5,152 research outputs found

    Monitoring, fault detection and estimation in processes using multivariate statistical

    Get PDF
    Multivariate statistical techniques are one of the most widely used approaches in data driven monitoring and fault detection schemes in industrial processes. Concretely, principal component analysis (PCA) has been applied to many complex systems with good results. Nevertheless, the PCA-based fault detection and isolation approaches present some problems in the monitoring of processes with different operating modes and in the identification of the fault root in the fault isolation phase. PCA uses historical databases to build empirical models. The models obtained are able to describe the system¿s trend. PCA models extract useful information from the historical data. This extraction is based on the calculation of the relationship between the measured variables. When a fault appears, it can change the covariance structure captured, and this situation can be detected using different control charts. Another widely used multivariate statistical technique is partial least squares regression (PLS). PLS has also been applied as a data driven fault detection and isolation method. Moreover, this type of methods has been used as estimation techniques in soft sensor design. PLS is a regression method based on principal components. The main goal of this Thesis deals with the monitoring, fault detection and isolation and estimation methods in processes based on multivariate statistical techniques such as principal component analysis and partial least squares. The main contributions of this work can be arranged in the three following topics: ¿ The first topic is related with the monitoring of continuous processes. When a process operates in several operating modes, the classical PCA approach is not the most suitable method. In this work, an approach for monitoring the whole behaviour of a process, taking into account the different operating modes and transient states, is presented. The monitoring of transient states and start-ups is studied in detail. Also, the continuous processes which do not operate in a strict steady state are monitored in a similar way to the transient states. ¿ The second topic is related with the combination of model-based structural model decomposition techniques and principal component analysis. Concretely, the possible conflicts (PCs) approach is applied. PCs compute subsystems within a system model as minimal subsets of equations with an analytical redundancy property to detect and isolate faults. The residuals obtained with this method can be useful to perform a complete fault isolation procedure. These residuals are monitored using a PCA model in order to simplify and improve the fault detection task. ¿ The third topic addresses the estimation task in soft sensor design. In this case, the soft sensors of a real process are studied and improved using neural networks and multivariate statistical techniques. In this case, a dry substance (DS) content sensor based on indirect measurements is replaced by a neural network-based sensor. This type of sensors take into account more variables of the process and obtain more robust and accurate estimations. Moreover, this sensor can be improved using a PCA layer at the network input in order to reduce the number of inputs in the network. Also, a PLS-based sensor is designed in this topic. It also improves the sensor based on indirect measurements. Finally, the different approaches developed in this work have been applied to several process plants. Concretely, a two-communicated tanks system, the evaporation section of a sugar factory and a reverse osmosis desalination plant are the systems used in this dissertationDepartamento de Ingenieria de Sistemas y Automátic

    Condition monitoring of an advanced gas-cooled nuclear reactor core

    Get PDF
    A critical component of an advanced gas-cooled reactor station is the graphite core. As a station ages, the graphite bricks that comprise the core can distort and may eventually crack. Since the core cannot be replaced, the core integrity ultimately determines the station life. Monitoring these distortions is usually restricted to the routine outages, which occur every few years, as this is the only time that the reactor core can be accessed by external sensing equipment. This paper presents a monitoring module based on model-based techniques using measurements obtained during the refuelling process. A fault detection and isolation filter based on unknown input observer techniques is developed. The role of this filter is to estimate the friction force produced by the interaction between the wall of the fuel channel and the fuel assembly supporting brushes. This allows an estimate to be made of the shape of the graphite bricks that comprise the core and, therefore, to monitor any distortion on them

    Dynamic latent variable modelling and fault detection of Tennessee Eastman challenge process

    Get PDF
    Dynamic principal component analysis (DPCA) is commonly used for monitoring multivariate processes that evolve in time. However, it is has been argued in the literature that, in a linear dynamic system, DPCA does not extract cross correlation explicitly. It does not also give the minimum dimension of dynamic factors with non zero singular values. These limitations reduces its process monitoring effectiveness. A new approach based on the concept of dynamic latent variables is therefore proposed in this paper for extracting latent variables that exhibit dynamic correlations. In this approach, canonical variate analysis (CVA) is used to capture process dynamics instead of the DPCA. Tests on the Tennessee Eastman challenge process confirms the workability of the proposed approach

    Study of fault tolerant software technology for dynamic systems

    Get PDF
    The major aim of this study is to investigate the feasibility of using systems-based failure detection isolation and compensation (FDIC) techniques in building fault-tolerant software and extending them, whenever possible, to the domain of software fault tolerance. First, it is shown that systems-based FDIC methods can be extended to develop software error detection techniques by using system models for software modules. In particular, it is demonstrated that systems-based FDIC techniques can yield consistency checks that are easier to implement than acceptance tests based on software specifications. Next, it is shown that systems-based failure compensation techniques can be generalized to the domain of software fault tolerance in developing software error recovery procedures. Finally, the feasibility of using fault-tolerant software in flight software is investigated. In particular, possible system and version instabilities, and functional performance degradation that may occur in N-Version programming applications to flight software are illustrated. Finally, a comparative analysis of N-Version and recovery block techniques in the context of generic blocks in flight software is presented

    Model based fault diagnosis for hybrid systems : application on chemical processes

    Get PDF
    The complexity and the size of the industrial chemical processes induce the monitoring of a growing number of process variables. Their knowledge is generally based on the measurements of system variables and on the physico-chemical models of the process. Nevertheless, this information is imprecise because of process and measurement noise. So the research ways aim at developing new and more powerful techniques for the detection of process fault. In this work, we present a method for the fault detection based on the comparison between the real system and the reference model evolution generated by the extended Kalman filter. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. It is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of industrial systems. The use of this method is illustrated through a didactic example relating to the field of Chemical Process System Engineering

    Monitoring and Fault Diagnosis for Chylla-Haase Polymerization Reactor

    Get PDF
    The main objective of this research is to develop a fault detection and isolation (FDI) methodologies for Cylla-Haase polymerization reactor, and implement the developed methods to the nonlinear simulation model of the proposed reactor to evaluate the effectiveness of FDI methods. The first part of this research focus of this chapter is to understand the nonlinear dynamic behaviour of the Chylla-Haase polymerization reactor. In this part, the mathematical model of the proposed reactor is described. The Simulink model of the proposed reactor is set up using Simulink/MATLAB. The design of Simulink model is developed based on a set of ordinary differential equations that describe the dynamic behaviour of the proposed polymerization reactor. An independent radial basis function neural networks (RBFNN) are developed and employed here for an on-line diagnosis of actuator and sensor faults. In this research, a robust fault detection and isolation (FDI) scheme is developed for open-loop exothermic semi-batch polymerization reactor described by Chylla-Haase. The independent (RBFNN) is employed here when the system is subjected to system uncertainties and disturbances. Two different techniques to employ RBF neural networks are investigated. Firstly, an independent neural network is used to model the reactor dynamics and generate residuals. Secondly, an additional RBF neural network is developed as a classifier to isolate faults from the generated residuals. In the third part of this research, a robust fault detection and isolation (FDI) scheme is developed to monitor the Chylla-Haase polymerization reactor, when it is under the cascade PI control. This part is really challenging task as the controller output cannot be designed when the reactor is under closed-loop control, and the control action will correct small changes of the states caused by faults. The proposed FDI strategy employed a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. In this research, an independent MLP neural network is implemented here to generate residuals for detection task. And another RBF is applied for isolation task performing as a classifier. The fault diagnosis scheme is developed for a Chylla-Haase reactor under open-loop and closed-loop control system. The comparison between these two neural network architectures (MPL and RBF) are shown that RBF configuration trained by (RLS) algorithm have several advantages. The first one is greater efficiency in finding optimal weights for field strength prediction in complex dynamic systems. The RBF configuration is less complex network that results in faster convergence. The training algorithms (RLs and ROLS) that used for training RBFNN in chapter (4) and (5) have proven to be efficient, which results in significant faster computer time in comparison to back-propagation one. Another fault diagnosis (FD) scheme is developed in this research for an exothermic semi-batch polymerization reactor. The scheme includes two parts: the first part is to generate residual using an extended Kalman filter (EKF), and the second part is the decision making to report fault using a standardized hypothesis of statistical tests. The FD simulation results are presented to demonstrate the effectiveness of the proposed method. In the lase section of this research, a robust fault diagnosis scheme for abrupt and incipient faults in nonlinear dynamic system. A general framework is developed for model-based fault detection and diagnosis using on-line approximators and adaptation/learning schemes. In this framework, neural network models constitute an important class of on-line approximators. The changes in the system dynamics due to fault are modelled as nonlinear functions of the state, while the time profile of the fault is assumed to be exponentially developing. The changes in the system dynamics are monitored by an on-line approximation model, which is used for detecting the failures. A systematic procedure for constructing nonlinear estimation algorithm is developed, and a stable learning scheme is derived using Lyapunov theory. Simulation studies are used to illustrate the results and to show the effectiveness of the fault diagnosis methodology. Finally, the success of the proposed fault diagnosis methods illustrates the potential of the application of an independent RBFNN, an independent MLP, an Extended kalman filter and an adaptive nonlinear observer based FD, to chemical reactors

    Fault detection, identification and accommodation techniques for unmanned airborne vehicles

    Get PDF
    Unmanned Airborne Vehicles (UAV) are assuming prominent roles in both the commercial and military aerospace industries. The promise of reduced costs and reduced risk to human life is one of their major attractions, however these low-cost systems are yet to gain acceptance as a safe alternate to manned solutions. The absence of a thinking, observing, reacting and decision making pilot reduces the UAVs capability of managing adverse situations such as faults and failures. This paper presents a review of techniques that can be used to track the system health onboard a UAV. The review is based on a year long literature review aimed at identifying approaches suitable for combating the low reliability and high attrition rates of today’s UAV. This research primarily focuses on real-time, onboard implementations for generating accurate estimations of aircraft health for fault accommodation and mission management (change of mission objectives due to deterioration in aircraft health). The major task of such systems is the process of detection, identification and accommodation of faults and failures (FDIA). A number of approaches exist, of which model-based techniques show particular promise. Model-based approaches use analytical redundancy to generate residuals for the aircraft parameters that can be used to indicate the occurrence of a fault or failure. Actions such as switching between redundant components or modifying control laws can then be taken to accommodate the fault. The paper further describes recent work in evaluating neural-network approaches to sensor failure detection and identification (SFDI). The results of simulations with a variety of sensor failures, based on a Matlab non-linear aircraft model are presented and discussed. Suggestions for improvements are made based on the limitations of this neural network approach with the aim of including a broader range of failures, while still maintaining an accurate model in the presence of these failures
    corecore