
Strathprints Institutional Repository

Pang, Y. and Giovanini, L. and Monari, M. and Grimble, M.J. (2007) Condition monitoring of an
advanced gas-cooled nuclear reactor core. Proceedings of the Institution of Mechanical Engineers,
Part I: Journal of Systems and Control Engineering, 221 (6). pp. 833-843.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9022577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 http://pii.sagepub.com/
Control Engineering

Engineers, Part I: Journal of Systems and 
Proceedings of the Institution of Mechanical

 http://pii.sagepub.com/content/221/6/833
The online version of this article can be found at:

 
DOI: 10.1243/09596518JSCE365

 2007 221: 833Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
Y Pang, L Giovanini, M Monari and M Grimble

Condition monitoring of an advanced gas-cooled nuclear reactor core
 
 

Published by:

 http://www.sagepublications.com

On behalf of:
 

 
 Institution of Mechanical Engineers

 can be found at:Engineering
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and ControlAdditional services and information for 

 
 
 
 

 
 http://pii.sagepub.com/cgi/alertsEmail Alerts: 

 

 http://pii.sagepub.com/subscriptionsSubscriptions:  

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 http://pii.sagepub.com/content/221/6/833.refs.htmlCitations: 
 

 What is This?
 

- Sep 1, 2007Version of Record >> 

 at University of Strathclyde Library on September 28, 2011pii.sagepub.comDownloaded from 

http://pii.sagepub.com/
http://pii.sagepub.com/content/221/6/833
http://www.sagepublications.com
http://www.imeche.org/home
http://pii.sagepub.com/cgi/alerts
http://pii.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://pii.sagepub.com/content/221/6/833.refs.html
http://pii.sagepub.com/content/221/6/833.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://pii.sagepub.com/


SPECIAL ISSUE PAPER 833

Condition monitoring of an advanced
gas-cooled nuclear reactor core
Y Pang, L Giovanini*, M Monari, and M Grimble
Industrial Control Centre, University of Strathclyde, Glasgow, UK

The manuscript was received on 7 October 2006 and was accepted after revision for publication on 4 June 2007.

DOI: 10.1243/09596518JSCE365

Abstract: A critical component of an advanced gas-cooled reactor station is the graphite core.
As a station ages, the graphite bricks that comprise the core can distort and may eventually
crack. Since the core cannot be replaced, the core integrity ultimately determines the station
life. Monitoring these distortions is usually restricted to the routine outages, which occur every
few years, as this is the only time that the reactor core can be accessed by external sensing
equipment. This paper presents a monitoring module based on model-based techniques using
measurements obtained during the refuelling process. A fault detection and isolation filter
based on unknown input observer techniques is developed. The role of this filter is to estimate
the friction force produced by the interaction between the wall of the fuel channel and the
fuel assembly supporting brushes. This allows an estimate to be made of the shape of the
graphite bricks that comprise the core and, therefore, to monitor any distortion on them.

Keywords: fission reactor monitoring, fault detection and isolation, unknown input
observer, directional residual generation

1 INTRODUCTION these distortions have been within the expected and
predicted limits. The continued operation of the plants

Within the United Kingdom, the advanced gas-cooled have been supported through rigorous monitoring
reactor nuclear power stations are approaching the and inspection processes, including core channel
end of their predicted operational lives. The major diameter measurements, ovality measurements, and
factor that dictates the life of a station is the condition chemical analysis of trepanned core samples, which
of the graphite reactor cores, which distort over time take place during planned outages approximately
with prolonged exposure to heat and radiation. every three years. However, as the core becomes
Currently, it is proposed that the operational lifetime older and the distortions become more severe, the
of the plants could be extended if the distortions need for increased information relating to the core
of the reactor cores are not as severe as initially condition becomes greater.
predicted and that it can be demonstrated that the One source of information is the fuel grab load
reactors are still safe to operate. The reactor core is trace data, which are routinely gathered during reactor
composed of a large number of interlocked hollow refuelling. Although not originally intended for core
graphite bricks that form channels into which the condition monitoring purposes, the fuel grab load
uranium fuel and the control rods are inserted. Over trace data contain a contribution from a frictional
time, heat and radiation cause stresses to build up interface between the fuel channel wall and the fuel
within these bricks causing them to shrink and assembly. Changes in the fuel channel shape are
distort, and they may eventually crack. To date, reflected in the fuel grab load trace data and if this

relationship can be understood then it may be
possible to derive information relating to the con-* Corresponding author: Industrial Control Centre, University

dition of the core from these data. Also, refuellingof Strathclyde, Graham Hill Building, 50 George Street, Glasgow

G1 1QE, UK. email: l.giovanini@eee.strath.ac.uk is undertaken on a weekly basis and the fuel grab
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834 Y Pang, L Giovanini, M Monari, and M Grimble

load trace data are kept as part of station records, Using the model of the system of interest, analytical
redundancy exploits the null-space of the state-spacea requirement of the nuclear generating licence, pro-

viding a more frequent, albeit less comprehensive, observability matrix to allow the creation of a set
of test residuals. These residuals use sensor datasource of information relating to the core condition

than that obtained during outages. In addition, the histories and known control inputs to detect any
deviation from the static or dynamic behaviours ofrecords stored at the station would allow historic

analysis of these data to be performed. the model in real time. Such an approach to fault
detection and diagnosis, which is clearly intensiveTo date, little research has been undertaken in the

field of using fuel grab load trace measurements to (and expensive) in process and fault modelling
efforts, provides redundant information and failuredetermine the advanced gas-cooled reactor core

condition. An earlier project in a related area resulted cross-checking, which are highly desirable in safety
critical areas. The resulting solutions are high-fidelityin the development of a system that examines

the final part of a load trace [1], in an attempt to detection and diagnosis schemes that are tightly
coupled to the individual application. More recentdetermine automatically whether fuel has been set

down correctly in the reactor. The system employs work (see references [7] and [8] for example) has also
dealt with a range of so-called robust fault detectiona combination of k-means clustering, Kohonen net-

work, and rule induction techniques to assess problems in which it is possible to distinguish
explicitly between faults and modelling errors in theelements of the load trace. These tools are combined

with a rule-based system to provide an assessment detection scheme.
For enhancing the isolability and accuracy of aof fuel set-down. In the application of intelligent

system techniques to nuclear power plants, there disturbance estimation, the generation of residuals
that have directional properties in response to aare many reported examples in the areas of plant

operation, emergency response, maintenance, and particular fault is an attractive idea in order
to accomplish fault detection and isolation. Thesome in design activities [2]. One application that

deals with examining a time-series set of data for detection filter, a special dynamic observer which
generates directional residuals, was first developedcondition monitoring of motor-operated valves in a

nuclear power plant is reported in reference [3]. This by Beard [9] and Jones [10]. The problem was later
revisited by Massoumnia [11] in the geometric frame-system deals with extracting known features from a

set of response data from motorized valves. However, work and by White and Speyer [12] in the context
of eigenstructure assignment. Further improvementsin this application, various faulty conditions are

simulated to obtain expected responses. were suggested by Liu and Si [13] and Keller [14].
This paper presents a monitoring module basedRecently, West et al. [4] developed a data-mining

technique for supporting the condition monitoring on analytical redundancy and directional residual
generation using measurements obtained during theof the core. This paper describes a data-mining

approach adopted to meet this need of understand- refuelling process. The role of this filter is to estimate
the friction force produced by the interaction betweening the new domain of fuel grab load trace data

analysis for core-condition monitoring. The pro- the wall of the fuel channel and the fuel assembly
supporting brushes. This allows an estimate to beposed technique includes the process of analysing

and visualizing data in order to discover previously made of the shape of the graphite bricks that comprise
the core and, therefore, to monitor any distortionunknown, or confirm previously suspected, patterns

and knowledge. The data-mining approach employed on them.
Another aim of this research is to prove that thefor examining the data in this work is based on the

work of Fayyad et al. [5]. This allowed the raw data analysis of fuel grab load trace data can provide
useful and meaningful results in terms of identifyingto be explored for patterns, without necessarily

having an understanding of how the load data directly and estimating deformation and distortion within the
core of advanced gas-cooled reactors. It is currentlyrelated to the core condition. Subsequent discussions

with plant experts allowed a deeper understanding the belief of the experts that when deformations
occur, they are more likely to occur on an individualof the nature of certain channel features and distor-

tions, and how they relate to the fuel grab load data, brick basis, rather than affecting the whole channel.
With the knowledge that over a period of 5 yearsto be developed.

Analytical redundancy [6] is a fault-detection every channel in the reactor would be refuelled at
least once, it was hypothesized that the load tracemethod that allows the explicit derivation of the

maximum possible number of linearly independent data could give an indication of the condition of the
core. Characterizing this relationship would allowsystem model-based consistency tests for a system.

JSCE365 © IMechE 2007Proc. IMechE Vol. 221 Part I: J. Systems and Control Engineering
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analysis of the load trace data to provide information Nuclear fission is used to generate heat in order
to produce steam to generate electricity from arelating to the condition of the core on a more

frequent basis. turbine. In order to sustain a constant power output,
the uranium dioxide fuel needs to be periodicallyThe paper is organized as follows. In section 2, an

overview of advanced gas-cooled reactor core design replaced. This process, termed reactor refuelling, is
carried out in batches of around 10 fuel assembliesis provided. The key components of the reactor for

the development of a model for the core monitoring on a monthly basis. Exact times between refuelling
operations and numbers of channels refuelled in aare described. Section 3 is devoted to the development

of a simplified mathematical model of the refuelling batch are station-dependent. A fuel assembly consists
of two main elements: the fuel stringer which housesprocess for fault detection and isolation filter develop-

ment. In section 4, the unknown estimation problem the uranium dioxide fuel, which is free-standing
when in-core, has lateral supports above the topis formulated and solved using an unknown input

observer. Finally, in section 5 the results obtained are fuel element and the fuel plug unit which provides
shielding from heat and radiation and is also usedpresented and discussed. Conclusions and future

work in this topic are discussed in section 6. to lock the fuel assembly in the channel during
operation (Fig. 2). Each fuel assembly is replaced every
5 to 7 years. During this refuelling process measure-

2 BACKGROUND OF NUCLEAR REFUELLING ments of the load, and sometimes height, of the fuel
assembly being extracted or inserted into the core

The advanced gas-cooled reactor is a pressurized are taken for control and protection purposes.
carbon dioxide cooled, graphite moderated nuclear The core of an advanced gas reactor is constructed
reactor which uses enriched uranium as fuel (Fig. 1). from thousands of interlocking cylindrical graphite
The reactor core is located inside a large pressure bricks (Fig. 3). These bricks are arranged in layers of
vessel and a concrete biological shield. On-load about 300 fuel moderator bricks, which form the fuel
refuelling was an economically essential part of the channels into which the uranium fuel is inserted,
design, to maximize power station availability by combined with interstitial bricks that provide channels
eliminating refuelling downtime. This was particularly into which boron control rods can be inserted to
important for the original design (Magnox nuclear control the rate of fission, or used to shut down the
reactor) as the unenriched fuel had a low burn-up, reactor. Typically the core comprises of 11 or 12
requiring more frequent changes of fuel than most layers, resulting in fuel channels of around 10 m

deep. On top of the core are guide tubes and standenriched uranium reactors.

Fig. 1 Schematic diagram of an advanced gas-cooled reactor

JSCE365 © IMechE 2007 Proc. IMechE Vol. 221 Part I: J. Systems and Control Engineering
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Fig. 4 Three-dimensional cutaway view of an advance
gas reactor

number of factors contribute to the value of the net
load, the most significant ones being:

(a) the weight of the fuel assembly;
(b) frictional forces caused by the interaction between

stabilizing brushes on the fuel assembly and the
channel wall;

Fig. 2 Fuel assembly (c) up-thrust effects of the gas circulating through
the core supporting some of the weight of the
fuel assembly.

The weight of the fuel assembly depends on its
mass, which changes during the reactor’s operation.
During the extraction process it is unknown, but can
be determined once the fuel assembly is out of the
reactor from the grab load trace data.

The frictional forces are caused by the interaction
between the stabilizing brushes on the fuel assembly
and the channel wall. The magnitude of the frictional
component will directly depend on the channel wall
geometry, which means that any distortion in the
channel geometry will be reflected in the friction
force. The sign of the frictional component depends
upon the direction of travel of the fuel assembly.
During the reactor discharge by removal of the old
fuel assembly from the core, friction opposes the

Fig. 3 Core keying system movement of the assembly and therefore a narrowing
of the channel will result in an increase in the
apparent load of the fuel assembly. During the reactorpipes for each channel, resulting in a channel of

approximately 30 m through which the fuel assembly charge of new fuel insertion, the frictional force
supports the weight of the fuel assembly, resulting inmust travel during refuelling (Fig. 4).
a decrease in the apparent load from a narrowing of
the fuel channel.

Cracks represent the extremes of graphite brick3 MODEL DESCRIPTION
distortions and although the nature and causes of
the cracking are beyond the scope of this paper, aLoad cells on the refuelling machine directly measure

the apparent load of the fuel assembly, as it is being brief overview of what they are and how they may
appear on a load trace is given. Circumferentiallowered into, and raised out of, the reactor core. A

JSCE365 © IMechE 2007Proc. IMechE Vol. 221 Part I: J. Systems and Control Engineering
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cracking occurs around the diameter of the brick. During the refuelling process, measurement of the
position of the grab in the channel and grab load areDeformations of graphite associated with the crack

result in a reduction in diameter at the crack recorded along with elapsed time. Let the continuous
variables x

1
(t) and x

2
(t) denote the displacement andlocation. This reduced diameter will result in more

friction between the fuel assembly and the channel, velocity of the fuel assembly respectively. According
to equation (2) the model can be built aswhich will appear as a peak on a discharge load trace

and as a trough on a charge trace. Axial brick cracking
is where a brick cracks along its entire length, which C ẋ1(t)

ẋ2(t)D=C0 1

0 0DCx1(t)

x2(t)D+C 0

fl(t)/m−gDmay cause the brick to open up, resulting in a larger-
than-expected internal diameter. It is also possible
that the bricks may doubly crack and shear, causing −C 0

1/mD ff(t)+C1 0

0 1Dw(t) (3a)
a reduction in the effective internal diameter across
the brick. Either of these effects would be likely to
result in a step change in the friction and hence load y(t)=C1 0

0 1DCx1(t)

x2(t)D+v(t) (3b)
across a brick layer. The magnitude and direction of
this step change would depend upon the severity

where w(t) is system noise and v(t) is measurementof the dimension change and the direction of travel
noise. Given the fact that the mass of the fuelof the fuel assembly.
assembly is known, the real input to the system u(t)Finally, the circulated gas through the core produces
can be defined asa buoyancy force that makes the fuel assembly appear

lighter. The buoyancy force is defined using the sign
convention that an up-thrust is positive because, in u(t)=

1

m
fl(t)−g (4)

both cases, reactor charge or discharge has the same
effect. The sign convention for brush friction depends Then the dynamic model of the refuelling process is
on the refuelling operation being represented. For a given by
discharge, brush friction acts to increase the grab
load (i.e. it is negative); for a charge, brush friction C ẋ1(t)

ẋ2(t)D=C0 1

0 0DCx1(t)

x1(t)D+C01D u(t)acts to reduce the grab load (i.e. it is positive). During
the refuelling process, the fuel assembly motion is
governed by the interaction of forces that act on the

−C 0

1/mD ff(t)+C1 0

0 1Dw(t) (5a)fuel assembly simultaneously. Applying Newton’s law
gives

y(t)=C1 0

0 1DCx1(t)

x2(t)D+v(t) (5b)ma=∑ f (1)

where m is the fuel assembly mass and a is its
The main source of process noise w(t) is the turbulent

acceleration. The forces acting on the fuel assembly
behaviour of the coolant gas and can be neglected

are its own weight, the brush friction force, and the
due to its magnitude, which is much smaller than

aerodynamic force due to the gas flow. Applying
the weight of the fuel assembly. Similar assumptions

these forces, equation (1) can be expressed as
can be made about the measurement noises v(t)
due to sensors and instruments. Therefore, thema= fl−mg+ fa± ff (2)
main source of noise is the effect of quantization
phenomena introduced by the digital acquisitionwhere f

l
is the grab load, m is the fuel assembly

mass, a is the fuel assembly acceleration, f
f

is the system [15, 16]. This problem originates from two
completely different facts: (a) old records of thefriction force, f

a
is the aerodynamic force, and g is

the acceleration of gravity ( g=9.8 m/s2). This model refuelling processes recorded on paper and (b) the
relationship between the full and deviation rangesdoes not include any allowance for the dynamics of

the fuelling machine hoisting system as these are of the monitored variables of the fuel assembly.
In the first case, the data available on the paperbeyond the scope of the development task. These

phenomena may influence the grab load at lift records is not quantized, but the digitalization process
introduced quantization in the digital records. Inheights where the load changes rapidly, such as

during a charge when the nose of the assembly first the second case, the small-amplitude ranges of the
monitored variables, compared with their full range,enters the guide tube and immediately following a

dropped stringer during the initial phase. leads to a quantization phenomena introduced by

JSCE365 © IMechE 2007 Proc. IMechE Vol. 221 Part I: J. Systems and Control Engineering
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the use of just a few of all quantizer levels avail- Gaussian distribution, zero mean, and covariance P
0
,

y(k)μR2 is the vector of available system’s measure-able in the analogue-digital converters used by
the instrumentation equipment. The quantization of ments (position of the fuel assembly), f

f
(k)μR is the

vector of unknown deterministic disturbance inputrecorded variables not only introduces uniformed
distributed noises in the variables but also distorts the acting on the system (the friction force), w(k)μR2

is system noise of zero mean and covariance Q,data, reducing the amount of information available
in it [16] if the analogue/digital converters are not and v(k) is the independent measurement noise

of zero mean and covariance R. The process andproperly selected, leading to poor estimates of system
parameters [15]. In other words, the one-to-one measurement noises (w(t) and v(t)), as well as the

initial condition x(0), are statistically independent ofconnection between the statistical description of
input and output signals of the quantizer need to be each other. The matrices A, B, C, F, and G are the

model of the system given byguaranteed.
In order to estimate the distortion in the fuel

channel the data needs to be split from full trace
A=C0 1

0 0D , B=C01D , C=C1 0

0 1Ddata into layer data so that their relative loads can
be tested. It is also thought that any variation due to
effects other than change in the channel diameter,

F=C 0

−1/mD and G=C1 0

0 1Dsuch as gas up-thrust, as well as the effects of the
fuelling machine hoisting system will be reduced

(7)when considering a smaller, single brick layer data
trace as opposed to the full trace. Finally, the effect
of the quantization will be addressed in two ways. The conditions for the existence of a solution for the

optimal estimation problem ((A, C) is fully observable)
1. The quantization on the system input f

l
(t) (grab

are isolability of the unknown input f
f
(k) (the number

load) will be addressed by modifying the statistical
of states (two) and outputs (two) bigger than the

characteristic of the process noise, which will be
number of unknown inputs (one)) and the directional

assumed to be uniformly distributed instead of
residual generation problem (the matrix B is full

a Gaussian distribution. This will lead to an
column rank and the matrix C is full row rank). Under

increment in the value of the covariance matrices
this condition, the estimator of the refuelling pro-

of noises w(t) [16].
cess can be decomposed into an unknown input-

2. The quantization on the system output y(t) (fuel
dependent subsystem and an unknown input-free

assembly position and velocity) will be addressed
subsystem if the decoupling gains P and S satisfied

through a recursive procedure for estimation by
[14]

maximum likelihood [17].

FP=I

FS=04 UNKNOWN INPUT ESTIMATION WITH
QUANTIZED MEASUREMENTS (8)

Given the fact that the friction force f
f

is an
The unknown input estimator is given by

unknown input of the system, a Kalman filter for
the unknown input estimation can be employed

x̂(k+1)=A(k)x̂(k)+Bu(k)+K(k)y(k)
to estimate it. The first step to develop such a
filter is to rewrite the model in such a way that f

f
f̂f(k)=P(y(k)−Cx̂(k))

appears explicitly in the output. Therefore, consider
(9)a stochastic linear dynamic system as follows

x(k+1)=Ax(k)+Bu(k) where

−F ff(k)+Gw(k), x(0)=x0 (6a)
A(k)=A−FPC−K(k)SC

y(k)=Cx(k)+v(k) (6b)
K(k)=K(k)S+FP

where x(k)μR2 is the system state (the position and
C=SC

velocity of the fuel assembly), x(0) is the system initial
conditions described by a stochastic variable with a (10)

JSCE365 © IMechE 2007Proc. IMechE Vol. 221 Part I: J. Systems and Control Engineering
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and the observer gain K(k) is given by where the expectation E( ŷ
n

(k) |y(k)) is computed
using the Gaussian fit approximation [19].

K(k)=AP(k|k−1)CT(CP(k|k−1)CT+SST)−1

(11a) Step 3. Maximize s2
v

and s2
0

by iterative adjustment
P(k|k)= [A−K(k)C]P(k|k−1)[A−K(k)C]T of the estimated signal x̂(k|k), assuming that f

f
(k)

does not change, using a smoother+W+FPPTFT+K(k)SSTK(k)T (11b)

The unknown input estimator was modified to
K
n
(k)=AP

n
(k|k−1)CT[CP

n
(k|k−1)CT+SST ]−1

tackle the available quantized measurements. The
P
n
(N|k−1)=P

n
(k−1|k−1)+J

n
(k−1)modifications of the unknown estimator are based

on the quantization regression algorithm proposed by ×[P
n
(N|k)−P

n
(k−1|k)]JT

n
(k−1)

Ziskand and Hertz [18]. This is an iterative algorithm
P
n
(k|k−1, k−2)based on the maximum likelihood criterion, and was

developed by combining the Gaussian fit algorithm
=P
n
(k−1|k−1)JT

n
(k−2)+J

n
(k−1)

[19], the expectation–maximization algorithm [20],
and a Kalman estimator. The quantization regression ×[P

n
(N|k, k−)−AP

n
(k−1|k−1)]JT

n
(k−2)

algorithm is a general technique for finding maximum
(13)

likelihood estimates from incomplete data [21]. The
quantization regression algorithm comprises two

and the loop in the lag-one covariance calculationsteps: in the first step the expectation (E( ŷ(k) |y(k)))
was for k=N, N−1, … , 2.of the system output estimation without quantization

ŷ(k) given a quantized measurement y(k) (E( ŷ(k) |y(k)))
Step 4. Evaluate the log likelihoodfor the maximum likelihood step is computed using

the Gaussian fit method [19]. This method was pro-
D( log L)

n
=−N log(s2

0
)posed by Curry [19] for a discrete-time non-linear

filter that recursively fits a Gaussian distribution to
−

1

2s2
0
∑
N

k=1
[ y(k)−Cx

n
(k|k−1)]Tthe first two moments of the conditional distribution

of a system state vector. The Gaussian fit algorithm
×[ y(k)−Cx

n
(k|k−1)]is easy to compute, can handle non-stationary

data, and its operation is independent of the quanti-
zation scheme used. Then, in the second step, the and check whether the terminal condition is
likelihood of the estimates is maximized using satisfied and then end the iteration; otherwise
the expectation–maximization algorithm [17]. The n=n+1, x̂

n+1
(0|0)= x̂

n
(N|0), update the initial

expectation–maximization algorithm was developed variance of the noise s2
0
, and go to Step 2.

by Shumway and Stoffer [17] to smooth and forecast
time series with incomplete observations. It is an
iterative algorithm based on a Kalman smoother that
successively maximizes the conditional expectation 5 RESULTS
of the log likelihood function of the unobserved data.

Given these modifications, the friction force esti- In this section the estimation algorithm developed
mator is given by the following iterative procedure. in section 4 is applied to a data-set obtained during

the refuelling process of a nuclear reactor in orderStep 1. Initialize the estimator parameters P(0), Q(0),
to estimate the friction force due to the channeland R(0).
geometry. This information will be used by the

Step 2. Use the unknown input estimator (28) to
diagnosis module to determine the presence and

estimate the friction force f
f
(k), k=1, 2, … , N, and

magnitude of any distortion in the fuel channel. The
update the state estimates using the following

raw data employed in this work, the grab load f
l
(k),

calculations
and the position of the fuel assembly x

2
(k) are shown

x̂
n
(k|k)= x̂

n
(k|k−1)+K

n
(k) in Fig. 5.

In Fig. 6 a detail of less than a thousand samples×[E( ŷ
n
(k) |y(k))−Cx̂

n
(k|k−1)]

of the refuelling process can be seen and the effect
P
n
(k|k)=P

n
(k|k−1)+K

n
(k)CP

n
(k|k−1)

of quantization phenomena on the grab load data
+K

n
(k) cov[ ŷ

n
(k) |y(k)]KT

n
(k) can be easily appreciated. As explained in previous

sections, resolution of the acquisition data system is(12)

JSCE365 © IMechE 2007 Proc. IMechE Vol. 221 Part I: J. Systems and Control Engineering

 at University of Strathclyde Library on September 28, 2011pii.sagepub.comDownloaded from 

http://pii.sagepub.com/


840 Y Pang, L Giovanini, M Monari, and M Grimble

The use of the iterative process allows all of the
information available in the data to be extracted,
improving the resulting estimation.

The results obtained using the proposed algorithm
were compared with a standard unknown input
observer. In this case, the quantization phenomena
was addressed through an increment in the covariance
of the process and measurement noise. The results of
both estimators are shown in Fig. 8. In this figure the
improvement obtained using the proposed algorithm
is clearly shown. The standard unknown input
observer is sluggish due to the high value of the
covariance matrices.

6 CONCLUSIONS

This paper has described the use of fuel grab load
Fig. 5 Recorded raw data: (a) grab load and (b) height trace data and estimation techniques to provide

of the fuel assembly information relating to the core condition from a
source not originally intended to provide condition-
monitoring information. This has resulted in the
development of an unknown input observer forenough to cover the entire range of the measured

variables with good fidelity. However, when the fuel quantized measurements that estimates the friction
force resulting from the interaction of the fuelassembly moves through the channel the range of

the grab load was reduced significantly (Fig. 5), assembly and the core channel. This parameter allows
a deeper understanding of the condition of the reactorincreasing the effect of the quantization process

(Fig. 6). core, allowing quick identification of major distortions
(brick cracks) in the channel as well as the geometryIn Fig. 7 the results of the application of the

proposed monitoring algorithm can be seen. In of the channel. It also provides the means to visualize
and explore fuel grab load trace data in a quick andthis figure the effect of the quantization regression

algorithm on the estimation of the friction force can repeatable manner and as a result to define models
of expected behaviour.be appreciated. The effect of quantization on the

variables has been significantly reduced without a This procedure allows existing data sources to be
leveraged to provide information relating to thesignificant deterioration in the performance of the

filter and the loss of information has been minimized. condition of a channel following a refuelling event,

Fig. 6 Detailed grab load data for a portion of the refuelling process
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