN). Springer, pp. 591–601
Nominated for Best Paper Award

Dynamic Team Heterogeneity

In the third part of this thesis (Chapter 6), we focus on the improvement of scalability
of CCEAs, regarding the number of agents. We propose Hyb-CCEA, an approach
that extends coevolutionary algorithms with operators that enable dynamic team
heterogeneity. Hyb-CCEA puts the number of coevolving populations and the team
composition under evolutionary control, using the behaviour similarity between the
different agents in the team to regulate the team composition. Our experiments

8 Chapter 1. Introduction

show that Hyb-CCEA can significantly improve the effectiveness of the evolutionary
process, converging to a team composition suitable for the given task, ranging from
fully homogeneous to fully heterogeneous.

The Hyb-CCEA approach has been published in the leading conference in au-
tonomous agents and multiagent systems (AAMAS), a short paper with the ap-
proach has been published in a workshop in the leading evolutionary computation
conference (GECCO), and the work is currently under consideration for publication
in the IEEE Transactions of Evolutionary Computation journal:

• J. Gomes, P. Mariano, and A. L. Christensen (2015b). “Cooperative Coevolu-
tion of Partially Heterogeneous Multiagent Systems”. In: International Confer-
ence on Autonomous Agents & Multiagent Systems (AAMAS). IFAAMAS, pp. 297–
305

• J. Gomes, P. Mariano, and A. L. Christensen (2015d). “Hyb-CCEA: Coopera-
tive Coevolution of Hybrid Teams”. In: Genetic and Evolutionary Computation
Conference Companion (Evolving Collective Behaviors in Robotics Workshop). ACM
Press, pp. 1251–1252

• J. Gomes, P. Mariano, and A. L. Christensen (2017a). “Dynamic Team Hetero-
geneity in Cooperative Coevolutionary Algorithms”. In: IEEE Transactions on
Evolutionary Computation. Under revision

The general theme and goals of this thesis have additionally been presented to
the scientific community at two conferences, in a peer-reviewed workshop and a
doctoral symposium:

• J. Gomes, P. Mariano, and A. L. Christensen (2014b). “Diversity-based Coevo-
lution of Behaviourally Heterogeneous Multirobot Systems”. In: Workshop on
Nature-inspired Techniques for Robotics at PPSN
Won Best Student Presentation

• J. Gomes (2014). “Evolution of heterogeneous multirobot systems through be-
havioural diversity”. In: International Conference on Autonomous Agents & Mul-
tiagent Systems (AAMAS). IFAAMAS, pp. 1729–1730

1.4 Other Contributions to Evolutionary Robotics

During the course of the Ph.D., a number of other studies have been conducted as
a result of scientific collaborations. Although these works are not directly related to
the objectives of this thesis, they represent contributions with a significant impact in
the field of evolutionary robotics.

Evolution of Control for a Real Swarm of Aquatic Surface Robots

In a recent project (CORATAM – Control of Aquatic Drones for Maritime Tasks6), we
have have demonstrated, for the first time, that evolutionary robotics can be suc-
cessfully applied to evolve control for swarm robotics systems that operate in real-
world, uncontrolled conditions (Figure 1.1). We used evolutionary techniques to
synthesise control for an aquatic swarm robotics system, performing a variety of

6Funded by Fundação para a Ciência e Tecnologia (FCT, MCTES, Portugal), with the grant
EXPL/EEI-AUT/0329/2013

1.4. Other Contributions to Evolutionary Robotics 9

FIGURE 1.1: The aquatic robotic swarm with 10 units, performing a homing task
with evolved controllers. Image from (Duarte et al., 2016b).

canonical swarm robotics tasks, as well as more applied and complex tasks. This
project resulted in several publications in international conferences, a journal publi-
cation, as well as an award for Best Robot Video in the prestigious AAAI Conference
on Artificial Intelligence:

• M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M. Oliveira, and A. L.
Christensen (2016b). “Evolution of Collective Behaviors for a Real Swarm of
Aquatic Surface Robots”. In: PLoS ONE 11 (3), e0151834

• M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M. Oliveira, and
A. L. Christensen (2016e). “Unleashing the Potential of Evolutionary Swarm
Robotics in the Real World”. In: Genetic and Evolutionary Computation Confer-
ence Companion (GECCO). ACM Press, pp. 159–160

• M. Duarte, J. Gomes, V. Costa, S. M. Oliveira, and A. L. Christensen (2016d).
“Hybrid Control for a Real Swarm Robotics System in an Intruder Detection
Task”. In: European Conference on the Applications of Evolutionary Computation
(EvoApps). Springer, pp. 213–230

• M. Duarte, J. Gomes, V. Costa, T. Rodrigues, F. Silva, V. Lobo, M. Marques,
S. M. Oliveira, and A. L. Christensen (2016a). “Application of Swarm Robotic
Systems to Marine Environmental Monitoring”. In: IEEE/MTS OCEANS. IEEE
Press, pp. 1–8

• A. L. Christensen, M. Duarte, V. Costa, T. Rodrigues, J. Gomes, F. Silva, and
S. M. Oliveira (2016). “A Sea of Robots”. In: AAAI Conference on Artificial
Intelligence. AAAI Press. URL: https://www.youtube.com/watch?v=
JBrkszUnms8
Peer-reviewed video, winner of the Best Robot Video Award

This project has additionally been covered by the media in several outlets with
wide exposure, including:

• IEEE Spectrum (11-02-2016). AAAI Video Highlights: Drones Navigating Forests
and Robot Boat Swarms. URL: http://spectrum.ieee.org/automaton/robotics/
artificial-intelligence/aaai-video-highlights-drones-navigating-

forests-and-robot-boat-swarms

https://www.youtube.com/watch?v=JBrkszUnms8
https://www.youtube.com/watch?v=JBrkszUnms8
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/aaai-video-highlights-drones-navigating-forests-and-robot-boat-swarms
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/aaai-video-highlights-drones-navigating-forests-and-robot-boat-swarms
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/aaai-video-highlights-drones-navigating-forests-and-robot-boat-swarms

10 Chapter 1. Introduction

• Daily Mail Online (03-02-2016). Will SWARMS of smart surveillance ships soon
spy from the sea? Researchers reveal self learning ships that can think for them-
selves. URL: http://www.dailymail.co.uk/sciencetech/article-3430481/Will-
SWARMS-smart-surveillance-ships-soon-spy-sea-Researchers-reveal-

self-learning-ships-think-themselves.html

• ZDNet (05-02-2016). Drones of the sea learn to swarm. URL: http://

www.zdnet.com/article/drones-of-the-sea-learn-to-swarm-video/

Evolution of Control for Robots with Complex Locomotor Systems

In a separate line of research, we have focused on how to evolve control for robots
with complex locomotor systems, such as legged robots (Figure 1.2). We proposed
an approach (EvoRBC) in which we combine the evolution of locomotion repertoires
with the evolution of high-level task-oriented controllers. Our study is amongst the
first to be able to evolve task-oriented control for robots with a complex locomotor
system. This research has, so far, resulted in a publication in the top conference
in evolutionary computation, and is currently under revision for publication in the
IEEE Transactions on Evolutionary Computation journal:

• M. Duarte, J. Gomes, S. M. Oliveira, and A. L. Christensen (2016c). “EvoRBC:
Evolutionary Repertoire-based Control for Robots with Arbitrary Locomotion
Complexity”. In: Genetic and Evolutionary Computation Conference (GECCO).
ACM Press, pp. 93–100

• M. Duarte, J. Gomes, S. M. Oliveira, and A. L. Christensen (2017). “Evolution
of Repertoire-based Control for Robots with Complex Locomotor Systems”.
In: IEEE Transactions on Evolutionary Computation. Under revision

C AB

Laser scanner

Start

Target

FIGURE 1.2: Maze navigation task (left) and the simulated hexapod (right) used in
the validation experiments of EvoRBC. Image from (Duarte et al., 2017).

http://www.dailymail.co.uk/sciencetech/article-3430481/Will-SWARMS-smart-surveillance-ships-soon-spy-sea-Researchers-reveal-self-learning-ships-think-themselves.html
http://www.dailymail.co.uk/sciencetech/article-3430481/Will-SWARMS-smart-surveillance-ships-soon-spy-sea-Researchers-reveal-self-learning-ships-think-themselves.html
http://www.dailymail.co.uk/sciencetech/article-3430481/Will-SWARMS-smart-surveillance-ships-soon-spy-sea-Researchers-reveal-self-learning-ships-think-themselves.html
http://www.zdnet.com/article/drones-of-the-sea-learn-to-swarm-video/
http://www.zdnet.com/article/drones-of-the-sea-learn-to-swarm-video/

1.5. Thesis Structure 11

1.5 Thesis Structure

We begin in Chapter 2 by reviewing the current state of the art in the fields of hetero-
geneous multirobot systems; evolutionary robotics and their application to hetero-
geneous systems; cooperative coevolutionary algorithms; and novelty-driven evolu-
tionary algorithms. We present the key concepts and definitions related to our work,
and discuss the most recent and relevant advances in the field.

In Chapter 3, we propose and comprehensively study novelty-driven coopera-
tive coevolution. We begin by describing the proposed algorithm and the analysis
tools used in this study. We then thoroughly study the proposed approach in a clas-
sic multirobot task, and finally demonstrate the potential of the approach in two ad-
ditional simulated multirobot tasks of greater complexity. In Chapter 4, we present
a set of experiments in which novelty-driven cooperative coevolution, and CCEAs
in general, are validated in a real multirobot system, operating in realistic condi-
tions. We describe the methodology used to evolve the controllers in simulation, and
analyse how the performance of the evolved teams was affected when transferred
to the real robotic system. In Chapter 5, we study the application of CCEAs, and
the proposed novelty-driven cooperative coevolution, to morphologically heteroge-
neous multirobot systems. We study the challenges specific to applying CCEAs to
morphologically heterogeneous systems, and show how novelty-driven cooperative
coevolution can help to mitigate these challenges, comparing it to other competing
approaches. In Chapter 6, we propose the Hyb-CCEA approach, aimed at improv-
ing the scalability of coevolutionary algorithms regarding the number of agents. The
proposed approach is extensively studied in an abstract domain, and then validated
in two simulated multirobot domains.

Finally, in Chapter 7, we conclude by discussing the contributions of this thesis
within the current state of the art, the limitations of our work, and we present di-
rections for future work. Appendix A lists the experimental parameters and details
for the experiments described in the other chapters, and in Appendix B, we briefly
describe the software framework that was developed to support this work.

13

Chapter 2

Background

Distributed multirobot systems are inspired by the observation of societies, which
are based on division of labour, cooperation and communication (Arai et al., 2002).
If such collective organisation can benefit societies (both human and animal), multi-
robot systems could also benefit from those same concepts (Jones and Mataric, 2005).
Multirobot systems have several advantages over single-robot systems (Cao et al.,
1997), with the most common motivations for developing multirobot systems being
(Parker, 2008):

• The task complexity is too high for a single robot to accomplish.

• The task is inherently distributed.

• Building several simple robots is much easier than constructing a single pow-
erful robot.

• Multiple robots can solve problems faster due to their inherent parallelism.

• A high degree of robustness can be achieved through redundancy.

In this chapter, we introduce the main concepts approached in this thesis, and
review the state of the art. We begin by discussing the advantages and uses of het-
erogeneous multirobot systems. We then present the field of evolutionary robotics,
and how evolutionary algorithms have been used to automatically synthesise con-
trol for multirobot systems. We discuss the different approaches that can be used
to evolve control for heterogeneous multiagent systems in particular, and how co-
operative coevolutionary algorithms (CCEAs) stand as one of the most promising
approaches. We define and describe CCEAs, discuss the challenges and limitations
that have been found in previous studies, and briefly present the algorithmic ex-
tensions that have been proposed, as well as the previous domains of application.
Finally, we introduce evolution driven by behaviour novelty and behaviour explo-
ration, which are the basis for the methods proposed in this thesis.

2.1 Heterogeneous Multirobot Systems

The majority of the current studies on collective robotics focuses on homoge-
neous multirobot systems (Waibel et al., 2009), i.e., systems where all the agents
in the group share the same controller and morphology. Swarm robotics systems
(Bayındır, 2016; Brambilla et al., 2013; Şahin, 2005) are a popular class of multirobot
systems that are characterised by decentralised control, use of local information,
and self-organised global behaviour. In a typical swarm robotics system, see Fig-
ure 2.1 for examples, relatively simple units rely on self-organisation to display col-
lectively intelligent behaviour. The behavioural differentiation between the robots

14 Chapter 2. Background

(a) Groß et al. 2006 (b) Rubenstein et al. 2012

(c) Duarte et al. 2016b

FIGURE 2.1: Examples of morphologically and behaviourally homogeneous robotic
swarms.

in the system is typically not defined a-priori (i.e., the system is homogeneous), but
can emerge as the result of the interactions among the robots and the environment
(Bayındır, 2016; Brambilla et al., 2013; Ferrante et al., 2015). While such coordina-
tion mechanism can be a powerful form of self-organisation, it might be insufficient
when the task at hand requires division of labour and the specialisation of agents
in sub-tasks (Bernard et al., 2015; Montanier et al., 2016). Dorigo et al., (2013) argue
that heterogeneity might be fundamental to achieve more complex systems capable
of dealing with realistic tasks.

Researchers have recently begun focusing on heterogeneous multirobot systems,
which are characterised by the morphological and/or behavioural diversity of their
constituent robots. Behavioural heterogeneity is commonly employed to allow be-
haviour specialisation within the agent team (Campbell and Wu, 2011). In morpho-
logically heterogeneous systems, on the other hand, robots have different actuation
and sensing capabilities, and collaborate to take advantage of the collective set of
capabilities (Dorigo et al., 2013).

2.1.1 Behaviourally Heterogeneous Systems

In behaviourally heterogeneous systems, robots can share the same morphology and
capabilities, but have different controllers. The robots in the system can thus display
different specialised behaviours. Allowing behavioural heterogeneity is, however,
typically a trade-off — it allows a significant increase in the capabilities and effi-
ciency of the group, but it comes at the price of an increased search space, which can
complicate the design of the system. In the design of collective behaviour systems, it

2.1. Heterogeneous Multirobot Systems 15

remains an open research question as to which tasks are most appropriately solved
using specialisation.

In an early work using learning agents, Balch, (1998) studied the emergence of
specialisations in three multirobot domains (robot foraging, robot soccer, coopera-
tive movement). It was shown that heterogeneity improved the performance and
learning speed of the teams in certain tasks, but it was harmful when the task at
hand was more based on parallelism than cooperation — i.e., when a single agent
could reasonably perform the task alone. Similar results have been obtained in a
number of other studies (Li et al., 2002; Murciano et al., 1997; Yong and Miikku-
lainen, 2009), which show that behavioural specialisation can be beneficial or not
depending on the task and the environment. Overall, these studies suggest that if the
task can be naturally decomposed into a set of complementary sub-tasks, then spe-
cialization is often beneficial for increasing collective task performance (Balch, 1998;
Bernard et al., 2015; Nitschke, 2008). A counterargument is presented by Kengyel
et al., (2015), who describe experiments where there are four behaviour types avail-
able, and an evolutionary algorithm optimises the team composition (how many
agents of each type) for solving the given task. The evolved compositions are often
nontrivial and even counterintuitive, but they outperform any purely homogeneous
composition. These results reveal that the task decomposition might not always be
clear beforehand, which can complicate the decision on whether a system should be
behaviourally homogeneous or heterogeneous.

In the domain of multirobot systems, behaviourally heterogeneous systems have
shown their potential in a number of tasks (Levi and Kernbach, 2010; Parker, 1994),
such as robot soccer (Iocchi et al., 2003; Luke et al., 1998), collective surveillance
(Colby and Tumer, 2015b), collective construction (Nitschke, 2012; Trueba et al.,
2011), cooperative foraging (Bernard et al., 2015; Montanier et al., 2016; Nitschke
et al., 2010), predator-prey pursuit (Nitschke et al., 2012b), movement in formation
(Balch and Arkin, 1998), among others (Nitschke, 2008).

2.1.2 Morphologically Heterogeneous Systems

In morphologically heterogeneous systems, the agents in the system have different
morphologies, which includes both systems where the robots have different loco-
motor systems and physical characteristics, as well as systems where the robots are
physically similar but have different sensing and/or actuator capabilities (Parker,
2008). In either case, the cooperation between morphologically heterogeneous robots
can enable the achievement of tasks that are beyond the reach of a single type of
robot. Typically, morphologically heterogeneous systems are also genetically het-
erogeneous, as the robots need different controllers in order to cope with the speci-
ficities of their morphology.

The Swarmanoid project (Dorigo et al., 2013) studied morphologically heteroge-
neous robotic swarms. This project focused on swarms composed of robots with dif-
ferent morphologies to operate in three-dimensional human-centric environments.
Three types of robots were built (see Figure 2.2a): (i) eye-bots, flying robots spe-
cialised in sensing and analysing the environment; (ii) hand-bots, with capabilities
for climbing vertical surfaces of walls or objects; and (iii) foot-bots, specialised on
moving through rough terrain and transporting objects. Some of the studies con-
ducted within the Swarmanoid project include:

16 Chapter 2. Background

(a) Dorigo et al. 2013 (b) Chaimowicz et al. 2005

(c) Grabowski et al. 2000 (d) Howard et al. 2006

FIGURE 2.2: Examples of morphologically heterogeneous multirobot systems.

Mathews et al., (2010): A group of foot-bots cooperate with one eye-bot to overcome
an obstacle in the environment. The eye-bot communicates with the foot-bots,
providing the directions necessary for the foot-bots to assemble in the correct
morphology and overcome the obstacle.

Ducatelle et al., (2011): A swarm of foot-bots and eye-bots accomplishes a task of in-
door navigation, based on stigmergic interactions between the robots.

Dorigo et al., (2013): A swarm composed of robots of all types (foot, hand and eye)
accomplishes a search and retrieval task in a complex 3-D environment. The
swarm must first find the shelves containing relevant objects and then trans-
port the objects from the shelves back to the deployment area.

Other works outside Swarmanoid have also shown the potential of cooperation
between ground and aerial robots, especially in search-and-rescue tasks (Duan and
Liu, 2010; Lacroix and Le Besnerais, 2011). Aerial robots have a privileged perspec-
tive of the environment, and can therefore be used to assist ground robots in a va-
riety of tasks. Sukhatme et al., (2002), for instance, demonstrated a helicopter robot
cooperating with two ground robots in tasks involving payload deployment and
recovery, cooperative localization, and reconnaissance and surveillance tasks (Fig-
ure 2.2b). Chaimowicz et al., (2005) and Hsieh et al., (2007) demonstrated teams of
aerial and ground robots cooperating for surveillance applications in urban environ-
ments.

2.2. Evolutionary Robotics 17

Morphologically heterogeneous systems also encompass systems composed of
robots of a similar nature (e.g., ground robots only). Heterogeneity can be used to
reduce the cost of the system, by assigning different sensor/actuator capabilities to
different robots, which can then cooperate to take advantage of each other’s capa-
bilities. Grabowski et al., (2000) showed such an approach in a mapping and explo-
ration task, using multiple types of ground robots equipped with complementary
sensors (Figure 2.2c). In (Parker et al., 2004), capable leader robots assist sensor-
limited robots in navigating indoor environments. Howard et al., (2006) extended
this approach to a task where few complex robots cooperate with a large number
of inexpensive robots to map the environment and establish a sensor network (Fig-
ure 2.2d). In a different application domain, Simmons et al., (2001) demonstrated
the use of heterogeneous robots for autonomous assembly and construction tasks
relevant to space applications.

Another compelling reason to study morphological heterogeneity is that, in some
cases, heterogeneity may be a necessity arising from practical constraints (Parker,
2008). It might be difficult to build a truly homogeneous robot team, since each
copy of the same model of robot can vary widely in capabilities due to differences
in sensor tuning, calibration, wear and tear, etc. In other practical scenarios, a mul-
tirobot system might have to be composed of the different types of robots that are
currently available to perform the task (Blumenthal and Parker, 2004; Candea et al.,
2001; Jones et al., 2006). In both these situations, behavioural control must take the
differences in robot capabilities into account.

2.2 Evolutionary Robotics

Manually designing controllers for the individuals in a multirobot system is a chal-
lenging endeavour, since the desired system behaviour has to be decomposed into
behavioural rules for the individual robots, taking into account the interactions
among the system components (Panait and Luke, 2005a; Parker, 2008; Stone and
Veloso, 2000). This requires discovering the relevant interactions between the indi-
vidual robots and between them and the environment, which will ultimately lead to
the emergence of global coordinated behaviour. Evolutionary robotics is often used
to overcome this difficulty and automate the design process (Trianni, 2008).

Evolutionary robotics is a field of research that employs evolutionary computa-
tion to generate robots that adapt to their environment through a process analogous
to natural evolution (Silva et al., 2016a). Evolutionary algorithms are optimisation
methods that use operators for reproduction, mutation, and selection to artificially
evolve solutions for a given problem. The individuals in a population play the role
of candidate solutions to the problem, and a fitness function determines which in-
dividuals are best suited for solving the problem. The evolution of the population
takes place through the repeated application of the genetic operators, see Figure 2.3.
The seminal works of evolutionary robotics (Beer and Gallagher, 1992; Floreano and
Mondada, 1994; Harvey et al., 1993) proposed an approach where the agent con-
troller is based on a neural network, which is evolved through genetic algorithms.
In these works, the authors argue that evolutionary robotics can be more adequate
than traditional symbolic AI in the task of developing adaptive behaviours, since it
promotes the shaping of the agents to their environment, and does not depend on
the ability of the designer to consider all the possible contingencies. Using the evo-
lutionary approach, the intelligent behaviours emerge from the interaction between
an agent’s internal control mechanisms and its external environment, rather than

18 Chapter 2. Background

FIGURE 2.3: Principal workflow of evolutionary robotics. Image from (Doncieux et
al., 2015).

from an agent’s ability to reason explicitly with symbolic representations of states.
The foundations of evolutionary robotics were later established by Nolfi and Flore-
ano, (2000), who describe the basic concepts, methodologies, and a set of empirical
experiments of varying complexity.

Evolutionary robotics can be a valuable approach for designing controllers for
multirobot systems, because the application of evolutionary computation can elimi-
nate the need for manual decomposition of the desired group behaviour (Francesca
and Birattari, 2016; Trianni, 2008). The multirobot system is evaluated as a whole,
and relies on the evolutionary process to synthesise the controller(s) that will be
used locally by the individuals. The experimenter only has to provide the system-
level fitness function. Evolutionary robotics has been applied to a large number of
multirobot tasks, in both genetically homogeneous (Bayındır, 2016) and heteroge-
neous systems (Panait and Luke, 2005a; Waibel et al., 2009). While most studies
are conducted exclusively in simulation or laboratory environments, the potential of
evolutionary robotics has also been demonstrated in realistic environments (Duarte
et al., 2016b).

The fitness evaluation of each candidate solution usually consists of running a
simulation with the robots in their environment, using the controller(s) encoded in
the chromosome, and measuring their performance in the task according to the user-
provided fitness function (Nelson et al., 2009). In offline evolution, which is the most
common approach, the evolutionary process is conducted offline, with the evalua-
tion phase conducted in simulated environments. The chosen evolved controllers
can then be transferred to the real robotic system (Jakobi, 1997; Miglino et al., 1995).
In a parallel line of research – online (or embodied) evolution (Watson et al., 1999)
– the entire evolutionary process is conducted directly in the robots, thus allowing
continuous adaptation and avoiding potential issues of transferring controllers from
simulation to reality (the reality gap) (Silva et al., 2016b). Online evolution, however,
tends to be burdensome and take a long time, making it impractical for most tasks.
In this thesis, we focus exclusively on offline evolution.

The controllers evolved for the robots are typically artificial neural networks

2.3. Evolution of Heterogeneous Multiagent Systems 19

(ANNs) (Silva et al., 2016a), which process the sensory data and output the actuator
values. ANNs are well-suited to control autonomous robots for a number of reasons,
including (Floreano and Mondada, 1994): (i) tolerance to noise, making them good
candidates for mediating between sensors and actuators with intrinsic noise; (ii) ca-
pability of approximating any function given the right network architecture, thus
supporting complex input-output mappings; and (iii) they are well-suited for arti-
ficial evolution, since small changes in weights of the network typically correspond
to small changes in the input-output mapping, thus allowing the evolutionary algo-
rithms to progress gradually towards the solution.

A vast number of algorithms for neuroevolution have been proposed in previous
studies (Floreano et al., 2008), varying the genetic operators, the chromosome encod-
ing, the type of neural network evolved, among others. In the experiments described
in this thesis, we use two different approaches for evolving neural networks:

Direct encoding of fixed topologies: The simplest approach to neuroevolution,
where the neural network under evolution has a fixed topology, provided by
the experimenter. The weights of the neural network are directly encoded as
real values in the chromosome of the individual. A genetic algorithm evolves
the chromosomes using standard operators such as Gaussian mutation, one-
point crossover, and tournament selection.

NEAT: NeuroEvolution of Augmenting Topologies (NEAT) (Stanley and Miikku-
lainen, 2002) is a widely used neuroevolution algorithm, and one of the most
successful approaches in the evolutionary robotics domain. NEAT simultane-
ously optimises the connection weights and evolves the topology of the neu-
ral network through incremental complexification. NEAT is therefore able to
evolve networks with an arbitrary topology. It employs speciation and fitness
sharing to maintain high genotypic diversity in the population, and to protect
topological innovations.

2.3 Evolution of Heterogeneous Multiagent Systems

Heterogeneity in a multiagent system may significantly increase its capabilities, but
this comes at the price of increased complexity (D’Ambrosio et al., 2010; Stone and
Veloso, 2000). When optimisation techniques are used to design multiagent control,
heterogeneity complicates the learning process (Dorigo et al., 2013; Panait and Luke,
2005a), as the size of the search space becomes proportional to the number of dif-
ferent agents. Behavioural control must integrate the abilities of different agents for
them to work in synergy towards achieving a common goal. In many cases, how-
ever, information about which specialisations are needed to solve the given task, or
if they are needed at all, is not available (Bongard, 2000). This means that it is typi-
cally not possible to evolve each agent independently from the others. To solve the
control design problem, it is necessary to pursue a holistic approach, in which inter-
actions between different agents are taken into account from the very beginning of
the learning process (Dorigo et al., 2013; Panait and Luke, 2005a).

To evolve controllers for collective robotics systems, two main approaches can be
considered (Panait and Luke, 2005a): team learning and concurrent learning.

Team learning

In team learning (also referred to as team encoding (Lichocki et al., 2013)), there is only
a single learner involved, meaning that the whole team behaviour is encoded in a

20 Chapter 2. Background

single genome. This approach is typically used when evolving homogeneous sys-
tems, where all the agents use a copy of the same controller, but can also be used
in heterogeneous systems, where multiple agent controllers are encoded in a single
genome (Bongard, 2000; Waibel et al., 2009). In the simplest approach, the differ-
ent agent controllers are simply concatenated in a single genome (Luke et al., 1998;
Suzuki and Arita, 2006). In this case, specific crossover operators can facilitate the ex-
change of genetic material among different agents (Haynes and Sen, 1997; Lichocki
et al., 2013).

Other team learning approaches allow for a dynamic team composition, mean-
ing there is no fixed mapping between an agent and a specific part of the genome.
Bongard, (2000), for instance, proposed the Legion System, a genetic programming
approach where the genome encodes the composition of the team and one pro-
gram sub-tree for each behaviour class. A different neuroevolution approach was
proposed by D’Ambrosio and Stanley, (2008) and D’Ambrosio et al., (2010): all the
agent controllers are indirectly encoded in a single genome using compositional pat-
tern producing networks (CPPNs), which are evolved by the HyperNEAT algorithm
(Stanley et al., 2009). HyperNEAT can exploit similarities in agents’ policies, while
at the same time allowing for variations.

Concurrent learning

In concurrent learning (or individual encoding), multiple learning processes for differ-
ent parts of the team run in parallel. Typically each agent has its own learning pro-
cess, that modifies its behaviour towards the improvement of the performance of
the team as a whole. Each genome thus encodes a single agent controller, which
is evaluated together with genomes from the other learning processes. One of the
most popular concurrent learning algorithms is cooperative coevolution (Popovici et
al., 2012; Potter and De Jong, 2000), where the controllers for the different agents are
coevolved in separate populations that interact with one another during evaluation.

Another approach that falls under the category of concurrent learning is online
evolution (Watson et al., 1999), introduced in Section 2.2. Online evolution has spe-
cific goals, namely to enable online adaptation and avoid the reality gap, and there-
fore it is not comparable to static optimization techniques such as cooperative co-
evolutionary algorithms.

Concurrent learning and team learning each have their advantages and disad-
vantages. It has been shown that in some conditions concurrent learning is more
favourable (Iba, 1996), while on others team learning might be preferable (Miconi,
2003). Concurrent learning is better suited for domains in which some decompo-
sition is possible and helpful, and when it is useful to focus on each sub-problem
to some degree independently of the others (Jansen and Wiegand, 2003; Potter and
De Jong, 2000). The reason is that concurrent learning projects the larger joint team
search space onto separate, smaller individual search spaces. If the problem can be
decomposed such that individual agent behaviours are relatively disjoint, then this
can result in a dramatic reduction in search space and in computational complexity.
Another advantage of concurrent learning techniques is that they facilitate the emer-
gence of agent roles and specialisations (Potter et al., 2001; Yong and Miikkulainen,
2009).

2.4. Cooperative Coevolutionary Algorithms 21

2.4 Cooperative Coevolutionary Algorithms

A coevolutionary algorithm is an evolutionary algorithm (or a collection of evolu-
tionary algorithms) in which the fitness of an individual depends on the relationship
between that individual and other individuals (Wiegand, 2003). Such definition nat-
urally implies profound differences with respect to traditional evolutionary algo-
rithms. It can be argued that in coevolutionary algorithms, the individuals are not
actually evaluated, but in fact their interactions are evaluated (Wiegand, 2003). The
individual fitness evaluations are contextually dependent on the state of other indi-
viduals, as an individual represents just a part of the solution, and cannot be evalu-
ated in isolation. Since all individuals are under evolution, however, this means that
individual evaluations are subject to a dynamic fitness landscape — the exact same
individual can receive a high or low fitness scores depending on the other individ-
uals with which it is evaluated. These algorithms starkly contrast with traditional
non-coevolutionary algorithms where the fitness landscape is static — the same indi-
vidual always receives the same fitness score during the entire evolutionary process.

Definition 1. Coevolutionary Algorithm: An evolutionary algorithm in which
the fitness of an individual depends on the relationship between that individual
and other individuals (Wiegand, 2003).

The Definition 1, due to its broadness, can arguably encompass single-
population evolutionary algorithms where the individuals interact with other in-
dividuals of the same population (Popovici et al., 2012). In this thesis, however, we
use coevolutionary algorithms to refer exclusively to the more common approach,
where there are two or more coevolving populations, and in which individuals are
evaluated based on their interactions with individuals from the other population(s).

Among coevolutionary algorithms, the most fundamental distinction is between
cooperative and competitive coevolutionary algorithms (Popovici et al., 2012; Wiegand,
2003). In the case of cooperative algorithms, individuals are rewarded for perform-
ing well with the other individuals, and penalised when they perform poorly to-
gether. This type of relation is known in biology as mutualism. In the case of com-
petitive algorithms, however, individuals are rewarded at the expense of those with
which they interact. That is, individuals are rewarded for outperforming the indi-
viduals with which they are competing. In biology, this is known as a predator-
prey relationship. The implementation of the two types of algorithms is typically
very similar, with the difference residing mainly in the fitness function. The two ap-
proaches, however, have very different purposes: while competitive coevolutionary
algorithms are used to evolve high-performing individuals when there is no absolute
notion of fitness (e.g. evolving a chess player from scratch), cooperative coevolu-
tionary algorithms are used to evolve successful teams where individuals cooperate
to achieve the team’s objective (e.g. evolving controllers for a multirobot team that
has to complete a given task). In this thesis, we will therefore focus only on cooper-
ative coevolutionary algorithms.

Definition 2. Cooperative Coevolutionary Algorithm: A coevolutionary algo-
rithm in which individuals are rewarded for successful collaborations with indi-
viduals from the coevolving populations.

Definition 3. Competitive Coevolutionary Algorithm: A coevolutionary algo-
rithm in which individuals are rewarded for outperforming the individuals in
the coevolving populations.

22 Chapter 2. Background

While traditional (single-population) evolution may be applicable to static opti-
misation problems of arbitrary complexity, the decompositional nature of coopera-
tive coevolutionary algorithms may afford them some advantages for dealing with
problems that are complex, but highly structured. Assuming that a suitable prob-
lem decomposition can be found or is provided, it is natural that a CCEA could
coevolve the various components independently more efficiently than could a tradi-
tional EA evolve the entire structure. Since the advent of cooperative coevolutionary
approaches, this has been the primary motivating factor for their use (Potter and De
Jong, 1994; Potter and De Jong, 2000). One of the common application of CCEAs
is the evolution of multiagent behaviours (Popovici et al., 2012; Potter et al., 2001).
The natural decomposition of the problem into sub-components makes multiagent
systems a good fit for cooperative coevolution: each agent can be represented as a
component of the solution, and the coevolutionary algorithm evolves a set of agent
behaviours that solve the given task. In this way, CCEAs allow for the synthesis of
heterogeneous multiagent systems, where each individual agent can evolve a spe-
cialised behaviour.

2.4.1 General Architecture

The classic cooperative coevolution architecture (Popovici et al., 2012; Potter and
De Jong, 2000) operates with a system comprising two or more separate popula-
tions, meaning that individuals only compete and reproduce with other individuals
from their own population. Due to complete separation of populations, it is pos-
sible to have different evolutionary algorithms and different individual representa-
tions for each population. At every generation of the evolutionary algorithm, each
population is evaluated in turn. To evaluate an individual from one population,
teams are formed with representative individuals from the other populations. The
resulting teams are then evaluated by a fitness function in the problem domain, and
the individual being evaluated receives the fitness score obtained by the team as a
whole. The fitness differential is thus a function of the individual’s contribution to
the problem-solving effort within the context of agents from the other populations.
Figure 2.4 depicts the basic coevolutionary architecture.

There are a number of choices that need to be made when implementing a co-
operative coevolutionary algorithms, concerning the evaluation of the individuals
(Wiegand et al., 2001):

Selection of representatives It is typically not computationally feasible to evalu-
ate an individual with all the other individuals in the other populations, as the num-
ber of collaborations (teams) that would need to be evaluated would be too high.
A subset of individuals for each population therefore has to be chosen, commonly
called the representatives (see Figure 2.4). Different approaches for choosing the rep-
resentatives have been studied (Wiegand et al., 2001), including choosing random
individuals, choosing the best individuals, as determined by the fitness obtained in
the last evaluation, or a combination of the two. Previous works have shown that
using the best individuals, or the best plus some random individuals yields the best
results (Wiegand et al., 2001).

Number of representatives An ensuing implementation choice is how many rep-
resentatives should be chosen for each population. Previous works have shown that

2.4. Cooperative Coevolutionary Algorithms 23

Population

Species 1

EA

Domain
Model

Population

Species 3

EA

representatives

individual

fitness

Population

Species 2

EA

representatives

Population

Species 2

EAindividual

fitness

Population

Species 1

EA

Domain
Model

Population

Species 3

EA
representatives

representatives

Population

Species 2

EA

representatives
Population

Species 1

EA

Domain
Model

Population

Species 3

EA
representatives

individual

fitness

FIGURE 2.4: Cooperative coevolution with three species (populations). In each gen-
eration, the individuals of each population are evaluated in turn. The population
currently under evaluation is highlighted in grey. Image adapted from (Potter and
De Jong, 2000).

increasing the number of representatives can improve convergence to the global op-
timum (Panait, 2010), but this might not be computationally feasible in many do-
mains, and does not scale with the number of populations. Using only one repre-
sentative (the previous best) is thus common practice (Popovici et al., 2012).

Combination of evaluations If multiple collaborations are used to evaluate each
individual, an ensuing question arises: how to combine these multiple fitness scores
to obtain a single score that can be used in the selection and breeding process. Possi-
ble approaches include taking the average of fitness scores (hedge), the worst (pes-
simistic), or the best (optimistic) (Wiegand et al., 2001). Previous works have found
that the optimistic reward scheme is generally the best approach (Panait et al., 2003,
2006a; Wiegand et al., 2001), as it is a better estimator of the potential of the individ-
ual.

Given the results described above, and the common practice when applying
CCEAs to multiagent problems (Popovici et al., 2012), in this thesis we mainly rely
on the approach where a single collaboration is used to evaluate each individual,

24 Chapter 2. Background

where the representatives are the individuals that achieved the highest fitness scores
in the previous generation. This approach is also known as single-best collaboration
method (Bucci and Pollack, 2002). The corresponding basic algorithm, which is used
throughout this thesis unless stated otherwise, is defined in Algorithm 1.

Algorithm 1 Basic CCEA algorithm used in this thesis.

1: Let P be the set of all populations in the coevolutionary system.
2: for each population p ∈ P do
3: rp ← randomly pick one individual i ∈ p
4: for each generation do
5: for each population p ∈ P do
6: for each individual i ∈ p do
7: ti ← {i} ∪ {rq : q ∈ P ∧ q 6= p} . Form one team with the representatives
8: fi ← Evaluate(ti) . Obtain the team’s fitness

9: for each population p ∈ P do
10: rp ← arg max

i∈p
fi . individual i ∈ p with maximum fitness

11: p← Breed(p) based on the fitness scores fi∈p

2.4.2 Known Limitations and Pathologies

Despite the theoretical potential of cooperative coevolutionary algorithms, appli-
cations of CCEAs often fail to achieve the desired results. The reasons for this are
mainly associated with the dynamic fitness landscape of cooperative coevolutionary
algorithms, which can lead to complex evolutionary dynamics. These limitations are
well studied in previous works (Popovici et al., 2012; Wiegand, 2003), and they can
compromise the effectiveness of CCEAs. These limitations are the main topic ad-
dressed in this thesis, as they represent a serious obstacle to the effective application
of CCEAs to complex heterogeneous multiagent tasks. Below, we discuss these lim-
itations in detail.

Premature Convergence to Stable States

In a cooperative coevolutionary algorithm, the fitness landscape of each population
is defined (and constrained) by the behaviour of the team members. The fitness
landscape is thus constantly changing, as the individuals from the other popula-
tions evolve. The fitness of an individual can vary significantly depending on with
which collaborators it is evaluated (Wiegand et al., 2001). It is therefore easy for
a population to be misled by a particular selection of collaborators from the other
populations (Panait et al., 2006b), as the individuals are only rewarded according
to their performance with the given collaborators. CCEAs are naturally attracted
to Nash equilibria (Wiegand, 2003; Wiegand et al., 2002) where each population is
perfectly adapted to one other, such that changing one of the team members would
result in a lower team performance.

Definition 4. Nash equilibrium: A joint strategy (one strategy for each agent)
such that no single agent has any rational incentive (in terms of better reward) to
change its strategy away from the equilibrium.

There is, however, no guarantee that such equilibrium states correspond to glob-
ally optimal solutions (Panait, 2010; Wiegand et al., 2002), which is typically the goal

2.4. Cooperative Coevolutionary Algorithms 25

when using evolutionary algorithms. Another consequent issue is relative overgener-
alisation (Panait et al., 2004; Wiegand and Potter, 2006), which is seen as one of the
most prominent challenges in cooperative coevolution (Panait and Luke, 2005a):

Definition 5. Relative over-generalisation: The coevolutionary dynamic that
occurs when populations in the system are attracted to regions of the search
space in which there are many strategies that perform well with the individu-
als from the others populations.

Due to these pathological dynamics, it has been shown that, in many cases,
CCEAs are actually attracted to suboptimal regions of the search space (Jansen
and Wiegand, 2004; Panait, 2010). Premature convergence to equilibrium states
should be distinguished from the typical local convergence problems that plague
non-coevolutionary algorithms (Panait et al., 2006b). While under ideal conditions
a genetic algorithm is theoretically attracted to the global optimum (Rudolph, 1994),
the same does not hold for cooperative coevolutionary algorithms. Panait, (2010)
has shown that even under ideal conditions of infinite populations, the CCEA might
still not be attracted to the optimum. The lack of bias towards optimal solutions can
compromise the effectiveness of cooperative coevolutionary algorithms (Panait and
Luke, 2005a).

Loss of Fitness Gradients

Loss of fitness gradient occurs when the search gradient for one population sud-
denly becomes too steep, meaning that it is very unlikely to obtain different fitness
scores through random mutations of the current individuals. Although loss of fit-
ness gradients is far more common in competitive coevolution, it can also occur in
cooperative coevolution. A classic illustration of loss of gradient in competitive co-
evolution is the situation were a chess Grand Master plays against a child. If the
child receives no information other than the outcome of the game, the child has al-
most no means of learning how to improve her game. A loss of gradient can occur in
this competitive setting when one population suddenly achieves a level so superior
to the other, that nothing can be learned by either population by competing.

Definition 6. Loss of fitness gradient: The coevolutionary behavior that occurs
when one population or group reaches a state such that other groups and popula-
tions lose necessary relative fitness diversity from which to continue meaningful
progress (Wiegand, 2003).

An example of loss of fitness gradient in cooperative coevolution might be, for
instance, a team of two players learning how to play Pictionary.1 If the player that
is guessing has no ability at all, and can only do random guesses, the player that is
drawing does not have enough feedback to improve his drawing skills. The skills of
the drawing player thus become irrelevant (the gradient is lost), as they alone are not
enough to make any impact in the team’s performance. Synchronised learning and
mutual development of skills are therefore essential in a cooperative coevolutionary
algorithm (Uchibe et al., 1998).

1The Pictionary game is played with teams of two, with players trying to identify specific words
from their teammates’ drawings. Both good drawing skills and as good guessing skills are required to
be a successful team.

26 Chapter 2. Background

Scalability

The classic CCEA architecture is associated with inherent scalability issues with
respect to the number of agents in the team. When each agent is evolved in a
separate population, increasing the number of agents can lead to three issues: in-
crease of computational complexity (Potter and De Jong, 2000), redundant learning
(D’Ambrosio et al., 2010), and the credit assignment problems (Agogino and Tumer,
2008; Colby and Tumer, 2015b).

Computational complexity In heterogeneous multiagent systems, each agent of
the system is typically co-evolved in a separate sub-population. As such, the number
of sub-populations increases linearly with the number of agents. The computational
complexity thus grows with the number of populations, both in space and time, due
to the increased number of individuals to evaluate each generation (Potter and De
Jong, 2000).

Nitschke et al., (2012a), for instance, showed that the CONE method can be ef-
fectively used to evolve teams of up to 100 agents, each with its own unique con-
troller, i.e., 100 populations. The computational complexity was, however, over-
whelming: each population was initialized with 400 genotypes, which resulted in
a total of 40.000 genotypes and 400.000 evaluations per generation (each genotype
was evaluated 10 times). Considering that in multirobot domains the evaluations
typically require the simulation of the whole system performing the task, which can
be computationally expensive in itself, this results in a computational cost that is
infeasible for most applications.

Redundant learning Since agents are evolved in isolated populations, they must
separately discover all aspects of the solution, even though there may be a high de-
gree of overlapping in the resulting policies of each agent. This problem is often
known as redundant learning, or the problem of reinvention (D’Ambrosio et al., 2010;
Panait and Luke, 2005a). In a typical collective robotics tasks, robots tend to share
a basic skillset, such as basic navigation or obstacle avoidance. In large multirobot
teams this becomes even more evident, as many robots in the team can share en-
tire behaviour policies (Nitschke, 2012). Most CCEAs, however, do not cope with
this peculiarity, as there is a strict division between the coevolving populations. The
evolutionary process can thus potentially waste many resources learning the same
behaviour in different sub-populations. Potter et al., (2001) address this problem by
pre-programming the shared skillset in the robots, and the evolved robot controllers
operate only with high-level actions. A distinct approach to avoid this problem is the
implementation of a shaping phase before the coevolutionary algorithm. The shaping
phase (Nitschke et al., 2012a) evolves a single agent controller that possesses the
basic skillset needed for the task. The initial populations of the coevolutionary algo-
rithm are then formed by replicating and mutating the pre-evolved agent controller.

Credit assignment Credit assignment issues (Agogino and Tumer, 2008; Colby
and Tumer, 2015b; Rahmattalabi et al., 2016) can occur in large teams, when the
impact of a single agent on the performance of the whole team becomes almost in-
consequential, thus causing the fitness gradients to vanish (Agogino and Tumer,
2008). This is essentially a signal-to-noise problem, where the selective signal for
an agent’s behaviour is drowned by the noise of all the other agents’ impact on the
evaluation function.

2.4. Cooperative Coevolutionary Algorithms 27

2.4.3 Extensions of the Basic Architecture

The best-known extensions of the cooperative coevolution architecture are described
next. These extensions aim at better suiting the CCEA algorithm to certain classes of
problems, overcoming some of the limitations discussed above.

Multiagent Enforced SubPopulations (MESP)

Enforced SubPopulations (ESP) (Gomez and Miikkulainen, 1997) is a neuroevolu-
tion method that allocates a separate population to each hidden unit in the network,
where the individuals of the subpopulations encode the incoming and outgoing con-
nection weights of the respective neuron. To assess the quality of each individual,
collaborations are established with individuals (neurons) randomly chosen from the
other sub-populations. The full network is then evaluated in the domain, and the
fitness is shared among the participating neurons.

Yong and Miikkulainen, (2009) extended ESP to the evolution of multiagent sys-
tems, proposing Multiagent ESP (MESP). MESP is based on the cooperative coevolu-
tion architecture of Potter and De Jong, (2000). Each coevolving population evolves
the neural network of one agent, using the Enforced SubPopulations (ESP) neu-
roevolution algorithm. The networks are then evaluated together in the task as a
team, and the resulting fitness is distributed among those networks. In this way,
MESP enables two levels of cooperation: the neurons are required to cooperate to
form neural networks, and these networks must cooperate in a team in order to re-
ceive a high fitness score.

COllective NeuroEvolution (CONE)

COllective NeuroEvolution (CONE) (Nitschke, 2008; Nitschke et al., 2010) is an ex-
tension of Multiagent ESP (Yong and Miikkulainen, 2009). As in MESP, each popula-
tion is composed by several sub-populations, each representing one hidden neuron
of a neural network. The distinctive characteristic of CONE, when compared to
other coevolutionary methods, is that CONE implements mechanisms for regulated
combination between and within populations. CONE includes the following unique
features:

Genotype difference metric (GDM): A heuristic that regulates recombination of
similar genotypes in different populations. Two genotypes can only be re-
combined if they are considered similar, i.e, if the average weight difference
between them is below a dynamic threshold.

Specialisation difference metric (SDM): A heuristic that regulates genotype re-
combination based on behavioural similarities exhibited by full controllers.
If the fittest controllers of two populations have similar behaviour speciali-
sations, then these two populations go through a recombination process. The
GDM is applied to regulate the recombination of similar genotypes within the
two populations.

Controller size adaptation: A heuristic that adapts the number of hidden layer neu-
rons in each controller over the course of cooperative co-evolution. If fitness
stagnation is detected in one population, a new hidden neuron is added.

The degree of specialisation of each controller is given by the number of times
the robot switches between different actions, relative to the maximum number of

28 Chapter 2. Background

possible switches. If the degree of specialisation is above a certain threshold, the
controller is considered specialised in action x, where x is the action in which the
controller spent most time. Otherwise, the controller is considered unspecialised.
A natural limitation of CONE is that for this mechanism to work, the actions of
the agents need to be clearly distinguishable from one another. The possible spe-
cialisations of each controller are specified manually by the experimenter. CONE
has been shown to effectively encourage the specialisation of the agents in the team
and reduce redundant learning. A significant amount of task-specific knowledge is,
however, required in order for CONE to work.

Evaluation with Informative Collaborators

With the objective of improving convergence to the global optimum, a number of
strategies have been proposed in which multiple collaborations are used to evaluate
each individual. The rationale is to reduce the variability of individual evaluations,
so that there is a more accurate estimate of the individual’s absolute worth, with less
sensitivity to the evaluation context. This type of strategies naturally come at a cost
of increased computational complexity, which might help explain why they have
only been studied in function optimisation benchmarks (in which the computational
cost of an evaluation is minimal), typically with only two populations. Some of these
strategies are detailed below.

Optimistic reward scheme: Panait et al., (2004), Popovici and De Jong, (2005), and
Wiegand et al., (2001) demonstrated that an optimistic reward scheme can be
used to bias coevolution towards globally optimal solutions. The optimistic
scheme evaluates an individual, not with only one collaboration, but in N tri-
als, each with a randomly formed collaboration, and only the maximum re-
ward obtained is considered. Panait, (2010) showed that this optimistic scheme
guarantees convergence to a global optimum if given enough resources, i.e.,
sufficiently large populations, and a sufficiently high number of collaborations
N . To reduce the number of necessary evaluations, Panait and Luke, (2005b)
proposed a variation of the optimistic reward scheme, wherein the number of
collaborations N decreases throughout the evolutionary process.

iCCEA: Panait et al., (2006a) presented an archive-based algorithm called iCCEA,
in which the number of evaluations is reduced by maintaining an archive of
informative collaborations for each population. iCCEA builds an archive of col-
laborators which produce the same ranking of individuals in the other pop-
ulation as they would receive if they were tested against the full population
of collaborators. The authors, however, acknowledge that the archive can be-
come large, which makes evaluation computationally expensive, and that it is
unclear if/how the algorithm would scale to complex domains.

Biased CCEA: The maximum of N collaborations scheme was extended by Panait
et al., (2006b): the fitness is based partly on the maximum score obtained in
N collaborations with randomly chosen partners, and partly on the reward
obtained when partnering with the optimal collaborator, i.e., the collaborator
with which the individual under evaluation would receive the highest possi-
ble fitness score. The results showed that computing the fitness of an individ-
ual based on its performance with the optimal collaborator can significantly
increase the performance of the algorithm. The assumption that the optimal
collaborator is known is, however, largely unrealistic for most domains, and

2.4. Cooperative Coevolutionary Algorithms 29

as such heuristic methods would be necessary for estimating the optimal col-
laborator, such as relying on the history of highest-scoring individuals.

mCCEA: A new approach for increasing convergence to global optima was pro-
posed by Peng et al., (2016), named Multi-population Mechanism Based CCEA
(mCCEA). In mCCEA, each population is composed of a base and several child
populations. These child populations conduct dynamic multimodal optimiza-
tion so as to obtain local and global optima as the representative collabora-
tors with high fitness and diversity. The child populations evolve with a local
search algorithm, focusing on disjoint parts of the search space, while the base
population evolves with the typical genetic algorithm. The representatives in-
dividuals of each population are the highest-fitness individuals of each of its
child populations. mCCEA was evaluated in several benchmark problems of
function optimisation, with two populations. It was able to significantly out-
perform the Biased CCEA and Optimistic reward scheme presented above.

Difference Evaluation Functions

Agogino and Tumer, (2008) proposed an alternative approach to facilitate conver-
gence to (near-)optimal solutions, relying on the use of difference evaluation func-
tions. The difference evaluation function is a shaped reward signal that provides
agent-specific evaluation by removing a large amount of the noise created by the
actions of other agents in the system. When a team of agents is evaluated, the fitness
of each agent is calculated with a difference evaluation (the agent’s contribution to
the team), rather than the global system evaluation (the team’s performance). The
difference evaluation of a given agent is defined as the difference between the team’s
performance with the agent and the team’s performance without the effects of that
agent. It has been shown that difference evaluation can significantly outperform the
standard global evaluation, in both evolutionary game-theory (Colby and Tumer,
2015a) as well as multirobot tasks (Colby and Tumer, 2015b). The limitation of this
approach is that it is not always clear how to effectively compute the difference, i.e.,
how to evaluate the performance of the team without the effects of a given agent.
In tasks where simply excluding the agent from the team is not feasible, it might be
necessary to manually provide a default behaviour for each of the agents (Colby and
Tumer, 2015b; Yliniemi and Tumer, 2016).

2.4.4 Domains of Application

In this section, we review the multiagent problems that have been addressed with
cooperative coevolutionary algorithms.

Predator-prey Pursuit

This is one of the most common tasks in multiagent coevolution research (both coop-
erative and competitive). Cooperative pursuit games consist of a number of agents
(predators) cooperatively chasing a prey. Individual predator agents are usually not
faster than the prey, and often agents can sense the prey only if it is close by. There-
fore, the agents need to actively cooperate in order to successfully capture the prey.
In cooperative coevolution studies, typically only the team of predators is evolved,
while the prey is given a fixed pre-programmed behaviour. The task is interesting
because heterogeneity in the predator team is required to effectively catch the prey
(Yong and Miikkulainen, 2009).

30 Chapter 2. Background

• Nitschke et al., (2012b) used CONE to evolve a team of 2–6 predators to capture
1–2 preys in a bounded environment. In this variant of the task, the predators
could sense obstacles, other predators, and preys. Each predator was con-
trolled by a low-level neural network that received the sensor values and out-
put the wheels speed. CONE was compared to MESP and CCGA (Cooperative
Coevolution Genetic Algorithm).

• Yong and Miikkulainen, (2009) used MESP with incremental evolution to
evolve a predator team of three robots. The neural network of each preda-
tor received the position offset of the prey and outputs the direction in which
the agent should move. The authors studied the impact of communication
between predators, the heterogeneity of the team, and the necessity of coevo-
lution.

• Blumenthal and Parker, (2004) evolved a team of four predators (vs one prey)
using Punctuated Anytime Learning (Parker and Blumenthal, 2002). The en-
vironment was open, and the predators had to catch the prey before it escaped
the arena. Each predator had different movement capabilities, differing in the
turning rate and maximum speed.

• Rawal et al., (2010) used the same experimental setup as (Yong and Miikku-
lainen, 2009). However, in this study the prey was also coevolved with the
predators. While the predator learn to cooperate to catch the prey, the prey
learns to evade them. The experiments showed that it is possible to sustain
coevolution of teams of competing and cooperating agents.

• In the work reported in the Chapter 3 of this thesis and in (Gomes et al., 2014a,
2017b), we present experiments where we evolve control for heterogeneous
teams of two to seven predator robots. Only one pre-programmed prey was
present, similar to the setup in (Yong and Miikkulainen, 2009).

• The predator-prey task is also used in the real-robot experiments described in
Chapter 4 and (Gomes et al., 2016b).

Herding

Potter et al., (2001) proposed a herding task in which a group of robots (the shep-
herds) has to force another robot (the sheep) into the corral. The herding environ-
ment consists of a pasture that is fenced on three sides, with a smaller enclosed
corral on one of the fenced sides. The sheep tries to avoid the corral, trying to escape
through the unfenced side of the pasture. To make the task more challenging, there
can also be a predator robot (the fox) that attempts to catch the sheep. In (Potter
et al., 2001) the controllers of the shepherds, under evolution, were high-level neural
networks. The study focused on the topic of heterogeneity vs homogeneity in teams
of cooperating robots.

The herding task was also used in some of the preliminary work developed for
this thesis. In these experiments (Gomes et al., 2015b), which are not reported in
this thesis, we used different versions of the herding task, varying the number of
shepherds, foxes, and sheep.

2.4. Cooperative Coevolutionary Algorithms 31

Collective Construction

The gathering and collective construction task (Nitschke et al., 2012a) requires that
robots search for building blocks in the environment, transport them to a construc-
tion zone, and place them in a specific sequence of block types required for struc-
ture assembly. There are two different types of blocks, and the robots must choose
between different sensor settings in order to detect the blocks of a given type. Spe-
cialisation is thus beneficial for the efficient solution of the task. Large teams were
evolved (50 and 100 robots) using CONE, MESP, and the traditional CCEA. Incre-
mental evolution was used to bootstrap the coevolutionary algorithm.

Rover Problem

In the rover problem (Agogino and Tumer, 2004, 2008; Colby and Tumer, 2015b), a col-
lective of rovers on a two dimensional plane aims to observe points of interest (POIs)
scattered throughout the environment. Each POI has an associated value, and each
observation of a POI made by a rover yields an observation value that is proportional
to the proximity of the rover to the POI. The POI locations are static throughout the
experiment. The objective of the rovers is to maximise the observation values of the
POIs over the course of an episode. An increasing system evaluation corresponds
to better observation coverage of the POIs. In (Colby and Tumer, 2015b), the multi-
rover problem was solved using a standard CCEA and other algorithms based on
difference evaluation functions.

Collective Foraging

Nitschke et al., (2010) proposed an extended multi-rover task, which is an instance
of collective foraging tasks commonly found in swarm robotics studies (Bayındır,
2016). This task requires a team of simulated autonomous vehicles (named rovers),
to detect and collect features of interest (named red rocks) with a maximal total value
over the course of the team’s lifetime. A red rock is collected when it is within range
of more than one rover’s red rock detection sensors. Furthermore, there are five
types of red rocks, and three different resolution settings for red rock detection sen-
sors. For each type of red rock, specific combination of sensor settings are required
to detect it. The environment is rich in walls and obstacles. In (Nitschke et al., 2010),
a team of 20 robots was evolved, using CONE, MESP, and a standard CCEA. Incre-
mental evolution was used to bootstrap the coevolutionary algorithm.

In this thesis, we use similar collective foraging tasks for a number of different
experiments. In Chapter 3, we use a version with two rovers, where both of them
are simultaneously needed to collect each item (see also Gomes et al., 2017b); in
Chapter 5, we use a task where an aerial and ground robot have to cooperate to
find and collect items (see also Gomes et al., 2016a); and in Chapter 6, we use a
version similar to the extended multi-rover task, where there are different item types
and robots can have different sensor resolutions.

Soccer Games

Simulated soccer games are widely popular in multiagent learning, and remain a
considerable challenge regarding the control of the teams (Barrett and Stone, 2015).
In preliminary work (Gomes et al., 2014a), not reported in this thesis, we solved

32 Chapter 2. Background

a keepaway soccer task (Stone et al., 2005) using cooperative coevolutionary algo-
rithms to evolve the controllers of the keepers. Keepaway soccer is a simplified ver-
sion of robot soccer in which there are usually three keepers and one or two takers.
The keepers must learn to keep possession of the ball against a taker that actively
tries to snatch it from the keepers.

In Chapter 6, we present experiments with a full simulated soccer task, where
teams of five agents play against each other, trying to score on the opponent’s goal.

Non-embodied Multiagent Problems

A number of studies focus instead on non-embodied agents – software agents or
pseudo-agents that simply encode an element of the solution. Although our thesis
focus on embodied and autonomous agents, such as robots, looking at these appli-
cations is valuable to understand the potential and broad applicability of coevolu-
tionary algorithms.

• Several studies have applied CCEAs to static function optimisation, where
each agent represents one parameter of the function (Panait, 2010; Panait et
al., 2006b; Potter and De Jong, 1994; Wiegand et al., 2001). These problems
have mostly been used for benchmark and demonstration purposes, and do
not have any direct practical application.

• Soria et al., (2016) demonstrates an application of CCEAs to the industrial de-
sign of a racing car, where each agent encodes a set of parameters that define
a given body part (e.g., an agent encodes the parameters of the engine, other
agent defines the rear tires, etc.).

• Agogino and Tumer, (2007) employ CCEAs to solve a problem of air traffic
flow management. Each agent, under evolution, represents a ground location
throughout the airspace, and it is responsible for any aircraft going through it.

2.5 Evolution Driven by Behavioural Diversity

Traditionally, evolutionary robotics revolved around applying standard evolution-
ary algorithms to robotics problems (see Section 2.2): the experimenter defines the
fitness function, which establishes the task’s goals, and the evolutionary process
runs until it converges. Unfortunately, due to the high complexity and rugged fit-
ness landscapes of robotics tasks, evolutionary algorithms often fail when faced with
more challenging problems (Silva et al., 2016b). These issues have traditionally been
mitigated by introducing additional task-specific biases in the fitness function (Don-
cieux and Mouret, 2014; Nelson et al., 2009), avoiding local optima but at the same
time introducing a great deal of experimenter-induced bias in the evolutionary pro-
cess, which is contrary to the ultimate purpose of evolutionary robotics (Eiben, 2014).

The field of evolutionary robotics has recently started to shift to alternative tech-
niques that go the opposite way: instead of focusing and driving the evolutionary
search towards a certain solution, they instead promote behavioural exploration and
novelty (Doncieux and Mouret, 2014; Doncieux et al., 2015; Silva et al., 2016b). As
Doncieux and Mouret, (2014) argue in a recent survey: interesting results can be gener-
ated when evolutionary robotics is not considered purely as black-box optimization. In this
thesis, we employ novelty-driven approaches and take into account the exploration
of the behaviour space to mitigate fundamental issues in the cooperative coevolution
of heterogeneous multiagent systems.

2.5. Evolution Driven by Behavioural Diversity 33

2.5.1 Premature Convergence and Deception

Evolutionary algorithms are prone to suffer from deception (Jones and Forrest, 1995;
Whitley, 1991), a challenging issue in evolutionary computation that causes the
evolutionary process to converge prematurely to local optima. Deception occurs
when the fitness function creates a deceiving fitness gradient. This typically happens
when the fitness function fails to adequately reward the intermediated steps that are
needed to achieve the global optimum. In the case of coevolutionary algorithms, de-
ception is also present, but can have different causes. As discussed in Section 2.4.2,
in CCEAs, the fitness of an individual is dependent on other individuals – the team
members. Therefore, individuals can be deceived by the fitness gradient induced by
the collaborators with which they are evaluated (Panait et al., 2004).

In non-coevolutionary algorithms, deception can be mitigated through the use of
techniques that maintain genotypic diversity in the population. Such techniques in-
clude fitness sharing (Goldberg and Richardson, 1987), promotion of diversity based
on the fitness score of the solutions (Hu et al., 2005; Hutter and Legg, 2006), inter-
mingling individuals of different genetic ages (Castelli et al., 2011; Hornby, 2006),
and minimisation of the age of the genotypes (Schmidt and Lipson, 2011). Other
techniques to overcome deception rely on the decomposition of the objective into
multiple sub-goals that are easier to attain. These techniques include incremen-
tal evolution (Gomez and Miikkulainen, 1997; Mouret and Doncieux, 2008), fitness
shaping (Uchibe et al., 2002), and multi-objectivisation of sub-goals (Knowles et al.,
2001; Mouret and Doncieux, 2008; Trianni and López-Ibáñez, 2015).

2.5.2 Novelty Search

While the methods discussed above for mitigating deception might help the evo-
lutionary process to avoid getting stuck in local optima, they leave the underlying
problem untreated: the fitness gradient itself might be misdirecting the search. With
this issue in mind, a new evolutionary approach was proposed — novelty search
(NS) (Lehman and Stanley, 2011a). Novelty search drives evolution towards be-
havioural novelty instead of a pre-defined goal. The distinctive aspect of novelty
search is how the individuals of the population are scored. Instead of being scored
according to how well they perform a given task, which is typically measured by a
static fitness function, the individuals are scored based on their behavioural novelty
according to a dynamic novelty metric, which quantifies how different an individual
is from other, previously evaluated individuals. This reward scheme therefore cre-
ates a constant evolutionary pressure towards behavioural innovation, and actively
tries to avoid convergence to a single region in the solution space.

Implementing novelty search requires little change to any evolutionary algo-
rithm aside from replacing the fitness function with a domain-dependent novelty
metric (Gomes et al., 2015c; Lehman and Stanley, 2011a). To measure how far an
individual is from other individuals in behaviour space, the novelty metric relies on
the average behaviour distance of that individual to the k-nearest neighbours:

ρ(x) =
1

k

k∑
i=1

dist(x, µi) , (2.1)

where µi is the ith-nearest neighbour of x with respect to the distance metric dist.
Potential neighbours include the other individuals of the current population and a
sample of individuals from previous generations, stored in an archive. The purpose

34 Chapter 2. Background

of the archive in novelty search is to encourage exploration of new behaviour re-
gions, besides maintaining diversity in the population. Without the memory effect
provided by the archive, evolution may cycle between behaviour regions, due to the
lack of evolutionary pressure towards novel regions of the search space (Gomes et
al., 2015c; Lehman and Stanley, 2011a). The function dist is a measure of behavioural
difference between two individuals, which will be further discussed in the next sec-
tion. It should not be confused with the genotypic distance commonly used for
speciation in fitness sharing techniques (Goldberg and Richardson, 1987).

In novelty search, candidate solutions from sparse regions of the behaviour space
thus tend to receive higher novelty scores, which results in an evolutionary pro-
cess that strives to uniformly explore the behavioural space. This dynamic is illus-
trated in Figure 2.5, where a maze navigation task is solved with both novelty search
and fitness-based evolution. As the novelty metric promotes behavioural diversity
within the population at all times, it avoids convergence to a single point in the so-
lution space, which is common in fitness-based evolution.

Goal

Start

Objective-based evolution Novelty Search

FIGURE 2.5: Behaviour exploration of fitness-based evolution and novelty search in
the deceptive maze task. A robot has to navigate from the starting point to the goal
point. The dots represent the final position of each evolved individual. Fitness-based
evolution often gets trapped in a local optimum, while novelty search explores the
search space more uniformly. Image adapted from (Lehman and Stanley, 2011a).

Novelty search has mainly been studied in the evolutionary robotics domain,
including the evolution of: (i) single-robot controllers (Mouret and Doncieux, 2012),
(ii) robot gait control (Lehman and Stanley, 2011a), (iii) controllers for multirobot and
swarm robotic systems (Gomes et al., 2013), (iv) robotic morphologies (Lehman and
Stanley, 2011b), and (v) plastic neural networks (Risi et al., 2010). A number appli-
cations of novelty search outside the robotics domain can also be found in the litera-
ture, for instance in game content generation (Liapis et al., 2015), design of electrical
circuits (Naredo et al., 2016), and machine learning, including regression (Martínez
et al., 2013), clustering (Naredo and Trujillo, 2013), and classification (Naredo et al.,
2013). The previous works have shown that novelty search is able to find good so-
lutions faster and more consistently than fitness-based evolution in many different
applications. Novelty search is particularly effective when dealing with deceptive
domains, and can be further combined with fitness-oriented evolution to balance
exploration with exploitation (Lehman et al., 2013), which will be discussed in Sec-
tion 2.5.5.

2.5. Evolution Driven by Behavioural Diversity 35

2.5.3 Configuring the Novelty Search Algorithm

Besides the definition of the behaviour distance metric, there are other algorithmic
choices that must be taken into consideration when implementing novelty search.
In a recent work (Gomes et al., 2015c), which is not fully reported in this thesis,
we conducted a comprehensive empirical study on the parameters and configura-
tion choices of novelty search. These experiments were conducted with a standard
single-population non-coevolutionary algorithm, since it is the most common usage
of novelty search. Our study was based on the simulated maze navigation task,
a single-robot task also extensively used in novelty search studies (Lehman et al.,
2013). We used a set of different task setups that confronted novelty search with
varying levels of deception and difficulty in exploring the behaviour space. We anal-
ysed the results in two dimensions: (i) whether an evolutionary run is able to pro-
duce an effective solution or not; and (ii) whether novelty search is able to explore
the behaviour space thoroughly and uniformly, regardless of the objective. The main
findings are summarised below.

Number of nearest neighbours The number k of nearest neighbours used in com-
putation of novelty scores, see Equation 2.1. We experimented with values ranging
from 1 (only the nearest neighbour is taken into account) to k = population size (the
entire population can be used to compute the novelty score). Our results showed
that the parameter k is robust to moderate variation, but the optimal value depends
on the type of archive used. Low to medium values of k were generally preferable.
A value of k=15, which is used in a large number of novelty search studies (Gomes
et al., 2015c), yielded relatively good performance across all the tested archive types.

Archive of past individuals Deciding on which individuals should be added to
the archive, how many of them, and even if the archive is needed at all, has been
a topic of discussion. We compared three common approaches for composing the
archive: (i) no archive is used, only the current population; (ii) every generation
the most novel λ individuals are added to the archive; and (iii) every generation, λ
randomly chosen individuals are added to the archive. Our results showed that a
randomly composed archive is preferable over a novelty-based one, yielding better
results across all the considered metrics. Moreover, our results showed that novelty
search is robust to moderate variations of the archive growth rate (λ).2

Underlying EA mutation rate An open question was how the degree of genetic
diversity influences the behavioural diversity and novelty generated in the novelty
search process. To study this effect, we focused on the mutation rate of the EA, which
is closely associated with the degree of genetic diversity. We studied the mutation
rate in the NEAT neuroevolution algorithm (Stanley and Miikkulainen, 2002) and in
a direct-encoding genetic algorithm. Our experiments showed that high mutation
rates did not cause better exploration of the behaviour space. Novelty search actu-
ally benefited from lower mutation rates, when compared to fitness-based evolution.

2Note that the computational cost of the nearest-neighbours calculation increases linearly with the
size of the population and the size of the archive. However, it is possible to limit the size of the archive
and to use data structures such as KD-trees to reduce this cost.

36 Chapter 2. Background

2.5.4 Behavioural Distance Measures

To quantify the behaviour distance between two individuals, the behaviour of each
individual is typically characterised by a real-valued vector – the behaviour characteri-
sation (BC). The behaviour distance dist is then the distance between the correspond-
ing characterisation vectors. The design of a behaviour characterisation has direct
implications on the effectiveness of novelty search. An excessively detailed charac-
terisation can open the search space too much, and might cause evolution to focus
on regions of the behaviour space that are irrelevant for solving the task (Cuccu and
Gomez, 2011). On the other hand, an incomplete or inadequate characterisation can
cause counterproductive conflation of different behaviours (Kistemaker and White-
son, 2011). Conflation occurs because the mapping between observable behaviours
and behaviour characterisations is typically not injective. As such, notably differ-
ent behaviours can have similar behaviour characterisations, which can potentially
hinder the evolution of novel solutions (Kistemaker and Whiteson, 2011).

Task-Specific Behaviour Characterisations

Most previous works on behavioural diversity rely on behaviour characterisations
designed specifically for the given task. These characterisations are composed of
behavioural traits that the experimenter considers relevant for describing agent be-
haviour in the context of the given task. For instance, in a maze navigation task, it
can be the final position of the robot (Lehman and Stanley, 2011a); in a multirobot ag-
gregation task, it can be the mean distance to the centre of mass (Gomes et al., 2013).
Based on the previous works, we identified a number of similarities in task-specific
behaviour characterisations (Gomes et al., 2014e):

• The behaviour features are typically related to the fitness function, in the sense
that solutions with very different fitness scores typically have distant charac-
terisations. The opposite relation often does not hold – solutions with similar
fitness scores can have distant characterisations.

• There is a strong focus on the spatial relationships between entities in the task
environment, or the location of the robots in the environment.

• Characterisations typically comprise only a small number of different be-
havioural traits (up to four).

• Most characterisations focus either on the final state of the environment, values
averaged over an entire trial, or a single feature sampled over time.

While designing behaviour characterisations tends to be relatively straightfor-
ward and does not require fine-tuning, they do introduce an additional experimenter
bias in the evolutionary process, which might not be desirable. To overcome this is-
sue, a number of generic behaviour characterisations have been proposed.

Generic Behaviour Characterisations

Gomez, (2009) was the first to propose the use of task-agnostic generic behaviour
characterisations for assessing the behavioural distance. In the proposed approach,
action records for the agents are compared, using either the Hamming distance,
relative entropy, or normalised compression distance (NCD). The study was con-
ducted with a single-agent discrete task. Doncieux and Mouret, (2010) and Mouret

2.5. Evolution Driven by Behavioural Diversity 37

and Doncieux, (2012) extended generic measures to evolutionary robotics. The pro-
posed measures are applicable to single-robot tasks and are exclusively based on the
sensor-effector states of the agent. They rely on comparisons between the sequences
of all binary sensor and effector values of the agent through time, or counting how
many times the agent was in each possible sensor-effector state. The following mea-
sures were proposed:

Hamming distance: Distance between the sequence of all the binary sensor and ef-
fector values of the agent sampled through time.

DFT: A discrete Fourier transform is applied to the sensor-effector sequence, and
the first coefficients are used to compute the distances between individuals.

State count: Each possible sensor-effector state corresponds to one entry in a vector.
Each entry contains the number of times the corresponding state was visited.

These generic characterisations were extended by us in (Gomes and Christensen,
2013), making them applicable to multiagent systems, and to non-binary sensors and
effectors. We proposed two generic characterisations applicable to both single and
multirobot systems:

Combined state count: Sensor-effector states are defined based on a discretisation
of the values from the sensors and effectors recorded at each individual robot.
The number of times the robots are in each state is then aggregated, with no
discrimination regarding which robot was in a particular state, thus obtaining
the behaviour characterisation of the group. We proposed techniques to effi-
ciently represent the sensor-effector states and compute the distance between
characterisations, based on filtering mechanisms and the hashing of the states.

Sampled average state: Uses the full history of the sensor-effector states of each
robot through time. As such, it contains a temporal component that is not
present in the combined state count measure. The state of the group at a given
instant is the average of the sensor-effector states of all robots, which allows
scalability in respect to the size of the group. Additionally, the state of the
group is averaged over time windows of equal length (for example, beginning
of the simulation, middle, and end), which reduces the sensitivity to the initial
conditions and to the stochastic nature of the individual robots’ behaviour. The
behaviour characterisation of the group is the average sensor-effector state of
the robots in each of the time windows.

While generic characterisations are widely applicable, they can result in a very
large behaviour space (Cuccu and Gomez, 2011; Mouret, 2011). To address this con-
cern, we proposed and studied a middle ground between generic and task-specific
characterisations: systematically derived behaviour characterisations (SDBCs) (Gomes et
al., 2014e). The proposed measures are directly derived from a formal description
of the task state. This way, we can reduce the dependency on the experimenter’s
knowledge about the task while, at the same time, obtain characterisations that
are directly related to the task. The behaviour features that are automatically ex-
tracted from the formal description of the task include average distances between
the agents, distances between the agents and the environment objects, and the aver-
age internal state of the agents, such as speed, energy levels, and so on. Optionally,
a set of feature weights can also be calculated, using the characterisations of the cur-
rent population individuals. The weights are calculated based on the mutual infor-
mation between the feature values and fitness scores, thus estimating the relevance
of each feature for the solution of the task.

38 Chapter 2. Background

Meyerson et al., (2016) proposed a new approach for learning behaviour charac-
terisations, building on the generic measures based on sensory-effector states, and
on the weighting scheme proposed by SDBCs. This new approach aims at learn-
ing characterisations that can be used across many tasks within the same domain.
Generic characterisations are composed of features that represent the probability of
the agent taking a particular action in a particular state. The algorithm then learns
a weighting vector for these features, using several different training and test tasks.
While the learning process is computationally expensive, this approach can be valu-
able for domains that have many related tasks that need to be solved.

In a separate effort for minimising the experimenter bias, Doncieux and Mouret,
(2013) showed that different similarity measures (generic or task-specific) can be
combined, either by switching between them throughout evolution or by calculating
the behaviour distance based on all similarity measures. It is shown that randomly
switching between multiple similarity measures improved performance over any
single measure.

2.5.5 Combining Exploration with Objectives

It has been shown that novelty search can struggle to find good solutions when
the behaviour space is vast (Cuccu and Gomez, 2011; Gomes et al., 2015c; Lehman
and Stanley, 2010), as a great effort might be spent exploring regions that are ir-
relevant for the task objective. This problem is typically overcome by combining
the exploratory pressure of novelty search with the exploitative character of fitness-
based evolution. Such combination can lead to a more effective evolutionary process
(Lehman et al., 2013), where solutions can be reached faster and more consistently,
with a relatively low impact on the diversity of behaviours explored.

A number of techniques have been proposed to accomplish this combination.
The first class of techniques relies on a minimal criterion that the individuals must
meet in order to be considered viable for selection. This minimal criterion can ei-
ther be static and provided by the experimenter (MCNS – Minimal Criteria Novelty
Search) (Lehman and Stanley, 2010), or dynamic and calculated based on the fitness
scores of the current population (PMCNS – Progressive MCNS, Gomes et al., 2012,
2014d). Liapis et al., (2015) uses a different approach where two populations are
used: one contains feasible individuals, which are scored based on novelty, and the
other contains infeasible individuals, which are scored based on their proximity to
the feasibility threshold.

The second class of techniques bases its selection process on novelty and fitness
scores simultaneously. Mouret, (2011) proposed novelty-based multi-objectivisation,
where a novelty objective is added to the task objective (fitness function) in a
Pareto-based multi-objective evolutionary algorithm (MOEA). A simpler multi-
objectivisation is proposed by Cuccu and Gomez, (2011), where the score of each
individual is based on a linear scalarisation of its novelty and fitness scores, allowing
the experimenter to control the relative weight of the novelty and fitness scores. In
(Inden et al., 2013), half of the population is subject to novelty-based selection, while
the other half is subject to fitness-based selection.

In the empirical study reported in (Gomes et al., 2015c), we compared differ-
ent combination techniques, including PMCNS, linear scalarisation with different
weights, and multi-objectivisation. The highest performing methods for combining
novelty and fitness were the multi-objectivisation of novelty and fitness scores, and
the linear scalarisation with an equal weight for novelty and fitness, with no major
differences between these two.

2.6. Summary 39

An alternative to combine exploration with objectives are Quality Diversity (QD)
algorithms (Pugh et al., 2016) (also known as Illumination Algorithms, Mouret and
Clune, 2015). QD algorithms are unique in the sense that they are not intended to
overcome premature convergence, but rather to discover a repertoire of high-quality
solutions located in different regions of the behaviour space. One of the first QD
algorithms was Novelty Search with Local Competition (NSLC) (Lehman and Stanley,
2011b), in which a multi-objective algorithm combines the novelty score with a local
competition objective, thereby encouraging the evolution of a diverse set of high-
quality solutions. The more recent MAP-Elites algorithm (Cully et al., 2015; Mouret
and Clune, 2015) divides the behaviour space into discrete bins, and aims at finding
high-quality solutions in each bin of the behaviour space.

2.6 Summary

In this section, we began by reviewing the state of the art in heterogeneous multi-
robot systems. While this is a field that its still in its infancy, the existing studies con-
firm the potential of such systems for a variety of real-world problems. Synthesis-
ing control for heterogeneous systems is currently a challenge, due to the increased
search space that comes with heterogeneity. We presented cooperative coevolu-
tionary algorithms as a promising solution for evolving control for such systems.
The review of the state of the art, however, reveals that cooperative coevolutionary
algorithms still face serious limitations. We identified and discussed the main is-
sues, namely premature convergence to mediocre stable states and poor scalability
with respect to number of agents, and described how these issues have been ap-
proached in previous studies. In the rest of this thesis, we propose and study meth-
ods that deal with these fundamental issues of CCEAs, bringing to coevolutionary
algorithms concepts that have showed considerable successes in non-coevolutionary
algorithms, such as evolution driven by behavioural exploration, and dynamic team
heterogeneity.

41

Chapter 3

Overcoming Premature
Convergence

In this chapter, we study how novelty search can be used to avoid the counterpro-
ductive attraction to stable states in cooperative coevolution (Panait et al., 2004; Wie-
gand and Potter, 2006). Novelty search (Lehman and Stanley, 2011a) is an evolu-
tionary approach that drives evolution towards behavioural novelty and diversity,
rather than exclusively pursuing a static objective. We evaluate three novelty-based
approaches that rely on, respectively (i) the novelty of the team as a whole, (ii) the
novelty of the agents’ individual behaviour, and (iii) a combination of the two. We
compare the proposed approaches with traditional fitness-driven cooperative coevo-
lution, in three simulated multirobot domains.

3.1 State of the Art

As discussed in Section 2.4.2, the issue of premature convergence in CCEAs is caused
by the variability of the fitness evaluation — the fitness of an individual depends on
the behaviour of the other coevolving team members, which can deceive the evolu-
tionary process. One way of reducing premature convergence is therefore to reduce
the variability of the evaluations. Previous works, discussed in Section 2.4.3, have
shown that this can be achieved by evaluating the individuals together with optimal
collaborators, or in a large number of collaborations. The objective is to assess the
value of the individual with less variability and sensitivity to the other populations.

Existing studies with these evaluation schemes are, however, mostly focused on
function optimisation domains (e.g. Panait et al., 2006b; Popovici and De Jong, 2005;
Wiegand et al., 2001) and evolutionary game-theory (e.g. Panait, 2010; Wiegand
and Potter, 2006; Wiegand et al., 2002), and always with only two coevolving pop-
ulations. It is thus unclear whether the aforementioned methods for overcoming
convergence to suboptimal equilibria are efficient and effective in the multirobot do-
mains, for two main reasons:

• Existing approaches rely on the use of large numbers of collaborations to assess
the fitness of each individual. When evolving controllers for robots, the num-
ber of generations can only be reduced to some extent — a large number of
generations is typically needed for fine-tuning the controllers (which can have
hundreds of parameters in the case of neural networks), even with a perfect fit-
ness gradient. Every increase in the number of collaborators therefore results
in a steep increase of computational complexity that is not viable in domains
that rely on time-consuming simulations for evaluating the individuals.

42 Chapter 3. Overcoming Premature Convergence

• Existing approaches have only been demonstrated in coevolutionary systems
with two populations, while multirobot systems are often composed of more
than two agents. It is unclear how these approaches can be adapted to more
populations, and what the consequences would be: the number of possible
collaborations increases exponentially with the number of populations, so one
might expect a steep increase in the number collaborations needed to evaluate
each individual.

Analysing the previous works on the evolution of control for multirobot systems
with CCEAs (e.g. Nitschke et al., 2012a; Potter et al., 2001; Yong and Miikkulainen,
2009, see Section 2.4.4 for more), the evaluation of each individual is usually con-
ducted with a single collaboration, formed with the best individuals of each other
population (the single-best collaboration method, Bucci and Pollack, 2002). To the best
of our knowledge, the use of multiple collaborations has never been successfully
demonstrated in a multirobot domain.

In a number of studies using multirobot domains, the issue of premature conver-
gence is circumvented with the use of problem decomposition techniques (Panait
and Luke, 2005a), such as incremental evolution (Gomez and Miikkulainen, 1997).
Instead of directly addressing the problem of premature convergence, the given task
is manually decomposed into a sequence of simpler sub-objectives, with the expec-
tation that the evolutionary algorithm will incrementally be able to solve all sub-
objectives. In an incremental evolution scheme, a series of evolutionary stages are
defined by the experimenter, and evolution moves from one stage to the next when
the population reaches a sufficient level of performance. In an environmental com-
plexification setup, solutions are initially evaluated in a simplified version of the
environment, which becomes progressively more complex as the evolutionary pro-
cess is able to find solutions for the current stage. In another form of incremen-
tal evolution – staged evolution (Doncieux and Mouret, 2014) – the environment
is the same throughout evolution, but the objectives change, with the fitness func-
tion rewarding simpler objectives earlier in evolution. Previous works have shown
that incremental evolution schemes such as environmental complexification (Chris-
tensen and Dorigo, 2006; Gomez and Miikkulainen, 1997), can be successfully used
to assist cooperative coevolution (Nitschke et al., 2012a,b; Yong and Miikkulainen,
2009). Uchibe and Asada, (2006) showed how staged evolution can also be used to
integrate cooperative and competitive coevolution in a multirobot system. While
the aforementioned decomposition techniques facilitate the evolution of complex
behaviours, they require in-depth knowledge of the global task and how it can be
divided into suitable sub-tasks (Doncieux and Mouret, 2014).

As discussed above, the existing approaches to avoid convergence to mediocre
stable states either require a large number of evaluations, which is not feasible in
multirobot domains, or require some form of task-specific knowledge/bias that has
to be introduced by the experimenter. In this chapter, we study how diversity-
oriented evolutionary techniques can be adapted to cooperative coevolutionary al-
gorithms. Diversity-oriented techniques, such as novelty search (Lehman and Stan-
ley, 2011a), see Section 2.5, have shown considerable success in tackling premature
convergence issues in the field of evolutionary robotics, in a large number of studies
(Doncieux and Mouret, 2014). Besides excelling at overcoming premature conver-
gence, these techniques do not cause a significant increase in the evolutionary algo-
rithm’s computational complexity, and require little to none additional experimenter
biases.

3.2. Novelty-driven Cooperative Coevolution 43

3.2 Novelty-driven Cooperative Coevolution

We propose and study three distinct approaches based on novelty search to over-
come convergence to stable states in multi-population cooperative coevolution. The
first approach, NS-Team, is based on traditional cooperative coevolution principles:
an individual’s novelty score is calculated based on the behaviour of the team
in which it participated, without any discrimination of the individual agent be-
haviours. The second approach, NS-Ind, is based on the typical implementation of
novelty search in non-coevolutionary algorithms: individuals are rewarded for ex-
hibiting novel individual behaviours with respect to the other individuals in their
population, thus maintaining behavioural diversity inside each population. The
third approach, NS-Mix, is a combination of the first two: individuals are rewarded
for displaying both novel individual behaviours and causing novel team behaviours.

3.2.1 Team-level Novelty

The team-level novelty approach (NS-Team) is described in Algorithm 2. In NS-Team,
as in a typical cooperative coevolutionary algorithm (Algorithm 1), the evaluation of
each individual begins with the formation of one team (a joint solution) composed
of that individual and representative individuals from each of the other populations
(step 8). The chosen representative of each population is the individual that obtained
the highest team fitness score in the previous generation (step 14), or a random one in
the first generation (step 4). The collective performance of the team is then assessed
by evaluating it in the problem domain (step 9). NS-Team relies on the characteri-
sation of the behaviour of a team as a whole. The novelty score of each individual
is computed based on the team-level behaviour characterisation of the team with
which it was evaluated. The novelty of the individual thus corresponds to the nov-
elty of the team’s behaviour. This process is analogous to the fitness assignment in
typical CCEAs, in which an individual receives the fitness of the team in which it
participated, without discriminating the individual’s contribution.

Algorithm 2 NS-Team: Novelty-driven cooperative coevolution based on team-level
behaviour characterisations.

1: Let P be the set of all populations in the coevolutionary system.
2: Let A be an archive of behaviour characterisations, initially empty.
3: for each population p ∈ P do
4: rp ← randomly pick one individual i ∈ p
5: for each generation do
6: for each population p ∈ P do
7: for each individual i ∈ p do
8: ti ← {i} ∪ {rq : q ∈ P ∧ q 6= p} . Form one team with the representatives
9: fi, Ti ← Evaluate(ti) . Obtain the team’s fitness and behaviour characterisation

10: for each i ∈ p do
11: ηi ← ComputeNovelty(Ti,A ∪ {Tx : x ∈ p}) . Compute novelty based

on the archive and the other individuals in the population

12: A ← UpdateArchive(A, T)
13: for each p ∈ P do
14: rp ← individual i ∈ p with maximum fi
15: p← Breed(p) based on a combination of the scores f and η

44 Chapter 3. Overcoming Premature Convergence

Besides the team’s novelty score (step 11), the team’s fitness score is also taken
into consideration in the selection and breeding process (step 15). The motivation
for such combination is to drive evolution towards the exploration of valuable be-
haviour regions (as discussed in Section 2.5.5). The key difference is that while the
team fitness measure is static, the team novelty measure is dynamic. Contrary to
what happens in fitness-driven CCEAs, in NS-Team the attractors keep changing
throughout evolution: what is novel in one generation will only remain so for a few
generations. The evolutionary process is constantly led towards novel regions of the
team behaviour space, which can avoid premature convergence to a single region of
the solution space.

It should be noted that the method used to compute of the novelty scores
(ComputeNovelty), the implementation of the archive update step (UpdateArchive),
and the technique used to combine novelty and fitness (step 15), are independent of
the NS-Team approach. We implemented these operations according to the results
we obtained in a comprehensive empirical study (Gomes et al., 2015c), which are
also consistent with common practices in novelty search studies, see Sections 2.5:

ComputeNovelty: The novelty score is computed based on the k nearest individu-
als in behaviour space, considering both the current population as well as an
archive of past individuals.

UpdateArchive: The archive is updated every generation with randomly chosen in-
dividuals from the current population. The archive size is bounded for com-
putational and memory efficiency. After the limit has been reached, randomly
chosen individuals are removed to allow space for new ones.

Breed: The combination of novelty and team fitness objectives is achieved with
Pareto-based multiobjective optimisation, following the NSGA-II algorithm
(Deb, 2001). It should be noted that the proposed NS-Team algorithm only
modifies the evaluation phase of the evolutionary algorithm, and therefore any
underlying evolutionary algorithm can theoretically be used.

Team behaviour can be characterised using the design principles proposed in
(Gomes et al., 2013): the behaviour characterisation focuses on the team as a whole,
without directly discriminating between the respective contributions of individual
agents. Such team-level characterisations can be crafted with task-specific knowl-
edge (Gomes et al., 2013) or without it (Gomes and Christensen, 2013), as discussed
in Section 2.5.4. Task-specific team-level characterisations can be based on mea-
sures of how the team influences the task environment, or by averaging agent’s
behavioural traits over all the members of the team. In this chapter, we use only
task-specific characterisations, as it is the most clear approach, easier to analyse, and
it is by far the most common in novelty search studies (Gomes et al., 2014e).

3.2.2 Individual-level Novelty

In domains where a high degree of cooperation is required for a joint solution to
be successful, it may not be possible to assess the contribution of each agent to the
success of the team. This issue is commonly known as the credit assignment problem
(Colby and Tumer, 2015b; Potter and De Jong, 2000). Nonetheless, it is possible
to describe the behaviour of each individual agent when participating in a team,
ignoring to some extent whether the agent’s actions are harmful or beneficial with
respect to the team’s objectives.

3.2. Novelty-driven Cooperative Coevolution 45

We additionally study a novelty-based coevolutionary algorithm that uses indi-
vidual agent behaviour characterisations, instead of the team-level behaviour char-
acterisations used in NS-Team. In NS-Ind, individuals are rewarded for displaying
novel agent behaviours, regardless of the behaviour of the teams in which the indi-
viduals were evaluated. The objective of NS-Ind is to directly promote behavioural
diversity inside each population, thus preventing premature convergence of the evo-
lutionary process, following the previous successes of novelty-based techniques in
single-population evolutionary algorithms (Doncieux and Mouret, 2014; Gomes et
al., 2013; Lehman and Stanley, 2011a; Mouret and Doncieux, 2012).

The implementation of NS-Ind is detailed in Algorithm 3. The algorithm is sim-
ilar to the novelty search implementation in non-coevolutionary algorithms, with
one novelty archive (Ap) for each population p, and the novelty scores are computed
only within each population. During the evaluation of an individual, the behaviour
of that individual in the context of a team is characterised (step 9). This characteri-
sation is then used to compute the novelty of the individual, by comparing it with
the other behaviours observed in the respective population, and in the archive of
that population (step 11). Since the computation of novelty for an agent is based
exclusively on behaviours observed within its population, there can be a different
behaviour characterisation functions (with different behaviour features) for each of
the agents. In the experiments presented in this thesis, however, all agents are char-
acterised using the same function.

Algorithm 3 NS-Ind: Novelty-driven cooperative coevolution based on agent-level
behaviour characterisations.

1: Let P be the set of n populations in the coevolutionary system.
2: Let (A1, · · · ,An) be a list of archives of behaviour characterisations, all initially

empty.
3: for each population p ∈ P do
4: rp ← randomly pick one individual i ∈ p
5: for each generation do
6: for each population p ∈ P do
7: for each individual i ∈ p do
8: ti ← {i} ∪ {rq : q ∈ P ∧ q 6= p} . Form one team with the representatives
9: fi, Ii ← Evaluate(ti) . Obtain the team fitness and the individual behaviour

characterisation of i

10: for each i ∈ p do
11: ηi ← ComputeNovelty(Ii,Ap ∪ {Ix : x ∈ p}). Compute novelty based on the

corresponding archive and the other individuals in p

12: Ap ← UpdateArchive(Ap, {Ix : x ∈ p})
13: for p ∈ P do
14: rp ← individual i ∈ p with maximum fi
15: p← Breed(p) based on a combination of the scores f and η

Finally, the novelty of the individual is combined with the fitness of the team in
which it participated (step 15), in order to drive the coevolutionary system towards
novel, high-quality solutions. As in NS-Team, in our experiments we use a multiob-
jective algorithm to combine the individual novelty and team fitness scores.

46 Chapter 3. Overcoming Premature Convergence

3.2.3 Mixed Novelty

We additionally propose and evaluate NS-Mix, which combines NS-Team and NS-
Ind. In NS-Mix, the individuals are rewarded both for causing novel team be-
haviours and novel agent behaviours. The implementation relies on NS-Team and
NS-Ind. The team-level novelty scores (η) are calculated according to Algorithm 2,
while the individual-level novelty scores (η′) are calculated according to Algo-
rithm 3. The combined algorithm is described in Algorithm 4. These two sets of
novelty scores, together with the team fitness scores, are used to select and breed the
individuals of each population (step 17). In the experiments described in this chap-
ter, we implement NS-Mix with a multiobjective algorithm, maximising the three
scores: team novelty, individual novelty, and team fitness score.

Algorithm 4 NS-Mix: Novelty-driven cooperative coevolution based on both agent-
level behaviour characterisations and team-level behaviour characterisations.

1: Let P be the set of n populations in the coevolutionary system.
2: Let (AT ,A1, · · · ,An) be a list of archives of behaviour characterisations, all ini-

tially empty.
3: for each population p ∈ P do
4: rp ← randomly pick one individual i ∈ p
5: for each generation do
6: for each population p ∈ P do
7: for each individual i ∈ p do
8: ti ← {i} ∪ {rq : q ∈ P ∧ q 6= p} . Form one team with the representatives
9: fi, Ti, Ii ← Evaluate(ti) . Obtain the team fitness, team behaviour

characterisation, and the individual characterisation of i

10: for each i ∈ p do
11: ηi ← ComputeNovelty(Ti,AT ∪ {Tx : x ∈ p}) . Compute novelty based

on the team archive (AT) and the other individuals in p

12: η′i ← ComputeNovelty(Ii,Ap ∪ {Ix : x ∈ p}) . Compute novelty based
on the respective archive (Ap) and the other individuals in p

13: Ap ← UpdateArchive(Ap, {Ix : x ∈ p})
14: At ← UpdateArchive(AT , T)
15: for p ∈ P do
16: rp ← individual i ∈ p with maximum fi
17: p← Breed(p) based on a combination of the scores f , η and η′

3.3 Behaviour Exploration Analysis

When studying novelty-driven algorithms and premature convergence, it is ex-
tremely valuable to be able to analyse how the behaviour space is explored by the
evolutionary process — it can reveal where the evolutionary process is focusing,
and allows the identification of local optima (Gomes et al., 2013; Lehman and Stan-
ley, 2011a). In this section, we describe a set of tools for analysing and visualising the
progress of the evolutionary algorithm and the behaviour space exploration, which
are used throughout this thesis.

3.3. Behaviour Exploration Analysis 47

3.3.1 Behaviour Exploration Metrics

In coevolutionary algorithms, previous works have focused on the analysis of the
best individuals evolved in each population, at every generation (best-of-generation
individuals) (Popovici and De Jong, 2006). By analysing the trajectory of such indi-
viduals over the evolutionary run, it is possible to visualise to which regions of the
solution space the coevolutionary process is converging. However, since we study
problems with more than two populations, and since individuals have multidimen-
sional genomes/behaviours, the previously proposed methods cannot be directly
applied to our domain. Instead, we rely on the behaviour of the teams that obtained
the highest fitness score in a given generation (Definition 7).

Definition 7. Best-of-Generation (BoG) teams: The set of teams that obtained
the highest fitness scores in each generation of a given evolutionary run.

Analysing the behaviour space exploration, based on all the evolved individuals,
can also be an important tool to uncover the underlying evolutionary dynamics,
especially in novelty-driven evolutionary approaches. For instance, Gomes et al.,
(2013) and Lehman and Stanley, (2011b) analyse the exploration of the behaviour
space to discover the diversity of solutions evolved for a given task. In a novelty-
based evolutionary process, looking only at the best-of-generation individuals can
be misleading — since the evolutionary process is not exclusively driven by fitness,
a large amount of lower fitness (but behaviourally diverse) solutions can be evolved.

We implemented three measures of exploration, to cover both the team be-
haviour space (BoG team dispersion and All team dispersion) and the individual agent
behaviour space (Individual dispersion). For all three metrics, dispersion is given by
the mean absolute difference among the behaviour characterisation vectors. Con-
sidering a set of behaviour characterisations ϕ = {ϕ1, · · · , ϕn}, the mean difference
(MD) is given by:

MD(ϕ) =

∑n
i=1

∑n
j=1 dist(ϕi, ϕj)

n(n− 1)
, (3.1)

where dist is the Euclidean distance between the respective behaviour charac-
terisation vectors. The mean difference (MD) is a non-parametric measure of
statistical dispersion, that is not defined in terms of a measure of central ten-
dency (Yitzhaki et al., 2003). A low mean difference value indicates that most
teams/individuals have very similar behaviour characterisations, while a high value
means the teams/individuals are well dispersed in the behaviour space. We defined
the following metrics based on the MD:

Definition 8. BoG team dispersion: The behavioural dispersion of the best-of-
generation teams evolved during a given evolutionary run. The BoG team dis-
persion is given by MD(ϕ′), where ϕ′ is the set composed of the respective team
behaviour characterisations of all best-of-generation teams (Definition 7). This
metric is intrinsically related to convergence — a low value means that the high-
est scoring teams always displayed very similar team behaviours, which sug-
gests that evolution converged to a specific region of the team behaviour space.

Definition 9. All team dispersion: Similar to BoG team dispersion (Defini-
tion 8), but considering all teams evaluated during a given evolutionary run.
All team dispersion is thus given by MD(ϕ), where ϕ is the set composed of the
respective team behaviour characterisations of all the teams evolved during an
evolutionary run.

48 Chapter 3. Overcoming Premature Convergence

Definition 10. Individual dispersion: The mean dispersion of the individual
(agent) behaviours evolved in each population, averaged over all the popula-
tions. Considering P as the set of populations in the coevolutionary system, and
ϕp the set of individual behaviour characterisations of all individuals evolved by
population p, individual dispersion is given by:

ID(ϕ) =
1

|P|
∑
p∈P

MD(ϕp) (3.2)

3.3.2 Visualisation of the Best-of-Generation Teams

To be able to visualise the behaviour of the best-of-generation teams (similarly to
Popovici and De Jong, 2006), the multidimensional behaviour space is reduced to
two dimensions with Sammon mapping (Sammon, 1969). Sammon mapping (also
known as Sammon projection) is an algorithm that maps a high-dimensional space
to a space of lower dimensionality while trying to preserve the inter-point distances
in high-dimensional space in the lower-dimension projection. Each point in the plot
thus corresponds to one evolved team, where the distance between the points is
related to the behaviour distance between the corresponding teams. The following
procedure is followed to visualise the best-of-generation teams:

1. Gather the team behaviour characterisations of the best-of-generation teams,
from all evolutionary runs under comparison.

2. Run the Sammon mapping algorithm with that entire set of characterisations,
mapping each characterisation to a point in the continuous 2D space.

3. Individually plot the characterisations of each evolutionary run.

3.3.3 Behaviour Space Visualisation

To visualise the exploration of the behaviour space, i.e., the behaviours evolved by
all individuals during an evolutionary run, we resort to Kohonen self-organising
maps (Kohonen, 1990), as proposed in (Gomes et al., 2013). A Kohonen map is a
two-dimensional discretised representation of a n-dimensional input space, which
preserves the topological relations of the input space (i.e., vectors close in the input
space are mapped to nearby positions in the two-dimensional map). The objective of
using this approach for dimensionality reduction is the same as the Sammon map-
ping used to map the best-of-generation trajectory (Section 3.3.2). Sammon map-
ping, however, has a high computational complexity and becomes infeasible with a
high number of input samples, while Kohonen maps scale well with the input size.
We therefore use Kohonen maps to project the exploration of the behaviour space by
all evolved individuals into two dimensions.

To visualise the exploration of the behaviour space in the different evolutionary
runs, or by different methods, we follow this methodology:

1. The Kohonen map is trained with a random sample of all the behaviours
found, in all evolutionary runs of all methods under comparison.

2. The behaviours evolved in each evolutionary run are separately mapped to the
trained map: each individual is assigned to the node (behaviour space region)
with the closest weight vector.

3.4. Evaluation in the Predator-prey Task 49

3. We count and plot how many individuals were assigned to each node, thus
obtaining the dispersion of the evolved individuals over the behaviour space.

3.4 Evaluation in the Predator-prey Task

Predator-prey pursuit is one of the most common domains studied in multiagent
coevolution, both in cooperative coevolution (e.g., Nitschke et al., 2012b; Yong and
Miikkulainen, 2009, see Section 2.4.4 for more) as well as in competitive coevolu-
tion (Nolfi, 2012; Rawal et al., 2010). Predator-prey tasks involve a number of agents
(predators) chasing a prey. The predators cannot move faster than the prey, and they
therefore need to cooperate in order to successfully capture the prey. In cooperative
coevolution studies, only the team of predators is evolved, while the prey has a pre-
specified fixed behaviour. The predator-prey task is especially interesting in cooper-
ative coevolution studies because heterogeneity in the predator team is required to
effectively catch the prey, along with a tight coordination among the predator (Yong
and Miikkulainen, 2009). In this section, we describe the predator-prey domain used
in our study, and the experiments conducted with this domain.

3.4.1 Predator-prey Task

The predators are initially placed in linear formation at one end of the arena, in the
slots depicted in Figure 3.1a. We defined task variants with the number of predators
ranging from two to seven. A single prey is randomly placed near the centre of the
arena. The arena is not physically bounded, and if the prey escapes the arena, the
trial ends. The task parameters are listed in Appendix A.2. We use a version of the
task where the predators cannot communicate nor sense one another (Rawal et al.,
2010; Yong and Miikkulainen, 2009). Each predator is controlled by a neural network
that receives only two inputs: (i) the distance to the prey (Dp), and (ii) the relative
orientation of the agent with respect to the prey (αp). These inputs are normalised
before being fed to the neural network, and the network’s two outputs control re-
spectively the speed (Dm) and the rotation (αm) of the agent, see Figure 3.1b. The
neural network that controls each predator is a fixed-topology recurrent Jordan net-
work (Jordan, 1997), see Figure 3.1c.

The predators move at most at the same speed of the prey (1 unit/step). The
behaviour of the prey consists of moving away from any predator within a radius
of V around the prey. If there are no predators within that radius, the prey does
not move. Otherwise, the prey moves at a constant speed, with a direction opposite
to the centre of mass of the nearby predators. We use task variants with different
values for the radius V , ranging from 4 to 13 units. The prey is captured if a predator
collides with it. A trial ends if the prey is captured, escapes the arena, or if T=300
simulation steps elapse. Each team of predators is evaluated in five simulation runs,
varying the starting position of the prey.

The fitness function Fpp is based on previous works (Nitschke et al., 2012b; Yong
and Miikkulainen, 2009). If the prey was captured, Fpp increases as the time to cap-
ture the prey (τ) decreases, otherwise it increases as the average final distance from
the predators to the prey (df) decreases:

Fpp =

{
2− τ/T if prey captured
max(0, (di − df)/size) otherwise

, (3.3)

50 Chapter 3. Overcoming Premature Convergence

where T is the maximum simulation length, di is the average initial distance from
the predators to the prey, and size is the side length of the arena.

The behaviour characterisations were defined based on systematically derived
behaviour characterisations (SDBC) (Gomes et al., 2014e, see Section 2.5.4). We chose
a subset of the extracted features, based on the estimated relevance of the features
with the predator-prey task. The team-level behaviour characterisation βpp(t) is a
vector of length 4. The agent-level characterisation of an agent βpp(a) is based on
behaviour features similar to βpp(t), but measured for a specific agent instead of the
whole team. The characterisations are described in Table 3.1.

TABLE 3.1: Behaviour characterisations used in the predator-prey task. All features
have values normalised to the range [0,1].

Team-level characterisation βpp(t) Individual-level characterisation βpp(a)

.Whether the prey was captured .Whether agent a captured the prey

.Average final distance of the predators to
the prey

.Final distance of a to the prey

.Average distance of each predator to the
other predators over the simulation

.Average distance of a to the other
predators over the simulation

. Simulation length

3.4.2 Evolutionary Setup

We use a canonical genetic algorithm to evolve the neural networks that control
the agents: the weights of the networks are directly encoded in the chromosomes;
the algorithm uses tournament selection; the genes (weights) are mutated individ-
ually with a fixed probability; we apply one-point crossover; and the elite of each
population passes directly on to the next generation. Novelty-driven cooperative
coevolution is implemented as described in Section 3.2, and configured according to

V=4

V=7 V=10

Predator starting positions

Prey
Prey starting

area

1
0

0

D
pαpαm

D m

Current
direction

New
direction

...
Inputs Outputs

S
ta

te
 l
a
y
e
r

Hidden
layer

...

Bias Bias

αp αm

DmDp

V=13

Prey

(a) (b) (c)

FIGURE 3.1: Predator-prey task setup. (a) Initial conditions of the simulation, with
the possible prey vision ranges (V) and the possible predators’ starting positions
(circles at the top). (b) Sensors and effectors of each predator: the predator senses
the distance Dp and relative orientation αp of the prey, and the effectors control the
speed Dm and turning angle αm. (c) The structure of the neural network controller
of each predator.

3.4. Evaluation in the Predator-prey Task 51

the results presented in (Gomes et al., 2015c): the nearest neighbours among the cur-
rent population and the archive are used for novelty computation; and the archive is
composed of randomly chosen individuals. See Appendix A.1 for parameter values.

Each experimental treatment was repeated in 30 evolutionary runs. In all exper-
iments, the highest scoring team of each generation was re-evaluated a posteriori in
50 simulation trials. As the initial position of the prey is stochastic, the re-evaluation
yields a more accurate estimate of the team fitness. All the team fitness plots pre-
sented in the chapter are based on the scores obtained in this post-evaluation.

3.4.3 Base Fitness-driven Cooperative Coevolution

In the first set of experiments, we analyse how fitness-based coevolution performs
when faced with varying degrees of task difficulty. We vary the difficulty of the task
by varying the prey’s visual range (V). Increasing V allows the prey more room
and time to escape from the predators. As such, a higher degree of cooperation, as
well as a more fine-tuned strategy, are required in the team of predators in order to
successfully catch the prey. In setups with high V values (V10, V13), only one non-
cooperating agent might be sufficient to compromise the performance of the whole
team, as it can drive the prey away or leave room for it to escape. Figure 3.2 shows
performance achieved with fitness-driven coevolution for three predators and with
values of V varying from 4 to 13.

●

●

●

●

●

●●

●

●

V4 V7 V10 V13

0.0

0.5

1.0

1.5

2.0

0 100 200 300 400 500
Generation

Te
am

 fi
tn

es
s

V4

V7

V10

V13

0.0

0.5

1.0

1.5

2.0

FIGURE 3.2: Team fitness scores achieved with fitness-based evolution in task setups
with varying prey vision (V). Left: highest fitness scores achieved so far at each
generation, averaged over 30 runs for each setup. The grey areas depict the standard
error. Right: boxplots of the highest scores achieved in each evolutionary run, for
each task setup. The whiskers represent the highest and lowest value within 1.5 IQR,
and the dots indicate outliers.

The results show that fitness-driven coevolution (Fit) is only able to consistently
evolve effective solutions in the easiest setup (V 4). In the other setups, Fit rarely
reaches high-quality solutions. It should be noted that it is possible to find effective
solutions for all these task setups, as it will be shown in the following sections. To
determine the reason for failure, we analyse the best-of-generation (BoG) teams, as
described in Section 3.3.1. Figure 3.3 shows the behaviour of the BoG teams in repre-
sentative evolutionary runs1, along with the mean value of the BoG team dispersion
(D) for each task setup. These results show that in the easier task setup (V4), co-
evolution can consistently explore the behaviour space and reach regions of the be-
haviour space where high-quality solutions can be found. In the other task setups,

1For each setup, we chose the evolutionary run that had a value of BoG dispersion (D) closest to the
mean of all runs in that setup.

52 Chapter 3. Overcoming Premature Convergence

however, coevolution converges prematurely to a narrow region of the behaviour
space, resulting in a relatively low degree of BoG team dispersion (D).

Fit, V4 Fit, V7

Fit, V10 Fit, V13

0.5 1.0 1.5
Fitness First generation Highest scoring team

F=1.76, D=0.51 F=0.88, D=0.09

F=0.28, D=0.05 F=0.26, D=0.11

FIGURE 3.3: Behaviour of the best-of-generation teams in representative evolution-
ary runs of fitness-driven coevolution. Each cross represents one team, mapped ac-
cording to its team behaviour. The four-dimensional behaviour space was reduced
to two dimensions using Sammon mapping, see Section 3.3.1. D is the BoG team
dispersion of the respective run, and F is the highest fitness score achieved.

3.4.4 Increasing the Number of Collaborations

We experimented with techniques studied in previous works to try to overcome
convergence to suboptimal solutions in fitness-driven coevolution. As suggested
by Wiegand et al., (2001), we increased the number of random collaborations with
which each individual is evaluated. The fitness assigned to an individual is the
maximum reward it obtained with any collaboration. To evaluate each individual,
(N + 1) collaborations are formed: one with the best individuals from the previous
generation, and N collaborations composed with randomly chosen collaborators.
According to previous results (Panait, 2010; Popovici and De Jong, 2005; Wiegand et
al., 2001), increasing the number N of collaborations should increase the likelihood
of the coevolutionary algorithm to converge to the global optimum. We therefore
evaluated how varying the number N impacts the performance of fitness-based co-
evolution. Since this scheme has, to the best of our knowledge, only been used
in coevolutionary setups with two populations, we also experimented with a task
setup with only two predators (V4/2) to establish a fair basis for comparison. In
the remaining setups, three predators are used, and the random collaborations are
formed by partnering the individual that is being evaluated with one randomly cho-
sen individual from each of the other populations.

Figure 3.4 (left) shows the effect of increasing N in the different task setups. It
should be noted that the number of generations was the same (500) in all evolu-
tionary configurations, meaning that the number of evaluations increases linearly

3.4. Evaluation in the Predator-prey Task 53

0.0

0.5

1.0

1.5

2.0

0 2 5 10
N

H
ig

he
st

 te
am

 fi
tn

es
s

0.0

0.1

0.2

0.3

0.4

0.5

0 2 5 10
N

Bo
G

 te
am

 d
is

pe
rs

io
nV4/2

V4

V7

V10

V13

V4/2

V4

V7

V13
V10

FIGURE 3.4: Left: highest team fitness scores achieved in each evolutionary run, for
each task setup with varying task difficulty (prey’s vision range – V), and a varying
number of random collaborators (N). The V4/2 setup uses only two predators, while
the other setups use three predators. Right: behavioural dispersion of the best-of-
generation (BoG) teams. Standard error bars are shown.

with N . The results show that using random collaborations can significantly im-
prove the performance of fitness-based coevolution in the two-population setup
(V4/2, p = 0.005, Kruskal-Wallis test), with respect to the highest team fitness
scores achieved. This result is coherent with previous studies performed with two-
population setups. The results obtained in the three-agent setups, however, reveal
a substantially different trend. In V7, no significant differences in the performance
were found (p = 0.389, Kruskal-Wallis), and in V4, V10 and V13, increasing the num-
ber of collaborations can actually result in a lower performance (p = 0.019, p < 0.001,
and p = 0.006 respectively).

Figure 3.4 (right) shows the influence of N on behavioural convergence (as de-
fined in Section 3.3.1). In the setups V4, V10, and V13, increasing the number of col-
laborations led to an increase in convergence to specific region of the solution space
(p < 0.001, Kruskal-Wallis test), which in turn correlates with inferior performance.
In the other setups, the influence of N is less clear.

Our results suggest that the traditional methods of overcoming convergence to
stable states may not be effective in coevolutionary setups with more than two pop-
ulations, and with a large number of individuals. Panait, (2010) demonstrated that
a CCEA converges to the global optimum if a sufficient number of collaborations are
used to evaluate each individual. An insufficient number of random collaborations
might lead to poor fitness estimates that can result in convergence to suboptimal
solutions. A sufficient number of random collaborations is, however, highly problem-
dependent (Panait, 2010). As the number of possible collaborations increases expo-
nentially with the number of populations and the number of individuals, the col-
laborations required to obtain a proper estimate of an individual’s fitness may also
increase significantly, maybe even exponentially. Unfortunately, our results do not
provide a definite answer to this question, as exponentially increasing the number of
collaborations is typically not computationally feasible in the domain of embodied
multiagent systems.

3.4.5 Novelty-driven Coevolution

In this section, we analyse how novelty-driven cooperative coevolution can over-
come the problem of premature convergence. We compare fitness-driven coevolu-
tion (Fit) with team-level novelty (NS-Team), individual-level novelty (NS-Ind), and

54 Chapter 3. Overcoming Premature Convergence

a combination of the two (NS-Mix). In the novelty-based approaches, a multiobjec-
tive algorithm, NSGA-II (Deb et al., 2002), is employed to combine the novelty and
fitness objectives, as described in Section 3.2. Based on the previously discussed re-
sults, we did not use random collaborations in any of the experimental setups: each
individual is evaluated together with the individuals of the other populations that
obtained the highest fitness scores in the previous generation. Three predators were
used in all experiments.

Overcoming premature convergence

Figure 3.5 (left) shows the highest team fitness scores achieved with each method,
for each level of task difficulty. Figure 3.5 (right) shows the behavioural dispersion
of the best-of-generation teams, which, as discussed above, can be a good indicator
of premature convergence. Figure 3.6 shows the highest fitness score achieved at
each generation, averaged over the 30 evolutionary runs.

0.0

0.5

1.0

1.5

2.0

4 7 10 13
V

H
ig

he
st

 te
am

 fi
tn

es
s

Bo
G

 te
am

 d
is

pe
rs

io
n

0.0

0.1

0.2

0.3

0.4

0.5

4 7 10 13
V

Fit

NS-Team

NS-Ind

NS-Mix

NS-Mix

NS-Team

Fit

NS-Ind

FIGURE 3.5: Left: Highest team fitness scores achieved in each evolutionary run with
the different methods, for each task setup with varying task difficulty (V). Right: Be-
havioural dispersion of the best-of-generation teams. Standard error bars are shown.

V4 V7

V10
0.0

0.5

1.0

1.5

2.0

0 100 200 300 400 500 0 100 200 300 400 500
Generation

Fit

NS-Team

NS-Ind

NS-Mix

V13

0.0

0.5

1.0

1.5

2.0Te
am

 fi
tn

es
s

FIGURE 3.6: Performance of fitness-based evolution and the novelty-based ap-
proaches in each task setup. The plots show the highest team fitness scores achieved
so far at each generation, averaged over 30 runs for each method. The grey areas
depict the standard error.

3.4. Evaluation in the Predator-prey Task 55

As discussed in the previous section, the performance of fitness-driven coevo-
lution drastically decreases as the difficulty of the task is increased. NS-Team, on
the other hand, can consistently evolve effective solutions (fitness > 1.0) in all task
setups. The average team fitness of the best solutions evolved by NS-Team is signif-
icantly superior to the solutions evolved by Fit in all setups except the easiest one
(adjusted2 p < 0.001, Mann-Whitney test). NS-Team was clearly the highest per-
forming approach among the novelty variants, while NS-Ind displayed the lowest
performance. NS-Ind could not consistently evolve effective solutions, even in the
easiest task setup, and was significantly inferior to all other novelty-based meth-
ods (adjusted p < 0.001). The performance of NS-Mix was significantly superior to
NS-Ind in all setups, but it was inferior to NS-Team (adjusted p < 0.01). NS-Team
could also achieve higher quality solutions earlier in the evolutionary process, see
Figure 3.6.

As the results in Figure 3.5 (right) show, both NS-Team and NS-Mix were able
to overcome the issue of premature convergence to stable states. In Figure 3.7, we
show the dispersion patterns of the best-of-generation teams, for a representative
evolutionary run of each setup. Although NS-Team can still get attracted to low-
quality regions of the collaboration space (especially in V10 and V13), it is ultimately
capable of escaping these regions, and can reach high-quality collaborations. NS-Ind,
on the other hand, was mostly ineffective. Rewarding novel individual behaviours
was not an effective strategy to avoid premature convergence to narrow regions of
the team behaviour space.

Exploration of the behaviour space

We resorted to the dispersion measures that use all teams (all team dispersion) and all
individuals (individual dispersion), see Section 3.3.1, to better understand the differ-
ence between the proposed novelty search implementations. The results are shown
in Figure 3.8. Fitness-driven coevolution always displays significantly inferior de-
grees of dispersion (adjusted p < 0.001, Mann-Whitney test) when compared to
NS-Team, both in terms of the dispersion of team behaviours (Figure 3.8 left), and in-
dividual behaviours (Figure 3.8 right). These results confirm the attraction of fitness-
based coevolution to stable states, already discussed above. Novelty-driven coevo-
lution (NS-Team) displays substantially different evolutionary dynamics, and does
not seem to converge to specific regions of the collaboration space. It explores a
much wider range of collaborations (team behaviours), and can reach more collabo-
ration regions associated with high-quality behaviours.

As previously mentioned, the performance of individual-level novelty (NS-Ind)
was substantially inferior to NS-Team, failing to achieve effective solutions across all
task setups. As the results in Figure 3.8 (right) show, NS-Ind is effective in discover-
ing a reasonable diversity of agent behaviours, when compared to NS-Team and Fit
(adjusted p < 0.001). However, this diversity of agent behaviours does not translate
into the discovery of novel collaborations (Figure 3.8, left). The individual novelty
objective is not aligned with the team novelty objective, despite the similarity in the
dimensions of the individual-level and team-level behaviour characterisations (see
Table 3.1). Cooperation is not directly taken into account in NS-Ind, which results in
poorly performing joint solutions.

The set of team behaviours discovered by NS-Ind was the least diverse, among
the considered novelty-based treatments (p < 0.001). To directly encourage some

2When multiple comparisons within the same set of results were made, the p-values were adjusted
with the Holm-Bonferroni correction.

56 Chapter 3. Overcoming Premature Convergence

0.5 1.0 1.5
Fitness First generation Highest scoring team

NS−Team, V4
F=1.80, D=0.42

NS−Team, V7
F=1.77, D=0.41

NS−Ind, V10
F=1.72, D=0.53

NS−Team, V13
F=1.62, D=0.53

NS−Ind, V4
F=0.67, D=0.40

NS−Ind, V7
F=0.34, D=0.22

NS−Team, V10
F=0.28, D=0.15

NS−Ind, V13
F=0.28, D=0.15

NS−Mix, V4
F=1.76, D=0.46

NS−Mix, V7
F=0.99, D=0.56

NS−Mix, V10
F=1.37, D=0.46

NS−Mix, V13
F=1.21, D=0.38

FIGURE 3.7: Behaviour of the best-of-generation teams in representative evolution-
ary runs. The behaviour space was reduced to a two-dimensional space with Sam-
mon mapping.

degree of exploration of team behaviours, we also proposed NS-Mix: a combination
of NS-Team and NS-Ind where the team novelty objective is added to the individual
novelty and team fitness objectives. NS-Mix increased both the team and individual
behavioural diversity when compared to NS-Ind. The diversity of team behaviours,
however, was still significantly inferior to NS-Team (p < 0.001).

The results obtained with NS-Ind and NS-Mix suggest that favouring diversity
of individual agent behaviours can actually be harmful. As each separate popula-
tion is encouraged to constantly evolve towards individual behavioural novelty, it
might be hard to form effective collaborations, as the individuals of a population do
not have neither enough time nor incentive to adapt to the other populations. This
evolutionary dynamic is contrary to what occurs in NS-Team, where each popula-
tion can specialise in one area of the agent behaviour space at a time, thus allowing

3.4. Evaluation in the Predator-prey Task 57

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.2

0.3

0.4

0.5

0.6

0.7

4 7 10 13
V

Al
l t

ea
m

 d
is

pe
rs

io
n

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.3

0.4

0.5

0.6

4 7 10 13
V

In
di

vi
du

al
 d

is
pe

rs
io

n

Fit

NS-Team
NS-Ind

NS-Mix

NS-Team
NS-Mix

Fit
NS-Ind

FIGURE 3.8: Analysis of team behaviour dispersion, considering all the evolved
teams (left), and individual behaviour dispersion (right), with each evolutionary
treatment, for task setups with varying difficulty (V).

a better adaptation of the populations to each other. Overall, we showed that for the
purpose of achieving effective solutions, novelty search with team-level characteri-
sations was the most effective method of introducing novelty search in cooperative
coevolutionary algorithms.

3.4.6 Solution Diversity

Besides the ability of overcoming premature convergence, novelty search has been
shown capable of discovering a wide range of solutions for a given task (Gomes
et al., 2013; Lehman and Stanley, 2011b). In this section, we present a qualitative
analysis of the exploration of the behaviour space and diversity of solutions evolved.
To make a fair comparison between the diversity of solutions evolved, we used the
task setup with three predators and V = 4, since this was the only setup where Fit
and NS-Team achieved similar team fitness scores (Figure 3.5).

The four dimensions of the behaviour characterisation were reduced to two di-
mensions using a Kohonen self-organising map in order to obtain a visual repre-
sentation of the team behaviour space exploration (see Section 3.3.1). The trained
Kohonen map is depicted in Figure 3.9 (top), and in Figure 3.9 (bottom), we show
the behaviour exploration in a typical evolutionary run of Fit and NS-Team.

As discussed in Section 3.4.5, fitness-driven coevolution often explores a rela-
tively narrow region of the behaviour space (corresponding to the top-right corner
of the map, Figure 3.9), and converges to solutions in regions (10,9) and (10,8) (Fig-
ure 3.9) in all evolutionary runs. NS-Team evolves individuals that cover a wider
range of behaviour regions, and can find diverse high-quality solutions. These re-
sults are consistent with the exploration measures in Section 3.4.5. To confirm the
diversity of solutions, we inspected the highest scoring solutions found in the high-
quality behaviour regions. Figure 3.10 depicts typical movements of the predators
and the prey in the different solutions. It is noteworthy that, for this task difficulty
level (V = 4), NS-Team discovered solutions where only two predators actually chase
the prey (see for instance regions (8,1) and (10,2)), which highlights the diversity of
team behaviours that NS-Team can evolve.

58 Chapter 3. Overcoming Premature Convergence

Number of times the
prey was captured

Final distance of
predators to prey

Average
predator dispersion Time elapsed

0%

1%

2%

3%

4%

>5%

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

Fit NS-Team
Proportion of
individuals:

FIGURE 3.9: Top: trained Kohonen map, where each unit represents a region of the
team behaviour space. The high-quality behaviour regions (where the prey is caught
most of the times) are found along column 10 and near it. Bottom: team behaviour
exploration in a typical evolutionary run of fitness-based coevolution and NS-Team,
with the easiest task setup (V4). The darker a region, the more individuals were
evolved belonging to that behaviour region.

(8,1) (10,2) (10,4) (10,6)

(10,7) (10,8) (10,9) (9,10)

FIGURE 3.10: Examples of solutions evolved by NS-Team in the V4 task setup, found
in the behaviour regions associated with high-quality solutions (the numbers indi-
cate the coordinates in the plots in Figure 3.9). The three preys (red) start at the top
of the arena, and the prey (blue) starts in the centre.

3.4. Evaluation in the Predator-prey Task 59

3.4.7 Scalability with Respect to Team Size

We conducted evolutionary runs in setups with between two and seven predators
to assess the scalability of NS-Team with respect to the number of populations, see
Figure 3.11 (left). To assess if NS-Team is able to take advantage of the higher number
of available agents, we analyse how many predators actually participate in catching
the prey, compared to the total number of predators. We consider a predator as
participant if it is near the prey (within 1.5 × V) in the moment the prey is caught,
as the predators typically surround the prey in order to catch it (see for instance
Figure 3.10). Figure 3.11 (right) shows the mean number of participant predators in
each setup, considering the best-of-generation individuals only.

0.0

0.5

1.0

1.5

2.0

4 7 10 13
V

H
ig

he
st

 te
am

 fi
tn

es
s

P2

P3
P5
P7

1

2

3

4

5

6

4 7 10 13
V

M
ea

n
nu

m
be

r o
f p

ar
tic

ip
an

ts

P2

P3

P5

P7

FIGURE 3.11: Left: Highest team fitness scores achieved with NS-Team in task setups
with multiple combinations of number of predators and prey vision range V . Right:
Mean number of participant predators in the best-of-generation solutions evolved
in each setup.

As the results in Figure 3.11 (left) show, adding more predators to the system
never negatively impacts the performance of NS-Team. In the most challenging se-
tups, V10 and V13, adding more agents always resulted in a significant improvement
of the team fitness scores achieved by NS-Team (p < 0.05, Mann-Whitney). The re-
sults in Figure 3.11 (right) confirm that the highest scoring solutions take advantage
of the higher number of predators available, even though a smaller number of agents
is often enough to solve the task. For a given task difficulty level (V), adding more
predators always resulted in a significantly higher number of participant predators
(p < 0.001). Overall, our results suggest that NS-Team can scale with the number of
populations – it performed well with up to seven populations, and was able to take
advantage of all or most of the agents available.

3.4.8 Combination of Novelty and Team Fitness

In all the experiments described so far in this section, the novelty-based approaches
always consisted of one or two novelty objectives combined with the team fitness
objective through a multiobjective algorithm, as described in Section 3.2. This choice
was based on previous findings that show that the combination of novelty and
fitness is the most effective way of applying novelty search in optimisation prob-
lems (Gomes et al., 2015c; Lehman et al., 2013). Nevertheless, a number of previous
works also show that, in some situations, novelty search alone might suffice to solve
challenging tasks (Gomes et al., 2013; Lehman and Stanley, 2011a). In this case, the
only drive in the evolutionary process is behavioural novelty and the quality of the
evolved solutions is completely ignored.

60 Chapter 3. Overcoming Premature Convergence

In this section, we evaluate the necessity of combining novelty with team fitness.
We only focus on NS-Team, since it is clearly the best performing approach. We
introduce NS*-Team, which is implemented similarly to NS-Team (see Algorithm 2),
with the following differences:

1. The selection score of each individual is simply the team novelty score that
individual obtained – the behavioural novelty of the team with which the in-
dividual was evaluated.

2. The representative of each population is the individual that obtained the high-
est novelty score in the previous generation, or a random one in the first gen-
eration. We chose the most novel individual as the representative in order to
avoid introducing any biases from the fitness function in the evolutionary pro-
cess.

In Figure 3.12, we compare NS-Team with NS*-Team, and present fitness-driven
coevolution as baseline. We use different task difficulty levels (V), and the number
of predators is always three. The results show that the performance of pure novelty
search (NS*-Team) is significantly inferior to the multiobjectivisation of novelty and
team fitness (NS-Team) across all task setups (p < 0.001, Mann-Whitney). Nonethe-
less, it is noteworthy that the performance of NS*-Team was never significantly in-
ferior to fitness-driven coevolution, and actually managed to achieve a significantly
higher performance in the V7 and V10 task setups (p < 0.001). As novelty search
encourages the exploration of behaviour regions that have not been visited so far,
the coverage of the behaviour space is greater, and it is thus more likely to discover
solutions in behaviour regions associated with high fitness scores. Our results thus
suggest that novelty-driven coevolution can achieve high-quality cooperative solu-
tions without explicitly looking for them in the first place, which is consistent with
previous non-coevolutionary novelty search studies (Gomes et al., 2013; Lehman
and Stanley, 2011a).

0.0

0.5

1.0

1.5

2.0

4 7 10 13
V

H
ig

he
st

 te
am

 fi
tn

es
s

Bo
G

 te
am

 d
is

pe
rs

io
n

0.2

0.3

0.4

0.5

0.6

0.7

4 7 10 13
V

Al
l t

ea
m

 d
is

pe
rs

io
n

NS-Team

NS*-Team

Fit

NS*-Team

NS-Team

Fit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4 7 10 13
V

NS-Team

NS*-Team

Fit

FIGURE 3.12: Comparison of pure novelty search (NS*-Team) and the multiobjectivi-
sation of novelty and team fitness objectives (NS-Team). Left: highest team fitness
scores achieved in each evolutionary run, with each approach and in each task setup.
Middle: behavioural dispersion of the best-of-generation teams. Right: behavioural
dispersion of all the evolved teams.

The results in Figure 3.12 (middle) show that pure novelty search is effective in
avoiding convergence to stable states across all setups, and can find a good diversity
of team behaviours (Figure 3.12, right). The lack of a team fitness objective, however,
makes the behavioural exploration rather ineffective: in the more demanding task
setups, pure novelty search fails to reach the high-quality regions of the collaboration
space.

3.5. Validation with the Cooperative Foraging and Herding Tasks 61

3.5 Validation with the Cooperative Foraging and
Herding Tasks

We evaluate the proposed approaches in two additional robotics tasks, the coop-
erative foraging task and the herding task, to assess the general applicability of
novelty-driven cooperative coevolution. These tasks require more complex neural
controllers than the predator-prey task (Section 3.4), as the agents have a signifi-
cantly higher number of sensors and effectors. To deal with this higher complexity,
we use the NEAT algorithm (Stanley and Miikkulainen, 2002) to evolve the neural
controllers for the agents.

3.5.1 Cooperative Foraging Task Setup

The cooperative foraging task requires a team of two agents to find and collect items
in the environment. The two agents are simultaneously needed to collect each item,
with each one using a different actuator (each agent can only use one actuator at a
time). Behaviour specialisation and cooperation in the team is therefore required to
solve the task. This task is inspired by collective foraging tasks commonly studied
with both homogeneous (Bayındır, 2016) and heterogeneous (Nitschke et al., 2010)
multiagent systems. This task is challenging because the agents must find each other
in the environment, then they need to find the items, and complement each other to
successfully collect them.

The task environment is depicted in Figure 3.13 (left), and the experimental pa-
rameters are listed in Appendix A.3. Eight items are placed randomly inside an
arena bounded by walls. The two agents start in random locations and with ran-
dom orientations. Each agent has the following sensors: (i) two short-range sensors
(c1,2) to detect collisions, (ii) three sensors for the detection of items (r1..3), (iii) three
sensors for the detection of the other agent (d1..3), and (iv) one sensor that returns
the type of the actuator currently used by the nearby agent. Two outputs control
the linear speed and turning angle of the agent, and two other outputs determine
which item collection actuator should be active (or none). When an item collection
actuator is active, the agent remains still. To collect an item, the two agents need
to be simultaneously over the item, with one agent having its type 1 actuator active,
and the other agent the type 2 actuator. The item disappears from the environment
when it is collected.

The fitness function Fr corresponds to the number of items collected during the
simulation trial. The behaviour characterisations are listed in Table 3.2. Each team
of individuals is evaluated in ten independent simulation trials.

3.5.2 Herding Task Setup

In the herding task (Potter et al., 2001), a group of shepherds must drive one or more
sheeps into a corral. Additionally, foxes can also be present, which try to capture
the sheep, and must be kept away by the shepherds. In our task setup, there are
four shepherds, one sheep, and two foxes. As shown by Potter et al., (2001), the
presence of foxes increases the number of skills required to solve the task, and as
such behavioural specialisation within the shepherds group might be required to
solve the task. Only the controllers for the shepherds are evolved. The shepherds
are physically homogeneous.

The initial conditions of the herding task are depicted in Figure 3.13 (right). Each
fox is placed randomly at the right side of the arena. The shepherds and the sheep

62 Chapter 3. Overcoming Premature Convergence

Sheep

Shepherds

Fox 1

Fox 2

C
o
rr

a
l

Agent 1

Agent 2

Item

s1

s2

s3

s4

A

d1/r1

d2/r2

d3/r3

c2c1

FIGURE 3.13: Left: an example of the initial conditions in the cooperative foraging
task. Both agents have the same sensor and effector setup, although the setup is
only shown for Agent 1. Right: initial conditions in the herding task. The shepherds
start in a linear formation. In the figure on the right, we have moved the top-most
shepherd to show the sensor setup. The two foxes are placed randomly along the
respective line segment.

TABLE 3.2: Behaviour characterisations used in the cooperative foraging task. All
means are taken over the simulation time, and all features are normalised to the
range [0,1].

Team-level characterisation βr(t) Individual-level characterisation βr(a)

.Mean distance of each agent to the
nearest item, averaged over the 2 agents

.Mean distance between a and the nearest
item

.Mean movement speed, averaged over
the 2 agents

.Mean movement speed of a

.Mean distance between the agents .How long the type 1 actuator was
activated by a

.Number of items collected .How long the type 2 actuator was
activated by a

have fixed initial positions. Each shepherd has the following sensors: (i) four sensors
that return the distance of the nearest shepherd (s1..4); and (ii) eight sensors that
return the distance and relative orientation of the sheep, the two foxes, and the centre
of the corral. The two outputs control respectively the linear speed and turning angle
of the shepherd.

When a shepherd approaches the sheep or one of the foxes (distance inferior to
the action range A), the sheep/fox moves away from that shepherd. The sheep is
otherwise passive. The active behaviour of the foxes is preprogrammed: each fox
tries to intercept the sheep by estimating its future position and by heading in that
direction. A trial ends when the sheep enters the corral or is captured by a fox. The
experimental parameters of the task and the movement equations for the sheep and
foxes are listed in Appendix A.4.

The fitness function rewards the shepherds for getting the sheep closer to the
corral, and in case the sheep is successfully corralled, for the amount of time it took:

Fh =

{
2− τ/T if sheep is corralled
max(0, 1− df/di) otherwise

, (3.4)

3.5. Validation with the Cooperative Foraging and Herding Tasks 63

where τ is the number of time steps elapsed, T is the maximum trial length, df is
the final distance of the sheep to the corral, and di is the initial distance. The team-
level behaviour characterisation βh(t) describes the effects of the shepherds on the
sheep, while the agent-level characterisation βh(a) describes the role of shepherd,
see Table 3.3.

TABLE 3.3: Behaviour characterisations used in herding task. All means are taken
over the simulation time, and all features are normalised to the range [0,1].

Team-level characterisation βh(t) Individual-level characterisation βh(a)

.Final distance of the sheep to the corral .Mean distance of a to the sheep

.Mean distance of the sheep to the border
of the arena

.Mean distance of a to the corral

.Mean distance between the sheep and
the foxes

.Mean distance of a to Fox 1

.Trial length .Mean distance of a to Fox 2

3.5.3 Evolutionary Setup

NEAT (Stanley and Miikkulainen, 2002) is used to evolve the neural network con-
trollers (see Section 2.2). The parameters of the NEAT algorithm were the same for
both tasks, and are listed in Appendix A.1. Novelty-driven cooperative coevolution
was implemented over NEAT as described in Section 3.2, and with the same param-
eter values as the predator-prey experiments. In order to implement the NSGA-II
algorithm in NEAT, the individuals were scored according to the Pareto front they
belong and crowding distance, respecting the original NSGA-II ranking (Deb et al.,
2002), and the selection and speciation processes relied on these scores (see Ap-
pendix A.1 for details).

3.5.4 Results

Figure 3.14 summarises the highest team fitness scores achieved in each evolution-
ary run, for each method and each task. Overall, the results obtained in the two
tasks are consistent with the results obtained with the predator-prey task, presented
in Section 3.4. In the herding task, Fit displays a very poor performance, and the best
solutions consistently failed to drive the sheep towards the corral. In the cooperative
foraging task, the performance of Fit displayed a very high variability: some runs
achieved good solutions, where a reasonable number of items is collected, while
others failed completely, with not a single item collected. In both tasks, NS-Team
significantly outperforms Fit (Mann-Whitney test, adjusted p < 0.001). In the herd-
ing task, NS-Team consistently evolved solutions where the sheep was corralled (fit-
ness above 1), and in the cooperative foraging task it consistently evolved solutions
where at least three items were collected.

The relative performance of the novelty variants is also similar to the previous
results. Novelty with team-level characterisations (NS-Team) displayed the highest
performance in the cooperative foraging task (p < 0.01), and a similar performance
to NS-Mix in the herding task (p = 0.35). Novelty based on individual-level charac-
terisations (NS-Ind) was always significantly inferior to NS-Team (adjusted p < 0.05).
The herding task was the only one where NS-Mix was able to match the performance
of NS-Team. One possible reason for this result is that the herding task requires di-
vision of labour, rather than tight cooperation between the agents: each agent can

64 Chapter 3. Overcoming Premature Convergence

●

●

●

●

●
●

●

● ●

●●

0.0

0.5

1.0

1.5

Fit
NS-Team

NS-Ind
NS-Mix

Te
am

 fi
tn

es
s

0

1

2

3

4

5

Fit
NS-Team

NS-Ind
NS-Mix

Te
am

 fi
tn

es
s

Cooperative foraging task

Herding task

0.0

0.5

1.0

1.5

0 100 200 300 400 500
Generation

0

1

2

3

4

0 100 200 300 400 500
Generation

Fit

NS-Team

NS-Ind

NS-Mix

Fit

NS-Team

NS-Ind

NS-Mix

FIGURE 3.14: Left: highest team fitness scores achieved with each method and task.
Each treatment was repeated in 30 independent evolutionary runs. The whiskers
represent the highest and lowest value within 1.5 IQR. Right: highest fitness scores
achieved so far at each generation, averaged over the 30 evolutionary runs.

perform its subtask independently, without relying on other agents, for example
chasing one specific fox, or attempting to corral the sheep.

The analysis of the best-of-generation (BoG) teams (Figure 3.15) reveals that Fit
fails in the herding task because it strongly converges to a very narrow region in the
team behaviour space. In the cooperative foraging task, the problem of premature
convergence is not so severe, as evidenced by the relatively high levels of BoG team
dispersion, see Figure 3.16. The performance of Fit was, however, significantly infe-
rior to the other methods that obtained similar values of BoG team dispersion. The
results in Figure 3.15 (top) suggest an explanation for this phenomenon: although
Fit achieves a fair amount of behavioural exploration, the exploration is focused on a
region that is distant from high-quality solutions (bottom-right corner of the space).

In both tasks, NS-Team and NS-Mix display the highest levels of team behaviour
dispersion, considering all teams (p < 0.001). NS-Ind has relatively high levels of in-
dividual behaviour dispersion in both tasks, but they neither translate into a higher
diversity of team behaviours, nor the achievement of higher quality solutions.

3.6 Discussion

Premature convergence to stable states Our results obtained with a simple genetic
algorithm in the predator-prey task first showed that fitness-based coevolution (Fit)
often fails as the task becomes more complex. The populations often converge to
suboptimal equilibria, and therefore fail to achieve effective solutions for the task.
In Section 3.5, we tried fitness-based coevolution with a more elaborate neuroevolu-
tion algorithm — NEAT, that sustains high genetic diversity in the populations. We

3.6. Discussion 65

Fit NS−Team NS−Ind NS−Mix

0.4 0.8 1.2 1.6
Fitness

Cooperative foraging task

Herding task

First generation Highest scoring team

1 2 3 4
Fitness First generation Highest scoring team

Fit NS−Team NS−Ind NS−Mix
F=1.48, D=0.32

F=4.88, D=0.29

F=2.16, D=0.24 F=3.76, D=0.34

F=0.39, D=0.03 F=1.70, D=0.41 F=1.42, D=0.12 F=1.62, D=0.28

FIGURE 3.15: Behaviour of the best-of-generation teams in representative evolu-
tionary runs. The behaviour space was reduced to a two-dimensional space with
Sammon mapping.

0.0

0.2

0.4

0.6

M
ea

n
di

sp
er

si
on

0.0

0.1

0.2

0.3

M
ea

n
di

sp
er

si
on

Method

Fit

NS-Team

NS-Ind

NS-Mix

BoG team
dispersion

All team
dispersion

Individual
dispersion

BoG team
dispersion

All team
dispersion

Individual
dispersion

Cooperative foraging task Herding task

FIGURE 3.16: Mean dispersion of the best-of-generation teams, team behaviour ex-
ploration, and individual behaviour exploration (see Section 3.3.1) for each evolu-
tionary setup. The respective standard error bars are shown.

experimented with two additional tasks: cooperative foraging and herding. Even
with higher genetic diversity in the populations, fitness-based coevolution often con-
verged prematurely in these tasks. As previous works have shown (Panait et al.,
2006b; Wiegand, 2003), premature convergence is not necessarily caused by lack of
genetic diversity, but by a strong attraction to stable states: populations can become
over-adapted to one another. The issue is not related to the evolutionary algorithm
itself, but to the way the population individuals are rewarded in a coevolutionary
algorithm.

As suggested in previous works (Panait, 2010), we increased the number of col-
laborations with which an individual is evaluated, to increase the likelihood of con-
vergence to (near-)optimal solutions. This strategy, however, only worked in the

66 Chapter 3. Overcoming Premature Convergence

two-population setup. In the three-population setups, increasing the number of ran-
dom collaborations failed to improve the performance of fitness-based coevolution.
Our results showed that increasing the number of collaborations does not help the
coevolutionary algorithm to escape stable states.

Novelty-driven cooperative coevolution To overcome convergence to suboptimal
equilibria, we proposed to add a novelty score in the evaluation of the individu-
als of each population. We assessed three cooperative coevolutionary algorithms
based on novelty search, each with a different way of computing the novelty scores:
(i) novelty based on team-level behaviour characterisations (NS-Team), (ii) based on
agent-level characterisations (NS-Ind), and (iii) a combination of the two (NS-Mix).
In all methods, we used a multiobjective algorithm, NSGA-II, to combine the nov-
elty and team fitness objectives. In the case of NS-Mix, three objectives were used:
individual novelty, team novelty, and team fitness.

Our results clearly revealed that the most effective way of introducing novelty
search in CCEAs is NS-Team. The relative performance of the novelty-based methods
was consistent across all the considered task setups: NS-Team > NS-Mix > NS-Ind.
The algorithms based on individual-level evaluations (NS-Ind and NS-Mix) could
evolve more diverse agent behaviours, but typically this did not translate to more
diverse or effective team solutions. Our results suggest that encouraging novelty of
agent behaviours can actually be harmful for the adaptation of the populations to
one another. NS-Ind was always the lowest performing novelty-based method.

When compared to fitness-driven coevolution, NS-Team evolved significantly
better solutions for almost all task setups. The more challenging the task setup
was, the greater the performance difference between NS-Team and Fit, as NS-Team
successfully managed to avoid convergence to stable states. NS-Team could also dis-
cover a greater diversity of team behaviours in a single evolutionary run. In the
predator-prey task, we showed that NS-Team evolved a diverse set of solutions for
the task, whereas Fit tended to focus on a single class of solutions.

Scalability with the number of agents In the predator-prey task, we evaluated
NS-Team in task setups varying from two to seven agents, with each agent evolving
in a separate population. NS-Team scaled well with the number of agents, evolving
good solutions for all team sizes. For the same task setup, increasing the number
of predators never harmed the performance of NS-Team. Our analysis revealed that
NS-Team can take advantage of most of the available agents to solve the task, even
when a lower number of agents is actually enough, which suggests that NS-Team can
evolve cooperation for a relatively large number of agents.

In future work, we will evaluate the proposed approach with larger multiagent
systems. One concern is that with relatively large teams, one particular agent might
not have a significant impact in the behaviour of the team as a whole, thus resulting
in less accurate fitness and novelty gradients. In Chapter 6, we address this issue by
proposing the evolution of partially heterogeneous teams.

Parameter sensitivity and generalisation When using novelty-based techniques,
the experimenter must provide a behaviour similarity measure. For each of the con-
sidered tasks, we chose a small number of behavioural traits that intuitively de-
scribed the behaviour of the agents in the context of the task objective. The cho-
sen behavioural traits were based on systematically derived behaviour characterisations
(Gomes et al., 2014e): they were always directly observable in the task, and did

3.7. Summary 67

not require complex calculations and/or fine tuning. Although the definition of be-
havioural measures did not pose a problem in these tasks, we have shown, along
with other authors, that it is possible to avoid the use of manually specified be-
haviour measures by relying on generic measures (Gomes and Christensen, 2013;
Meyerson et al., 2016; Mouret and Doncieux, 2012, see Section 2.5.4).

Our tasks were based on two different neuroevolution algorithms: a simple ge-
netic algorithm with direct encoding and no crossover, and NEAT (Stanley and Mi-
ikkulainen, 2002), a neuroevolution algorithm with topology evolution, crossover,
and fitness sharing. Novelty-driven coevolution performed well with both algo-
rithms, and the relative performance of the methods was consistent, which suggests
that the proposed methods are independent of the underlying evolutionary algo-
rithm.

Besides the experiments reported in this chapter, we have also evaluated an early
version of novelty-driven cooperative coevolution in a keepaway soccer task (Gomes
et al., 2014a). In this task, we evolved a team of three keepers that have to cooperate
to keep the possession of the ball, against a pre-programmed taker that goes after it.
The evolved controllers were fixed-topology neural networks. We evaluated fitness
driven coevolution (Fit), and an early version of NS-Team and NS-Ind3. The results
were highly consistent with the experiments reported in this chapter: (i) NS-Team
achieved significantly higher fitness scores than Fit; (ii) NS-Ind yielded very poor
results; and (iii) NS-Team explored the team behaviour space much more than Fit
and NS-Ind.

3.7 Summary

In this chapter, we showed that rewarding individuals that cause novel team be-
haviours (NS-Team) is a promising approach to avoid convergence to suboptimal
equilibria. NS-Team consistently outperformed traditional fitness-driven coevolu-
tion across multiple task setups, achieving higher team fitness scores and a wider
diversity of effective solutions. The proposed approach only requires one collabo-
ration to evaluate each individual, which contrasts with previous approaches that
relied on using a large number of collaborations to overcome premature conver-
gence. NS-Team is therefore a convenient approach for overcoming premature con-
vergence in problem domains where the evaluations are costly, namely multirobot
systems. We also show that NS-Team is compatible with more than two populations,
contrasting with previous approaches that are studied only for two-population co-
evolutionary algorithms. In the following chapters, we will further assess NS-Team
by studying how it performs in significantly different domains: (i) a multirobot task
performed on real robots; and (ii) a multirobot task where radically different robot
types need to cooperate.

3Compared to the novelty-driven coevolution proposed in this chapter, the early versions proposed
in (Gomes et al., 2014a) had the following differences: (i) novelty was combined with fitness with a
linear scalarisation of the scores, with an equal weight of novelty and fitness; and (ii) two collaborations
were used to evaluate every individual, one formed by the highest scoring individuals of the other
populations, and other formed by randomly picked individuals of the other populations.

69

Chapter 4

Validation in a Real
Multirobot System

As discussed in Section 2.4.4, previous works that have applied CCEAs to the evolu-
tion of agent behaviours can be divided in three main categories (Panait and Luke,
2005a): (i) non-embodied agents, including static function optimisation (Potter and De
Jong, 1994) and evolutionary game theory (Wiegand et al., 2002); (ii) abstract em-
bodied agents, where the evolved agents are situated in an environment that they
sense and act in, but the agents are high-level abstractions and unrelated to any real
robotic platform (Potter et al., 2001; Yong and Miikkulainen, 2009), which includes
the experiments presented in the previous chapter; and (iii) simulated robotics tasks,
in which the evolved agents are modelled closely after a real robotic platform and
a real task environment (Nitschke, 2005a; Nitschke et al., 2012b). One notable cate-
gory missing from this list is real robotics tasks – tasks in which behavioural control
is evolved in simulation, and then transferred to a real robot team. While this re-
ality gap has been crossed using other evolutionary algorithms (Silva et al., 2016b),
in both single (Jakobi, 1997) and multirobot systems (Duarte et al., 2016b), to the
best of our knowledge, robotic control evolved with CCEAs has been confined to
simulation-based experiments up until now.

The reality gap (Jakobi, 1997) is a central issue with the simulate-and-transfer
approach. Controllers evolved in simulation can become ineffective once transferred
to the physical robots because of their exploitation of features of the simulated world
that are different or do not exist at all in the real world. Overall, the difficulty of
accurately simulating physical systems is well known in robotics (Matarić and Cliff,
1996). Differences between simulation and the real world include inaccurate sensor
modelling, and simulation-only artifacts caused by simplifications, abstractions, and
discreteness of physics implementations. In evolutionary robotics, the reality gap is
a frequent phenomenon and one of the main impediments for progress (Koos et al.,
2013). Validating evolutionary robotics techniques in real hardware is thus pertinent,
as it represents the ultimate test to their effectiveness (Silva et al., 2016b).

In this chapter, we extend the experiments presented in Section 3.4 to a real
robotic platform, with the objective of validating and comparing in a real system
both the standard fitness-driven CCEA as well as the proposed novelty-driven co-
operative coevolution approach. We present experiments where we evolved control
for an aquatic surface multirobot system that must perform a predator-prey task.
After evolving the controllers offline in simulation, the controllers are transferred to
the real robotic platform, and systematically evaluated in an outdoor environment.
The natural unpredictability associated with the aquatic environment (caused by in-
accurate robot motion, waves, currents, and so on) allow us to study transferability
in a realistic scenario, and understand how controllers evolved by cooperative co-
evolutionary algorithms are able to cope with noisy and stochastic conditions.

70 Chapter 4. Validation in a Real Multirobot System

4.1 Aquatic Predator-prey Task

In our aquatic predator-prey task, a team of three predators must cooperate to cap-
ture one escaping prey. Similarly to the task used in Section 3.4, only the controllers
of the team of predators are evolved, while the prey has a pre-specified fixed be-
haviour. We had to adapt the experimental setup in order to be compatible with
the limitations imposed by the aquatic environment and the real robots used. In
particular, the initial conditions are significantly more stochastic, as in an aquatic
environment it is not practical to initially place the predators at fixed locations (as
done in Section 3.4), and the predator robots have additional sensors that allow them
to sense the other predators, as relying on a fixed strategy to catch the prey (as pre-
viously done) would not be possible in such stochastic conditions.

In each trial, the three predators are placed in the centre of the arena, with ran-
dom positions and orientations (Figure 4.1a), while the prey is placed in a random
location away from the centre. A trial ends if a predator gets close to the prey (less
than 2 m), if the prey escapes the arena, or if the time limit of 75 s is reached. The
prey tries to escape in the opposite direction of the closest predator, if that preda-
tor is closer than 10 m. The prey can move up to the maximum possible speed of
the predators, meaning that the predators typically cannot outrun it. Cooperation
among the predators is therefore essential to capture the prey. The parameters of the
experimental setup are listed in Appendix A.5.

Prey placement

Arena boundaries

Predator
placement

Prey escape
distance

Capture
distance

(2m)

10m

20m

10m

75m

7
5

m

15m

(a) Setup of the simulated task.

r1

r2

r3

r4

r5

r6 yα
yd

Predator

Prey

(b) Predator sensory inputs.

FIGURE 4.1: Illustration of the task setup used for the evolutionary process, and the
predators’ sensory inputs (used both in simulation and in the real robots).

4.2 Robotic Platform

The experiments are based on an aquatic multirobot system (Costa et al., 2016)
that had been previously used in other evolutionary robotics studies (Duarte et al.,
2016a,b,d,e). Each robot (Figure 4.2) is a small (65 cm in length) differential drive
mono-hull robot, equipped with GPS and compass. The robots continuously broad-
cast their position to the neighbouring robots using Wi-Fi. This data is then parsed
locally by the robots to calculate the sensory inputs. The same robotic platform is

4.3. Evolutionary Setup 71

FIGURE 4.2: Photo of one robot
in the water. The robots are
autonomous surface vehicles
equipped with Wi-Fi for commu-
nication, and a compass and GPS
for localisation.

used for both the predator robots and prey robot. For practical reasons, the preda-
tors sense the prey the same way they sense each other, i.e., the prey robot also
broadcasts its position to the nearby predators. This allowed us to avoid hardware
challenges related to the detection of foreign objects on the water surface, which are
out of the scope of this study. Additional details of the robotic platform are presented
in Appendix A.5 and in (Costa et al., 2016).

Each predator robot relies on the following sensory inputs, which are calculated
from the location data received by the broadcasts of the other robots, and its own
position and orientation (Figure 4.1b):

Predator sensing (r1..6): Six inputs for detecting the other predators, corresponding
to six equally-sized circular sectors around the robot. Each input corresponds
to the distance to the closest predator in the corresponding sector, or the maxi-
mum value if no predator is present there.

Prey location (yα,d): Two inputs returning (i) the relative angle from the predator to
the prey (zero corresponds to straight ahead), and (ii) the normalised distance
from the predator to the prey. If the prey is not within sensing range, the
sensors return an angle of zero and the maximum distance.

The sensory input values (all scaled to [−1, 1]) are fed to the neural network con-
troller, which outputs the desired linear speed and angular velocity of the robot.
These two output values are then converted to left and right motor speeds and ap-
plied to the robot’s motors.

4.3 Evolutionary Setup

4.3.1 Simulation Approach

In order to ensure a successful transferability of the controllers from simulation to
reality, it is paramount to adequately configure the simulation environment in which
the controllers are evolved. A number of different approaches have been proposed
in the past to improve transferability (Silva et al., 2016b). One of the most widely
used approaches was proposed by Miglino et al., (1995), which consists of three
complementary techniques: (i) using samples from the real robots’ sensors to more
accurately model them in simulation, (ii) introducing a conservative form of noise
to promote the evolution of robust controllers, and (iii) continuing evolution in real
hardware to tune controllers to the differences between simulation and reality. The

72 Chapter 4. Validation in a Real Multirobot System

use of noise in simulation promotes the evolution of general and adaptive solutions,
therefore increasing the performance of transferred solutions (Jakobi, 1997; Miglino
et al., 1995). The introduction of noise is a computationally-effective way of pro-
moting the evolution of robust controllers, since it becomes more difficult to exploit
particular features of the simulator.

In this study, we followed the conservative noise approach as done in (Duarte et
al., 2016b). We used a two-dimensional simulation environment, where the robots
were abstracted as circular objects with a certain heading and position. The gen-
eral principle behind the simulation was to model the motion of the robots based on
real measurements taken in the water, but without including physics simulation and
fluid dynamics, which would have resulted in a complex and computationally ex-
pensive simulation environment. We injected considerable amounts of noise in the
sensors and actuators based on measurements taken from real robots, and the initial
task conditions were significantly varied in every simulation trial. Every team was
evaluated in 10 simulation trials.

The variation of the initial conditions (detailed below) accounts for the stochas-
ticity of the task, and the minor differences in hardware from robot to robot (caused
for example by different battery levels, motor conditions, and sensor calibrations).
The noise injected at every control step, on the other hand, accounts for the impreci-
sion of the real sensors and the uncertainty of movement in an aquatic environment.
The following parameters were varied during the simulation trials (see details in
Appendix A.5):

Initial conditions: the maximum speed of each motor was independently varied;
the compass sensor was slightly offset by a random amount; the prey’s escape
speed was set to 75% to 100% of the predators’ regular maximum speed; and
the initial positions and orientations of all robots were varied according to Sec-
tion 4.1.

Every control step: GPS and compass with reading errors according to the hard-
ware specification; the real motor output can be different from the desired
speed; and the prey’s movement direction varied slightly from the calculated
direction (away from the nearest predator).

It should be noted that the noise was not injected directly into the sensory inputs
and actuator outputs of the neural controller. Instead, it was injected on the simu-
lated hardware sensors and actuators, which in turn are closely dependent on the
inputs and outputs of the controller. This allowed us to model the noise in a way
that is more similar to the noise that affects the real robots.

4.3.2 Evolutionary methods

Both fitness-driven and novelty-driven cooperative coevolution followed the imple-
mentation used in the experiments in Section 3.5: the populations used NEAT (Stan-
ley and Miikkulainen, 2002) as the underlying neuroevolution algorithm, and in
novelty-driven coevolution the novelty scores are combined with the fitness scores
with a multiobjective Pareto ranking. The full list of parameters can be found in Ap-
pendix A.1. The fitness function is the same as the one used in the experiments in the
previous chapter, see Equation 3.3, as well as the team behaviour characterisation,
see Table 3.1.

4.4. Evolving and Identifying Diverse Solutions 73

4.4 Evolving and Identifying Diverse Solutions

4.4.1 Quality of Solutions

Each evolutionary approach was repeated in ten independent evolutionary runs. To
obtain a more accurate estimate of the evolved teams’ quality and behaviour, all the
best-of-generation teams (Definition 7) were re-evaluated a posteriori in 50 simulation
trials. The fitness scores achieved are shown in Figure 4.3. On average, the evo-
lutionary runs of Fit achieved a highest fitness score of 1.09 ± 0.10, and NS-Team
achieved 0.96 ± 0.20. While this difference was marginally significant (p = 0.043,
Mann-Whitney U test), both approaches managed to evolve high-quality solutions
with fitness scores above 1.0, meaning the prey was captured.

●

0.0

0.4

0.8

1.2

Fit NS−Team
Setup

0.0

0.4

0.8

1.2

0 50 100 150 200 250
Generation

Fit

NS−Team

Fi
tn

es
s

FIGURE 4.3: Left: highest fitness scores achieved with each method in each evolu-
tionary run. Right: highest fitness scores achieved so far at each generation, aver-
aged over the ten evolutionary runs for each method.

The high fitness scores and consistent results obtained with Fit suggest that pre-
mature convergence is not a significant issue in this task. This explains why Fit
slightly outperforms NS-Team with respect to the highest fitness scores achieved —
Fit can simply follow the fitness gradient, while NS-Team is simultaneously trying
to maximise the behavioural novelty objective. The potential advantages of using
NS-Team in this task are therefore restricted to the diversity of solutions.

4.4.2 Behavioural Diversity

We first analyse the behaviour exploration according to the measures proposed in
Section 3.3.1, see Figure 4.4. The results show that NS-Team achieved a significantly
higher behaviour exploration than Fit, considering all the teams evolved (p = 0.005,
Mann-Whitney), but the exploration considering only the best-of-generation teams
was not significantly different (p = 0.12). This last result supports the previous
conclusion that premature convergence is not a significant issue in this task – Fit is
able to successfully evolve good teams and progressively refine them, thus exploring
the behaviour space.

To visualise the diversity of behaviours evolved by each evolutionary approach,
we mapped the best-of-generation teams according to their behaviour characterisation
vector1, using a Kohonen map for reducing the dimensionality (see Section 3.3.1).

1The Kohonen map visualisation only used the best-of-generation teams since they were the only
ones that were re-evaluated in additional simulation trials after evolution. Given the highly stochastic
nature of this task, relying on the behaviours recorded during evolution for the selection and transfer
of a small number of solutions could yield inaccurate results.

74 Chapter 4. Validation in a Real Multirobot System

●

0.0

0.1

0.2

0.3

BoG team dispersion All team dispersion

D
iv

er
si

ty

Method Fit NS−Team

FIGURE 4.4: Analysis of the exploration of the behaviour space in the evolution-
ary runs, using the dispersion of the best-of-generation teams (Definition 8) and the
dispersion of all the evolved teams (Definition 9).

0% 5% 10% 15% 20%

Frequency:

Prey captured

Predator dispersion

Trial length

Final distance to prey

1

2

3

4

5

6

1 2 3 4 5 6

Fit

1

2

3

4

5

6

1 2 3 4 5 6

NS−Team

1

2

3

4

5

6

1 2 3 4 5 6

SOM of behaviour space

Fit1
1.23

NS2
0.89

NS1
1.17

NS3
1.10

NS4
0.98

Transferred team
Fitness score

FIGURE 4.5: Left: trained Kohonen map, where each node represents a region of
the team behaviour space. Middle and right: team behaviour exploration by the
two evolutionary approaches. The darker a region, the more of the evolved teams
belonged to it.

In Figure 4.5 we show the diversity of teams evolved in all the evolutionary runs
of each method. The results show that NS-Team could reach behaviour regions that
were never reached by Fit, which is consistent with the results reported in Chapter 3.
Based on these results, we then proceeded to select a diverse set of solutions to be
tested in the real robots. We selected different regions of the behaviour space where

4.5. Transferring the Teams to Real Robots 75

the prey capture rate was high, and identified the team belonging to each of those
regions that obtained the highest fitness score. We chose one team evolved by Fit,
as all the high-quality teams were found in the bottom-right corner of the map, and
four solutions evolved by NS-Team, from different regions of the map with high prey
capture values.

4.5 Transferring the Teams to Real Robots

The selected teams were then evaluated in the real multirobot system, using the
neural network controllers exactly as they had been evolved. The experiments were
performed in a semi-enclosed water body, see Figure 4.6. The task setup was similar
to the setup used during evolution (Section 4.1): the three predators were placed
close to the centre of the arena, and the prey was placed at approximately 25, 30, and
35 m away from the centre. Each team was assessed in three independent trials, with
each trial lasting for at most 100 s. The arena boundaries were 100×100 m, and the
prey moved at the maximum speed (the same as the predators’ maximum speed).
To compare the results of the real-robot experiments with simulation, the chosen
teams were re-evaluated in 500 simulation trials, using the same initial conditions as
the real-robot experiments. The fitness scores and behaviour features of the teams
operating in the real environment were computed using the GPS data logged by the
robots.

Predators

Prey

FIGURE 4.6: Photo of the real-robot experiments, at Parque das Nações, Lisbon,
Portugal, in a semi-enclosed area in the margin of the Tagus river.

In Figure 4.7 (Fitness), we compare the fitness scores obtained by the teams in
simulation and in the real robots. We additionally explore the diversity of team
behaviours by comparing the controllers’ performance in reality and in simulation
according to the behaviour features that were used in novelty-driven coevolution.
The results show that all teams except NS2 were able to capture the prey in the ma-
jority of the trials. The fitness scores obtained in the real experiments are similar to
the scores obtained in simulation, fitting in the distribution obtained in simulation.
These results are a first indication that the evolved controllers were generally able to
cross the reality gap successfully.

The effectiveness of the team behaviours was confirmed by analysing the traces
of the robots’ movement in the real-robot experiments, shown in Figure 4.8. The

76 Chapter 4. Validation in a Real Multirobot System

Environment:

Real (3 trials)

Simulated (500 trials)

Fitness score Behaviour: Prey captured Behaviour: Predator dispersion

Behaviour: Trial length Behaviour: Distance to prey

0.0

0.5

1.0

1.5

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.00

0.25

0.50

0.75

1.00

0.0

0.1

0.2

0.3

0.4

0.5

Fit1 NS1 NS2 NS3 NS4 Fit1 NS1 NS2 NS3 NS4
Controller

Sc
or

e

Fit1 NS1 NS2 NS3 NS4

FIGURE 4.7: Comparison of the fitness score and behaviour features obtained in the
real-robot experiments (asterisks) and in simulation (violin plots) in similar condi-
tions.

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●●

●

Starting positions

Final positions

Predators' path

Prey's path

10 meters

Fit1 NS1 NS2

NS3 NS4

FIGURE 4.8: Traces of one experimental trial (out of three) for each of the teams
evaluated in the real robots. Traces and videos of all real-robot experiments are
available online: https://doi.org/10.5281/zenodo.49582.

Fit1 and NS1 teams displayed a behaviour where the three predators would initially
spread and move towards the prey, each approaching the prey from a different direc-
tion. The behaviour of NS2 was similar to Fit1 and NS1, but the predator team dis-
persed more. The teams NS3 and NS4 displayed a significantly different behaviour:

https://doi.org/10.5281/zenodo.49582

4.6. Discussion 77

only two predators chased the prey, approaching it from opposite directions, while
the remaining predator would move away from the group. The observed robot
traces are consistent with the measured behavioural features (Figure 4.7), and con-
firm that novelty-driven coevolution was able to achieve a wide diversity of team
behaviours. For instance, it is possible to observe that NS3 and NS4 display a higher
dispersion and final distance to prey, which is explained by the fact that in these
teams, only two predators chase the prey. The differences and similarities between
the team behaviours observed in the real-robot experiments are consistent with the
behaviour map obtained in simulation (Figure 4.5).

Overall, despite the stochastic conditions of the aquatic environment, the preda-
tors displayed effective cooperation, and were consistently able to solve the task.
The team of predators would often fail to capture the prey in the first attempt, but
the team would then spread out and try to encircle the prey again. Moreover, robots
sometimes displayed temporary motor failures (see online videos), which did not
compromise the effectiveness of the team. These behaviours suggest that the teams
were not overfitted to the simulation environment, and could effectively adapt to
different scenarios.

4.6 Discussion

In this chapter, we validated novelty-driven cooperative coevolution in a task where
the controllers were evolved in simulation and then transferred to real robots, and
compared it with the traditional fitness-driven CCEA. The task was based on the
predator-prey task used in Chapter 3, with the necessary modifications for this spe-
cific environment and robots. The evolutionary processes were conducted exclu-
sively in simulation, and a number of high-fitness teams were then systematically
evaluated in real robots operating in a non-controlled outdoor aquatic environment.

The evolved teams generally transferred well to the real robots, successfully
crossing the reality gap. Out of the five teams tested, four teams could consistently
capture the prey, and obtained fitness scores very similar to those obtained in sim-
ulation. The cooperation between robots that was exhibited in simulation was also
observed in real robots, and the teams displayed robust behaviours that did not ap-
pear to be overfitted to the simulation environment. It should be noted, however,
that the task setup (including initial distance of predators to prey, arena size, and so
on) of the real-robot experiments was very similar to the task setup that was used in
the evolutionary process. Additional experiments would be required to assess if the
evolved behaviours can generalise to different task variants.

The successful transfer is especially notable given that we used low-fidelity sim-
ulator during evolution, and given the stochastic nature of the real task environment.
We encouraged the evolution of robust and transferable controllers by introducing
conservative amounts of noise and variations in the sensors and actuators of the
robots in simulation, and by using multiple trials to evaluate each solution, with
different initial conditions. The noise injected in the task also simulated small mor-
phological differences among the robots (such as different speeds), therefore encour-
aging the evolution of controllers that are robust to variations in the behaviour of
the team members. This strategy revealed to be successful in producing transferable
controllers; it was relatively simple to implement; and did not require additional
fine-tuning, as the noise parameters are based on the actuator/sensor errors that
were observed in the real robots or described in the hardware components’ specifi-
cation.

78 Chapter 4. Validation in a Real Multirobot System

Novelty-driven cooperative coevolution was able to produce a good diversity of
high-quality team behaviours for solving the task, which were identified following
a systematic approach: the behaviour space was divided in discrete regions using a
self-organised Kohonen map, and we then selected the highest-fit teams belonging
to different behaviour regions. The diversity of behaviours that was observed in
simulation was also present in the real multirobot system, which was confirmed
by both the observation of the robot trajectories, as well as the extracted behaviour
features.

4.7 Summary

We demonstrated that CCEAs can be successfully used to synthesise control for a
real multirobot system, operating in an environment outside controlled laboratory
conditions. Our experiments also demonstrated the potential of novelty-driven co-
operative coevolution in real robots, and confirmed it as a valuable approach to
evolve diverse team behaviours. Despite the large number of previous works that
have showed the potential of CCEAs for evolving heterogeneous multirobot sys-
tems, this work stands amongst the first to demonstrate this potential in real robots
and in a realistic environment. In the next chapter, we will validate CCEAs in an-
other prominent type of multirobot systems: morphologically heterogeneous sys-
tems.

79

Chapter 5

Morphologically Heterogeneous
Systems

One theoretical benefit of the CCEA architecture is that since populations are iso-
lated, it is possible for different populations to evolve radically different agents,
with genomes of different size, using different encodings, and even different ge-
netic operators. This possibility of arbitrary heterogeneity has, however, only been
exploited to a limited extent. In the domain of multirobot systems, most previous
works only use CCEAs to evolve controllers for behaviourally heterogeneous, but
morphologically homogeneous, multiagent systems, see Section 2.4.4. This means
that all agents in the system have a similar complexity, similar morphological capa-
bilities, and use the same genotype representation — the heterogeneity is exclusively
at the behavioural specialisation level.

There have only been a few reports of successful evolution of morphologically
heterogeneous systems, and in these studies, agents had only minor morphological
differences, for instance: we used a keepaway soccer task where agents have slightly
different moving and passing speeds (Gomes et al., 2014a); Yang et al., (2012) solved
a foraging task where similar agents have different movement speed and sensing
ranges; Blumenthal and Parker, (2004) solved a predator-prey task where the preda-
tors have slightly different linear and turning speeds; and Knudson and Tumer,
(2010) use a multi-rover target observation task where there the heterogeneity is ar-
tificial – there are two different robot types, and the robots can distinguish between
them, but all robots have the same capabilities.

In this chapter, we explore a higher degree of heterogeneity, evaluating for the
first time the potential of CCEAs to evolve control for multirobot systems where
there is a radical morphological heterogeneity within the team. In such morpho-
logically heterogeneous systems, robots have significantly different actuation and
sensing capabilities, and collaborate to take advantage of the collective set of capa-
bilities (Dorigo et al., 2013). Morphologically heterogeneous systems have shown
their value in many real-world domains of application, as discussed in Section 2.1.2.

A key element in the evolution of cooperative behaviours is synchronised learning
(Uchibe et al., 1998): populations should exhibit a mutual development of skills, in
order to avoid loss of fitness gradients and convergence to mediocre stable states, as
discussed in Section 2.4.2. One concern when applying CCEAs to such radically
heterogeneous systems is that since populations have to evolve largely different
controllers, with different complexity, synchronised learning might be less likely
to occur, potentially causing convergence to mediocre stable states and/or loss of
fitness diversity. In this chapter, we study this effect and how this issue can be mit-
igated. Our experiments are based on a simulated foraging task where a ground

80 Chapter 5. Morphologically Heterogeneous Systems

robot with very limited capabilities must cooperate with an aerial robot with a sig-
nificantly more complex sensor-effector configuration. We explore several task vari-
ants to study how the differences between the robots, regarding the skills that must
be evolved, and the difficulty in achieving cooperation, affect the performance of
cooperative coevolution. We assess how novelty-driven cooperative coevolution
(Chapter 3) can help mitigate this problem, and compare it with other competing
techniques.

5.1 Aerial-ground Foraging Task

We use a task based on the cooperative foraging task presented in Section 3.5.1. Un-
like the cooperative foraging task, however, the two robots have different capabil-
ities – one ground robot can capture the items, while the other robot (aerial) has
the capability to efficiently detect the items, see Figure 5.1. The ground robot has
significantly fewer sensory capabilities than the aerial robot (detailed below). The
two robots cannot communicate explicitly: they can only sense the relative position
of each other when in close proximity. To accomplish the task, the robots have to
establish a tight cooperation – the aerial robot must learn to find the ground robot,
and then guide it towards collectable items in the environment. Complementary, the
ground robot should follow the aerial robot and collect the items found.

FIGURE 5.1: Illustration of the aerial-ground foraging task, during task execution.
The red spheres are the items to be collected. One item is placed in each of the grey
zones. The blue cones depict the viewing range of the robots. The red circle around
the ground robot depicts the range of its item sensor.

5.1.1 Robot Configurations

Both robots have sensors modelled after a vertical camera sensor, facing up and
down for the ground robot and aerial robot, respectively. The camera has a field of
view of 60◦, and can detect objects up to a vertical distance of 250 cm, see Figure 5.1.
The camera image is not directly used by the robots’ evolved controller: the sensor
cone is divided in equally-sized sectors, and the value of each input is the presence

5.1. Aerial-ground Foraging Task 81

or distance of the object in the respective circle sector (Figure 5.2). The robots rely on
these camera-based inputs for detecting each other. In the case of the aerial robot,
camera-based inputs are also used to detect the items that must be collected. Only
the ground robot has the ability to collect items from the environment. To collect an
item, the robot simply has to pass over it. The ground robot is a small differential
drive robot, modelled after an e-puck (Mondada et al., 2009), while the aerial robot
is modelled after a quadcopter. The sensory inputs and actuators available to each
robot are listed in Table 5.1.

gi1-4

ga1

g
a
2

ga3

ga
4

ag1/ai1

ag
2 /ai2

ag
3
/a
i 3

ag4/ai4

ag
5 /ai5

ag
6
/a
i 6

acd

acα

FIGURE 5.2: Illustration of the robots’ sensors. See Table 5.1 for the sensors descrip-
tion. Note that the inputs ga, ag, and ai are modelled after a camera sensor, and
therefore its horizontal range varies depending on the aerial robot’s current altitude.

5.1.2 Task Variants

To study how cooperative coevolution is affected by differences in the learning speed
of the agents, and the difficulty of establishing cooperation, we rely on a number of
task variants in which different skills must be learnt by the aerial robot before it can
assist the ground robot in solving the task. In all task variants, six items are spread
over an empty area of 550×350 cm, see Figure 5.1. The environment is unbounded,
and the robots can thus roam away from the items and from each other. A simulation
ends when all items are collected, or when the fixed time limit of 200 s has elapsed.
Additional details are available in Appendix A.6. Each candidate solution (pair of
ground/aerial robot controllers) is evaluated in ten independent simulations. The
ground robot always starts in a random corner of the arena, facing a random di-
rection, while the initial conditions of the aerial robot depend on the task variant,
described below:

Fix-Tog: The aerial robot has no control over its altitude, but remains at the ideal
sensing altitude (250 cm) throughout the whole simulation. The aerial robot
starts directly above the ground robot.

Fix-Sep: Similar to Fix-Tog, but the aerial robot starts in a random location inside
the arena, facing a random direction. This means that most of the time, the
aerial and ground robots will not be within sensing range of each other at the
beginning of a simulation.

82 Chapter 5. Morphologically Heterogeneous Systems

TABLE 5.1: Configuration of the sensory inputs and actuators of the ground robot
and aerial robot. See Figure 5.2 for an illustration.

Ground robot Aerial robot

Sensory inputs

gi1..4: 4 binary inputs that indicate the
presence of items in the respective sector,
within a 10 cm range.

ai1..6: 6 real-valued inputs that give the dis-
tance of the closest item in the respective
sector.§†

ga1..4: 4 binary inputs that indicate the
presence of the aerial robot in the respec-
tive sector.§

ag1..6: 6 real-valued inputs that give the
horizontal distance to the ground robot in
the respective sector.§†

ah: 1 input that gives the current altitude.‡

acd,α: 2 inputs that give the distance and
relative angle to the centre of the arena.

Actuators (maximum speed in parentheses)

• Linear speed (15 cm/s) • Front-back thrust (1 m/s)
• Left-right thrust (1 m/s)
• Up-down thrust (1 m/s)‡

• Turning speed (180◦/s) • Yaw rotation (90◦/s)

§ Based on the camera sensor. Horizontal range up to 144 cm, depending on the aerial
robot’s current altitude. † If no robot/object is present in the input’s respective section, the
maximum sensor value is returned. ‡ Not used in the Fix-Tog and Fix-Sep task variants.

Var-Tog: The aerial robot starts on the ground, next to the ground robot, and can
freely move up and down.

Var-Mid: The aerial robot starts on the ground, but it is placed in a random location
in the arena, up to a distance of 300 cm away from the ground robot.

Var-Sep: Similar to Var-Mid, but the aerial robot is placed in a random location in
the arena, with no restrictions.

5.1.3 Evolutionary Setup

We use the same evolutionary setup as in the experiments in Section 3.5 and Chap-
ter 4. The neural network controllers of each robot are evolved by NEAT (Stanley
and Miikkulainen, 2002). The two coevolving populations use the same NEAT pa-
rameters, except for the number of input and output neurons due to the different
number of sensors and actuators. The ground robot’s neural network has 8 inputs
and 2 outputs, while the aerial robot’s network has 15 inputs and 4 outputs (14 in-
puts and 3 outputs in the Fix-∗ task variants). The remaining evolutionary algorithm
parameters are listed in Appendix A.1.

The fitness score of a team, Fi, corresponds to the number of items that were
successfully collected during the simulation trial. The team behaviour characteri-
sation, used for novelty-driven coevolution and behavioural analysis, is described
in Table 5.2. Each candidate solution (robot team) is evaluated in ten independent
simulation trials. To obtain a more accurate estimate of the teams’ quality, all the
best-of-generation teams (Definition 7) were re-evaluated a-posteriori in 50 simula-
tion trials. All the fitness plots presented in this chapter correspond to the results
obtained in these post-evaluations.

5.2. Standard Fitness-driven CCEA 83

TABLE 5.2: Team behaviour characterisation used in the aerial-ground foraging task.
All features are normalised to [0, 1].

Team behaviour characterisation

.Number of items collected

.Proportion of time the robots spent within the sensing range of one another

.Mean distance between the robots over the simulation time

.Mean distance of the robots to the closest item, averaged over the simulation

5.2 Standard Fitness-driven CCEA

We begin by studying the performance of the standard fitness-driven CCEA in the
different task variants. The highest fitness scores achieved throughout evolution are
depicted in Figure 5.3. Each evolutionary treatment was repeated in 30 independent
evolutionary runs. The results show that there are clear performance differences in
the five variants, with statistically significant differences between all setups (Mann-
Whitney U test, p < 0.001) in the highest fitness scores achieved. The CCEA can
consistently and quickly evolve high-fitness solutions for the Fix-Tog variant. In the
other task variants, where the aerial robot needs to learn more complex skills before
being able to cooperate, the CCEA’s performance was significantly affected. Coevo-
lution displayed the lowest performance in the Var-Sep variant, where cooperation
is hardest to achieve.

0

2

4

6

0 200 400 600
Generation

Fi
tn

es
s

Fix−Tog

Fix−Sep

Var−Tog

Var−Mid

Var−Sep

●

●

●

●

●

●

●

●

●

●
●

●
●

●

0

2

4

6

Fix−
To

g

Fix−
Sep

Var−
To

g

Var−
Mid

Var−
Sep

Task

Fi
tn

es
s

FIGURE 5.3: Fitness scores achieved by the standard CCEA in each of the task vari-
ants. Left: average of the highest fitness scores achieved at each generation. The
grey areas depict the standard error. Right: boxplots of the highest scores achieved
in each evolutionary run.

To determine the reasons behind evolutionary failure in the more challenging
setups, we divided the evolutionary runs into two sets: the successful runs, which
achieved a fitness score of at least 4; and the failed runs, which did not reach that
mark. We then visually inspected some of the highest scoring solutions evolved in
each of these runs, see Figure 5.4. These results reveal that the successful runs always
relied on a high degree of cooperation to solve the task: the aerial robot was close to
the ground robot most of the time. As it can be seen in the figure, the aerial robot
first finds the ground robot (see the Fix-Sep and Var-Mid, successful runs) and then
gets close to the items one at a time, while the ground robot is following it.

In the failed runs, however, we see a different scenario: the aerial robot displays
a behaviour that almost seems to ignore the ground robot. It does not actively search

84 Chapter 5. Morphologically Heterogeneous Systems

Fix-Tog, fit=6.00

Var-Tog, fit=5.94 Var-Tog, fit=2.64

Var-Mid, fit=5.36

Fix-Sep, fit=5.90

Var-Sep, fit=1.84

Fix-Sep, fit=2.66

Var-Mid, fit=2.80

Ground robot
final position

Aerial robot
final position Aerial robot

starting position
Ground robot

starting position

Item

FIGURE 5.4: Examples of the highest-scoring solutions evolved in evolutionary
runs of fitness-driven coevolution. Left column: best solutions evolved in success-
ful runs. Right column: best solutions evolved in failed runs. The red line de-
picts the path of the aerial robot, and the blue line the path of the ground robot.
The filled squares mark the initial positions, and the circles mark the final posi-
tions. The green squares with crosses mark the items. Videos available online at
https://doi.org/10.5281/zenodo.47066.

https://doi.org/10.5281/zenodo.47066

5.2. Standard Fitness-driven CCEA 85

for the items in the environment, but instead moves in circles over the arena. The
ground robot uses the aerial robot’s position to know where the arena is, but it has to
search for the items alone using its very limited capabilities. The interaction between
the two robots is therefore minimal or non-existent.

If the two populations fail to sustain a mutual development of skills, the individ-
uals of one population can become over-adapted to the poor behaviours found in
the other population, reaching an equilibrium from which it can be hard to escape.
This degenerate dynamic corresponds to premature convergence to mediocre stable
states, discussed in Section 2.4.2. In our aerial-ground foraging task, for instance,
the flying robot can evolve a behaviour where it simply does circles inside the arena.
The ground robot adapts to this behaviour, thus reaching an equilibrium state – a
local optima in the collaboration space (Figure 5.4, failed runs).

To confirm that convergence to stable states was the culprit of the CCEA’s low
performance, we resorted to the analysis of the best-of-generation teams, as described
in Section 3.3.1. For each of the best-of-generation teams, we measured the fitness
(number of items collected) and the amount of time the robots spent within the sens-
ing range of one another (time within range). This measure is directly related to the
degree of cooperation between the robots, since the aerial robot cannot assist the
ground robot if it is permanently outside its sensing range. The average behaviour of
each generation was then calculated based on the mean values of fitness and time
within range obtained in all best-of-generation teams (from the different evolutionary
runs) of that generation. By plotting the average behaviour obtained throughout
the generations of the evolutionary algorithm, it is possible to see to which types of
solutions the evolutionary process is converging, see Figure 5.5.

The results from the successful runs show that, in all task setups, there is a close

Fix−Tog Fix−Sep Var−Tog

Var−Mid Var−Sep

0

2

4

6

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

Time within range

N
um

be
r o

f i
te

m
s

co
lle

ct
ed

Generation

1

700

Evo. run quality
Successful
Failed

Time within range

0

2

4

6

N
um

be
r o

f i
te

m
s

co
lle

ct
ed

FIGURE 5.5: Average behaviour of the best-of-generation solutions evolved by the
standard fitness-driven CCEA, grouped by successful (blue, highest fitness achieved
≥ 4) and failed runs (red, fitness < 4). The lighter colours denote the earlier genera-
tions. The time within range is the time the robots spent within the sensing range of
each other.

86 Chapter 5. Morphologically Heterogeneous Systems

relation between the amount of cooperation (time within range) and the fitness of the
solutions. High-scoring solutions always display high levels of cooperation. In the
Fix-Tog task, evolution quickly converges to (near-)optimal solutions without much
exploration. In this task, there are high levels of cooperation right from the begin-
ning, as the robots start near one another and the aerial robot has the optimal sensing
altitude. In the other task variants, evolution takes significantly more generations to
evolve solutions with high levels of cooperation.

In the failed runs, evolution does not reach solutions with high cooperation lev-
els, which is consistent with the behaviours observed in Figure 5.4. The failed runs
appear to be more biased towards the collection of items than robot cooperation,
as evidenced by the higher numbers of items collected for the same levels of time
within range. In the Fix-Sep and Var-Tog tasks, for instance, we can see that in the
failed runs, evolution is trying to increase the number of items collected without in-
creasing cooperation. In this foraging task it is, however, impossible to achieve high
fitness scores without cooperation, and the results therefore indicate that evolution
is trapped in a stable state from which it cannot escape.

5.3 Avoiding Premature Convergence

After identifying premature convergence to stable states as the cause of failure of
the coevolutionary process, we evaluate the capability of novelty-driven cooperative
coevolution (see Chapter 3) of overcoming it, and compare it with other competing
techniques. The Fix-Tog task variant was not used in these experiments since the
standard CCEA could always reach near-optimal solutions.

5.3.1 Methods

The strategy for solving this foraging task is relatively clear beforehand, as it is en-
forced by the morphological limitations of the robots: (i) the aerial robot must learn
how to take-off and maintain an altitude that optimises the sensor coverage; (ii) the
aerial robot must somehow find the ground robot; (iii) the robots must frequently be
within sensing range of one another, otherwise they cannot cooperate; and (iv) the
two robots must devise some cooperative strategy where the aerial robot leads the
ground robot towards the items. This natural decomposition of the task allow us to
compare novelty-driven cooperative coevolution with problem decomposition tech-
niques that are based on the experimenter’s knowledge, see Section 3.1: incremental
evolution (Gomez and Miikkulainen, 1997), and multi-objective optimisation of sub-
goals (Mouret and Doncieux, 2008).

Standard Fitness-driven CCEA (Fit)

Standard cooperative coevolutionary algorithm, see Section 5.2, where the individ-
uals are scored only according to the team’s fitness score – the total number of items
collected (Fi).

Novelty-driven Cooperative Coevolution (NS)

Novelty-driven coevolution uses the same implementation as the experiments in the
previous chapters. We use the NS-Team technique (Algorithm 2), in which the fitness
scores are combined with the novelty scores via Pareto multiobjective ranking. The
parameters are listed in Appendix A.1.

5.3. Avoiding Premature Convergence 87

Incremental Evolution (Inc)

Incremental evolution (Gomez and Miikkulainen, 1997) relies on the decomposition
of the larger goal in sub-goals that are easier to achieve, thus overcoming bootstrap
problems and premature convergence. We defined a sequence of sub-goals that try
to bridge the gap between the number and complexity of skills each robot has to
evolve. We encouraged the development of skills in the aerial robot, and the evo-
lution of cooperation between the two robots, before trying to solve the ultimate
objective of collecting items (Fi). At any moment in evolution, the chosen represen-
tative individual of each population was the individual that obtained the highest
fitness score in the previous generation, according to the fitness function of the cur-
rent sub-goal. We relied on the following sub-goals, in the order (Fa)→ Fw → Fi:

1. Minimise the difference between the aerial robot’s altitude (at) and the near-
maximum sensing altitude (A, 240 cm) over the simulation trial (T steps). The
goal is achieved when 20% of the individuals in a generation achieve a score
of at least 0.9. This goal is not used in the Fix-Sep variant, as the aerial robot’s
altitude is fixed.

Fa = 1−min

1,
∑

t∈[1,T]

|at −A|
T ·A

 (5.1)

2. Maximise the time robots spend within the sensing range of one another (tw).
The goal is achieved when 20% of the individuals in a generation achieve a
score of at least 0.7.

Fw = tw/T (5.2)

3. Maximise the number of items collected throughout the simulation run (Fi).

Multi-objective Evolutionary Algorithm (MOEA)

In this approach, the three objectives that are used in incremental evolution, are em-
ployed in a Pareto-based multi-objective evolutionary algorithm. The evolutionary
process therefore tries to maximise the three objectives at the same time, instead of
maximising them in a predefined sequence as in incremental evolution (Mouret and
Doncieux, 2008). For the Fix-Sep variant, only two objectives (Fw and Fi) were used,
since the altitude is fixed. The multi-objective optimisation followed the same imple-
mentation as the one used to combine novelty and fitness in NS, see Appendix A.1.
The representative individual of each population is the individual that achieved the
highest fitness score (Fi) in the previous generation, according to the results obtained
in preliminary experiments. Other possibilities for the choice of the representative
have been evaluated in preliminary experiments, see Appendix A.6.

5.3.2 Results

We conducted 30 independent evolutionary runs in each experimental setup (meth-
ods× task variants). The fitness scores achieved with each method over the evo-
lutionary process are shown in Figure 5.6. Note that for all methods, the fitness
score corresponds to the number of items collected (Fi), not necessarily the selection
scores the individuals received during the evolutionary process. To understand how
the studied methods can mitigate premature convergence and encourage coopera-
tion, we performed an analysis of the best-of-generation solutions (similar to the one
found in Section 5.2), see Figure 5.7.

88 Chapter 5. Morphologically Heterogeneous Systems

Var−Mid Var−Sep

Fix−Sep Var−Tog

0 200 400 600 0 250 500 750 1000

0 100 200 300 400 500 0 100 200 300 400 500
0

2

4

6

0

2

4

6

Generation

F
itn

es
s

Method Fit Inc MOEA NS

●

●

●
●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●●

●

Fix−Sep Var−Tog Var−Mid Var−Sep

Fit Inc
MOEA NS Fit Inc

MOEA NS Fit Inc
MOEA NS Fit Inc

MOEA NS

0

2

4

6

Method

F
itn

es
s

FIGURE 5.6: Top: average of the highest fitness scores achieved at each generation,
for each task variant and method. Bottom: highest fitness scores achieved in the
evolutionary runs. Fitness corresponds to the number of items collected (Fi).

Incremental Evolution (Inc)

Incremental evolution was on average the highest performing approach, and out-
performed the standard CCEA in all task variants (Mann-Whitney U test, p < 0.05).
The results in Figure 5.6 show that incremental evolution tends to reach high fitness
scores in fewer generations than the other methods. Incremental evolution initially
rewards the robots for staying within sensing range of one another. As the robots
are essentially forced to cooperate before reaching the final stage, evolution is less
likely to get stuck in a mediocre stable state where the robots do not cooperate when
collecting the items.

5.3. Avoiding Premature Convergence 89

Fix−Sep Var−Tog Var−Mid Var−Sep

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

Fit
Inc

M
O

EA
N

S
0.

00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

Time within range

N
um

be
r o

f i
te

m
s

co
lle

ct
ed

1
Evo. run quality Successful

Failed
Generation

Max 1 Max

FIGURE 5.7: Average behaviour of the best-of-generation solutions evolved by each
method, grouped by successful (blue, highest fitness achieved ≥ 4) and failed runs
(red, fitness < 4). The lighter colours denote the earlier generations. The time within
range is the time the robots spent within the sensing range of each other.

As Figure 5.7 shows, all evolutionary runs of Inc initially maximised the time
within range, without increasing the number of items collected. When evolution
reached the final stage, solutions started to maximise the number of items collected,
and at this point two opposite scenarios could be observed: (i) evolution increased
the fitness of solutions while increasing or maintaining the levels of time within range,
leading to good solutions (successful runs); or (ii) evolution increased the fitness of
solutions but the time within range decreased, ultimately leading to a mediocre stable
state (failed runs).

Although the robots typically learn to find each other, they did not always evolve
to successfully collect items. The effectiveness of incremental evolution depends on
the task decomposition defined by the experimenter, both in terms of the definition
of the sub-goals, as well as the transitions between those goals. A more fine-grained
incremental configuration (with more sub-goals for instance) could potentially yield
better performance, but it would also introduce additional biases in the evolutionary
process.

90 Chapter 5. Morphologically Heterogeneous Systems

Multi-objective Optimisation (MOEA)

Despite the potential advantages of the multi-objectivisation approach over incre-
mental evolution (Mouret and Doncieux, 2008), our results failed to show such ad-
vantages. While MOEA achieved a similar performance to incremental evolution
in the Fix-Sep task (p = 0.10), its performance was inferior in all the Var-∗ tasks
(p < 0.001). The MOEA approach also failed to improve over the standard fitness-
driven coevolutionary algorithm in all tasks (p > 0.05) except Var-Sep (p = 0.005),
see Figure 5.6.

The results in Figure 5.7 (MOEA row) reveal a relatively high variation of the av-
erage behaviour of the best-of-generation teams, especially in the Var-Mid and Var-Sep
tasks, both in the number of items collected and the time within range. Although ad-
ditional experiments would be needed to confirm the causes of MOEA’s poor perfor-
mance, these results suggest that the evolutionary algorithm was not able to strictly
hold and advance the Pareto front across generations. This issue can potentially be
explained by the fact that, unlike a traditional application of a MOEA, in a CCEA
the objectives are not static: the objective scores given to any individual depend on
the individuals with which it was evaluated.

Novelty-driven coevolution (NS)

Novelty-driven coevolution is substantially different from the approaches discussed
above, as it rewards the exploration of the behaviour space, without introducing bi-
ases towards specific behaviours. Regarding the fitness scores achieved, NS signifi-
cantly outperformed the standard CCEA in all variants (p < 0.01, Mann-Whitney U
test), except in Var-Tog in which they achieved solutions of similar quality (p = 0.54).
The performance of NS was only outperformed by Inc in the Var-Sep task (p = 0.02).

Another potential advantage of novelty-driven coevolution is the ability to dis-
cover a high diversity of solutions for a given problem. We confirm this advan-
tage by analysing the behavioural diversity evolved in each run, using the aver-
age behavioural dispersion of all the evolved teams, as defined in Definition 9, Sec-
tion 3.3.1. The results in Figure 5.8 show that novelty-driven coevolution exhibited
a significantly higher degree of behaviour exploration than all other approaches in
all task variants (p < 0.05), except in the Var-Sep task where the diversity evolved by
novelty-driven coevolution matched that of incremental evolution (p = 0.7). These
results highlight novelty search’s ability to explore the behaviour space.

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

Fix−Sep Var−Tog Var−Mid Var−Sep

Fit Inc
MOEA NS Fit Inc

MOEA NS Fit Inc
MOEA NS Fit Inc

MOEA NS

0.0

0.2

0.4

0.6

Method

B
eh

av
io

ur
al

 d
iv

er
si

ty

FIGURE 5.8: Behavioural diversity, calculated based on the mean difference between
all individuals evolved over the course of each evolutionary run (Definition 9).

5.4. Discussion 91

As stated above, in the Var-Sep task variant, NS was not always able to achieve
successful solutions and a high-diversity of behaviours. In this aerial-ground for-
aging task, the team behaviour space can only be adequately explored if the two
robots cooperate. If, for instance, the aerial robot does nothing at all, or simply flies
away, the diversity of team behaviours that can be achieved is significantly limited.
In these situations, the exploration of the behaviour space becomes impaired, and
novelty-driven coevolution can thus fail to discover high-quality solutions.

5.4 Discussion

Coevolution with Heterogeneous Populations In the aerial-ground foraging task
we use in this study, even the simplest task variant is associated with a significant
heterogeneity in the robot team, with respect to sensor-effector capabilities, mor-
phology, behaviours required for successful task execution, and complexity of neu-
ral network controllers. Nevertheless, cooperative coevolution consistently found
(near-)optimal solutions for the simplest task variant. When the two robots can start
cooperating from the very beginning of the evolutionary process, coevolution is able
to sustain a mutual development of skills in the populations, leading them towards
a (near-)optimal stable state.

In additional experiments (Gomes et al., 2016a), not reported in this document,
we also showed that CCEAs can cope with an additional kind of heterogeneity: the
use of different evolutionary algorithms in the different populations. We experi-
mented coevolution with the NEAT algorithm on one population and a simple ge-
netic algorithm evolving fixed topology networks on the other. Our results showed
that the coevolutionary process is not significantly stifled by having different evolu-
tionary algorithms, associated with significantly different learning speeds, operating
simultaneously. We also showed that the two coevolving populations can effectively
use different population sizes, which can potentially be used to optimise the coevo-
lutionary process with respect to resource usage.

Limitations of the Standard CCEA Algorithm The experiments with the more
challenging task variants revealed the limitations of the coevolution architecture
when evolving heterogeneous agents. In the task variants where the aerial robot
had to develop more complex skills before being able to cooperate, coevolution fre-
quently failed. Our results showed that premature convergence to mediocre stable
states was the main cause for this failure. If cooperation cannot be easily achieved
in the beginning of the evolutionary process, evolution may gravitate towards solu-
tions where the robots try to achieve the goal without relying on cooperation. The
evolution of such behaviours can lead to stable states from which evolution cannot
easily escape. The attraction to such stable states was relatively weak in the easier
task variants, as most runs were successful. In the more challenging task variants,
the attraction was stronger, and the standard coevolutionary algorithm always con-
verged to such stable states and failed to evolve successful solutions.

Avoiding Premature Convergence Based on Manual Decomposition We tried to
avoid convergence to mediocre stable states using problem decomposition tech-
niques proposed in previous works. Incremental evolution (Gomez and Miikku-
lainen, 1997) was the most successful approach, significantly outperforming the

92 Chapter 5. Morphologically Heterogeneous Systems

standard CCEA in all tasks. Incremental evolution is, however, associated with well-
known limitations (Doncieux and Mouret, 2014), as a great deal of domain knowl-
edge is required to design effective evolutionary stages. The need to manually define
sub-goals, as well as appropriate transitions between these sub-goals, introduces
strong biases in the evolutionary process (Doncieux and Mouret, 2014; Nelson et al.,
2009), which counteracts the purpose of using evolutionary algorithms as black-box
optimisers of agent controllers. Based on our intuition about the task, we defined
three sub-goals, and although all stages were reached during evolution, many of
the evolutionary runs still failed, especially in the more difficult task variants. This
highlights the difficulty in properly configuring the stages and transitions in an in-
cremental evolution scheme. We evaluated the multiobjectivisation of sub-goals as
a way to overcome the difficulty in defining the order and transition of sub-goals
(Mouret and Doncieux, 2008), but the method generally failed in this task, and was
unable to improve over incremental evolution and even the standard CCEA.

Effectiveness of Novelty-driven Cooperative Coevolution Finally, we evaluated
novelty-driven coevolution (Chapter 3), which rewarded individuals for displaying
novel team behaviours. The performance of novelty search was similar to incremen-
tal evolution: it represented an improvement over the standard CCEA in all tasks.
One advantage of novelty search over incremental evolution is that it relies less on
the experimenter’s knowledge and potential biases, thus leaving evolution more
free to explore diverse solutions (Doncieux and Mouret, 2014). This advantage was
confirmed in the comparison between the behavioural diversity generated by each
algorithm: novelty search evolved a broader diversity of behaviours than any of the
other algorithms tested. Novelty-driven coevolution, however, still failed frequently
in the most challenging task variant. Our results suggest that these poor results are
due to the difficulty of evolving any form of cooperation in this task variant – the
robots simply finding one another in the environment can be challenging in itself –
and without cooperation it is difficult to explore the behaviour space.

Towards Effective Coevolution with Heterogeneous Populations Our experi-
ments showed that incorporating domain knowledge into the process (incremental
evolution) or adopting a more open-ended evolutionary approach (novelty search)
can mitigate premature convergence issues. Nevertheless, even when using these
techniques, many of the evolutionary runs still failed in the most demanding task
variants. One of the main issues was that the coevolutionary process often started
converging to solutions where the robots did not cooperate with one another. The
first step to avoid this problem is to rely, if possible, on a task setup where the multi-
ple agents can start cooperating right from the beginning of evolution. Another pos-
sibility is to design the fitness function in such a way that it is impossible to improve
the fitness of the team without relying on cooperation. That is, the fitness function
can be tailored (Nelson et al., 2009) to avoid the mediocre stable states where pro-
ductive cooperation does not exist.

5.5 Summary

In this chapter, we studied the challenges associated with coevolving behaviours
for cooperative multirobot systems where there is a significant heterogeneity in the
coevolving populations. Our experiments relied on a task where a highly capable
aerial robot must assist a relatively simple ground robot in collecting items. We used

5.5. Summary 93

multiple task variants in which we varied the number and complexity of skills that
the aerial robot had to develop before being able to cooperate with the ground robot.
Our work contrasts with the vast majority of previous works that have only used co-
operative coevolutionary algorithms with very similar populations and agents. To
the best of our knowledge, the work presented in this chapter is the first to success-
fully demonstrate the evolution of controllers for a highly heterogeneous multirobot
system.

Although these experiments were based on a single robotics domain, the main
challenges that are addressed in this chapter are common to many multirobot tasks:
how to foster synchronised learning, and how to encourage the evolution of cooper-
ation in problems where it is not easily attainable. Overall, our results suggest that
cooperative coevolution can work with an arbitrary level of heterogeneity in the
populations, as long as the individuals from the different populations can establish
a productive cooperation right from the beginning of the evolutionary process, thus
leading to a mutual development of skills. When even the simplest forms of coop-
eration are hard to evolve, the coevolutionary process often converge to a mediocre
stable state where cooperation is almost absent. We have shown that novelty-driven
cooperative coevolution can alleviate this problem, and significantly improve the ef-
fectiveness of the coevolutionary process, but it was not a silver bullet – it was still
affected by the difficulty in evolving cooperation in the most demanding task vari-
ant.

95

Chapter 6

Improving Scalability Through
Dynamic Team Heterogeneity

In a typical CCEA application, as the ones presented in the previous chapters, the
teams are fully heterogeneous, meaning there is a one-to-one mapping between pop-
ulations and agents (Potter et al., 2001). Although ubiquitous, this design choice
can limit the scalability of coevolutionary algorithms with respect to the number
of agents, as discussed in Section 2.4.2. Similarly to a traditional CCEA, novelty-
driven cooperative coevolution can, in theory, be equally affected by this limitation:
(i) in case there are many agents in the team, it might be difficult to generate a novel
team behaviour by modifying the controller of a single agent (credit assignment is-
sue); and (ii) similar behaviours might be separately evolved for different agents,
which is an inefficient usage of resources (redundant learning). A number of pre-
vious works have indeed shown that in large teams, many of the agents actually
display very similar behaviours (Nitschke et al., 2010, 2012a). We have also shown
(Gomes et al., 2014a) that, even with smaller teams of three agents, there is often an
overlap between the behaviours evolved for different agents.

A natural solution for improving scalability is to assign each population to mul-
tiple agents, thereby forming homogeneous sub-teams inside the larger heteroge-
neous team (Luke et al., 1998; Panait and Luke, 2005a). This scheme does, however,
require that a suitable team composition is known, i.e., how many different sub-teams
there should be, and which agents should be assigned to each one. Such knowledge
is rarely available, and it represents an additional bias introduced by the experi-
menter in the evolutionary process.

In this chapter, we propose Hyb-CCEA, an extension of the CCEA algorithm
that takes into account the exploration of the behaviour space by each population to
avoid the same behaviours being evolved in separate populations. Hyb-CCEA uses
operators that allow the merging of separate populations, which decreases hetero-
geneity, and the splitting of populations, which increases heterogeneity. Hyb-CCEA
thus departs from the fixed mapping between agents and populations, and the num-
ber of populations in the system becomes dynamic. Several agents in the team can
be assigned to the same population, which has the potential to significantly improve
the scalability of the evolutionary process. We first study Hyb-CCEA in an abstract
domain, with the objective of understanding its capability to converge to suitable
team compositions, its scalability in terms of the number of agents and problem
complexity, the influence of its main parameters, and how Hyb-CCEA fares against
competing approaches. We then show how Hyb-CCEA can be applied to concrete
tasks without having to rely on predefined team compositions, using four simulated
multirobot tasks: two multi-rover foraging tasks, and two robot soccer tasks.

It is important to clarify that Hyb-CCEA is not an extension of novelty-driven

96 Chapter 6. Improving Scalability Through Dynamic Team Heterogeneity

cooperative coevolution (Chapter 3), but rather an extension of cooperative coevolu-
tionary algorithms in general. Novelty-driven cooperative coevolution modifies the
scores attributed to the population individuals, which is not affected by Hyb-CCEA.
The two approaches are therefore algorithmically compatible with one another. We
chose to evaluate the two approaches separately for clarity and generality of the
results.

6.1 State of the Art

The reduction of heterogeneity in a multiagent system is the most direct way of im-
proving the scalability of multiagent learning (Bongard, 2000; D’Ambrosio et al.,
2010; Panait and Luke, 2005a). By reducing heterogeneity, the number of agent con-
trollers that need to be learned decreases, thus reducing the search space (Luke et
al., 1998). The evolution of partially heterogeneous multiagent systems is still rel-
atively unexplored (D’Ambrosio et al., 2010; Waibel et al., 2009), with most of the
previous works restricted to team learning (Lichocki et al., 2013), see Section 2.3.
Team learning naturally facilitates the evolution of team compositions, since each
genome encodes all the agent controllers and the team composition, thus allowing
the optimisation of the team as a whole.

In the context of team learning, Hara, (1999) proposed a GP-based technique, Au-
tomatically Defined Groups (ADG), that automatically discovers the optimal number
of groups and their compositions. Also based on genetic programming, Bongard,
(2000) proposed the Legion System, where the genome encodes the composition of
the team and one sub-tree for each behaviour class. It was shown that the amount
of heterogeneity evolved by the system was dependent on the given problem do-
main, highlighting the importance of emergent team compositions. A radically dif-
ferent neuroevolution approach was proposed by D’Ambrosio and Stanley, (2008)
and D’Ambrosio et al., (2010): all the agent controllers are indirectly encoded in
a single genome using compositional pattern producing networks (CPPNs), which
are evolved by the HyperNEAT algorithm (Stanley et al., 2009). HyperNEAT can ex-
ploit similarities in agents’ policies, while at the same time allowing for variations.
This means that there is no rigid concept of sub-team, but the agents can share part
of their policies with one another.

In concurrent learning techniques, the emergence of team compositions is practi-
cally non-existent (Lichocki et al., 2013; Waibel et al., 2009). Typically, the team com-
position is configured a priori (most commonly, fully heterogeneous), and the CCEA
only optimises the controllers of each agent type. To cope with large heterogeneous
multirobot systems and facilitate the evolution of specialisations, Nitschke, (2008)
proposed CONE (see Section 2.4.3), a cooperative coevolution approach that incor-
porates regulated breeding between different populations, each corresponding to a
different agent. Crossover between different populations is allowed if the individ-
uals of those populations share the same specialisation and have similar genotypes,
thus mitigating the problem of reinvention.

The teams evolved with CONE are nevertheless fully heterogeneous, as complete
controllers are not shared by different agents. Hyb-CCEA, presented in this chapter,
takes inspiration from CONE (Nitschke et al., 2010) in the sense that it relies on agent
specialisations to regulate interactions between different populations. Hyb-CCEA,
however, presents a number of theoretical advantages over CONE: (i) it allows for
the emergence of genetically homogeneous sub-teams; (ii) it does not require the a
priori specification of the possible specialisations; and (iii) CONE is an extension of

6.2. The Hyb-CCEA Approach 97

MESP, a neuroevolution algorithm bound to a specific neural network architecture.
Hyb-CCEA, on the other hand, is compatible with any controller architecture and
evolutionary algorithm, even beyond artificial neural networks.

6.2 The Hyb-CCEA Approach

Hyb-CCEA departs from the one-to-one fixed mapping between agents and popu-
lations: we allow a population to be assigned to multiple agents, meaning that the
controller encoded by each population individual can be copied to multiple agents
in the team. A population in Hyb-CCEA can thus become responsible for the evolu-
tion of a genetically homogeneous sub-team, not just one specific agent.

Each population is dynamically assigned to a subset of the agents in the team
(Figure 6.1a), with every agent assigned to exactly one population. The rest of the

p1

p2

...

p99

p100

Individuals Agents

a1

Population p

a2

a3

q1

q2

...

q99

q100

Individuals Agents

a4

Population q

a5
p3 q3

*1

2

3

4

5

Task environment

Fitness score

(a) Illustration of the evaluation phase. In this example, the individual p99 of popu-
lation p is being evaluated. The representative individual of q is q1. The population
individuals (controllers) are assigned to the respective agents, and the fitness of the
whole team is assigned to individual p99.

p1

p2

...

p99

p100

Individuals Agents

a1

Population p

a2

a3
p3

q1

q2

...

q99

q100

Individuals Agents

a4

Population q

a5
q3

p1
...

q1
...

q40

Individuals Agents

a2

Population x

a4
p60

a1

a3

a5

(b) In the merge procedure, the new population x replaces the two parent popula-
tions, p and q. The population x is formed by a subset of p and q’s individuals, and
is assigned to the union of all the agents.

Individuals Agents

a2

Population p

a4

a1

a3

a5

Individuals Agents

Population x

a1

a3

p1

p2

...

p99

p100

p3

Individuals Agents

Population y

a2

a4

a5

p1

p2

...

p99

p100

p3

p1

p2

...

p99

p100

p3

(c) In the split procedure, two new populations, x and y, replace the parent p. The
populations x and y are copies of p, but each one is assigned to a disjoint set of
agents.

FIGURE 6.1: Illustration of the main procedures in the Hyb-CCEA algorithm.

98 Chapter 6. Improving Scalability Through Dynamic Team Heterogeneity

coevolutionary evaluation operates the same way as a traditional CCEA (Potter and
De Jong, 2000): individuals are joined with representative individuals from the other
populations for evaluation, and the individual being evaluated receives the fitness
score that the team as a whole obtained. In this study, the representative individ-
ual of each population is the highest-fitness individual of the previous generation
(Potter and De Jong, 2000; Wiegand et al., 2001).

The distinctive aspect of Hyb-CCEA is that it does not assume that the optimal
number of sub-teams and their composition are known beforehand: we extend the
CCEA so that the number and composition of the sub-teams is under evolutionary
control. Different levels of heterogeneity can thus be explored by the evolutionary
process. To this end, we propose: (i) a procedure for merging two populations,
which creates a new population assigned to the agents of the two former popula-
tions, thus decreasing the heterogeneity of the system (Figure 6.1b); and (ii) a proce-
dure for splitting a population, which creates two populations assigned to different
sets of agents, thus increasing heterogeneity (Figure 6.1c). The following sections
present the Hyb-CCEA algorithm in detail.

6.2.1 Evolutionary Process

The evolutionary process of Hyb-CCEA is described in Algorithm 5. It follows the
general cooperative coevolution architecture (Potter and De Jong, 2000), with the
main difference that the merge and split procedures are additionally executed ev-
ery generation after the evaluation phase. Each population p in the system is a tu-
ple composed of the population individuals (Ip); the set of agents allocated to the
population (Ap); the number of generations passed since the creation of p (τp), also
referred to as age; the maturation period (`p), which establishes the minimum life-
time of p; and the representative individual of the population (rp), used during the
evaluation of the other populations.

Algorithm 5 Hyb-CCEA algorithm.

1: P ← InitialisePopulations()
2: for each generation do
3: for p ∈ P do
4: for each individual i ∈ Ip do
5: ti ← {i} ∪ {rq : q ∈ P ∧ q 6= p}
6: fi, βi ← Evaluate(ti) assigning each individual of t to the

respective set of agents

7: AttemptMerge(P)
8: AttemptSplit(P)
9: for p ∈ P do

10: rp ← individual i ∈ Ip with maximum fi
11: if τp > 0 then
12: Ip ← Breed(Ip) based on the fitness scores f

13: τp ← τp + 1

6.2.2 Initialisation

The InitialisePopulations procedure is described in Algorithm 6. With a total of
n agents in the team, the algorithm can be initialised with any number of popula-
tions ranging from 1 to n. This means that the team can start fully homogeneous,

6.2. The Hyb-CCEA Approach 99

with only one population initially and all agents assigned to it; it can start fully
heterogeneous, with one population assigned to each agent; or it can start with a
partially heterogeneous configuration. Besides the agent allocation, each popula-
tion is initialised with a random maturation period `p, drawn uniformly from 1 to
the maturation limit TL, and the representative individual rp is initially chosen ran-
domly among the population individuals Ip, as typically done in CCEAs (Potter and
De Jong, 2000).

Algorithm 6 InitialisePopulations procedure.

1: Let A the set of all agents
2: Let Ψ be the initial population-agent allocations, such that Ψ is a partition of A:⊔

ψ∈Ψ
ψ = A

3: P ← ∅
4: for ψ ∈ Ψ do
5: Ap ← ψ . Assigned agents
6: Ip ← RandomIndividuals(S) . Initial population of size S

7: τp ← 1 . Age
8: `p ← Random(1, TL) . Maturation period
9: rp ← Ip[Random(1, S)] . Representative individual

10: P ← P ∪ {p}
11: return P

6.2.3 Population Merge

Previous works have shown that cross-breeding between agents that share similar
specialisations (Nitschke et al., 2010), or belong to the same sub-team (Luke and
Spector, 1996), can be beneficial for the emergence of specialisations. Hyb-CCEA
goes beyond this concept: if two separate populations are evolving agents with
similar behaviours, they can be merged into a single population, and those agents
thus become genetically homogeneous (Figure 6.1b). To identify behavioural simi-
larities between agents, we rely on an agent behaviour characterisation (similar to the
behaviour characterisations used for NS-Ind, Section 3.2.2), which can be provided
by the experimenter or automatically derived, as discussed in Section 2.5.4. This
characterisation is a real-valued vector βi,a composed of features that describe the
behaviour of the agent a, obtained in the evaluation of the individual i (step 6 of
Algorithm 5).

The merge procedure is described in Algorithm 7. Only populations with an age
(τp) greater than their maturation period (`p) are eligible for merging (step 1). We
first obtain sets of agent behaviours that are representative of each eligible popula-
tion (steps 5 and 7). The behaviour set Bp of a population p is obtained by aggre-
gating the agent behaviours recorded during the evaluation of the individuals of p.
Since the objective is to identify the behaviour space region to which a population
is converging, we only consider the Elite of the population, i.e., the fraction TE of
the population with the highest fitness scores.

We then measure the distance between these sets of behaviours (step 8). The
distance between two behaviour sets is given by the silhouette index (or coefficient)
(Rousseeuw, 1987), a clustering index that measures both the cohesion and sepa-
ration of a given clustering. By considering that each behaviour set is a different
cluster, the silhouette index thus measures the overlap between the two sets. The

100 Chapter 6. Improving Scalability Through Dynamic Team Heterogeneity

Algorithm 7 AttemptMerge procedure.

1: P ′ ← {p ∈ P : τp > `p}
2: if |P ′| < 2 then
3: return
4: for p ∈ P ′ do
5: Bp ← {βi,a : i ∈ Elite(Ip, TE) ∧ a ∈ Ap}
6: for q ∈ P ′ ∧ q 6= p do
7: Bq ← {βi,a : i ∈ Elite(Iq, TE) ∧ a ∈ Aq}
8: Cp,q ← SilhouetteIndex(Bp ∪ Bq)
9: p, q ← arg min

p,q
Cp,q

10: if Cp,q ≤ TM then
11: Ax ← Ap ∪ Aq
12: Ix ← Elite

(
Ip, |Ap|
|Ax|

)
∪ Elite

(
Iq, |Aq |
|Ax|

)
13: τx ← 0
14: `x ← Random(1, TL)
15: P ← (P \ {p, q}) ∪ {x}

silhouette index will tend towards 1 if the two behaviour sets are cohesive and well
separated, and will be close to 0 if there is a significant overlap between them. Neg-
ative silhouette indexes mean that the behaviours are on average more similar to the
other behaviour set than their own. Let a(i) be the average distance of the behaviour
vector i to all other elements within the same behaviour set, and b(i) be the average
distance of i to all the elements in another behaviour set. The silhouette index can
be calculated by averaging the silhouette values of all the behaviour vectors:

SilhouetteIndex(X) =
1

|X |
∑
i∈X

b(i)− a(i)

max{a(i), b(i)}
(6.1)

Finally, the two most similar populations are merged if the distance between
them is inferior to the merge threshold TM (steps 9 and 10). The new population
replaces the two parent populations, and is comprised by the fittest individuals from
the respective populations. The number of individuals that are drawn from each
population is proportional to the number of agents assigned to that population. The
new population is assigned a random maturation period, between 1 and TL.

6.2.4 Population Split

The split procedure increases the heterogeneity of the system by dividing a homoge-
neous sub-team into two new sub-teams: two clones of the population are created,
and each one is assigned to a disjoint set of agents, see Figure 6.1c and Algorithm 8.
The populations with an age τp above their maturation period `p and that are as-
signed to more than one agent are eligible to be split (step 1). Among these popula-
tions (if any), the population with the highest age is split (step 4). The set of agents
of the parent population is randomly partitioned into two subsets, and each of the
child populations is assigned to one of those subsets. The individuals of the two
resulting populations are exact copies of the individuals of the parent population.

Contrary to the merging procedure, agent behaviour characterisations cannot be
used to regulate splits, as agents assigned to the same population are genetically ho-
mogeneous, and will likely display very similar behaviours. Stochastic splits are an

6.3. Comprehensive Evaluation in an Abstract Domain 101

Algorithm 8 AttemptSplit procedure.

1: P ′ ← {p ∈ P : τp > `p ∧ |Ap| > 1}
2: if P ′ = ∅ then
3: return
4: p← arg max

p∈P ′
τp

5: Ax,Ay ← Randomly partition Ap such that: Ax t Ay = Ap
6: Ix, Iy ← Ip
7: τx, τy ← 0
8: `x, `y ← Random(1, TL)
9: P ← (P \ {p}) ∪ {x, y}

effective solution because unfavourable splits can later be reverted by the merge pro-
cedure. The two new populations are assigned the same random maturation period
(step 8), so that there is the chance of merging them later on, before being further
split. If the two recently split populations did not diverge to different behaviours
after the maturation period, the behaviour distance between them will be relatively
small, and they will therefore be merged again.

6.3 Comprehensive Evaluation in an Abstract Domain

To systematically study the Hyb-CCEA approach, we propose an abstract domain
– the coverage task – in which the objective is to evolve a set of agents (⊂ RN) that
cover a randomly generated set of targets (⊂ RN). A similar domain has previously
been used in (Lichocki et al., 2013), but focused only on the evolution of team com-
positions, where each agent and specialisation is unidimensional. The coverage task
allows us to study both the evolution of agent controllers and team compositions
in a wide diversity of problem instances, with different complexities and require-
ments. Although not directly applicable to real-world problems, we believe that
the proposed domain contains the essential properties of more realistic multiagent
domains, as explained below.

6.3.1 Problem Definition

Let T be a set of targets, randomly generated at the beginning of the evolutionary
run, and A be a set of agents under evolution, such that:

T = {t1, · · · , tM : ti ∈ [0, 1]N} ⊂ RN (6.2)

A = {a1, · · · ,aM : ai ∈ [0, 1]N} ⊂ RN (6.3)

The fitness function scores solutions based on the similarity between the set of
agents A and the set of targets T in Euclidean space, such that there is an arbitrary
one-to-one correspondence between agents and targets. The fitness function is de-
fined in Algorithm 9. The global optimum is unique and trivial: A = T , with the
order of the elements being irrelevant. For the Hyb-CCEA algorithm, we defined
the agent behaviour characterisation as the distance of the agent to each of the tar-
gets:

β(a) = {d(a, t) : t ∈ T} (6.4)

102 Chapter 6. Improving Scalability Through Dynamic Team Heterogeneity

Algorithm 9 Fitness function for the coverage problem.

1: Let A be the set of agents under evolution, T the set of targets, and N the
number of dimensions.

2: µ← 0
3: while |T | > 0 do
4: a, t← arg min

a∈A,t∈T
d(a, t)

5: µ← µ+ d(a, t)
6: A← A \ {a}
7: T ← T \ {t}
8: return 1− µ√

N

This problem domain is an abstraction of a multiagent task, where the targets
(T) are specialisations that must be found by the evolutionary process. Similarly to a
cooperative multiagent task, there is no absolute notion of individual fitness, as the
agents (A) are not allocated to any target a priori, i.e., the fitness of one agent also de-
pends on the position of the other coevolving agents. The populations can only rely
on the global fitness for the evaluation of individuals. By allowing the set of targets
to contain duplicate elements, multiple agents might need to converge to the same
target, which is also common in multiagent tasks (Nitschke et al., 2010). By varying
the number of unique targets, we can control the optimal degree of heterogeneity in
the agent team, ranging from fully homogeneous (all targets are identical), to fully
heterogeneous (all targets are different), to anything in between (only some targets
are identical). Additionally, the complexity of the problem can easily be configured
by varying the number of dimensions (N).

6.3.2 Evolutionary Setup

We use a standard genetic algorithm to evolve the agents. Each new chromosome
is generated either by crossover or mutation, with equal probability. Individuals are
selected using tournament selection, genes are mutated individually with a fixed
probability, and we use one-point crossover. The elite of each population passes
directly on to the next generation. See Appendix A.7 for parameter values. Every
evolutionary treatment is repeated in 30 independent evolutionary runs, in which
the run number (from 1 to 30) is used as the random seed to generate different sets
of targets T . This ensures that different evolutionary treatments use the same sets
of targets. The default parameters of the Hyb-CCEA algorithm, used in the experi-
ments in this chapter unless indicated otherwise, are listed in Table 6.1.

TABLE 6.1: Default parameters for the Hyb-CCEA algorithm.

Parameter Value

Merge threshold TM 0.2
Maturation limit TL 20
Behaviour similarity elite TE 0.2

6.3. Comprehensive Evaluation in an Abstract Domain 103

6.3.3 Comparison with Competing Approaches

We begin by comparing Hyb-CCEA with other competing approaches, namely two
standard CCEA algorithms, where each population is isolated, and a CCEA algo-
rithm where individuals can migrate between different populations:

• CCEA-H: Fully heterogeneous CCEA – one population per agent.

• CCEA-PH: CCEA where each population is assigned to a predefined set of
agents, such that the optimal team composition for the given task is achieved.
The number of populations is thus equal to the number of unique targets.

• C-Exch: Similar to CCEA-H, but every generation, each population replaces
25% of their individuals with individuals imported from other behaviourally
similar populations (if any). The behavioural similarity is computed the same
way as in Hyb-CCEA, and the similarity threshold is the same as the merge
threshold.

For these experiments, the number of agents A is 10, the number of unique tar-
gets is 1, 3, 5, and 10, and the number of dimensions N is 30. The Hyb-CCEA algo-
rithm was configured with a fully heterogeneous initialisation, and the parameters
listed in Table 6.1. The results in Figure 6.2 (top) show that CCEA-H, CCEA-PH and
Hyb-CCEA can achieve high fitness scores (> 0.995) across all problem instances.

●● ● ● ● ●

●

●

●●●● ●

●

●

0.90

0.95

1.00

1 3 5 10

Number of unique targets

H
ig

he
st

 fi
tn

es
s

sc
or

e
ac

hi
ev

ed

Hyb−CCEA CCEA−H CCEA−PH C−Exch

●

●

●●

●
●

●●

●

0

500

1000

1500

1 3 5 10

Number of unique targets

E
va

lu
at

io
ns

 (
x1

00
0)

 to
 s

ol
ut

io
n

Hyb−CCEA CCEA−H CCEA−PH C−Exch

FIGURE 6.2: Top: highest fitness scores achieved with the different methods, for
different problem instances. Bottom: number of evaluations needed on average to
achieve a fitness level of 0.995.

104 Chapter 6. Improving Scalability Through Dynamic Team Heterogeneity

C-Exch was only able to consistently achieve high fitness scores in the problem in-
stances with 1 or 10 unique targets.

To distinguish between the methods that achieved high fitness scores, we anal-
ysed how many evaluations are needed to achieve the fitness threshold of 0.995, see
Figure 6.2 (bottom). The results show that when the number of unique targets is less
than the number of agents (10), Hyb-CCEA needs significantly fewer evaluations
than the fully heterogeneous CCEA (CCEA-H) to reach the fitness threshold (Mann-
Whitney, p < 0.001). When the number of unique targets is the same as the number
of agents, and a fully heterogeneous team is thus necessary, Hyb-CCEA needs a
similar number of evaluations as CCEA-H to reach the fitness threshold (p = 0.63).
Comparing Hyb-CCEA with the CCEA with the optimal team allocation (CCEA-
PH), Hyb-CCEA needs more evaluations to reach the same fitness level (p < 0.01),
except when a fully heterogeneous team is needed (10 unique targets). This dif-
ference is, however, relatively small in magnitude, and remains constant across the
problem instances.

Overall, these results suggest that Hyb-CCEA can approximate the performance
of a CCEA with the optimal team composition. Hyb-CCEA, however, does not re-
quire the optimal team composition to be known a priori. The results also show that
there is a low overhead of using Hyb-CCEA for tasks in which partial heterogeneity
is not beneficial.

6.3.4 Scalability with Problem Complexity

In this section, we assess the robustness of Hyb-CCEA to problems with varying
degrees of complexity. To this end, we vary the number of dimensions (N), and
the number of unique targets, while keeping the number of agents (M) fixed to 10.
We configured Hyb-CCEA with a fully heterogeneous initialisation and the default
parameters listed in Table 6.1.

The results in Figure 6.3 (left) show that Hyb-CCEA was able to achieve near-
optimal solutions in all problem instances. The fitness scores achieved by Hyb-
CCEA decrease slightly and predictably as the number of dimensions (N) increases.

Number of unique targets 1 3 5 10

●
●

● ●●

●

●

●

●

●

0.985

0.990

0.995

1.000

10 20 30 40 50
Dimensions

H
ig

he
st

 fi
tn

es
s

sc
or

e

●

●

●

●

●

●●●
●

●●

●●

●

●

1

2

3

4

5

6

7

8

9

10

10 20 30 40 50
Dimensions

M
ea

n
nu

m
be

r o
f p

op
ul

at
io

ns

FIGURE 6.3: Left: highest fitness scores achieved by Hyb-CCEA in each problem
instance (number of dimensions × number of unique targets). Right: mean number
of populations during the evolutionary process, for each problem instance.

6.3. Comprehensive Evaluation in an Abstract Domain 105

To understand how Hyb-CCEA adapts to the different problem instances, we anal-
ysed the mean number of populations throughout the evolutionary runs, see Fig-
ure 6.3 (right). The results reveal that the mean number of populations is depen-
dent on the number of unique targets, but it is mostly independent from the num-
ber of dimensions. This shows that Hyb-CCEA is capable of converging to suit-
able team compositions, regardless of the problem complexity. In the problem in-
stances with less than 10 unique targets, the mean number of populations is always
slightly higher than the optimal team composition because: (i) Hyb-CCEA starts
fully heterogeneous (10 populations), and needs some generations to converge; and
(ii) stochastic splits continue to happen throughout the evolutionary process, thus
temporarily increasing the number of populations.

6.3.5 Scalability with Respect to Team Size

We assessed the capability of Hyb-CCEA to scale to larger numbers of agents and
populations. The number of dimensions was set to N = 30, and we varied the
number of agents M from 2 to 50. The number of unique targets was also varied,
ranging from 1 to M . As in the previous experiments, we configured Hyb-CCEA
with a fully heterogeneous initialisation and the parameters listed in Table 6.1. The
evaluation budget was varied proportionally to the number of agents: 300K, 750K,
1.5M, 3M, and 7.5M for M = 2, 5, 10, 30, 50, respectively.

The Hyb-CCEA algorithm was able to consistently find near-optimal solutions
for all combinations of number of agents and number of unique targets – the mean
of the highest fitness scores achieved is above the threshold of 0.995 in all problem in-
stances. In Figure 6.4, we show the mean number of populations used by Hyb-CCEA
in each problem instance. The mean number of populations is close to the number
of unique targets, for every number of agents. There is a high linear correlation
(Pearson’s r = 0.98) between the number of unique targets and the mean number of
populations. As discussed in the previous section, the absolute difference between
the mean number of populations and the number of unique targets (i.e., the optimal

● ●
0

10

20

30

40

50

1 2 5 10 20 30 40 50

Unique targets

M
ea

n
nu

m
be

r
of

 p
op

ul
at

io
ns

Agents ● 2 5 10 30 50

FIGURE 6.4: Mean number of populations in Hyb-CCEA for each problem instance
(number of unique targets × number of agents).

106 Chapter 6. Improving Scalability Through Dynamic Team Heterogeneity

number of populations) is explained by the time the algorithm takes to converge,
and the population splits that continue to occur throughout evolution. These exper-
iments confirm the potential of Hyb-CCEA to evolve controllers for teams composed
of high numbers of agents.

6.3.6 Initial Team Composition

In this section, we assess if and how the provided initial team composition (see Sec-
tion 6.2.2) biases the outcome of the Hyb-CCEA evolutionary process. For these
experiments, the number of dimensions is set to N = 30, the number of agents set
to M = 10, the number of unique targets is variable from 1 to M , and we vary the
starting conditions, ranging from fully homogeneous (1 population) to fully hetero-
geneous (10 populations).

The results in Figure 6.5 show that, regardless of the initial configuration, Hyb-
CCEA tends to converge to approximately the same number of populations. We
did not observe significantly different outcomes for the different starting conditions,
regarding the mean number of populations in the final 500K evaluations of the evo-
lutionary runs, for any of the problem instances (Kruskall-Wallis test, p > 0.05). The
relatively quick convergence of the algorithm to the same team composition trans-
lates to a similar performance regardless of the initial composition – for each prob-
lem instance, there were also no significant differences in the fitness scores achieved
(Kruskall-Wallis, p > 0.05). These results suggest that the initial team composition
does not have a significant impact on the effectiveness of Hyb-CCEA.

Unique targets: 5 Unique targets: 10

Unique targets: 1 Unique targets: 3

0 100 200 300 400 500 0 100 200 300 400 500

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

Evaluations (x1000)

M
ea

n
nu

m
be

r
of

 p
op

ul
at

io
ns

Number of initial populations 1 3 5 10

FIGURE 6.5: Mean number of populations in Hyb-CCEA throughout the evolution-
ary process, for the different problem instances and different initialisation condi-
tions. Only the first 500K evaluations of a total of 1.5M are shown.

6.3. Comprehensive Evaluation in an Abstract Domain 107

6.3.7 Merge Threshold and Maturation Limit

In this section, we study the two main parameters of Hyb-CCEA: the merge thresh-
old (TM) and the maturation limit (TL), see Sections 6.2.3 and 6.2.4. To assess the im-
pact of these two parameters, we used the same problem instances as in Section 6.3.3,
where we varied the number of unique targets, while keeping the number of agents
(M) fixed to 10 and set the number of dimensions N to 30. For each problem in-
stance, we tested multiple combinations of TM and TL. In Figure 6.6, we show the
highest fitness scores achieved by each configuration, in Figure 6.7, we show the
mean number of evaluations needed to reach solutions, and in Figure 6.8, we show
the mean number of populations during the evolutionary process.

In the problem instance that requires a homogeneous team (1 unique target),
the number of evaluations tends to decrease with an increase of the merge thresh-
old, regardless of the maturation limit (average Spearman’s correlation r = −0.96).
Increasing the merge threshold always facilitates the merging of populations (Fig-
ure 6.8), which naturally favours a problem instance where a fully homogeneous
teams is preferable. When (partially) heterogeneous teams are required, there is a
relatively wide range of TM values for which the algorithm performs well. Beyond
certain values, however, performance can drastically decrease (Figure 6.6). This is
explained by the fact that beyond certain threshold values, Hyb-CCEA starts merg-
ing populations that should not be merged, as evidenced by the rapid decay in
the mean number of populations, thus impeding the evolution of good solutions.
In general, decreasing the merge threshold too much can cancel the advantages of
Hyb-CCEA, but increasing it too much can prevent the algorithm to reach optimal
solutions.

Unique targets: 5 Unique targets: 10

Unique targets: 1 Unique targets: 3

.00 .05 .10 .20 .35 .50 .75 .90 1.00 .00 .05 .10 .20 .35 .50 .75 .90 1.00

1

5

10

20

35

50

100

200

500

1

5

10

20

35

50

100

200

500

Merge threshold TM

M
at

ur
at

io
n

lim
it

T
L

0.7 0.8 0.9 1.0
Highest fitness scores

FIGURE 6.6: Highest fitness scores achieved by the evolutionary runs, averaged over
30 runs for each configuration of Hyb-CCEA (higher is better).

108 Chapter 6. Improving Scalability Through Dynamic Team Heterogeneity

Unique targets: 5 Unique targets: 10

Unique targets: 1 Unique targets: 3

.00 .05 .10 .20 .35 .50 .75 .90 .00 .05 .10 .20 .35 .50 .75 .90

1
5

10
20
35
50

100
200
500

1
5

10
20
35
50

100
200
500

Merge threshold TM

M
at

ur
at

io
n

lim
it

T L

250 500 750 1000 1250Evaluations (x1000)

FIGURE 6.7: Average number of evaluations needed to achieve a fitness level of
0.995, for each configuration of Hyb-CCEA (lower is better). The textured areas
correspond to configurations that could not achieve that fitness level in at least 20
out of 30 runs.

Unique targets: 5 Unique targets: 10

Unique targets: 1 Unique targets: 3

.00 .05 .10 .20 .35 .50 .75 .90 .00 .05 .10 .20 .35 .50 .75 .90

1

5

10

20

35

50

100

200

500

1

5

10

20

35

50

100

200

500

Merge threshold TM

M
at

ur
at

io
n

lim
it

T
L

−5 0 5
Mean # populations − # unique targets

FIGURE 6.8: Average difference between the mean number of populations during
the evolutionary runs and the number of unique targets, for each configuration.

6.4. Validation in Simulated Multirobot Systems 109

Regarding the maturation limit, the results show that very short maturation lim-
its (≤ 10 generations) tend to be prejudicial to Hyb-CCEA’s performance, resulting
in many configurations where evolution was unable to reach solutions (see textured
areas in Figure 6.7). Short maturation periods might not provide enough time for the
populations to converge to different specialisations, which is particularly evident
by the negative impact of short maturation limits in the problem instance where a
heterogeneous team is needed (10 unique targets). This negative impact becomes
increasingly more pronounced as the merge threshold is increased, as the popula-
tions need to become more specialised in order to remain separated. Allowing very
long maturation periods, on the other hand, can lead to a slower convergence of the
algorithm to the optimal team composition.

Overall, our results show that Hyb-CCEA is moderately robust to variations in
the maturation limit and merge threshold. For every problem instance, there is
a wide range of parameter values for which Hyb-CCEA successfully finds near-
optimal solutions. Moreover, there was a range of configurations that was highly
successful across all problem instances: TM ∈ [0.20, 0.50] ∧ TL ∈ [20, 50].

6.4 Validation in Simulated Multirobot Systems

In this section, we study how Hyb-CCEA can be applied to multirobot systems.
As described in Section 6.2.3, Hyb-CCEA requires an agent behaviour character-
isation for the merge procedure. It is an essential part of the algorithm that al-
lows behaviourally similar populations to be identified and ultimately merged. We
study two different approaches for the definition of the behaviour characterisa-
tion: generic characterisations that do not rely on the experimenter’s knowledge;
and task-specific characterisations that must be provided by the experimenter. An
overview of behaviour characterisations, including the generic characterisations de-
veloped in the context of this thesis, is provided in Section 2.5.4. We validate Hyb-
CCEA using four simulated multirobot tasks: two variants of cooperative foraging
and two variants of robot soccer.

6.4.1 Generic Agent Behaviour Characterisation

In this chapter, we adopt one of the simplest measures that we proposed in (Gomes
and Christensen, 2013): the sampled average state. This measure obtains a behaviour
characterisation by averaging the sensory-effector values of the robots over time
windows evenly spaced across the evaluation time. For simplicity, we consider a
single time window (the whole evaluation time), meaning that this measure requires
no parameter tuning. The behaviour characterisation of an agent a is given by:

β(a) = 〈v1a , · · · , vna〉 , (6.5)

where via is the mean normalised value of the i-th sensor/effector of agent a over
the evaluation time.

6.4.2 Multi-rover Foraging Task

The multi-rover foraging task requires a team of agents to find and collect items in a
bounded environment. We extended the cooperative foraging task used in Chapter 3
to support more agents and to require different specialisations, making it similar
to the extended multi-rover task used by Nitschke et al., (2010). In the task used in

110 Chapter 6. Improving Scalability Through Dynamic Team Heterogeneity

this chapter, a fixed number of items is randomly distributed in a bounded arena,
see Figure 6.9. The agents start in the centre of the arena, and have the objective
of capturing as much items as possible in the given time limit. The items can have
different types, each type associated with one different sensor resolution. Each agent
can only activate one sensor resolution at a time, and it can only sense and collect
the item types that match the currently active sensor resolution. For simplicity, an
item is collected when an agent passes over it.

Agent
Item type A
Item type B

wl wr

k1

k2

k3

k4

k6

k5

r2

r1

r4

r3

FIGURE 6.9: Initial conditions of the multi-rover foraging task with two item types.
Each agent has two short-range sensors to detect walls (wl, wr), 6 sensors with un-
limited range to detect the closest item (matching the current sensor resolution) in
the respective circular sector (k1..6), four sensors to detect the closest agent in the re-
spective sector (r1..4), and one sensor that returns the current sensor resolution of the
nearest agent (nR). Each agent has two actuators that control the linear and turning
speed, and one actuator that dictates the sensor resolution.

The domain is particularly interesting for this study because the optimal be-
havioural specialisations depend on the item types that exist in the environment
(Nitschke et al., 2010). If there is a single item type, for instance, it should be ad-
vantageous to have a fully homogeneous team. When there are more item types, the
optimal team composition is less obvious – behavioural specialisation can be bene-
ficial, with certain groups of agents specialised in searching for specific item types,
but a viable alternative can be to have generalist agents that frequently switch be-
tween different sensor resolutions. We experiment with two environments: one with
two different item types; and other with five different item types. The full list of task
parameters can be found in Appendix A.8.

The fitness score assigned to an individual is the number of items collected by
the team, averaged over 5 independent simulation runs, with randomised initial
conditions (locations of items and initial positions of agents). The task-specific agent
behaviour characterisation is a vector of length 6 or 12 (depending on the task vari-
ant), described in Table 6.2. The generic behaviour characterisation is a vector of

6.4. Validation in Simulated Multirobot Systems 111

length 16 (the total number of sensors and actuators).

TABLE 6.2: Agent behaviour characterisations for a given agent a, for the multi-rover
foraging and soccer tasks. All features are normalised to [0, 1].

Multi-rover foraging task Soccer task

.Number of items of each type
collected by a

.Mean distance of a to the opponent’s goal

.Amount of time each sensor resolution
was active

.Mean distance of a to the ball

.Mean distance of a to the closest item .Whether a scored a goal or not

.Mean distance of a to the closest agent

6.4.3 Soccer Task

The soccer task is based on the RoboCup 2D simulated league1 and on the Soccer-
Bots domain of the TeamBots simulator.2 Simulated soccer tasks remain a consid-
erable challenge regarding the control of the teams (Barrett and Stone, 2015), and
they have been used in numerous previous evolutionary robotics studies (Didi and
Nitschke, 2016; Fehérvári and Elmenreich, 2010; Gomes et al., 2014a; Nelson et al.,
2004; Scheepers and Engelbrecht, 2014). In the task used in this chapter, the robots’
passing and kicking mechanics are abstracted as we did in (Gomes et al., 2014a),
since we focus on team strategy and not on fine sensorimotor control. When the
robot is over the ball, it simply chooses the direction and power of the pass, and the
ball moves accordingly.

In our task, two teams of five players each play against one other. The controllers
of one team of robots is under evolution, while the agents of the opponent team
have a manually programmed controller. The manually programmed controller is
an improved version of a controller available in TeamBots – AIKHomoG, see details
in Appendix A.9. This controller uses dynamic role assignment for strategy and
potential fields for choosing the movement direction. It has shown to be one of
the best-performing teams available in TeamBots (Kose et al., 2005; Ramani et al.,
2008). We experiment with two task variants, with different parameters for the pre-
programmed controller:

• Soccer-80%: the opponent (pre-programmed) agents can only move and kick
the ball at 80% the maximum speed.

• Soccer-100%: the opponent agents can move and kick at the same speed as the
agents under evolution.

Each soccer game starts with the agents randomly placed in their respective
halves, see Figure 6.10. For the team that starts with the ball, one of the agents
(always the same one) is initially located close to the ball. The game ends when a
goal is scored, when the time limit is reached, or when the ball gets stuck. A total
of ten games are played, alternating which team starts with the ball. The task pa-
rameters are listed in Appendix A.9. The fitness of the evolving team is obtained by

1http://wiki.robocup.org/wiki/Soccer_Simulation_League
2http://www.teambots.org/

http://wiki.robocup.org/wiki/Soccer_Simulation_League
http://www.teambots.org/

112 Chapter 6. Improving Scalability Through Dynamic Team Heterogeneity

dt2
do2

b ρ
,𝜙

goρ,𝜙
gtρ,𝜙

do1

dt4
do4dt3

do3
dt1

FIGURE 6.10: Initial conditions of the soccer task, with the left team starting. An
additional agent is shown to illustrate the sensory configuration of the agents under
evolution. Agents have four sensors with unlimited range that return the distance
to the closest teammate in the respective circular sector (dt1..4); four sensors that
operate similarly to dt1..4, but for the opponents (do1..4); and six sensory inputs that
return the distance and relative orientation to the ball (bρ,φ), the own goal (gtρ,φ),
and the opponents’ goal (goρ,φ). The four actuators control the movement speed
and direction, and the kicking power and direction.

averaging Fs over the ten games:

Fs =

{
1 scored
0 otherwise

+
1− 1

T ·D
∑T
t=1 dist(bt,g)

100
(6.6)

where T is the game length, D is the field’s diagonal, bt is the position of the ball at
instant t, and g is the centre of the opponent team’s goal. The second component of
Fs rewards the team for keeping the ball close to the opponent’s goal, thus encour-
aging good defense and offense strategies simultaneously. The second component
is used to bootstrap evolution, as it is highly unlikely that randomly generated con-
trollers can score any goals. The manually defined task-specific agent behaviour
characterisation is a vector of length 3, described in Table 6.2. The generic behaviour
characterisation is a vector of length 18 (the total number of sensors and actuators).

6.4.4 Evolutionary Setup

The controllers for both tasks were evolved using the NEAT algorithm (Stanley and
Miikkulainen, 2002). The parameters of the NEAT algorithm were the same for both
tasks, and are listed in Appendix A.1. It should be noted that in the case of Hyb-
CCEA, the co-evolving NEAT populations all use the same innovation counter. This is
done in order to allow the merging of separate populations, avoiding problems with
the crossover between individuals that could have colliding innovation numbers.
We used the default parameter values for Hyb-CCEA, listed in Table 6.1.

6.4. Validation in Simulated Multirobot Systems 113

6.4.5 Results

For each task variant, we compared three approaches:

• Hyb-CCEA-GC: Hyb-CCEA algorithm, with fully homogeneous initialisation,
using the generic behaviour characterisation (Section 6.4.1).

• Hyb-CCEA-TS: Hyb-CCEA algorithm, with fully homogeneous initialisation,
using the task-specific agent behaviour characterisations (see Table 6.2).

• CCEA: Fully heterogeneous CCEA.

In Figure 6.11, we show the fitness scores achieved by each method in the differ-
ent tasks. In all tasks, both variants of Hyb-CCEA outperformed CCEA, achieving
significantly higher fitness scores (Mann-Whitney, p < 0.001), and requiring signifi-
cantly fewer evaluations to reach similar fitness levels. The visual inspection of the
highest-scoring solutions for each task (see videos online3) revealed that the best
teams clearly relied on partial heterogeneity, with the different homogeneous sub-
teams displaying different and complementary specialisations. In the multi-rover
foraging task, each sub-team specialised in foraging specific item types, sometimes
two item types at once by frequently switching the sensor resolution. In the soccer

3Videos of some of the solutions evolved with Hyb-CCEA and the standard CCEA, for both the
soccer and multi-rover tasks, are available at https://doi.org/10.5281/zenodo.292797.

Multi-rover foraging 2 item types Multi-rover foraging 5 item types

0 100 200 300 400 500 0 100 200 300 400 500
0

10

20

Evaluations (x1000)

H
ig

he
st

 fi
tn

es
s

Method Hyb−CCEA−GC Hyb−CCEA−TS CCEA

●

●

●

●

●
●

●
● ● ●

●

●

●
●

●
● ● ● ● ●

Soccer−80% Soccer−100%

0 50 100 150 200 250 0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

Evaluations (x1000)

H
ig

he
st

 fi
tn

es
s

Method ●Hyb−CCEA−GC Hyb−CCEA−TS CCEA

FIGURE 6.11: Highest fitness scores achieved on average at each number of eval-
uations, for the three methods and four task variants. The shaded area shows the
standard error.

https://doi.org/10.5281/zenodo.292797

114 Chapter 6. Improving Scalability Through Dynamic Team Heterogeneity

task, the teams were typically divided into two or three separate roles, with two or
three agents actively trying to score a goal, and the other agents staying behind in
the field to either defend the goal or stop opponents’ attacks.

Regarding the fitness scores achieved by the two variants of Hyb-CCEA, we did
not find statistically significant differences between the generic and task-specific
characterisations except in the multi-rover task with two item types, where the
generic characterisation (Hyb-CCEA-GC) yielded slightly higher fitness scores than
the task-specific characterisation (Hyb-CCEA-TS) (p < 0.001). By considering the
mean number of populations throughout the evolutionary process, see Figure 6.12,
we can see that both Hyb-CCEA variants converge to similar numbers of popula-
tions. There were, however, significant differences between the two characterisa-
tions in all tasks, regarding the mean number of populations (p < 0.01, Mann-
Whitney). These experiments show that the generic characterisations are able to
effectively capture the behavioural features necessary to distinguish the different
agents, and can perform as well as, or even better, than task-specific behaviour char-
acterisations.

In the multi-rover foraging task, the variant with five item types naturally bene-
fits from more agent specialisations (higher degree of team heterogeneity) than the
variant with two item types. The results of Hyb-CCEA are consistent with this dif-
ference, with the algorithm converging to higher number of populations in the task
variant with five item types. In the soccer task, Hyb-CCEA also converged to par-
tially heterogeneous teams: in both task variants, the mean number of populations

Multi-rover foraging 5 item types

0 100 200 300 400 500 0 100 200 300 400 500
1
2
3
4
5
6
7
8
9

10

Evaluations (x1000)

M
ea

n
nu

m
be

r o
f p

op
ul

at
io

ns

Method Hyb−CCEA−GC Hyb−CCEA−TS

Multi-rover foraging 2 item types

●

●

● ● ● ● ●
● ● ●

●

●
● ● ● ●

● ●
● ●

Soccer−80% Soccer−100%

0 50 100 150 200 250 0 100 200 300 400 500

1

2

3

4

5

Evaluations (x1000)

M
ea

n
nu

m
be

r
of

 p
op

ul
at

io
ns

Method ●Hyb−CCEA−GC Hyb−CCEA−TS

FIGURE 6.12: Mean number of populations throughout the evolutionary process,
for each of the four tasks and the two variants of Hyb-CCEA.

6.5. Discussion 115

is approximately half the number of agents. The results for the multirobot tasks are
thus in line with the results for the coverage task presented in Section 6.3, and con-
firm that Hyb-CCEA often finds a suitable team composition and agent controllers
for the tasks considered.

6.5 Discussion

Finding suitable team compositions We began by evaluating the properties of
Hyb-CCEA with an abstract domain for which the global optimum is known, as well
as the optimal team composition. The initial experiments with different instances of
the coverage task revealed that Hyb-CCEA converges to the optimal team composi-
tion for the given problem instance, ranging from fully homogeneous teams, to fully
heterogeneous, and compositions in between. The experiments showed that the al-
gorithm scales well with the problem complexity, converging to the same team com-
position regardless of the dimensionality of the problem. We additionally showed
that the algorithm scales with the number of agents, as the algorithm performed
successfully in problem instances ranging from 2 to 50 agents.

Improving scalability of CCEAs Using the coverage task, we compared Hyb-
CCEA with a traditional fully heterogeneous CCEA, and with a CCEA where the
number of populations was constant, but there was exchange of individuals among
behaviourally similar populations. Hyb-CCEA significantly outperformed the com-
peting approaches across different problem instances. Even when the task required a
fully heterogeneous team, Hyb-CCEA performed as well as the fully heterogeneous
CCEA, and the advantage of Hyb-CCEA over the heterogeneous CCEA increased as
more homogeneous teams were required. Generally, Hyb-CCEA and the traditional
CCEA achieved similar fitness scores, but Hyb-CCEA required significantly fewer
evaluations to achieve those scores.

We then successfully applied Hyb-CCEA to more complex multirobot tasks,
where the optimal team composition was not known beforehand. These experiments
revealed that the advantages of Hyb-CCEA go beyond reducing the number of eval-
uations needed to achieve solutions. In all four tasks used, Hyb-CCEA achieved
significantly higher fitness scores than the traditional CCEA, besides reaching the
same fitness levels with significantly fewer evaluations. Hyb-CCEA has the poten-
tial to mitigate the problem of credit assignment (Agogino and Tumer, 2008), since
modifications in a single individual (which can be assigned to multiple agents) can
have a greater impact in the team’s performance. This can help overcome the issues
of stagnation and premature convergence caused by vanishing fitness gradients.

Besides these multirobot tasks, we also evaluated an initial version of Hyb-CCEA
in a herding task (Gomes et al., 2015b). We used six task variants, with five to ten
agents. The results are consistent with the experiments in this chapter: Hyb-CCEA
could achieve higher fitness scores than CCEA, and could achieve the same fitness
levels using significantly fewer evaluations. The performance differences were more
expressive in the task variants with more agents, thus supporting the potential of
Hyb-CCEA to improve the scalability of the coevolutionary process.

Parameter sensitivity and generalisation Hyb-CCEA requires three main param-
eters to be provided by the experimenter: the merge threshold, the maturation limit,
and the initial team composition. Our results showed that the algorithm is moder-
ately robust to variations of all these parameters: (i) the algorithm converged to the

116 Chapter 6. Improving Scalability Through Dynamic Team Heterogeneity

same team composition regardless of the initial composition; (ii) the merge thresh-
old is dimensionless, independent from the task and the chosen behaviour charac-
terisation; and (iii) there is relatively wide range of combinations of merge threshold
and maturation limit that yielded successful results across all the tested problem
instances.

Our experiments also showed that generic (task agnostic) agent behaviour char-
acterisations can be successfully employed in Hyb-CCEA, thus freeing the experi-
menter from having to provide a behaviour characterisation tailored to the given
task. The performance of the algorithm with generic characterisations was similar
or better than the performance obtained with task-specific behaviour characterisa-
tions.

Limitations We identified two main issues that should be further studied in future
work. First, due to the periodic and stochastic population splits, the number of
populations in the algorithm is on average above the number of populations needed
to optimally solve the task. This could potentially be addressed by conditioning the
splits on the evolutionary history: if a certain population is split only to be merged
again as soon as the maturation period is over, this hints that the population does
not need to be split as often. Second, Hyb-CCEA failed to consistently achieve high-
performance solutions in the more challenging variant of the soccer task. This was
not a problem specific to Hyb-CCEA, as the traditional CCEA achieved significantly
inferior results. The results suggest that the coevolutionary process is converging
prematurely to mediocre stable states, a problem that we have studied in Chapter 3.
The next step of our research is therefore to combine novelty-driven cooperative
coevolution with Hyb-CCEA, in an attempt to simultaneously improve scalability
and avoid premature convergence. We will discuss this approach in greater detail in
Section 7.2.

6.6 Summary

We proposed Hyb-CCEA, an extension of cooperative coevolutionary algorithms
that does not rely on a fixed mapping (typically one-to-one) between agents and
coevolving populations. In Hyb-CCEA, a population can be dynamically assigned
to several agents, therefore enabling partial heterogeneity. By merging populations
that are evolving behaviourally similar agents, Hyb-CCEA can find team composi-
tions suitable for solving the given task, along with optimising the agent controllers.
We thoroughly explored the properties of Hyb-CCEA in an abstract multiagent task
(the coverage task), and then validated the approach with two simulated coopera-
tive multirobot tasks: multi-rover foraging and a soccer task.

We showed that Hyb-CCEA can leverage the advantages of concurrent learn-
ing, such as the emergence of specialisations, while at the same time significantly
improving the scalability of such algorithms with respect to the number of agents
in the team. Hyb-CCEA is a promising new approach for evolving controllers for
large teams where there is little knowledge about the task at hand. In Hyb-CCEA,
there is no need to specify the team composition (genetically heterogeneous, homo-
geneous, or any compositions in between), nor the desired specialisations, which
represents a significant advance over the current state of the art. The proposed ap-
proach optimises the agent controllers for solving the given task, while at the same
time converging to a suitable team composition.

117

Chapter 7

Conclusions

As discussed in Chapter 2, heterogeneous multirobot systems have shown consider-
able potential in a number of applications (Dorigo et al., 2013; Parker, 2008), present-
ing several advantages over the more commonly studied homogeneous multirobot
systems. Synthesising control for heterogeneous systems is, however, a challenging
endeavour, since the search space grows proportionally to the number of different
agents (Panait and Luke, 2005a). Cooperative coevolutionary algorithms (CCEAs)
(Popovici et al., 2012; Potter and De Jong, 2000) are a promising approach to deal
with such large search spaces, but their use is also associated with a number of chal-
lenges of their own. Previous works have shown that CCEAs are not necessarily
attracted to a global optimum, and often prematurely converge to mediocre sta-
ble states (Panait, 2010; Wiegand, 2003); they can be inefficient when applied to a
large number of agents (Colby and Tumer, 2015a; D’Ambrosio et al., 2010); and they
have only been demonstrated in simulated morphologically homogeneous multi-
robot systems.

In this thesis, we developed and studied methods for overcoming the aforemen-
tioned issues, in order to achieve cooperative coevolutionary algorithms that can be
efficiently applied to realistic and complex multirobot tasks. The developed meth-
ods are intended to be applicable to any multirobot task, and we strived to obtain
general results. To this end, our research was based on empirical studies, conducted
mainly in simulation environments, but also on a real robotic system. We did not to
focus on solving a specific robotics task, but rather conducted our research based on
a number of multirobot domains inspired by previous works from other authors.

7.1 Discussion

In this section, we summarise and discuss the main findings of our work, in light of
the initial research questions.

Research Question 1

How can behavioural novelty be leveraged to avoid premature con-
vergence in cooperative coevolutionary algorithms?

In Chapter 3, we proposed novelty-driven cooperative coevolution, the first
CCEA based on novelty search, in which individuals are rewarded according to
their behavioural novelty, besides the traditional fitness score. We studied three
different approaches for defining behavioural novelty: NS-Team – the behavioural
novelty of an individual corresponds to the novelty of the team with which it was
evaluated; NS-Ind – the novelty of an individual is the novelty of the agent’s indi-
vidual behaviour, and NS-Mix – a combination of the two. In all three approaches,

118 Chapter 7. Conclusions

the novelty score was combined with the traditional fitness score via a Pareto-based
multiobjective ranking.

We compared the three approaches with traditional fitness-driven cooperative
coevolution, in three simulated multirobot domains: in several variants of a coop-
erative predator-prey task, ranging from two to seven predators; in a cooperative
foraging task with two agents; and in a herding task with four agents. Our results
consistently showed that team-level novelty scoring is the most effective approach,
and it significantly outperformed fitness-driven coevolution according to multiple
performance criteria. NS-Team can avoid premature convergence by continuously
avoiding stable states – the novelty measure promotes individuals that generate
novel team behaviours, countering the pressure of over-fitting to the other coevolv-
ing populations.

We compared the novelty-driven approaches with other techniques described
in previous works for overcoming premature convergence, namely increasing the
number of randomly chosen collaborators that are used for each individual evalua-
tion (Panait, 2010). This strategy revealed to be mostly ineffective, offering little to
no advantages in the considered problems, at the cost of significantly increased com-
putational complexity. Novelty-driven cooperative coevolution, on the other hand,
could substantially increase the effectiveness of the coevolutionary process, while
still requiring a single collaboration to evaluate each individual, which is the com-
mon practice in studies that apply CCEAs to multirobot domains. Besides avoiding
stable states and improving the quality of the solutions evolved, we also showed
that NS-Team is capable of discovering a wide diversity of solutions in a single evo-
lutionary run, as opposed to fitness-driven CCEAs that typically converge to a single
class of solutions.

In addition to the three domains used in Chapter 3, novelty-driven cooperative
coevolution, NS-Team in particular, was further validated in the following domains:

• In a preliminary study (Gomes et al., 2014a), we successfully applied NS-Team
to a simulated keepaway soccer task with three agents.

• In Chapter 4, we applied NS-Team to the evolution of controllers for a predator-
prey pursuit task, which were then transferred to an aquatic multirobot sys-
tem, and evaluated in real-world conditions. Besides the success of the teams
evolved by NS-Team, we showed that the diversity of behaviours that was ob-
served in the simulation environment was also observed in the real robots, thus
validating the capability of NS-Team to generate diverse and useful solutions.

• In Chapter 5, we used NS-Team in a cooperative foraging task with a mor-
phologically heterogeneous systems. We compared it with other techniques
that rely on the experimenter’s knowledge to overcome premature conver-
gence, namely incremental evolution (Gomez and Miikkulainen, 1997) and
multi-objectivisation with sub-goals (Mouret and Doncieux, 2008). The re-
sults showed that novelty-driven coevolution was able to match or surpass
the performance of the competing approaches, but without relying on the ex-
perimenter’s biases for task decomposition.

Overall, our results show that promoting individuals that cause novel team be-
haviours (NS-Team) is a successful approach for avoiding premature convergence in
CCEAs, which does not significantly increase computational complexity nor does it

7.1. Discussion 119

rely on the experimenter’s prior knowledge, as opposed to other competing tech-
niques. The promising results obtained with a large number and variety of multi-
robot domains and tasks attest to the general applicability of this approach. More-
over, the widespread use of novelty-based techniques, and successful application
outside robotics domains (e.g. Liapis et al., 2015; Martínez et al., 2013; Naredo et al.,
2016), suggest that novelty-driven cooperative coevolution might be applicable to
the evolution of non-embodied agents, although additional studies would be needed
in this direction.

Research Question 2
Can cooperative coevolutionary algorithms be effectively used to
evolve controllers for real multirobot systems, and morphologically
heterogeneous systems?

The demonstration of CCEAs in the evolution of control for multirobot systems
has, so far, been mainly restricted to simulated and morphologically homogeneous
systems, leaving out two important types of multirobot systems: real multirobot
systems, operating in realistic conditions; and morphologically heterogeneous mul-
tirobot systems (Parker, 2008). In this thesis, we studied the challenges on evolving
control for these types of systems. We studied standard CCEA algorithms, as well
as the proposed novelty-driven cooperative coevolution.

In Chapter 4, we demonstrated the first use of CCEAs to synthesise control for
a real multirobot system. Our study was based on a cooperative predator-prey pur-
suit task with three predators, and the multirobot system was a surface aquatic sys-
tem (Costa et al., 2016) that had been previously used in other evolutionary robotics
studies (Duarte et al., 2016e). The controllers were evolved in simulation, and then
systematically evaluated on the real system. To promote transferability, we followed
the same approach as previous studies with that system (Duarte et al., 2016b): dur-
ing evolution, we injected noise in the sensors and actuators; we used multiple sim-
ulation trials to evaluate each team, with diverse initial conditions; and we used the
same technological platform (including simulator, hardware, and onboard software)
that was developed and tuned for previous studies.

Overall, the performance of the teams in simulation matched the performance of
the teams when evaluated in the real system. Out of the five different teams tested in
the real robots, only one was not able to perform as well as in simulation. This result
is highly consistent with the previous results obtained with the same system, with
non-coevolutionary techniques (Duarte et al., 2016b). This consistency of results
suggests that cooperative coevolutionary algorithms can be successfully applied to
real robotic problems without significant specific challenges.

In Chapter 5, we studied the use of CCEAs to synthesise control for a highly
morphologically heterogeneous system. Our study relied on the aerial-ground forag-
ing task, where a simple ground robot had to cooperate with a much more complex
and capable aerial robot to find a collect items in the arena. We used different task
variants where we varied the complexity of skills the robots had to learn before they
could effectively cooperate with one another. We showed that when the robots can
easily establish cooperation with one another, right from the beginning of the evolu-
tionary process, the CCEA can achieve successful teams despite the stark differences
in morphology and controller complexity between the agents. In the task variants
where cooperation was harder to achieve, CCEAs often converged to low perform-
ing non-cooperative solutions, which correspond to stable states from which it is
difficult to escape. Our results highlight the importance of sustaining a mutual de-
velopment of skills in the coevolving agents (Uchibe et al., 1998), and the importance

120 Chapter 7. Conclusions

of facilitating cooperation when it is fundamental for the solution of the task. When
such conditions are met, the coevolutionary process is able to afford an arbitrary
degree of heterogeneity in the coevolving populations.

These two studies with a real multirobot system and a morphologically hetero-
geneous system, join the large number of previous studies based on simulated mor-
phologically homogeneous systems. In general, the existing demonstrations support
that CCEAs are applicable to a wide range of multirobot tasks.

Research Question 3
Can the scalability of cooperative coevolutionary algorithms be im-
proved through dynamic team heterogeneity?

In Chapter 6, we proposed Hyb-CCEA, a CCEA extension aimed at improving
the scalability of the coevolutionary process with respect to the number of agents
in the team. Hyb-CCEA puts the team composition under evolutionary control, de-
parting from the traditional one-to-one mapping between agents and populations.
In Hyb-CCEA, a single population can be dynamically assigned to several agents,
therefore enabling partial heterogeneity. During evolution, populations that are
evolving behaviourally similar agents can be merged, decreasing the heterogene-
ity of the system. Complementary, populations can be stochastically split for in-
creased heterogeneity, thus ensuring the exploration of different team compositions
throughout the evolutionary process.

We empirically evaluated Hyb-CCEA in a total of four domains: an abstract func-
tion optimisation domain, which allowed us to use a variety of problem instances
for studying the core properties of Hyb-CCEA; two multi-rover foraging tasks with
ten robots; two soccer tasks with teams of five robots; and six herding tasks with
teams composed of five to ten robots (Gomes et al., 2015b). Our results showed that
Hyb-CCEA can find suitable team compositions for solving the given task, ranging
from fully heterogeneous to fully homogeneous. As such, it can significantly de-
crease the number of agent controllers that need to be evolved, thereby reducing the
amount of redundant learning (separate populations evolving the same behaviours).
These advantages resulted in a large reduction in the number of evaluations needed
to achieve solutions. Moreover, Hyb-CCEA was often able to achieve solutions of a
quality never reached by a traditional fully heterogeneous CCEA, which might be
explained by the mitigation of credit assignment issues — if each population is as-
signed to multiple agents, the modification of a single individual can have a greater
impact in the team’s performance, which in turn leads to more clear fitness gradi-
ents.

While previous works with non-coevolutionary algorithms had shown the po-
tential of dynamic team heterogeneity to improve multiagent learning (Bongard,
2000; D’Ambrosio and Stanley, 2008; Hara, 1999), to the best of our knowledge,
Hyb-CCEA is the first coevolutionary algorithm to enable that. We have shown that
departing from the fixed one-to-one mapping between agents and populations can
be a beneficial approach, as it allows scalability issues of CCEAs to be addressed,
such as redundant learning and credit assignment issues. At the same time, the key
advantages of CCEAs are preserved, namely the ability to work on a decomposition
of the problem and the emergence of agent specialisations.

Final Remarks

First and foremost, this thesis confirms the potential of cooperative coevolution-
ary algorithms as a powerful tool to evolve control for heterogeneous multirobot

7.2. Future Work 121

systems. We shed a new light on how CCEAs can be improved, mitigating funda-
mental issues specific to cooperative coevolutionary algorithms, namely premature
convergence and poor scalability with respect to the number of agents. The methods
proposed in this thesis follow the recent research trend concerned with moving evo-
lutionary robotics techniques beyond pure black-box optimisation (Doncieux and
Mouret, 2014; Silva et al., 2016b). By leveraging insights on the behaviours that
are being produced by the evolutionary algorithm, we were able to avoid prema-
ture convergence to mediocre stable states (novelty-driven cooperative coevolution),
and reduce the amount of redundant learning in the coevolutionary process (Hyb-
CCEA).

This thesis advances the state of the art in the direction of methods for efficiently
synthesising control for heterogeneous multirobot systems, capable of solving
real-world tasks. The ability to produce control for such systems, which is currently
a challenge for both automatic and manual techniques, is a fundamental step to
embrace heterogeneity in multirobot systems, and realise the full potential of these
systems.

7.2 Future Work

In this section, we discuss the main limitations of this work, and promising future
directions.

Novelty-driven CCEA with Generic Behaviour Characterisations The experi-
ments with novelty-driven cooperative coevolution reported in this thesis relied
on task-specific behaviour characterisations, provided by the experimenter. We
adopted this approach since it is arguably the simplest to implement and analyse,
and it is by far the most commonly used in novelty search studies (Gomes et al.,
2014e). Although the definition of behavioural measures did not pose a problem
in our tasks, in future work, we will experiment with task-independent (generic)
behaviour characterisations (Doncieux and Mouret, 2010; Gomes and Christensen,
2013; Meyerson et al., 2016), and other techniques that make novelty less sensitive
to the choice of the behaviour characterisation (Doncieux and Mouret, 2013).

Novelty-driven Hyb-CCEA In the experiments with Hyb-CCEA, we identified a
problem of premature convergence in one of the tasks. In Chapter 3, we showed
that premature convergence problems in CCEAs can be mitigated with novelty-
driven coevolution. In future work, we will empirically evaluate the combination of
novelty-driven coevolution and the dynamic team heterogeneity provided by Hyb-
CCEA. These two techniques target different parts of the evolutionary algorithm and
are algorithmically compatible with one another. There are, however, two potential
issues that still need to be studied:

• It is unclear if and how the evolutionary dynamics of novelty search will influ-
ence Hyb-CCEA, and vice-versa. For instance, the behavioural novelty pres-
sure could push towards more heterogeneous teams, as in the short term the
behavioural possibilities increase with the heterogeneity of the team, possi-
bly preventing the formation of homogeneous sub-teams. On the other hand,
having homogeneous sub-teams can facilitate the achievement of novel team
behaviours, as a modification in a single controller can have a greater impact
in the teams’ behaviour.

122 Chapter 7. Conclusions

• Having to specify both a team-level behaviour characterisation (for novelty-
driven coevolution) and an agent-level characterisation (for Hyb-CCEA) can
be burdensome. We will therefore study how to automatically derive team-
level characterisations from agent-level characterisations, or vice-versa. Our
previous work with generic characterisations (Gomes and Christensen, 2013)
suggests that this is indeed possible.

Improvement of Hyb-CCEA Operators The proposed implementation of Hyb-
CCEA demonstrates the potential of the approach using relatively simple operators.
We contend, however, that the algorithm could be improved in further studies. We
identified three main topics where such work could focus:

• Due to the periodic and purely stochastic population splits, the number of
populations in the algorithm is on average above the number of populations
needed to optimally solve the task. This could potentially be addressed by
conditioning the splits on the evolutionary history: if a certain population is
split only to be merged again as soon as the maturation period is over, this
hints that the population may not need to be split as often.

• The current implementation does not support morphologically heterogeneous
systems, as it assumes that all agents can exchange their controllers. A straight-
forward way of overcoming this issue would be to restrict population merges
and splits to morphologically similar agents.

• Since Hyb-CCEA enables the formation of homogeneous sub-teams, it would
be valuable to study whether such teams could be scaled with respect to the
number of agents after the evolutionary process is finished. Such team size
adaptation has been shown valuable in other studies (D’Ambrosio et al., 2010).

Emergent Morphological Specialisation Morphological heterogeneity in multi-
robot systems can offer considerable advantages (Dorigo et al., 2013; Parker, 2008),
as our experiments in Chapter 5 also showed. In previous works, morphological
heterogeneity is defined by the experimenter, typically corresponding to the types
of robots available. A promising line of work is to study if and how CCEAs can be
used to evolve morphological specialisation along with behavioural specialisation.
Certain morphological features of the robots could be placed under evolutionary
control, such as the type, number and placement of the sensors. The coevolutionary
process would then be able to assign different capabilities to different robots, ide-
ally evolving a complementary set of capabilities. Besides potentially providing an
advantage in domains where robots with significantly different capabilities are re-
quired, it has also been shown that the gradual increase in morphological complex-
ity in a single-robot system can actually facilitate the evolution of robust behaviours
(Bongard, 2011).

123

Bibliography

Agogino, A. and Tumer, K. (2004). “Efficient evaluation functions for multi-rover
systems”. In: Genetic and Evolutionary Computation Conference (GECCO). Springer,
pp. 1–11.

Agogino, A. and Tumer, K. (2007). “Evolving distributed agents for managing air
traffic”. In: Genetic and Evolutionary Computation Conference (GECCO). ACM Press,
pp. 1888–1895.

Agogino, A. and Tumer, K. (2008). “Efficient evaluation functions for evolving coor-
dination”. In: Evolutionary Computation 16 (2), pp. 257–288.

Anderson, C. and Franks, N. R. (2001). “Teams in animal societies”. In: Behavioral
Ecology 12 (5), pp. 534–540.

Arai, T., Pagello, E., and Parker, L. E. (2002). “Editorial: Advances in multi-robot
systems”. In: IEEE Transactions on Robotics and Automation 18 (5), pp. 655–661.

Balch, T. (1998). “Behavioral diversity in learning robot teams”. PhD thesis. Georgia
Institute of Technology.

Balch, T. and Arkin, R. C. (1998). “Behavior-based formation control for multirobot
teams”. In: IEEE Transactions on Robotics and Automation 14 (6), pp. 926–939.

Barrett, S. and Stone, P. (2015). “Cooperating with Unknown Teammates in Complex
Domains: A Robot Soccer Case Study of Ad Hoc Teamwork”. In: AAAI Conference
on Artificial Intelligence. AAAI Press, pp. 2010–2016.

Bayındır, L. (2016). “A review of swarm robotics tasks”. In: Neurocomputing 172,
pp. 292–321.

Beer, R. D. and Gallagher, J. C. (1992). “Evolving Dynamical Neural Networks for
Adaptive Behavior”. In: Adaptive Behavior 1 (1), pp. 91–122.

Bernard, A., André, J.-B., and Bredeche, N. (2015). “Evolution of cooperation in evo-
lutionary robotics: the tradeoff between evolvability and efficiency”. In: European
Conference on Artificial Life (ECAL 2015), pp. 495–502.

Blumenthal, H. J. and Parker, G. B. (2004). “Co-evolving team capture strategies
for dissimilar robots”. In: AAAI Artificial Multiagent Learning Symposium. Vol. 2.
AAAI Press.

Bongard, J. (2011). “Morphological change in machines accelerates the evolution
of robust behavior”. In: Proceedings of the National Academy of Sciences 108 (4),
pp. 1234–1239.

Bongard, J. C. (2000). “The legion system: A novel approach to evolving heterogene-
ity for collective problem solving”. In: Genetic Programming. Vol. 1802. LNCS.
Springer, pp. 16–28.

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). “Swarm robotics:
a review from the swarm engineering perspective”. In: Swarm Intelligence 7 (1),
pp. 1–41.

Bucci, A. and Pollack, J. B. (2002). “A Mathematical Framework for the Study of
Coevolution.” In: Foundations of Genetic Algorithms (FOGA). Vol. 7. Morgan Kauf-
mann, pp. 221–235.

124 BIBLIOGRAPHY

Campbell, A. and Wu, A. S. (2011). “Multi-agent role allocation: issues, approaches,
and multiple perspectives”. In: Autonomous Agents & Multi-Agent Systems 22 (2),
pp. 317–355.

Candea, C., Hu, H., Iocchi, L., Nardi, D., and Piaggio, M. (2001). “Coordination in
multi-agent RoboCup teams”. In: Robotics and Autonomous Systems 36 (2), pp. 67–
86.

Cao, Y. U., Fukunaga, A. S., and Kahng, A. (1997). “Cooperative mobile robotics:
Antecedents and directions”. In: Autonomous robots 4 (1), pp. 7–27.

Castelli, M., Manzoni, L., and Vanneschi, L. (2011). “A Method to Reuse Old Popu-
lations in Genetic Algorithms”. In: Portuguese Conference on Artificial Intelligence
(EPIA). Vol. 7026. LNCS. Springer, pp. 138–152.

Chaimowicz, L., Cowley, A., Gomez-Ibanez, D., Grocholsky, B., Hsieh, M. A., Hsu,
H., Keller, J. F., Kumar, V., Swaminathan, R., and Taylor, C. J. (2005). “Deploying
Air-Ground Multi-Robot Teams in Urban Environments”. In: Multi-Robot Sys-
tems. From Swarms to Intelligent Automata Volume III: Proceedings from the 2005 In-
ternational Workshop on Multi-Robot Systems. Ed. by L. E. Parker, F. E. Schneider,
and A. C. Schultz. Springer, pp. 223–234.

Christensen, A. L. and Dorigo, M. (2006). “Incremental Evolution of Robot Con-
trollers for a Highly Integrated Task”. In: International Conference on Simulation
of Adaptive Behavior (SAB). Vol. 4095. LNCS. Springer, pp. 473–484.

Christensen, A. L., Duarte, M., Costa, V., Rodrigues, T., Gomes, J., Silva, F., and
Oliveira, S. M. (2016). “A Sea of Robots”. In: AAAI Conference on Artificial In-
telligence. AAAI Press. URL: https : / / www . youtube . com / watch ? v =
JBrkszUnms8.

Colby, M. and Tumer, K. (2015a). “An evolutionary game theoretic analysis of differ-
ence evaluation functions”. In: Genetic and Evolutionary Computation Conference
(GECCO). ACM Press, pp. 1391–1398.

Colby, M. and Tumer, K. (2015b). “Fitness function shaping in multiagent coopera-
tive coevolutionary algorithms”. In: Autonomous Agents & Multi-Agent Systems,
pp. 1–28.

Costa, V., Duarte, M., Rodrigues, T., Oliveira, S. M., and Christensen, A. L. (2016).
“Design and Development of an Inexpensive Aquatic Swarm Robotics System”.
In: IEEE/MTS OCEANS. IEEE Press, pp. 1–7.

Şahin, E. (2005). “Swarm Robotics: From Sources of Inspiration to Domains of Ap-
plication”. In: Swarm Robotics. Vol. 3342. LNCS. Springer, pp. 10–20.

Cuccu, G. and Gomez, F. J. (2011). “When Novelty Is Not Enough”. In: European Con-
ference on the Applications of Evolutionary Computation (EvoApps). Vol. 6624. LNCS.
Springer, pp. 234–243.

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. (2015). “Robots that can Adapt
like Animals”. In: Nature 521 (7553), pp. 503–507.

D’Ambrosio, D. B. and Stanley, K. O. (2008). “Generative encoding for multiagent
learning”. In: Genetic and Evolutionary Computation Conference (GECCO). ACM
Press, pp. 819–826.

D’Ambrosio, D. B., Lehman, J., Risi, S., and Stanley, K. O. (2010). “Evolving policy
geometry for scalable multiagent learning”. In: International Conference on Au-
tonomous Agents & Multiagent Systems (AAMAS). IFAAMAS, pp. 731–738.

Daniel, T., Manley, J., and Trenaman, N. (2011). “The Wave Glider: enabling a new
approach to persistent ocean observation and research”. In: Ocean Dynamics
61 (10), pp. 1509–1520.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John Wi-
ley & Sons.

https://www.youtube.com/watch?v=JBrkszUnms8
https://www.youtube.com/watch?v=JBrkszUnms8

BIBLIOGRAPHY 125

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). “A fast and elitist multi-
objective genetic algorithm: NSGA-II”. In: IEEE Transactions on Evolutionary Com-
putation 6 (2), pp. 182–197.

Didi, S. and Nitschke, G. (2016). “Multi-agent Behavior-Based Policy Transfer”. In:
European Conference on the Applications of Evolutionary Computation (EvoApps).
Springer, pp. 181–197.

Doncieux, S. and Mouret, J.-B. (2013). “Behavioral diversity with multiple behav-
ioral distances”. In: IEEE Congress on Evolutionary Computation (CEC). IEEE Press,
pp. 1427–1434.

Doncieux, S. and Mouret, J.-B. (2010). “Behavioral diversity measures for Evolution-
ary Robotics”. In: IEEE Congress on Evolutionary Computation (CEC). IEEE Press,
pp. 1–8.

Doncieux, S. and Mouret, J.-B. (2014). “Beyond black-box optimization: a review of
selective pressures for evolutionary robotics”. In: Evolutionary Intelligence 7 (2),
pp. 71–93.

Doncieux, S., Bredeche, N., Mouret, J.-B., and Eiben, A. E. G. (2015). “Evolutionary
Robotics: What, Why, and Where to”. In: Frontiers in Robotics and AI 2, p. 4.

Dorigo, M., Floreano, D., Gambardella, L., Mondada, F., et al. (2013). “Swarmanoid:
A Novel Concept for the Study of Heterogeneous Robotic Swarms”. In: IEEE
Robotics & Automation Magazine 20 (4), pp. 60–71.

Duan, H. B. and Liu, S. Q. (2010). “Unmanned air/ground vehicles heterogeneous
cooperative techniques: Current status and prospects”. In: Science China Techno-
logical Sciences 53 (5), pp. 1349–1355.

Duarte, M., Silva, F., Rodrigues, T., Oliveira, S. M., and Christensen, A. L. (2014).
“JBotEvolver: A Versatile Simulation Platform for Evolutionary Robotics”. In: In-
ternational Conference on the Synthesis and Simulation of Living Systems (ALife). MIT
Press, pp. 210–211.

Duarte, M., Gomes, J., Costa, V., Rodrigues, T., Silva, F., Lobo, V., Marques, M.,
Oliveira, S. M., and Christensen, A. L. (2016a). “Application of Swarm Robotic
Systems to Marine Environmental Monitoring”. In: IEEE/MTS OCEANS. IEEE
Press, pp. 1–8.

Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S. M., and Chris-
tensen, A. L. (2016b). “Evolution of Collective Behaviors for a Real Swarm of
Aquatic Surface Robots”. In: PLoS ONE 11 (3), e0151834.

Duarte, M., Gomes, J., Oliveira, S. M., and Christensen, A. L. (2016c). “EvoRBC:
Evolutionary Repertoire-based Control for Robots with Arbitrary Locomotion
Complexity”. In: Genetic and Evolutionary Computation Conference (GECCO). ACM
Press, pp. 93–100.

Duarte, M., Gomes, J., Costa, V., Oliveira, S. M., and Christensen, A. L. (2016d). “Hy-
brid Control for a Real Swarm Robotics System in an Intruder Detection Task”.
In: European Conference on the Applications of Evolutionary Computation (EvoApps).
Springer, pp. 213–230.

Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S. M., and Chris-
tensen, A. L. (2016e). “Unleashing the Potential of Evolutionary Swarm Robotics
in the Real World”. In: Genetic and Evolutionary Computation Conference Companion
(GECCO). ACM Press, pp. 159–160.

Duarte, M., Gomes, J., Oliveira, S. M., and Christensen, A. L. (2017). “Evolution
of Repertoire-based Control for Robots with Complex Locomotor Systems”. In:
IEEE Transactions on Evolutionary Computation. Under revision.

Ducatelle, F., Di Caro, G., Pinciroli, C., and Gambardella, L. (2011). “Self-organized
cooperation between robotic swarms”. In: Swarm Intelligence 5 (2), pp. 73–96.

126 BIBLIOGRAPHY

Eiben, A. E. (2014). “Grand Challenges for Evolutionary Robotics”. In: Frontiers in
Robotics and AI 1, p. 4.

Elman, J. L. (1990). “Finding Structure in Time”. In: Cognitive Science 14 (2), pp. 179–
211.

Fehérvári, I. and Elmenreich, W. (2010). “Evolving neural network controllers for a
team of self-organizing robots”. In: Journal of Robotics 2010, p. 841286.

Ferrante, E., Turgut, A. E., Duéñez-Guzmán, E., Dorigo, M., and Wenseleers, T.
(2015). “Evolution of Self-Organized Task Specialization in Robot Swarms”. In:
PLoS Computational Biology 11 (8), e1004273.

Floreano, D. and Mondada, F. (1994). “Automatic creation of an autonomous agent:
Genetic evolution of a neural-network driven robot”. In: Simulation of Adaptive
Behavior (SAB). MIT Press, 421–430.

Floreano, D., Dürr, P., and Mattiussi, C. (2008). “Neuroevolution: from architectures
to learning”. In: Evolutionary Intelligence 1 (1), pp. 47–62.

Francesca, G. and Birattari, M. (2016). “Automatic Design of Robot Swarms:
Achievements and Challenges”. In: Frontiers in Robotics and AI 3, p. 29.

Goldberg, D. E. and Richardson, J. (1987). “Genetic algorithms with sharing for mul-
timodal function optimization”. In: Genetic Algorithms and their Applications: Sec-
ond International Conference on Genetic Algorithms. Lawrence Erlbaum, pp. 41–49.

Gomes, J. (2014). “Evolution of heterogeneous multirobot systems through be-
havioural diversity”. In: International Conference on Autonomous Agents & Mul-
tiagent Systems (AAMAS). IFAAMAS, pp. 1729–1730.

Gomes, J. and Christensen, A. L. (2013). “Generic Behaviour Similarity Measures for
Evolutionary Swarm Robotics”. In: Genetic and Evolutionary Computation Confer-
ence (GECCO). ACM Press, pp. 199–206.

Gomes, J., Urbano, P., and Christensen, A. L. (2012). “Progressive Minimal Crite-
ria Novelty Search”. In: Ibero-American Conference on Artificial Intelligence (IB-
ERAMIA). Vol. 7637. LNAI. Springer, pp. 281–290.

Gomes, J., Urbano, P., and Christensen, A. L. (2013). “Evolution of swarm robotics
systems with novelty search”. In: Swarm Intelligence 7 (2–3), pp. 115–144.

Gomes, J., Mariano, P., and Christensen, A. L. (2014a). “Avoiding Convergence in
Cooperative Coevolution with Novelty Search”. In: International Conference on
Autonomous Agents & Multiagent Systems (AAMAS). IFAAMAS, pp. 1149–1156.

Gomes, J., Mariano, P., and Christensen, A. L. (2014b). “Diversity-based Coevolution
of Behaviourally Heterogeneous Multirobot Systems”. In: Workshop on Nature-
inspired Techniques for Robotics at PPSN.

Gomes, J., Mariano, P., and Christensen, A. (2014c). “Novelty Search in Competitive
Coevolution”. In: Parallel Problem Solving from Nature (PPSN). Vol. 8672. LNCS.
Springer, pp. 233–242.

Gomes, J., Urbano, P., and Christensen, A. L. (2014d). “PMCNS: Using a Progres-
sively Stricter Fitness Criterion to Guide Novelty Search”. In: International Journal
of Natural Computing Research 4, pp. 1–19.

Gomes, J., Mariano, P., and Christensen, A. L. (2014e). “Systematic Derivation of Be-
haviour Characterisations in Evolutionary Robotics”. In: International Conference
on the Synthesis and Simulation of Living Systems (ALife). MIT Press, pp. 212–219.

Gomes, J., Mariano, P., and Christensen, A. L. (2015a). “Cooperative Coevolution of
Morphologically Heterogeneous Robots”. In: European Conference on Artificial Life
(ECAL). MIT Press, pp. 312–319.

Gomes, J., Mariano, P., and Christensen, A. L. (2015b). “Cooperative Coevolution
of Partially Heterogeneous Multiagent Systems”. In: International Conference on
Autonomous Agents & Multiagent Systems (AAMAS). IFAAMAS, pp. 297–305.

BIBLIOGRAPHY 127

Gomes, J., Mariano, P., and Christensen, A. L. (2015c). “Devising Effective Novelty
Search Algorithms: A Comprehensive Empirical Study”. In: Genetic and Evolu-
tionary Computation Conference (GECCO). ACM Press, pp. 943–950.

Gomes, J., Mariano, P., and Christensen, A. L. (2015d). “Hyb-CCEA: Cooperative
Coevolution of Hybrid Teams”. In: Genetic and Evolutionary Computation Confer-
ence Companion (Evolving Collective Behaviors in Robotics Workshop). ACM Press,
pp. 1251–1252.

Gomes, J., Mariano, P., and Christensen, A. L. (2016a). “Challenges in cooperative
coevolution of physically heterogeneous robot teams”. In: Natural Computing,
pp. 1–18.

Gomes, J., Duarte, M., Mariano, P., and Christensen, A. L. (2016b). “Cooperative Co-
evolution of Control for a Real Multirobot System”. In: Parallel Problem Solving
from Nature (PPSN). Springer, pp. 591–601.

Gomes, J., Mariano, P., and Christensen, A. L. (2017a). “Dynamic Team Heterogene-
ity in Cooperative Coevolutionary Algorithms”. In: IEEE Transactions on Evolu-
tionary Computation. Under revision.

Gomes, J., Mariano, P., and Christensen, A. L. (2017b). “Novelty-driven Cooperative
Coevolution”. In: Evolutionary Computation. In press.

Gomez, F. and Miikkulainen, R. (1997). “Incremental Evolution of Complex General
Behavior”. In: Adaptive Behavior 5 (3–4), pp. 317–342.

Gomez, F. J. (2009). “Sustaining diversity using behavioral information distance”. In:
Genetic and Evolutionary Computation Conference (GECCO). ACM Press, pp. 113–
120.

Grabowski, R., Navarro-Serment, L. E., Paredis, C. J., and Khosla, P. K. (2000). “Het-
erogeneous teams of modular robots for mapping and exploration”. In: Au-
tonomous Robots 8 (3), pp. 293–308.

Groß, R., Bonani, M., Mondada, F., and Dorigo, M. (2006). “Autonomous Self-
Assembly in Swarm-Bots”. In: IEEE Transactions on Robotics 22 (6), pp. 1115–1130.

Guo, Y., Parker, L. E., and Madhavan, R. (2004). “Towards collaborative robots for
infrastructure security applications”. In: International Symposium on Collaborative
Technologies and Systems (CTS). Vol. 2004. Society for Modeling and Simulation
International, pp. 235–240.

Hara, A. (1999). “Emergence of cooperative behavior using ADG; Automatically
Defined Groups”. In: Genetic and Evolutionary Computation Conference (GECCO).
Morgan Kaufmann, pp. 1039–1046.

Harvey, I., Husbands, P., and Cliff, D. (1993). “Issues in evolutionary robotics”. In: In-
ternational Conference on Simulation of Adaptive Behavior (SAB). MIT Press, pp. 364–
373.

Harvey, I., Husbands, P., Cliff, D., Thompson, A., and Jakobi, N. (1997). “Evolution-
ary robotics: the Sussex approach”. In: Robotics and autonomous systems 20 (2-4),
pp. 205–224.

Haynes, T. and Sen, S. (1997). “Crossover operators for evolving a team”. In: Genetic
programming 199.

Hornby, G. (2006). “ALPS: the age-layered population structure for reducing the
problem of premature convergence”. In: Genetic and Evolutionary Computation
Conference (GECCO). ACM Press, pp. 815–822.

Howard, A., Parker, L. E., and Sukhatme, G. S. (2006). “Experiments with a large
heterogeneous mobile robot team: Exploration, mapping, deployment and de-
tection”. In: International Journal of Robotics Research 25 (5-6), pp. 431–447.

Hsieh, M. A., Cowley, A., Keller, J. F., Chaimowicz, L., Grocholsky, B., Kumar, V.,
Taylor, C. J., Endo, Y., Arkin, R. C., Jung, B., et al. (2007). “Adaptive teams of

128 BIBLIOGRAPHY

autonomous aerial and ground robots for situational awareness”. In: Journal of
Field Robotics 24 (11-12), pp. 991–1014.

Hu, J., Goodman, E. D., Seo, K., Fan, Z., and Rosenberg, R. (2005). “The Hierarchical
Fair Competition (HFC) Framework for Sustainable Evolutionary Algorithms”.
In: Evolutionary Computation 13 (2), pp. 241–277.

Hutter, M. and Legg, S. (2006). “Fitness uniform optimization”. In: IEEE Transactions
on Evolutionary Computation 10 (5), pp. 568–589.

Hwang, C.-L. and Masud, A. S. M. (2012). Multiple objective decision making—methods
and applications: a state-of-the-art survey. Vol. 164. Springer.

Iba, H. (1996). “Emergent cooperation for multiple agents using genetic program-
ming”. In: Parallel Problem Solving from Nature (PPSN). Vol. 1141. LNCS. Springer,
pp. 32–41.

Inden, B., Jin, Y., Haschke, R., Ritter, H., and Sendhoff, B. (2013). “An examination of
different fitness and novelty based selection methods for the evolution of neural
networks”. In: Soft Computing 17 (5), pp. 753–767.

Iocchi, L., Nardi, D., Piaggio, M., and Sgorbissa, A. (2003). “Distributed coordination
in heterogeneous multi-robot systems”. In: Autonomous Robots 15 (2), pp. 155–168.

Jakobi, N. (1997). “Evolutionary robotics and the radical envelope-of-noise hypoth-
esis”. In: Adaptive Behavior 6 (2), pp. 325–368.

Jansen, T. and Wiegand, R. P. (2003). “Exploring the explorative advantage of the
cooperative coevolutionary (1+1) EA”. In: Genetic and Evolutionary Computation
Conference (GECCO). Vol. 2723. LNCS. Springer, pp. 310–321.

Jansen, T. and Wiegand, R. P. (2004). “The cooperative coevolutionary (1+1) EA”. In:
Evolutionary Computation 12 (4), pp. 405–434.

Jones, C. V. and Mataric, M. J. (2005). “Behavior-Based Coordination in Multi-Robot
Systems”. In: Autonomous Mobile Robots: Sensing, Control, Decision Making, and
Applications. Marcel Dekker, 549–569.

Jones, E. G., Browning, B., Dias, M. B., Argall, B., Veloso, M., and Stentz, A.
(2006). “Dynamically formed heterogeneous robot teams performing tightly-
coordinated tasks”. In: IEEE International Conference on Robotics and Automation
(ICRA). IEEE Press, pp. 570–575.

Jones, J. L. (2006). “Robots at the tipping point: the road to iRobot Roomba”. In: IEEE
Robotics & Automation Magazine 13 (1), pp. 76–78.

Jones, T. and Forrest, S. (1995). “Fitness Distance Correlation as a Measure of Prob-
lem Difficulty for Genetic Algorithms”. In: International Conference on Genetic Al-
gorithms (ICGA). Morgan Kaufmann, pp. 184–192.

Jordan, M. I. (1997). “Serial order: A parallel distributed processing approach”. In:
Neural-Network Models of Cognition Biobehavioral Foundations. Vol. 121. Advances
in Psychology. North-Holland, pp. 471–495.

Kengyel, D., Hamann, H., Zahadat, P., Radspieler, G., Wotawa, F., and Schmickl, T.
(2015). “Potential of heterogeneity in collective behaviors: A case study on het-
erogeneous swarms”. In: Principles and Practice of Multi-Agent Systems. Springer,
pp. 201–217.

Kistemaker, S. and Whiteson, S. (2011). “Critical factors in the performance of nov-
elty search”. In: Genetic and Evolutionary Computation Conference (GECCO). ACM
Press, pp. 965–972.

Knowles, J., Watson, R., and Corne, D. (2001). “Reducing Local Optima in Single-
Objective Problems by Multi-objectivization”. In: Evolutionary Multi-Criterion Op-
timization. Vol. 1993. LNCS. Springer, pp. 269–283.

BIBLIOGRAPHY 129

Knudson, M. and Tumer, K. (2010). “Coevolution of heterogeneous multi-robot
teams”. In: Genetic and Evolutionary Computation Conference (GECCO). ACM Press,
pp. 127–134.

Kohonen, T. (1990). “The self-organizing map”. In: Proceedings of the IEEE 78 (9),
pp. 1464–1480.

Koos, S., Mouret, J.-B., and Doncieux, S. (2013). “The transferability approach: Cross-
ing the reality gap in evolutionary robotics”. In: IEEE Transactions on Evolutionary
Computation 17 (1), pp. 122–145.

Kose, H., Kaplan, K., Mericli, C., Tatlidede, U., and Akin, L. (2005). “Market-driven
multi-agent collaboration in robot soccer domain”. In: Cutting Edge Robotics. In-
Tech, pp. 407–416.

Lacroix, S. and Le Besnerais, G. (2011). “Issues in Cooperative Air/Ground Robotic
Systems”. In: Robotics Research. Vol. 66. Springer Tracts in Advanced Robotics.
Springer, pp. 421–432.

Lehman, J. and Stanley, K. O. (2010). “Revising the evolutionary computation ab-
straction: minimal criteria novelty search”. In: Genetic and Evolutionary Computa-
tion Conference (GECCO). ACM Press, pp. 103–110.

Lehman, J. and Stanley, K. O. (2011a). “Abandoning Objectives: Evolution Through
the Search for Novelty Alone”. In: Evolutionary Computation 19 (2), pp. 189–223.

Lehman, J. and Stanley, K. O. (2011b). “Evolving a diversity of virtual creatures
through novelty search and local competition”. In: Genetic and Evolutionary Com-
putation Conference (GECCO). ACM Press, pp. 211–218.

Lehman, J., Stanley, K. O., and Miikkulainen, R. (2013). “Effective diversity mainte-
nance in deceptive domains”. In: Genetic and Evolutionary Computation Conference
(GECCO). ACM Press, pp. 215–222.

Levi, P. and Kernbach, S. (2010). “Heterogeneous Multi-Robot Systems”. In: Sym-
biotic Multi-Robot Organisms: Reliability, Adaptability, Evolution. Springer, pp. 79–
163.

Li, L., Martinoli, A., and Abu-Mostafa, Y. S. (2002). “Emergent Specialization in
Swarm Systems”. In: Intelligent Data Engineering and Automated Learning (IDEAL).
Springer, pp. 261–266.

Liapis, A., Yannakakis, G. N., and Togelius, J. (2015). “Constrained novelty search: A
study on game content generation”. In: Evolutionary computation 23 (1), pp. 101–
129.

Lichocki, P., Wischmann, S., Keller, L., and Floreano, D. (2013). “Evolving team com-
positions by agent swapping”. In: IEEE Transactions on Evolutionary Computation
17 (2), pp. 282–298.

Luke, S. and Spector, L. (1996). “Evolving teamwork and coordination with genetic
programming”. In: Genetic Programming. MIT Press, pp. 150–156.

Luke, S., Hohn, C., Farris, J., Jackson, G., and Hendler, J. (1998). “Co-evolving soc-
cer softbot team coordination with genetic programming”. In: RoboCup-97: Robot
Soccer World Cup. Vol. 1395. LNCS. Springer, pp. 398–411.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., and Balan, G. (2005). “Mason: A
multiagent simulation environment”. In: Simulation 81 (7), pp. 517–527.

Martínez, Y., Naredo, E., Trujillo, L., and Galván-López, E. (2013). “Searching for
novel regression functions”. In: IEEE Congress on Evolutionary Computation (CEC).
IEEE Press, pp. 16–23.

Matarić, M. and Cliff, D. (1996). “Challenges in evolving controllers for physical
robots”. In: Robotics and autonomous systems 19 (1), pp. 67–83.

130 BIBLIOGRAPHY

Mathews, N., Christensen, A. L., O’Grady, R., and Dorigo, M. (2010). “Cooperation
in a heterogeneous robot swarm through spatially targeted communication”. In:
Swarm Intelligence. Vol. 6234. LNCS. Springer, pp. 400–407.

Meyerson, E., Lehman, J., and Miikkulainen, R. (2016). “Learning Behavior Charac-
terizations for Novelty Search”. In: Genetic and Evolutionary Computation Confer-
ence (GECCO). ACM Press, pp. 149–156.

Miconi, T. (2003). “When evolving populations is better than coevolving individuals:
The blind mice problem”. In: International Joint Conference on Artificial Intelligence
(IJCAI). Morgan Kaufmann, pp. 647–652.

Miglino, O., Lund, H. H., and Nolfi, S. (1995). “Evolving mobile robots in simulated
and real environments”. In: Artificial life 2 (4), pp. 417–434.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S.,
Zufferey, J.-C., Floreano, D., and Martinoli, A. (2009). “The e-puck, a robot de-
signed for education in engineering”. In: International Conference on Autonomous
Robot Systems and Competitions (ICARSC). Vol. 1. IPCB: Instituto Politécnico de
Castelo Branco, pp. 59–65.

Montanier, J.-M., Carrignon, S., and Bredeche, N. (2016). “Behavioral Specialization
in Embodied Evolutionary Robotics: Why So Difficult?” In: Frontiers in Robotics
and AI 3, p. 38.

Mouret, J.-B. (2011). “Novelty-based multiobjectivization”. In: New Horizons in Evolu-
tionary Robotics. Vol. 341. Studies in Computation Intelligence. Springer, pp. 139–
154.

Mouret, J. and Clune, J. (2015). “Illuminating search spaces by mapping elites”. In:
CoRR abs/1504.04909. URL: http://arxiv.org/abs/1504.04909.

Mouret, J.-B. and Doncieux, S. (2008). “Incremental evolution of animats’ behaviors
as a multi-objective optimization”. In: International Conference on Simulation of
Adaptive Behavior (SAB). Vol. 5040. LNCS. Springer, pp. 210–219.

Mouret, J.-B. and Doncieux, S. (2012). “Encouraging Behavioral Diversity in Evo-
lutionary Robotics: An Empirical Study”. In: Evolutionary Computation 20 (1),
pp. 91–133.

Murciano, A., Millán, J. d. R., and Zamora, J. (1997). “Specialization in multi-agent
systems through learning”. In: Biological Cybernetics 76 (5), pp. 375–382.

Naredo, E. and Trujillo, L. (2013). “Searching for novel clustering programs”. In:
Genetic and Evolutionary Computation Conference (GECCO). ACM Press, pp. 1093–
1100.

Naredo, E., Trujillo, L., and Martínez, Y. (2013). “Searching for novel classifiers”. In:
Genetic Programming (EuroGP). Vol. 7831. LNCS. Springer, pp. 145–156.

Naredo, E., Duarte Villaseñor, M. A., García Ortega, M. d. J., Vázquez López, C. E.,
Trujillo, L., and Siordia, O. S. (2016). “Novelty Search for the Synthesis of Current
Followers”. In: Computación y Sistemas 20 (4).

Nelson, A. L., Grant, E., and Henderson, T. C. (2004). “Evolution of neural controllers
for competitive game playing with teams of mobile robots”. In: Robotics and Au-
tonomous Systems 46 (3), pp. 135–150.

Nelson, A. L., Barlow, G. J., and Doitsidis, L. (2009). “Fitness functions in evolution-
ary robotics: A survey and analysis”. In: Robotics and Autonomous Systems 57 (4),
pp. 345–370.

Nitschke, G. (2005a). “Designing emergent cooperation: a pursuit–evasion game
case study”. In: Artificial Life and Robotics 9 (4), pp. 222–233.

Nitschke, G. (2005b). “Emergence of cooperation: State of the art”. In: Artificial Life
11 (3), pp. 367–396.

http://arxiv.org/abs/1504.04909

BIBLIOGRAPHY 131

Nitschke, G. (2012). “Behavioral heterogeneity, cooperation, and collective construc-
tion”. In: IEEE Congress on Evolutionary Computation (CEC). IEEE Press, pp. 1–8.

Nitschke, G. S. (2008). “Neuro-evolution for emergent specialization in collective
behavior systems”. PhD thesis. Vrije Universiteit Amsterdam.

Nitschke, G. S., Schut, M. C., and Eiben, A. E. (2010). “Collective neuro-evolution for
evolving specialized sensor resolutions in a multi-rover task”. In: Evolutionary
Intelligence 3 (1), pp. 13–29.

Nitschke, G. S., Schut, M. C., and Eiben, A. E. (2012a). “Evolving behavioral spe-
cialization in robot teams to solve a collective construction task”. In: Swarm and
Evolutionary Computation 2, pp. 25–38.

Nitschke, G. S., Eiben, A. E., and Schut, M. C. (2012b). “Evolving team behav-
iors with specialization”. In: Genetic Programming and Evolvable Machines 13 (4),
pp. 493–536.

Nolfi, S. (2012). “Co-evolving predator and prey robots”. In: Adaptive Behavior 20 (1),
pp. 10–15.

Nolfi, S. and Floreano, D. (2000). Evolutionary robotics. MIT Press.
Panait, L. (2010). “Theoretical Convergence Guarantees for Cooperative Coevolu-

tionary Algorithms”. In: Evolutionary Computation 18 (4), pp. 581–615.
Panait, L. and Luke, S. (2005a). “Cooperative Multi-Agent Learning: The State of the

Art”. In: Autonomous Agents & Multi-Agent Systems 11 (3), pp. 387–434.
Panait, L. and Luke, S. (2005b). “Time-dependent collaboration schemes for cooper-

ative coevolutionary algorithms”. In: AAAI Fall Symposium on Coevolutionary and
Coadaptive Systems. AAAI Press.

Panait, L., Wiegand, R. P., and Luke, S. (2003). “Improving Coevolutionary Search
for Optimal Multiagent Behaviors”. In: International Joint Conference on Artificial
Intelligence (IJCAI). Morgan Kaufmann, pp. 653–660.

Panait, L., Wiegand, R. P., and Luke, S. (2004). “A Visual Demonstration of Conver-
gence Properties of Cooperative Coevolution”. In: Parallel Problem Solving from
Nature (PPSN). Vol. 3242. LNCS. Springer, pp. 892–901.

Panait, L., Luke, S., and Harrison, J. F. (2006a). “Archive-based cooperative co-
evolutionary algorithms”. In: Genetic and Evolutionary Computation Conference
(GECCO). ACM Press, pp. 345–352.

Panait, L., Luke, S., and Wiegand, R. P. (2006b). “Biasing Coevolutionary Search for
Optimal Multiagent Behaviors”. In: IEEE Transactions on Evolutionary Computa-
tion 10 (6), pp. 629–645.

Parker, G. B. and Blumenthal, J. (2002). “Sampling the Nature of A Population: Punc-
tuated Anytime Learning For Co-Evolving A Team”. In: Intelligent Engineering
Systems Through Artificial Neural Networks. ASME, pp. 207–212.

Parker, L., Kannan, B., Tang, F., and Bailey, M. (2004). “Tightly-coupled navigation
assistance in heterogeneous multi-robot teams”. In: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE Press, pp. 1016–1022.

Parker, L. E. (1994). Heterogeneous multi-robot cooperation. Tech. rep. AITR-1465. MIT
Artificial Intelligence Laboratory.

Parker, L. E. (1998). “ALLIANCE: An architecture for fault tolerant multirobot coop-
eration”. In: IEEE Transactions on Robotics and Automation 14 (2), pp. 220–240.

Parker, L. E. (2008). “Multiple Mobile Robot Systems”. In: Springer Handbook of
Robotics. Springer, pp. 921–941.

Peng, X., Liu, K., and Jin, Y. (2016). “A dynamic optimization approach to the de-
sign of cooperative co-evolutionary algorithms”. In: Knowledge-Based Systems 109,
pp. 174 –186.

132 BIBLIOGRAPHY

Pitla, S. K. (2012). “Development of Control Architectures for Multi-robot Agricul-
tural Field Production Systems”. PhD thesis.

Popovici, E. and De Jong, K. (2005). “A dynamical systems analysis of collaboration
methods in cooperative co-evolution”. In: AAAI Fall Symposium on Coevolutionary
and Coadaptive Systems. AAAI Press.

Popovici, E. and De Jong, K. (2006). “The dynamics of the best individuals in co-
evolution”. In: Natural Computing 5 (3), pp. 229–255.

Popovici, E., Bucci, A., Wiegand, R. P., and De Jong, E. D. (2012). “Coevolutionary
principles”. In: Handbook of Natural Computing. Springer, pp. 987–1033.

Potter, M. A. and De Jong, K. A. (1994). “A cooperative coevolutionary approach to
function optimization”. In: Parallel Problem Solving from Nature (PPSN). Springer,
pp. 249–257.

Potter, M. A. and De Jong, K. A. (2000). “Cooperative Coevolution: An Architec-
ture for Evolving Coadapted Subcomponents”. In: Evolutionary Computation 8 (1),
pp. 1–29.

Potter, M. A., Meeden, L. A., and Schultz, A. C. (2001). “Heterogeneity in the
Coevolved Behaviors of Mobile Robots: The Emergence of Specialists”. In: In-
ternational Joint Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann,
pp. 1337–1343.

Pugh, J. K., Soros, L. B., and Stanley, K. O. (2016). “Quality Diversity: A New Frontier
for Evolutionary Computation”. In: Frontiers in Robotics and AI 3, pp. 1–40.

Rahmattalabi, A., Chung, J. J., Colby, M., and Tumer, K. (2016). “D++: Structural
credit assignment in tightly coupled multiagent domains”. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE Press, pp. 4424–
4429.

Ramani, R. G., Subramanian, R, and Sindurathy, M (2008). “Strategies of teams in
soccerbots”. In: International Journal of Advanced Robotic Systems 5 (4), pp. 351–
360.

Rawal, A., Rajagopalan, P., and Miikkulainen, R. (2010). “Constructing competitive
and cooperative agent behavior using coevolution”. In: IEEE Conference on Com-
putational Intelligence and Games (CIG). IEEE Press, pp. 107–114.

Risi, S., Hughes, C. E., and Stanley, K. O. (2010). “Evolving plastic neural networks
with novelty search”. In: Adaptive Behavior 18 (6), pp. 470–491.

Rousseeuw, P. J. (1987). “Silhouettes: a graphical aid to the interpretation and valida-
tion of cluster analysis”. In: Journal of Computational and Applied Mathematics 20,
pp. 53–65.

Rubenstein, M., Ahler, C., and Nagpal, R. (2012). “Kilobot: A low cost scalable robot
system for collective behaviors”. In: IEEE International Conference on Robotics and
Automation (ICRA). IEEE Press, pp. 3293–3298.

Rudolph, G. (1994). “Convergence analysis of canonical genetic algorithms”. In:
IEEE Transactions on Neural Networks 5 (1), pp. 96–101.

Russell, S. and Norvig, P. (1995). Artificial Intelligence: A modern approach. Prentice
Hall.

Sammon, J. W. (1969). “A nonlinear mapping for data structure analysis”. In: IEEE
Transactions on Computers 18 (5), pp. 401–409.

Scheepers, C. and Engelbrecht, A. P. (2014). “Competitive coevolutionary training
of simple soccer agents from zero knowledge”. In: IEEE Congress on Evolutionary
Computation (CEC). IEEE Press, pp. 1210–1217.

Schmidt, M. and Lipson, H. (2011). “Age-Fitness Pareto Optimization”. In: Genetic
Programming Theory and Practice VIII. Vol. 8. Genetic and Evolutionary Computa-
tion. Springer, pp. 129–146.

BIBLIOGRAPHY 133

Sheh, R., Schwertfeger, S., and Visser, A. (2016). “16 Years of RoboCup Rescue”. In:
KI - Künstliche Intelligenz 30 (3), pp. 267–277.

Silva, F., Correia, L., and Christensen, A. L. (2016a). “Evolutionary Robotics”. In:
Scholarpedia 11 (7), p. 33333.

Silva, F., Duarte, M., Correia, L., Oliveira, S. M., and Christensen, A. L. (2016b).
“Open Issues in Evolutionary Robotics”. In: Evolutionary Computation 24 (2),
pp. 205–236.

Simmons, R., Singh, S., Hershberger, D., Ramos, J., and Smith, T. (2001). “First re-
sults in the coordination of heterogeneous robots for large-scale assembly”. In:
Experimental Robotics VII. Springer, pp. 323–332.

Simpson, C. (2011). “The evolutionary history of division of labour”. In: Proceedings
of the Royal Society of London B, rspb20110766.

Smith, A. (1776). An Inquiry into the Nature and Causes of the Wealth of Nations. W.
Strahan and T. Cadell.

Soria, N. F., Colby, M. K., Tumer, I. Y., Hoyle, C., and Tumer, K. (2016). “Design of
Complex Engineering Systems Using Multiagent Coordination”. In: International
Design Engineering Technical Conferences and Computers and Information in Engi-
neering Conference (IDETC/CIE). ASME, V02AT03A001.

Stanley, K. and Miikkulainen, R. (2002). “Evolving neural networks through aug-
menting topologies”. In: Evolutionary Computation 10 (2), pp. 99–127.

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). “A hypercube-based encoding
for evolving large-scale neural networks”. In: Artificial life 15 (2), pp. 185–212.

Stone, P. and Veloso, M. (2000). “Multiagent systems: A survey from a machine learn-
ing perspective”. In: Autonomous Robots 8 (3), pp. 345–383.

Stone, P., Kuhlmann, G., Taylor, M. E., and Liu, Y. (2005). “Keepaway Soccer:
From Machine Learning Testbed to Benchmark”. In: Robot Soccer World Cup IX.
Vol. 4020. LNCS. Springer, pp. 93–105.

Sukhatme, G, Montgomery, J. F., and Vaughan, R. T. (2002). “Experiments with co-
operative aerial-ground robots”. In: Robot Teams: From Diversity to Polymorphism.
A K Peters, pp. 345–368.

Suzuki, Y. and Arita, T. (2006). “A comprehensive evaluation of the methods for
evolving a cooperative team”. In: Artificial Life and Robotics 10 (2), pp. 157–161.

Trianni, V. (2008). Evolutionary Swarm Robotics: Evolving Self-Organising Behaviours
in Groups of Autonomous Robots. Vol. 108. Studies in Computational Intelligence.
Springer.

Trianni, V. and López-Ibáñez, M. (2015). “Advantages of Task-Specific Multi-
Objective Optimisation in Evolutionary Robotics”. In: PLoS ONE 10 (8), e0136406.

Trianni, V., Nolfi, S., and Dorigo, M. (2008). “Evolution, self-organization and swarm
robotics”. In: Swarm Intelligence. Natural Computing Series. Springer, pp. 163–
191.

Trueba, P., Prieto, A., Caamaño, P., Bellas, F., and Duro, R. J. (2011). “Task-driven
species in evolutionary robotic teams”. In: Foundations on Natural and Artificial
Computation: 4th International Work-Conference on the Interplay Between Natural and
Artificial Computation. Vol. 6686. LNCS. Springer, pp. 138–147.

Uchibe, E. and Asada, M. (2006). “Incremental coevolution with competitive and
cooperative tasks in a multirobot environment”. In: Proceedings of the IEEE 94 (7),
pp. 1412–1424.

Uchibe, E., Nakamura, M., and Asada, M. (1998). “Co-evolution for cooperative be-
havior acquisition in a multiple mobile robot environment”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE Press, pp. 425–
430.

134 BIBLIOGRAPHY

Uchibe, E., Yanase, M., and Asada, M. (2002). “Behavior generation for a mobile
robot based on the adaptive fitness function”. In: Robotics and Autonomous Systems
40 (2-3), pp. 69–77.

Waibel, M., Keller, L., and Floreano, D. (2009). “Genetic team composition and level
of selection in the evolution of cooperation”. In: IEEE Transactions on Evolutionary
Computation 13 (3), pp. 648–660.

Watson, R. A., Ficiei, S., and Pollack, J. B. (1999). “Embodied evolution: Embody-
ing an evolutionary algorithm in a population of robots”. In: IEEE Congress on
Evolutionary Computation (CEC). Vol. 1. IEEE Press.

Werfel, J., Petersen, K., and Nagpal, R. (2014). “Designing Collective Behavior in a
Termite-Inspired Robot Construction Team”. In: Science 343 (6172), pp. 754–758.

White, D. R. (2012). “Software review: the ECJ toolkit”. In: Genetic Programming and
Evolvable Machines 13 (1), pp. 65–67.

Whitley, L. D. (1991). “Fundamental Principles of Deception in Genetic Search”. In:
Foundations of Genetic Algorithms (FOGA). Morgan Kaufmann, pp. 221–241.

Wickham, H. (2016). ggplot2: elegant graphics for data analysis. Springer.
Wiegand, R. P. (2003). “An Analysis of Cooperative Coevolutionary Algorithms”.

PhD thesis. George Mason University.
Wiegand, R. P. and Potter, M. A. (2006). “Robustness in cooperative coevolution”. In:

Genetic and Evolutionary Computation Conference (GECCO). ACM Press, pp. 369–
376.

Wiegand, R. P., Liles, W. C., and De Jong, K. A. (2001). “An empirical analysis of
collaboration methods in cooperative coevolutionary algorithms”. In: Genetic
and Evolutionary Computation Conference (GECCO). Morgan Kaufmann, pp. 1235–
1245.

Wiegand, R. P., Liles, W. C., and De Jong, K. A. (2002). “Analyzing cooperative coevo-
lution with evolutionary game theory”. In: IEEE Congress on Evolutionary Compu-
tation (CEC). Vol. 2. IEEE Press, pp. 1600–1605.

Wilson, E. O. and Hölldobler, B. (2005). “Eusociality: origin and consequences”. In:
Proceedings of the National Academy of Sciences 102 (38), pp. 13367–13371.

Yang, J., Liu, Y., Wu, Z., and Yao, M. (2012). “The evolution of cooperative behaviours
in physically heterogeneous multi-robot systems”. In: International Journal of Ad-
vanced Robotic Systems 9 (253), pp. 1–10.

Yitzhaki, S. et al. (2003). “Gini’s mean difference: A superior measure of variability
for non-normal distributions”. In: Metron 61 (2), pp. 285–316.

Yliniemi, L. and Tumer, K. (2016). “Multi-objective multiagent credit assignment in
reinforcement learning and NSGA-II”. In: Soft Computing 20 (10), pp. 3869–3887.

Yong, C. H. and Miikkulainen, R. (2009). “Coevolution of Role-Based Cooperation
in Multiagent Systems”. In: IEEE Transactions on Autonomous Mental Development
1 (3), pp. 170–186.

135

Appendices

137

Appendix A

Experimental Details

A.1 Common Parameters

NEAT The implementation of the NEAT neuroevolution algorithm (Stanley and
Miikkulainen, 2002) is based on the NEAT4J open-source software (http://
neat4j.sourceforge.net/). In all the experiments in this thesis that used the
NEAT algorithm, we use the parameters listed in Table A.1, unless indicated other-
wise.

TABLE A.1: Default parameters of NEAT. These parameters were used unless ex-
plicitly indicated otherwise.

Parameter Value Parameter Value

Population size 150 Target species count 5
Crossover probability 20% Recurrency allowed yes
Mutation prob. 25% Add link prob. 5%
Add node prob. 3% Mutate bias prob. 30%
Toggle link prob. 0% Weight replaced prob. 0%
Excess coefficient 1 Disjoint coefficient 1
Weight coefficient 0.4 Survival threshold 20%
Compatibility change 0.05 Max. weight mutation 0.5
Max. bias mutation 0.1 Extinction Life Events no
Species old threshold 80 Species youth threshold 10
Species old penalty 70% Species youth boost 120%

Novelty Search The algorithm for computing novelty scores is implemented as
described in Sections 2.5.2 and 2.5.3: the k-nearest neighbours among the current
population and the archive are used for the computation of novelty score; the archive
is composed of randomly chosen individuals, with each evolved individual having
a fixed probability of being added to the archive; and the archive size is bounded,
with randomly chosen individuals removed when necessary to allow space for new
ones. Table A.2 lists the default parameters for the novelty search implementation.

TABLE A.2: Default parameters of novelty search. These parameters were used un-
less explicitly indicated otherwise.

Parameter Value Parameter Value

Novelty k-nearest 15 Add archive criteria random
Add archive probability 2.5% Maximum archive size 2000

http://neat4j.sourceforge.net/
http://neat4j.sourceforge.net/

138 Appendix A. Experimental Details

NEAT + NSGA-II NEAT is incompatible with most popular multiobjective evo-
lutionary algorithms, and NSGA-II (Deb et al., 2002) in particular, as it requires a
single fitness score to select and speciate the individuals in the population. Lehman
and Stanley, (2011b) use an approach for making NEAT compatible with NSGA-II,
in which the speciation is completely removed from NEAT. Having a single species
thus allows for the elitism selection of NSGA-II to be directly employed in NEAT.
The speciation mechanism of NEAT, however, plays an important part in the al-
gorithm, as it protects topological innovations and maintains genetic diversity in
the population (Stanley and Miikkulainen, 2002). We adopt a different approach,
in which we obtain a single score from the multiple objectives, a common practice
known as scalarization (Hwang and Masud, 2012). We use the NSGA-II algorithm
to sort the individuals according to their objective scores, and then assign them a
single score (that respects that order), which is used by the NEAT algorithm. We
therefore lose the elitist selection of NSGA-II, but preserve its Pareto-based ranking
mechanism and the NEAT algorithm in its entirety.

The Pareto fronts and crowding distance for all individuals in the popu-
lation are first calculated according to NSGA-II (Deb et al., 2002), using the
fast-non-dominated-sort and the crowding-distance-assignment algo-
rithms. We then obtain the selection score for each individual in the population
according to:

iscore = maxrank − irank +

1 idistance =∞
idistance

N
otherwise

(A.1)

where irank is the non-domination rank (lower is better), idistance is the crowding
distance (higher is better), maxrank is the highest rank in the current population, and
N is the number of objectives (2 in the case of novelty and fitness combination). This
formula ensures the same ranking of individuals as the original NSGA-II algorithm.

A.2 Predator-prey Task

The parameters of the experiments with the simulated predator-prey task (Sec-
tion 3.4) are listed in Table A.3.

TABLE A.3: Parameters used in the experiments with the predator-prey task. The
time (s – step) and space units (u – unit) are abstract.

Parameter Value Parameter Value

Predator-prey task
Arena size 100×100 u Prey placement area 10×10 u
Maximum trial length 300 s Number of predators 2–7
Predator linear speed 1 u/s Predator turn speed 45◦/s
Prey speed 1 u/s Prey escape distance (V) 4–13 u

Genetic algorithm
Population size 150 Elite size 5
Tournament size 5 Mutation type Gaussian
Gene mutation probability 5% Mutation σ 0.5
Crossover probability 50% Crossover type one point
Generations 500

A.3. Cooperative Foraging Task 139

Neural network architecture of the predator agents Each predator is controlled by
a fixed-topology Jordan network (Jordan, 1997), a simple recurrent network with a
state layer connected to the output neurons. The network has two inputs, eight hid-
den neurons, two outputs, and each layer is fully connected to the layer that it feeds.
The structure of the neural network and the number of hidden neurons were tuned
empirically in preliminary experiments with the predator-prey task. Feed-forward
networks and Elman networks (Elman, 1990) were also tested, and the number of
hidden neurons was varied from three to ten. We chose the architecture that yielded
the highest fitness scores in the preliminary experiments: a Jordan network with
eight hidden neurons.

Prey movement The prey moves away from the nearby predators, taking into ac-
count their distance. Let yt be the current position of the prey, Rt the set composed
of the current positions of the predators, V the prey escape distance, and S the prey
escape speed. The position of the prey is updated every control step according to:

R′t = {r ∈ Rt : ||yt − r|| < V }

v = 〈0, 0〉+
∑
r∈R′

t

yt − r

||yt − r||2

yt+1 = yt + S · v̂

(A.2)

A.3 Cooperative Foraging Task

Table A.4 lists the parameters of the cooperative foraging task (Section 3.5.1).

TABLE A.4: Parameters for the cooperative foraging task. The time (s – step) and
space units (u – unit) are abstract.

Parameter Value Parameter Value

Arena size 150×150 u Maximum trial length 1000 s
Max. linear speed 1 u/s Max. rotation speed 23◦/s
Sensor range 25 u Min. actuator activation time 25 s
Item diameter 12 u Agent diameter 4 u
NEAT Generations 500

Item actuator An agent’s item actuator becomes active if the respective output ex-
ceeds the threshold of 0.5 (the outputs’ range is [0, 1]). In case both outputs exceed
the threshold, the one with the highest value is activated.

A.4 Herding Task

Table A.5 lists the configuration of the herding task (Section 3.5.2).

Sheep movement The sheep moves away from the closest shepherd, if it is closer
than the action range A. Let st be the current position of the sheep, ht the current
position of the closest shepherd, VS the sheep speed, and A the action range (see

140 Appendix A. Experimental Details

TABLE A.5: Parameters for the herding task. The time (s – step) and space units (u –
unit) are abstract.

Parameter Value Parameter Value

Arena size 150×150 u Max. trial length 500 s
Sheep speed (VS) 1 u/s Fox speed (VF) 1 u/s
Shepherd linear speed 1 u/s Shepherd turn speed 23◦/s
Action range (A) 5 u Shepherd sensor range 25 u
NEAT Generations 500

Table A.5). The position of the sheep is updated every control step according to:

st+1 =

VS ·
st − ht
||st − ht||

||st − ht|| < A

st otherwise

(A.3)

Fox movement The fox moves away from the closest shepherd, or in the case there
is none nearby, it moves in the direction of the estimated future position of the sheep.
Let st be the position of the sheep at the instant t, ft the current position of the fox, ht
the position of the closest shepherd, VS the sheep speed, and VF the fox speed (see
Table A.5). The position of the fox is updated every control step according to:

ft+1 = VF ·

ft − ht
||ft − ht||

||ft − ht|| < A

ft − s′

||ft − s′||
otherwise,where :

s′ = st +
st − st−10

10
·min

{
50,
||ft − st||

VS

} (A.4)

A.5 Aquatic Predator-prey Task

Table A.6 lists the configuration of the aquatic predator-prey task (Section 4.1), in-
cluding both the setup used during evolution and the setup used for the evaluation
with the real robotic system. Table A.7 lists the physical properties of the robotic
platform (Section 4.2).

Prey movement The prey tries to moves away from the nearest predator, if it closer
than the escape distance (V), otherwise it stops. Contrary to the simulated predator-
prey task in Chapter 3, the prey typically can not move immediately in the opposite
direction of the predator, due to the physical limitations imposed by the real robots
with differential drive. The prey attempts to move in that direction as quickly as
possible, rotating at full speed if necessary, but its actual movement depends on its
current orientation and speed, turning speed, as well as the natural uncertainty of
the movement in water.

Software The simulation of the task was conducted in the JBotAquatic
simulator (https://github.com/BioMachinesLab/drones/tree/master/
JBotAquatic), an extension of JBotEvolver (Duarte et al., 2014). The software used

https://github.com/BioMachinesLab/drones/tree/master/JBotAquatic
https://github.com/BioMachinesLab/drones/tree/master/JBotAquatic

A.6. Aerial-ground Foraging Task 141

TABLE A.6: Parameters used for the setup of the aquatic predator-prey task.

Parameter Value Parameter Value

Task setup for the evolutionary process
Virtual arena boundaries 75×75 m Predator placement area 10×10 m
Prey placement distance [20, 35] m Prey capture distance 2 m
Prey escape distance (V) 10 m Trial time limit 75 s
Predator sensor range 40 m NEAT generations 250

Simulation noise
GPS location error up to 1.8 m Compass reading error [−10, 10]◦

Motor response delay 500 ms Compass offset [−9, 9]◦

Motor speed offset [−10, 10]% Motor output noise [−5, 5]%
Prey speed offset [−25, 0]% Prey escape direction error [−5, 5]◦

Task setup for the real-robot experiments
Virtual arena boundaries 100×100 m Trial time limit 100 s
Prey placement distance 25, 30, 35 m
The remaining parameters are the same as the evolution version

TABLE A.7: Measured movement dynamics and physical properties of the robotic
platform that was used for both the predators and the prey. These parameters were
used to model the robot in simulation. The full specification of the robotic platform
is published in (Costa et al., 2016).

Parameter Value Parameter Value

Dimensions (l×w×h) 65×40×15 Weight 3 Kg
Minimum linear speed 0.3 m/s Maximum linear speed 1.7 m/s
Maximum turning rate 90◦/s Time from stop to full speed 1 s
Time from full speed to stop 5 s Battery autonomy 2–3 h
Wi-Fi broadcast range 40 m† Position broadcast frequency 1 Hz

† The actual range can be different in the real robot experiments, depending on in-
terferences in the wireless communication.

to control the real robots is also available in the repository: https://github.com/
BioMachinesLab/drones.

A.6 Aerial-ground Foraging Task

The parameters for the aerial-ground foraging task (Section 5.1) are listed in Ta-
ble A.8.

Camera-based sensors The sensors for the detection of the aerial robot (by the
ground robot), and for the detection of the items and the ground robot (by the aerial
robot), are based on a vertical camera sensor with a field of view of 60◦ (α). This
means that the actual range of the sensors depends on the current altitude (h) of the
aerial robot. The range of these sensors is given by:

r = h · tan

(
α

2

)
(A.5)

https://github.com/BioMachinesLab/drones
https://github.com/BioMachinesLab/drones

142 Appendix A. Experimental Details

TABLE A.8: Parameters of the aerial-ground foraging task. The NEAT algorithm
and novelty search used the default parameters listed in Table A.1.

Parameter Value Parameter Value

Ground robot diameter 8 cm Aerial robot diameter 40 cm
Max. trial duration 200 s Total arena size 5500×350 cm
Number of items 6 Item placement area (x6) 150×150 cm
Item diameter 5 cm Ground r. linear speed 15 cm/s
Ground R. turn speed 180◦/s Aerial R. linear speed† 100 cm/s
Aerial R. linear accel† 10 cm/s2 Aerial R. rotation speed 90◦/s
Aerial R. rotation accel 15◦/s2 Aerial R. max altitude ∞
Ground R. item sensor 10 cm Camera sensors FOV 60◦

Camera sensors vert. range 250 cm Camera sensors hor. range‡ [0,144] cm

† In any direction. ‡ Depending on the current altitude.

Choice of representative in multi-objective algorithms Since the multiobjective
algorithm used in both MOEA and NS uses a Pareto-based ranking of the individuals
(see Section 5.3.1), the definition of the best individual (used as the population repre-
sentative) is ambiguous. We empirically evaluated different strategies for choosing
the representative in this case:

Best: The highest-fitness (number of items collected) individual of the previous gen-
eration is chosen as the population representative.

Random: One randomly chosen individual from the current population is chosen
as the representative.

Pareto: One randomly chosen individual belonging to the first (non-dominated)
Pareto front is used as the representative of the population.

Max: The individuals that obtained the highest scores in each of the objectives are
chosen as the representatives of the population. When the same individual
obtained the highest scores for all objectives, only that individual is chosen
as the representative. Multiple collaborations can thus be used to evaluate
each individual. The individuals are scored according to the collaboration that
achieved the highest fitness score (number of items collected).

The results are presented in Figure A.1, with 30 independent evolutionary runs
performed for the Best strategy, for each task variant, and 15 evolutionary runs for
each of the other strategies. The results show that the Best strategy is overall the
highest performing strategy, and it was therefore used for the MOEA and NS meth-
ods. For both methods, the Best strategy is never significantly outperformed by the
other strategies (p < 0.05, Mann-Whitney U test) in all task variants.

A.7. Coverage Task 143

Fix−Sep

MOEA

Fix−Sep

NS

Var−Tog

MOEA

Var−Tog

NS

Var−Mid

MOEA

Var−Mid

NS

Var−Sep

MOEA

Var−Sep

NS

0

2

4

6

0

2

4

6

Best
Random

Pareto
Max Best

Random
Pareto

Max Best
Random

Pareto
Max Best

Random
Pareto

Max

Representative

F
itn

es
s

FIGURE A.1: Boxplots of the highest fitness score achieved in each evolutionary run,
comparing the different representative selection strategies.

A.7 Coverage Task

The parameters used for the genetic algorithm in the coverage task (Section 6.3) are
listed in Table A.9.

TABLE A.9: Evolutionary algorithm parameters used for the abstract coverage task.

Parameter Value Parameter Value

Population size 100 Elite size 5
Tournament size 2 Mutation type Gaussian
Mutation σ 0.25 Gene mutation prob. 20%
Crossover type one point Crossover prob. 50%
Evaluation budget 1.5M (Unless indicated otherwise)

A.8 Multi-rover Foraging Task

The parameters used for the multi-rover foraging task (Section 6.4.2) are listed in
Table A.10.

144 Appendix A. Experimental Details

TABLE A.10: Multi-rover foraging task parameters.

.

Task environment
Number of robots 10
Total number of items 30
Environment 1 items 15×{R1, R2}
Environment 2 items 6×{R1, R2, R3, R4, R5}
Arena size (bounded by walls) 1000 × 1000 cm
Robot starting area (in the centre) 125 × 125 cm
Robot diameter 10 cm
Max. simulation time 100 s
of independent simulations per evaluation 5
Minimum sensor resolution activation time 10 s
Item capture distance 5 cm

Robot actuators (transformed from [0, 1])
mρ: Linear speed [0,12.5] cm/s
mφ: Turning speed [0,112.5]◦/s
R: Sensor resolution [1,N †]

Robot sensors (normalised to [−1, 1])
wl, wr: 2 binary whisker sensors that indicate the pres-
ence of the walls

±30◦, 12.5 cm range

k1..6: 6 evenly distributed circular sectors, returning the
distance to the closest item

Unlimited range

r1..4: 4 circular sectors returning the distance to the clos-
est agent

250 cm range

nR: Closest agent’s sensor resolution [1,N †]
† N is the number of different item types.

NEAT parameters
Population size 100
Evaluation budget 5M
Remaining parameters are the default in Table A.1

A.9 Soccer Task

The parameters used for the soccer task (Section 6.4.3) are listed in Table A.11. We
additionally provide a brief description of the manually programmed soccer con-
troller below.

Manually programmed soccer strategy The manually programmed soccer agent
controller was based in the AIKHomoG control strategy (http://www.cs.cmu.edu/
~trb/TeamBots/Domains/SoccerBots/. A simplified description of the man-
ually programmed strategy is provided in Algorithm 10 (a number of strategy
details have been omitted for brevity). The full strategy implementation can
be found at https://github.com/jorgemcgomes/mase/blob/master/src/
mase/app/soccer/AIKAgent.java.

The freeKickDirection(x) and freeMoveDirection(x) functions return the
closest direction to x for kicking/moving without any impeding obstacles (walls or
other agents). The positioningForce() is a weighted sum of several force vectors,
which have the following effects:

http://www.cs.cmu.edu/~trb/TeamBots/Domains/SoccerBots/
http://www.cs.cmu.edu/~trb/TeamBots/Domains/SoccerBots/
https://github.com/jorgemcgomes/mase/blob/master/src/mase/app/soccer/AIKAgent.java
https://github.com/jorgemcgomes/mase/blob/master/src/mase/app/soccer/AIKAgent.java

A.9. Soccer Task 145

TABLE A.11: Soccer task parameters.

Task environment
Number of robots per team 5
Field size 274×152 cm
Robot diameter 8 cm
Ball diameter 4 cm
Ball slip deceleration 3.5 cm/s2

Ball roll deceleration 0.3 cm/s2

Ball slip to roll 70% of kick speed
Ball minimum speed 2 cm/s
Ball coefficient of restitution (rebound) 0.85
Goal width 50 cm
Robots starting area 60×60 cm
Game time limit 100 s
Ball stuck: moves less than 10 cm in 10 s with an agent close to it.
Number of games per evaluation 10

Robot actuators (transformed from [0, 1])
mρ: Linear speed [0,10] cm/s
mφ: Movement direction† [-180,180] ◦

kρ: Kick speed [10,40] cm/s
kφ: Kick direction† [-180,180] ◦

Robot sensors (normalised to [−1, 1])
dt1 . . . dt4: 4 evenly distributed circular sectors, returning the
distance‡ to the closest teammate in the respective sector
do1 . . . do4: Same as dt, but for the opponents
bρ, bφ: Distance‡ and relative angle† to the ball
gtρ, gtφ: Distance‡ and relative angle† to own goal
goρ, goφ: Distance‡ and relative angle† to opponents’ goal
† The robots have a fixed orientation, facing the opponents’ goal line
‡ Infinite range, normalised according to the field’s diagonal D

NEAT parameters
Population size 100
Evaluation budget (Soccer-80%) 2,5M
Evaluation budget (Soccer-100%) 5M
Remaining parameters are the default in Table A.1

• Keep distance from the teammates.

• Keep distance from the walls.

• Go to the goalie position if no other teammate is currently assuming that role.

• Go to the left-offensive position if no other teammate is in that position.

• Go to the right-offensive position if no other teammate is in that position.

We implemented a number of improvements in the original AIKHomoG control
strategy in order for it to present a meaningful challenge to the evolutionary algo-
rithms used in our experiments. In preliminary experiments, the evolutionary pro-
cess quickly exploited behavioural flaws in the original AIKHomoG strategy. Com-
pared to the original strategy, the following major changes were made:

146 Appendix A. Experimental Details

Algorithm 10 Manually programmed strategy of a soccer agent.

1: if agent is closest to ball then
2: if agent has the ball then
3: g← direction to the opponents’ goal
4: g′ ← freeKickDirection(g)
5: Kick the ball in the direction g′ at full power
6: else
7: b← direction to the ball
8: b′ ← freeMoveDirection(b)
9: Move in the direction b′ at 100% speed

10: else
11: f ← positioningForce()
12: if ||f || > force threshold then
13: f ′ ← freeMoveDirection(f)
14: Move in the direction f ′ at 75% speed

• The obstacle detection was improved – the walls are now also included in the
obstacle list.

• When shooting the ball the teammates are not considered obstacles, so that it
is possible to shoot the ball towards the teammates (passing).

• When calculating the shoot direction, the opponents’ movement range is taken
into account, in order to avoid shots that are easily intercepted by the oppo-
nents.

• The goal of the player’s team is considered an obstacle in order to avoid own-
goals.

• The agent goes directly towards the ball to position itself to shoot, as in our
task the agents can shoot in any direction.

• The goalie behaviour was improved – the agent acting as goalie is more effec-
tive in tracking the ball, moving along the goal line.

147

Appendix B

Evolution and Simulation
Framework

To support the experiments described in this thesis, we developed MASE (Multi-
Agent Systems Evolution), a Java-base open-source framework built over existing
libraries. The source code is available at https://github.com/jorgemcgomes/
mase.

B.1 Architecture

The developed framework is based on two pre-existing systems, ECJ and MASON,
described below. The integration of the software modules is illustrated in Figure B.1.

ECJ: Java-based Evolutionary Computation Research System, developed by Sean
Luke et al. at George Mason University’s ECLab (Evolutionary Computation
Laboratory).1 ECJ is one of the most popular evolutionary computation toolk-
its, aimed at all forms of evolutionary computation. Due to its well-engineered
structure, which makes heavy use of Java inheritance, abstraction and pattern-
oriented design, ECJ is able to support many alternative methods for common
functions, such as population initialisation, selection and variation operators,
without requiring additional user-written code (White, 2012). We use ECJ as
the backbone for the MASE framework, leveraging the existing evolutionary
algorithms, parameter configuration system, and overall organisation.

MASON: A widely used simulation library in Java, developed by Sean Luke et al.
at George Mason University’s ECLab and Center of Social Complexity (Luke
et al., 2005).2 MASON is a fast discrete-event multiagent simulation library,
designed to be the foundation for large custom-purpose Java simulations, and
also to provide functionality for many lightweight simulation needs. We ex-
tended MASON to provide basic functionality for multirobot systems simula-
tion, and implemented our multirobot tasks over it.

Below, we describe the main features implemented in the MASE framework.

1http://cs.gmu.edu/~eclab/projects/ecj/
2http://cs.gmu.edu/~eclab/projects/mason/

https://github.com/jorgemcgomes/mase
https://github.com/jorgemcgomes/mase
http://cs.gmu.edu/~eclab/projects/ecj/
http://cs.gmu.edu/~eclab/projects/mason/

148 Appendix B. Evolution and Simulation Framework

FIGURE B.1: Articulation of the software components in the MASE framework. The
evolution module is independent from the simulation module. The simulation mod-
ule only depends on the interfaces of the evolution module that define the agent
controllers and evaluation functions and results.

B.2 MASE Evolutionary extensions

We extended the functionality of ECJ with the following features, in order to imple-
ment new algorithms and enable the evolution of robot controllers.

Agent controllers: Interfaces for black-box-style agent controllers, and for team
controllers composed of multiple agent controllers (including homoge-
neous and heterogeneous teams). Implementation of neural-network
based controllers, with multiple architectures supported. See package
mase.controllers.

NEAT: Implementation of the NEAT algorithm in the ECJ system. Implementation
based on the NEAT4J library3. See package mase.neat.

Extended evaluation: The ECJ system only supported traditional evaluation based
exclusively on fitness scores. We extended it to support the evaluation of be-
haviours, including the use of multiple evaluation functions for each individ-
ual. See package mase.evaluation, especially the class ExpandedFitness
and the interfaces EvaluationFunction and EvaluationResult.

Post-evaluators: Novelty-based algorithms require the individual scores to be com-
puted after the entire population is evaluated. To enable this, we implemented
post-evaluators, which can modify the scores of the individuals in the current
population, and are run after the regular evaluation phase is completed. See
class MetaEvaluator and interface PostEvaluator.

Novelty search: We implemented the novelty search algorithm supporting a multi-
tude of implementation options, and also several methods for combining nov-
elty scores with fitness scores. See packages mase.novelty and mase.mo.

3http://neat4j.sourceforge.net/

http://neat4j.sourceforge.net/

B.3. MASE Simulation library 149

Hyb-CCEA: The Hyb-CCEA algorithm as described in Chapter 6. See package
mase.spec.

Extended statistics: We implemented new statistics to extend the data gathered dur-
ing the evolutionary process, and to enable the re-evaluation of solutions after
the evolutionary process is finished. See package mase.stat.

Parallelisation: Due to the high computational costs of evolution and simulation,
we implemented mechanisms for distributing the workload to the available
computational resources, including: (i) distribution of evolutionary runs to
multiple computers over the network (see MaseManager); (ii) submission of
jobs to a HPC cluster based on the Oracle Grid Engine (see HPCDispatcher);
and (iii) submission of jobs to the distributed computing system Conillon4 (see
package conillon). We additionally developed a user interface for creating
and managing batches of evolution jobs, see MaseManagerTerminal.

B.3 MASE Simulation library

We extended the MASON simulator with basic functionality for multirobot tasks, in
order to facilitate the implementation of different tasks.

Simulation problem: Interface to the evolutionary algorithm, providing the meth-
ods that can be invoked to perform the evaluation of a candidate solution. See
MasonSimulationProblem.

Basic simulation: Extends the basic MASON simulation to run the provided evalu-
ation functions. See MasonSimState and MasonEvaluation.

Basic agent: Embodied and situated agent that can be configured with sensors
and actuators, and can be controlled by an evolved agent controller. See
SmartAgent.

Environment objects: Entities that can be added to the environment and
sensed by the agents. See CircularObject, StaticPolygonObject,
EmboddiedAgent.

Sensors and actuators: A set of different sensors and actuators commonly used in
evolutionary robotics studies (cone-type sensor, ray-based sensor, range and
bearing, differential drive, etc.). See interfaces Sensor and Effector.

Generic characterisations: Implementation of generic and systematically-derived
behaviour characterisations, as described in (Gomes and Christensen, 2013;
Gomes et al., 2014e). See package mase.mason.generic.

B.4 Implemented Tasks

The following tasks are currently implemented in the MASE frnetamework (see
package mase.app):

Pedator-prey: In this task, a group of predators (under evolution) cooperate to catch
a prey that tries to escape from the nearby predators. The task is used in the
experiments in Chapters 3 and 4.

4https://github.com/BioMachinesLab/conillon

150 Appendix B. Evolution and Simulation Framework

Competitive predator-prey: In the competitive version of the predator-prey task, a
single predator evolves to catch a single prey, which also evolves to escape
the predator. Intended for competitive coevolution studies, not used in any
published study.

Multi-rover foraging: Task where multiple agents have to cooperate to find and
capture items spread throughout a closed arena. Different versions of this task
have been used in Chapters 3 and 6.

Aeria-ground foraging: Foraging task where an aerial and a ground robot have to
cooperate to find and capture items in the environment. Task used in Chap-
ter 5.

Soccer: Full soccer task where a team of agents under evolution play against a team
with a manually programmed strategy. Task used in Chapter 6.

Keepaway soccer: Simplified soccer task where multiple keepers (under evolution)
must pass the ball within a restricted area, keeping it away from a taker (pre-
programmed) that actively tries to catch it. Task used in (Gomes et al., 2014a).

Competitive keepaway soccer: Version of the keepaway soccer task where both the
keepers (homogeneous in this version) and the taker are under evolution, in-
tended to be used in competitive coevolution studies. Not used in any pub-
lished study.

Herding: Task where a team of shepherds (under evolution) has to push sheep into
the corral, while keeping foxes away from the sheep. This task was used in
Chapter 3 and in (Gomes et al., 2015b).

Coverage: Abstract function optimisation task used in Chapter 6.

Go: Game of Go with neural-based agent controllers, used for experiments with
competitive coevolution. Not used in any published study.

Aggregation: Classical swarm robotics tasks, where the robots start randomly
spread and have to aggregate in any point of the arena. Not used in any pub-
lished study.

Gate escape: In this task, a group of robots must escape through a narrow gate that
closes shortly after the first robot has passed. The task was used in (Gomes
et al., 2014e).

Resource sharing: In the resource sharing task, a group of robots must coordinate
in order to allow each member periodical access to a single battery charging
station. Task used in (Gomes et al., 2014e).

Maze navigation: Task where a single agent has to navigate through a maze in order
to reach the end-point. Task used in (Gomes et al., 2015c).

B.5 Data Analysis

The analysis of the logs produced by the evolutionary algorithms is conducted
with R scripts. We developed a set of general functions for loading, parsing, and
analysing such data, available at https://github.com/jorgemcgomes/mase/
blob/master/R/mase.r. The plots are produced with the ggplot2 plotting system
(Wickham, 2016).

https://github.com/jorgemcgomes/mase/blob/master/R/mase.r
https://github.com/jorgemcgomes/mase/blob/master/R/mase.r

	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Motivation
	Problem Statement
	Contributions and Publications
	Other Contributions to Evolutionary Robotics
	Thesis Structure

	Background
	Heterogeneous Multirobot Systems
	Behaviourally Heterogeneous Systems
	Morphologically Heterogeneous Systems

	Evolutionary Robotics
	Evolution of Heterogeneous Multiagent Systems
	Cooperative Coevolutionary Algorithms
	General Architecture
	Known Limitations and Pathologies
	Extensions of the Basic Architecture
	Domains of Application

	Evolution Driven by Behavioural Diversity
	Premature Convergence and Deception
	Novelty Search
	Configuring the Novelty Search Algorithm
	Behavioural Distance Measures
	Combining Exploration with Objectives

	Summary

	Overcoming Premature Convergence
	State of the Art
	Novelty-driven Cooperative Coevolution
	Team-level Novelty
	Individual-level Novelty
	Mixed Novelty

	Behaviour Exploration Analysis
	Behaviour Exploration Metrics
	Visualisation of the Best-of-Generation Teams
	Behaviour Space Visualisation

	Evaluation in the Predator-prey Task
	Predator-prey Task
	Evolutionary Setup
	Base Fitness-driven Cooperative Coevolution
	Increasing the Number of Collaborations
	Novelty-driven Coevolution
	Solution Diversity
	Scalability with Respect to Team Size
	Combination of Novelty and Team Fitness

	Validation with the Cooperative Foraging and Herding Tasks
	Cooperative Foraging Task Setup
	Herding Task Setup
	Evolutionary Setup
	Results

	Discussion
	Summary

	Validation in a Real Multirobot System
	Aquatic Predator-prey Task
	Robotic Platform
	Evolutionary Setup
	Simulation Approach
	Evolutionary methods

	Evolving and Identifying Diverse Solutions
	Quality of Solutions
	Behavioural Diversity

	Transferring the Teams to Real Robots
	Discussion
	Summary

	Morphologically Heterogeneous Systems
	Aerial-ground Foraging Task
	Robot Configurations
	Task Variants
	Evolutionary Setup

	Standard Fitness-driven CCEA
	Avoiding Premature Convergence
	Methods
	Results

	Discussion
	Summary

	Improving Scalability Through Dynamic Team Heterogeneity
	State of the Art
	The Hyb-CCEA Approach
	Evolutionary Process
	Initialisation
	Population Merge
	Population Split

	Comprehensive Evaluation in an Abstract Domain
	Problem Definition
	Evolutionary Setup
	Comparison with Competing Approaches
	Scalability with Problem Complexity
	Scalability with Respect to Team Size
	Initial Team Composition
	Merge Threshold and Maturation Limit

	Validation in Simulated Multirobot Systems
	Generic Agent Behaviour Characterisation
	Multi-rover Foraging Task
	Soccer Task
	Evolutionary Setup
	Results

	Discussion
	Summary

	Conclusions
	Discussion
	Future Work

	Bibliography
	Appendices
	Experimental Details
	Common Parameters
	Predator-prey Task
	Cooperative Foraging Task
	Herding Task
	Aquatic Predator-prey Task
	Aerial-ground Foraging Task
	Coverage Task
	Multi-rover Foraging Task
	Soccer Task

	Evolution and Simulation Framework
	Architecture
	MASE Evolutionary extensions
	MASE Simulation library
	Implemented Tasks
	Data Analysis

