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1. INTRODUCTION 

ComputIng systems are crucial components of high reliability 

applications such as flight and space systems. For computing 

system hardware in these high reI iabIl i ty applIcatIons it has 

been necessary to Introduce fault tolerance techniques since the 

use of faul t prevention techniques alone dur ing the desIgn has 

not, in general, yielded the desired reliability performance. 

For computing hardware, the desired fault tolerance has been 

obtaIned by introducing hardware redundancy and/or software­

implemented hardware fault tolerance techniques. 

Since software is an essential component of computing 

systems, fault tolerance techniques, notably N-version pro­

gramming and recovery block procedures, have been proposed to 

detect and compensa te software design faul ts. Currently, care­

fully controlled experiments are being conducted in order to 

study the potential reliability improvement of fault tolerant 

software over conventional software. 

1.1 Study Objectives and Approach 

The major objective of our study is to Investigate the 

relevance of systems-based software-implemented hardware fault 

tolerance techniques in fault tolerant software technology. Over 

the last decade, several system theoretic fault detection isola-

- 1 -



tion, and compensation (FDIC) techniques have been developed for 

tolerating the effects of faults In hardware (digital, analog, 

electromechanical, hydraul ic, etc. components) based on fInd Ing 

an appropriate input/output functIonal model of the hardware 

block, and analyzing the consistency of the observed inputs and 

outputs for failures. The major aim of our study is to 

invest iga te the feasib i1 i ty 0 f us ing these systems-based FDIC 

techniques in developing faul t tolerant software, and extend ing 

them, whenever possible, to the domain of so ftware faul t tol­

erance. 

We have therefore undertaken a program to investigate, 

first, the functional modelling of software modules wIthin the 

domain of high level application programming, in particular, for 

real-time process control problems. We show that systems-based 

failure detection, isolation, and compensation (FDIC) methods can 

be extended to develop software error detection techniques based 

on these system models for software modules. In particular, we 

demonstrate through the use of several examples that these system 

theoretic FDIC techniques can be used to develop static and 

dynamic consistency checks which are sImpler to implement than 

acceptance tests based on software spec i fica tions. Our study 

also reveals that software error recovery can be integrated wIth 

software-implemented hardware fault tolerance within the frame­

work of signature analysis. 
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We follow this by showing that systems-based fallure com­

pensation technlques can be generalized to the domain of software 

fault tolerance in developing software error recovery procedures. 

In particular, the systems approach yields forward error recovery 

procedures which do not depend on an exact assessment of the 

software damage. We also find a solution to the recovery block 

state inltialization problem, for the case when the alternate 

block algorithm is represented by a linear dynamic system. Our 

study also reveals that an autoregressive moving average (ARMA) 

lmplementation of an algorithm is more advantageous to use in an 

alternate module than an equivalent state space lmplementation. 

We also examine the feasibillty of using software fault 

tolerance in flight software. In this and other real-time 

process control applications, we ldentify the maJor issues of 

concern: weak encapsulation due to memory and feedback, inexact 

voting and acceptance tests, closed-loop system and version 

stability, and preservation of functional performance. We lllus­

trate system and version instabilities and functional performance 

degradation that may occur in N-version programming applications 

to fllght software. In thlS study, we make a comparatlve 

analysis of N-version and recovery block technlques in the con-

text of generic blocks in flight software. The most often cited 

advantage in using fault tolerant software is the potential soft­

ware reliabillty gain. In this study, we give another reason for 

the introduction of software fault tolerance. In this regard, we 
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propose that software fault tolerance techniques offer the poten­

tial of raising functional performance to levels unattainable by 

conventional software methods. 

In summary, our study shows that systems based failure 

detection, isolatIon and compensation methods can be extended to 

the domain of software fault tolerance by developing system 

models for software modules. In particular, we demonstrate that 

systems-approach can yield software error detectIon techniques 

and software error recovery procedures wIth advantages over those 

based solely on software specIfications. Finally, we outline the 

potential problems that may arise due to an indiscrimInate use of 

fault tolerant software technIques in developing flIght software. 

1.2 Report Outline 

Chapter 2 contains an overview of the "software" and 

"software-implemented hardware" fault tolerance. WhIle the 

review of software faul t tolerance (Section 2.1) IS brief, the 

software implemented hardware fault tolerance techniques are 

descrIbed, in detail: see SectIon 2.2.1 for a descriptIon of the 

techniques, and Section 2.2.2 for a discussIon of the failure 

recovery algor i thms. Thi s chapter ends wi th Section 2.3 out­

lining the maJor differences between software and software­

implemented hardware fault tolerance areas. 

In Chapter 3, we discuss how to obtain system models for 

software modules (Section 3.1), and important attributes of 
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system models such as memory, feedback, and tIme invariance 

(S ec t Ion 3 • 2) • 

Chapter 4 contains our general iza tion of software Imple­

mented hardware fault detection techniques to the domain of 

software fault tolerance. In particular, static consIstency, 

dynamic consistency, and signature analysis based software error 

detection techniques are discussed In Sections 4.1-3. 

In Chapter 5, we outline the maJor issues of concern in 

software fault recovery, and present systems based solutions to 

forward error recovery (Section 5.1), and recovery block InItial­

ization (Sections 5.2-3) problems. 

In Chapter 6, we discuss the issues involved in applyIng 

so ftware fa ul t tol er ance techn i ques to fl igh t so ftware. In 

particular, stability issues in fault tolerant flight software 

(Section 6.1), preservation of functional performance (Section 

6.2), generic flight software blocks for software fault tolerance 

(Section 6.3), a comparative evaluation of N-version and recovery 

blocks (Section 6.4), the potential for performance improvement 

with fault tolerant flight software (Section 6.5), and adapt­

ability of software fault tolerance to existing conventional 

flight software (Section 6.6) are discussed. 

Conclusions and recommendations are presented in Chapter 7. 
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2. FAULT TOLERANT SYSTEMS OVERVIEW 

In this chapter, we present a brief overview of fault tol­

erance relevant to our study. Our d1Scussion is conf1ned to 

software and software-implemented system-theoretic hardware fault 

tolerance as def1ned below. 

Software fault tolerance 1S the set of techn1ques necessary 

to enable computing systems to tolerate faults 1n the des1gn and 

implementation of the software itself. Hence, our usage of the 

expression "software fault tolerance" is cons1stent with use 1n 

Anderson and Lee (p.250) 1n [1]. Moreover, we use the expression 

"fault tolerant software" to mean software constructed by uS1ng 

software faul t tolerance techniques. The other possible in ter­

preta tion of software faul t tolerance, tha t is, techniques for 

designing software to tolerate the effects of faults 1n the 

underlying hardware, will be termed "software-implemented hard­

ware fault tolerance". 

2.1 Software Fault Tolerance 

There are two main methods Wh1Ch have been proposed for 

fault tolerant software development. These are 

o recovery blocks 

oN-version programming 

In the recovery block method, [2]-[3] there are two or more 

verS10ns -- primary and alternates -- of a glven program block 

(module). A backup alternate program block 1S executed when the 
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correspond ing pr imary program block is deemed faul ty through an 

acceptance test. For instance, the primary module may be an 

efficient but incompletely validated program, whereas the alter­

nate block may be a less efficient but fairly well tested version 

of the same program. The acceptance test is performed by using 

the variables accessible to other modules, rather than variables 

which are local to that program module. We view this recovery 

block technique as the software analog of the classical stand-by 

redundancy approach used for hardware faul t tolerance in which 

the stand-by equipment is of a design similar to the primary, but 

obtaIned from a different manufacturer. 

In N-version programming [4], two or more functionally 

equivalent programs are independently generated from the same 

initial specIfIcations. The independence of programs is assured 

through the use of N different non- in teractIng software design 

groups assIgned to the programming effort. DissImilar algorithms 

and even different languages can be used to extend the indepen­

dence of each version. Thus, N-version programming yields soft­

ware which is markedly dissimilar to systems in which two or more 

Identical replications of a program are executed concurrently in 

physically distinct hardware, such as in the Space Shuttle 

Computer System [5], SIFT [6], and FTMP [7]. In N-version 

programming, N programs are executed concurrently and checked 

against each other by comparing a certaIn subset of the generated 

program state variables. Hence, N-version programming is an 
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adaptation of the fault tolerant duplex, triplex, etc. hardware 

redundancy approach to software generation, in which each redun­

dant hardware component IS an independently designed, but func­

tionally equivalent instrument, obtained from different manufac­

turers. 

It is also possible to use the recovery block method WI th 

N-version programming in a hybrid framework to exploit the In­

herent advantages of each approach [8]. 

As stated in [1], software fault tolerance princIples can be 

discussed in terms of the following four phases: 

o error detection 

o damage assessment 

o error recovery 

o fault treatment 

The first stage in providing software fault tolerance is to 

detect the effect of a software fault. In addition to uSIng 

internal interface checks in a module, software faults may be 

detected by acceptance tests applied to recovery blocks, and 

voting checks applied to N-version programming. Acceptance tests 

are usually performed at the output of an individual software 

module to check the reasonableness of the resul ts computed by 

each module. In contrast, votIng checks compare the results 

across the N computed verSIons to identify software faults. 

Damage assessment Involves finding the extent of the 

detected fault's spread within the system. This comes about 
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since there IS, in general, a time delay between the occurrence 

of a faul t, and the detection of its effects on the tested out­

puts. Thi s issue is espec Ially importan t in appl ica tions 0 f a 

probabilistic nature involving, for example, programs performing 

floating point arithmetic on noisy data, as contrasted with 

applications of a deterministic nature involving simple integer 

arithmetic or character strings manipulation. 

Following the detection of a software fault and damage 

assessment, error recovery techniques are used to restore the 

erroneous system state back to an error-free-state so that normal 

system operation can contInue. 

mechani sms : 

o backward error recovery 

o forward error recovery 

There are two such recovery 

In backward error recovery, the computational state is reset 

to an earlier (presumably known to be error-free) state. Back­

ward error recovery techniques are usually assocIated with 

recovery block methods which, together with the use of a recovery 

cache, provide a means of storing previous computational states. 

In forward error recovery, the current sta te is changed to com­

pensate for the effects of the detected software fault. Forward 

error recovery techniques are useful in real-time appl ications 

where backward error recovery is generally not feaSIble. 

Fault treatment in recovery blocks consists of using the 

alternate module for executIon. This is usually done temporarily 
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so tha t the pr imary block is used on subsequent execut ions. In 

N-version programm1ng, faul t trea tment consists of ignor ing the 

computations of versions that are determined to be faulty. One 

ser ious problem in N-version programming, espec1ally in blocks 

involving programs with floating point arithmetic and feedback, 

is the possibility of unselected versions d1verg1ng from one 

another, thus reducing system fault tolerance. 

2.2 Software Implemented Hardware Fault Tolerance 

Here, we give an overview of the software-1mplemented 

hardware fault tolerance techniques for general dynamic systems. 

The methods we discuss are drawn largely from control, esti­

mat1on, and communication theories, as well as from the f1eld of 

mathematical statistics. Fault tolerance for dynamic phys1cal 

systems has been traditionally achieved through the use of hard­

ware redundancy (stand-by, duplex, triplex, etc.) Over the last 

decade, however, qui te a number of faul t tolerance techn1ques 

[9]- [13] have been developed in which hardware redundancy has 

been replaced or augmented with analytic redundancy wh1ch uses a 

functional model of the physical system under cons1derat1on. 

In most of the system-theoretic fault tolerance methods, an 

estimator based on the causal functional model of the phys1cal 

dynamic system (depicted 1n Figure 2.1) is first constructed 1n 

software. This software module 1S then driven by the actual 

inputs and outputs of the physical system to recursively con-
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Figure 2.1: Software Implemented Hardware Fault Tolerant System 
Structure. 
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struct estimates for the physical system outputs. These model 

estimates are then differenced with the actual system outputs to 

form a resIdual sequence over time. Inconsistency (nonzero mean, 

dev ia t ion from theoretically computed sta ti st ics, etc.) In this 

residual sequence is then analyzed to detect and Isolate faul ts 

in the inputs, outputs, and components of the physical system. 

The various system-theoretic methods differ mainly In the way the 

system model is constructed, and In the manner the output estI­

mates are computed. 

The systems approach to faIlure detection and isolatIon 

(FDI) problems in dynamic systems is based on using the analytic 

relationships between various sensor outputs, derived from a 

knowledge of the underlying system dynamics. Analytic redundancy 

can be either in the form of algebraic redundancy -- the Instan­

taneous relationship between sensor outputs, or dynamIC redun­

dancy -- the relationship between the time hIstories of sensor 

outputs. The term "analytic redundancy" was coined in the early 

seventies to differentiate this technique from the traditional 

hardware redundancy approach in which the outputs of like sensors 

are compared for fa il ure detection. Analyt ic red undancy comes 

about from the common estimatIon capabIlity of various sensor 

groups. Sensor FDI algorithms make use of this inherent analytIc 

redundancy by cons ider ing dIfferent sensor subsets. Hence, the 

analytic redundancy approach offers the capabil i ty of compar ing 

dissimilar instrument outputs for failure detection and, thus, 
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allows the design of reliable systems with reduced hardware 

duplication. 

Analytic redundancy research culminated ln the development 

of aircraft sensor fault tolerant digital flight control systems, 

such as the USAF DIGITAC A-7 and the NASA/LRC F8-DFBW appli­

cations [14]-[15], engine sensor failure detection systems such 

as the NASA/LeRC FIOO appl ica tion [16], strap down nav igation 

systems wi th skewed sensor arrays such as the NASA/LRC RSDIMU 

[17], and, more recently, sensor fault tolerant integrated fllght 

control and navigation systems, such as the NASA/LRC TCV Research 

Aircraft application [18]-[20]. 

2.2.1 Software Implemented Hardware Fault Tolerance Techniques 

General fallure detection and isolation methods for dynamic 

systems can be divided into the following groups: 

o Voting Methods 

o Parity Techniques 

o Fallure Sensitive Filters 

o Multiple Model Methods 

o Innovations Slgnature Analysis 

Voting Methods 

Voting methods are comprised of mid-value select, and major­

ity voting techniques. SIFT [6] is an example of a software 

implemented hardware faul t tolerance voting technique developed 

for computing hardware. 
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Parity Techniques 

Parity methods [21] encompass the standard votIng techniques 

for systems with parallel hardware redundancy and their general-

i za tlons to systems wi th functIonal red undancy. Referring to 

Figure 2.2, which identi f ies the inputs, internal s ta tes, and 

... - -.... Xl(k) Xn(k) 
, 

· ~ ••• -· · · · · .. ... - -
11\ 1\ 1\ . . . 

Figure 2.2: Causal Dynamic System Model 
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outputs of the software model in Figure 2.1, these techniques 

correspond to looking at only the output measurements, 

{Yl(.}' ••• 'Ym(.}}' to determine the failure modes. For instance, 

the standard voting techniques would require that each measure-

ment, y. (.), has at least duplex redundancy for faIlure detection 
1 

and triplex redundancy for failure isolation. Functional redun-

dancy comes about when the measurements are related through the 

observed variables. 

For instance, four or more non-coplanar Instruments mea-

suring a three dimensional state variable (such as acceleration) 

is an example of functional redundancy. In the parity approach, 

a least squares state estimator using all of the measurements is 

first constructed in software. Next, a predictor is constructed 

similarly in software to compute a prediction for each of the 

measurements on the basis of the estimate. Finally, the differ-

ence between the actual measurements and those predicted by the 

software model are analyzed for faults. Both parity techniques, 

using either parallel or functional redundancy, utilize the 

static analytic relationships (as opposed to dynamic), which 

exist between the sensed variables. For instance, parallel 

votIng techniques assume that the observations measure precIsely 

the same system output variable. Similarly, parIty methods based 

on functional redundancy assume that the measurements are 

different transformations of precisely the same system variable. 

However, none of these techniques use the dynamic relatIonships 

which dictate how the measured variables evolve in time. 
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A recent generalization of the parity approach is proposed 

in [22], for general dynamic systems with a time-domain state­

space descr ipt ion. Thi s general I zed par i ty approach uses the 

temporal analytic relationships which exist between the measured 

outputs and inputs in Figure 2.2. Therefore, this method is 

applicable to systems without parallel or functional redundancy. 

Failure Sensitive Filters 

The faIlure sensitive filter approach was developed by Beard 

in [23]. In this approach, a filter is first constructed in 

software using a time-domain state-space model of a lInear time­

invariant dynamic system. The gaIn parameters of thIS filter are 

chosen such that a particular failure mode results In a measure­

ment resIdual sequence which remaIns fIxed in a single directIon 

or plane. In problems where the flexibIlity exists, the remaln-

ing gaIn parameters can be chosen to improve the convergence rate 

of the residual sequence to the desired direction. 

While the failure sensitive approach has brought geometric 

insight to the failure detection problems, it has not found 

widespread use in applications due to its limitations to tlme­

invariant systems. SimIlarly, jump process formulations [10] 

focus on steady state effects of a particular faIlure on the 

measurement resIdual sequence of a time-invar iant fil ter. The 

failure diagnosis is achieved by implementing the recurSIve 

relationship for the a posteriori probabIlity of the faIlure 

using the measurement residual. However, Jump process for-
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mulatlons suffer from the same basic limitatIons associated with 

failure sensitive filters. 

Multiple Model Methods 

Multiple model methods are based on constructing a different 

software model for each failure mode as done by Montgomery, 

Caglayan, and Price in [24], [25], and by ~Illsky, Deyst and 

Cr a w ford i n [ 2 6 ] • In this approach, for each failure mode, 

several software models are constructed, each modelling the 

effect of a particular postulated failure. For each such model, 

a measurement residual sequence is then generated by implementing 

the corresponding state estimator in software. For instance, 

referring to Figure 2.2, this approach would require the software 

implementation of a bank of state estimators, each of which would 

use a different m+p-l measurement combination from the set 

{u,(.), ••• ,Up(.)'Yl(.)' ••• 'Ym(.)}. Therefore, a bank of measure­

ment residual sequences is available for analysis in determining 

the most 1 i kely failure mode. Sta ti stical hypo thesi s test ing 

procedures are then employed in reaching a faIlure decision. 

Although the multiple model method would, in general, yield the 

best failure detection performance for the widest class of 

failures, computational requirements of this brute force approach 

preclude its use in most practical applicatIons. 

Another class of failure detection technIques (which can 

also be classified under the multiple model method) would be 

those using filter assemblies [14] resulting from a different 
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grouping of monitored measurements than that employed In the 

mul tlple model method. These methods are also based on a tlme-

domain state-space description of the system. In this approach, 

the measurement of a given output is predicted by using some or 

all of the other measurements except the one which IS being 

estima ted. Next, measurement residuals are formed by taking the 

dIfference between the actual measurements and the analytIcally 

constructed measurement pred ictions. Finally, standard vot ing 

techniques are employed to determine faults from appropriate 

truth tables. 

Recent multiple model applications have been mostly ln 

multitarget tracking problems [27] where the availability of 

large scale digital computers renders the bank of filters 

sol ut ion feas Ible. The rela tionshlp between the mul tiple model 

and likelihood ratio methods has been InvestIgated by Caglayan in 

[31]. In this work, it is shown that the multiple model and GLR 

method sol ut ions are equi valen t for add it i ve bIas type sensor 

failure models. 

Innovations Signature Analysis 

The last group of failure detection methods involves the 

monitoring of the effects of a failure on the measurement 

residual sequence of a single filter corresponding to the normal 

operation of the system [28]- [31]. These methods use a tlme­

domain sta te-space model of the unfailed system dynamics. In 

this method, a filter, based on the assumption of no failures, is 
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first implemented in software to estimate the system states. 

These estimates are then used to predict the measurements and to 

form the residual sequence. Statistical tests are then performed 

on the residuals of this filter to isolate failures. Prior 

statistical and structural knowledge of the effects (slgnatures) 

of such failures on the measurement residuals are then used to 

detect and isolate faults. 

Innovations signature analysis techniques include performlng 

statistical tests on measurement innovations as suggested by 

Mehra and Peschon in [32], and the generalized llkelihood ratio 

(GLR) method which was originated by McAulay and Denlinger in 

[28] and formalized by Willsky and Jones in [29]. 

One of the developments in the signature analysis approach 

has been the modified GLR algorithm proposed by Basseville and 

Benveniste in [13]. In this approach, the GLR is constructed to 

test whether the failure level is greater than or less than an a 

priori fixed minimum amplitude. 

been the cumulative sum (CUSUM) 

Another recent development has 

type test proposed by Segen and 

Sanderson [33] for testing the change in statistlcal properties 

of a stochastic sequence. This test, which is related to 

Hinkley's mean shift testing results [13], is based on cumulative 

sums of squares of the innovations and has advantages in terms of 

robustness wlth respect to distributlons after the time of 

failure. 
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Finally, recent work by Caglayan and Lancraft [18]-[20], has 

concentrated on extending the signature analysis methods to 

nonlinear dynamic systems. The sensor fault tolerant system 

developed in [18]-[20] can be viewed as a generalization of the 

GLR method to nonlinear systems. The major contribution of this 

effort has been the development of expressions for the linearized 

effects of bias type sensor failures on the measurement innov­

ations in a nonlinear filtering framework. A second important 

contribution has been the compensation of "normal operating" 

sensor biases in the no-fail filter and investigation of the 

interaction between the normal operating bias estimates and the 

bias faIlure level estimates of the corresponding detectors. 

2.2.2 Failure Recovery in Software-Implemented Hardware Faul t 

Tolerance 

Fault tolerant systems, in which analytic faIlure detection 

and isolation (FOI) techniques are used on-line to identify 

hardware failures, usually require some level of compensation to 

remove the accumulated effects of the detected failure on the 

system model. 

In these software-implemented hardware fault tolerant sys­

tems, system failures must propagate through the software model 

of the physical plant (until a significant residual signature is 

generated) to get detected. Therefore, the software model must 

be reinitialized to remove the accumulated effects of the 
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detected failure on the model. In addition, the software model 

must be restructured after the isolat10n of a failure, to account 

for the loss of a system input or output, or a change in plant 

dynamics due to an internal component failure. 

Failure recovery procedures for system-theoretic hardware 

fault tolerant systems can be grouped as follows [27]: 

o Reprocess Measurements 

o Reinitialize State Estimate and Uncertainty 

o Reset State Est1mate and Increment Uncerta1nty 

o Increment Uncertainty 

o Probabilistic Weighting 

We d1SCUSS these procedures in the following paragraphs. 

Reprocess Measurements: If the exact time of failure can be 

estimated, and if the measurements from failure onset time are 

saved, then the software model can be restructured and then rerun 

with a measurement set containing only the healthy measurements. 

However, this approach 1S not feasible in most appl1cations, 

since the exact time of failure is usually not estimated because 

of computational constraints. Moreover, even if a mov1ng window 

of measurements were to be saved, it is possible that the repro­

cess1ng of the measurements could not be done in real time. This 

failure recovery method is analogous to the backward error 

recovery procedure in software fault tolerance. 

Reinitialize State Estimate and Uncertainty: Here, the 

software model state covar1ance parameters are set to the values 
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originally specified by the initial conditions. The state estl­

rna te can poss ibly be re in 1 tl al i zed by followi ng the procedure 

employed in selecting the plant state estimate initial condi­

tions. Naturally, this approach would generate tranSlents 

associated with the settling of the filter gains, in a manner 

similar to that encountered during system initiallzation. 

Reset State Estimate and Increment Uncertainty: If the 

failure levels are estimated by the software model, then the 

state estimate can be reset following the detection and isolation 

of a failure. The uncertainty of the state estimate (due to 

uncertalnty in failure time and/or level) can be increased by 

increment ing the assoc ia ted covar i ance in a manner consi stent 

with the specifics of the detected failure. However, In most 

practical applications, the failure onset time cannot be 

accurately estimated. Furthermore, in some applications, a 

sudden change in the state estimates would not be desirable due 

to the tranSlent effects produced, for instance, by a control law 

using the state estimates. This failure recovery method is 

analogous to forward error recovery in software fault tolerance. 

Increment Uncertainty: In applications where a sudden 

change in the estimates is not desired, or failure onset time 

cannot be accurately determined, the software model can be 

reinitialized by incrementing only the state estimation error 

covariance by an appropriate amount, following the lsolation of a 

failure. In this manner, the state estimation error in the 
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software model can be gradually compensa ted. The appropr ia te 

covariance to be used is the conditional covariance of the no­

fail filter, conditioned on the given observations under the 

dec id ed fa i 1 ur e mod e [27]. The accumula ted e ff ect s 0 f the 

failure on the software model state are not lmmedlately taken out 

with this approach; however, the additional uncertainty added to 

the state estimate, by incrementing the error covariance, gradu­

ally compensates for the error accumulation caused by the 

detected failure. 

Probabilistic Weighting: Here, failure level estimates are 

incorporated into the software model state by weighting the a 

posteriori probabillties. Instead of the hard sWltchlng produced 

by a decision rule, this approach provldes 

between failure modes. 

soft sWltching 

2.3 Software-Implemented Hardware vs. Software Fault Tolerance 

Systems-based fault tolerance methods have been used to 

reduce hardware redundancy in high reliability applicatlons. By 

using these techniques, it has been possible to compare dissim­

ilar instruments (e.g., an accelerometer with an airspeed indl­

cator) as well. Since software implementation is indistinguish­

able from a hardware solution, from a functional input/output 

point of view, these model-based failure detection techniques are 

appl icable to developing faul t toler an t appl ica tion so ftware as 

well. 
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Al though systems-based faul t tolerance methods have been 

Implemented in software, the Issue of faults In the implemented 

software has been largely Ignored in system-theoretIc fault 

tolerance research. In essence, it has been ass urned tha t the 

software associated with implementing the analytic redundancy has 

perfect reliability. 

Another aspect of fault tolerant software that differen­

tia tes it from the system-theoretic faul t tolerant systems work 

is the functional modelling aspect. In the system-theoretic 

approach, finding the appropriate reduced order dynamic model for 

the physical system, and handlIng of the various sensor noises is 

one of the most critical issues involved. In contrast, the 

functional models in faul t tolerant software are better defined 

(via specifications) since they do not involve the modelling of 

physical processes. However, the noises associated with the 

inaccuracies in software functional models are usually due to 

truncations used in algorithms and finite precision arithmetic. 
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3. SYSTEM MODELS FOR SOFTWARE 

To apply software-implemented hardware fault tolerance 

technlques to software fault tolerance, it is necessary to obtain 

an input/output functional system model of the software module. 

In this chapter, we discuss how to obtain such system models, and 

their relation to the software specification process. Examln­

ation of Figure 2.1 depicting a general software implemented 

hardware faul t tolerant system structure suggests that if the 

"Software Model for Hardware" block is replaced by a system model 

of the control software, then systems-based FDIC technlques can 

be extended to software fault tolerance as well. Figure 3.1 

shows a general block diagram for such a systems approach to 

software fault tolerance. Referring to this figure, the inputs 

and outputs of a monitored software module drive a system model 

for that software module. This system model generates a set of 

residuals which is the difference between the observed and 

predicted module behaviour. These residuals are, in turn, 

analyzed by a decision logic whose outputs are then used by the 

driver logic program to enable error recovery procedures. In the 

next sectlon, we give a formal definition for system models of 

software modules. 

3.1 System Models for Software Modules 

A system model for a software module is a transformation 

relating the module's inputs to its outputs. In a functional 
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analysis framework (referring back to FIgure 2.2), a trans­

formation, T, is a single-valued function mapping each element in 

the input set into a single element in the output set. The set 

of inputs and outputs are called, respectively, the domain, D, 

and range, R, of T. Formally, we write 

T:D - R with y = T(u) (3.1) 

for all u in D and y in R. The domain and range of the trans-

formation in Figure 2.2 may be considered to be the set of all 

RP and Rm valued sequences respectively. An Rm valued sequence 

is, by definition, a transformation mapping the set of natural 

numbers into the m-dimensional Euclidean space. 

Two important attributes of transformations are the proper­

ties of being "onto" and "one-to-one". Referring to Figure 2.2, 

if T maps D into all of R, i.e. for each r in R there exists a d 

in 0 such that r=T(d), then T is said to map 0 onto R. On the 

other hand, if the mapping T is such that distinct inputs are 

mapped to distinct images, T is said to be one-to-one. One 

immediate result is that T is invertible (i.e. the inverse of T 

is also a transformation) if and only if T is one-to-one and 

onto. For example, in Figure 2.2, the transformation is not onto 

the set of all Rm valued sequences since, by causality, the 

present output is a function of only past and present inputs. We 

shall say more about this subject in the section on static 

consistency checks (Section 4.1). 
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Ideally, a system model for a given software module should 

be computable from its specification. However, more often than 

not, the specification is not preclse enough to completely define 

such a model. For example, a specification can be satisfled by 

implementing various algorithms with different accuraCles, If the 

accuracy is not expllcitly given in the speclfication. Consider, 

for instance, a software block for computing the inverse of real 

nonsingular square matrices. The specification for this module 

can be written as: flnd the transformatlon, f, mapping the set 

of all real nonsingular matrices with a fixed but arbitrary order 

onto itself such that for each input matrix A of order n: 

B = f (A) with AB = BA = I (3.2 ) 

where I is the identity matrix of order n. (ThlS transformatlon 

is an example of one-to-one and onto where the inverse transfor­

mation is identical to f). 

Al though the specificatlon above is an acceptable one, it 

would not be sufficient to use as a system model. For instance, 

the desired accuracy of the implemented transformation is not 

mentioned in the specificatlon. The constraint defined by (3.2) 

would not be exactly satlsfied, because of the requirement to use 

finite precision arithmetic, and of the inherent inaccuracy of 

the algorithm used. For example, the implemented matrix inver-

sion routine could be based on Gaussian el imina tlon or Gram-

Schmid t orthogonal i za tion. For ei ther of these algor i thms, the 

lmplemented routine could use scaling and plvotlng, or not. Each 
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of these decisions would affect the accuracy of the resul ting 

computed inverse. Hence, an appropriate system model of the 

software inverse module could be of the form 

B = f (A) with I IAB-I II < s (3.3) 

where 11.11 1S a specific matrix norm such as maximum row or 

column sum and s is a threshold which may be function of the 

input matrix elements, and the order of the input matrix. This 

issue of software module functional performance will be important 

in the design of acceptance tests and voting checks. 

3.2 Static and Dynamic Software System Models 

In system theory, it is important to differentiate between 

static and dynamic systems. Referr ing to Figure 2.2 again, and 

defIning the p dimensional input vector u(k) = [u l (k) , 

u 2 (k) ••• u p (k)] and output vector y(k)=[Yl(k), Y2(k) ••• Ym(k)], a 

causal dynamic model in its most general form, will be glven by 

y(k)=f(u (l),u (2), ••• ,u(k), 

y(1),y(2), ••• ,y(k-l),w(l), ••• ,w(k) ,k), k=l,2 •••• (3. 4 ) 

where the noi se sequence, w (k), is a sequence of r-d 1mensional 

vector random variables with known statistics. Thi s noi se 

sequence w(k), in the software model could be used, for instance, 

to model the inaccuracy in the input sequence due to both finite 

precision representation and inaccuracies introduced by the 

algorithm used for generating the input. The no ise sequence, 

w(k), could also be used to represent the errors introduced by 
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the algorithm implemented in the module itself, as well as the 

errors ar1sing from 1tS implementation in fin1te precis10n 

arithmetic. 

W1thin the framework of this system model, we can consider a 

number of model attributes ar1sing from the properties of the 

transformation, f, including: 

o memory 

o feedback 

o time-invar1ance 

The model of (3.4) provides for memory since the current 

output can be a function of the previous inputs, 

{u(l), ••• ,u(k-l)}, and outputs, {y(l), ••• ,y(k-l)}. If the 

transformat1on, f, has no memory, then the system model 1S sa1d 

to be static. For example, the matrix inversion example cons1d­

ered earlier would have a static system model. If the current 

1nput, u(k), 1S a function of the current and prev10us outputs, 

{y(I),y(2) ••• , y(k-l)}, the system model above is said to have 

feedback. This attribute is important in determining the 

stability properties of the implemented software in the presence 

of accumulated roundoff errors, for example, and 1S d1scussed 

later. Finally, the dependence of the transformation on the time 

index k, results in a time-varying system model. If there is no 

such dependence, the system model is said to be time-invar1ant. 

The system model described by (3.4) is called an auto 

regressive mov1ng average (ARMA) model. In system theoretic 
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applIcations, algorithms can also be Implemented using an equIv-

alent sta te space model. Referring to Figure 2.2 and denoting 

the internal n dimensional, state vector by x(k)=[x
l 

(k) ••• xn(k)], 

the equivalent sta te space model, if it exists, would be given 

by: 

x(k) = f(x(k-l), u(k-1), w(k-l), k) 

y(k) = h(x(k), u(k), w(k), k) 

(3. 5) 

(3.6) 

where the transformations f and h define the sta te space system 

model. For Instance, for a time-invariant model, there would no 

dependence on k in either f or h. 

We can formally write the transformations f and h: 

f:RnxRPxRrxN _ Rn 

h:RnxRPxRrxN _ Rm 

(3. 7) 

(3.8) 

where N is the set of natural numbers representing tIme. The 

selection of an ARMA state space model for the implementation of 

an algorithm in a software module is relevant in the recovery 

block state initialization problem which will be discussed in 

Chapter 5. 
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4. SYSTEMS-BASED SOFTWARE FAULT DETECTION TECHNIQUES 

In this chapter, we outline how system-theoretic software­

implemented hardware fault tolerance methods can be used to 

develop techniques for the detection of software faul ts. The 

results wlll mostly be applicable to the design of acceptance 

tests for recovery blocks, and voting checks for N-version 

programming. We will assume that a dynamic system model of the 

software module in the form detailed in the previous chapter has 

already been derived. 

The complexity of this system model will, of course, deter­

mine to a great extent the complexity of the fallure detection 

logic. For instance, in a redundancy management software module 

for a skewed sensor array, where software-implemented failure 

detection and lsolation (FDI) logic is used to reduce hardware 

redundancy, it is mandatory that the additional software develop­

ment and implementation cost be lower than the cost of the re­

placed sensor. Similarly, in fault tolerant software, it is 

critical to have the complexity of the failure detection software 

be substantially less than that of the software module being 

tested. This requirement is mainly due to the need to assure 

that the test module itself is free of software faults [1]. 

In system-theoretic software-implemented hardware fault 

tolerance, there are a number of methods for reducing the com­

plexity of the failure detection logic; these include: 
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o reduced-order modelling 

o choice of an FOI technique 

In software implemented hardware fault tolerance, the order 

of the system model of the physical plant has a very significant 

lmpact on the complexity of the detection logic. For instance, a 

nonl inear, one hundred sta te, dynamic descr iption (referr lng to 

Fig 2.2, n = 100) of an aircraft engine can be modelled by a 

fourth order linear dynamic model for the purpose of sensor 

failure detection design. Likewise,in fault tolerant software, a 

simple and appropriate description of the module algorithm may be 

quite sufficient for the purpose of designing the failure detec­

tion logic. For example, consider a software module performing a 

fourth-order Runge-Kutta integration of angular body rates to 

generate vehicle attitudes. The failure detectlon logic could be 

based on a simple rectangular integration model of the actual 

high-order integration process. 

The choice of the failure detection and isolation (FOI) 

algorithm also has an impact on the complexity of the resulting 

detection log ic. In software-lmplemented hardware faul t toler-

ance, multiple model methods result in the highest detection 

log ic compl ex i ty • When failure sensitive filter and signature 

analysis methods are employed, complexity is reduced, and when 

parity techniques are used, the simplest detection logics result. 

In the next sections, we di scuss how the var ious system­

theoretic techniques can be used to design failure detection 

mechanisms for software faults. 
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4.1 Statlc Consistency Tests 

Consistency analysis is an extension of the parity methods 

discussed in Chapter 2. These system-theoretic fault tolerance 

techniques will be extended to the design of acceptance tests 

employed in fault tolerant software. We begln our discussion of 

how this can be accomplished by first considering static consis­

tency. 

Static consistency relations are based on the static redun­

dancy arlsing from a knowledge of the transformatlon which 

relates the internal program states of a glven software module to 

the inputs and outputs of that program block, at a given instant 

of the computation cycle. Static redundancy comes about when two 

or more module outputs are related to each other through the 

algorithm used in the module. We describe thi s sta tlC consl s-

tency concept by first considering the following examples. 

First, consider the example in Section 3.1, invo1vlng a 

subrout ine prov id ing an ord inary rna tr ix invers ion for real non­

singular square matrices. In this case, the system model 

description of the module would directly provide the necessary 

consistency check: 

I lAB - I II < s (4. 1) 

where A is the input matrlx and B is the computed output matrix. 

Note that the effort involved in the programming of the 

consistency relationship (matrix multip1icatlon, subtractlon, and 
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eval ua tion of a rna tr ix norm) would be less than tha t of prog-

ramming another matrix inversion module for checking. 

For another example of a static consistency check, conslder 

a subroutlne for computing the eigenvalues of real square 

matr ices. In thl s case, the so ftware spec ifica tion would be to 

compute n complex numbers such that 

det (A - A.I) = 0 
1 

for each real square matrix A of order n. 

(4. 2) 

A system model for 

this module could be defined by the following transformation f: 

(4.3) 

such that for each A in Rnxn, f:R nxn _Cn maps A into A, in 

accordance with 

A = f (A) + w with det(A-A.I)=O i=l, •• ,n 
1 

(4. 4 ) 

where w is a zero mean vector with a specified variance depending 

on the algorithm used in computing the eigenvalue (Power, Jacobi 

etc.), the condition number of the input matrix A, and the preci-

sion of the computing hardware. 

Consider an acceptance test based on finding the inverse of 

the impl emen ted a 19 or i thm. Referring to our discusslon in 

Section 3.2, the transformation in (4.4) is not one-to-one. 

That is, there are numerous matrices mapped into a single set of 

eigenvalues. Hence, there is not a functional inverse for thiS 

example. However, the inverse of the associated set function 

[34] can be used instead. In this case, the question becomes one 

of determining whether or not the input matrix A is in the 
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inverse set of {Al, ••• ,An }. This problem is equivalent to prov­

ing the existence or nonexistence of a nonsingular matrix, T, 

such that 

A = TJ(A) T-l (4.5) 

where J is a Jordan canonical form [35] which is a function of 

the eigenvalues of A. The complexity in solving (4.5) is at a 

level similar to that of the original eigenvalue problem, how-

ever. Hence, the inversion approach does not, for this example, 

yield a feaslble acceptance test. 

Another possible acceptance test can be derived from a 

direct evaluation of the system model (or the software specifl-

cation) whlch would be given by: 

Idet(A-\I) 1 <s l=l, •• ,n (4.6) 

where the scalar s is a threshold reflecting the inaccuracy of 

the implemented matrix inversion algorithm. Note that the evalu-

ation of the determlnant in (4.6) above can be quite lnvolved, 

especially for large order matrices. 

However, we can develop simpler consistency checks based on 

the properties of the implemented transformation. For instance, 

one such consistency check is glven by the following 

Itrace(A) - L\I < s (4.7) 

where the threshold is a function of the errors in the computed 

eigenvalues and trace function. Note that this consistency check 

is much simpler than either finding a solution to the lnversion 

problem of (4.5), or evaluatlng the satisfactlon of the system 
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model constraint of (4.4). Moreover, the threshold selection for 

(4.7) is simpler than for (4.6). 

As a final example of a static consistency check, consider a 

software module performing the transformation of a 3 dimensional 

vector, x, (represent1ng a physical variable such as accelerat10n 

or angular velocity) from a vehicle body-axis coord1nate frame 

to, say, a local level navigation frame. 

specification would be given by 

y = Tx 

where the 3 x 3 transformation rna tr ix is given 

c8cr/J sq,s8cr/J-cq,sr/J sq,s8cr/J+sq,sr/J 

T (,p, 8, r/J) = c8sr/J sq,s8sr/J+cq,cr/J cq,s 8 sr/J- sq,c r/J 

In this case, the 

(4. 8 ) 

by: 

-s8 sq,c8 cq,c8 (4.9) 

where q,,8,r/J are the Euler angles representing the aircraft's 

attitude with respect to the local nav1gati~n frame, and c,s are 

abbreviations for cosine and sine functions respectively. For 

this problem, a consistency check based on the system specifI­

cation constraint would be just as complex as the algorithm 

itself. However, we can develop a simpler consistency check 

based on the property that a transformation between two ortho­

gonal reference frames does not change the length of a vector, so 

that, accounting for computational inaccuracies, we would require 

for consistency that 

Iy'y - XIX 1< s (4.10) 

where x' is the transpose of the vector x, and XIX, 1S, of 

course, the length squared of x, and s is an appropriate thres-
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hold value for acceptance. Again, the consistency check is much 

simpler to implement than a brute force approach based dIrectly 

on the system specification. 

There are quite a number of other known analytic relation­

ships (available in function/ matrix/ systems theory literature) 

which can be used for consistency checks. Our point is that 

these consistency check candidates are already developed, and are 

not currently exploited in either current state-of-the-art soft­

ware development packages such as LINPACK [36] or EISPACK [37] 

nor in real-time math libraries supporting, for instance, flight 

control software applications. 

A library of well-tested consi stency checks, such as the 

ones descrIbed above, can be developed for specific applicatIons. 

This would reduce the programming effort involved In getting the 

required consistency checks, and allow for significant program­

ming savings arising from the common consistency relations 

applicable to different program modules. 

4.2 Dynamic Consistency 

Dynamic consistency is based on temporal redundancy arising 

from the knowledge of the rules governing the time evolution of 

the inputs and outputs of a functional module. In the context of 

fault tolerant software considered here, dynamic consistency 

relations can be similarly obtained by uSIng an appropriate 

dynamic system model for the program module. For instance, if 
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the model of the program module can be descr1bed by a linear 

(ARMA) autoregressive moving average (i.e., current module output 

is a finite linear combination of past inputs and outputs), then 

the corresponding consistency relations can be obtained using 

standard linear system theory concepts. Again, the practical 

requirement would be to obtain (through approximations, if 

necessary) consistency relations which require substantially less 

programming effort to implement than the actual code of the 

program module itself. 

We can illustrate the dynamic consistency concept wi th a 

basic integration routine. The spec1fication for the problem 1S 

to simulate, in a digital computer, the behav10r of a physical 

system descr1bed by the different1al equation 

~(t) = f(x(t),u(t),t) (4.11) 

Referring to Figure 2.1, u is the input and x is the internal 

state vector of the software module. The output of the module is 

the computed state x, and f is an arbitrary function of the 

variables x, u, and t (A suitable sampl1ng mechanism on u is 

implicitly assumed) • 

Suppose that the software module for the specification above 

is implemented using a fourth-order Runge-Kutta integration 

routine which requires the evaluation of the derivative expres­

sion (4.11) at four adJacent points. Now, to derive a dynam1c 

consistency check we can use a simpler system model for the 

software block, such as 
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x(k+l) = x(k) + T f(x(k),u(k),k) + w(k) (4. 12) 

where k represents t k , T is the samplIng interval, and w(k) IS a 

zero-mean sequence of random vectors representIng the expected 

error of this model in simulating the behavior of the Implemented 

software module (which, in turn, is sImulatIng the behavIor of 

the system defined by (4.11». Based on our system model of 

(4.12), a dynamic consistency check is given by the following: 

Ix(k+l) - x(k) - T f(x(k) ,u(k) ,k) I < s (4.13 ) 

A generalization of this dynamic consistency approach to linear 

dynamic systems descr ibed by the sta te space model, ill ustra ted 

in Figure 2.2, and specified by: 

x(k+l) = A x(k) + Bu(k) + w(k) 

y(k+l) = C x(k+l) + v(k+l) 

is gIven in Appendix A. 

(4.14) 

(4.15 ) 

While the technical details presented in the Appendix are 

involved, we would like to stress that the system theoretIc 

approach outlined provides a procedure for generatIng a dynamic 

consistency check for any software module algorithm that can be 

approximated by (4.14)-(4.15). This IS in contrast to the statIc 

consistency check which must rely on known (problem specific) 

analytic relationships from the literature. We will now give an 

example utilizing the results obtained in Appendix A. 

Consider the software specification for an aircraft sta te 

estimator within the coverage of a navigation aid. In thi s 

problem, the software is required to provide estimates for the 

vehicle states satisfying 
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x(t) = u(t) + w(t) (4.16 ) 

where x is the three dimensional aircraft position vector and w 

is a random process representing gust inputs into the aircraft, 

and u is the measured acceleration inputs. The estimator is 

asked to provide estimates for the vehicle states using the 

inputs u, and the measurements given by 

y(t) = h(x(t» + v(t) (4.17) 

where h is a nonlinear transformation relating states to the 

navigation aid measurements, and v is a random process represen-

ting the sensor noise. 

Suppose that an application software module, on the order of 

a thousand lines of code, and implementing a nonlinear filter 

[20], has been written for this problem. This nonlinear fIlter 
A 

would provide the sequences for state estimates, x(k), and, the 

measurement predictions, y(k). 

Consider now the problem of obtaining a system model for 

this estimator software block In order to obtain an acceptance 

test. Denoting this model's state representing the software 

block's estimate by x , we can use the following linear model 
m 

xm(k+l) = xm(k) + Txm(k) 

xm(k+l) = xm(k) + Tu(k) + wm(k) 

to develop the acceptance tests. 

(4.18) 

(4.19) 

In (4.18) above, x (k) and m 

xm(k) represent available outputs of the software block repre­

senting the estimated position and velocity vectors, and u is the 

input into the software module. Eqns. (4.18-19) represent the 

- 41 -



simplest linear model that can be used for this software module. 

Other linear models, for example, linear complementary filter 

models [18] are also possible. We wi 11 now apply the resul ts 

obtained in Appendix A to find an acceptance test for this 

example. 

The results of Appendix A provide a means for finding a 

dynamic consistency relation involving any selected subset of 

inputs and outputs of a software module. For instance, in order 

to find a dynamic consistency relation involving the input, u, 

and output, xm' in the example considered, we let (using the 

notation in Appendix A): 

A = [: :] B =[:] 
In order to have dynamic redundancy, we need to consider at 

least a sequence of three outputs so that the observability 

matrix would be gIven by: 

1 0 

C (3) = 1 T 

1 2T 

Carrying out the computations specified in AppendIx A, we 

get: 

1 

I - C(3)C~(3) = 1/6 -2 

1 

-2 

4 

-2 
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and 

o o o 

B (3) = o o o 

T o o 

so that we obtain the following acceptance test using (A.13): 

(4.20 ) 

where the threshold s would be selected by considering the inac-

curacy of the linear model in modelling the nonlinear software 

module. 

4.3 Innovations Signature Analysis 

System-theoretic innovations signature analysis can also be 

used to develop fault detection algorithms for software modules. 

This method can be used to obtain residual sequences between the 

inputs and the values predicted by the model of the software 

module. If the predicted values are already available, then this 

technique would not introduce additional undue computational 

complexity. We illustrate this concept with the following 

estimation problem. 

Consider a software module generating a recursive least 

squares state estimate for the linear dynamic system state 

described by (4.14) and (4.15). The software specificatIon for 

this state estimation problem results in the following algorithm 

depicted in Figure 4.1: 

x(k+1) = x(k+1/k) + K(k+l) r(k+1) (4.21) 
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where x (k) 1S the opt1mal least squares estimate for the state 

x(k) using all the current and past inputs u, and measurements y, 

up to time k. The other variables are defined by 

x(k+l/k) =A x(k) + Bu(k) 

r(k+l) = y(k+l) - y(k+l/k) 

y(k+l/k) = Cx(k+l/k) 

(4.22 ) 

(4.23 ) 

(4.24 ) 

where x (k+l/k) is the single stage prediction for the state, and 

r(k) is the measurement innovations sequence. The real complex-

ity in programming this algorithm is in the recursive matrix 

computations required to generate the gain matrix K(k+l), which 

involves several matrix multiplications, additions, and inver-

sions. 

Considered as a software module, the vectors u and y would 

be the inputs, and the state estimate x and the single stage 

measurement pred iction y (k+l/k) would be the outputs. The 

innovations (residual) sequence, r(k), would be analyzed to 

determine software faults in the module. Note that the residual 

sequence could be computed external to the module (and therefore 

checked externally), on the basis of (4.23) and the software 

module output, y(k+l/k), and, input, y(k+l). 

If this software module has no faults, and if the measure-

ment sequence is generated by a physical system with a matching 

dynamic structure, then the innovations sequence, r(k), would be 

a zero-mean uncorrelated sequence of random vectors. Hence, any 

appropriate statistical decision test could be implemented as an 
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acceptance test to determine whether or not the residual sequence 

has the postulated statistical properties. For example, the 

weighted sum of the squares of the residuals computed over a 

moving time window could be compared against a set threshold; 

exceedance of the threshold would indicate a model mismatch and a 

potential failure in the software module. The preceeding example 

allows also the potential for integrating hardware and software 

fault tolerance since the same residual sequence can be analyzed 

to detect hardware faults as well. 
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5. SYSTEMS-BASED SOFTWARE ERROR RECOVERY TECHNIQUES 

In Section 2.4, we outl ined maj or techniques for fa il ure 

recovery in software-implemented hardware fault tolerance. These 

systems-based failure recovery techniques are extendable to 

software error recovery as well. The major issues of concern in 

software fault recovery, especially at the level of application 

level programming involving real-time process control, are the 

following: 

o weak encapsulation due to memory and feedback 

o detection delays 

o noisy data 

o state conversion in recovery blocks 

o inexact voting and acceptance tests 

o verSlon instability. 

We discuss these issues briefly in the following paragraphs. 

Encapsulation is an operating system programming approach in 

which program computa tions are achieved using blocks wi th well-

defined boundar ies. The advantages of the encapsulation prin-

ciple are to preserve data integrity in the presence of complex 

interactions of tasks which are subject to failure in the case of . 

data encapsulation, and to preserve logical flow of control in 

the case of program encapsulation. In application level program­

ming for dynamic systems, it is usually possible to group soft­

ware functions into modules with well-defined boundaries. While 

the encapsulation principle imposes a desirable structured 
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approach to application programming development, its use in 

minimizing the effects of faults in fault tolerant application 

software for dynamic systems is limited both due to the extensive 

use of feedback and memory in algor i thrns, and the presence of 

detection delays. 

The use of feedback is very common in application level 

programming for dynamic systems. Hence, even though the compu­

tational blocks may have well-defined boundaries, the use of 

feedback configurations, and transformations with memory, could 

propagate a software fault in a given module to other blocks. 

This problem is especially important if software faults are not 

instantaneously detected. In practical applications, there is 

usually a detection delay to ensure acceptable false ala~m 

per formance. This delay is naturally longer for "soft" failures 

in comparison with "hard" failures. These issues have been 

addressed In systems-based fault tolerant methods by varlOUS 

techniques, for instance, by modifying not only the value of a 

var iable after the identification of a faul t but also by modi­

fying the level of confidence in that computation variable after 

a failure. 

In appl ication level programming, it is impera ti ve to have 

consi stency checks toleran t of noi ses in the inputs. Thl s issue 

is critical both in dynamic (computations with memory) and static 

(memoryless computations) software blocks. For example, consider 

a static software module solving a specific least squares 
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problem. An acceptance test for this application can not take 

the least square fit and ident ically genera te the inputs since 

the noise effects are fil tered out by the least squares algor-

i thm. Hence, 

problems, the 

input noise. 

in static least squares and in dynamic estimation 

acceptance test must compensa te for the prog ram 

Another critical issue in software error recovery is the 

initialization of the program states in the recovery block 

algorithm. Clearly, if the variables needed in initializlng the 

alternate block algorithm are directly available from the primary 

module computatlons, then this initialization process would be a 

stralghtforward process. However, in most applications, these 

variables are not readily available, since the use of different 

algorithms is essential in software fault tolerance. 

In application level programming it is also crucial to have 

acceptance tests and voting checks compensating not only for 

finite precision arithmetic errors, but also for numerical errors 

associated with algorithm accuracy. For example, this issue 

would not arlse in an operating system program involving the 

sorting of an array of integers. In contrast, any practical 

scientific computing application program would involve numerlcal 

error s due to the inaccuracy 0 f the algor i thm used. For 

instance, a polynominal root finder would not always compute 

zeros that identically satisfy the polynominal equation being 

solved. 
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Finally, a very important problem with N-version programming 

is the drift of unselected versions. While this issue is not 

related to error recovery since It is not caused by a software 

fault, we can consider it within the context of error recovery 

procedures. These drifts occur due to the accummulated rounding 

errors in the unselected versions in N-version programming. 

In the next sections, we will discuss how the software error 

recovery issues outlined above can be addressed by applying 

software-implemented hardware failure recovery techniques, and by 

generalizing these methods to the domain of fault tolerant 

software. 

5.1 Systems-Based Software Error Recovery Procedures 

As discussed in Anderson and Lee [1], the drawbacks of using 

forward error recovery are its usual dependence on damage assess­

ment, and antIcipation of faults. The systems-based software 

implemented hardware failure recovery techniques discussed In 

Section 2.4 can be used to minimize, if not alleviate, these 

problems associated with forward error recovery. 

For instance, consider the method of reinitialization of the 

state estimate and the estimation error covarIance matrix 

associated with this estimate. Extending this approach to the 

domain of software fault tolerance, when a software error is 

detected in a software module, the program states are initialized 

by using current inputs into the module according to the proce-

- 50 -



dure employed at the start of the execution of the module. If 

there is a covariance associated with the computed state, this 

covar iance can be set to its in i tial val ue. To illustrate the 

point consider the estimation problem discussed in Section 4.3. 

Suppose that this algorithm is initialized via: 

x (0) = Hy (0) 

K(l) = f(P(O» 

(5.1 ) 

(5. 2) 

where H is an'appropriately dimensioned matrix relating the mea-

surements to the program states, and the gain K (1) is a function 

of the initial uncertainty (covariance) of the state. If, for 

example, a software error is detected at the k'th instant, then 

the method above requires the implementation of: 

x (k) = Hy (k) 

K (k) = f (P (0) ) 

(5. 3) 

(5.4 ) 

Clearly, this forward error recovery procedure does not depend on 

an exact assessment and prediction of the damage. Hence, it is 

an appropriate means of recovery from unanticipated software 

faults. 

Systems-based error recovery techniques can also yield 

procedures depending on only a partial assessment of the detected 

fault. Consider, for example, the application of the conditional 

covar iance technique, di scussed in Sect ion 2.4, to the develop-

ment of a forward error recovery procedure for software faul ts. 

In applying this method to software faults, the program state of 

the software block would not be changed after the detection of a 

- 51 -



software error. However, the covar iance of the program sta te 

would be increased by an amount depending on the type and level 

of the failure detected. Hence, only the covar lance for those 

states deemed to be corrupted by the fault would be changed. 

Computational states would thus be gradually compensated through 

the algorithm dynamics. This approach is especially useful when 

a sudden change in a program state is not desired, especially in 

closed-loop control applications. Summarizing, the conditional 

covar iance technique does not depend on determin ing the exact 

time of failure and level, but does depend on a precise deter­

mination of the type of failure, through the detection logic. 

Finally, the techniques descr ibed above are appl icable to 

algorithms where there is not an explicit covariance assocIated 

with the program state. In these cases, however, a measure of 

uncertainty needs to be developed for the implemented algorithm. 

5.2 Systems-Based Recovery Block Initialization 

When an acceptance test on a pr imary block declares tha t 

module faulty, then the program states in the alternate block 

need to be initialized (see Figure 5.1). Since software fault 

tolerance techniques hinge on the use of diverse algorithms, the 

internal program variables in the two modules will be different 

(in number, in physical meaning, etc.). Therefore, there needs 

to be procedure for converting the program states of the primary 

block into the equivalent alternate block states. This problem 

can be treated conveniently as an estimation problem, in the 

- 52 -



u(k) Primary 
-~Module xl (k) 

Figure 5.1: Recovery Block State Initialization Problem 

context of system theory. We now formally define this problem, 

and give a solution for the case when the recovery block 

algorithm is represented by a linear dynamic system model. 

Re ferr ing to Figure 2.2 and Section 3.2, consider the sta te 

space model for the pr imary block software, given by (3.5) and 

(3.6): 

xl(k) = fl(xl(k-l),u(k-l),wl(k-l),k) 

Yl (k) hI (xl (k) ,u(k) ,wI (k) ,k) 

k = 1,2, ••• 

(5.5) 

(5.6) 

where u(k) is the input sequence into the primary block, xl(k) is 

the pr imary block sta te, wI (k) is the random sequence modell ing 
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the inaccuracies of the primary block, and YI (k) is the output 

sequence from the primary block. Note that a state-space rather 

than an ARMA representa tion is used, since the problem IS wi th 

internal state initialization. Now, consider the alternate block 

representa tion: 

x 2 (k) = f 2 (x 2 (k-I),u(k-I),w 2 (k-I),k) 

Y2(k) = h 2 (x2 (k),u(k),w 2 {k),k) 

(5.7) 

(5.8) 

where x2 (k) ,w 2 (k), and y 2 (k) are the al terna te block IS sta te, 

random noise state, and output sequences, respectively. The 

transformations f l , hI' f 2, and h2 are naturally different, 

reflecting the diversity of the two algorithms. Note that the 

primary block implementing (5.5) and (5.6) would be executed 

until a fault is detected, and the recovery block implementing 

(5.7) and (5.8) would be executed after the detection of that 

failure. Suppose the damage assessment for this failure requires 

the switching from primary to alternate block after the kIth 

instant. The problem is to determine the value of the state 

x 2 (k) which ensures that the output of the alternate block, after 

implemen ta tion, closely approx ima tes the output that would have 

been generated by the primary block, had switching from primary 

to alternate not occurred. Stated formally, find an estimate of 

the alternate block internal states, x 2 (k), as a function of the 

primary block inputs, outputs, and states, at time k, such that 

the following cost function 
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k 

E (5. 9) 

j=l 

is minimized for all input sequences, u(k). Here " " is a 

sui table vector norm, and E is the expectation opera tor. Note 

that the dimensions of the output vectors will be the same since 

the two blocks must be equivalent from an input/output point of 

view. If the algorithms are deterministic, we can equivalently 

state the problem as: Find x 2 (k) such that 

Yl(i) = Y2(i) for i = 1,2, •• ,k 

and for all sequences, u(k). 

(5.10) 

In general, it is not possible to compute the recovery block 

state estimate, x 2 (k), from only the current primary module 

input, u (k), sta te, xl (k), and output, Yl (k) correspond ing to a 

single computational frame. The next question is whether the 

alternate block estimate, x2 (k), is computable from a subset of 

the past primary block variables, or whether all of the past 

pr imary block var iables are needed for thi s computa tion. ThIS 

question is closely related to the observability problem for 

dynamic systems. In fact, we now show that the alternate block 
.... 

state estimate, x 2 (k), can be determined using only the n 

previous inputs, {u(j), j=k-n, •• ,k-l}, and outputs, 

{Yl (j) ,j=k-n+l, ••• ,k}, of the primary block, if the alternate 

block dynamic system is linear and observable in the system 

theoretic sense. Tha t is, there is no need to star t the execu-
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tion of the alternate module from the beginnIng of the input data 

sequence. Note also that there are no restrictions placed on the 

primary block. 

To illustrate, consider now the recovery block representa-

tion defined by eqs. (5.7) and (5.8) for a linear dynamic system 

defined by: 

x 2 (k) = A2 x2 (k-l) + B2 u(k-l) + w2 (k-l) 

Y2 (k) = C 2 x2 (k) + v2 (k) 

(5. 11) 

(5.12 ) 

The dynamic system above is the same one considered in AppendlX 

A, with noise sequences w2 (k) and v 2 (k). For simplicity of 

presentation, we consider the deterministic case where the noises 

are ignored. Now, the recovery block output at time k is related 

to the recovery block state at time k-n+l via [23]: 

n-l 

n "n-i C 2A 2 x 2 (k-n+1) + ~ C 2A 2 B 2u(k-I) 

1=1 

(5. 13) 

Using the notation in the Append1x, current and n-l previous 

outputs of the primary block are then given by 

Y2 (k) = C 2 (n) x2 (n-k+l) + B2 (n) U (k) (5. 14 ) 

where the matrices C 2 and B2 are defined by eqs. A.8-9 in the 

Append ix • As 1 t happens, the rna tr ix C2 (n) is the observab ill ty 

matrix for the recovery block system dynamics. For recovery 

block initialization, we desire output sequence equality in 

accordance with (5.10) above, so that 

(5. 15) 
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The recovery block state estimate at time k-n+l is then given by 

x2 (k-n+l) = c~(n) [Yl(k) - B2 (n)U(k)] (5.16) 

where 

C2 # (n) = [C 2' (n) C2 (n) ] -1 C 2' (n) (5. 17) 

The observability assumption guarantees the existence of the 

inverse in (5.17) so that the recovery block state at time k can 

then be obtained by propagating, x 2 (k-n+l), though (5.11). 

Summarizing, for arbitrary time k, the recovery block state 

can be initialized from the n primary block outputs 

{Yl(k)'Y2(k-l) ••• , Yl(k-n+l)}, and from the n-l inputs, {u(k-l), 

u (k-2) , ••• ,u (k-n+l)} for software modules which have a lInear 

dynamic representation. 

Since the recovery block in i tial i za tion outl ined above is 

application dependent and fairly involved, it is of interest to 

find other equivalent implementa tions for the recovery block to 

simplify the initialization procedure. 

below. 

We give one example 

5.3 ARMA vs. State Space Models for Recovery Blocks 

The preceeding section underscores the importance of algor­

ithm choice for recovery blocks. That is, if there are a number 

of functionally equivalent computational algorithms, then the 

choice of a recovery block implementation should be dictated by 

re in i tial i za t ion considerations. We illustra te this point by 

using the example in the previous section. For this example, the 
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ARMA model form of the recovery block would, in accordance wi th 

the discussion of section 3.2, have the form: 

n n-l 

Y2(k) = 2: A2 (i) Y2(k-i) + L B 2 (i) u(k-i) (5.18) 

1=1 i=l 

where A2 (i) and B2 (i) are computed in terms of the sta te space 

description matrices A2, B2 and C2 with the use of z-transforms 

[25] • 

To ensure that this recovery block ARMA model produces the 

identical outputs as those from the pr imary block sta te space 

model (for the same input sequence) requires a very simple 

initialization procedure: the recovery block ARMA model can be 

initialized from the primary block outputs and inputs simply by 

setting 

Y 2 (k-n) =y 1 (k-n) Y2 (k-1)=Yl (k-1) (5.19) 

The simplicity of this ARMA model initialization has signif1cant 

relevance in flight control software applications. 
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6. FAULT TOLERANT FLIGHT SOFTWARE 

In this chapter, we discuss the issues involved in applying 

software fault tolerance techniques to the development of flight 

software. Our discussion covers the stability of flight systems 

with fault tolerant software, the preservation of functional 

performance, the use of generic flight software blocks amenable 

to the introduction of software fault tolerance and, finally, a 

comparative evaluation of N-Version and recovery block methods 

for use in generic flight software blocks. 

6.1 Stability Issues in Fault Tolerant Flight Software 

There are two main stabillty issues involved in the appli­

cation of software fault tolerance techniques to flight software: 

o software module stability 

o total system stability 

Software module stability refers to the stability properties of a 

given fault tolerant software module. Total system stability, in 

contrast, deals with the overall stability of the composite 

system, including both the physical system and the control soft­

ware. We begin our discussion with software module stability. 

6.1.1 Software Module Stability 

Software module stability problems can arlse both in 

N-version and recovery block applications. In N-version program-
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ming, the versions that are consistently not selected by the 

voting logic can, for instance, go unstable. In recovery block 

applications, excessive switching between the primary and alter-

nate blocks due to an improperly designed acceptance test can 

also introduce instabilities. 

We illustrate the potentlal instability problems in conver-

ting standard single version flight software into a fault toler-

ant implementation, by considering a 3-version implementation of 

a feedback control module for the linear dynamlc system defined 

in Append ix A (eqs. A. 1-2) • The single string version of the 

controller software takes in the measurements, y(k), and gener-

ates the input, u(k), which drives the physical system in accor-

dance wi th: 

z(k+1) = E z(k) + F y(k) 

u(k+1) = G z(k) + D y(k) 

(6. 1) 

(6.2) 

where z(k) is the internal controller state contained in the 

software module. One of the requirements of such a controller 

design is that the total system, including both the physical 

system and controller dynamics, should be stable. This would 

imply that the system dynamics (ignoring the noise states), given 

by: 

x (k+1) = [A + 

z (k+1) = FC 

BCD BGJ -lX (k)] 
E z(k) 

(6.3) 

should be stable (i.e. the e igenval ues of the sta te tranSl t ion 

matrix of (6.3) are all within the unit circle). However, thi s 
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does not necessar ily imply tha t the controller software module 

described by (6.l) and (6.2) is stable. In fact, there are a 

number of practical examples in which some eIgenvalues of E would 

be outside or on the unit circle. For instance, a con troller 

employing integral feedback is such an example. Now, consider a 

3-version implementation of (6.l) and (6.2). In this case, we 

would have three recursive relations controllers, each imple-

menting the following: 

z. (k+l) I = E.z.{k) 
1 1 

+ FIy{k) (6. 4 ) 

ui{k) = GizI{k) + Hi y (k) i=1,2,3 (6.5 ) 

Suppose that the voting logic consistently selects the fIrst 

version. In this case, the overall closed-loop system would be 

stable since the first controller version is designed to stabil-

ize the system. The second and third blocks, wi th control out-

puts u 2 (k) and u 3 (k), would not be used; hence, these versions 

would not have the loop closure provided by the phYSIcal plant 

dynamics. Now, if one of these unselected controllers were 

neutrally stable or unstable, then we could expect that control-

ler to go unstable, without the stabilizing effects of plant 

feedback. 

We now give a specific example illustrating the version 

instabIlIty problem described above. Consider the N-version 

implementation of an aircraft pitch axis PIO controller depicted 

in Figure 6.1. PIO (proportional-integral-derivative) control-

lers are commonly used in flight control applications. In Figure 

- 61 -



e 

e 

controller 1 
r--------------------------, 
~ 1 

: eSI ~KT/S: 
I I 
I + e, eEl + I O£I 

: ~ 7s+1 ~ K ~l--:~-' 
I ~ 1 L ________________________ ~ 

r ------------ --- -- --- - --------, 
I I 
I eS2. ~ KT/s 1 
I I 
I 1 

voter' 
r- -----, 
I I 

'I": bE 1 

I I 
1 ~ I 
L _____ -1 

1 + ez + ec2 + I 

: + 7S+ 1 ~ K +01--"";:-8-
E
...J

Z I 1 L ____________________________ ~ 

controller 2 

r-------------- ---- -- - - - ----, 
I I 
I • I 
Ie q q.-r. ~ I 
: lIs lIs ;-0+ K6 : 

I 1 L ____________________________ ~ 

vehicle dynamics 

Figure 6.1: Version Instability in an N-Version PIO Controller 
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6.1, the lower block represents the simpl i fied aircraft pi tch 

axis dynamics, while the top two blocks show the two versions 

(other versions not shown for clarity) of flight controller 

software blocks. The objective of the controller is to compute 

the elevator input «JE in order to pitch the aircraft to the 

commanded attitude, 8 . c The controller achieves this by 

employing proportional feedback through the K block, integral 

feedback through the KT/s block, and der ivative feedback through 

the (TS + 1) block. The variables 8 Bl and 8B2 in the controller 

software blocks may represent the different sensor biases driving 

each controller or other input differences such as those due to 

time delays. 

Assume that the voter continually selects the first control-

ler output. In this case, the pitch rate acceleration, el, into 

the aircraft should be zero in steady-state. Hence, the elevator 

input, «J E, and the first controller output value would be -4o/K 

where qo is an unknown torque into the system. In the first con­

troller block, the integra tor output should then be -4o/K wi th 

an input, 8E l' value of zero. This would imply that81 is equal 

to the commanded a tti tude (Jc which, in turn, dicta te tha t the 

steady state aircraft pitch attitude would be equal to 8c - 8Bl • 

Now, consider the second controller block, 8 2 would then be 

equal to 8 c -8Bl + 8 B2 • This would imply that the input into the 

integrator would be given by 8B2-8Bl• If the sensor biases are 

not identical, then clearly the output of the second controller 
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would then be a ramp which would nullify the designed fault 

tolerance since the second block would not get selected by the 

voter even in the case of a software fault in the first control-

ler. If 9BI and 9B2 represented two independent measurement 

noises, then the second controller output would be a random walk 

process, again nullifying the designed fault tolerance. 

In contrast, consider a 3-version implementation of a state 

estimator for the same physical plant. In this case, each filter 

would compute the state estimate x(k), implementing 
... 

... 
(6. 6) 

(6. 7) 

In this scenario, even if a version is consistently selected out, 

that version would not go unstable since by design each fil ter 

version would be stable. That is, the filter dynamics described 

by 

(6. 8) 

would be stable since the eigenvalues of [A-KiCA] would be insIde 

the unit circle. 

Hence, from software module stability consIderations, 

N-version programming should only be introduced around software 

blocks that are stable from an input/output point of view. For 

unstable software modules, N-version programming should be 

avoided • 

- 64 -



6.1.2 System Stability with Fault Tolerant Software 

We now turn our consideration from individual module sta­

bility to overall system stability. Most flight software blocks 

are designed to ensure stability of the overall closed-loop 

controller/vehicle configuration. For instance, a flight control 

software stability augmentation system should, when combined with 

the open-loop aircraft dynamics, yield a stable set of augmented 

vehicle dynamics, and produce a stable system. If N-version 

programming is introduced around the flight control software 

block, the resulting system should still remain stable. Now, 

overall system stability, in an N-version software environment, 

is closely coupled to the specific voting logic employed. Under 

normal operation, the voting logic will generate an output 

sequence comprised of "pieces" of the output sequences of the N 

separate versions. The number of "pieces" compr ising a given 

length output sequence depends on the frequency of selecting 

between versions, which, in turn, can depend on the values of the 

inputs into the N versions, the relative accuracy of the imple­

mented algorithms in the N modules, the noise level in the 

physical system, and the specifics of the voting logic. 

We will illustrate the potential system instability problem 

with fault tolerant software by consldering the example deplcted 

in Figure 6.2. This example involves the design of a controller 

for a fifth order dynamic system. The eigenvalues for the open­

loop system wi thout feedback (zeroes of the polynominal in the 
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Figure 6.2: Example of Closed-Loop Instability with FTSW 
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denominator of the transfer function) are shown by "x", and the 

zeroes of the transfer function (zeroes of the polynominal in the 

numerator) are shown by "0" in the complex plane depicted in 

Figure 6.2. This figures also shows the variations in the 

closed-loop eigenvalues as the value of gain K is increased from 

zero. Note that for stability, the gain should be between either 

(0,14) or (64,195). Consider a 2-version implementation of this 

controller. Suppose for purposes of illustration that the first 

team selects a gain value of 12, whereas the second team selects 

a gain value of 66 based on the stability and performance speci-

fication for the controller software. Consider now a 2-version 

controller which uses the average o~ the two controller outputs 

when each passes an acceptance test. Clearly, this case would 

imply an effective controller gain of 39 which would result in an 

unstable closed-loop system. 

This simple example illustrates the point that closed-loop 

stability with each separate version of an N-version program does 

not guarantee closed-loop stability of the system with the 

N-version software. As this example illustrates, N-version 

programming can introduce stability problems when the versions 

implement functionally dissimilar algorithms satisfying the same 

specification. Hence, to avoid potential closed-loop stability 

N-version programming should be restricted to the N different 

software implementations of functionally equIvalent algorithms. 
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6.2 Preservation of Functional Performance 

Preservation of functional performance refers to the re-

quirement that the introductIon of fault tolerance around a 

specific software block should be transparent to the rest of the 

software. This requirement can be addressed once it is deter-

mined that the software fault tolerance introduced does not 

impair stability, as just discussed. In N-version programming, 

the issue of functional performance preservation is more impor-

tant than it IS for recovery blocks, due to the normal switching 

expected between the N versions. In con trast, a properly de-

signed recovery block application would not introduce excessive 

swi tching between the pr imary and al terna te programs, which, 1 f 

present could cause a significant impact on functional perfor-

mance. 

To illustrate, we refer back to the estimator problem con-

sidered in Section 6.1.1. Suppose that each module computes the 

sta te est imate wi th a steady-sta te bias error, I.e., as k gets 

large we have: 

E [x(k) - xi(k)] = mi (6.16) 

where m. is the constant bias in the state estimate x. of the 
1 1 

i'th software block. From a control point of view, a constant 

bias in the estimates are likely to be acceptable. However, 

switching between the versions would produce a sequence of bias 

jumps (due to the different m. values generated by the selected 
1 

version), and thus the state estimate provided by the N-version 
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programmed estimator block would contain errors whose frequency 

spectrum is determined by the distribution of switching frequen-

cies. In effect, N-version switching can transform a simple 

bias, which may be compensated adequately by the control system, 

into wide spectrum noise, which could lead to a control perfor-

mance degradation of the control system. 

The lssue of preserving functional performance in N-version 

programming can be analyzed by computing the statistical proper-

ties of the difference sequence between the version outputs. For 

instance, in the example just considered, consider the first 

version to be the "reference" version. Version differences can 

then be computed in accordance with: 

" 

(6. 9) 

(6. 10) 

Ideally, these sequences should be a zero mean uncorrelated 

sequence of random vectors for functionally equivalent dissimilar 

algorithms. Next, the effects of switching on the error sequence 

would be analyzed. For a given voting 10glC, the empirical 

statistics for the error sequence would be computed. For a given 

instant, when the first version is selected, the error would be 

zero. On the other hand, if the second version is selected, the 

error term for that instant would be given by (6.9). 

Another approach to the assessment of functional performance 

preservation in fault tolerant software is to compute the perfor-

mance deviation from the software specification. This approach 
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is, in essence, equivalent to finding a system model for the 

composite fault tolerant software block and the associated voting 

logic or acceptance test. In the example considered above, this 

approach would require the computation of the statistics of the 

sequence constructed from 

Xl (k) = x(k) xl (k) (6.11) 

x2 (k) = x(k) x2 (k) (6. 12 ) 
... 

x3 (k) = x (k) x3 (k) (6. 13) 

according to the deci sions dictated by the voting logic. 

6.3 Generic Flight Software Blocks for Software Fault Tolerance 

Modern flight software is comprised of functionally separate 

blocks, resldent on dlfferent computers connected through a 

network which supports da ta and con trol commun ica t ion between 

modules. These blocks can be categorlzed accordlng to thelr 

functions as follows: 

navigation 

guidance 

sta te estimation 

flight control 

system monitoring 

housekeeping 

Nav igation software computes the aircraft's POSl t ion, 

velocity, and attitude with respect to an external reference 

frame by using a subset of the aircraft's sensor sui te. These 
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computed estimates are used by the guidance software to fly the 

aircraft from its current position to some defined position in 

the future, either along a prescribed path, or in some manner 

which specifies given trajectory objectives. Guidance software 

accomplishes this task by sending the required commands to the 

flight control software. The flight control software, in turn, 

computes the commands to drive the aircraft control surfaces and 

engines in order to perform maneuvers or maintain flight equi1-

i trum as commanded by the guidance log ic. F1 ight control soft­

ware uses the state estimator block out,puts which are the 

aircraft states estimates computed from a suitable subset of the 

aircraft sensor complement. Engine control software computes the 

engine controls needed to satisfy the f1lght control engine 

commands. System monitoring performs the redundancy management 

for the various redundant components by using FDI and BIT (built­

in test) procedures. Finally, housekeeping software takes care 

of maintenance procedures such as the driving of the required 

displays, maintaining cabin pressures, etc. 

In the context of our earlier discussion of system models, 

most of these f1 ight software blocks are in a feedback config­

uration, with one another and with the aircraft dynamics. State 

estimation and navigation software blocks are usually designed to 

be stable when considered individually, but on the other hand, it 

is not uncommon to find applications when the guidance and flight 

control software blocks by themselves are neutrally stable or 
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unstable (for instance, when integral feedback is used to allevi­

ate steady-state errors). It is also to be expected that the 

maJority of these software modules will have memory as well, 

because of the need to prov ide i tera t i ve control, smooth i ng of 

state estimates and other like functions which demand knowledge 

of past software commands and vehicle responses. 

6.4 N-Version vs. Recovery Blocks in Flight Software 

Here we present a qualitative discussion comparing the 

feasibility of using N-version and recovery blocks in generic 

flight software blocks. 

It IS helpful to begIn this discussion with a consIderation 

of the varIOUS possible interpretations of algorithm dissimilar­

ity. Recall that dissimilar algorithms are desired in software 

fault tolerance to maximize the independence of software errors 

in different versions. In the context of faul t tolerant soft­

ware, there are three possible "types" of algorithm dIssimilar­

ity: 

Type I: 

Type II: 

functionally dissimilar algorithms which satisfy 

the same given software specification, 

functionally equ i valent diss imllar computational 

algorithms, 

Type III: dissimilar software implementations of the same 

computational algorithm. 
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To illustrate the first type of algorithm dissimilarity 

(type I), consider the design of an altitude-hold control law to 

be implemented in a 3-version programming fault tolerant struc­

ture. The objective of the altitude-hold system software module 

in an aircraft is to compute the pitch commands necessary to 

maintain a constant altitude by using the sink rate measurements. 

If each version were to be developed by an independent design 

team, consisting of a control engineer and a software engineer, 

then we might expect each team to come up wi th a functionally 

different algori thm for satisfying the specified control objec­

tive. That is, given the same input measurements, each version 

would be expected to produce significantly different output 

pi tch commands particular to the control strategy used in that 

vers ion. Hence, from an input/output point of vIew, the three 

vers ions would be functionally diss imi lar, although each 

implemented law would accomplish the specified objective. 

The second type of algorithm dissimilarity (type II) is that 

employed in functionally-equivalent but dissimilar computational 

algorithms. An example would be three software blocks for 

computing the eigenvalues of real square matrices in which one 

version implements Gaussian elimination, one implements Gram­

Schmidt orthogonalization, and one implements Householder's 

method. For a given input matrix, each version could be expected 

to compute approximately the same values for the eigenvalues 

according to the accuracy of each algorithm, and the precision of 

the computing hardware. From an input-output point of view, they 

are thus all functionally equivalent, although highly dissimilar. 

- 73 -



The third type of algorithm d1ssimilarity (type III) ar1ses 

because of dissimilarities in software implementation, for a 

given computational algorithm. Extending our example above, 

consider three different software implementat10ns of the Gaussian 

elimination algorithm, each implemented by a different program­

mer. It is likely that each programmer would write a different 

sequence of instructions for implementing this computational 

algorithm. For instance, it is likely that each programmer would 

write a different sequence of elementary row and column opera­

t10ns for performing the pivoting funct1on. Hence, each of the 

three different implementations may not produce identical eigen­

values, although the same algorithm lles at the base of the 

software module. 

Each of these three types of dissimilarity can be used to 

advantage in flight software applications for both N-version and 

recovery block configurations. However, there are advantages and 

disadvantages to using a given approach, depending on the generic 

flight software block under consideration. It should be clear 

that these different types of dissimilarity are increasingly 

restrictive, so that, if a type I is feas1ble then a type IllS 

also feasible, and if a type II is feasible, then a type III is 

feasible. 

Table 6.1 summarizes the feasibility of using N-version 

programming in the various generic flight software blocks 

discussed in the previous section. As indicated, the use of 
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functlonally dissimilar N-version algori thms (type I) is 

generally not feasible in flight control or guidance software 

blocks, mainly due to the potential system instability discussed 

in Section 6.1.2. Additionally, one must be cautious in using 

either type II or type III algorithm dissimilarity in unstable 

software blocks since this can yield version instability as shown 

by the example in Figure 6.1. 

Table 6.2 summarizes the feasibility of using recovery 

blocks in generic flight software blocks. As shown in this 

table, the advantage of using recovery blocks for flight control 

and guidance is that it can accommodate functionally dlssimilar 

algorithms, (type I) since the system stability problems would be 

minimal in a properly designed recovery block configuration. In 

contrast as indicated in Table 6.1, functionally-equivalent but 

dissimilar control algori thms (type II) are feasible for use in 

guidance and flight control software blocks in an N-version 

configuration, since the closed-loop stability issue can be 

handled in this setup. 

The use of functionally-equivalent (but dissimilar) estima­

tion and detection algorithms (type II) is feasible for use in 

nav iga tion, state estimation, and system moni tor i ng blocks for 

both N-version and recovery blocks. However, N-version program­

ming offers an extra advantage in terms of performance improve­

ment for these generic blocks. For instance, if the estimator 

outputs are averaged in a 3-version programming state estimator 
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Software Block 

navigation 

guidance 

state estimator 

flight control 

system monitoring 

housekeeping 

Advantages 

type II dissimilar navigation algorithms 
Improved estimation performance 

type III dissimilar SW Implementations 

type II dissimilar estimation algorithms 
Improved estimation performance 

type III dissimilar SW Implementations 

type II dissimilar detection algorithms 
Improved detection performance 

type III dissimilar SW Implementations 
Improved uptime 

DISadVantages 

slow execution speed 
large program size 

dissimilar guidance algorithms 
Infeasible; potential system and 
version Instability; transparency 

slow execution speed 
large program size 

dissimilar control algorithms 
Infeasible; potential system and 
version Instability; transparency 

slow execution speed 
large program size 

complexity 

Table 6.1: N-version Programming Feaslbillty in Flight Software 
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~are Block 

navigation 

Advantages ~a~QITt~es 

type II dissimilar navigation algorithms complex error recovery 
efficient. fault tolerant navigation 

guidance type I dissimilar guidance algorithms potential switching transients 
efficient 

state estimator type II dissimilar estimation algorithms complex error recovery 
efficient 

flight control type I diSSimilar control algorithms potential switching transients 
efficient. self-repairing control 

system monitoring type II dissimilar detection algorithms slow detection speed 
efficient 

housekeeping type 11 dissimilar algorithms complexity 
Impraved uptime 

Table 6.2: Recovery Block Programming Feasibility in FlIght 
Software 
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application, it may be possible to reduce estimation error per­

formance by using the average stated estimate. Similarly, it may 

be possible improve the false alarm and detection performance of 

a system monitoring software block by using an N-version program­

ming approach. 

We will give an example illustrating the potential for 

functional performance improvements in flight software through 

the use of software fault tolerance. 

6.5 Performance Improvement with Fault Tolerant Software 

We illustrate the potential for functional performance 

improvement by considering a software module which performs the 

management of redundancy in a skewed sensor array. For this 

example, we assume that the sensor array is a set of accelero­

meters and rate gyros in a semi octahedral configuration depicted 

Figure 6.3. Software is required to compute acceleration and 

angular rates, in the instrument reference frame, from the redun­

dant accelerometer and rate gyro sensors mounted on the faces of 

the semioctahedron, all in the presence of possible sensor 

failures. ThlS type of redundancy management software is cur­

rently implemented in commercial and military strapped down 

inertial measurement units; moreover, skewed sensor arrays will 

be common in the next generation of high-reliability integrated 

avionics. The example is thus highly relevant in the state-of-

the-art flight software. 
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Figure 6.3: Semioctahedron Sensor Array Geometry 
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For this dIScussIon, we assume that the skewed sensor array 

under consideration consists of two accelerometers and rate gyros 

mounted on each of the four different faces of a semioctahedron. 

There are five different coordinate systems of interest in this 

problem. One is the instrument reference frame, usually coin­

cident with the body axes of the aircraft, and the other four are 

the individual sensor axes. Each of these sensor axes are cus-

tomarily defined by the outward normal to the face (which makes 

the sensor spin axis) and by the two measurement axes which are 

symmetrically placed about the face centerline. Both accelero­

meter and rate gyro measurement axes, on a given face, coincide 

with each other. 

Each sensor measures the physical variable of interest 

(acceleration or angular rate) along its two measurement axes. 

Geometrically, each sensor provides the proJection of the three­

dimensional acceleration (or rate) vector onto its two measure­

ment axes which, in turn, determines the in-plane component of 

the acceleration (or rate) vector for that a specific face of the 

semioctahedron. 

Software is required to compute the vehicle acceleration and 

angular rate in the instrument frame, from the redundant sensor 

measurements, using only heal thy sensors. If, for example, a 

sensor is declared to be failed (by some means to be discussed 

below), then the computation of the physical varIable is to be 

done without using the faulty instrument. These computations are 

- 80 -



to be performed in the possible presence of up to two posslble 

sensor failures of the same type. 

There are at least three fundamentally different ways of 

designing the sensor failure detection and isolation software for 

this application: 

o edge vector test 

o parity test 

o generalized likelihood ratio test. 

Each of these tests correspond to a different formulation of 

the hypothesis testing problem under consideration. For in­

stance, the edge vector test (EVT) for the semioctahedral array 

involves resolving the outputs of each sensor along the edges of 

the semioctahedron for comparison across faces. If two sensors 

on neighboring faces are functioning properly, then their proJec­

tions onto the common edge separating the faces should be approx­

imately equal, wi thin some threshold determined by the sensor 

noise characteristics. 

In the parity test approach, eight measurement residuals are 

formed by subtracting the expected value for each measurement 

(generated from the estimated vehicle acceleration and body rate, 

and a knowledge of the semioctahedron geometry) from the actual 

measurements obtained from the sensor. Then, a minimal set of 

linearly independent relations are found from these eight 

residual relations, to test for postulated sensor failures. 

In the generalized likelihood ratio (GLR) test approach, the 

measurement residuals are generated in the same fashion as in the 
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parity test, and are tested for zero mean under the various 

sensor failure hypotheses. This approach attempts to classify 

the sensor failures according to their effects on the measurement 

residuals, and thus identify the particular failed sensor. 

Now, in a single-string software application, one of the 

sensor failure detection and isolation techniques would be 

implemented in software. Cons ider now a 3-vers lon programmi ng 

approach to this problem, where the first version performs the 

edge vector test, the second performs the parity test, and the 

third performs the generalized likelihood ratio test. We assume 

that a majority voting algorithm, which acts on the decision 

outputs of the three versions, has been implemented. Consider 

now the false alarm performance of the 3-version software, i.e., 

the percentage of cases in which the fault tolerant software 

voting logic will declare a sensor to be faulty although there is 

actually nothing wrong with that sensor. Ignoring the false 

alarms generated by the voter, this false alarm condition would 

occur when there is a false alarm for an identical sensor concur-

rently in either version land 2, or version land 3, or version 

2 and 3. Depicting the false alarm event in the i'th version for 

the j'th sensor i by F .. , the false alarm event in the fault lJ 

tolerant software block for the i'th sensor will be given by 

F
J 

= (Flj and F2j ) or (F lj and F3j ) or (F
2J 

and F3j ) 

Assuming that the false alarms are independent events, 

F j =(F1j and F2j ) or (F
lJ 

and F2j and F3j )or(F1j and 

F2J and F3j ) 
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so that the probability of false alarm of the 3-version software 

block for the j'th sensor will be given by 

(7. 3 ) 

When PI =P 2=P 3=P and P«I, then the false alarm for the overall 

fault tolerant software block for the j'th sensor would be 

approximately given by: 

P(F.} = 3P2 
J 

(7.4 ) 

Hence, the false alarm rate of the fault tolerant software block 

would be substantially lower than that for a single version. If 

the assumption about the independence of false alarms in each 

version is violated, then the improvement in the false alarm rate 

would be less. This issue is similar to the problem of ensuring 

the independence of versions, so as to minimize correlated errors 

which act to reduce the des ired reliabi 1 i ty improvement. How-

ever, in the case of functional performance improvement, forced 

divers i ty through the choice of version algorithms can poten-

tially minimize these correlated false alarms. In the next 

section, we will discuss the feasibility of introducing fault 

tolerant software into existing conventional software. 

6.6 Adaptability of Fault Tolerant Software 

We believe that fault tolerant software techniques can be 

introduced, wi th a minimal overhead, to conventional software 

wi th structural attributes resembling those for faul t tolerant 

software. There are a number of such situations in flight soft-

ware applications. For instance, consider a self-repairing 
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flight control system software in which there are multiple soft­

ware control blocks each implementing a different control 

strategy. One of these blocks might be optimized to compute the 

optimal control strategy during normal operation under no 

failures. A second might be executed when It is determined that 

an aircraft actuator or surface has failed. The control strategy 

implemented in the second software module could be totally dif­

ferent from the first one. Naturally, the second strategy would 

not make use of the failed effectors in controlling the aircraft. 

This self-repairing flight control software has a structure 

closely related to that of a recovery block module. The first 

software control module could be cons idered to be the pr imary 

module whereas the second software module (executed after a 

hardware failure) could be considered to be an alternate module. 

The only difference is that the alternate module is executed when 

a hardware failure is detected rather than a software fault. 

Clearly, software faul t tolerance can be introduced into this 

system by simply implementing an acceptance test acting on the 

outputs of the software control modules, so that the software 

would tolerate not only external hardware faults but also 

internal latent design faults in the software control modules. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

We have presented a unified analysis of software and 

software implemented hardware fault tolerance methodologies, and 

have shown that systems-based failure detection, isolation, and 

compensation methods can be extended to the domain of software 

fault tolerance, by developing system models for software 

modules. We have demonstrated this system-based approach in a 

number of areas. For example, we have demonstrated that systems­

based failure detection techniques can be used to develop consis­

tency checks that are easier to implement than acceptance tests 

based on software specifications. We have also shown that the 

generalization of system-based failure recovery techniques to 

software fault tolerance yields forward error recovery procedures 

which do not depend on an exact assessment of the software error 

damage. Finally, using a systems formulation, we have found a 

solution to the recovery block state initialization problem, for 

the case when the alternate block algorithm can be approximated 

by a linear dynamic system. 

We have also identified the basic system issues involved in 

applying software fault tolerance to flight software. In par­

ticular, we have demonstrated that introduction of fault tolerant 

software can potentially induce both version and closed-loop 

instabilities in flight software. In addition, we have presented 

a comparative evaluation of N-version and recovery block program-
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ming techniques, in the context of generIc flight software 

blocks. Finally, we have demonstrated the potential for 

functional performance improvement in flight software using fault 

tolerant software. 

In summary, this study has shown that systems-based failure 

detection, isolation, and compensation techniques can be used to 

resolve significant issues in software fault tolerance. Our 

recommendation is to apply the developed technology to a real 

flight software problem at the level of complexity of the skewed 

sensor array redundancy management software discussed in the last 

chapter. We believe that there is much to be learned from such a 

demonstration experiment since the majority of past and current 

fault tolerant software experiments have been restricted to 

problems of academic interest. 
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APPENDIX A 

DYNAMIC CONSISTENCY RELATIONS FOR LINEAR SYSTEMS 

In this appendix, we derive the consistency relations 

discussed in Section 4.2 for software modules descrIbed by linear 

systems of the form: 

x(k) = Ax(k-l) + Bu(k-l) + w(k-l) 

y(k) = Cx(k) + v(k) 

(A. 1 ) 

(A. 2) 

where referring to Figure 2.2, x (k) = [xl (k) ,x 2 (k) ••• x
n 

(k)]' is 

the n-dimensional internal program state, u(k) = 

[u l (k),U 2 (k) ••• up (k)]' is the p dimensional input vector, and 

y(k)=[Yl(k)'Y2(k)"'Ym(k)]' is the m-dimensional output vector. 

The whi te zero-mean random sequences, w (k) and v (k), represent 

the algorithmic and finite precision arithmetic errors introduced 

by the module. 

We now derive an expression relating the measurement se-

quence, {y(k),y(k-l), ••• y(k-n+l)}, to the input sequence, 

{u(k-l),u(k-2), ••• u(k-n)}. Defining the nm vectors Y(k) and 

V (k) , the nn vector W(k), and the np-vector U (k) by: 

Y (k) = [y(k-n+l) ••• y(k-l) y (k) ] , (A. 3) 

V(k) = [v(k-n+l) ••• v (k-l) v (k) ] , (A.4 ) 

W(k) = [w (k-n+l) ••• w(k-l)w(k)] , (A. 5) 

U (k) = [u (k-n+l) ••• u(k-l)u(k)] , (A. 6) 

we obtain from (A. 1 ) and (A. 2) : 



Y(k) = C(n)x(k-n+l) + B(n)U(k) + E(n)W(k) + V(k) (A. 7) 

where C(n) is the observability matrix of the linear dynamic 

system defined by: 

C(n)= 

C 
CA 

B(n) is the nmx np dimensional matrix defined by 

0 0 0 
CB 0 0 

B(n)= 

CAn- 3B CB 0 
CAn- 2B CAB CB 

and E(n) is the nmx n 2 dimensional matrix given 

0 0 0 
CA 

E(n)= 
CAn- 3 CA2 0 
CAn- 2 

CA CA 

by 

If the linear dynamic system is observable, then 

(A. 8) 

0 
0 

(A. 9) 

0 
0 

0 

(A. 10 ) 
0 
0 

the observabil-

ity matrix C(n) would have full rank n. We can estimate x(k-n+l) 

via 

x (k-n+l) = C# (n) [Y (k) - B (n)U (k)] (A. 11) 

where c#(n) is the pseudoinverse of the observabi1ity matrix 

C (n) • Using the estimate for x(k-n+l), we now define the 

residual sequence as: 

Y (k) - C (n); (k-n+l) = [I - C (n)c* (n)] Y (k) (A .12) 



substituting the expression for Y{k) above and using the property 

of the pseudo inverse (C =C C# C ) as before, we get the n n n n 

following: 

E {I -C ( n) C # (n)] [Y (k) - B ( n) U (k) ]} = 0 (A. 13 ) 

Eq. (A.13) above defines nrn dynamic relations. Anyone of 

these relations can be tested for zero mean by uSlng the noise 

parameter values associated with W{k) and V{k). It can be shown 

there can be at most nm-n linearly independent dynamic consis-

tency relations for this example. 

Dynamic consistency relations generate an open-loop measure-

ment residual sequence, in contrast to the closed-loop residual 

sequences produced by other fault diagnosis techniques employing 

state estlmators. 
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