
NASA Contractor Report 172618

NASA-CR-172618
19850027329

STUDY OF FAULT TOLERANT SOFTWARE TECHNOLOGY

FOR DYNAMIC SYSTEMS

Alper K. Caglayan and Greg L. Zacharias

Charles River Analytics Inc.
Cambridge, MA 02138

Contract NAS1-l7705 Phase I

September 1985

NI\SI\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

1111111111111 1111 111111111111111 111111111 1111
NF00738

f r::;:;.;(,,:,_; CFt ~ I ~n

!1~~";-:r'14M~"1

, r~lr· ~ '';'\J, V:RGli~'/~

https://ntrs.nasa.gov/search.jsp?R=19850027329 2020-03-20T17:12:12+00:00Z

NASA Contractor Report 172618

STUDY OF FAULT TOLERANT SOFTWARE TECHNOLOGY

FOR DYNAMIC SYSTEMS

Alper K. Caglayan and Greg L. Zacharias

Charles River Analytics Inc.
Cambridge, MA 02138

Contract NASl-17705 Phase I

September 1985

NI\S/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

TABLE OF CONTENTS

1. INTRODUCTION

1.1 Study Objectives and Approach
1.2 Report Outline

2. FAULT TOLERANT SYSTEMS OVERVIEW

1

1
4

6

2.1 Software Fault Tolerance 6
2.2 Software Implemented Hardware Fault Tolerance 10

2.2.1 Software Implemented Hardware Fault
Tolerance Techniques 13

2.2.2 Failure Recovery in Software Implemented
Hardware Fault Tolerance 20

2.3 Software Implemented Hardware vs. Software
Fault Tolerance 23

3. SYSTEM MODELS FOR SOFTWARE

3.1 System Models for Software Modules
3.2 Static and Dynamic Software System Models

4. SYSTEMS-BASED SOFTWARE FAULT DETECTION TECHNIQUES

4.1 Static Consistency Tests
4.2 Dynamic Consistency
4.3 Innovations Signature Analysis

5. SYSTEMS-BASED SOFTWARE ERROR RECOVERY TECHNIQUES

25

25
29

32

34
38
43

47

5.1 Systems-Based Software Error Recovery Procedures 50
5.2 Systems-Based Recovery Block Initialization 52
5.3 ARMA vs. State Space Models for Recovery Blocks 57

6. FAULT TOLERANT FLIGHT SOFTWARE 59

6.1 Stability Issues in Fault Tolerant Flight Software 59
6.1.1 Software Module Stability 59
6.1.2 System Stability with Fault Tolerant Software 65

6.2 Preservation of Functional Performance 68
6.3 Generic Flight Software Blocks for

Software Fault Tolerance 70
6.4 N-Version vs. Recovery Blocks in Flight Software 72
6.5 Performance Improvement with Fault Tolerant Software 78
6.6 Adaptability of Fault Tolerant Software 83

7. CONCLUSIONS AND RECOMMENDATIONS 85

Appendix A

References

LIST OF FIGURES

Page

Figure 2.1: Software Implemented Hardware Tolerant
System Structure 11

Figure 2.2: Causal Dynamic System Model 14

Figure 3.1: Software Fault Tolerant System Structure 26

Figure 4.1: Software Fault Signature Analyzer 44

Figure 5.1: Recovery Block State Initialization Problem 53

Figure 6.1: Version Instability in an N-Version PID Controller 62

Figure 6.2: Example of Closed-Loop Instability with
Fault Tolerant Software 66

Figure 6.3: Semioctahedran Sensor Array Geometry 79

LIST OF TABLES

Table 6.1: N-version Programming Feasibility in Flight Software 76

Table 6.2: Recovery Block Programming Feasibility
in Flight Software 77

1. INTRODUCTION

ComputIng systems are crucial components of high reliability

applications such as flight and space systems. For computing

system hardware in these high reI iabIl i ty applIcatIons it has

been necessary to Introduce fault tolerance techniques since the

use of faul t prevention techniques alone dur ing the desIgn has

not, in general, yielded the desired reliability performance.

For computing hardware, the desired fault tolerance has been

obtaIned by introducing hardware redundancy and/or software­

implemented hardware fault tolerance techniques.

Since software is an essential component of computing

systems, fault tolerance techniques, notably N-version pro­

gramming and recovery block procedures, have been proposed to

detect and compensa te software design faul ts. Currently, care­

fully controlled experiments are being conducted in order to

study the potential reliability improvement of fault tolerant

software over conventional software.

1.1 Study Objectives and Approach

The major objective of our study is to Investigate the

relevance of systems-based software-implemented hardware fault

tolerance techniques in fault tolerant software technology. Over

the last decade, several system theoretic fault detection isola-

- 1 -

tion, and compensation (FDIC) techniques have been developed for

tolerating the effects of faults In hardware (digital, analog,

electromechanical, hydraul ic, etc. components) based on fInd Ing

an appropriate input/output functIonal model of the hardware

block, and analyzing the consistency of the observed inputs and

outputs for failures. The major aim of our study is to

invest iga te the feasib i1 i ty 0 f us ing these systems-based FDIC

techniques in developing faul t tolerant software, and extend ing

them, whenever possible, to the domain of so ftware faul t tol­

erance.

We have therefore undertaken a program to investigate,

first, the functional modelling of software modules wIthin the

domain of high level application programming, in particular, for

real-time process control problems. We show that systems-based

failure detection, isolation, and compensation (FDIC) methods can

be extended to develop software error detection techniques based

on these system models for software modules. In particular, we

demonstrate through the use of several examples that these system

theoretic FDIC techniques can be used to develop static and

dynamic consistency checks which are sImpler to implement than

acceptance tests based on software spec i fica tions. Our study

also reveals that software error recovery can be integrated wIth

software-implemented hardware fault tolerance within the frame­

work of signature analysis.

- 2 -

We follow this by showing that systems-based fallure com­

pensation technlques can be generalized to the domain of software

fault tolerance in developing software error recovery procedures.

In particular, the systems approach yields forward error recovery

procedures which do not depend on an exact assessment of the

software damage. We also find a solution to the recovery block

state inltialization problem, for the case when the alternate

block algorithm is represented by a linear dynamic system. Our

study also reveals that an autoregressive moving average (ARMA)

lmplementation of an algorithm is more advantageous to use in an

alternate module than an equivalent state space lmplementation.

We also examine the feasibillty of using software fault

tolerance in flight software. In this and other real-time

process control applications, we ldentify the maJor issues of

concern: weak encapsulation due to memory and feedback, inexact

voting and acceptance tests, closed-loop system and version

stability, and preservation of functional performance. We lllus­

trate system and version instabilities and functional performance

degradation that may occur in N-version programming applications

to fllght software. In thlS study, we make a comparatlve

analysis of N-version and recovery block technlques in the con-

text of generic blocks in flight software. The most often cited

advantage in using fault tolerant software is the potential soft­

ware reliabillty gain. In this study, we give another reason for

the introduction of software fault tolerance. In this regard, we

- 3 -

propose that software fault tolerance techniques offer the poten­

tial of raising functional performance to levels unattainable by

conventional software methods.

In summary, our study shows that systems based failure

detection, isolatIon and compensation methods can be extended to

the domain of software fault tolerance by developing system

models for software modules. In particular, we demonstrate that

systems-approach can yield software error detectIon techniques

and software error recovery procedures wIth advantages over those

based solely on software specIfications. Finally, we outline the

potential problems that may arise due to an indiscrimInate use of

fault tolerant software technIques in developing flIght software.

1.2 Report Outline

Chapter 2 contains an overview of the "software" and

"software-implemented hardware" fault tolerance. WhIle the

review of software faul t tolerance (Section 2.1) IS brief, the

software implemented hardware fault tolerance techniques are

descrIbed, in detail: see SectIon 2.2.1 for a descriptIon of the

techniques, and Section 2.2.2 for a discussIon of the failure

recovery algor i thms. Thi s chapter ends wi th Section 2.3 out­

lining the maJor differences between software and software­

implemented hardware fault tolerance areas.

In Chapter 3, we discuss how to obtain system models for

software modules (Section 3.1), and important attributes of

- 4 -

system models such as memory, feedback, and tIme invariance

(S ec t Ion 3 • 2) •

Chapter 4 contains our general iza tion of software Imple­

mented hardware fault detection techniques to the domain of

software fault tolerance. In particular, static consIstency,

dynamic consistency, and signature analysis based software error

detection techniques are discussed In Sections 4.1-3.

In Chapter 5, we outline the maJor issues of concern in

software fault recovery, and present systems based solutions to

forward error recovery (Section 5.1), and recovery block InItial­

ization (Sections 5.2-3) problems.

In Chapter 6, we discuss the issues involved in applyIng

so ftware fa ul t tol er ance techn i ques to fl igh t so ftware. In

particular, stability issues in fault tolerant flight software

(Section 6.1), preservation of functional performance (Section

6.2), generic flight software blocks for software fault tolerance

(Section 6.3), a comparative evaluation of N-version and recovery

blocks (Section 6.4), the potential for performance improvement

with fault tolerant flight software (Section 6.5), and adapt­

ability of software fault tolerance to existing conventional

flight software (Section 6.6) are discussed.

Conclusions and recommendations are presented in Chapter 7.

- 5 -

2. FAULT TOLERANT SYSTEMS OVERVIEW

In this chapter, we present a brief overview of fault tol­

erance relevant to our study. Our d1Scussion is conf1ned to

software and software-implemented system-theoretic hardware fault

tolerance as def1ned below.

Software fault tolerance 1S the set of techn1ques necessary

to enable computing systems to tolerate faults 1n the des1gn and

implementation of the software itself. Hence, our usage of the

expression "software fault tolerance" is cons1stent with use 1n

Anderson and Lee (p.250) 1n [1]. Moreover, we use the expression

"fault tolerant software" to mean software constructed by uS1ng

software faul t tolerance techniques. The other possible in ter­

preta tion of software faul t tolerance, tha t is, techniques for

designing software to tolerate the effects of faults 1n the

underlying hardware, will be termed "software-implemented hard­

ware fault tolerance".

2.1 Software Fault Tolerance

There are two main methods Wh1Ch have been proposed for

fault tolerant software development. These are

o recovery blocks

oN-version programming

In the recovery block method, [2]-[3] there are two or more

verS10ns -- primary and alternates -- of a glven program block

(module). A backup alternate program block 1S executed when the

- 6 -

correspond ing pr imary program block is deemed faul ty through an

acceptance test. For instance, the primary module may be an

efficient but incompletely validated program, whereas the alter­

nate block may be a less efficient but fairly well tested version

of the same program. The acceptance test is performed by using

the variables accessible to other modules, rather than variables

which are local to that program module. We view this recovery

block technique as the software analog of the classical stand-by

redundancy approach used for hardware faul t tolerance in which

the stand-by equipment is of a design similar to the primary, but

obtaIned from a different manufacturer.

In N-version programming [4], two or more functionally

equivalent programs are independently generated from the same

initial specIfIcations. The independence of programs is assured

through the use of N different non- in teractIng software design

groups assIgned to the programming effort. DissImilar algorithms

and even different languages can be used to extend the indepen­

dence of each version. Thus, N-version programming yields soft­

ware which is markedly dissimilar to systems in which two or more

Identical replications of a program are executed concurrently in

physically distinct hardware, such as in the Space Shuttle

Computer System [5], SIFT [6], and FTMP [7]. In N-version

programming, N programs are executed concurrently and checked

against each other by comparing a certaIn subset of the generated

program state variables. Hence, N-version programming is an

- 7 -

adaptation of the fault tolerant duplex, triplex, etc. hardware

redundancy approach to software generation, in which each redun­

dant hardware component IS an independently designed, but func­

tionally equivalent instrument, obtained from different manufac­

turers.

It is also possible to use the recovery block method WI th

N-version programming in a hybrid framework to exploit the In­

herent advantages of each approach [8].

As stated in [1], software fault tolerance princIples can be

discussed in terms of the following four phases:

o error detection

o damage assessment

o error recovery

o fault treatment

The first stage in providing software fault tolerance is to

detect the effect of a software fault. In addition to uSIng

internal interface checks in a module, software faults may be

detected by acceptance tests applied to recovery blocks, and

voting checks applied to N-version programming. Acceptance tests

are usually performed at the output of an individual software

module to check the reasonableness of the resul ts computed by

each module. In contrast, votIng checks compare the results

across the N computed verSIons to identify software faults.

Damage assessment Involves finding the extent of the

detected fault's spread within the system. This comes about

- 8 -

since there IS, in general, a time delay between the occurrence

of a faul t, and the detection of its effects on the tested out­

puts. Thi s issue is espec Ially importan t in appl ica tions 0 f a

probabilistic nature involving, for example, programs performing

floating point arithmetic on noisy data, as contrasted with

applications of a deterministic nature involving simple integer

arithmetic or character strings manipulation.

Following the detection of a software fault and damage

assessment, error recovery techniques are used to restore the

erroneous system state back to an error-free-state so that normal

system operation can contInue.

mechani sms :

o backward error recovery

o forward error recovery

There are two such recovery

In backward error recovery, the computational state is reset

to an earlier (presumably known to be error-free) state. Back­

ward error recovery techniques are usually assocIated with

recovery block methods which, together with the use of a recovery

cache, provide a means of storing previous computational states.

In forward error recovery, the current sta te is changed to com­

pensate for the effects of the detected software fault. Forward

error recovery techniques are useful in real-time appl ications

where backward error recovery is generally not feaSIble.

Fault treatment in recovery blocks consists of using the

alternate module for executIon. This is usually done temporarily

- 9 -

so tha t the pr imary block is used on subsequent execut ions. In

N-version programm1ng, faul t trea tment consists of ignor ing the

computations of versions that are determined to be faulty. One

ser ious problem in N-version programming, espec1ally in blocks

involving programs with floating point arithmetic and feedback,

is the possibility of unselected versions d1verg1ng from one

another, thus reducing system fault tolerance.

2.2 Software Implemented Hardware Fault Tolerance

Here, we give an overview of the software-1mplemented

hardware fault tolerance techniques for general dynamic systems.

The methods we discuss are drawn largely from control, esti­

mat1on, and communication theories, as well as from the f1eld of

mathematical statistics. Fault tolerance for dynamic phys1cal

systems has been traditionally achieved through the use of hard­

ware redundancy (stand-by, duplex, triplex, etc.) Over the last

decade, however, qui te a number of faul t tolerance techn1ques

[9]- [13] have been developed in which hardware redundancy has

been replaced or augmented with analytic redundancy wh1ch uses a

functional model of the physical system under cons1derat1on.

In most of the system-theoretic fault tolerance methods, an

estimator based on the causal functional model of the phys1cal

dynamic system (depicted 1n Figure 2.1) is first constructed 1n

software. This software module 1S then driven by the actual

inputs and outputs of the physical system to recursively con-

- 10 -

'" SW Model
,....---~

",. for HW
I~ residuals

\1

Decision
Logic

HW FDI system
---------------~-----

~/

Control
Software

decision logic detects HW
fnults in actuotors l sen­
sors and physical system
components

controller

..... Actu­
'---",..;:;.1 ators

..... Physical
.---",.~ I-----)~ Sensors 1-------'

System
plant

Figure 2.1: Software Implemented Hardware Fault Tolerant System
Structure.

- 11 -

struct estimates for the physical system outputs. These model

estimates are then differenced with the actual system outputs to

form a resIdual sequence over time. Inconsistency (nonzero mean,

dev ia t ion from theoretically computed sta ti st ics, etc.) In this

residual sequence is then analyzed to detect and Isolate faul ts

in the inputs, outputs, and components of the physical system.

The various system-theoretic methods differ mainly In the way the

system model is constructed, and In the manner the output estI­

mates are computed.

The systems approach to faIlure detection and isolatIon

(FDI) problems in dynamic systems is based on using the analytic

relationships between various sensor outputs, derived from a

knowledge of the underlying system dynamics. Analytic redundancy

can be either in the form of algebraic redundancy -- the Instan­

taneous relationship between sensor outputs, or dynamIC redun­

dancy -- the relationship between the time hIstories of sensor

outputs. The term "analytic redundancy" was coined in the early

seventies to differentiate this technique from the traditional

hardware redundancy approach in which the outputs of like sensors

are compared for fa il ure detection. Analyt ic red undancy comes

about from the common estimatIon capabIlity of various sensor

groups. Sensor FDI algorithms make use of this inherent analytIc

redundancy by cons ider ing dIfferent sensor subsets. Hence, the

analytic redundancy approach offers the capabil i ty of compar ing

dissimilar instrument outputs for failure detection and, thus,

- 12 -

allows the design of reliable systems with reduced hardware

duplication.

Analytic redundancy research culminated ln the development

of aircraft sensor fault tolerant digital flight control systems,

such as the USAF DIGITAC A-7 and the NASA/LRC F8-DFBW appli­

cations [14]-[15], engine sensor failure detection systems such

as the NASA/LeRC FIOO appl ica tion [16], strap down nav igation

systems wi th skewed sensor arrays such as the NASA/LRC RSDIMU

[17], and, more recently, sensor fault tolerant integrated fllght

control and navigation systems, such as the NASA/LRC TCV Research

Aircraft application [18]-[20].

2.2.1 Software Implemented Hardware Fault Tolerance Techniques

General fallure detection and isolation methods for dynamic

systems can be divided into the following groups:

o Voting Methods

o Parity Techniques

o Fallure Sensitive Filters

o Multiple Model Methods

o Innovations Slgnature Analysis

Voting Methods

Voting methods are comprised of mid-value select, and major­

ity voting techniques. SIFT [6] is an example of a software

implemented hardware faul t tolerance voting technique developed

for computing hardware.

- 13 -

Parity Techniques

Parity methods [21] encompass the standard votIng techniques

for systems with parallel hardware redundancy and their general-

i za tlons to systems wi th functIonal red undancy. Referring to

Figure 2.2, which identi f ies the inputs, internal s ta tes, and

... - -.... Xl(k) Xn(k)
,

· ~ ••• -· · · · · - -
11\ 1\ 1\ . . .

Figure 2.2: Causal Dynamic System Model

- 14 -

outputs of the software model in Figure 2.1, these techniques

correspond to looking at only the output measurements,

{Yl(.}' ••• 'Ym(.}}' to determine the failure modes. For instance,

the standard voting techniques would require that each measure-

ment, y. (.), has at least duplex redundancy for faIlure detection
1

and triplex redundancy for failure isolation. Functional redun-

dancy comes about when the measurements are related through the

observed variables.

For instance, four or more non-coplanar Instruments mea-

suring a three dimensional state variable (such as acceleration)

is an example of functional redundancy. In the parity approach,

a least squares state estimator using all of the measurements is

first constructed in software. Next, a predictor is constructed

similarly in software to compute a prediction for each of the

measurements on the basis of the estimate. Finally, the differ-

ence between the actual measurements and those predicted by the

software model are analyzed for faults. Both parity techniques,

using either parallel or functional redundancy, utilize the

static analytic relationships (as opposed to dynamic), which

exist between the sensed variables. For instance, parallel

votIng techniques assume that the observations measure precIsely

the same system output variable. Similarly, parIty methods based

on functional redundancy assume that the measurements are

different transformations of precisely the same system variable.

However, none of these techniques use the dynamic relatIonships

which dictate how the measured variables evolve in time.

- 15 -

A recent generalization of the parity approach is proposed

in [22], for general dynamic systems with a time-domain state­

space descr ipt ion. Thi s general I zed par i ty approach uses the

temporal analytic relationships which exist between the measured

outputs and inputs in Figure 2.2. Therefore, this method is

applicable to systems without parallel or functional redundancy.

Failure Sensitive Filters

The faIlure sensitive filter approach was developed by Beard

in [23]. In this approach, a filter is first constructed in

software using a time-domain state-space model of a lInear time­

invariant dynamic system. The gaIn parameters of thIS filter are

chosen such that a particular failure mode results In a measure­

ment resIdual sequence which remaIns fIxed in a single directIon

or plane. In problems where the flexibIlity exists, the remaln-

ing gaIn parameters can be chosen to improve the convergence rate

of the residual sequence to the desired direction.

While the failure sensitive approach has brought geometric

insight to the failure detection problems, it has not found

widespread use in applications due to its limitations to tlme­

invariant systems. SimIlarly, jump process formulations [10]

focus on steady state effects of a particular faIlure on the

measurement resIdual sequence of a time-invar iant fil ter. The

failure diagnosis is achieved by implementing the recurSIve

relationship for the a posteriori probabIlity of the faIlure

using the measurement residual. However, Jump process for-

- 16 -

mulatlons suffer from the same basic limitatIons associated with

failure sensitive filters.

Multiple Model Methods

Multiple model methods are based on constructing a different

software model for each failure mode as done by Montgomery,

Caglayan, and Price in [24], [25], and by ~Illsky, Deyst and

Cr a w ford i n [2 6] • In this approach, for each failure mode,

several software models are constructed, each modelling the

effect of a particular postulated failure. For each such model,

a measurement residual sequence is then generated by implementing

the corresponding state estimator in software. For instance,

referring to Figure 2.2, this approach would require the software

implementation of a bank of state estimators, each of which would

use a different m+p-l measurement combination from the set

{u,(.), ••• ,Up(.)'Yl(.)' ••• 'Ym(.)}. Therefore, a bank of measure­

ment residual sequences is available for analysis in determining

the most 1 i kely failure mode. Sta ti stical hypo thesi s test ing

procedures are then employed in reaching a faIlure decision.

Although the multiple model method would, in general, yield the

best failure detection performance for the widest class of

failures, computational requirements of this brute force approach

preclude its use in most practical applicatIons.

Another class of failure detection technIques (which can

also be classified under the multiple model method) would be

those using filter assemblies [14] resulting from a different

- 17 -

grouping of monitored measurements than that employed In the

mul tlple model method. These methods are also based on a tlme-

domain state-space description of the system. In this approach,

the measurement of a given output is predicted by using some or

all of the other measurements except the one which IS being

estima ted. Next, measurement residuals are formed by taking the

dIfference between the actual measurements and the analytIcally

constructed measurement pred ictions. Finally, standard vot ing

techniques are employed to determine faults from appropriate

truth tables.

Recent multiple model applications have been mostly ln

multitarget tracking problems [27] where the availability of

large scale digital computers renders the bank of filters

sol ut ion feas Ible. The rela tionshlp between the mul tiple model

and likelihood ratio methods has been InvestIgated by Caglayan in

[31]. In this work, it is shown that the multiple model and GLR

method sol ut ions are equi valen t for add it i ve bIas type sensor

failure models.

Innovations Signature Analysis

The last group of failure detection methods involves the

monitoring of the effects of a failure on the measurement

residual sequence of a single filter corresponding to the normal

operation of the system [28]- [31]. These methods use a tlme­

domain sta te-space model of the unfailed system dynamics. In

this method, a filter, based on the assumption of no failures, is

- 18 -

first implemented in software to estimate the system states.

These estimates are then used to predict the measurements and to

form the residual sequence. Statistical tests are then performed

on the residuals of this filter to isolate failures. Prior

statistical and structural knowledge of the effects (slgnatures)

of such failures on the measurement residuals are then used to

detect and isolate faults.

Innovations signature analysis techniques include performlng

statistical tests on measurement innovations as suggested by

Mehra and Peschon in [32], and the generalized llkelihood ratio

(GLR) method which was originated by McAulay and Denlinger in

[28] and formalized by Willsky and Jones in [29].

One of the developments in the signature analysis approach

has been the modified GLR algorithm proposed by Basseville and

Benveniste in [13]. In this approach, the GLR is constructed to

test whether the failure level is greater than or less than an a

priori fixed minimum amplitude.

been the cumulative sum (CUSUM)

Another recent development has

type test proposed by Segen and

Sanderson [33] for testing the change in statistlcal properties

of a stochastic sequence. This test, which is related to

Hinkley's mean shift testing results [13], is based on cumulative

sums of squares of the innovations and has advantages in terms of

robustness wlth respect to distributlons after the time of

failure.

- 19 -

Finally, recent work by Caglayan and Lancraft [18]-[20], has

concentrated on extending the signature analysis methods to

nonlinear dynamic systems. The sensor fault tolerant system

developed in [18]-[20] can be viewed as a generalization of the

GLR method to nonlinear systems. The major contribution of this

effort has been the development of expressions for the linearized

effects of bias type sensor failures on the measurement innov­

ations in a nonlinear filtering framework. A second important

contribution has been the compensation of "normal operating"

sensor biases in the no-fail filter and investigation of the

interaction between the normal operating bias estimates and the

bias faIlure level estimates of the corresponding detectors.

2.2.2 Failure Recovery in Software-Implemented Hardware Faul t

Tolerance

Fault tolerant systems, in which analytic faIlure detection

and isolation (FOI) techniques are used on-line to identify

hardware failures, usually require some level of compensation to

remove the accumulated effects of the detected failure on the

system model.

In these software-implemented hardware fault tolerant sys­

tems, system failures must propagate through the software model

of the physical plant (until a significant residual signature is

generated) to get detected. Therefore, the software model must

be reinitialized to remove the accumulated effects of the

- 20 -

detected failure on the model. In addition, the software model

must be restructured after the isolat10n of a failure, to account

for the loss of a system input or output, or a change in plant

dynamics due to an internal component failure.

Failure recovery procedures for system-theoretic hardware

fault tolerant systems can be grouped as follows [27]:

o Reprocess Measurements

o Reinitialize State Estimate and Uncertainty

o Reset State Est1mate and Increment Uncerta1nty

o Increment Uncertainty

o Probabilistic Weighting

We d1SCUSS these procedures in the following paragraphs.

Reprocess Measurements: If the exact time of failure can be

estimated, and if the measurements from failure onset time are

saved, then the software model can be restructured and then rerun

with a measurement set containing only the healthy measurements.

However, this approach 1S not feasible in most appl1cations,

since the exact time of failure is usually not estimated because

of computational constraints. Moreover, even if a mov1ng window

of measurements were to be saved, it is possible that the repro­

cess1ng of the measurements could not be done in real time. This

failure recovery method is analogous to the backward error

recovery procedure in software fault tolerance.

Reinitialize State Estimate and Uncertainty: Here, the

software model state covar1ance parameters are set to the values

- 21 -

originally specified by the initial conditions. The state estl­

rna te can poss ibly be re in 1 tl al i zed by followi ng the procedure

employed in selecting the plant state estimate initial condi­

tions. Naturally, this approach would generate tranSlents

associated with the settling of the filter gains, in a manner

similar to that encountered during system initiallzation.

Reset State Estimate and Increment Uncertainty: If the

failure levels are estimated by the software model, then the

state estimate can be reset following the detection and isolation

of a failure. The uncertainty of the state estimate (due to

uncertalnty in failure time and/or level) can be increased by

increment ing the assoc ia ted covar i ance in a manner consi stent

with the specifics of the detected failure. However, In most

practical applications, the failure onset time cannot be

accurately estimated. Furthermore, in some applications, a

sudden change in the state estimates would not be desirable due

to the tranSlent effects produced, for instance, by a control law

using the state estimates. This failure recovery method is

analogous to forward error recovery in software fault tolerance.

Increment Uncertainty: In applications where a sudden

change in the estimates is not desired, or failure onset time

cannot be accurately determined, the software model can be

reinitialized by incrementing only the state estimation error

covariance by an appropriate amount, following the lsolation of a

failure. In this manner, the state estimation error in the

- 22 -

software model can be gradually compensa ted. The appropr ia te

covariance to be used is the conditional covariance of the no­

fail filter, conditioned on the given observations under the

dec id ed fa i 1 ur e mod e [27]. The accumula ted e ff ect s 0 f the

failure on the software model state are not lmmedlately taken out

with this approach; however, the additional uncertainty added to

the state estimate, by incrementing the error covariance, gradu­

ally compensates for the error accumulation caused by the

detected failure.

Probabilistic Weighting: Here, failure level estimates are

incorporated into the software model state by weighting the a

posteriori probabillties. Instead of the hard sWltchlng produced

by a decision rule, this approach provldes

between failure modes.

soft sWltching

2.3 Software-Implemented Hardware vs. Software Fault Tolerance

Systems-based fault tolerance methods have been used to

reduce hardware redundancy in high reliability applicatlons. By

using these techniques, it has been possible to compare dissim­

ilar instruments (e.g., an accelerometer with an airspeed indl­

cator) as well. Since software implementation is indistinguish­

able from a hardware solution, from a functional input/output

point of view, these model-based failure detection techniques are

appl icable to developing faul t toler an t appl ica tion so ftware as

well.

- 23 -

Al though systems-based faul t tolerance methods have been

Implemented in software, the Issue of faults In the implemented

software has been largely Ignored in system-theoretIc fault

tolerance research. In essence, it has been ass urned tha t the

software associated with implementing the analytic redundancy has

perfect reliability.

Another aspect of fault tolerant software that differen­

tia tes it from the system-theoretic faul t tolerant systems work

is the functional modelling aspect. In the system-theoretic

approach, finding the appropriate reduced order dynamic model for

the physical system, and handlIng of the various sensor noises is

one of the most critical issues involved. In contrast, the

functional models in faul t tolerant software are better defined

(via specifications) since they do not involve the modelling of

physical processes. However, the noises associated with the

inaccuracies in software functional models are usually due to

truncations used in algorithms and finite precision arithmetic.

- 24 -

3. SYSTEM MODELS FOR SOFTWARE

To apply software-implemented hardware fault tolerance

technlques to software fault tolerance, it is necessary to obtain

an input/output functional system model of the software module.

In this chapter, we discuss how to obtain such system models, and

their relation to the software specification process. Examln­

ation of Figure 2.1 depicting a general software implemented

hardware faul t tolerant system structure suggests that if the

"Software Model for Hardware" block is replaced by a system model

of the control software, then systems-based FDIC technlques can

be extended to software fault tolerance as well. Figure 3.1

shows a general block diagram for such a systems approach to

software fault tolerance. Referring to this figure, the inputs

and outputs of a monitored software module drive a system model

for that software module. This system model generates a set of

residuals which is the difference between the observed and

predicted module behaviour. These residuals are, in turn,

analyzed by a decision logic whose outputs are then used by the

driver logic program to enable error recovery procedures. In the

next sectlon, we give a formal definition for system models of

software modules.

3.1 System Models for Software Modules

A system model for a software module is a transformation

relating the module's inputs to its outputs. In a functional

- 25 -

... System Model
r----7'I fo r ~---t

SW Module

residuals

Decision
Logic

t----+---~ Driver Logic

_SH EDl system... r-- ________________________ _

Software
Module

t

r---______ ~DtherControl-~-----~

Software
controller

-----------------------~---------

'--~Actu­

ators
Physical
System

t-----'~5enso rs 1------' plant

Flgure 3.1: Software Fault Tolerant System Structure.

- 26 -

analysis framework (referring back to FIgure 2.2), a trans­

formation, T, is a single-valued function mapping each element in

the input set into a single element in the output set. The set

of inputs and outputs are called, respectively, the domain, D,

and range, R, of T. Formally, we write

T:D - R with y = T(u) (3.1)

for all u in D and y in R. The domain and range of the trans-

formation in Figure 2.2 may be considered to be the set of all

RP and Rm valued sequences respectively. An Rm valued sequence

is, by definition, a transformation mapping the set of natural

numbers into the m-dimensional Euclidean space.

Two important attributes of transformations are the proper­

ties of being "onto" and "one-to-one". Referring to Figure 2.2,

if T maps D into all of R, i.e. for each r in R there exists a d

in 0 such that r=T(d), then T is said to map 0 onto R. On the

other hand, if the mapping T is such that distinct inputs are

mapped to distinct images, T is said to be one-to-one. One

immediate result is that T is invertible (i.e. the inverse of T

is also a transformation) if and only if T is one-to-one and

onto. For example, in Figure 2.2, the transformation is not onto

the set of all Rm valued sequences since, by causality, the

present output is a function of only past and present inputs. We

shall say more about this subject in the section on static

consistency checks (Section 4.1).

- 27 -

Ideally, a system model for a given software module should

be computable from its specification. However, more often than

not, the specification is not preclse enough to completely define

such a model. For example, a specification can be satisfled by

implementing various algorithms with different accuraCles, If the

accuracy is not expllcitly given in the speclfication. Consider,

for instance, a software block for computing the inverse of real

nonsingular square matrices. The specification for this module

can be written as: flnd the transformatlon, f, mapping the set

of all real nonsingular matrices with a fixed but arbitrary order

onto itself such that for each input matrix A of order n:

B = f (A) with AB = BA = I (3.2)

where I is the identity matrix of order n. (ThlS transformatlon

is an example of one-to-one and onto where the inverse transfor­

mation is identical to f).

Al though the specificatlon above is an acceptable one, it

would not be sufficient to use as a system model. For instance,

the desired accuracy of the implemented transformation is not

mentioned in the specificatlon. The constraint defined by (3.2)

would not be exactly satlsfied, because of the requirement to use

finite precision arithmetic, and of the inherent inaccuracy of

the algorithm used. For example, the implemented matrix inver-

sion routine could be based on Gaussian el imina tlon or Gram-

Schmid t orthogonal i za tion. For ei ther of these algor i thms, the

lmplemented routine could use scaling and plvotlng, or not. Each

- 28 -

of these decisions would affect the accuracy of the resul ting

computed inverse. Hence, an appropriate system model of the

software inverse module could be of the form

B = f (A) with I IAB-I II < s (3.3)

where 11.11 1S a specific matrix norm such as maximum row or

column sum and s is a threshold which may be function of the

input matrix elements, and the order of the input matrix. This

issue of software module functional performance will be important

in the design of acceptance tests and voting checks.

3.2 Static and Dynamic Software System Models

In system theory, it is important to differentiate between

static and dynamic systems. Referr ing to Figure 2.2 again, and

defIning the p dimensional input vector u(k) = [u l (k) ,

u 2 (k) ••• u p (k)] and output vector y(k)=[Yl(k), Y2(k) ••• Ym(k)], a

causal dynamic model in its most general form, will be glven by

y(k)=f(u (l),u (2), ••• ,u(k),

y(1),y(2), ••• ,y(k-l),w(l), ••• ,w(k) ,k), k=l,2 •••• (3. 4)

where the noi se sequence, w (k), is a sequence of r-d 1mensional

vector random variables with known statistics. Thi s noi se

sequence w(k), in the software model could be used, for instance,

to model the inaccuracy in the input sequence due to both finite

precision representation and inaccuracies introduced by the

algorithm used for generating the input. The no ise sequence,

w(k), could also be used to represent the errors introduced by

- 29 -

the algorithm implemented in the module itself, as well as the

errors ar1sing from 1tS implementation in fin1te precis10n

arithmetic.

W1thin the framework of this system model, we can consider a

number of model attributes ar1sing from the properties of the

transformation, f, including:

o memory

o feedback

o time-invar1ance

The model of (3.4) provides for memory since the current

output can be a function of the previous inputs,

{u(l), ••• ,u(k-l)}, and outputs, {y(l), ••• ,y(k-l)}. If the

transformat1on, f, has no memory, then the system model 1S sa1d

to be static. For example, the matrix inversion example cons1d­

ered earlier would have a static system model. If the current

1nput, u(k), 1S a function of the current and prev10us outputs,

{y(I),y(2) ••• , y(k-l)}, the system model above is said to have

feedback. This attribute is important in determining the

stability properties of the implemented software in the presence

of accumulated roundoff errors, for example, and 1S d1scussed

later. Finally, the dependence of the transformation on the time

index k, results in a time-varying system model. If there is no

such dependence, the system model is said to be time-invar1ant.

The system model described by (3.4) is called an auto

regressive mov1ng average (ARMA) model. In system theoretic

- 30 -

applIcations, algorithms can also be Implemented using an equIv-

alent sta te space model. Referring to Figure 2.2 and denoting

the internal n dimensional, state vector by x(k)=[x
l

(k) ••• xn(k)],

the equivalent sta te space model, if it exists, would be given

by:

x(k) = f(x(k-l), u(k-1), w(k-l), k)

y(k) = h(x(k), u(k), w(k), k)

(3. 5)

(3.6)

where the transformations f and h define the sta te space system

model. For Instance, for a time-invariant model, there would no

dependence on k in either f or h.

We can formally write the transformations f and h:

f:RnxRPxRrxN _ Rn

h:RnxRPxRrxN _ Rm

(3. 7)

(3.8)

where N is the set of natural numbers representing tIme. The

selection of an ARMA state space model for the implementation of

an algorithm in a software module is relevant in the recovery

block state initialization problem which will be discussed in

Chapter 5.

- 31 -

4. SYSTEMS-BASED SOFTWARE FAULT DETECTION TECHNIQUES

In this chapter, we outline how system-theoretic software­

implemented hardware fault tolerance methods can be used to

develop techniques for the detection of software faul ts. The

results wlll mostly be applicable to the design of acceptance

tests for recovery blocks, and voting checks for N-version

programming. We will assume that a dynamic system model of the

software module in the form detailed in the previous chapter has

already been derived.

The complexity of this system model will, of course, deter­

mine to a great extent the complexity of the fallure detection

logic. For instance, in a redundancy management software module

for a skewed sensor array, where software-implemented failure

detection and lsolation (FDI) logic is used to reduce hardware

redundancy, it is mandatory that the additional software develop­

ment and implementation cost be lower than the cost of the re­

placed sensor. Similarly, in fault tolerant software, it is

critical to have the complexity of the failure detection software

be substantially less than that of the software module being

tested. This requirement is mainly due to the need to assure

that the test module itself is free of software faults [1].

In system-theoretic software-implemented hardware fault

tolerance, there are a number of methods for reducing the com­

plexity of the failure detection logic; these include:

- 32 -

o reduced-order modelling

o choice of an FOI technique

In software implemented hardware fault tolerance, the order

of the system model of the physical plant has a very significant

lmpact on the complexity of the detection logic. For instance, a

nonl inear, one hundred sta te, dynamic descr iption (referr lng to

Fig 2.2, n = 100) of an aircraft engine can be modelled by a

fourth order linear dynamic model for the purpose of sensor

failure detection design. Likewise,in fault tolerant software, a

simple and appropriate description of the module algorithm may be

quite sufficient for the purpose of designing the failure detec­

tion logic. For example, consider a software module performing a

fourth-order Runge-Kutta integration of angular body rates to

generate vehicle attitudes. The failure detectlon logic could be

based on a simple rectangular integration model of the actual

high-order integration process.

The choice of the failure detection and isolation (FOI)

algorithm also has an impact on the complexity of the resulting

detection log ic. In software-lmplemented hardware faul t toler-

ance, multiple model methods result in the highest detection

log ic compl ex i ty • When failure sensitive filter and signature

analysis methods are employed, complexity is reduced, and when

parity techniques are used, the simplest detection logics result.

In the next sections, we di scuss how the var ious system­

theoretic techniques can be used to design failure detection

mechanisms for software faults.

- 33 -

4.1 Statlc Consistency Tests

Consistency analysis is an extension of the parity methods

discussed in Chapter 2. These system-theoretic fault tolerance

techniques will be extended to the design of acceptance tests

employed in fault tolerant software. We begln our discussion of

how this can be accomplished by first considering static consis­

tency.

Static consistency relations are based on the static redun­

dancy arlsing from a knowledge of the transformatlon which

relates the internal program states of a glven software module to

the inputs and outputs of that program block, at a given instant

of the computation cycle. Static redundancy comes about when two

or more module outputs are related to each other through the

algorithm used in the module. We describe thi s sta tlC consl s-

tency concept by first considering the following examples.

First, consider the example in Section 3.1, invo1vlng a

subrout ine prov id ing an ord inary rna tr ix invers ion for real non­

singular square matrices. In this case, the system model

description of the module would directly provide the necessary

consistency check:

I lAB - I II < s (4. 1)

where A is the input matrlx and B is the computed output matrix.

Note that the effort involved in the programming of the

consistency relationship (matrix multip1icatlon, subtractlon, and

- 34 -

eval ua tion of a rna tr ix norm) would be less than tha t of prog-

ramming another matrix inversion module for checking.

For another example of a static consistency check, conslder

a subroutlne for computing the eigenvalues of real square

matr ices. In thl s case, the so ftware spec ifica tion would be to

compute n complex numbers such that

det (A - A.I) = 0
1

for each real square matrix A of order n.

(4. 2)

A system model for

this module could be defined by the following transformation f:

(4.3)

such that for each A in Rnxn, f:R nxn _Cn maps A into A, in

accordance with

A = f (A) + w with det(A-A.I)=O i=l, •• ,n
1

(4. 4)

where w is a zero mean vector with a specified variance depending

on the algorithm used in computing the eigenvalue (Power, Jacobi

etc.), the condition number of the input matrix A, and the preci-

sion of the computing hardware.

Consider an acceptance test based on finding the inverse of

the impl emen ted a 19 or i thm. Referring to our discusslon in

Section 3.2, the transformation in (4.4) is not one-to-one.

That is, there are numerous matrices mapped into a single set of

eigenvalues. Hence, there is not a functional inverse for thiS

example. However, the inverse of the associated set function

[34] can be used instead. In this case, the question becomes one

of determining whether or not the input matrix A is in the

- 35 -

inverse set of {Al, ••• ,An }. This problem is equivalent to prov­

ing the existence or nonexistence of a nonsingular matrix, T,

such that

A = TJ(A) T-l (4.5)

where J is a Jordan canonical form [35] which is a function of

the eigenvalues of A. The complexity in solving (4.5) is at a

level similar to that of the original eigenvalue problem, how-

ever. Hence, the inversion approach does not, for this example,

yield a feaslble acceptance test.

Another possible acceptance test can be derived from a

direct evaluation of the system model (or the software specifl-

cation) whlch would be given by:

Idet(A-\I) 1 <s l=l, •• ,n (4.6)

where the scalar s is a threshold reflecting the inaccuracy of

the implemented matrix inversion algorithm. Note that the evalu-

ation of the determlnant in (4.6) above can be quite lnvolved,

especially for large order matrices.

However, we can develop simpler consistency checks based on

the properties of the implemented transformation. For instance,

one such consistency check is glven by the following

Itrace(A) - L\I < s (4.7)

where the threshold is a function of the errors in the computed

eigenvalues and trace function. Note that this consistency check

is much simpler than either finding a solution to the lnversion

problem of (4.5), or evaluatlng the satisfactlon of the system

- 36 -

model constraint of (4.4). Moreover, the threshold selection for

(4.7) is simpler than for (4.6).

As a final example of a static consistency check, consider a

software module performing the transformation of a 3 dimensional

vector, x, (represent1ng a physical variable such as accelerat10n

or angular velocity) from a vehicle body-axis coord1nate frame

to, say, a local level navigation frame.

specification would be given by

y = Tx

where the 3 x 3 transformation rna tr ix is given

c8cr/J sq,s8cr/J-cq,sr/J sq,s8cr/J+sq,sr/J

T (,p, 8, r/J) = c8sr/J sq,s8sr/J+cq,cr/J cq,s 8 sr/J- sq,c r/J

In this case, the

(4. 8)

by:

-s8 sq,c8 cq,c8 (4.9)

where q,,8,r/J are the Euler angles representing the aircraft's

attitude with respect to the local nav1gati~n frame, and c,s are

abbreviations for cosine and sine functions respectively. For

this problem, a consistency check based on the system specifI­

cation constraint would be just as complex as the algorithm

itself. However, we can develop a simpler consistency check

based on the property that a transformation between two ortho­

gonal reference frames does not change the length of a vector, so

that, accounting for computational inaccuracies, we would require

for consistency that

Iy'y - XIX 1< s (4.10)

where x' is the transpose of the vector x, and XIX, 1S, of

course, the length squared of x, and s is an appropriate thres-

- 37 -

hold value for acceptance. Again, the consistency check is much

simpler to implement than a brute force approach based dIrectly

on the system specification.

There are quite a number of other known analytic relation­

ships (available in function/ matrix/ systems theory literature)

which can be used for consistency checks. Our point is that

these consistency check candidates are already developed, and are

not currently exploited in either current state-of-the-art soft­

ware development packages such as LINPACK [36] or EISPACK [37]

nor in real-time math libraries supporting, for instance, flight

control software applications.

A library of well-tested consi stency checks, such as the

ones descrIbed above, can be developed for specific applicatIons.

This would reduce the programming effort involved In getting the

required consistency checks, and allow for significant program­

ming savings arising from the common consistency relations

applicable to different program modules.

4.2 Dynamic Consistency

Dynamic consistency is based on temporal redundancy arising

from the knowledge of the rules governing the time evolution of

the inputs and outputs of a functional module. In the context of

fault tolerant software considered here, dynamic consistency

relations can be similarly obtained by uSIng an appropriate

dynamic system model for the program module. For instance, if

- 38 -

the model of the program module can be descr1bed by a linear

(ARMA) autoregressive moving average (i.e., current module output

is a finite linear combination of past inputs and outputs), then

the corresponding consistency relations can be obtained using

standard linear system theory concepts. Again, the practical

requirement would be to obtain (through approximations, if

necessary) consistency relations which require substantially less

programming effort to implement than the actual code of the

program module itself.

We can illustrate the dynamic consistency concept wi th a

basic integration routine. The spec1fication for the problem 1S

to simulate, in a digital computer, the behav10r of a physical

system descr1bed by the different1al equation

~(t) = f(x(t),u(t),t) (4.11)

Referring to Figure 2.1, u is the input and x is the internal

state vector of the software module. The output of the module is

the computed state x, and f is an arbitrary function of the

variables x, u, and t (A suitable sampl1ng mechanism on u is

implicitly assumed) •

Suppose that the software module for the specification above

is implemented using a fourth-order Runge-Kutta integration

routine which requires the evaluation of the derivative expres­

sion (4.11) at four adJacent points. Now, to derive a dynam1c

consistency check we can use a simpler system model for the

software block, such as

- 39 -

x(k+l) = x(k) + T f(x(k),u(k),k) + w(k) (4. 12)

where k represents t k , T is the samplIng interval, and w(k) IS a

zero-mean sequence of random vectors representIng the expected

error of this model in simulating the behavior of the Implemented

software module (which, in turn, is sImulatIng the behavIor of

the system defined by (4.11». Based on our system model of

(4.12), a dynamic consistency check is given by the following:

Ix(k+l) - x(k) - T f(x(k) ,u(k) ,k) I < s (4.13)

A generalization of this dynamic consistency approach to linear

dynamic systems descr ibed by the sta te space model, ill ustra ted

in Figure 2.2, and specified by:

x(k+l) = A x(k) + Bu(k) + w(k)

y(k+l) = C x(k+l) + v(k+l)

is gIven in Appendix A.

(4.14)

(4.15)

While the technical details presented in the Appendix are

involved, we would like to stress that the system theoretIc

approach outlined provides a procedure for generatIng a dynamic

consistency check for any software module algorithm that can be

approximated by (4.14)-(4.15). This IS in contrast to the statIc

consistency check which must rely on known (problem specific)

analytic relationships from the literature. We will now give an

example utilizing the results obtained in Appendix A.

Consider the software specification for an aircraft sta te

estimator within the coverage of a navigation aid. In thi s

problem, the software is required to provide estimates for the

vehicle states satisfying

- 40 -

x(t) = u(t) + w(t) (4.16)

where x is the three dimensional aircraft position vector and w

is a random process representing gust inputs into the aircraft,

and u is the measured acceleration inputs. The estimator is

asked to provide estimates for the vehicle states using the

inputs u, and the measurements given by

y(t) = h(x(t» + v(t) (4.17)

where h is a nonlinear transformation relating states to the

navigation aid measurements, and v is a random process represen-

ting the sensor noise.

Suppose that an application software module, on the order of

a thousand lines of code, and implementing a nonlinear filter

[20], has been written for this problem. This nonlinear fIlter
A

would provide the sequences for state estimates, x(k), and, the

measurement predictions, y(k).

Consider now the problem of obtaining a system model for

this estimator software block In order to obtain an acceptance

test. Denoting this model's state representing the software

block's estimate by x , we can use the following linear model
m

xm(k+l) = xm(k) + Txm(k)

xm(k+l) = xm(k) + Tu(k) + wm(k)

to develop the acceptance tests.

(4.18)

(4.19)

In (4.18) above, x (k) and m

xm(k) represent available outputs of the software block repre­

senting the estimated position and velocity vectors, and u is the

input into the software module. Eqns. (4.18-19) represent the

- 41 -

simplest linear model that can be used for this software module.

Other linear models, for example, linear complementary filter

models [18] are also possible. We wi 11 now apply the resul ts

obtained in Appendix A to find an acceptance test for this

example.

The results of Appendix A provide a means for finding a

dynamic consistency relation involving any selected subset of

inputs and outputs of a software module. For instance, in order

to find a dynamic consistency relation involving the input, u,

and output, xm' in the example considered, we let (using the

notation in Appendix A):

A = [: :] B =[:]
In order to have dynamic redundancy, we need to consider at

least a sequence of three outputs so that the observability

matrix would be gIven by:

1 0

C (3) = 1 T

1 2T

Carrying out the computations specified in AppendIx A, we

get:

1

I - C(3)C~(3) = 1/6 -2

1

-2

4

-2

- 42 -

1

-2

1

and

o o o

B (3) = o o o

T o o

so that we obtain the following acceptance test using (A.13):

(4.20)

where the threshold s would be selected by considering the inac-

curacy of the linear model in modelling the nonlinear software

module.

4.3 Innovations Signature Analysis

System-theoretic innovations signature analysis can also be

used to develop fault detection algorithms for software modules.

This method can be used to obtain residual sequences between the

inputs and the values predicted by the model of the software

module. If the predicted values are already available, then this

technique would not introduce additional undue computational

complexity. We illustrate this concept with the following

estimation problem.

Consider a software module generating a recursive least

squares state estimate for the linear dynamic system state

described by (4.14) and (4.15). The software specificatIon for

this state estimation problem results in the following algorithm

depicted in Figure 4.1:

x(k+1) = x(k+1/k) + K(k+l) r(k+1) (4.21)

- 43 -

driver program -oE-;.-------; S i gnatu re I-00I.::::::;...--------,
Analyzer

_ .s.W_FDI ______________ - - - - - - - - - - - - - - - -

~------~;~ Delay

~ Delay

,.

Input
- Transi­

tion

... State
1--:3iIoITrnns 1-

tlon

+ ...

xCk) --- Controller~~~--------------~

+

"+

+

-
Sensor

Geom­
etry

Fll ter
Gain

y(k)

~ ____________ ~ootr~~~~~~--------------

L--___ ..;;.;..u C.;..;..k-,:>-~ Actu-

ators
Physical
System

~--~""~~ensors~IY~C=k~)_---~

plant

Figure 4.2: Software Fault Slgnature Analyzer -

- 44 -

where x (k) 1S the opt1mal least squares estimate for the state

x(k) using all the current and past inputs u, and measurements y,

up to time k. The other variables are defined by

x(k+l/k) =A x(k) + Bu(k)

r(k+l) = y(k+l) - y(k+l/k)

y(k+l/k) = Cx(k+l/k)

(4.22)

(4.23)

(4.24)

where x (k+l/k) is the single stage prediction for the state, and

r(k) is the measurement innovations sequence. The real complex-

ity in programming this algorithm is in the recursive matrix

computations required to generate the gain matrix K(k+l), which

involves several matrix multiplications, additions, and inver-

sions.

Considered as a software module, the vectors u and y would

be the inputs, and the state estimate x and the single stage

measurement pred iction y (k+l/k) would be the outputs. The

innovations (residual) sequence, r(k), would be analyzed to

determine software faults in the module. Note that the residual

sequence could be computed external to the module (and therefore

checked externally), on the basis of (4.23) and the software

module output, y(k+l/k), and, input, y(k+l).

If this software module has no faults, and if the measure-

ment sequence is generated by a physical system with a matching

dynamic structure, then the innovations sequence, r(k), would be

a zero-mean uncorrelated sequence of random vectors. Hence, any

appropriate statistical decision test could be implemented as an

- 45 -

acceptance test to determine whether or not the residual sequence

has the postulated statistical properties. For example, the

weighted sum of the squares of the residuals computed over a

moving time window could be compared against a set threshold;

exceedance of the threshold would indicate a model mismatch and a

potential failure in the software module. The preceeding example

allows also the potential for integrating hardware and software

fault tolerance since the same residual sequence can be analyzed

to detect hardware faults as well.

- 46 -

5. SYSTEMS-BASED SOFTWARE ERROR RECOVERY TECHNIQUES

In Section 2.4, we outl ined maj or techniques for fa il ure

recovery in software-implemented hardware fault tolerance. These

systems-based failure recovery techniques are extendable to

software error recovery as well. The major issues of concern in

software fault recovery, especially at the level of application

level programming involving real-time process control, are the

following:

o weak encapsulation due to memory and feedback

o detection delays

o noisy data

o state conversion in recovery blocks

o inexact voting and acceptance tests

o verSlon instability.

We discuss these issues briefly in the following paragraphs.

Encapsulation is an operating system programming approach in

which program computa tions are achieved using blocks wi th well-

defined boundar ies. The advantages of the encapsulation prin-

ciple are to preserve data integrity in the presence of complex

interactions of tasks which are subject to failure in the case of .

data encapsulation, and to preserve logical flow of control in

the case of program encapsulation. In application level program­

ming for dynamic systems, it is usually possible to group soft­

ware functions into modules with well-defined boundaries. While

the encapsulation principle imposes a desirable structured

- 47 -

approach to application programming development, its use in

minimizing the effects of faults in fault tolerant application

software for dynamic systems is limited both due to the extensive

use of feedback and memory in algor i thrns, and the presence of

detection delays.

The use of feedback is very common in application level

programming for dynamic systems. Hence, even though the compu­

tational blocks may have well-defined boundaries, the use of

feedback configurations, and transformations with memory, could

propagate a software fault in a given module to other blocks.

This problem is especially important if software faults are not

instantaneously detected. In practical applications, there is

usually a detection delay to ensure acceptable false ala~m

per formance. This delay is naturally longer for "soft" failures

in comparison with "hard" failures. These issues have been

addressed In systems-based fault tolerant methods by varlOUS

techniques, for instance, by modifying not only the value of a

var iable after the identification of a faul t but also by modi­

fying the level of confidence in that computation variable after

a failure.

In appl ication level programming, it is impera ti ve to have

consi stency checks toleran t of noi ses in the inputs. Thl s issue

is critical both in dynamic (computations with memory) and static

(memoryless computations) software blocks. For example, consider

a static software module solving a specific least squares

- 48 -

problem. An acceptance test for this application can not take

the least square fit and ident ically genera te the inputs since

the noise effects are fil tered out by the least squares algor-

i thm. Hence,

problems, the

input noise.

in static least squares and in dynamic estimation

acceptance test must compensa te for the prog ram

Another critical issue in software error recovery is the

initialization of the program states in the recovery block

algorithm. Clearly, if the variables needed in initializlng the

alternate block algorithm are directly available from the primary

module computatlons, then this initialization process would be a

stralghtforward process. However, in most applications, these

variables are not readily available, since the use of different

algorithms is essential in software fault tolerance.

In application level programming it is also crucial to have

acceptance tests and voting checks compensating not only for

finite precision arithmetic errors, but also for numerical errors

associated with algorithm accuracy. For example, this issue

would not arlse in an operating system program involving the

sorting of an array of integers. In contrast, any practical

scientific computing application program would involve numerlcal

error s due to the inaccuracy 0 f the algor i thm used. For

instance, a polynominal root finder would not always compute

zeros that identically satisfy the polynominal equation being

solved.

- 49 -

Finally, a very important problem with N-version programming

is the drift of unselected versions. While this issue is not

related to error recovery since It is not caused by a software

fault, we can consider it within the context of error recovery

procedures. These drifts occur due to the accummulated rounding

errors in the unselected versions in N-version programming.

In the next sections, we will discuss how the software error

recovery issues outlined above can be addressed by applying

software-implemented hardware failure recovery techniques, and by

generalizing these methods to the domain of fault tolerant

software.

5.1 Systems-Based Software Error Recovery Procedures

As discussed in Anderson and Lee [1], the drawbacks of using

forward error recovery are its usual dependence on damage assess­

ment, and antIcipation of faults. The systems-based software

implemented hardware failure recovery techniques discussed In

Section 2.4 can be used to minimize, if not alleviate, these

problems associated with forward error recovery.

For instance, consider the method of reinitialization of the

state estimate and the estimation error covarIance matrix

associated with this estimate. Extending this approach to the

domain of software fault tolerance, when a software error is

detected in a software module, the program states are initialized

by using current inputs into the module according to the proce-

- 50 -

dure employed at the start of the execution of the module. If

there is a covariance associated with the computed state, this

covar iance can be set to its in i tial val ue. To illustrate the

point consider the estimation problem discussed in Section 4.3.

Suppose that this algorithm is initialized via:

x (0) = Hy (0)

K(l) = f(P(O»

(5.1)

(5. 2)

where H is an'appropriately dimensioned matrix relating the mea-

surements to the program states, and the gain K (1) is a function

of the initial uncertainty (covariance) of the state. If, for

example, a software error is detected at the k'th instant, then

the method above requires the implementation of:

x (k) = Hy (k)

K (k) = f (P (0))

(5. 3)

(5.4)

Clearly, this forward error recovery procedure does not depend on

an exact assessment and prediction of the damage. Hence, it is

an appropriate means of recovery from unanticipated software

faults.

Systems-based error recovery techniques can also yield

procedures depending on only a partial assessment of the detected

fault. Consider, for example, the application of the conditional

covar iance technique, di scussed in Sect ion 2.4, to the develop-

ment of a forward error recovery procedure for software faul ts.

In applying this method to software faults, the program state of

the software block would not be changed after the detection of a

- 51 -

software error. However, the covar iance of the program sta te

would be increased by an amount depending on the type and level

of the failure detected. Hence, only the covar lance for those

states deemed to be corrupted by the fault would be changed.

Computational states would thus be gradually compensated through

the algorithm dynamics. This approach is especially useful when

a sudden change in a program state is not desired, especially in

closed-loop control applications. Summarizing, the conditional

covar iance technique does not depend on determin ing the exact

time of failure and level, but does depend on a precise deter­

mination of the type of failure, through the detection logic.

Finally, the techniques descr ibed above are appl icable to

algorithms where there is not an explicit covariance assocIated

with the program state. In these cases, however, a measure of

uncertainty needs to be developed for the implemented algorithm.

5.2 Systems-Based Recovery Block Initialization

When an acceptance test on a pr imary block declares tha t

module faulty, then the program states in the alternate block

need to be initialized (see Figure 5.1). Since software fault

tolerance techniques hinge on the use of diverse algorithms, the

internal program variables in the two modules will be different

(in number, in physical meaning, etc.). Therefore, there needs

to be procedure for converting the program states of the primary

block into the equivalent alternate block states. This problem

can be treated conveniently as an estimation problem, in the

- 52 -

u(k) Primary
-~Module xl (k)

Figure 5.1: Recovery Block State Initialization Problem

context of system theory. We now formally define this problem,

and give a solution for the case when the recovery block

algorithm is represented by a linear dynamic system model.

Re ferr ing to Figure 2.2 and Section 3.2, consider the sta te

space model for the pr imary block software, given by (3.5) and

(3.6):

xl(k) = fl(xl(k-l),u(k-l),wl(k-l),k)

Yl (k) hI (xl (k) ,u(k) ,wI (k) ,k)

k = 1,2, •••

(5.5)

(5.6)

where u(k) is the input sequence into the primary block, xl(k) is

the pr imary block sta te, wI (k) is the random sequence modell ing

- 53 -

the inaccuracies of the primary block, and YI (k) is the output

sequence from the primary block. Note that a state-space rather

than an ARMA representa tion is used, since the problem IS wi th

internal state initialization. Now, consider the alternate block

representa tion:

x 2 (k) = f 2 (x 2 (k-I),u(k-I),w 2 (k-I),k)

Y2(k) = h 2 (x2 (k),u(k),w 2 {k),k)

(5.7)

(5.8)

where x2 (k) ,w 2 (k), and y 2 (k) are the al terna te block IS sta te,

random noise state, and output sequences, respectively. The

transformations f l , hI' f 2, and h2 are naturally different,

reflecting the diversity of the two algorithms. Note that the

primary block implementing (5.5) and (5.6) would be executed

until a fault is detected, and the recovery block implementing

(5.7) and (5.8) would be executed after the detection of that

failure. Suppose the damage assessment for this failure requires

the switching from primary to alternate block after the kIth

instant. The problem is to determine the value of the state

x 2 (k) which ensures that the output of the alternate block, after

implemen ta tion, closely approx ima tes the output that would have

been generated by the primary block, had switching from primary

to alternate not occurred. Stated formally, find an estimate of

the alternate block internal states, x 2 (k), as a function of the

primary block inputs, outputs, and states, at time k, such that

the following cost function

- 54 -

k

E (5. 9)

j=l

is minimized for all input sequences, u(k). Here " " is a

sui table vector norm, and E is the expectation opera tor. Note

that the dimensions of the output vectors will be the same since

the two blocks must be equivalent from an input/output point of

view. If the algorithms are deterministic, we can equivalently

state the problem as: Find x 2 (k) such that

Yl(i) = Y2(i) for i = 1,2, •• ,k

and for all sequences, u(k).

(5.10)

In general, it is not possible to compute the recovery block

state estimate, x 2 (k), from only the current primary module

input, u (k), sta te, xl (k), and output, Yl (k) correspond ing to a

single computational frame. The next question is whether the

alternate block estimate, x2 (k), is computable from a subset of

the past primary block variables, or whether all of the past

pr imary block var iables are needed for thi s computa tion. ThIS

question is closely related to the observability problem for

dynamic systems. In fact, we now show that the alternate block
....

state estimate, x 2 (k), can be determined using only the n

previous inputs, {u(j), j=k-n, •• ,k-l}, and outputs,

{Yl (j) ,j=k-n+l, ••• ,k}, of the primary block, if the alternate

block dynamic system is linear and observable in the system

theoretic sense. Tha t is, there is no need to star t the execu-

- 55 -

tion of the alternate module from the beginnIng of the input data

sequence. Note also that there are no restrictions placed on the

primary block.

To illustrate, consider now the recovery block representa-

tion defined by eqs. (5.7) and (5.8) for a linear dynamic system

defined by:

x 2 (k) = A2 x2 (k-l) + B2 u(k-l) + w2 (k-l)

Y2 (k) = C 2 x2 (k) + v2 (k)

(5. 11)

(5.12)

The dynamic system above is the same one considered in AppendlX

A, with noise sequences w2 (k) and v 2 (k). For simplicity of

presentation, we consider the deterministic case where the noises

are ignored. Now, the recovery block output at time k is related

to the recovery block state at time k-n+l via [23]:

n-l

n "n-i C 2A 2 x 2 (k-n+1) + ~ C 2A 2 B 2u(k-I)

1=1

(5. 13)

Using the notation in the Append1x, current and n-l previous

outputs of the primary block are then given by

Y2 (k) = C 2 (n) x2 (n-k+l) + B2 (n) U (k) (5. 14)

where the matrices C 2 and B2 are defined by eqs. A.8-9 in the

Append ix • As 1 t happens, the rna tr ix C2 (n) is the observab ill ty

matrix for the recovery block system dynamics. For recovery

block initialization, we desire output sequence equality in

accordance with (5.10) above, so that

(5. 15)

- 56 -

The recovery block state estimate at time k-n+l is then given by

x2 (k-n+l) = c~(n) [Yl(k) - B2 (n)U(k)] (5.16)

where

C2 # (n) = [C 2' (n) C2 (n)] -1 C 2' (n) (5. 17)

The observability assumption guarantees the existence of the

inverse in (5.17) so that the recovery block state at time k can

then be obtained by propagating, x 2 (k-n+l), though (5.11).

Summarizing, for arbitrary time k, the recovery block state

can be initialized from the n primary block outputs

{Yl(k)'Y2(k-l) ••• , Yl(k-n+l)}, and from the n-l inputs, {u(k-l),

u (k-2) , ••• ,u (k-n+l)} for software modules which have a lInear

dynamic representation.

Since the recovery block in i tial i za tion outl ined above is

application dependent and fairly involved, it is of interest to

find other equivalent implementa tions for the recovery block to

simplify the initialization procedure.

below.

We give one example

5.3 ARMA vs. State Space Models for Recovery Blocks

The preceeding section underscores the importance of algor­

ithm choice for recovery blocks. That is, if there are a number

of functionally equivalent computational algorithms, then the

choice of a recovery block implementation should be dictated by

re in i tial i za t ion considerations. We illustra te this point by

using the example in the previous section. For this example, the

- 57 -

ARMA model form of the recovery block would, in accordance wi th

the discussion of section 3.2, have the form:

n n-l

Y2(k) = 2: A2 (i) Y2(k-i) + L B 2 (i) u(k-i) (5.18)

1=1 i=l

where A2 (i) and B2 (i) are computed in terms of the sta te space

description matrices A2, B2 and C2 with the use of z-transforms

[25] •

To ensure that this recovery block ARMA model produces the

identical outputs as those from the pr imary block sta te space

model (for the same input sequence) requires a very simple

initialization procedure: the recovery block ARMA model can be

initialized from the primary block outputs and inputs simply by

setting

Y 2 (k-n) =y 1 (k-n) Y2 (k-1)=Yl (k-1) (5.19)

The simplicity of this ARMA model initialization has signif1cant

relevance in flight control software applications.

- 58 -

6. FAULT TOLERANT FLIGHT SOFTWARE

In this chapter, we discuss the issues involved in applying

software fault tolerance techniques to the development of flight

software. Our discussion covers the stability of flight systems

with fault tolerant software, the preservation of functional

performance, the use of generic flight software blocks amenable

to the introduction of software fault tolerance and, finally, a

comparative evaluation of N-Version and recovery block methods

for use in generic flight software blocks.

6.1 Stability Issues in Fault Tolerant Flight Software

There are two main stabillty issues involved in the appli­

cation of software fault tolerance techniques to flight software:

o software module stability

o total system stability

Software module stability refers to the stability properties of a

given fault tolerant software module. Total system stability, in

contrast, deals with the overall stability of the composite

system, including both the physical system and the control soft­

ware. We begin our discussion with software module stability.

6.1.1 Software Module Stability

Software module stability problems can arlse both in

N-version and recovery block applications. In N-version program-

- 59 -

ming, the versions that are consistently not selected by the

voting logic can, for instance, go unstable. In recovery block

applications, excessive switching between the primary and alter-

nate blocks due to an improperly designed acceptance test can

also introduce instabilities.

We illustrate the potentlal instability problems in conver-

ting standard single version flight software into a fault toler-

ant implementation, by considering a 3-version implementation of

a feedback control module for the linear dynamlc system defined

in Append ix A (eqs. A. 1-2) • The single string version of the

controller software takes in the measurements, y(k), and gener-

ates the input, u(k), which drives the physical system in accor-

dance wi th:

z(k+1) = E z(k) + F y(k)

u(k+1) = G z(k) + D y(k)

(6. 1)

(6.2)

where z(k) is the internal controller state contained in the

software module. One of the requirements of such a controller

design is that the total system, including both the physical

system and controller dynamics, should be stable. This would

imply that the system dynamics (ignoring the noise states), given

by:

x (k+1) = [A +

z (k+1) = FC

BCD BGJ -lX (k)]
E z(k)

(6.3)

should be stable (i.e. the e igenval ues of the sta te tranSl t ion

matrix of (6.3) are all within the unit circle). However, thi s

- 60 -

does not necessar ily imply tha t the controller software module

described by (6.l) and (6.2) is stable. In fact, there are a

number of practical examples in which some eIgenvalues of E would

be outside or on the unit circle. For instance, a con troller

employing integral feedback is such an example. Now, consider a

3-version implementation of (6.l) and (6.2). In this case, we

would have three recursive relations controllers, each imple-

menting the following:

z. (k+l) I = E.z.{k)
1 1

+ FIy{k) (6. 4)

ui{k) = GizI{k) + Hi y (k) i=1,2,3 (6.5)

Suppose that the voting logic consistently selects the fIrst

version. In this case, the overall closed-loop system would be

stable since the first controller version is designed to stabil-

ize the system. The second and third blocks, wi th control out-

puts u 2 (k) and u 3 (k), would not be used; hence, these versions

would not have the loop closure provided by the phYSIcal plant

dynamics. Now, if one of these unselected controllers were

neutrally stable or unstable, then we could expect that control-

ler to go unstable, without the stabilizing effects of plant

feedback.

We now give a specific example illustrating the version

instabIlIty problem described above. Consider the N-version

implementation of an aircraft pitch axis PIO controller depicted

in Figure 6.1. PIO (proportional-integral-derivative) control-

lers are commonly used in flight control applications. In Figure

- 61 -

e

e

controller 1
r--------------------------,
~ 1

: eSI ~KT/S:
I I
I + e, eEl + I O£I

: ~ 7s+1 ~ K ~l--:~-'
I ~ 1 L ________________________ ~

r ------------ --- -- --- - --------,
I I
I eS2. ~ KT/s 1
I I
I 1

voter'
r- -----,
I I

'I": bE 1

I I
1 ~ I
L _____ -1

1 + ez + ec2 + I

: + 7S+ 1 ~ K +01--"";:-8-
E
...J

Z I 1 L ____________________________ ~

controller 2

r-------------- ---- -- - - - ----,
I I
I • I
Ie q q.-r. ~ I
: lIs lIs ;-0+ K6 :

I 1 L ____________________________ ~

vehicle dynamics

Figure 6.1: Version Instability in an N-Version PIO Controller

- 62 -

6.1, the lower block represents the simpl i fied aircraft pi tch

axis dynamics, while the top two blocks show the two versions

(other versions not shown for clarity) of flight controller

software blocks. The objective of the controller is to compute

the elevator input «JE in order to pitch the aircraft to the

commanded attitude, 8 . c The controller achieves this by

employing proportional feedback through the K block, integral

feedback through the KT/s block, and der ivative feedback through

the (TS + 1) block. The variables 8 Bl and 8B2 in the controller

software blocks may represent the different sensor biases driving

each controller or other input differences such as those due to

time delays.

Assume that the voter continually selects the first control-

ler output. In this case, the pitch rate acceleration, el, into

the aircraft should be zero in steady-state. Hence, the elevator

input, «J E, and the first controller output value would be -4o/K

where qo is an unknown torque into the system. In the first con­

troller block, the integra tor output should then be -4o/K wi th

an input, 8E l' value of zero. This would imply that81 is equal

to the commanded a tti tude (Jc which, in turn, dicta te tha t the

steady state aircraft pitch attitude would be equal to 8c - 8Bl •

Now, consider the second controller block, 8 2 would then be

equal to 8 c -8Bl + 8 B2 • This would imply that the input into the

integrator would be given by 8B2-8Bl• If the sensor biases are

not identical, then clearly the output of the second controller

- 63 -

would then be a ramp which would nullify the designed fault

tolerance since the second block would not get selected by the

voter even in the case of a software fault in the first control-

ler. If 9BI and 9B2 represented two independent measurement

noises, then the second controller output would be a random walk

process, again nullifying the designed fault tolerance.

In contrast, consider a 3-version implementation of a state

estimator for the same physical plant. In this case, each filter

would compute the state estimate x(k), implementing
...

...
(6. 6)

(6. 7)

In this scenario, even if a version is consistently selected out,

that version would not go unstable since by design each fil ter

version would be stable. That is, the filter dynamics described

by

(6. 8)

would be stable since the eigenvalues of [A-KiCA] would be insIde

the unit circle.

Hence, from software module stability consIderations,

N-version programming should only be introduced around software

blocks that are stable from an input/output point of view. For

unstable software modules, N-version programming should be

avoided •

- 64 -

6.1.2 System Stability with Fault Tolerant Software

We now turn our consideration from individual module sta­

bility to overall system stability. Most flight software blocks

are designed to ensure stability of the overall closed-loop

controller/vehicle configuration. For instance, a flight control

software stability augmentation system should, when combined with

the open-loop aircraft dynamics, yield a stable set of augmented

vehicle dynamics, and produce a stable system. If N-version

programming is introduced around the flight control software

block, the resulting system should still remain stable. Now,

overall system stability, in an N-version software environment,

is closely coupled to the specific voting logic employed. Under

normal operation, the voting logic will generate an output

sequence comprised of "pieces" of the output sequences of the N

separate versions. The number of "pieces" compr ising a given

length output sequence depends on the frequency of selecting

between versions, which, in turn, can depend on the values of the

inputs into the N versions, the relative accuracy of the imple­

mented algorithms in the N modules, the noise level in the

physical system, and the specifics of the voting logic.

We will illustrate the potential system instability problem

with fault tolerant software by consldering the example deplcted

in Figure 6.2. This example involves the design of a controller

for a fifth order dynamic system. The eigenvalues for the open­

loop system wi thout feedback (zeroes of the polynominal in the

- 65 -

Jw

Res) CIs) K=19S
sIs + 4)(s + 6)($2 .'.4$.1)

~-K=64

-K=14

a

-8 -6 -4 2

Figure 6.2: Example of Closed-Loop Instability with FTSW

- 66 -

denominator of the transfer function) are shown by "x", and the

zeroes of the transfer function (zeroes of the polynominal in the

numerator) are shown by "0" in the complex plane depicted in

Figure 6.2. This figures also shows the variations in the

closed-loop eigenvalues as the value of gain K is increased from

zero. Note that for stability, the gain should be between either

(0,14) or (64,195). Consider a 2-version implementation of this

controller. Suppose for purposes of illustration that the first

team selects a gain value of 12, whereas the second team selects

a gain value of 66 based on the stability and performance speci-

fication for the controller software. Consider now a 2-version

controller which uses the average o~ the two controller outputs

when each passes an acceptance test. Clearly, this case would

imply an effective controller gain of 39 which would result in an

unstable closed-loop system.

This simple example illustrates the point that closed-loop

stability with each separate version of an N-version program does

not guarantee closed-loop stability of the system with the

N-version software. As this example illustrates, N-version

programming can introduce stability problems when the versions

implement functionally dissimilar algorithms satisfying the same

specification. Hence, to avoid potential closed-loop stability

N-version programming should be restricted to the N different

software implementations of functionally equIvalent algorithms.

- 67 -

6.2 Preservation of Functional Performance

Preservation of functional performance refers to the re-

quirement that the introductIon of fault tolerance around a

specific software block should be transparent to the rest of the

software. This requirement can be addressed once it is deter-

mined that the software fault tolerance introduced does not

impair stability, as just discussed. In N-version programming,

the issue of functional performance preservation is more impor-

tant than it IS for recovery blocks, due to the normal switching

expected between the N versions. In con trast, a properly de-

signed recovery block application would not introduce excessive

swi tching between the pr imary and al terna te programs, which, 1 f

present could cause a significant impact on functional perfor-

mance.

To illustrate, we refer back to the estimator problem con-

sidered in Section 6.1.1. Suppose that each module computes the

sta te est imate wi th a steady-sta te bias error, I.e., as k gets

large we have:

E [x(k) - xi(k)] = mi (6.16)

where m. is the constant bias in the state estimate x. of the
1 1

i'th software block. From a control point of view, a constant

bias in the estimates are likely to be acceptable. However,

switching between the versions would produce a sequence of bias

jumps (due to the different m. values generated by the selected
1

version), and thus the state estimate provided by the N-version

- 68 -

programmed estimator block would contain errors whose frequency

spectrum is determined by the distribution of switching frequen-

cies. In effect, N-version switching can transform a simple

bias, which may be compensated adequately by the control system,

into wide spectrum noise, which could lead to a control perfor-

mance degradation of the control system.

The lssue of preserving functional performance in N-version

programming can be analyzed by computing the statistical proper-

ties of the difference sequence between the version outputs. For

instance, in the example just considered, consider the first

version to be the "reference" version. Version differences can

then be computed in accordance with:

"

(6. 9)

(6. 10)

Ideally, these sequences should be a zero mean uncorrelated

sequence of random vectors for functionally equivalent dissimilar

algorithms. Next, the effects of switching on the error sequence

would be analyzed. For a given voting 10glC, the empirical

statistics for the error sequence would be computed. For a given

instant, when the first version is selected, the error would be

zero. On the other hand, if the second version is selected, the

error term for that instant would be given by (6.9).

Another approach to the assessment of functional performance

preservation in fault tolerant software is to compute the perfor-

mance deviation from the software specification. This approach

- 69 -

is, in essence, equivalent to finding a system model for the

composite fault tolerant software block and the associated voting

logic or acceptance test. In the example considered above, this

approach would require the computation of the statistics of the

sequence constructed from

Xl (k) = x(k) xl (k) (6.11)

x2 (k) = x(k) x2 (k) (6. 12)
...

x3 (k) = x (k) x3 (k) (6. 13)

according to the deci sions dictated by the voting logic.

6.3 Generic Flight Software Blocks for Software Fault Tolerance

Modern flight software is comprised of functionally separate

blocks, resldent on dlfferent computers connected through a

network which supports da ta and con trol commun ica t ion between

modules. These blocks can be categorlzed accordlng to thelr

functions as follows:

navigation

guidance

sta te estimation

flight control

system monitoring

housekeeping

Nav igation software computes the aircraft's POSl t ion,

velocity, and attitude with respect to an external reference

frame by using a subset of the aircraft's sensor sui te. These

- 70 -

computed estimates are used by the guidance software to fly the

aircraft from its current position to some defined position in

the future, either along a prescribed path, or in some manner

which specifies given trajectory objectives. Guidance software

accomplishes this task by sending the required commands to the

flight control software. The flight control software, in turn,

computes the commands to drive the aircraft control surfaces and

engines in order to perform maneuvers or maintain flight equi1-

i trum as commanded by the guidance log ic. F1 ight control soft­

ware uses the state estimator block out,puts which are the

aircraft states estimates computed from a suitable subset of the

aircraft sensor complement. Engine control software computes the

engine controls needed to satisfy the f1lght control engine

commands. System monitoring performs the redundancy management

for the various redundant components by using FDI and BIT (built­

in test) procedures. Finally, housekeeping software takes care

of maintenance procedures such as the driving of the required

displays, maintaining cabin pressures, etc.

In the context of our earlier discussion of system models,

most of these f1 ight software blocks are in a feedback config­

uration, with one another and with the aircraft dynamics. State

estimation and navigation software blocks are usually designed to

be stable when considered individually, but on the other hand, it

is not uncommon to find applications when the guidance and flight

control software blocks by themselves are neutrally stable or

- 71 -

unstable (for instance, when integral feedback is used to allevi­

ate steady-state errors). It is also to be expected that the

maJority of these software modules will have memory as well,

because of the need to prov ide i tera t i ve control, smooth i ng of

state estimates and other like functions which demand knowledge

of past software commands and vehicle responses.

6.4 N-Version vs. Recovery Blocks in Flight Software

Here we present a qualitative discussion comparing the

feasibility of using N-version and recovery blocks in generic

flight software blocks.

It IS helpful to begIn this discussion with a consIderation

of the varIOUS possible interpretations of algorithm dissimilar­

ity. Recall that dissimilar algorithms are desired in software

fault tolerance to maximize the independence of software errors

in different versions. In the context of faul t tolerant soft­

ware, there are three possible "types" of algorithm dIssimilar­

ity:

Type I:

Type II:

functionally dissimilar algorithms which satisfy

the same given software specification,

functionally equ i valent diss imllar computational

algorithms,

Type III: dissimilar software implementations of the same

computational algorithm.

- 72 -

To illustrate the first type of algorithm dissimilarity

(type I), consider the design of an altitude-hold control law to

be implemented in a 3-version programming fault tolerant struc­

ture. The objective of the altitude-hold system software module

in an aircraft is to compute the pitch commands necessary to

maintain a constant altitude by using the sink rate measurements.

If each version were to be developed by an independent design

team, consisting of a control engineer and a software engineer,

then we might expect each team to come up wi th a functionally

different algori thm for satisfying the specified control objec­

tive. That is, given the same input measurements, each version

would be expected to produce significantly different output

pi tch commands particular to the control strategy used in that

vers ion. Hence, from an input/output point of vIew, the three

vers ions would be functionally diss imi lar, although each

implemented law would accomplish the specified objective.

The second type of algorithm dissimilarity (type II) is that

employed in functionally-equivalent but dissimilar computational

algorithms. An example would be three software blocks for

computing the eigenvalues of real square matrices in which one

version implements Gaussian elimination, one implements Gram­

Schmidt orthogonalization, and one implements Householder's

method. For a given input matrix, each version could be expected

to compute approximately the same values for the eigenvalues

according to the accuracy of each algorithm, and the precision of

the computing hardware. From an input-output point of view, they

are thus all functionally equivalent, although highly dissimilar.

- 73 -

The third type of algorithm d1ssimilarity (type III) ar1ses

because of dissimilarities in software implementation, for a

given computational algorithm. Extending our example above,

consider three different software implementat10ns of the Gaussian

elimination algorithm, each implemented by a different program­

mer. It is likely that each programmer would write a different

sequence of instructions for implementing this computational

algorithm. For instance, it is likely that each programmer would

write a different sequence of elementary row and column opera­

t10ns for performing the pivoting funct1on. Hence, each of the

three different implementations may not produce identical eigen­

values, although the same algorithm lles at the base of the

software module.

Each of these three types of dissimilarity can be used to

advantage in flight software applications for both N-version and

recovery block configurations. However, there are advantages and

disadvantages to using a given approach, depending on the generic

flight software block under consideration. It should be clear

that these different types of dissimilarity are increasingly

restrictive, so that, if a type I is feas1ble then a type IllS

also feasible, and if a type II is feasible, then a type III is

feasible.

Table 6.1 summarizes the feasibility of using N-version

programming in the various generic flight software blocks

discussed in the previous section. As indicated, the use of

- 74 -

functlonally dissimilar N-version algori thms (type I) is

generally not feasible in flight control or guidance software

blocks, mainly due to the potential system instability discussed

in Section 6.1.2. Additionally, one must be cautious in using

either type II or type III algorithm dissimilarity in unstable

software blocks since this can yield version instability as shown

by the example in Figure 6.1.

Table 6.2 summarizes the feasibility of using recovery

blocks in generic flight software blocks. As shown in this

table, the advantage of using recovery blocks for flight control

and guidance is that it can accommodate functionally dlssimilar

algorithms, (type I) since the system stability problems would be

minimal in a properly designed recovery block configuration. In

contrast as indicated in Table 6.1, functionally-equivalent but

dissimilar control algori thms (type II) are feasible for use in

guidance and flight control software blocks in an N-version

configuration, since the closed-loop stability issue can be

handled in this setup.

The use of functionally-equivalent (but dissimilar) estima­

tion and detection algorithms (type II) is feasible for use in

nav iga tion, state estimation, and system moni tor i ng blocks for

both N-version and recovery blocks. However, N-version program­

ming offers an extra advantage in terms of performance improve­

ment for these generic blocks. For instance, if the estimator

outputs are averaged in a 3-version programming state estimator

- 75 -

Software Block

navigation

guidance

state estimator

flight control

system monitoring

housekeeping

Advantages

type II dissimilar navigation algorithms
Improved estimation performance

type III dissimilar SW Implementations

type II dissimilar estimation algorithms
Improved estimation performance

type III dissimilar SW Implementations

type II dissimilar detection algorithms
Improved detection performance

type III dissimilar SW Implementations
Improved uptime

DISadVantages

slow execution speed
large program size

dissimilar guidance algorithms
Infeasible; potential system and
version Instability; transparency

slow execution speed
large program size

dissimilar control algorithms
Infeasible; potential system and
version Instability; transparency

slow execution speed
large program size

complexity

Table 6.1: N-version Programming Feaslbillty in Flight Software

- 76 -

~are Block

navigation

Advantages ~a~QITt~es

type II dissimilar navigation algorithms complex error recovery
efficient. fault tolerant navigation

guidance type I dissimilar guidance algorithms potential switching transients
efficient

state estimator type II dissimilar estimation algorithms complex error recovery
efficient

flight control type I diSSimilar control algorithms potential switching transients
efficient. self-repairing control

system monitoring type II dissimilar detection algorithms slow detection speed
efficient

housekeeping type 11 dissimilar algorithms complexity
Impraved uptime

Table 6.2: Recovery Block Programming Feasibility in FlIght
Software

- 77 -

application, it may be possible to reduce estimation error per­

formance by using the average stated estimate. Similarly, it may

be possible improve the false alarm and detection performance of

a system monitoring software block by using an N-version program­

ming approach.

We will give an example illustrating the potential for

functional performance improvements in flight software through

the use of software fault tolerance.

6.5 Performance Improvement with Fault Tolerant Software

We illustrate the potential for functional performance

improvement by considering a software module which performs the

management of redundancy in a skewed sensor array. For this

example, we assume that the sensor array is a set of accelero­

meters and rate gyros in a semi octahedral configuration depicted

Figure 6.3. Software is required to compute acceleration and

angular rates, in the instrument reference frame, from the redun­

dant accelerometer and rate gyro sensors mounted on the faces of

the semioctahedron, all in the presence of possible sensor

failures. ThlS type of redundancy management software is cur­

rently implemented in commercial and military strapped down

inertial measurement units; moreover, skewed sensor arrays will

be common in the next generation of high-reliability integrated

avionics. The example is thus highly relevant in the state-of-

the-art flight software.

- 78 -

spin

instrulflp.nt
fromp.

Figure 6.3: Semioctahedron Sensor Array Geometry

- 79 -

For this dIScussIon, we assume that the skewed sensor array

under consideration consists of two accelerometers and rate gyros

mounted on each of the four different faces of a semioctahedron.

There are five different coordinate systems of interest in this

problem. One is the instrument reference frame, usually coin­

cident with the body axes of the aircraft, and the other four are

the individual sensor axes. Each of these sensor axes are cus-

tomarily defined by the outward normal to the face (which makes

the sensor spin axis) and by the two measurement axes which are

symmetrically placed about the face centerline. Both accelero­

meter and rate gyro measurement axes, on a given face, coincide

with each other.

Each sensor measures the physical variable of interest

(acceleration or angular rate) along its two measurement axes.

Geometrically, each sensor provides the proJection of the three­

dimensional acceleration (or rate) vector onto its two measure­

ment axes which, in turn, determines the in-plane component of

the acceleration (or rate) vector for that a specific face of the

semioctahedron.

Software is required to compute the vehicle acceleration and

angular rate in the instrument frame, from the redundant sensor

measurements, using only heal thy sensors. If, for example, a

sensor is declared to be failed (by some means to be discussed

below), then the computation of the physical varIable is to be

done without using the faulty instrument. These computations are

- 80 -

to be performed in the possible presence of up to two posslble

sensor failures of the same type.

There are at least three fundamentally different ways of

designing the sensor failure detection and isolation software for

this application:

o edge vector test

o parity test

o generalized likelihood ratio test.

Each of these tests correspond to a different formulation of

the hypothesis testing problem under consideration. For in­

stance, the edge vector test (EVT) for the semioctahedral array

involves resolving the outputs of each sensor along the edges of

the semioctahedron for comparison across faces. If two sensors

on neighboring faces are functioning properly, then their proJec­

tions onto the common edge separating the faces should be approx­

imately equal, wi thin some threshold determined by the sensor

noise characteristics.

In the parity test approach, eight measurement residuals are

formed by subtracting the expected value for each measurement

(generated from the estimated vehicle acceleration and body rate,

and a knowledge of the semioctahedron geometry) from the actual

measurements obtained from the sensor. Then, a minimal set of

linearly independent relations are found from these eight

residual relations, to test for postulated sensor failures.

In the generalized likelihood ratio (GLR) test approach, the

measurement residuals are generated in the same fashion as in the

- 81 -

parity test, and are tested for zero mean under the various

sensor failure hypotheses. This approach attempts to classify

the sensor failures according to their effects on the measurement

residuals, and thus identify the particular failed sensor.

Now, in a single-string software application, one of the

sensor failure detection and isolation techniques would be

implemented in software. Cons ider now a 3-vers lon programmi ng

approach to this problem, where the first version performs the

edge vector test, the second performs the parity test, and the

third performs the generalized likelihood ratio test. We assume

that a majority voting algorithm, which acts on the decision

outputs of the three versions, has been implemented. Consider

now the false alarm performance of the 3-version software, i.e.,

the percentage of cases in which the fault tolerant software

voting logic will declare a sensor to be faulty although there is

actually nothing wrong with that sensor. Ignoring the false

alarms generated by the voter, this false alarm condition would

occur when there is a false alarm for an identical sensor concur-

rently in either version land 2, or version land 3, or version

2 and 3. Depicting the false alarm event in the i'th version for

the j'th sensor i by F .. , the false alarm event in the fault lJ

tolerant software block for the i'th sensor will be given by

F
J

= (Flj and F2j) or (F lj and F3j) or (F
2J

and F3j)

Assuming that the false alarms are independent events,

F j =(F1j and F2j) or (F
lJ

and F2j and F3j)or(F1j and

F2J and F3j)

- 82 -

(7. l)

(7.2)

so that the probability of false alarm of the 3-version software

block for the j'th sensor will be given by

(7. 3)

When PI =P 2=P 3=P and P«I, then the false alarm for the overall

fault tolerant software block for the j'th sensor would be

approximately given by:

P(F.} = 3P2
J

(7.4)

Hence, the false alarm rate of the fault tolerant software block

would be substantially lower than that for a single version. If

the assumption about the independence of false alarms in each

version is violated, then the improvement in the false alarm rate

would be less. This issue is similar to the problem of ensuring

the independence of versions, so as to minimize correlated errors

which act to reduce the des ired reliabi 1 i ty improvement. How-

ever, in the case of functional performance improvement, forced

divers i ty through the choice of version algorithms can poten-

tially minimize these correlated false alarms. In the next

section, we will discuss the feasibility of introducing fault

tolerant software into existing conventional software.

6.6 Adaptability of Fault Tolerant Software

We believe that fault tolerant software techniques can be

introduced, wi th a minimal overhead, to conventional software

wi th structural attributes resembling those for faul t tolerant

software. There are a number of such situations in flight soft-

ware applications. For instance, consider a self-repairing

- 83 -

flight control system software in which there are multiple soft­

ware control blocks each implementing a different control

strategy. One of these blocks might be optimized to compute the

optimal control strategy during normal operation under no

failures. A second might be executed when It is determined that

an aircraft actuator or surface has failed. The control strategy

implemented in the second software module could be totally dif­

ferent from the first one. Naturally, the second strategy would

not make use of the failed effectors in controlling the aircraft.

This self-repairing flight control software has a structure

closely related to that of a recovery block module. The first

software control module could be cons idered to be the pr imary

module whereas the second software module (executed after a

hardware failure) could be considered to be an alternate module.

The only difference is that the alternate module is executed when

a hardware failure is detected rather than a software fault.

Clearly, software faul t tolerance can be introduced into this

system by simply implementing an acceptance test acting on the

outputs of the software control modules, so that the software

would tolerate not only external hardware faults but also

internal latent design faults in the software control modules.

- 84 -

7. CONCLUSIONS AND RECOMMENDATIONS

We have presented a unified analysis of software and

software implemented hardware fault tolerance methodologies, and

have shown that systems-based failure detection, isolation, and

compensation methods can be extended to the domain of software

fault tolerance, by developing system models for software

modules. We have demonstrated this system-based approach in a

number of areas. For example, we have demonstrated that systems­

based failure detection techniques can be used to develop consis­

tency checks that are easier to implement than acceptance tests

based on software specifications. We have also shown that the

generalization of system-based failure recovery techniques to

software fault tolerance yields forward error recovery procedures

which do not depend on an exact assessment of the software error

damage. Finally, using a systems formulation, we have found a

solution to the recovery block state initialization problem, for

the case when the alternate block algorithm can be approximated

by a linear dynamic system.

We have also identified the basic system issues involved in

applying software fault tolerance to flight software. In par­

ticular, we have demonstrated that introduction of fault tolerant

software can potentially induce both version and closed-loop

instabilities in flight software. In addition, we have presented

a comparative evaluation of N-version and recovery block program-

- 85 -

ming techniques, in the context of generIc flight software

blocks. Finally, we have demonstrated the potential for

functional performance improvement in flight software using fault

tolerant software.

In summary, this study has shown that systems-based failure

detection, isolation, and compensation techniques can be used to

resolve significant issues in software fault tolerance. Our

recommendation is to apply the developed technology to a real

flight software problem at the level of complexity of the skewed

sensor array redundancy management software discussed in the last

chapter. We believe that there is much to be learned from such a

demonstration experiment since the majority of past and current

fault tolerant software experiments have been restricted to

problems of academic interest.

- 86 -

APPENDIX A

DYNAMIC CONSISTENCY RELATIONS FOR LINEAR SYSTEMS

In this appendix, we derive the consistency relations

discussed in Section 4.2 for software modules descrIbed by linear

systems of the form:

x(k) = Ax(k-l) + Bu(k-l) + w(k-l)

y(k) = Cx(k) + v(k)

(A. 1)

(A. 2)

where referring to Figure 2.2, x (k) = [xl (k) ,x 2 (k) ••• x
n

(k)]' is

the n-dimensional internal program state, u(k) =

[u l (k),U 2 (k) ••• up (k)]' is the p dimensional input vector, and

y(k)=[Yl(k)'Y2(k)"'Ym(k)]' is the m-dimensional output vector.

The whi te zero-mean random sequences, w (k) and v (k), represent

the algorithmic and finite precision arithmetic errors introduced

by the module.

We now derive an expression relating the measurement se-

quence, {y(k),y(k-l), ••• y(k-n+l)}, to the input sequence,

{u(k-l),u(k-2), ••• u(k-n)}. Defining the nm vectors Y(k) and

V (k) , the nn vector W(k), and the np-vector U (k) by:

Y (k) = [y(k-n+l) ••• y(k-l) y (k)] , (A. 3)

V(k) = [v(k-n+l) ••• v (k-l) v (k)] , (A.4)

W(k) = [w (k-n+l) ••• w(k-l)w(k)] , (A. 5)

U (k) = [u (k-n+l) ••• u(k-l)u(k)] , (A. 6)

we obtain from (A. 1) and (A. 2) :

Y(k) = C(n)x(k-n+l) + B(n)U(k) + E(n)W(k) + V(k) (A. 7)

where C(n) is the observability matrix of the linear dynamic

system defined by:

C(n)=

C
CA

B(n) is the nmx np dimensional matrix defined by

0 0 0
CB 0 0

B(n)=

CAn- 3B CB 0
CAn- 2B CAB CB

and E(n) is the nmx n 2 dimensional matrix given

0 0 0
CA

E(n)=
CAn- 3 CA2 0
CAn- 2

CA CA

by

If the linear dynamic system is observable, then

(A. 8)

0
0

(A. 9)

0
0

0

(A. 10)
0
0

the observabil-

ity matrix C(n) would have full rank n. We can estimate x(k-n+l)

via

x (k-n+l) = C# (n) [Y (k) - B (n)U (k)] (A. 11)

where c#(n) is the pseudoinverse of the observabi1ity matrix

C (n) • Using the estimate for x(k-n+l), we now define the

residual sequence as:

Y (k) - C (n); (k-n+l) = [I - C (n)c* (n)] Y (k) (A .12)

substituting the expression for Y{k) above and using the property

of the pseudo inverse (C =C C# C) as before, we get the n n n n

following:

E {I -C (n) C # (n)] [Y (k) - B (n) U (k)]} = 0 (A. 13)

Eq. (A.13) above defines nrn dynamic relations. Anyone of

these relations can be tested for zero mean by uSlng the noise

parameter values associated with W{k) and V{k). It can be shown

there can be at most nm-n linearly independent dynamic consis-

tency relations for this example.

Dynamic consistency relations generate an open-loop measure-

ment residual sequence, in contrast to the closed-loop residual

sequences produced by other fault diagnosis techniques employing

state estlmators.

REFERENCES

[1] Anderson, T. and Lee, P.A., Fault Tolerance Principles and
Practice, Prentice Hall Internatlonal, 1981.

[2] Randell, B., "System Structure for Software Fault Toler­
ance", IEEE Trans. on So ftware Eng ineer ing, Vol. SE-l, No.
2, June 1975.

[3] Hecht, H., "Faul t Tolerant Software for Real-Time Appl ica­
t ions", ACM Comput ing Surveys, Vol. 8, No.4, December 1976.

[4] A viz i en is, A • and Ch en,
N-Version Programming for
Prog ram Execut ion" , Proc.
November 1977.

L., "On the Implementation of
Software Fault Tolerance during

of COMPSAC 77, Chicago, IL,

[5] Sklaroff, J. R., "Redundancy Management Techn ique for Space
Shuttle Computer s", IBM Journal of Research and Development,
Vol. 20, No.1, January 1978.

[6] Wensley, J.H. et aI, "SIFT: Flight Design and Analysis of a
Faul t Tolerant Computer for Aircraft Control", The Theory
and Practice of Reliable System Design, D. P. Siewlorek and
R.S. Swarz, ed., Digital Press, 1982.

[7] Hopkins, A.L., Smith, T.B. and Lala, J.H., "FTMP -- A Highly
ReI iable Faul t Tolerant Mul ti-Processor for Aircraft", The
Theory and Practice of Reliable Systems Design, D.P.
Siewiorek and R.S. Swarz, ed., digital press, 1982.

[8] Slivlnski, T. et aI, "Study of Fault-Tolerant Software
Technology", NASA CR-172385, Sept. 1984.

[9] Pau, L.F., Failure Diagnosis and Performance Monitoring,
Marcel Dekker, Inc., New York, 1981.

[10] Willsky, A.S., "A Survey of Design Methods for Failure
Detection in Llnear Systems", Automatica, Vol. 12, pp.
601-611, November 1976.

[11] Mozgalevskii, A.V.,
Systems", Automatika
January 1978.

"Technical Diagnostics:
i Telemekhanika, Vol.

Continuous
39, No.1,

[12] Willsky, A.S., "Failure Detection in Dynamic Systems",
Redundancy AGARD-LS-I09, Fault Tolerance Design and

Management Techniques, September 1980.

[13] Basserville, M., "Changes in Statistical Models: Various
Approaches in Automatic Control and Statistics", Rapports de
Recherche I.R.I.S.A., No. 72, May 1981.

[14] Cunningham, T., Carlson, D., Hendrick, R., Shanar, D.,
Hartmann, G. and Stein, D., "Fault Tolerant Digital Flight
Control wi th Analyt ical Redundancy", AFFDL-TR-77 -25, AFFDL,
Wright-Patterson AFB, Ohio, May 1977.

[15] Deckert, J.C., Desai, M.N., Deyst, J.J. and Willsky, A.S.,
"Reliable Dual-Redundant Sensor Failure Detection and
Identification for the NASA F-8 DFBW Aircraft", NASA
CR-2944, February 1978.

[16] Beattie, E.C., LaPrad, R.F., McGlone, M.E., Rock, S.M., and
Akhter, M.M.,: "Sensor Failure Detection System F1nal
Report", NASA CR-165515, August 1981.

[17] Morelle, F.R. and Russell, J.G., "Design of a Developmental
Dual Fail Operational Redundant Strapped Down Inertial
Measurement Unit", NAECON 1980.

[18] Caglayan, A.K. and Lancraft, R.E., "An Aircraft Sensor Fault
Tolerant System", NASA CR-165876, April 1982.

[19] Lancraft, R.E. and Caglayan,
Inferring Nonlinear Detection
NASA-172l99, September 1983.

A.K., "FINDS: A Fault
System: User's Guide",

[20] Caglayan, A.K. and Lancraft, R.E., "A Fault Tolerant System
for an Integra ted Av ion ics Sensor Conf igura t ion" , NASA
CR-3834, Sept. 1984.

[21] Potter, J. E. and Suman, M.C., "Thresholdless Redundancy
Management wi th Arrays of Skewed Instruments", AGARDOGRAPH
224, Integrity in Electronics Flight Control Systems, 1977.

[22] Chow, E. Y. and Willsky, A. S., "Issues in the Developmen t of
a General Design Algor i thm for ReI iable Fa 11 ure Detection",
Proc. 1980 Conference on Dec1sion and Control, Albuquerque,
NM, December 1980.

[23] Beard, R. U., "Failure Accommodation in Linear Systems
Through Self-Reorganization", NASA CR-1183l4, 1971.

[24] Montgomery, R. C. and Cag layan, A. K., "Fa i 1 ure Accommodation
in Digital Flight Control Systems by Bayesian Decision
Theory", J. of Aircraft, Vol. 13, No.2, pp. 69-75, February
1976.

[25] Kuo, B. C., Discrete-Data Control Systems, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1970.

[26] Willsky, A.S., Deyst, J.J. and Crawford, B.S., "Adaptive
Filtering and Self-Test Methods for Failure Detection and
Compensation", Proc. of the 1974 JACC, Austin, TX, June
1974.

[27] Caglayan, A.K., and Lancraft, R.E., "Reinitialization Issues
in Fault Tolerant Systems", Proc. 1983 ACC, San Francisco,
CA, June 1983.

[28] McAulay, R.J. and Denlinger, E., "A Decision-Directed
Adaptive Tracker", IEEE Trans. on Aerospace and Electronic
Systems, Vol. AES-9, March 1973, pp. 229-236.

[29] Willsky, A.S. and Jones, H.L.,"A Generallzed Likelihood
Ratio Approach to the Detection and Estimation of Jumps in
Linear Systems", IEEE Trans. on Auto. Contr., Vol. AC-2l,
pp. 108-112, February 1976.

[30] Caglayan, A.K., "Necessary and Sufficient Conditions for
Detectabili ty of Jumps in Linear Systems", IEEE Trans. on
Automatic Control, Vol AC-25, No.4, August 1980.

[31] Caglayan, A.K., "Simultaneous Failure Detection and
Estimatlon in Linear Systems", Proc. of 1980 Conf. on
Decision and Control, December 10-12, 1980, Albuquerque, NM.

[32] Mehra, R.K., "An Innovations Approach to Fault Detection and
Diagnosis in Dynamic Systems", Automatica, Vol. 7, pp.
637-640, 1971.

[33] Segen, J. and Sanderson, A.C., "Detecting Change in a
Time-Series", IEEE Trans. on Information Theory, Vol. IT-26,
March 1980.

[34] Naylor, A. W. and Sell, G. R., Linear Operator Theory, Holt,
Rinehart and Winston, Inc., New York, 1971.

[35] Golub, G. H., and Van Loan, C. F., Matrix Computations, The
John Hopkins University Press, Baltimore, MD, 1983.

[36] Dongarra, J., Bunch, J. R., Moler, C. B., and Stewart, G.
W., LINPACK Users Guide, SIAM Publications, Philadelphia,
PA, 1978.

[37] Smith, B. T., Boyle, J. M., Ikebe, Y., Klema, V. C., and
Moler, C. B., Matrix Eigensystem Routines: EISPACK Guide,
Springer Verlag, New York, NY 1970.

1 Report No. I 2. Govtrnrnent Acceulon No 3. Reclptellt's <:'''109 No

NASA CR-172618
4 Title and Subtitle 5 Report o.te

Study of Fault Tolerant Software Technology September 1985

for Dynamic Systems 6 PerfOl'mlng OrglnlZlltlon Code

7 Author(sl 8 PerfOl'mlng Or9lnlzatlon Report No

Alper K. Caglayan and Greg L. Zacharias Report No. R8503
10 WOI'k UnIt No

9 Pwformlng Orgll'lIuttOn Name and Addr_
Charles River Analytics, Inc.
55 Wheeler Street 11 Contract or Grant No

Cambridge, MA 02138 NASl-l7705
13 TyPII of Report and Per,od Covered

12 SponsorIng AlJtttcy Name and Address Contractor Report
National Aeronautics and Space Administration

14 Sponsoring Agency Code Washington, DC 20546
505-37-13-03

15 Supplementary Notes

Langley Technical Monitor: Dave E. Eckhardt, Jr.
Preliminary Formal Report for Phase I

16 Abstract

The major a1m of this study is to 1nvestigate the feas1bility of uS1ng systems-
based failure detection isolation and compensation (FDIC) techniques in
bU1ld1ng fault-tolerant software and extending them, whenever poss1ble, to the
domain of software fault tolerance. First, 1t 1S shown that systems-based FDIC
methods can be extended to develop software error detection techniques by uS1ng
system models for software modules. In part1cular, 1t is demonstrated that
systems-based FDIC techniques can yield consistency checks that are easier to
1mplement than acceptance tests based on software specificat1ons.

Next, 1t is shown that systems-based fa1lure compensation technlques can be
generalized to the domain of software fault tolerance in develop1ng software
error recovery procedures. In particular, the systems approach yields forward
error recovery procedures which do not depend on an exact assessment of the
software damage.

Finally, the feasibility of using fault-tolerant software 1n fl1ght software 1S
investigated. In particular, possible system and version 1nstab1lit1es, and
functional performance degradat10n that may occur 1n N-Vers1on programm1ng
applications to flight software are illustrated. Finally, a comparat1ve
analys1s of N-Version and recovery block techniques 1n the context of generic
blocks in flight software is presented.

17. Key Words (Suggested by Author(sll 18 DIstrIbutIon Statement

Software fault tolerance Unclassified - Unlimited
Fault tolerant systems Subject Category 61
Flight software

19. Secur,ty o-f. (of thts reportl 20 SecUrity OaSSlf (of thIS ~I 21 No of Pages 22 Pr,ce

Unclassified Unclassified 92

1-305 FOI sale by the National Technical InfOlmatlon Service. Springfield. Virginia 22161

End of Document

