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Summary: This paper presents a review of fault detection, identification and accommodation 
(FDIA) techniques, followed by results from an evaluation of a neural network (NN) fault 
detection scheme for critical failures of an unmanned airborne vehicle’s (UAV’s) angular rate 
sensors. Neural networks are used to provide analytical redundancy, from which residuals are 
generated, enabling the detection of failures on sensor measurements. Upon detection of a 
failure, the faulty signal is replaced by the neural network based estimate, allowing the flight 
to continue within specified performance limitations. The performance of this technique is 
assessed through an evaluation of aircraft stability in the presence of a fault that would 
normally cause the aircraft to behave unacceptably. This investigation forms part of a year 
long literature review aimed at identifying approaches suitable for combating the low 
reliability and high attrition rates of today’s UAVs. 
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Introduction 
 
Unmanned Airborne Vehicles (UAVs) are assuming prominent roles in both the commercial 
and military aerospace industries. The promise of reduced costs and reduced risk to human 
operators is one of their major attractions, however these low-cost systems are yet to gain 
acceptance as a safe alternative to manned solutions. The absence of a thinking, observing, 
reacting and decision making pilot reduces the capability of UAV’s to manage adverse 
situations such as faults and failures. 
 
This paper reports on research currently being undertaken at the Queensland University of 
Technology (QUT) into fault detection and accommodation techniques for low cost UAV 
systems. The paper begins by highlighting current fault detection and accommodation 
approaches for UAVs with a focus on sensor failures. Sensor failures are critically important 
as they can often lead to unrecoverable flight. As reduced complexity, lower costs, and weight 
optimization are major design specifications, traditional approaches such as built in tests and 
multiple redundancies are no longer appropriate. One method employed to combat sensor 
failures is the use of model-based techniques to produce parameter estimates that can be used 
for both fault detection and fault accommodation.  
 
The approach presented in this paper uses neural networks to provide analytical redundancy 
from sensors already existing onboard a UAV. An investigation was undertaken into the 
neural network based sensor fault detection, isolation and accommodation (SFDIA) process 
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proposed by Napolitano [1] with a particular focus on using UAV specific sensor models and 
analyzing the closed loop aircraft performance. The objectives of this investigation were to 
gain an understanding of the difficulties associated with neural network based fault detection 
and accommodation approaches.  
 
The scope is limited to a selection of sensors and failure modes, with only a limited focus on 
the application of these techniques to multiple failures. Performance of the approach was 
measured using altitude and heading tracking errors from a normal set point. 
Recommendations for improvements are made based upon the limitations of this neural 
network approach, with the aim of including a broader range of failures, while still 
maintaining an accurate model in the presence of these failures. The future direction of this 
research and its objectives are outlined at the conclusion of this paper. 
 
 

Fault Detection and Accommodation techniques 
 
The aerospace industry has used fault detection for a variety of applications such as detecting 
structural failures, engine failures and avionics/power system failures, however only small 
quantities of these applications have been specifically focused towards UAVs [2-4]. Texts 
written by Patton, Frank and Clark [5], Anderson and Lee [6] and Gertler [7] offer good 
explanations of fault detection and accommodation techniques. Surveys on fault detection 
techniques written by Isermann [8], Frank [9] and Wilsky [10] also provide good starting 
points for fault detection, identification and accommodation (FDIA) research.  
 
Types of Faults and Failures 
 
Faults in closed loop systems are commonly represented as either actuator, plant or sensor 
failures (refer, Fig. 1). The fault detection and accommodation techniques required will 
depend on the type of failure experienced. Plant and actuator failures in UAVs generally 
result from mechanical or structural failures, and often require adaptation of the control 
system. Providing redundancy or other types of fault accommodation is normally not feasible. 
Sensor failures can be a major source of error in UAVs, particularly when a UAV uses less 
reliable components due to design restrictions. To Detect and manage these three types of 
failures a combination of techniques would be required, however this paper is focused upon 
sensor failures and sensor fault detection and accommodation (SFDA).  
 

 
 

Fig. 1: Representation of fault locations in a closed loop system 
Fault Detection Methods 
 



Fault detection procedures can be divided into knowledge, signal processing or model-based 
approaches. Knowledge based techniques use artificial intelligence approaches, such as neural 
networks or fuzzy decision logic to detect and classify faults. Papers written by Gupta and 
Yamakawa [11], Boullart and Krijgsman [12] and Oosterom and Babuška [13-15] use 
knowledge-based approaches for FDIA. Signal processing techniques use signal features 
(spectrum information, statistical information etc.) to generate signals that give an indication 
of the existence of a failure. Examples of signal processing approaches have been published 
by Zhang and Jiang [16], Mackey [17] and Menon [18, 19]. Model-based techniques are 
similar to signal processing techniques, except that a model is used to estimate measure the 
values, from which error signals (residuals) can be used to give an indication of the existence 
of a failure. Model based techniques form a considerable portion of FDIA research and there 
exists an abundance of literature on this subject  [5-10]. 
 
Neural Network approaches to fault detection 
 
Testing has shown that the neural networks approach has proven to be an extremely powerful 
method for fault detection. Neural network FDIA solutions normally come in two forms; the 
first is a Knowledge-based approach where neural networks are trained to recognise faults, 
based on certain criteria/features (Zhang [20] and Johnson [21]); the second approach is a 
model based approach where neural networks are used to provide analytical redundancy for 
fault detection purposes.  
 
Napolitano, Gampa and Seanor’s work on neural network fault detection and flight control 
systems provided the inspiration for the work described in this paper. They have produced a 
good series of papers on neural network fault detection for aircraft systems [1, 22-29]. Patton, 
Chen and Siew [30] and Alessandri and Parisini [31-34] have also produced papers on model-
based neural network-based fault detection techniques. 
 
Fault Detection Performance 
 
The performance of a fault detection procedure is measured by its percentages of successful 
detections as well as its percentage of false alarms. There are four possible outcomes (two 
successful, two unsuccessful) for a fault detection system. A successful outcome is one which 
determines the correct health status. A false alarm is where a fault is declared when no fault 
exists whereas a missed alarm is where a fault is not detected when a failure occurs.  Other 
terms that are often used in the literature to indicate FDI performance are detectability, 
isolability and robustness. Detection delay is also an important parameter when determining 
fault detection performance.  Refer to Patton et al [5], Anderson et al [6] and Gertler [7] for a 
detailed account of there terms. 
 
Fault Accommodation Procedures 
 
Accommodation of a sensor failure is generally achieved through two methods. The first 
method is system reconfiguration, where the system is altered to minimise the effect of a 
fault. A reconfigurable controller fits into this type of solution. The other method of 
accommodating faulty measurements is by modifying or replacing the faulty signal. This 
requires a form redundancy (either hardware or analytical) that can be used to accurately 
estimate the faulty sensor measurement. 
System performance 
 



The ultimate goal of a fault detection system for an unmanned airborne vehicle is to allow the 
aircraft to continue flying with an acceptable level of performance, for an adequate time span 
to either complete it’s mission or for recovery from the failure. Providing UAVs with FDIA 
capabilities will improve their reliability and safety, however there will always be a limit to 
the level of faults that can be detected and accommodated. As more components fail, the 
system becomes less capable and reliable. For this reason any fault detection scheme and 
accommodation process must be backed up by suitable maintenance procedures and realistic 
expectations.  
 
In the remainder of this paper, a neural network (NN) FDIA approach will be described and 
demonstrated using simulated aircraft data. 
 
 

Neural network-based SFDA 
 
In order to examine the performance capabilities of a fault detection scheme using neural 
network approximations, a model for simulating a variety of UAV avionics systems was 
required. Fig. 1 gives an overview of the simulation model developed in Matlab/simulinkTM 
for investigating the neural network FDIA scheme.  
 

 
 

Fig. 2: System Architecture Overview 
 
Aircraft Dynamic Model 
 
The aircraft dynamic model is a six degree of freedom, nonlinear model of a General Aviation 
North American Navion. The model was developed by Unmanned Dynamics LLC, as part of 
the Aerosim blockset, for Matlab/simulinkTM. The model outputs state vector information such 
as position, velocity, acceleration, Euler angles and angular rates as well as atmospheric data 
(temperature, density, pressure) and earth parameters (magnetic field, gravity). These values 
are then passed to the sensor suite for the modelling of sensor measurements.  
 



Control System 
 
The control system in this investigation uses angle and rate feedback to control the aircraft in 
both the lateral and longitudinal motions (Fig. 3 and Fig. 4). Table 1 shows the closed loop 
altitude and heading control system errors. These errors are for straight and level commands 
of 0 degrees (heading) and 1000 meters (altitude). A number of identical simulations were 
conducted to assess the variation of the results. All simulations performed for this paper were 
conducted for the same series of command values forming a standard flight profile from 
which this approach is assessed.   
 

Table 1: Normal lateral and longitudinal controller characteristics 
 

Simulation repeatability Controlled 
parameter 

Maximum steady 
state error Max difference Standard deviation 

Heading 2.4 degrees 9.1 degrees 1.7 degrees 
Altitude 13.5 meters 35.0 meters 8.7 meters 

 
The maximum steady state error is the largest, instantaneous error between the controlled 
parameters and the straight and level set points (heading = 0º, altitude = 1000m). These values 
represent the ability of the aircraft to track the commanded headings and altitude. The 
variation (repeatability) is due to uncertainty on the sensor measurements and the values 
listed in Table 1 indicate how these uncertainties affect the aircraft’s closed loop tracking 
capabilities.  
 

 
 

Fig. 3: Lateral controller architecture 
 

 
 

Fig. 4: Longitudinal controller architecture 
 

Sensor Suite 
 
The sensor suite is responsible for modelling the impact of a variety of failures as well as 
generating realistic measurements. An analysis of the normal performance of the system using 



these measurements was performed and criteria for faults requiring detection were made 
based on the closed loop behaviour of the aircraft. 
 
Sensor Measurements 
 
Raw sensor measurements are generated from the dynamic model outputs by restricting the 
signals with transportation delays (computation lag), resolution and range limits. Sensor noise 
is added to the delayed signals and the resulting measurements are sampled at realistic sample 
rates. Table 2 shows the sensor suite specifications used to model sensor values in this 
simulation.  
 

Table 2: Sensor suite specifications 
 

Performance / Specifications Sensor values Modelled 
on Rate Resolution Range Noise Level1 

Position 1Hz 0.0001 º (lat, long) 
0.1 m (alt) - < ±15m 

NED 
Velocities 

Garmin Ltd. 
15H/L GPS 

engines 1Hz 0.1 knots < ±999.9 knots < ±0.1 knot 

Angular rates 50Hz 0.025 º /sec < ±100 º /sec < ±0.05 º/sec 

Accelerations 

XBow, Inc. 
AHRS400C
C-100 unit. 50Hz 0.25 mg < ±2 g < ±8.5 mg 

Magnetic 
Field 

PNI Corp 
TCM2 Unit 25Hz 0.01 µT < ±80 µT < ±1 µT 

Air Data 
Information 

Sensors 
with ADC. 50Hz 0.1 knot (Vel) 

0.05 º (α, β) < ±22.5 º < ±0.75 º 

 
Sensor Fault Performance Criteria 
 
To limit the fault modes requiring detection to those which are the most critical, an analysis 
on the effects of a variety of faults was performed. The decision criteria for fault modes 
requiring detection (Table 3) are based on the performance capabilities of the control system 
(Table 1). Fig. 5 and Fig. 6 show the simulation repeatability and the limits specified by the 
criteria of maximum variation (Table 3). These figures give an idea of the standard flight 
profile as well as the limits to which the simulation is repeatable and the limits where a fault 
will cause the aircraft to exceed the detection criteria. 
 
For this investigation we have specified that the altitude error should be no more than 100 
meters and that a maximum instantaneous heading error greater than 20 degrees is 
unacceptable. We have also specified that the straight and level altitude error should be no 
more than 15 meters and the heading error should be no more than 5 degrees. The decision 
criteria listed in Table 3 are absolute maximums and are considerably greater than the average 
heading and altitude error that would be experienced during normal flight (Table 1). The 
reason for the use of large decision criteria is that distinguishing between normal flight and 
faulty flight becomes difficult if the decision criteria are too close to the normal operation of 
the aircraft.  
 

                                                 
1 3σ value, using normally distributed noise models. We acknowledged that this may not be representative of 
“real-world” noise models, however they provide an appropriate starting point for this research. 



 
 

Fig. 5: Altitude variation limits for normal and faulty sensors 
 

 
 

Fig. 6: Heading variation limits for normal and faulty sensors 
 
Faults are applied to a sensor signal for the entire duration of the simulation and the resulting 
errors in heading and altitude are generated. If these errors are greater than the decision 
criteria in Table 3 then the fault is of a magnitude that requires detection. These criteria offer 
a threshold for acceptable performance of the closed loop system and do not impact on the 
aircraft flight; rather, they are a tool for determining the level of fault that should be detected.  
 
Table 3: Decision criteria for acceptable lateral and longitudinal controlled characteristics 

 

Parameter Maximum steady 
state error 

Simulation repeatability 
(maximum difference) 

Heading 5 degrees 20 degrees 
Altitude 15 meters 100 degrees 

 
Sensor Faults Exceeding Decision Criteria 
 
A total of four failure modes were selected for simulation, all of which can be modeled by 
either applying additional and/or multiple components to the original signal (before the sensor 
models). The first failure mode investigated is a failure to zero, representing a complete 
failure of the sensor that is undetectable through normal built in tests (noise is still present). 
The second failure mode is simulated by an additional step, representing a sudden jump or 
constant bias on the sensor. The third failure is simulated by an additional ramp, representing 
a slowly degenerating sensor and the fourth failure is an additional noise source.  

Fault Variation Limit 

Normal Variation Limit 

Fault Variation Limit 

Normal Variation Limit 



The last three failure modes have varying severity depending on the size of the additional 
components. Failures were only considered for the body angular rate sensors p, q and r to 
limit the complexity of the fault detection and accommodation process. These sensors were 
chosen because they are present both directly and indirectly (Euler calculations) in the control 
system feedback for both lateral and longitudinal control. This generates a total of 12 failure 
modes that were investigated.  
 

Table 4: Faults that cause aircraft to exceed detection criteria during flight 
 

Body Angular Rates Fault Mode 
p - Failures q - Failures r - Failures 

Failure to Zero 
(Entire simulation 
duration) 

Aircraft exceeds 
decision criteria 

Aircraft meets 
decision criteria. No 
FDIA required 

Aircraft meets 
decision criteria. No 
FDIA necessary. 

Step Failure 
Constant bias 
(entire simulation 
duration) 

Exceeds decision 
criteria with a step 
failure greater than  
0.5 degrees/sec 

Exceeds decision 
criteria with a step 
failure greater than  
0.2 degrees/sec 

Exceeds decision 
criteria with a step 
failure. greater than  
5 degrees/sec 

Ramp Failure 
Constant slope 
(value limited by 
simulation time) 

Exceeds decision 
criteria with a ramp 
slope greater than  
0.005  degrees/sec 

Exceeds decision 
criteria with a ramp 
slope greater than  
0.006  degrees/sec 

Exceeds decision 
criteria with a ramp 
slope greater than  
1 degrees/sec 

Additional Noise 
Maximum noise 
value (~3σ). 
Normally distrib. 

Exceeds decision 
criteria with noise 
failure greater than  
5 degrees/sec 

Exceeds decision 
criteria with noise 
failure greater than  
2 degrees/sec 

Exceeds decision 
criteria with noise 
failure greater than  
50 degrees/sec 

 
The numbers listed in Table 4 are only of any value when the model for each failure mode 
and the significance of the feedback path is understood. For example, failure to zero of the p – 
rate sensor creates errors in the Euler angle calculation, causing the aircraft to roll heavily, 
causing the aircraft to loose altitude. The important thing to note from Table 4 is that with the 
current control system architecture and data fusion process, step and ramp failures have the 
most effect on the closed loop stability and failures on the r – angular rate sensor are less 
significant than failures on the p and q angular rate sensors.  Fig. 7 and Fig. 8 show the 
variation from the standard flight path that occurs when we use the faults specified in Table 4. 
 

 
 

Fig. 7: Altitude variation for normal and faulty sensors: Effect of each fault mode 

Aircraft fails due to  
p-fault: Failure to zero 

Maximum variations from 
standard flight path 

Steady state error 
once commanded 
altitude is achieved 



 
 

Fig. 8: Heading variation for normal and faulty sensors: Effect of each fault mode 
 
Data Fusion 
 
The data fusion process uses low-pass filtering to reduce the effects of noise on the sensor 
measurements. The filtered measurements are then used to compute Euler angles. The data 
fusion process is aimed at providing stable and accurate estimates of the control system 
parameters. The performance of the fusion process could be improved by implementing a 
Kalman Filter. This may also improve the stability of the aircraft when a fault occurs due to 
the tightly coupled nature of closed loop systems. A change in stability would in turn change 
the fault modes that meet the criteria in Table 4. 
 
Fault Detection and Accommodation 
 
The first step in the fault detection and accommodation process is the estimation of sensor 
values using neural networks. The error between the estimates and the measurements are then 
used to generate residuals for fault detection. Once a fault is detected the measured values are 
replaced with the NN estimate. The architecture used to achieve this is shown in Fig. 9. 
 

 
 

Fig. 9: Neural Network Estimation and Fault Detection Architecture 
 

Aircraft fails due to  
p-fault: Failure to zero 

Steady state error 
once commanded 
heading is achieved Aircraft fails to track heading



 
Estimation of Sensor Measurements using Neural Networks 
 
The neural networks used to estimate the sensor measurements were Multi Layer Perception 
(MLP) NN trained with the Extended Back Propagation algorithm (EBPA) [1]. Each network 
was trained over a number of simulations before being used in the simulation model and each 
network uses all available sensors as inputs into the input layer of the NN (except for the 
sensor measurement being estimated). There are a number of neural networks and training 
architectures that promise better performance [22, 23], however this research is less focused 
on the neural network specifics and more on the results of their applications. Fig. 10 shows 
the actual measurements and the estimated signal and Fig. 11 shows the error in the estimate 
of the p – angular rate sensor. The results are based on the standard flight path. The neural 
network has been trained over a number of simulations and maintains a small learning rate. 
 

 
 

Fig. 10: p – Angular Rate Neural Network Estimation 
 

 
 

Fig. 11: p – Angular Rate Neural Network Estimation Error 
 
Inspection of the neural network estimates highlights that the peak errors are caused by small 
delays between the NN estimates and the actual values. The estimates contain more noise than 
the original sensor measurements as the NN are to some degree, compounding the noise from 
the sensors it uses for its estimation procedure. See Table 5 for values on the estimation 
performance of the neural networks. 
 
 
 



Performance of Neural Network Estimations with and without On-Line Learning 
 
The estimation performance of the neural network when on-line learning is enabled, is 
important when first detecting failures. However, once a fault is detected, on-line learning is 
disabled to avoid the NN learning the fault. This causes an increase in estimation error as 
shown in Fig. 12 and Fig. 13. 
 

 
 

Fig. 12: Neural Network Estimation with and without On-Line learning 
 

 
 

Fig. 13: Neural Network Estimation error with and without on-line learning 
 
The errors are considerably less when on-line learning is enabled. Table 5 shows the typical 
errors associated with the two estimates for each of the angular rate sensors. Each entry gives 
an indication of how accurate the NN estimations are. Note the increase in mean and standard 
deviation between outputs with learning enabled and leaning disabled.  
 

Table 5: Typical estimation errors with and without on-line learning 
 

Neural Network Estimation Error Parameter Maximum Mean Standard Dev. 
p 3.2 deg/sec 0.0007 deg/sec 0.14 deg/sec 
q 5.0 deg/sec 0.0010 deg/sec 0.25 deg/sec Learning 

Enable r 3.6 deg/sec 0.0011 deg/sec 0.18 deg/sec 
p 2.8 deg/sec 0.1723 deg/sec 0.18 deg/sec 
q 4.4 deg/sec 0.0956 deg/sec 0.38 deg/sec Learning 

Disabled r 4.2 deg/sec 0.1551 deg/sec 0.36 deg/sec 



Fault Accommodation Performance 
 
The major concern with using these estimations as redundant signals is that the estimation 
error compiled with the sensor suites existing uncertainty will create closed loop instabilities. 
With enough error it is to be expected that the accommodation process will fail, so it is 
important to determine what accommodation processes can be achieved with the given 
estimations before this instability occurs. This determines the fault modes that can be 
accommodated by this neural network approach. Table 6 shows the performance of the closed 
loop system when a fault mode is being accommodated for the entire simulation duration. 
Acceptability is once again based on the criteria in Table 3. The values in Table 6 are given in 
percent, representing the percentage of times the aircraft recovers given the specified 
accommodation signals.   
 

Table 6: System Performance when using Accommodated Signals 
 

Post failure Aircraft Recovered Post failure Aircraft Failed Accommodate
d Signals With acceptable 

heading error 
With acceptable 

altitude error 
Due to detection 

criteria 
Due to complete 
failure (crash) 

p only 100% 100% 0% 0% 
q only 100% 70% 30% 0% 
r only 100% 100% 0% 0% 

p and q 10% 0% 100% 0% 
p and r 0% 0% 100% 0% 
q and r 100% 100% 0% 0% 

p, q and r 0% 0% 100% 100% 
 
We can now say that this approach will be successful when accommodating single failures in 
p and r and most of the time. The estimation error is too large for the accommodation process 
to include multiple failures of p and r and p and q however the combination of failures in q 
and r results in acceptable performance. This is due to the feedback nature of the estimation 
process in the neural networks as well as the structure of the longitudinal and lateral 
controllers. For example, a failure in the p-angular rate sensor would cause additional error on 
the q and r-angular rate sensor estimates. The only combination of accommodated signals that 
caused the aircraft to become completely unstable was using the combination of p, q and r. 
For this investigation only single failures were considered in the detection procedure. 
 
Fault Detection Performance 
 
For fault detection the estimate error is filtered and a threshold is used to determine if the 
error is beyond normal limits. Detection logic is applied over a number of samples to limit the 
possibility of a false alarm. Once a sensor is declared faulty it remains that way for the entire 
simulation duration.  
 



 
 

Fig. 14: Neural network errors and detection threshold 
 
Performance of the fault detection process is given in terms of the percentage of time that 
successful detections are made and the percentage of time that false alarms are generated. The 
ultimate goal of any fault detection process is to bring successful detections to 100%, whilst 
lowering false detections (false alarms) to 0%. If a fault detection process is too sensitive it 
will often result in a high percentage of false detections without any significant improvement 
in the percentage in successful detections. Table 7 shows the performance of the fault 
detection process performed in these simulations. The percentages are taken from a small 
population of simulations and some more analysis is required to produce more accurate 
results.  
 

Table 7: Performance of Fault Detection Process 
 

Failure mode Successful Detection False Alarms Detection Delay 
No actual failures N/A 10  % N/A 

p Sensor 90 % 40 % < 20 sec 
q Sensor 80 % 30 % < 30 sec Failure 

to Zero r Sensor 100 % 10 % < 15 sec 
p Sensor 70 % 30 % < 15 sec 
q Sensor 80 % 30 % < 25 sec Step 

Failure r Sensor 100 % 10 % < 20 sec 
p Sensor 70 % 30 % < 80 sec 
q Sensor 60 % 20 % < 120 sec Ramp 

Failure r Sensor 100 % 10 % < 50 sec 
p Sensor 80 % 40 % < 30 sec 
q Sensor 80 % 30 % < 25 sec Noise 

Failure r Sensor 100 % 10% < 15 sec 
 

The percentage of false alarms is not a major concern as we have already shown that the 
accommodation process performs adequately. The major problem with the fault detection 
procedure implemented is the detection delays. The greater the detection delay becomes, the 
more the neural network learns the fault. If the neural network learns a fault, then the 
performance of the accommodation process is reduced. 
 
 
Switching Logic 
 



The logic used to switch between faulty signals and their NN estimation is a simple hard 
switching method. Once a fault is declared, the sensor is treated as faulty for the remainder of 
the simulation. There are a number of alternatives to hard switching between the two signals, 
however this runs the risk in the fault developing to a level at which the aircraft cannot 
recover. Detection delay plays an important part in the switching transients that occur in hard 
switching systems. If a detection delay is too big the transients caused by the switching logic 
may in fact cause the aircraft to become unstable. The only way to know this for sure is to test 
the neural network fault detection and accommodation process and see how the overall 
system performs. 
 
Overall System Performance 
 
The final test for this neural network fault detection and accommodation technique is to 
simulate a set of faults and determine the percentage of times the aircraft recovers from faults 
that can be accommodated by the neural network architecture.  The preliminary results are 
presented in Table 8. 
 

Table 8: Overall Performance 
 

Aircraft Recovered Aircraft Failed Failure mode with 
accommodation 

techniques 

With 
acceptable 

heading error 

With 
acceptable 

altitude error 

Due to 
detection 
criteria 

Due to 
complete 

failure (crash) 
p Sensor 100% 30% 70% 0% 
q Sensor 100% 50% 50% 0% Failure 

to Zero r Sensor 100% 100% 0% 0% 
p Sensor 80% 100% 20% 0% 
q Sensor 100% 40% 60% 0% Step 

Failure r Sensor 100% 100% 0% 0% 
p Sensor 100% 100% 0% 0% 
q Sensor 100% 50% 50% 0% Ramp 

Failure r Sensor 100% 100% 0% 0% 
p Sensor 70% 100% 30% 0% 
q Sensor 100% 70% 30% 0% Noise 

Failure r Sensor 100% 100% 0% 0% 
 
The results shown indicate that the aircraft is able to maintain flight regardless of the fault 
that is generated; however the performance of the fully integrated system is sometimes less 
than desirable. This is due to the tightly coupled nature of the closed loop aircraft systems. A 
small improvement in the data fusion process or the control system can have a dramatic effect 
on the performance of the fault detection and accommodation process. Detection delays also 
play an important role in the performance of this accommodation scheme, as the weights of 
the neural networks are being updated and partially learn the fault that exists on the sensor. 
For example, the results show that for a failure to zero of the p-rate sensor, the aircraft exceed 
the specified altitude error (refer, Table 3). The reason for this is the detection delay is 
sufficient enough for the aircraft to loose altitude while the fault sensor measurements are 
present in the control loop. 

Conclusion 
 



The neural network fault detection and accommodation process investigated shows promising 
results for minimising the effects of sensor faults in UAV avionics systems, however there is 
always room for improvement. The biggest difficulty with any model-based fault detection 
and accommodation process is the interaction between systems in the control loop. The 
tightly coupled nature of UAV systems makes achieving an optimal and robust solution 
difficult. There are a variety of adaptation techniques that could be used to increase the 
recovery rate of the aircraft; however this adds complexity and cost. Including neural network 
estimates for each sensor would increase the complexity of this approach significantly. 
 
Based on the findings and experience gained from this investigation the future direction of 
this project will be focused on developing fault detection and accommodation techniques that 
are tightly coupled with the data fusion and control systems. The intended outcomes of this 
project are to develop an optimal procedure that can deal with a variety of sensor faults by 
using all available aircraft data. Once this is achieved, actuator and plant failures will be 
investigated and integrated into the solution. Achieving this will hopefully aid the 
development of more robust and reliable UAV systems without relying on expensive avionics 
grade components.  
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