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a b s t r a c t

The complexity and the size of the industrial chemical processes induce the monitoring of a growing num-
ber of process variables. Their knowledge is generally based on the measurements of system variables
and on the physico-chemical models of the process. Nevertheless, this information is imprecise because
of process and measurement noise. So, the research ways aim at developing new and more powerful tech-
niques for the detection of process fault. This article presents a method for the fault detection based on
the comparison between the reference model evolution and the real system generated by the extended
Kalman filter. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. It is a gen-
eral object-oriented environment which provides common and reusable components designed for the

i:10.1016/j.compchemeng.2009.04.016
development and the management of dynamic simulation of industrial systems. The use of this method
is illustrated through a didactic example relating to the field of Chemical Process System Engineering.
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. Introduction

With the evolution of the computer power, dynamic simulation
as become an efficient study tool in chemical process design and
nalysis. Indeed, it is exploited with success, for instance, for the
tudies of the system behaviour faced with disturbances around
set point (sensitivity to the parameters), or for the initialization

f a steady-state simulation (i.e. distillation operation). However,
umerous operation states – such as batch production mode, mate-
ial physical state changes or also abrupt evolutions – make the use
f purely discrete or purely continuous models difficult. Indeed, the
odelling of these discontinuous phenomena leads to the imple-
entation of piecewise continuous models, which require the use

f hybrid dynamic simulator for their resolution.
Thanks to their large application field, numerous works on

ybrid dynamic systems (HDS) deal with modelling, stability
nd control (Birouche, 2006; Zaytoon, 2001). Among them, some
esearch works focus on the monitoring of these systems and many

ethods have been developed for fault detection and isolation (FDI)

Zhao, Koutsoukos, & Haussecker, 2005). For instance, important
esearch ways of diagnosis approaches for hybrid systems are based
n:

∗ Corresponding author. Tel.: +33 05 62 88 58 57; fax: +33 05 62 88 56 00.
E-mail address: Nelly.Olivier@ensiacet.fr (N. Olivier-Maget).
- discrete and/or temporal abstractions of the continuous dynamics
(Lunze, 2000; Mosterman & Biswas, 1999);

- or particle filtering methods (Koller & Lerner, 2001; McIlraith,
Biswas, Clancy, & Gupta, 2000).

Commonly, fault diagnosis tools are commonly divided into
model-based methods or without model methods. In our case,
a model-based approach has been developed. This exploits an
extended Kalman filter adapted to hybrid dynamic systems. The
main idea is to reconstruct the outputs of the system from the
measurement using observers or Kalman filters and using the resid-
uals for fault detection (Mehra & Peschon, 1971; Simani & Fantuzzi,
2006; Welch & Bishop, 1995). The purpose is to detect the presence
of a fault and to locate the occurrence time. The estimations are
compared to the normal variable values and so, deviations are inter-
preted as faults. Next, the problem is similar to a pattern recognition
problem.

This article is organized as follows. The first section underlines
the significant works in fault detection and isolation and in hybrid
dynamic systems. The second part presents the proposed model-
based methodology. Next, its implementation is underlined and a

general overview of the simulation environment and its software
structure are presented. Then, the main fundamental concepts of
the ODPN formalism are described. This is followed by a presenta-
tion of a modelling within PrODHyS. These concepts are illustrated
through the simulation of a typical process example. Composed of

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:Nelly.Olivier@ensiacet.fr
dx.doi.org/10.1016/j.compchemeng.2009.04.016
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heat tank, an energy feed and a material feed, the goal of this
ystem is the change of solvents. A fault in the functioning of the
nergy system is introduced at an unknown moment. The energy
ystem does not provide enough heat quantity. Finally, Section 8
ummarises the contributions and achievements of the paper and
ome future research works are suggested.

. Significant works

.1. Fault detection and diagnosis methods

In a very competitive economic context, the reliability of the
roduction systems can be a decisive advantage. In this context,
simple failure is considered as prejudicial. This is why, the fault
etection and diagnosis are the purpose of a particular attention in
he scientific and industrial community. The major idea is that the
efect must not be subjected but must be controlled. Nowadays,
he fault detection and diagnosis remain a large research field. The
iterature quotes a great number of fault detection and diagnosis

ethods in various domains of application (Venkatasubramanian,
engaswamy, Yin, & Kavuri, 2003). A notable number of works has
een devoted to fault detection and isolation, and the techniques
re generally classified as:

methods without models such as quantitative process history based
methods—neural networks (Venkatasubramanian et al., 2003),
statistical classifiers (Anderson, 1984), or qualitative process his-
tory based methods—expert systems (Venkatasubramanian et al.,
2003);
and model-based methods which are composed of quantitative
model-based methods—such as analytical redundancy (Chow &
Willsky, 1984), parity space (Gertler & Singer, 1990), state esti-
mation (Willsky, 1976), or fault detection filter (Frank, 1990),
and qualitative model-based methods—such as causal methods:
digraphs (Shih & Lee, 1995), or fault trees (Venkatasubramanian
et al., 2003).

he above mentioned articles underline the necessity to have pre-
ise knowledge of the normal process states during fault detection
nd isolation. It has been recognized that fault detection using all
easurements and models by a single filter is weighty and some-

imes inappropriate for real-time use (Lee & White, 1998; Zhao et al.,
005). Nevertheless, while model-based techniques require greater
omputing power and data storage, the amazing progress in com-
uter technology has made them feasible at low costs. Moreover,
odel deviation, nonlinearities and measurement disturbances are

navoidable in industrial systems. They are often the cause of false
etection in fault detection and isolation algorithms. Despite the
omplexity of such algorithms, most of the time, their robustness
s insufficient in industrial context.

.2. Simulation of hybrid dynamic systems

The simulation of unit operations and physico-chemical evo-
ution of products often necessitates the implementation of
henomenological models. So, the traditional tools such as the dis-
rete events simulators (which require fixed operational durations)
r traditional formalisms integrating only the concept of tempo-
al events – timed automata (Alur & Dill, 1994), timed Petri nets
Sifakis, 1977), or crossing speeds–continuous Petri nets (David
Alla, 1990), hybrid Petri nets (David & Alla, 2001) – are not
ell adapted to these problems. In this context, the use of hybrid
ynamic simulators seems to be a better solution (Zaytoon, 2001).

In order to model them, two dynamic schemes have to be
escribed: on the one hand, the continuous dynamic, which is gen-
erally represented by a Differential and Algebraic Equations (DAE)
set, and on the other hand, the discrete one, which is represented by
a set of discrete states and transition sets. Several formalisms have
been defined to combine the continuous and discrete elements. In
the literature, these formalisms are generally classified as:

- approaches which extend models of the continuous field, such
as unified models (Branicky, 1995), bond-graphs with switches
(Buisson & Cormerais, 1998);

- approaches which extend models of the discrete field, such as
hybrid Petri nets (Le Bail, Alla, & David, 1991), batch Petri nets
(Demongodin, 2001), time Petri nets (Berthomieu & Menasche,
1983), and timed automata (Alur & Dill, 1994);

- and finally mixed approaches, in which discrete and continuous
models are exploited in the same structure (the hybrid aspects
are taken into account in the interface between the two parts):
hybrid automata (Alur et al., 1995), hybrid statecharts (Kesten
& Pnueli, 1992), mixed Petri nets (Valentin-Roubinet, 1998), and
differential predicate-transition Petri nets (Champagnat, Esteban,
Pingaud, & Valette, 1998).

At the same time, several softwares have been developed for the
simulation of hybrid systems, such as gPROMS (Barton & Pantelides,
1994), Omsim (Andersson, 1994), BaSIP (Wöllhaf, Fritz, Schulz, &
Engell, 1996), Shift (Deshpande, Gollu, & Semenzato, 1998), and Chi
(Fábián, van Beek, & Rooda, 1998). In these softwares, the hybrid
aspect is described via an imperative language.

3. Description of the proposed FDI methodology

Nowadays, for reasons of safety and performance, monitoring
and supervision have an important role in process control. The
complexity and the size of industrial systems induce an increasing
number of process variables and make difficult the work of opera-
tors. In this context, a computer aided decision-making tool seems
to be wise.

The approach proposed in this article to handle the prob-
lem of fault detection and isolation is a model-based approach.
The methodology, called SimAEM (Simulation Abnormal Event
Management) is more particularly designed to treat batch and semi-
continuous processes which are the prevalent mode of production
for low volume of high added value products. Such systems are
composed of interconnected and shared resources, in which a con-
tinuous treatment is carried out. For this reason, they are generally
considered as hybrid systems in which the discrete and continuous
aspects are handled. Moreover, the recipe is more often described
with state events (temperature or composition threshold, etc.) than
with fixed processing times.

In this context, based on the research works performed for
several years on process modelling and simulation, we have devel-
oped the object-oriented environment PrODHyS dedicated to the
hybrid dynamic simulation of chemical processes (Jourda, Joulia,
& Koehret, 1996; Moyse, 2000; Olivier-Maget, Hétreux, LeLann, &
LeLann, 2008; Perret, Hétreux, & Le Lann, 2004; Sargousse, 1999).
The adopted hybrid formalism is based on a mixed approach and
object concepts: the Object Differential Petri nets (ODPN). In these
works, this platform has been exploited for monitoring studies: a
simulation model is used as a reference model to implement the
functions of detection and diagnosis. So, our FDI system is based
on various simulations of the process achieved with PrODHyS. The

on-line system identification and fault detection are based on the
Extended Kalman Filter. Then, fault indicators with continuous val-
ues are generated. Finally, these instantaneous fault indicators are
compared with the theoretical fault indicators by means of a dis-
tance.
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Fig. 2 illustrates the residual concept. In Fig. 2(a), the evolutions
of the reference and estimated states are represented. At the date
t0, we note that the estimated state deviates from the reference
state. The graph (b) represents the relative residual. A normal zone
was defined by the study of the model disturbances and it will be
Fig. 1. Superv

.1. Functional architecture of the monitoring tool

The supervision module must be able to detect the faults of the
hysical systems (leak, energy loss, etc.) and the faults of the con-
rol/command devices (actuators, sensors, etc.). As defined in De
leer and Williams (1987), our approach is based on the hypoth-
sis that the reference model is correct. The global principle of
his system is shown in Fig. 1, where the sequence of the oper-
tions is underlined. Moreover, a distinction between the on-line
nd off-line operations is made. Our approach is composed of three
arts:

The first part concerns the residual generation (waved pattern
in Fig. 1). It consists in the comparison between the predicted
behaviour obtained by simulation of the reference model and the
real observed behaviour.
The second part is the signature generation (dotted pattern in
Fig. 1). This detection stage determines the presence or not of
a fault by using a simple threshold.
The last part is the diagnosis of the fault (hatched pattern in Fig. 1).
The signature obtained in the previous part is compared with the
theoretical fault signatures by means of distance. Then, a fault
indicator is generated.

.2. Generation of the residuals

The first part concerns the generation of the residuals (waved
attern in Fig. 1). In order to obtain an observer of the physical
ystem, a real-time simulation is done in parallel. So, a complete
tate of the system will be available at any time. Thus, it is based on
he comparison between the predicted behaviour obtained owing
o the simulation of the reference model (values of state variables)
nd the real observed behaviour (measurements from the process
orrelated by means of the extended Kalman filter). The main idea
s to reconstruct the system outputs from the measurement and
o use the residuals for fault detection (Mehra & Peschon, 1971;
imani & Fantuzzi, 2006; Welch & Bishop, 1995). A description of the
xtended Kalman filter can be found in Olivier-Maget et al. (2008).
ote that the extended Kalman filter takes into account the para-

etric and measurement disturbances. Moreover, the residual is

efined according to the following equation:

r
i (t) = X̂i(t) − Xi(t) with i ∈ {1, n} (1)
architecture.

where Xi is the state variable, obtained by the reference model, X̂i

is the state variable estimated with the extended Kalman filter and
n is the number of state variables.

Next, the last generated residual is determined by Eq. (2):

rr
i (t) = X̂i(t) − Xi(t)

Xi(t)
with i ∈ {1, n} (2)

It has to be added that the generated residual rr
i
(t) is relative differ-

ence and not binary. As a matter of fact, this allows the comparison
between the residual of a variable and the residual of another one,
since the residual is dimensionless.
Fig. 2. Principles of the residual and signature structures.
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Fig. 3. “Distance” notion.

xplained below. We notice that the relative residual deviates from
he domain of the nominal performance at the date t0.

.3. Generation of the signatures

The second part is the generation of the signatures (dotted pat-
ern in Fig. 1). This is the detection stage. It determines the presence
r not of a fault. This is made by a simple threshold, εi(t). The gen-
rated structure SrN

i
(t) is denoted by the following equation:

rN
i (t) = Max[(|rr

i
(t)| − ε′

i
(t)); 0]∑n

k=1Max[(|rr
k
(t)| − ε′

k
(t)); 0]

with i ∈ {1, n} (3)

ith ε′
i
(t) = εi(t)/Xi(t), where εi is the detection threshold and n

he number of state variables.
The value of εi is evaluated according to the model error covari-

nce matrix of the extended Kalman filter.
For example, the last graph (c) of Fig. 2 illustrates the signature

otion. This synthetic structure reveals the symptoms of the abnor-
al behaviour. Then, while the relative residual is in the area of

he nominal performance, the generated signature is zero. On the
ontrary, from the date t0, this structure is nonzero. This underlines
he presence of a symptom of the abnormal behaviour. Besides, it
llows quantifying this symptom.

.4. Generation of the fault indicators

The last part deals with the diagnosis of the fault (hatched pat-
ern in Fig. 1). This is similar to a pattern recognition problem. The
im is to use distance metrics to calculate the distance of a given
attern from the means of various classes and classify the pattern
o the class from which it is closest. This pattern is characterized by
he signature obtained in the previous part (the instantaneous fault
ignature) and the various classes are represented by the theoretical
ault signatures. Thus, the signature obtained in the previous part –
he instantaneous fault signature – is compared with the theoreti-
al fault signatures by means of distance. This principle is shown in
ig. 3.

Otherwise, a theoretical signature T•,j of the fault j is obtained
y experience or, in our case, by simulations of the faulty pro-
ess with numerous occurency dates of this fault. Note that all

he theoretical fault signatures are listed in the same structure:
he incidence matrix. Then, a fault indicator is generated. For this,
wo distances have been defined: the relative Manhattan distance
nd the improved Manhattan distance. The first distance is denoted
y Eq. (4). The relative Manhattan distance is calculated compo-
Fig. 4. Normal distribution.

nent by component for each variable. It characterizes the similarity
between the instantaneous fault signature and the theoretical fault
signatures:

DMr
j (t) =

∑n
i=1SrN

i
(t) − Tij

n
(4)

The second distance is the improved Manhattan distance. In this
case, the instantaneous fault signature is not compared component
by component with the theoretical fault signatures. The idea is to
only consider the symptoms of the faulty behaviour – the nonzero
components – and to characterize the similarity of symptoms. In
this way, we only test that the nonzero components of the the-
oretical fault signatures match up to the nonzero components of
the instantaneous fault signature, in order not to increase the dis-
tance between these signatures in the case of simultaneous faults.
So, the improved Manhattan distance allows the diagnosis of many
simultaneous faults and is denoted by Eq. (5):

DMa
j (t)

∑n
i=1|SrN

i
(t) × m′ − Tij × n′| · Tij

n′ (5)

where n′ is the number of nonzero elements of the theoretical fault
signature T•,j and m′ is the number of nonzero elements of the fault
signature SrN

i
(t).

Since both distances are defined in the interval [0;1], the fault
indicators are defined as the complement to 1 of these distances.
These indicators represent the probability of the occurency of a par-
ticular fault. Next, these generated indicators are exploited to take
a diagnosis of the system. For this, we suppose that:

- The minimum value of the indicator, for which the fault can be
considered, is 0.68—this value has been chosen according to the
normal distribution properties. This threshold corresponds to the
probability �(−1 ≤ f ≤ 1), where f is the centred reduced normal
variable (Fig. 4).

- The number of faults, which can simultaneously take place, is
limited to three.

4. Implementation of the diagnosis module

The implementation of the diagnosis module is made within
the environment PrODHyS. This environment provides a library of
classes dedicated to the dynamic hybrid simulation of processes.
Based on object concepts, PrODHyS offers extensible and reusable

software components allowing a rigorous and systematic modelling
of processes. The primal contribution of these works consisted
in determining and designing the foundation building classes. An
important evolution of PrODHyS is the integration of the dynamic
hybrid simulation kernel (Hétreux, Théry, Olivier, & Le Lann, 2007;
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livier-Maget et al., 2008; Perret et al., 2004). The object differen-
ial Petri nets (ODPN) formalism is used to describe the simulation

odel associated with each component. It combines in the same
tructure a set of DAE systems and high level Petri nets and has the
bility to detect state and time events. The mathematical properties
f this formalism are not developed here but can be found in Perret
t al. (2004).
.1. PrODHyS software architecture

Currently, this library is made up of more than one thousand
lasses distributed into three independent functional layers (simu-
ation/modelling/supervision) and nine modules (Fig. 5):

Fig. 6. Architecture of the “
cture of PrODHyS.

- The internal layer corresponds to the simulation kernel of the
platform. It provides the basic elements allowing the simulation
of any dynamic systems. This layer includes the module Disco (Le
Lann, 1999; Sargousse, 1999) and the module Hybrid (Perret et al.,
2004).

- The middle layer includes a set of classes allowing the modelling
of processes. The “modelling” layer rests on the “simulation” layer
and provides a set of general and autonomous entities which can
be exploited by any user who wishes to build its own simulation

system or prototype. This layer includes the module ATOM (Jourda
et al., 1996), the module Odysseo (Moyse, 2000) and the module
CompositeDevice (Moyse, 2000).

- The higher layer has been added to the PrODHyS architecture.
It corresponds to a set of classes dedicated to process supervi-

Monitoring” module.
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sion. The “supervision” layer rests on both layers “simulation” and
“modelling” and provides general and autonomous entities which
allow studies of the control of batch processes. It is composed
of the Scheduling module and the Monitoring module. Developed
during the present works, the Monitoring module, called PrOD-
HySAEM, performs the studies of the process monitoring tasks.

.2. PrODHySAEM module

The PrODHySAEM module is based on our methodology. Thus,
ach fundamental element of our approach (filtering, residual gen-
ration, detection, etc.) is described by an object class (Fig. 6). In this
ontext, the next section presents a detailed description of these
lements and their implementations, by means of UML diagrams.
he various interactions which characterize them are underlined.

.2.1. State reconciliation module
The first step of our diagnosis approach is the state reconcilia-

ion owing to an extended Kalman filter. The class diagram (Fig. 7)
ives its general structure. The instantiation of an object kalman-
ilter does not require any argument. Its initialization is carried out

y the call of the method initialize. The kalmanFilter class have two
ttributes: systemDynamic and measurementDynamic of dynam-
cModel type. The first attribute represents the system dynamics
nd the second, the observation dynamics. A dynamic model has a
umber of equations ( equationNumber) and a number of variables

Fig. 8. UML diagram of the
on UML diagram.

( variableNumber) and three methods evalModel, evalFunction and
evalDisturbance. The dynamicModel class allows taking into account
all the types of system: linear system or not. Thus, the calculation
established in the class kalmanFilter is independent of the stud-
ied system. Its running is accomplished through the call of one
of the available possibilities of the method perform. A description
of the extended Kalman filter can be found in Olivier-Maget et al.
(2008).

4.2.2. Detection module
The following step consists of the generation of the residuals and

the signatures. The detection is represented by the class detection
(Fig. 8). It has three tables: signature, residual and epsilon which
respectively represent the observation window of the signatures, of
the residuals and of the detection thresholds. These three tables are
created respectively by the call of the methods signatureGeneration,
residualGeneration and epsilonUpdate. The method perform gathers
the calls of the previous methods. The detection is started by a call
to the method perform.

In the methodology SimAEM, a residual, a detection threshold or
a signature is an entity carrying information represented by the

class residualData (Fig. 8). This class is built by specialization of
the class residual. Thus, the class residualData has three attributes:
the current time ( time) and two inherited attributes, the size of
the state vector ( stateSize) and the data characterizing an object
residualData ( dataValue).

detection structure.
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Fig. 9. UML diagram

The class table is defined to describe a matrix (Fig. 8). It is a
eneric class. It is characterized by its dimension tableSize and
ts data type tableType. These two attributes are generic parame-
ers. The goal is to define a class independent of the handled object
ype. When an object is instantiated, its type is given. Then, various
ables can be created. Moreover, the class has an attribute which is
pointer to the object tableValue. The method tableUpdate allows

dding an element to the table by shifting the observation window.
he method tableErase erases an element of the table, while the
ethod tableClear erases all the elements of the table.

.2.3. Diagnosis module
The diagnosis will provide the causes of the detected fail-

re owing to the instantaneous signature generated during the
ext step. It uses the real process instantaneous fault signa-

ure and the modelled (or previously obtained by experiments)
heoretical fault signatures. A fault signature of defect is repre-
ented by the class faultResidual, which inherits the class residual
Fig. 9). Its specialization involves the addition of two new
ttributes: an integer number which represents the population
ize and a character string faultName which is the name of the
ault.

The last step of the methodology SimAEM consists of the local-
zation and the identification of the fault(s). The class diagram of the
iagnosis module is illustrated in Fig. 9. The diagnosis is based on
he incidence matrix (structure which contains all the theoretical
ault signatures). This matrix is built owing to the call of the method
ncidenceMatrixConstruct and the fault database ( faultDataBase).
he method defaultIndicatorEvaluate generates the fault indicators
nd updates the table faultIndicatormatrix. The indicators are eval-
ated by means of distance between the theoretical fault signatures
incidence matrix) and the instantaneous fault signature obtained
uring the detection. The method perform gathers the calls of the

wo methods incidenceMatrixConstruct and defaultIndicatorEvalu-
te. The call to this method starts the diagnosis.

The utility class distance (Fig. 9) contains all the distance cal-
ulation methods. The choice of one of them is done through the
rgument CHOIX of type DistanceKind in the method perform of
diagnosis structure.

the class diagnosis. Currently, only the relative (4) and improved
Manhattan (5) distances are developed.

4.2.4. Monitoring module
The monitoring module is represented by the class monitoring

(Fig. 10). It has a set of attributes and methods in order to implement
the monitoring function. The monitoring is composed of three main
stages: the creation of the monitoring module, its initialization and
its performance. This is carried out by the calls respectively to the
constructor, to the method initialize and to the method perform. The
call to the constructor of the monitoring class induces the call to the
constructor of the classes detection, diagnosis and kalmanFilter. The
monitoring module is initialized by the call to the method initialize.
The method perform of the class monitoring contains the call to
the methods perform of these objects: kalmanFilter, detection and
diagnosis.

In this very general level, the components of the monitoring
module ( detection, diagnosis and kalmanFilter) are described by
high level classes; these classes can be specialized in the classes of
the derived classes monitoring.

5. Modelling of the monitored process

5.1. Process modelling with PrODHyS

5.1.1. General structure of the simulation model
The simulation of a discontinuous process necessitates to model

separately the control part (the supervisory control) and the oper-
ative part (the process).

Concerning the operative part, the specification of any device
of PrODHyS is always defined according to two axes: a topologi-
cal axis and a phenomenological axis. The topological axis defines
the structure of the process (system vision): physical connections

(material, energy, information) between the different parts of the
process and hierarchical decomposition of the devices. The phe-
nomenological axis rests on the ODPN formalism, which manages
a set of mathematical models based on mass and energy balances
and, thermodynamic and physico-chemical laws. Thus, the models
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f devices are reusable whatever the context. In addition, the com-
ined approach is used to dissociate the model of material from
he model of devices which contains the material. Therefore, object
okens are reusable and reduce the complexity of the devices Petri
ets. More details on the modelling of devices and material can be

ound in previous articles (Hétreux et al., 2007; Perret et al., 2004).
On the other hand, the model of the command part is specific

o the recipe and the process topology. It consists in describing
he procedure of manufacture of each product. So, it specifies the
ssignments of resources and the sequence of tasks ordered in time
ecessary to the realization of each batch.

.1.2. Connections between “devices” PN and “recipe” PN
The exchanged signals between the command part and the oper-

tive part are modelled by a discrete place. The state of a signal state
s associated with the marking of the corresponding place. In this
ramework, an entity is either an active device if it has one or more
ignal places (such as valves, pumps, feeds, column, sensors) or a
assive device if there is no direct relation with the recipe (such as
imple tanks or reactors). These notions are illustrated in Fig. 11. It
epresents an operative sequence which permits the feed of a tank
ntil a fixed volume is reached. In this example, the DAE systems
orresponding of each differential places are the following ones:

{
FV1

out = 0
FV1 − FV1 = 0

for the differential place “ON” of the valve V1;

out in{

FV1
out = FO

FV1
out − FV1

in = 0
for the differential place “OFF” of the valve V1;

and dUl/dt − FT1
in + FT1

out = 0 for the differential place “NOT
EMPTY” of the tank ST1.

Fig. 11. Interactions between the comm
UML diagram.

Note that the model does not have explicit connection equation
such as: FV1

out = FT1
in . This relationship is implicit through the connec-

tion of ports. Thus, for example, FV1
out and FT1

in are the same variable
in the simulation model.

The marking of the signal place of an active entity induces
the evolution of its Petri net. This Petri net can itself induce the
evolution of active or passive entities in cascade through the net
composed with the connection of different material or energy ports.

5.2. FDI simulation model

This methodology has firstly been tested by using the simulation
of the faulty process which is needed anyway to build the incidence
matrix. As a matter of fact, during the learning of the incidence
matrix, this simulation provides some knowledge of the abnormal
behaviour, which we do not have a priori. Moreover, for safety rea-
sons, it is interesting to test and validate the monitoring module by
simulation rather than in a real industrial context.

5.2.1. Representation
Our monitoring module requires the simulation in parallel of

three process recipes (Fig. 12): one for the reference simulation,
another one for the state reconciliation by the extended Kalman
filter, and the last one for the representation of the real process. Note
that the simulation of the real process takes by default into account
the parametric and measurements disturbances. So the signal of a

sensor is perceived as noisy by the monitoring module.

Moreover, the real process is potentially faulty. For its represen-
tation, its flowsheet is only composed of potentially faulty devices.
A faulty device is described by a specific Petri net, which inherits the
Petri net of the corresponding non-faulty device. In this Petri net, a

and level and the process level.
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et of places and transitions are added to represent the abnormal
ehaviour of the device.

Next, the device faults are generated by a fourth recipe. Finally,
o perform a study of the process monitoring, four recipes are used:
oth of them for the operative part and the other two for the super-
ision part. Notice that when we will use the monitoring module
ith the real process, there will only be the recipes of the super-

ision part. In order to play the four Petri nets, they are gathered
ithin the same Petri net. The fire of the transition TRBEGIN leads to

he autonomous play of each recipe. However, a recipe can interact
ith the other ones owing to actions on its transitions.

.2.2. Modelling of a faulty device

In order to build the simulation model of the monitored pro-

ess, the fault appears in the modelling of specific Device objects
n which the faults are defined in an intrinsic way. Moreover, for

system analysis, the failures are generated by a recipe owing
o a fault calendar which lists the faults, their occurrence times

Fig. 13. Modelling of
etri net.

and their durations. Next, the failures are obviously generated on
autonomous and random commutations. Then, a failure appears
uncertainly and the monitoring must be able to detect and isolate
the fault. In fact, the first stage aims at validating the adjustment of
the monitoring system, which is used during the test step.

Fig. 13 represents the modelling of a faulty sensor. In the studied
case, we consider the occurency of the fault “a”: the sensor stays in
off position instead of being in on position.

At the occurency date, within the failure generator Petri net, the
fire of the transition t2 leads to the activation of the fault “a”. So,
within the faulty sensor Petri net, that allows the fire of the tran-
sition tR1 and the marking of the place F off. When the duration of
the fault is passed, the transition t3 is fired and so the fault “a” is

deactivated. Next, within the faulty sensor Petri net, the deactiva-
tion of the fault “a” allows the fire of the transition tR2 and then the
return to the normal conditions.

Notice that the parameter duration of a fault allows the taking
into account of intermittent and permanent faults.

a faulty sensor.



Fig. 14. Studied process.

Table 1
Geometrical parameters.

Tank height 100 cm
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C
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T
O

T
P
x
x
U
F

ank diameter 50 cm
eating energy 3,000 W
ooling energy −20,000 W

. Application: a process unit operation

.1. Description

The process of addition–evaporation is generally used to change
olvents. Its recipe describes a succession of evaporations and addi-
ions of the new solvent. This process is illustrated in Fig. 14. This
ystem is composed of a heat tank, four sensors, an energy feed
nd a material feed. The geometrical parameters of this system are
isted in Table 1. The values of the minimum and maximum holdups
re respectively 200 and 800 moles. Before each addition of solvent,
he reactor is cooled up to the temperature of 300.15 K. The pressure
s supposed to be constant during this operation. The goal of this
rocess is to have a molar composition of methanol in the reactor
t 0.95. The operation conditions are listed in Table 2. According to
he operation condition, the initial liquid phase may vapourise with
flow rate V.

.2. Modelling of the system

The Petri net of the whole system is presented in Fig. 15. The
ecipe Petri net is presented by a hatched pattern; it is the control
art. The grey Petri net represents the functioning of a device. This

s the operative part. The places with waved and dotted patterns are
he signal places. They represent the exchanged signals between the
ommand and operative parts, when a command is sent (in dotted
attern) or when information is received (in waved pattern). For

xample, the marking of the place m-ON of the composition sensor
eans that the molar composition of methanol has reached 0.95

nd the marking of the place m Open of the material feed activates
he command of the opening of the material feed.

able 2
perating conditions.

Reactor Material feed

(K) 298.15 298.15
(atm) 1 1

A = water 0.6 0.01
B = methanol 0.4 0.99
l (mol) 300 (8.1 L) –
low rate (mol/min) – 5
Next, we present the description of the mathematical model of
each device.

6.2.1. Modelling of a sensor
The sensor recipe is only composed of discrete places. These

places represent a state of the device:

- The state becomes ON when the desired value (vdv) is reached by
the variable v.

- On the contrary, the state remains OFF.

The monitored variable v is different for each sensor:

- v is the temperature of the reactor Treac for the temperature sensor.
- It is the molar composition of methanol xB in the reactor for the

composition sensor.
- And it is the holdup Ul of the reactor for the holdup sensors.

6.2.2. Modelling of a feed
The feed Petri net is composed of a discrete place, which repre-

sents the state CLOSED, and a differential place for the state OPEN.
The DAE system of the place OPEN is:

- F feed − FO = 0 for the material feed,
- Q heat − Q heat

O = 0 for the heating energy system of the reactor,
- and Q cool − Q cool

O = 0 for the cooling energy feed. Quote that Qcool

is negative to follow the energy sign convention.

6.2.3. Modelling of the reactor
Finally, the reactor has a material input and two energy inputs.

When the place NOT EMPTY is marked, a DAE system is instantiated.
The outlet vapour is opened on the outside. The pressure Preact is
supposed to be constant. Consequently, the mathematical model of
the reactor at the thermodynamic equilibrium and in its maximal
state (i.e. liquid/vapour) is composed of:

- the global material balance: dUl
dt − F feed + V = 0;

- the partial material balances:
d(Ul·xj)

dt − F feed · xfeed
j

+ V · yj =
0 for j = A, B;

- the energy balance: d(Ul·h)
dt − F feed · hfeed + V · H − Q heat − Q cool =

0;
- the liquid level: hl − Ul·Vml

St
= 0;

- the liquid/vapour equilibrium:

{
yj = Kj · xj, for j = A, B
xA + xB − yA − yB = 0

;

- the model of the liquid/vapour equilibrium constant: Kj −
mKj(T, P, x, y) = 0, for j = A, B;

- the constraint on the liquid enthalpy: h − mh(T, P, x) = 0;
- the constraint on the vapour enthalpy: H − mH(T, P, y) = 0;
- the constraint on the liquid molar volume: Vml − mVml(T, P, x) =

0;
- the constraint on the vapour molar volume: VmV −

mVmV(T, P, y) = 0;
- the constraint on the pressure: P − mP(p) = 0.
Parts of these models are only merged when a simulation model is
instantiated. Thus, the size and the structure of the resulting DAE
systems change during the simulation, according to the actual state
of the process.

This established model is used by the extended Kalman filter
in order to build both the state and the system output. Then, the
estimation is compared with the real process and the residual is
analyzed in order to detect the faults.
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.3. Adjustments of the monitoring module

To perform a monitoring of a process, some off-line adjust-
ents must be made. Firstly, we evaluate the covariance matrices

f the model and measurement disturbances. While the mea-
urement noises are well-known by experience or by the sensor
anufacturer, the model disturbances are estimated by an “ensem-
le method”. We make numerous simulations during which a
odel parameter is disturbed. This allows the estimation of statis-

ics of the model mistakes. Then, if the behaviour of the system
oes beyond this distribution, its behaviour is abnormal. So, the

Fig. 16. Learning of the
Petri net.

detection thresholds are determined according to the model dis-
turbances.

Next, the second adjustment is the learning of the incidence
matrix. It is based on the same “ensemble theory”. For this, we make
a set of simulations, during which a fault is introduced at different
occurrence dates, for each potential state of the hybrid dynamic
system. For example, Fig. 16 represents the results obtained for the

introduction of a fault: the material feed provides material with a
degraded flow rate. The signatures of this fault are represented for
different occurency dates. They have the same pattern. The centroid
is then calculated providing the theoretical signature of this fault.

incidence matrix.



Table 3
Incidence matrix.

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 Fault 8 Fault 9

Ttank 0.005 0.18 0.003 0.147 0 0 0.012 0.128 0.016
ywater 0 0 0 0 0 0 0.476 0 0
ymethanol 0 0 0 0 0 0 0.484 0 0
x 0.445 0.428 0.01 0.377 0.531
x 0.332 0.324 0.018 0.286 0.175
U 0.223 0.248 0 0.209 0.278
U 0 0 0 0 0
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1
2
3
4
5
6
7

T
F

1
2
3
4
5
6

7

8

9

water 0.395 0.23 0.427 0.338
methanol 0.4 0.345 0.324 0.341
ltank 0.2 0.245 0.246 0.174
vtank 0 0 0 0

Next, this previous study is made for all the considered faults of
he system and we obtain the following incidence matrix (Table 3):

Note that the faults 1, 2, 3, 4, 8 and 9 would be confused,
f we were working with binary values. The work with real and
on-binary values aims at distinguishing the importance of the
ymptoms between different faults. Therefore, for a given fault, the
orm allows that the main symptoms are underlined.

. Results

.1. Detection results

This process is a system based on thermal phenomena. A fault on
he tank thermal system is a risk for the success of this operation.
his is the reason why it is important to detect it as soon as possible.

We recall that the thresholds for the detection correspond to the
odel uncertainties obtained through the extended Kalman filter

omputation. As example, let us consider that a fault on the heating
nergy feed of the reactor takes place at t = 20 min. This energy feed
rovides a heat quantity lower than the nominal one. Fig. 17 shows
he detection stage. It illustrates the time evolution of the residu-
ls for the liquid composition of both water and methanol. From
= 80 min, the both residuals no longer characterize the nominal
erformance. The diagnosis is launched at t = 95 min.
.2. Diagnosis results

Table 4 presents the construction of the synthetic structures, the
ignature, which is relative and normed.

able 4
onstruction of the signature.

Variable Residual Relative residual

Ttank 6.5 −0.01864371
ywater 0.272512 −1
ymethanol 0.727488 −1
xwater 0.01461 −0.02377117
xmethanol −0.01461 0.03790965
Ultank (12.611 0.04388129
Uvtank 0 0

able 5
ault indicators of the example.

Fault

The up holdup sensor detects a value higher than the nominal value.
The up holdup sensor detects a value lower than the nominal value.
The temperature sensor detects a value higher than the nominal value.
The temperature sensor detects a value lower than the nominal value.
The material feed provides material with a degraded flow rate.
The heating energy feed of the reactor has a temperature lower than the
nominal one.
The heating energy feed provides a heat quantity lower than the nominal
value.
The energy feed used for the cooling of the reactor has a temperature
higher than the nominal one.
The energy feed used to the cooling of the reactor provides a heat quantity
lower than the nominal value.
Fig. 17. Evolutions of the composition residuals during the evaporation stage.

Consider only the residuals obtained by Eq. (1). If we compare
the residuals 1 (the tank temperature Ttank) and 2 (the water vapour
molar composition in the tank ywater), we can suppose that the devi-
ation of the variable 1 (Ttank) is greater than the one of the variable
2 (xwater). However, these residuals are not without dimensions:
the residual of the variable 1 (Ttank) is in Kelvin and the one of the

variable 2 (xwater) is dimensionless. So, to compare the residuals,
both residuals must be dimensionless. The use of relative residuals
(Eq. (2)) allows the comparison and then proves the opposite case:
the deviation of the variable 2 (xwater) is greater than the one of the
variable 1 (Ttank).

Relative detection threshold Relative normed signature

0.010038922 0.0044098
0.036695632 0.49367559
0.020618897 0.50191462
0.024405721 0
0.038921612 0
0.104388129 0
5.00E−20 0

Manhattan relative indicator Manhattan improved indicator

0.71428571 0.605
0.71554566 0.7254961
0.71428571 0.64
0.71554566 0.7104961
0.71714286 0.645
0.71428571 0.645

0.99819303 0.75330735

0.71554566 0.7104961

0.71428571 0.585



Table 6
Diagnosis results.

Fault

1 2 3 4 5 6 7 8 9

Fault 1
Manhattan relative indicator 0.993 0.907 0.964 0.950 0.945 0.936 0.714 0.950 0.893
Improved Manhattan indicator 0.983 0.888 0.915 0.923 0.872 0.856 0.5 0.923 0.781
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aults 5 and 6
Manhattan relative indicator 0.857 0.849 0.856
Manhattan improved indicator 0.856 0.859 0.922

When the relative residuals are compared to the relative detec-
ion thresholds, only three residuals characterize the abnormal
ehaviour (Table 4). Then, the instantaneous fault signature under-

ines this fact, since for the other variables the value of the signature
s equal to zero. The symptoms of the abnormal behaviour are the
eviations of the variables 1 (Ttank), 2 (ywater) and 3 (ymethanol).

Next, we compare the instantaneous fault signature (Table 4)
ith the theoretical fault signatures (Table 3), by calculating the

elative and improved Manhattan distances (Eqs. (3) and (4)). Then,
he fault indicators are generated (Table 5).

The relative Manhattan indicator detects the presence of the
ault 7 with a probability of 99.8%. Nevertheless, all the other pos-
ible faults are not rejected, since indicators of some of them are
igher than 0.68. On the opposite, with the improved Manhattan

ndicator, the faults 1, 3, 5, 6 and 9 are eliminated, since their indi-
ators are lower than 0.68. So, the possibilities are the faults 2, 4,
and 8. This example underlines the importance to use both indi-

ators to conclude. So, by combining the results of both indicators,
e can rule on the presence of the fault 7, because its indicators are

he highest. For this reason, this fault is the most probable. Then,
he fault is located on the energy feed of the reactor. Furthermore, it
as been identified: the heating energy feed of the reactor provides
heat quantity lower than the nominal value. Notice that the fault

omes from an actuator.

.3. Other results

In this last part, we present other results of diagnosis (Table 6).
During the first simulation, the fault 1 is introduced. According

o both hypotheses used for the decision (explained in Section 3.4)
nd by combining the results of both indicators, we can rule on the
resence of the fault 1. This is a fault of a sensor.

Finally, during the last simulation, two faults (5 and 6) take place
imultaneously. The results of the relative Manhattan indicator can-
ot distinguish the faults. Conversely, the results of the improved
anhattan indicators underline the faults 3, 5 and 6. The fault 3 has

he lowest indicators, so the faults 5 and 6 are emphasized. Never-
heless, we cannot be sure of the presence of one or both faults.
otice that the simulation of these three scenarios could remove

he ambiguity.

. Conclusion

In this study, the feasibility of using the simulation as a tool for
ault detection and diagnosis is described. The developed method
ies on the hybrid dynamic simulation software PrODHyS, which is
ased on an object-oriented approach. Our fault diagnosis approach

s a general method for the detection and isolation of the occurency
f a fault. Besides, this approach allows the detection of numer-

us types of fault and has the ability to underline the simultaneous
ccurency of many faults. The works in progress aim at integrating
his simulation model within a model-based supervision system.
he goal is to define a recovery solution following the diagnosis of
fault. For this, we exploit the results of signatures in order to gen-
0.857 0.857 0.857 0.857 0.856 0.857
0.898 0.940 0.941 0.875 0.898 0.863

erate qualitative information. Moreover, the computation of real
indicators instead of binary ones make possible to distinguish a
simple degradation from a failure. This information will be used
as information in the supervisory control structure to improve the
recovery solution. Finally, present works are devoted to develop a
generalised diagnosis structure combining the model-based diag-
nosis approach presented in this paper with other methods, such
as classification and case based reasoning.

Appendix A. Nomenclature

A water
B methanol
D distance
DMr relative Manhattan distance
DMa performed Manhattan distance
ε detection threshold
F liquid flow rate (mol s−1)
g gravity constant (m s2)
h liquid enthalpy (J/mol)
H vapour enthalpy (J/mol)
hl liquid level in the tank (m)
in input
K liquid/vapour equilibrium constant
mh model for the liquid enthalpy
mH model for the vapour enthalpy
mK model for the liquid/vapour equilibrium constant
mP model for the pression
mVml model for the liquid molar volume
mVmV model for the vapour molar volume
n number of state variables
O order
out output
p set of the operative parameters
P pressure (Pa)
Q energy quantity (W)
r residual
rr relative residual
S signature
SrN relative normed signature
St area (m2)
t time
T temperature (K)
T•,j theoretical signature of the fault j
Ti,j incidence matrix
Ul liquid holdup (mol)
v variable
V vapour flow rate (mol s−1)
Vml liquid molar volume (m3/mol)

VmV vapour molar volume (m3/mol)
x liquid molar composition
X̂ estimated system state vector
X system state vector
y vapour molar composition
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