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Abstract 

The main objective of this research is to develop a fault detection and isolation (FDI) 

methodologies for Cylla-Haase polymerization reactor, and implement the developed 

methods to the nonlinear simulation model of the proposed reactor to evaluate the 

effectiveness of FDI methods. The first part of this research focus of this chapter is to 

understand the nonlinear dynamic behaviour of the Chylla-Haase polymerization reactor. 

In this part, the mathematical model of the proposed reactor is described. The Simulink 

model of the proposed reactor is set up using Simulink/MATLAB. The design of 

Simulink model is developed based on a set of ordinary differential equations that 

describe the dynamic behaviour of the proposed polymerization reactor.  

An independent radial basis function neural networks (RBFNN) are developed and 

employed here for an on-line diagnosis of actuator and sensor faults. In this research, a 

robust fault detection and isolation (FDI) scheme is developed for open-loop exothermic 

semi-batch polymerization reactor described by Chylla-Haase. The independent 

(RBFNN) is employed here when the system is subjected to system uncertainties and 

disturbances. Two different techniques to employ RBF neural networks are investigated. 

Firstly, an independent neural network is used to model the reactor dynamics and generate 

residuals. Secondly, an additional RBF neural network is developed as a classifier to 

isolate faults from the generated residuals. 

In the third part of this research, a robust fault detection and isolation (FDI) scheme is 

developed to monitor the Chylla-Haase polymerization reactor, when it is under the 

cascade PI control. This part is really challenging task as the controller output cannot be 

designed when the reactor is under closed-loop control, and the control action will correct 

small changes of the states caused by faults. The proposed FDI strategy employed a radial 

basis function neural network (RBFNN) in an independent mode to model the process 

dynamics, and using the weighted sum-squared prediction error as the residual. The 

Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to 

overcome the training difficulty of the independent mode of the network. Then, another 

RBFNN is used as a fault classifier to isolate faults from different features involved in 

the residual vector. 

In this research, an independent MLP neural network is implemented here to generate 

residuals for detection task. And another RBF is applied for isolation task performing as 
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a classifier. The fault diagnosis scheme is developed for a Chylla-Haase reactor under 

open-loop and closed-loop control system. 

The comparison between these two neural network architectures (MPL and RBF) are 

shown that RBF configuration trained by (RLS) algorithm have several advantages. The 

first one is greater efficiency in finding optimal weights for field strength prediction in 

complex dynamic systems. The RBF configuration is less complex network that results 

in faster convergence. The training algorithms (RLs and ROLS) that used for training 

RBFNN in chapter (4) and (5) have proven to be efficient, which results in significant 

faster computer time in comparison to back-propagation one. 

Another fault diagnosis (FD) scheme is developed in this research for an exothermic semi-

batch polymerization reactor. The scheme includes two parts: the first part is to generate 

residual using an extended Kalman filter (EKF), and the second part is the decision 

making to report fault using a standardized hypothesis of statistical tests. The FD 

simulation results are presented to demonstrate the effectiveness of the proposed method. 

In the lase section of this research, a robust fault diagnosis scheme for abrupt and incipient 

faults in nonlinear dynamic system. A general framework is developed for model-based 

fault detection and diagnosis using on-line approximators and adaptation/learning 

schemes. In this framework, neural network models constitute an important class of on-

line approximators. The changes in the system dynamics due to fault are modelled as 

nonlinear functions of the state, while the time profile of the fault is assumed to be 

exponentially developing. The changes in the system dynamics are monitored by an on-

line approximation model, which is used for detecting the failures. A systematic 

procedure for constructing nonlinear estimation algorithm is developed, and a stable 

learning scheme is derived using Lyapunov theory. Simulation studies are used to 

illustrate the results and to show the effectiveness of the fault diagnosis methodology.   

Finally, the success of the proposed fault diagnosis methods illustrates the potential of the 

application of an independent RBFNN, an independent MLP, an Extended kalman filter 

and an adaptive nonlinear observer based FD, to chemical reactors. 
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Chapter 1 

Introduction 

1.1.  Importance of Process Monitoring 

       In the recent years the task of monitoring the complex nonlinear process plants, have 

been intensively studied in process industry to detect faults. The fault detection and 

isolation (FDI) techniques are getting a lot of interest, because of the increasing demands 

for good performance and higher standards of safety and  reliability of technical plants 

for improving the supervision and monitoring as part of the overall control of processes 

(Isermann, 1984, Isermann, 1993, Isermann, 1997, Gertler, 1988). 

The fault detection and isolation has become a critical issue in the operation of high-

performance chemical plants, nuclear plant, airplanes, ships, submarines, and space 

vehicles (Gertler, 1988, Isermann, 1997). In the chemical industry, fault can occur due to 

sensor failure, equipment failure or changes in process parameters. The occurrence of a 

fault may cause a process performance degradation (e.g., lower product quality), or in the 

worst cases, disastrous accidents, such as temperature runaway, which may require plant 

shut down for maintenance or will lead to break down the plant and even human fatalities. 

However, Fault detection and isolation (FDI) can help avoid all these major consequences 

(Deibert and Isermann, 1992, Isermann, 1984, Pierri et al., 2008). Deibert and Isermann 

(1992) illustrated that fault models can be divided into external faults: changes of power 

supply, contamination, collision, external disturbance, actuator faults: electric power 

failure, pomp failure and valve failure, process faults: abrupt variation and deviations in 

the process coefficients as heat transfer coefficient, and sensor faults. 
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FD system must avoid two kinds of errors, false alarms and missed alarms. A false alarm 

occurs when a fault is declared but the system is operating in healthy conditions; typically, 

they are due to model uncertainties and disturbances. On the other hand, a missed alarm 

occurs when under faulty condition, the FD system does not detect any fault. Usually, 

minimization of false alarm and missed alarms are conflicting requirements. Primary 

methods to fault diagnosis were often based on the so-called physical redundancy. The 

physical redundant methods are very reliable, but they need extra equipment and extra 

maintenance costs. For this reason, lots of research works have been carried out on 

techniques not requiring extra equipment. These techniques can be classified into two 

general categories, model free data-driven approaches and model-based approaches. 

During the last decades theoretically and experimentally research has shown ways to 

detect and diagnose faults. One distinguish fault detection to recognize that the fault 

happened, fault diagnosis to find the cause and the location of fault.   

Isermann (1997) illustrated that, the advanced methods of supervision and fault diagnosis 

are needed, which satisfy the following requirements: 

 (i) Early detection of small faults with abrupt or incipient time behaviour. 

(ii) Diagnosis of faults in the actuator, process components or sensors. 

 (iii) Detection of faults in closed loops.  

(iv)Supervision of processes in transient states.  

The goal for the early detection and diagnosis is to have enough time for counteractions 

such as other operations, reconfiguration, maintenance or repair. The earlier detection can 

be achieved by gathering more information, especially by using the relationship between 

the measurable quantities in the form of mathematical models (Isermann, 1997). 
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1.2.  Aims and Objectives  

The aim of this project is to develop new fault detection and isolation (FDI) 

methodologies for nonlinear processes, and implement the developed methods to the 

nonlinear simulation model of the Chylla-Haase reactor to evaluate the effectiveness of 

the developed methods. 

In order to achieve these aims, the research is designed with the following objectives: 

 Develop and evaluate FDI method for open-loop reactor using an independent 

radial basis function (RBF) neural network and evaluate it on the Simulink model. 

 Develop and evaluate FDI method for closed-loop reactor using an independent 

radial basis function (RBF) neural network and evaluate it on the Simulink model. 

 Develop and evaluate FDI method for open-loop and closed-loop reactor using an 

independent multilayer perceptron (MLP) neural network and evaluate it on the 

Simulink model. 

 Develop and evaluate FD method for reactor using extended Kalman filter and 

evaluate it on the Simulink model.  

 Develop and evaluate an adaptive nonlinear observer based fault detection using 

a learning methodology and evaluate it on Simulink/Matlab model. 

1.3. Thesis outline 

The thesis is organized into nine chapters. Chapter one is an introduction chapter which 

gives an overview of the conducted work. It explains the motivation behind this research 

and the importance of monitoring the complex high nonlinear process systems. It also 

states the aims and objectives of the research. Chapter two reviews the cumulative 

research works that have been carried out over the last two decades on monitoring of 

chemical reactors. Chapter three gives a wide description of the process modelling and 

simulation. The main aim of this chapter is to understand the nonlinear dynamic 
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behaviour of the Chylla-Haase reactor. In this chapter, the mathematical model of the 

proposed reactor is described. The Simulink model of the proposed reactor is set up using 

Simulink/MATLAB. The Simulink block diagrams and the performances of the reactor 

are presented and discussed in details. 

Chapter four illustrates the design and development of FDI method for open-loop Chylla-

Hasse system using an independent radial basis function (RBF) neural network. In this 

chapter the investigation of employing two different techniques of RBFNN is described. 

Firstly, an independent RBFNN is employed to model the reactor dynamics and generate 

residuals for the detection part. Secondly, an additional RBFNN is designed as a classifier 

to perform the isolation task. The simulation performances are presented to demonstrate 

the effectiveness of the proposed techniques.  

Chapter five investigates the dynamic fault detection and isolation for Chylla-Haase 

reactor under closed-loop control. In this chapter a cascade PI controller is designed. An 

independent RBF network is employed to model the process dynamics and generate 

residuals. The Recursive Orthogonal Least Squares algorithm (ROLS) is used to train the 

independent mode of the network. An additional RBFFNN is developed to isolate faults. 

The simulation results are presented.. Chapter six describes the design scheme of FDI for 

the proposed reactor in open-loop and closed-loop mode using an independent multilayer 

perceptron (MLP) neural network. In this chapter an independent MLP is employed to 

perform detection task, and another RBFNN is employed as a classifier for isolate faults. 

The simulation results are presented and discussed. 

Chapter seven describes a fault detection (FD) scheme for the proposed reactor. In this 

chapter an Extended Kalman Filter (EKF) is designed and developed for online state and 

parameter estimation. Also a hypothesis testing is employed for fault detection. The 

simulation results are discussed and presented. Chapter eight illustrates the development 
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of an adaptive nonlinear observer based fault detection in nonlinear multivariable system 

using a learning methodology. A general framework is developed for model-based fault 

detection and diagnosis using on-line approximators and adaptation/learning schemes. In 

this chapter the proposed method is applied for CSTR reactor. Simulation results are 

presented to illustrate the effectiveness of the fault diagnosis methodology.  Chapter nine 

gives a summary of main contributions and achievements of the conducted work.  

1.4. Research Novelty and Originality 

This research work will be focused on studying and developing a monitoring system for 

Chylla-Haase reactor, which is used as a benchmark problem in chemical industry. The 

main contribution of this research lies behind the fact that, there are no existing 

investigations into the FDI for the reactor. In addition, there are few papers dealing with 

FDI based on closed –loop performance for chemical reactors. The novelty and unique 

contribution of this research to knowledge is divided into four sections. First section will 

be focus on developing a new FDI method for open-loop and closed-loop reactor using 

an independent RBFNN, which will be a new contribution to knowledge. The second 

section will be focus on developing a new FDI method for open-loop and closed-loop 

reactor using an independent MLPNN, which will be a new contribution to knowledge. 

The third section is to develop a new FD method for reactor using EKF to against 

disturbances, which also will be a major challenge and a new contribution to knowledge. 

Finally, developing and designing an adaptive nonlinear observer based fault detection 

for reactor using a learning methodology is a new contribution to knowledge. These 

proposed methods are robust against the disturbances and can also cope with high 

nonlinearities of the reactor. The application of all proposed fault detection and isolation 

strategies for monitoring reactor. Thus the originality of the proposed research stands.  
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Chapter 2 

Literature review 

2.1.   Introduction 

Over the last two decades fault detection and isolation techniques have been widely used 

in chemical process industry to detect faults in actuators and sensors. Deibert and 

Isermann (1992) described that, in the chemical industry, fault can take place in the 

system, as result of sensors failures, equipment failures or changes in process parameters. 

The existence of a fault may cause a process performance degradation (e.g., lower product 

quality), or in the worst cases, disastrous accidents, such as run-away. Fault models can 

be divided into external faults: changes of power supply, contamination, collision, 

external disturbance, actuator faults: electric power failure, pomp failure and valve failure, 

process faults: abrupt variation and deviations in the process coefficients as heat transfer 

coefficient, and sensor faults. 

Frank (1996) and, Frank and Köppen-Seliger (1997) describe that, in the chemical process 

faults can be classified in process faults, sensor faults and actuators. A graphical diagram 

of Faults is shown in Figure 2.1.  

ACTUATORS PROCESS SENSORS
Input U Output Y

Actuator Faults Process Faults Sensor Faults

Unknown Inputs

 

Figure 2.1 Fault classifications (Frank, et.al, 1997) 
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2.2. Fault Diagnosis Strategies  

According to Fabrizio Caccavale (2011), Gertler (1988), Frank (1990), Isermann (1984) 

various types of failures may affect the safety, reliability and efficiency in chemical 

processes. The existence of faults may affect productivity of the process or, in the worst 

circumstances, may cause serious accidents. For that reason, fault detection and diagnosis 

has been widely studied in the recent years. The term fault is generally defined as a 

departure of an observed variable or a Parameter from an acceptable range. The causes of 

this abnormality, such as a failed coolant pump or a failed sensor, are called basic events 

or root events and are often referred as malfunctions or failures. 

Fabrizio Caccavale (2011), Isermann (1997) and Venkatasubramanian et al. (2003d) 

explain that, fault diagnosis (FD) consists of three main tasks: 

 Fault detection, i.e., the detection of the occurrence of a fault 

 Fault isolation, i.e., the determination of the type and/or location of the fault; and 

 Fault identification, i.e., the determination of the time evolution of the fault. 

Fabrizio Caccavale (2011) illustrated that, FD system must avoid two kinds of errors, 

false alarms and missed alarms. A false alarm occurs when a fault is declared but the 

system is operating in healthy conditions; typically, they are due to model uncertainties 

and disturbances. On the other hand, a missed alarm occurs when, under faulty condition, 

the FD system does not detect any fault. Usually, minimization of false alarm and missed 

alarms are conflicting requirements. Early approaches to fault diagnosis were often based 

on the so-called physical redundancy, i.e., the duplication of sensors, actuators, computers, 

and software’s to measure and/or control a variable. Typically, a voting scheme is applied 

to the redundant system to detect and isolate a fault. The physical redundant methods are 

very reliable, but they need extra equipment and extra maintenance costs. For this reason, 
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lots of research works have been carried out on techniques not requiring extra equipment. 

These techniques can be classified into two general categories, model free data-driven 

approaches and model-based approaches. 

The classification of faults have been demonstrated by Isermann (1984), Patton and Chen 

(1992a), Venkatasubramanian et al. (2003b), Gertler (1988), Isermann (1997) as 

following: 

2.2.1. Model free approaches 

The classification of model free approaches is illustrated in figure 2.2. In contrast to the 

model-based approaches where a priori knowledge (either quantitative or qualitative) 

about the process is needed, in process free (history) based methods, only the availability 

of large amount of historical process data is needed. There are different ways in which 

this data can be transformed and presented as a priori knowledge to a diagnostic system. 

This is known as feature extraction. This extraction process can be either qualitative or 

quantitative in nature. Two of the major methods that extract qualitative history 

information are the expert systems and trend modelling methods. Methods that extract 

quantitative information can be broadly classified as non-statistical or statistical methods. 

Neural networks are an important class of non-statistical classifiers. Principal component 

analysis (PCA)/partial least squares (PLS) and statistical pattern classifiers form a major 

component of statistical feature extraction methods.(Gertler, 1988, Isermann, 1984, 

Isermann, 1997, Venkatasubramanian et al., 2003b, Patton and Chen, 1992b). 
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Figure 2.2 Classification of process history methods (Venkatasubramanian et al.,2003). 

2.2.2. Model based approaches 

Model-based approaches to fault diagnosis can be divided into qualitative methods and 

quantitative methods as shown in figure 2.3. In the recent years many research works 

have been carried out and focused mainly on quantitative model-based methods. Patton 

and Chen (1997), Venkatasubramanian et al. (2003b), Patton (1997)  explain that in the 

following figure 2.3, model based methods  based on the concept of analytical or 

functional redundancy, which use a mathematical model of the process to obtain the 

estimates of a set of variables characterizing the behaviour of the monitored system. The 

inconsistencies between estimated and measured variables provide a set of residuals, 

sensitive to the occurrence of faults. Later, the residuals are evaluated in order to identify 

and localize faults. Although there is a close relationship among the various quantitative 

model based techniques, observer-based approaches have become very important and 

diffused, especially within the automatic control community. Luenberger observers, 

unknown input observers, and Extended Kalman Filters have been mostly used in fault 

detection and identification for chemical processes and plants. 
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Figure 2.3 Classification of model based methods (Venkatasubramanian et al.,2003). 

Deibert and Isermann (1992) explain that, using model based methods for fault detection 

in control loop have some advantages, first advantage is  obtaining much deeper diagnosis 

as standard limit, and the second advantage is it can be use modelling once for controller 

design and fault diagnosis. Isermann (2005) illustrate that, Process model-based methods 

require the knowledge of a usually dynamic process model in form of a mathematical 

structure and parameters. For linear processes in continuous time the models can be 

impulse responses (weighting functions), differential equations of frequency responses. 

Corresponding models for discrete-time (after sampling) are impulse responses, 

difference equations or z-transfer functions. For fault-detection in general differential 

equations or difference equations are primarily suitable. In most practical cases the 

process parameters are partially not known or not known at all. Then, they can be 

determined with parameter estimation methods by measuring input and output signals if 

the basic model structure is known. Deibert and Isermann (1992) demonstrate that, most 

of the state space approaches yields the information about faults via so called residuals. 

The only difference is how to design the observer feedback matrix H and the weighting 
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matrix W. In the fault free case the residual equals zero, and if a fault occurs, the residual 

deviates from zero in a matter which is typical for the specific algorithm used. The figure 

below shows the common block diagram. State space approaches which are sensitive for 

sensor faults in the sense of having influence on the C-Matrix are not useful for control 

loops, because the C-Matrix of the sensor subsystem occurs in both A-Matrix and C-

Matrix of the entire control loop representation. Isermann (2005) explain that, if the 

process parameters are known, either state observers or output observers can be applied. 

Frank (1996), Patton and Chen (1997), Frank (1990) and Patton (1997) explained that, 

the unknown input observer can be derived through the generalised Luenberger observer. 

The main goal of the unknown input observer is to force each of the state estimation error 

to become independent of the uncertainty. Once, the estimation error vector is de-coupled 

from the uncertainty, the residual will also be de-coupled from uncertainty. 

Venkatasubramanian et al. (2003d) explain that, the plant disturbances are random 

fluctuations and oftentimes only their statistical parameters are known. One solution to 

the fault diagnosis problem in such systems entails monitoring the innovation process or 

the prediction errors. The objective is to design a state estimator with minimum estimation 

error. It involves the use of optimal state estimate, e.g. the Kalman filter, which is 

designed on the basis of the system model in its normal operating mode. It is well known 

that the Kalman filter is a recursive algorithm for state estimation and it has found wide 

applications in chemical as well as other industrial processes. 
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Figure 2.4 General Scheme of model based FD (Patton, 1997).  

2.3. RBF Model based FDI  

In recent years, the task of monitoring complex nonlinear processes has been intensively 

studied. Fault detection and isolation (FDI) techniques have attracted much interest due 

to the increasing demand for good performance and higher standards of safety and 

reliability of technical plants for improving the supervision and monitoring as part of the 

overall control of processes (Isermann, 1984). FDI has become a critical issue in the 

operation of high-performance chemical plants, nuclear plants, airplanes, ships, 

submarines, and space vehicles, etc. (Gertler, 1988). In the chemical industry, faults can 

occur due to sensor failures, equipment failures or changes in process parameters. 

Occurrence of a fault may cause process performance degradation, or in the worst cases, 

may cause disastrous accidents such as temperature runaway, which may require plant 

shut down for maintenance to prevent break down of the plant and perhaps even human 

fatalities. However, early detection of faults can help avoid all these major consequences 

(Deibert and Isermann, 1992, Pierri et al., 2008, Wang et al., 2006). 
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 Fabrizio Caccavale et al. (2011) illustrated that, FD system must avoid two kinds of 

errors, false alarms and missed alarms. A false alarm occurs when a fault is declared but 

the system is operating in healthy conditions; typically, they are due to model 

uncertainties and disturbances. On the other hand, a missed alarm occurs when under 

faulty condition, the FD system does not detect any fault. Usually, minimization of false 

alarm and missed alarms are conflicting requirements. Primary methods to fault diagnosis 

were often based on the so-called physical redundancy. The physical redundant methods 

are very reliable, but they need extra equipment and extra maintenance costs. For this 

reason, lots of research works have been carried out on techniques not requiring extra 

equipment. These techniques can be classified into two general categories, model free 

data-driven approaches and model-based approaches (Patton and Chen, 1992b, 

Venkatasubramanian et al., 2003c). 

Due to severe nonlinearity and time varying feature of the reactor dynamics, the observer 

methods, parity space methods, and other first-principle model-based methods cannot be 

successfully applied for FDI of the Chylla-Haase reactor. The application of neural 

networks (NN) for FDI has been intensively studied over the last two decades. Patton et 

al. (1994)  proposed an approach for detecting and isolating faults in a non-linear dynamic 

process using neural networks. Firstly, a multi-layer perceptron (MLP) network was 

trained to predict the future system states, and then the residual was generated using the 

differences between the actual and predicted states. Secondly, another neural network was 

used as a classifier to isolate faults from these state prediction errors. However, this 

method used the neural network model in its so-called dependent mode. 

Many research works have been carried out to study NNs for FDI.  Yu et al. (1999) studied 

sensor fault diagnosis in chemical process via RBF neural networks; a semi-independent 

NN was used for sensor fault diagnosis. Moreover, the thins-plate-spline function was 



14 
 

used for the neural model and the Gaussian function was used for the neural classifier. 

Another study was conducted by Gomm and Yu (2000) that introduced the selection of 

radial basis function (RBF) network centres with recursive orthogonal least squares 

training. Frank and Köppen-Seliger (1997), Koppen-Seliger and Frank (1995) studied 

fuzzy logic and neural network applications for fault diagnosis. Their paper introduced 

fuzzy logic for residual evaluation, a dependent neural network for residual generation, 

and a neural network for residual evaluation by using another dependent neural network 

for generating residuals. All those authors used dependent and semi-dependent mode of 

NN for FDI. As the residual of these methods is affected by the plant output, the residual 

is made insensitive to the faults. Although a partial dependent mode is used to enhance 

the residual to fault sensitivity, the fault detect threshold is still high such that fault with 

small amplitude cannot be detected.  

Ferrari et al. (2008), Xiaodong (2011), Xiaodong et al. (2002), Zhang et al. (2010) studied 

the design and analysis of a robust fault detection and isolation scheme for nonlinear 

uncertain dynamic systems, the proposed architecture consists of a bank of nonlinear 

adaptive estimator, one of the estimators is used for the detection and approximation of a 

fault, whereas the rest are used for online fault isolation decision scheme is based on 

adaptive threshold functions. In their method they used state space nonlinear model and 

then used a simple NN as an estimator for online learning the system output to be equal 

to the plant output, however this method needs to have plant nonlinear model and 

sometimes model need to be very accurate, this accurate model is difficult to produce. 

These methods may not be applicable to some industrial plants where accurate analytical 

models are difficult to derive and the physical parameters are not all available, for 

example, the chemical reactors.  However, in their method they have used a dependent 
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mode of RBFNN which is performs as one-step ahead prediction and cannot run 

independently of the process. 

In the first part of this research, a new robust FDI scheme is developed for open-loop 

Chylla-Haase polymerization reactor using an independent RBFNN. The independent 

RBFNN is employed here for on-line diagnosis of faults on the actuator and sensors when 

the system is subjected to system uncertainties and disturbances. The independent neural 

network mode is developed to generate enhanced residuals for diagnosing faults in the 

reactor. Then, a second neural network is developed as a classifier to isolate these faults. 

The basis Gaussian function is used for the neural network model, and for the neural 

network classifier. The K-means clustering algorithm is used to choose the centres of the 

RBF networks, and a p-nearest-neighbours algorithm is used to choose the widths. 

Moreover, a recursive least squares (RLS) algorithm is used to update the weights. Most 

of the recent investigations of fault diagnosis for chemical reactors using an independent 

RBF neural networks have been studied by (Ertiame et al., 2013).  

Most of the previous research studied a dependent RBFNN based FDI for open-loop 

systems. In contrast to develop FDI methods for open loop system, the second part of this 

research will be focused on developing a new robust FDI scheme for the Chylla-Haase 

polymerization reactor that is under cascade PI control. An independent RBFNN is 

employed to predict the process output on-line and consequently to generate the residual. 

Then, a second neural network is used as a classifier to isolate these faults. The Gaussian 

function is used for the neural network model and the classifier as the nonlinear basis 

function. The K-means clustering algorithm is used to choose the centres for the RBF 

networks, and a P-nearest-neighbours algorithm is used to choose the widths. Moreover, 

a recursive orthogonal least squares (ROLS) algorithm is used to train the weights.  
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2.4. MLP model based FDI  

In contrast to the model-based approaches where a priori knowledge about the model 

(either quantitative or qualitative) of the process is assumed, in process history based 

methods only the availability of large amount of historical process data is assumed There 

are different ways in which this data can be transformed and presented as a priori 

knowledge to a diagnostic system. This is known as the feature extraction process from 

the process history data, and is done to facilitate later diagnosis. This extraction process 

can mainly proceed as either quantitative or qualitative feature extraction. In quantitative 

feature extraction one can perform either a statistical or non-statistical feature extraction. 

(Venkatasubramanian et al., 2003b, Willsky, 1976, Frank, 1996, Isermann, 1997, 

Isermann, 1984). 

The literature presents several classes of strategies to deal with fault detection and 

isolation. These strategies, in general, can be divided into two kind of approaches (i) 

qualitative and (ii) quantitative.  In this section we focus mainly on diagnostic systems 

that are built on non-statistical feature extraction quantitative model known as Multilayer 

Perceptron Neural Networks (MLP NNs). The requirement of a mathematical model of 

the plant can lead to several difficulties in the implementation of these approaches, for 

instance due to factors such as system complexity, high dimensionality, nonlinearities and 

parametric uncertainties. Further, in the case the neural network plays a role as an 

observer, it falls into the class of quantitative approaches. 

Neural networks have been proposed for classification and function approximation 

problems. In general, neural networks that have been used for fault diagnosis can be 

classified along two dimensions: (i) the architecture of the network such as sigmoidal, 

radial basis and so on; and (ii) the learning strategy such as supervised and unsupervised 

learning. Different network architectures have been used for the problem of fault 
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diagnosis (Venkatasubramanian et al., 2003b). In supervised learning strategies, by 

choosing a specific topology for the neural network, the network is parameterized in the 

sense that the problem at hand is reduced to the estimation of the connection weights. The 

connection weights are learned by explicitly utilizing the mismatch between the desired 

and actual values to guide the search. This makes supervised neural networks a good 

choice for fault classification as the networks are capable of generating, hence classifying, 

arbitrary regions in space (Venkatasubramanian et al., 2003b). On the other end of the 

spectrum are neural network architectures which utilize unsupervised estimation 

techniques. These networks are popularly known as self-organizing neural networks as 

the structure is adaptively determined based on the input to the network. The most popular 

supervised learning strategy in neural networks has been the back-propagation algorithm. 

During the past two decades there are many researchers have addressed the problem of 

fault detection and diagnosis using multilayer perceptron (MLP) neural networks. 

Mrugalski and Korbicz (2007)  studied in their work the application of MLP neural 

networks to the robust fault detection. Another study has been conducted by Maki and 

Loparo (1997), in their study, the multilayer feedforward neural network that has one 

hidden layer was used, A two-stage neural network was proposed as the basic structure 

of the detection system. The first stage of the network detects the dynamic trend of each 

measurement, and the second stage of the network detects and diagnoses the faults. 

Akhoondzadeh (2013) investigated the Total Electron Content (TEC) time series by using 

a Multi-Layer Perceptron (MLP) neural network to detect seismo-ionospheric anomalous 

variations induced by the powerful Tohoku earthquake of March 11, 2011. The results 

show that the MLP presents anomalies better than referenced and conventional methods 

such as Auto-Regressive Integrated Moving Average (ARIMA) technique. Young-Moon 

et al. (1996)  used feedforward neural networks are used to solve an optimal tracking 
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control problem for discrete-time nonlinear dynamic systems. Two multilayer neural 

networks were constructed as the feedforward and the feedback controllers. The feedback 

controller is trained by Backpropagation through algorithm to minimize a general 

quadratic cost function. The proposed methodology was useful as an off-line control 

method. Another study conducted by Parlos et al. (1994), A nonlinear dynamic model 

was developed for a process system, namely a heat exchanger, using the recurrent 

multilayer perceptron network. A dynamic gradient descent learning algorithm is used to 

train the recurrent multilayer perceptron, resulting in an order of magnitude improvement 

in convergence speed over a static learning algorithm used to train the same network. In 

developing the empirical process model the effects of actuator, process, and sensor noise 

on the training and testing sets are investigated. Johnson et al. (2009) studied the 

application of a spiking neural network (SNN) and a multi-layer perceptron (MLP) for 

online identification of generator dynamics in a multi-machine power system. Jung-Wook 

et al. (2002) studied the performances of a multilayer perceptron network (MLPN) and a 

radial basis function network (RBFN) were compared, for the on-line identification of the 

nonlinear dynamics of a synchronous generator.(Mahmud et al., 2014) investigated multi-

layered perceptron (MLP) network using various types of training algorithms for fault 

classification in extra high voltage (EHV) transmission lines. The performance of the 

suitable training algorithm in MLP network resulted the highest accuracy for fault 

classification. Dash et al. (2010) studied the application of MLP NN techniques for the 

detection of stator inter-turn fault of an induction motor. Clark and Warwick (1995) 

considered a multilayer perceptron (MLP) neural network for detection of faults in a high 

speed packaging machine.Wen et al. (2000) proposed a stable learning law of the dynamic 

multilayer neural Networks (DMPL). A Lyapunov-like analysis is used to derive this 

stable learning procedure for the hidden layer as well as for the output layer. An algebraic 
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Riccati equation is considered to construct a bound for the identification error. The 

suggested learning algorithm is similar to the well-known backpropagation rule of the 

static multilayer perceptron. Gomm et al. (1996) described two methods for representing 

data in a multi-layer perceptron (MLP) neural network, and the resultant ability of 

networks, trained by the standard back-propagation algorithm, to identify the dynamics 

of non-linear systems was investigated. Souahlia et al. (2012) discussed MLP neural 

network-based decision for power transformers fault diagnosis using an improved 

combination of Rogers and Doernenburg ratios DGA. Another study conducted by 

Golovko et al. (2001) Modelling nonlinear dynamic using multilayer neural Networks, 

Proposed method provides the calculation of Lyapunov exponents using multilayer neural 

networks trained by modified backpropagation error (BPE) algorithm.(Pandey and Barai, 

1995) presented an application of multilayer perceptron in the damage detection of steel 

bridge structures, the issues relating to the design of network and learning paradigm are 

addressed and network architectures have been developed with reference to trussed bridge 

structures. The training patterns are generated for multiple damaged zones in a structure 

and performance of the networks with one and two hidden layers were examined. 

Most of the previous mentioned approaches studied a dependent MLPNN based FD for 

open-loop systems. Whereas, in this research work a new FDI approach is developed for 

open-loop and closed-loop systems using an independent mode of MLPNN.  

The comparison between using RBFNN and MLPNN for FDI is discussed in more details 

in chapter 6. 

2.5. Extended Kalman filter based FD 

Batch and semi-batch reactors are widely used in chemical industry for the production of 

fine chemicals, pigment, polymers, and pharmaceuticals. The dynamics of these reactors 

are nonlinear in nature and this makes them are very difficult to control and monitoring 
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(Gertler, 1988, Isermann, 1984) . In chemical processes, different types of failure may 

cause safety and productivity problems. Deibert and Isermann (1992) Have illustrated 

that fault models can be divided into external faults: changes of power supply, 

contamination, collision, external disturbance; actuator faults: electric power failure, 

pump failure and valve failure; and process faults: abrupt variation and deviations in the 

process coefficients such as heat transfer coefficient and sensor faults.  

In the recent years monitoring and fault detection for complex nonlinear processes have 

been intensively studied. The early approaches to fault diagnosis were based on so called 

physical redundancy. Despite the reliability of using the physical redundancy method, it 

requires extra equipment and extra maintenance costs. Isermann (1984) and 

Venkatasubramanian et al. (2003b) have classified the fault diagnosis techniques that 

don’t required extra equipment into two general categories, model free data-driven 

approaches and model-based approaches(Ertiame et al., 2013, Ertiame et al., 2015, 

Ertiame, 2015). 

In the first category, the methods require the availability of large amount of historical 

process data. There are different ways in which this data can be transformed and presented 

as a priori knowledge to a diagnostic system. This is known as feature extraction. This 

extraction process can be either qualitative or quantitative in nature. Two of the major 

methods that extract qualitative history information are the expert systems and trend 

modelling methods. Methods that extract quantitative information can be broadly 

classified as non-statistical or statistical methods. Neural networks are an important class 

of non-statistical classifiers. Principal component analysis (PCA)/partial least squares 

(PLS) and statistical pattern classifiers form a major component of statistical feature 

extraction methods (Patton and Chen, 1992a, Venkatasubramanian et al., 2003b, 

Isermann, 1984, Isermann, 1997). Many research works have been carried out to study 
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model free data-driven approaches for FDI (Gomm and Yu, 2000, Barton and 

Himmelblau, 1997, Patton et al., 1994, Frank and Köppen-Seliger, 1997, Yu et al., 1999, 

Zhou et al., 2003, Ertiame et al., 2013, Ertiame et al., 2015, Ertiame, 2015) . 

The second category referred to model-based approaches. These approaches can be 

divided into qualitative and quantitative. Qualitative methods are divided into casual 

models and abstraction hierarchy. In addition, the quantitative methods are classified into 

observers, parity space, and extended Kalman filter (EKF) (Patton and Chen, 1992a, 

Venkatasubramanian et al., 2003b, Isermann, 1984).  

In the recent years, the EKF has been intensively for state and parameter estimation. Many 

research works have been carried out to study EKF for fault detection for chemical 

processes. Menaa et al. (2003) studied the estimation of the rotor resistance in induction 

motor by application of the spiral vector theory associate to extended Kalman filter. 

Ouhrouche et al. (1998) presented the application of an extended Kalman filter to rotor 

speed and resistance estimation in induction motor vector control. Loron and Laliberte 

(1993) studied the application of the extended Kalman filter to parameters estimation of 

induction motors, in their paper the extended Kalman filter was used as a parameter 

estimator for the tuning of the indirect field-oriented controller. Another study carried out 

by Graichen et al. (2005a) presented an adaptive feedforward Control with Parameter 

Estimation for the Chylla-Haase Polymerization Reactor, an extended Kalman filter is 

designed to estimate the reaction heat and the heat transfer coefficient during 

polymerization. Wei and Yang (2011) studied the localization of a mobile robot based on 

neural network based extended Kalman filter (NNEKF) algorithm. Extended Kalman 

filter (EKF) is used to fuse the information acquired from both the robot optical encoders 

and ultrasonic sensors in order to estimate the current robot position and orientation. Then 

the error covariance of the EKF is tracked by the covariance matching technique.               
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Fu et al. (2015) employed an adaptive extended kalman filter for navigation system based 

on red shift for spacecraft mission in solar system. Another study was conducted by Kai 

et al. (2010) presented a novel robust extended kalman filter (REKF) for discrete-time 

nonlinear systems with stochastic uncertainties is proposed. The filter is derived to 

guarantee an optimized upper bound on the state estimation error covariance despite the 

model uncertainties as well as the linearization errors. The method was applied in an X-

ray pulsar positioning system. Khanesar et al. (2012) presented a method of using 

extended Kalman filter for the optimization of the parameters of type-2 fuzzy logic 

systems. The extended Kalman filter was shown a better performance as compared to the 

gradient descent-based methods and particle swarm optimization method.Jassemi-

Zargani and Necsulescu (2002) studied extended Kalman filter-based sensor fusion for 

operational space control of a robot arm. Senjyu et al. (2003) presented a high efficiency 

control of synchronous reluctance motors using extended Kalman filter. He et al. (2015) 

presented a model-based fault diagnosis scheme to detect and isolate the faults of the 

current and voltage sensors applied in the series Lithium-Ion battery pack based on an 

adaptive extended kalman filter. Hatami et al. (2014)  designed of a fault tolerated 

intelligent control system for a nuclear reactor power control by using extended Kalman 

filter. Salahshoor and Mosallaei (2008) proposed a model-based process fault monitoring 

approach which utilizes a multi-sensor data fusion technique. The fusion algorithm is 

based on a discrete-time extended Kalman filter (EKF). The presented EKF was modified 

to incorporate the asynchronous sensor measurements. Liu (1999) presented an extended 

Kalman filter and neural network cascade fault diagnosis strategy for the glutamic acid 

fermentation process.   Dalle Molle and Himmelblau (1987) Studied fault detection in a 

single-stage evaporator via parameter estimation using Kalman filter. Another study was 

conducted by Chetouani (2004) that introduced fault detection method based on statistical 
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information generated by EKF. De Vallie`re and Bonvin (1989) Studied the estimation of 

states and parameters of batch reactor using EKF. Benkouider et al. (2009) proposed an 

approach for fault detection in semi-batch and batch reactor based on statistical approach 

test and discrete extended Kalman filter with parameter estimation. Another study carried 

out by Benkouider et al. ((2009) introduced a hybrid approach for the detection and 

isolation of faults in semi-batch and batch reactors based on statistical test using extended 

Kalman filter and neural network for the diagnosis part. Li and Olson (1991) Developed 

fault detection method in a closed-loop nonlinear distillation process using EKF, where 

the EKF is applied inside the control loop. Walker and Huang (1995) Studied FDI using 

extended Kalman filter for parameter estimation of an industrial actuator benchmark. 

Mehra and Peschon (1971) Proposed a method for fault detection in dynamic systems 

using statistical test decision theory based Kalman filter. 

The approaches as stated above are not fit for use in high nonlinear processes such a 

Chylla-Haase polymerization reactor because they cannot meet the requirements for (i) 

sensitivity to incipient failure and (ii) robustness to model uncertainties in maintaining 

low false rates. In this research the FDI scheme is developed for Chylla-Haase 

polymerization reactor using EKF. The idea of using the proposed approach is to estimate 

on-line the states. Then a standardized innovation sequence for the standardized 

hypothesis of statistical tests is used for fault detection. Therefore, two hypotheses are 

defined; the first one is the hypothesis H0 referred to the innovation statistics in the 

normal mode, the second one is the hypothesis H1 referred to an abnormal mode. 

2.6. Nonlinear observer based FD 

With associate increasing demand for higher performance moreover as for a lot of safety 

and reliability of dynamic systems, fault diagnosis has received a lot of attention. The 

matter of on-line fault detection and isolation has become a serious issue in chemical 
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engineering. Several fault diagnosis (FD) approaches have been proposed for processes 

operating mainly in steady-state conditions e.g., continuous reactors. Due to the high 

nonlinear dynamics and unsteady operating conditions of batch chemical systems, the 

application of these techniques are very challenging task to implement. Moreover, the full 

state measurements and an accurate knowledge of parameters of batch reactors are hardly 

available. Existing fault diagnosis approaches for chemical processes can be roughly 

classified in model-free approaches i.e., approaches based on statistical analysis, neural 

networks or expert systems and model-based approaches e.g., observer-based techniques. 

Model-free approaches do not require a model of the system but only a database of 

historical data collected in normal operating conditions (Caccavale et al., 2009). 

The traditional engineering approach to achieving fault in dynamical systems is through 

the use of hardware redundancy. This approach corresponds to constructing redundant 

physical subsystems. However, often times the additional cost, space and/or complexity 

of incorporating redundant hardware makes this approach unattractive. Most of the 

current research in FDA is based on the use of analytical redundancy.  

In the last two decades numerous approaches to FDA have been intensively studied using 

analytical redundancy. Some of these approaches can be categorized as following: the 

detection filter; the innovation test, the parity space approach; and the parameter 

estimation technique. The derivation of an accurate mathematical model of the physical 

system is believed to be one of major issues in applying analytical redundancy approaches 

to FDA (Demetriou and Polycarpou, 1998, Polycarpou and Helmicki, 1995, Trunov and 

Polycarpou, 2000, Vemuri and Polycarpou, 1997, Xiaodong et al., 2002). 

The most commonly used quantitative model-based FDI methods are: analytical 

redundancy, diagnostic observers, parity relations, Kalman filters and parameter 

estimation. One of the major advantages of using the quantitative model-based approach 
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is that we will have some control over the behaviour of the residuals. However, several 

factors such as system complexity, high dimensionality, process nonlinearity And/or lack 

of good data often render it very difficult even impractical, to develop an accurate 

mathematical model for the system. This, of course, limits the usefulness of this approach 

in real industrial processes. The evaluation of residuals usually involves threshold testing. 

Statistical tests have been utilized for residuals generated from parity relation as well as 

observer-based designs (Venkatasubramanian et al., 2003d). 

Various approaches to FDA using analytical redundancy have been studied during last 

two decades. Most of these results can be categorized based on the use of a few basic 

concepts, such as: linear observers (Corradini et al., 2012, de Lira et al., 2011, Pierri and 

Paviglianiti, 2007, Pierri et al., 2008, Wang et al., 2015, Zhang et al., 2016); the detection 

filter (Iftikhar et al., 2015, Wang and Shang, 2015, Chen et al., 2007, Zhuang et al., 2014); 

the parity space approach (Zhong et al., 2015, Odendaal and Jones, 2014, Zhang et al., 

2006, Naik et al., 2009, Medvedev, 1995, Kabbaj et al., 2009); and parameter estimation 

technique(Gertler, 1997). For more details on the general FDA problem we refer to 

comprehensive survey articles by (Gertler, 1988, Patton and Chen, 1992b, Frank and 

Ding, 1997, Willsky, 1976, Venkatasubramanian et al., 2003a). 

It is very interesting to notice that in practice, instead of residuals, output signals of the 

process under consideration are often directly evaluated and compared with a given 

threshold. In the analytical observer-based approach, the generation of residuals reflecting 

the faults is done by estimating outputs of the process and using the estimation errors as 

the residuals. For the fault detection task, a single observer or Kalman filter is sufficient 

whereas, for the localization of the faults, properly structured sets of residuals are 

required. The latter can be generated by using banks of the observers, so-called dedicated 

and generalized observer schemes (DOS and GOS). Depending on the circumstances, one 
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may use linear or nonlinear, full or reduced-order, or fixed or adaptive observers(Frank 

and Ding, 1997).  

Robustness is a vital task in control and monitoring of dynamic systems, which can be 

easily accomplished using the observer based fault detection technique. Nevertheless, the 

faults with slow time constants might not be detected, since the improvement of 

robustness is related with the decrease of the sensitivity of the observer to faults with slow 

time constants. Therefore, an adaptive observer is proposed to use to overcome this 

difficulty. An adaptive observer is a dynamical system that estimates states and (slowly 

varying) unknown parameters of the observed system. One may expect that a residual 

generator based on an adaptive observer does not only maintain the important property of 

early detection of abrupt changes, but also delivers estimates of faults with slow time 

constants. Another motivation is that by applying on-line identification the process model 

can continuously be updated and the robustness of the residual with respect to model 

uncertainties can thus be enhanced (Frank and Ding, 1997).  

In Ballesteros-Moncada et al. (2015), FD method was developed for CSTR using 

Luenberger fuzzy observer and Walcott-Zak observer. However, this method cannot be 

worked in more complex chemical reactors such as Chylla-Haase reactor. In Zhu and Cen 

(2010), FDI for a class of uncertain nonlinear systems based on observers is designed. 

Firstly, by using the sliding model control and adaptive observer design techniques, we 

develop a robust and adaptive full-order observer design method. The full-order observer 

is considered as a detection observer directly since it is robust to the disturbances of the 

system but sensitive to the actuator faults. Secondly, by choosing a special gain matrix, a 

reduced-order observer is constructed and it can eliminate the influence of the 

disturbances and faults directly. However, this method is sensitive for disturbances when 

applied to complex processes. 
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Another study conducted by Zarei and Shokri (2014), FD method was proposed for CSTR 

using  a Nonlinear Unknown Input Observer NUIO) for robust sensor fault detection. The 

proposed method is based on cubature rule. NUIO decouples disturbances and 

uncertainties from estimated states in nonlinear systems. 

The above studies deal almost with linear systems subject to simple additive failures. In 

this work we present a nonlinear observer based fault detection. The application of 

observer based fault detection (FD) has been intensively studied over the last two decades. 

In Polycarpou and Helmicki (1995), detecting faults in nonlinear dynamic systems using 

observer model based approach was proposed. Another method was studied in 

Polycarpou and Vemuri (1995)used a learning methodology for failure detection and 

accommodation. The main idea behind this approach is to monitor the physical system 

for any off-nominal behaviour in its dynamics using nonlinear modelling techniques. In 

Demetriou and Polycarpou (1998) authors studied the design and analysis of a general 

framework for model-based fault detection and diagnosis of a class of incipient faults. An 

automated fault diagnosis architecture using nonlinear online approximators with an 

adaptation scheme is designed and analysed. In Trunov and Polycarpou (2000) 

researchers presented in their paper a robust fault diagnosis scheme for detecting and 

approximating state and output faults occurring in a class of nonlinear multiinput–

multioutput dynamical systems. The robust fault diagnosis scheme utilizes on-line 

approximators and adaptive nonlinear filtering techniques to obtain estimates of the fault 

functions. In Keliris et al. (2015)authors developed a nonlinear observer-based approach 

for distributed fault detection of a class of interconnected input–output nonlinear systems, 

which is robust to modelling uncertainty and measurement noise. First, a nonlinear 

observer design is used to generate the residual signals required for fault detection. Then, 

a distributed fault detection scheme and the corresponding adaptive thresholds are 
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designed based on the observer characteristics. In Xiaodong et al. (2002) researchers 

studied a robust fault diagnosis scheme for abrupt and incipient faults in nonlinear 

uncertain dynamic systems. A detection and approximation estimator is used for online 

health monitoring. Once a fault is detected, a bank of isolation estimators is activated for 

the purpose of fault isolation.  

In this work a fault diagnosis methodology for incipient and abrupt faults is developed. 

We consider nonlinear dynamical systems whose dynamics change at some unknown 

time due to a failure. This change is modelled as an unknown nonlinear function of the 

state and input variables with a time-varying failure profile. In order to capture the 

nonlinear characteristics of faults, we design a nonlinear estimator using the online 

approximation (OLA) approach with an adaptive scheme for the adjustable parameters or 

weights. The stability and performance properties of the fault diagnosis scheme are 

rigorously established under the assumption of full state measurement. These results are 

obtained in the presence of approximation errors, that is, errors arising as a result of 

imperfect modelling of the system deviations due to faults by the online approximator. 

From an adaptive theory viewpoint, the objective of this section is to develop a learning 

methodology for incipient failure detection. In this framework, online approximators such 

as neural networks are used to monitor the system for any deviations due to faults. By 

using the adaptively capabilities of online approximators, they can be used not only to 

detect the occurrence of System failures, but also to provide an online estimate of the fault 

characteristics (diagnosis). The main limitations in the use of learning methods for fault 

diagnosis are the need for significant computational capabilities and the requirement to 

obtain rigorous analytical results on the performance properties of the fault diagnosis 

scheme. The derivation of analytical results on the performance properties of the fault 

diagnosis scheme is difficult due to the nonlinear nature of the problem and the inherent 
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coupling between estimation and adaptation. The fault diagnosis scheme is developed for 

MIMO nonlinear systems with both state and sensor faults, which may occur 

simultaneously or independently. The fault in each of the states/outputs is allowed to 

evolve at a different rate, covering both incipient and abrupt faults.  
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Chapter 3 

Chylla-Haase Benchmark Process 

 Modelling 

In the last two decades, batch and semi-batch processes have been widely used in the fine 

chemicals industry. Many chemical manufactures such as polymer and pharmaceutical 

products are manufactured in batch and semi-batch operations. From a process system 

point of view, the semi-batch operations are described as a reactant may be added with 

no product removal. Whereas, in batch operations, all the reactants are added and charged 

in a reactor at the start with no material added or removed (Bonvin, 1998, Srinivasan et 

al., 2003). 

In this research, a semi-batch polymerization reactor benchmark is considered which is 

described by Chylla and Haase (1993) and used as a benchmark for process control 

applications, Due to its semi-batch nature, the process shows time varying behaviour and 

high nonlinear. In addition, changes in the viscosity of the polymer solution over the 

course of the reaction is resulted changing in heat transfer characteristics. Due to the 

increasing of the fouling of the reactor walls, the behaviour of the process change from 

batch to batch. Also the behaviour often changes due to changes in the environmental 

conditions such as cooling water temperatures and external temperatures. All those semi-

batch nature make the reactor very complex high nonlinear and difficult to control 

(Clarke-Pringle and MacGregor, 1997). 
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3.1. Description of the Process 

The schematic diagram of the semi-batch polymerization reactor is shown in Figure 3.1 

(Chylla and Haase, 1993). It consists of a stirred tank reactor with cooling jacket and a 

coolant recirculation. The reactor temperature is controlled by manipulating the 

temperature of the coolant, which is recirculated through the cooling jacket of the reactor. 

The heat released through the reaction must be removed by circulating cold water through 

the jacket, where both hot and cold jacket streams are available. When the jacket 

temperature controller output is between 0 and 50%, the valve is opened and cold water 

is inserted, and when the jacket controller output is between 50 and 100%, the valve is 

opened and steam is inserted (Beyer et al., 2008, Graichen et al., 2005b).  

 

Figure 3.1 Chylla-Haase Reactor Schematic (Chylla and Haase,1993). 

3.1.1. Polymerization Reactor Dynamic Model 

The mathematical model of the Chylla-Haase reactor is described by a set of five ordinary 

differential equations (ODE) which come from material and heat balances inside the 

reactor. The reactor simulation model used here in this research work is developed using 
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MATLAB/SIMULINK. The material balances for monomer mass Mm  and polymer mass 

Pm are described by equations (3.1) and (3.2) respectively, as follows: 
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Where in
Mm  is the monomer feed rate, H  is the heat enthalpy and reaQ  is the reaction 

heat. The reaction heat here is defined as: 
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Where pR   is the rate of polymerization. The reaction rate is usually defined as a function 

of temperature and represented as:  
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Where i is the impurity factor, k  is the reaction rate, E  the activation energy, R the ideal 

gas constant,  the batch viscosity which is described as: 
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Where f is the solid mass fraction. 

The reactor model includes the material balances (3.1) and (3.2) for the monomer mass 

)(tmM and the polymer mass )(tmP  , the energy balance (3.8) with the reactor temperature

)(tT , plus the energy balances (3.9) and (3.10) of the cooling jacket and the recirculation 

loop with the outlet and inlet temperatures )(tT jin   and )(tT jout  of the coolant. The 
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available measurements of the process are the temperature of the reactor and the cooling 

circuitry (Graichen et al., 2006): 
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The overall heat transfer coefficient U  is calculated as following: 

 
)

11(
1

 


fhh
U  

(3.11) 

 

 ) exp( 10 wallddh   
(3.12) 

Where h  is the heat transfer coefficient , and 1
fh  is the fouling factor and should change 

as illustrated in Table 3.1. 

Table 3.1 Fouling factor values 

Batch 1 2 3 4 5 

1
fh  0.0 0.176 0.352 0.528 0.704 

 

The heating/cooling function )(cK P  is influenced by an equal-percentage valve with 

valve position )(tc  as shown in equation (6):  
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For %50c , cold water with inlet temperature inletT is injected in the cooling jacket, 

whereas a valve position %50c  leads to a heating of the coolant by injecting steam with 

temperature steamT  into the recirculating water steam.(Graichen et al., 2006). 

3.1.2. Uncertainties and Disturbances in the Process 

In order to model the following practical issues of the control of polymerization reactors, 

various disturbances and uncertainties are identified: 

 The impurity factor ]2.1 : 8.0[i  in the polymerization rate pR is random but 

constant during one batch, which tries to simulate fluctuations in monomer 

kinetics caused by batch to batch variations in reactive impurity. 

 The fouling factor fh/1  in the overall heat transfer coefficient U  increases with 

each batch and accounts for the fact that during successive batches a polymer film 

builds up on the wall resulting in a decrease ofU . 

 The delay times 1  and 2  of the cooling jacket and the recirculation loop may 

vary by %25  compared to nominal values. 

 The ambient temperature am bT   is different during summer and winter. This affects 

the temperature of the monomer feed
in
Mm , as well as the initial conditions )0(T ,

)0(jinT and )0(joutT  given by am bT  (Graichen et al., 2006). 

Table 3.3 describes the empirical relations for the polymerization rate, the jacket heat 

transfer area, and the overall heat transfer coefficient (Graichen et al., 2006). 
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Table 3.2 Parameters value of the reactor 

Symbol Unit Value of Polymer A Value of Polymer B 

0,Mm  kg  0  0  

0,Pm  kg  227.11  010.11  

Wm  kg  750.42  010.42  

m  3kgm  
900  900  

p  3kgm  
1040  1040  

w  3kgm  
1000  1000  

Mpc ,  11   Kkgkj  
675.1  675.1  

Ppc ,  11   Kkgkj  
140.3  140.3  

Wpc ,  11   Kkgkj  
187.4  187.4  

cm  kg  455.21  455.21  

cm  1 skg  
9412.0  9412.0  

cpc ,  11   Kkgkj  
187.4  187.4  

0k  1 s  55  20  

1k  1  kgsm  
1000  1000  

2k  1  kgsm  
4.0  4.0  

E  1 kmolkj  
89.29560  89.29560  

0c  11   smkg  
5102.5   5102.3   

1c  11   smkg  
4.16  1.19  

2c  11   smkg  
3.2  3.2  

3c  11   smkg  
563.1  563.1  

0a  K  556.555  556.555  

pH  1 kmolkj  
16.152,70  2.593,765  

0d  12    KmkW  814.0  814.0  

1d  1  kgsm  
13.5  13.5  

max,in
M

m  
1 skg  

007560.0  006048.0  

]1,,0,[ in
M

in
M tt  min  ]100,30[  ]90,30[  

]3,,2,[ in
M

in
M tt  min   ]160,120[  

setT  K  382.355  160.353  

P  m  594.1   

1B  2m  193.0   

2B  2m  167.0   

R  11   Kkmolkj  
314.8   
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lossUA)(  1 KkW  00567567.0   

p  s  2.40   

1  s  8.22   

2  s  15   

am bT  K  )(38.305),(38.280 SW   

inletT  K  )(26.294),(71.278 SW   

steamT  K  82.449   

i    ]2.1:8.0[   

3.2. Matlab Simulink Model Development  

Simulink is a part of MATLAB software that provides a graphical environment and 

solvers for modelling, simulating and analysing of dynamic systems. Here in this section, 

the Simulink model for the proposed reactor is developed by material and energy balances 

equations described in (3.1) -(3.13). Figure 3.2 describes the main Simulink model for 

Chylla-Haase polymerization reactor. The proposed model consists of five main sub-

system blocks as shown in Figure 3.3. Each sub-system block represents a mathematical 

model for material and energy balances as described in previous section. 

 

Figure 3.2 Chylla-Haase simulink model 
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Figure 3.3 Subsystem block of reactor simulink 

Figure 3.4 represents the mathematical model for material balances as described in 

equations (3.1)-(3.7). It can be seen that, the three embedded MATLAB function have 

been created to solve the empirical relations for the rate of polymerization as described 

in Table 3.3. 
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Figure 3.4 Simulink block diagram for material balances 

Figure 3.5 shows the Simulink model diagram of the mathematical model for overall heat 

transfer coefficient which is described by equations (3.11) and (3.12) and illustrated in 

Table 3.3. 

 

Figure 3.5 Simulink block diagram for overall heat transfer 

The Simulink models of the recirculation loop, jacket temperature, and reactor 

temperature are designed and developed according to the mathematical equations (3.9) - 

(3.10) as shown in Figures 3.6, 3.7 and 3.8 below. 
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Figure 3.6 Simulink block diagram for jacket 

 

Figure 3.7 Simulink block diagram for recirculation loop 
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Figure 3.8 Simulink block diagram for reactor temperature 

3.3. Performances and Discussion 

After building up the Simulink model for the reactor, the polymerization process is 

simulated using the parameters values as described in Table 3.4. Firstly, we run the reactor 

using the parameter values for polymer A. the initial parameters of polymer, monomer, 

and water are set into reactor at ambient temperature. Before feeding in monomer into the 

reactor, the valve is set up to fully open mode in order to heat up the reactor and full steam 

inserted. After 1800s the monomer is fed into reactor at 0.0075 kg/s until 6000s as shown 

in Figure 3.9.and the reactor temperature reached 450K as shown in Figure 3.10. After 

the feed of monomer has stopped the reactor temperature   is decreased at held at its set 

point value as shown in Figure 3.10.  



41 
 

 

Figure 3.9 Monomer feed rate (Polymer A) 

 

Figure 3.10 Reactor temperature (Polymer A) 

Figure 3.11 and 3.12 show the response of the jacket input temperature and jacket output 

temperature respectively.  
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Figure 3.11 Jacket input temperature (Polymer A) 

 

Figure 3.12 Jacket output temperature 

Due to nonlinearity of reaction kinetics, the heat transfer coefficient sharply decreases 

during a batch because of viscosity increasing, as shown in Figure 3.13. It can be clearly 

noticed that, the difference between the responses from batch one when fouling factor is 

equal to zero to batch five when fouling factor is 0.704, due to the increase of the fouling 
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factor and viscosity. So this conclude that, the heat transfer coefficient is related inversely 

with the fouling factor and the viscosity. 

 

Figure 3.13 Overall heat transfer coefficient (Polymer A) 

Figure 3.14 shows the response of the reaction heat. It can be clearly seen that, the direct 

correlation between the reaction heat and the rate of polymerization as described 

previously in equations (3.3)-(3.7). When the monomer fed into the reactor at 1800s the 

reaction heat of the reactor is increased and stayed steady until the monomer is stopped 

feeding at 6000s then the reaction heat is rapidly decreased to zero at 6000s. 

 

Figure 3.14 The reaction heat (Polymer A) 
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Figure 3.15 Polymer mass (Polymer A) 

Figure 3.15 and 3.16 show the response of the polymer mass and monomer mass 

respectively. It can be clearly noticed from both figures the relation between monomer 

mass, polymer mass, rate of polymerization and reaction heat as illustrated in equations 

(3.1) -(3.7). 

 

Figure 3.16 Monomer mass (Polymer A) 
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In this section, the polymerization reactor is simulated using the parameter values for 

polymer B as described in Table 3.4. Two recipe of polymer b product is feed into the 

reactor. The monomer of first recipe of polymer B product is fed into reactor at 0.006048 

kg/s for 3600s, starting form 1800s stopped at 5400s. Then the second recipe is fed at 

0.006048 kg/s starting from 7200s and stopped at 9600s as shown in figure 3.17.  Figure 

3.18 shows the open-loop response of the reactor temperature for different batches. It can 

be clearly seen that the reactor temperature is increased when the monomer is fed into 

reactor, and decreased when the monomer is stopped feeding. Moreover, it can be noticed 

that the difference of the reactor temperature from first batch to fifth batch, that’s due to 

the increase of fouling factor from batch to batch. 

 

Figure 3.17 Monomer feed rate (Polymer B) 

 

Figure 3.18 Reactor temperature (Polymer B) 
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The effect of increasing the fouling factor from batch to batch on the overall heat transfer 

coefficient can be clearly seen in Figure 3.19. This proved the invers relation between the 

fouling factor and overall heat transfer coefficient as described in equations (3.11) and 

(3.12). 

 
Figure 3.19 Overall heat transfer coefficient (Polymer B) 

 
Figure 3.20 Reaction heat (Polymer B) 
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Figure 3.21 Polymer mass (Polymer B) 

 

Figure 3.22 Monomer mass (Polymer B) 

3.4. Summary  

The main aim of this chapter is to understand the nonlinear dynamic behaviour of the 
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discussed. Moreover, all parameter values for polymer A and B and all the empirical 

relations for the polymerization rate, the jacket heat transfer area, and the overall heat 

transfer coefficient are represented.  The Simulink model of the proposed reactor is set 

up using Simulink/MATLAB. The design of Simulink model is developed based on a set 

of ordinary differential equations (3.1)-(3.12) that describe the dynamic behaviour of the 

proposed polymerization process. The Simulink block diagram of the proposed reactor is 

presented and discussed in more details. The simulation results of open-loop 

Polymerization process for both polymer A and B are presented and discussed. 
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Chapter 4 

RBF NN Model Based FDI for Open-loop 

System 

An independent radial basis function (RBF) neural networks (RBFNN) are developed and 

employed here for an on-line diagnosis of actuator and sensor faults. In this research, a 

robust fault detection and isolation (FDI) scheme is developed for open-loop exothermic 

semi-batch polymerization reactor described by Chylla-Haase. The independent (RBFNN) 

is employed here for on-line diagnosis of faults when the system is subjected to system 

uncertainties and disturbances. Two different techniques to employ RBF neural networks 

are investigated. Firstly, an independent neural network is used to model the reactor 

dynamics and generate residuals. Secondly, an additional RBF neural network is 

developed as a classifier to isolate faults from the generated residuals. Three sensor faults 

and one actuator fault are simulated on the reactor. Moreover, many practical disturbances 

and system uncertainties, such as monomer feed rate, fouling factor, impurity factor, 

ambient temperature and measurement noise are modelled. The simulation results are 

presented to illustrate the effectiveness and robustness of the proposed method. 

4.1.   Radial Basis Function Neural Networks (RBFNN) 

The RBF network performs nonlinear mapping for modelling nonlinear dynamic systems. 

Figure 4.1 illustrates the structure of the RBFNN, which consists of three layers: input 

layer, hidden layer and output layer. The hidden layer contains a number of RBF neurons, 
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and each of them represents a single radial basis function, with associated centre and 

width. The transfer function of the hidden layer neurons is radial basis function. 

Input Layer Hidden Layer Output Layer
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Figure 4.1 RBF NN Structure 

4.2. RBF Neural Network Modelling of Cylla-Haase Reactor 

4.2.1. Training Algorithm 

The output of the hidden layer nodes in RBFNN is produced by so called a nonlinear 

activation function )(tj  . nn this wor  the aaussian basis function is chosen as the 

nonlinear activation function.  
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   (4.1) 

Where )(tc j   is thj   centre, here in this research  K-means clustering algorithm is used to 

choose the centres of the RBF to minimize the sum squared distance from each input data 

to its closest centre so that the data is adequately covered by the activation function. 

 )(tx  is the neural network input vector which is given as: 

 )](,),1(),(,),1([ )( dntudtuntytyftx uy    (4.2) 
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Where j   is a positive scalar called a width and hn   is the number of centres. Here in this 

work the p-nearest algorithm is used to choose the widths, and the recursive training 

algorithm is employed to update and calculate the weights. 

 The network outputs are then computed as a linear weighted sum of the hidden node 

outputs and bias as shown below in equation (4.3):  

  
hn

j
ji

T
ji qiwtty ,,1,   )()(ˆ   (4.3) 

Where jiw  is the output layers weight connecting the thj   centre output and thi  network 

output, and q   is the number of outputs.  

4.2.2. Independent and Dependent Modes of RBF Modelling 

Using RBFNN for modelling, a non-linear dynamic system can be modelled in two 

modes: a dependent mode and an independent mode as shown in figure 4.2 and 4.3. The 

first model referred to is a dependent mode, since the past system output is used as 

network input. Thus, the model is dependent on the system output and cannot operate 

independently from the system. In the independent mode, the past model output is used 

as network input. Therefore, the model is not dependent on the system output and can 

operate independently from the system. The independent model has an advantage in that 

the model can be used to simulate the system to obtain long-range prediction. In contrast, 

the dependent model performs as one-step-ahead predication. 

The RBF model of the dependent form uses both input and output of the process to be 

modelled. Then, when the process has a fault, the fault will affect the process output, and 

consequently affect the RBF model output. When the model output is compared with the 

process output to generate the residual, the residual will not be sensitive to the fault. On 

the contrary, the RBF model of the independent form use process input and the model 

output rather than the process output. In this way the occurring fault will not affect the 
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model output because the process is not fed into the RBF model. Thus, the residual 

generated by comparing the model output with the process output will be sensitive to the 

fault. 

 

 

Figure 4.2 Dependent mode 

 
Figure 4.3 An independent mode 

The nonlinear dynamic plant to be modelled is presented by the non-linear autoregressive 

with exogenous inputs (NARX) model as shown in equation (4.4) below: 
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 )()](,),1(),(,),1([ )( tedntudtuntytyfty uy    (4.4) 

Where mu   and py  are plant input and output respectively. pe  is random noise, 

m  and p are the number of plant inputs and outputs respectively, yn   and un  are the 

maximum lags in the model output and input, respectively, d  is the time delay in inputs, 

and )(f  is a vector valued  non-linear function. 

The dependent mode of the network model can be represented by equation (4.5), which 

is referred to dependent mode as the prediction uses the process output and therefore, the 

model cannot run independent of the process. 

 )](,),1(),(,),1([ ˆ)( ˆ dntudtuntytyfty uy    (4.5) 

Where )(ˆ f  is a function approximation of )(f  . If the past process outputs in the 

network input are replaced by the network outputs as in equation (4.6) below, then the 

model is referred to an independent model 

 )](,),1(),(ˆ,),1(ˆ[ ˆ)( ˆ dntudtuntytyfty uy    (4.6) 

4.2.3. Input-Output Determination of RBF Model 

The first step towards developing a neural network model of the process is to obtain 

training data. Training data is obtained by designing a set of random amplitude signals 

(RAS) for the five inputs to the reactor: monomer feed rate, fouling factor, ambient 

temperature, impurity factor, and valve position, as shown in figure 4.3. These five inputs 

are the system inputs (monomer feed rate, manipulated variable) included the 

uncertainties and disturbances in the process. The second step towards developing a 

neural network model of the process is to determine the network input variables and the 

input vector and output vector. The network input vector consists of the past values of the 

five system inputs and the past values of the three system outputs. The determination of 

the inputs and outputs of the system is based on the equations (1) to (5). A total data set 
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of 2000 samples is collected from the system Simulink model, and 4s are used as the 

sampling time. The first 1500 samples are used for training the network model, and the 

remaining 500 samples are used for testing the network model. Before training and 

testing, the raw data is scaled linearly into the range of [0 1] using the following formulae: 
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4.2.4. Data Acquisition and Pre-processing 

In this research, an independent RBF network is used to represent the NARX model in 

equation (4.6). Thus, in order to get a good training result with minimum modelling error, 

several numbers of maximum lags in the outputs and inputs, and several numbers of the 

maximum time delay in the inputs are tried. The maximum lags in the output were 

selected as 3, the maximum lags in the input is selected as 3, and the maximum time delay 

in the inputs is selected as 2, as described in equation (4.9). Thus, the RBF model is 

designed to have 24 inputs and 3 outputs, as shown in figure 4.8. The hidden layer nodes 

are selected as 21. The centres are chosen using a K-means clustering algorithm as 21. 

Moreover, a p-nearest-neighbours algorithm is used to choose the widths. In the training 

of the network model, the recursive least squares (RLS) algorithm is used to update the 

weight matrix since the weights are linearly related to the output, and the parameters of 

the RLS algorithm are selected as follows: 999.0 , )3,(10)0( 6
hnUw    and  
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)(10)0( 6
hnIp  where   is the forgetting factor, I  is an identity matrix, U  is the 

element unity matrix, and hn  is the number of hidden layer nodes. 

 Tktuktuktutytytytx )]3(  )2(   )1(   )3( ˆ  )2( ˆ  )1( ˆ[)(   (4.9) 

 

Figure 4.4 RAS signal 

 Based on equations (4.7) -(4.9), figure 4.5 demonstrates the fault detection approach. 

An independent model is implemented in parallel with the system to generate the 

residuals for detecting the sensor and actuator faults in the reactor. 
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Figure 4.5 The structure of FD using an independent RBFNN 

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6

7

8
x 10

-3

R
an

do
m

 A
m

pl
itu

de
 s

ig
na

l (
R

AS
)

Time(sec)



56 
 

Figure.4.6, 4.7, and 4.8 shows the last 200 sample intervals in the training data set and 

the first 200 sample intervals in the testing data set. It can be clearly seen that the model 

outputs track the system output with a small modelling error. The mean absolute error 

(MAE) for the jacket input temperature, jacket output temperature and reactor 

temperature are 0.004, 0.0054 and 0.0072, respectively. 

 

Figure 4.6 Jacket input temperature and RBF model 

 

Figure 4.7 Jacket output temperature and RBF model 
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Figure 4.8 Reactor temperature and RBF model 

4.3. Fault Detection 

4.3.1. Simulating Faults 
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 Simulating Sensor Faults 

 The jacket input temperature sensor fault is superimposed with 10% change of the 
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shown in Figure 4.9 and 4.10. Additionally, the jacket output temperature sensor fault is 

superimposed with 10% change of the measured jacket output temperature, and simulated 

from the sample number 600 to 700, as shown in figure.4.9 and 4.10. Furthermore, the 

sensor fault of the reactor temperature is superimposed with 10% change of the measured 
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temperature, and simulated from the sample number 800 to 900, as shown in figure.4.9 

and 4.10. 

 Simulating Actuator Fault 

The heating-cooling function is influenced by an equal-percentage valve with valve 

position. When the valve position %50c  , cooling water with inlet temperature (278.71 

k) is inserted into the cooling jacket. When the valve position %50c , steam with 

temperature (449.82 k) is injected into the recirculating water stream, which will lead to 

heating up of the coolant. Consequently, it is assumed here that a failure in the pump 

position of cooling mode has occurred, which leads to increase in the temperature by 10% 

change of the measured inlet temperature. This inlet temperature fault is simulated from 

the sample number 1000 to 1100, as shown in figure.4.9 and 4.10. 
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Figure 4.9 The schematic of Chylla-Haase reactor with four faults 
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Figure 4.10 Fault structure with respect to number of samples 

4.3.2. Residual Generation 

After training the network model with healthy random data, as described in the previous 

section, all four faults were simulated to the reactor model. Then, with another set of 2000 

samples, faulty square data is collected. These faulty data are collected by designing a set 

of square waves for all inputs. 

These five inputs are the system inputs (monomer feed rate, manipulated variable) 

included the uncertainties and disturbances in the process. The second step towards 

developing a neural network model of the process is to determine the network input 

variables and the input vector and output vector. The network input vector consists of the 

past values of the five system inputs and the past values of the three system outputs. 

Where the )(tmM , fh/1 , am bT   , i ,  and )(tc   are the inputs of the system; and jacket input 

temperature )(tT jin , jacket output temperature )(tT jout  and reactor temperature )(tT  are the 

outputs of the system. Moreover, the collected data is scaled linearly. After determining 

and scaling the input and output vectors of the system, the multivariable NARX is used 

to represent the non-linear dynamics of the reactor, the maximum lags in the output were 

selected as 3, the maximum lags in the input is selected as 2, and the maximum time delay 

in the inputs is selected as 2, as described in equation (4.9). Here again the neural network 

is realised by a RBF network with Gaussian basis functions. Moreover, the centres are 

chosen again using a K-means clustering algorithm and the widths are chosen using p-
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nearest-neighbours. Different numbers of hidden nodes, such as 21, 31, and 51, are used 

in order to get good results. The recursive least squares algorithm is used to update the 

weight matrix. The parameters of the recursive least algorithm are selected as follows: 

999.0 , )5,(10)0( 5
hnUw   and )(10)0( 5

hnIp   where  is the forgetting factor, I  

is an identity matrix, U  is the element unity matrix, and hn   is the number of hidden layer 

nodes. The RBF network model is tested with these faulty square data to generate fault–

detection residuals. The filtered model prediction errors are shown in figure 4.10, 4.11, 

and 4.12. In this study, the residual  is generated as the sum-squared filtered modelling 

error as follows: 

)](ˆ)([)( tytyte   

222 )()()()( TjoutTjinT eeet   

The residuals of testing the neural model are slightly bigger than the residuals of training 

the neural model. The mean absolute error (MAE) index is used to evaluate the modelling 

effects. The MAE for the jacket input temperature, jacket output temperature and reactor 

temperature are 0.004, 0.0054and 0.0072, respectively. Figure 4.11, 4.12, and 4.13 

demonstrate the residuals after using a low pass filter. The first model prediction error of 

jacket input temperature is shown in figure 4.11 and that for jacket output temperature 

and reactor temperature are shown in figure 4.12 and figure 4.13, respectively.  It can be 

observed that the independent network model output is not influenced by any type of 

fault, because an independent model does not use past faulty measurements as inputs. 

Thus, it can be clearly noticed that all faults have been clearly detected since all signals 

are over the threshold setting, the detection threshold is chosen as 0.2 for jacket input 

sensor fault ,0.3 for jacket output sensor fault and 0.7 reactor temperature fault. Moreover, 

no false alarms are thereby produced, so this verifies that the proposed scheme has shown 

excellent diagnostic performance. 
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Figure 4.11 Residual filtered model prediction error of Tjin 

 
Figure 4.12 Residual filtered model prediction error of Tjout 

 
Figure 4.13 Residual filtered model prediction error of T 
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4.4. Fault Isolation 

Figure 4.14 illustrates the fault isolation strategy; an additional neural network is applied 

as a classifier for fault isolation. The application of NNs for fault isolation has been used 

by many researchers, such as Patton et al. (1994) and Yu et al. (1999) used an RBF 

network, Yu et al.(1996a) using an MLP network, and Patton and Benkhedda (1996) used 

a B-spline network. In the fault detection, a residual is generated to report a fault 

occurring. However, it is difficult to identify which fault has occurred among all pre-

specified possible faults using the residual, due to the fact that the residual is a scalar and 

carries little information about fault types. In this work, it is proposed to isolate faults 

according to model prediction errors. The model prediction errors are multi-dimensional, 

three-dimension in this case, and different faults will have different impacts on these 

vectors in three-dimension vector space. Classification of these features of different faults 

on the model prediction error vectors will lead to classification of different faults. 

Therefore, the faults that have occurred can be isolated. In this work, the neural classifier 

is developed by an RBF network with Gaussian basis functions. The residuals that shown 

in Figure 4.11, 4.12, and 4.13. which are the difference between the real system output 

and the tested neural output were used as inputs for RBF network classifier. 

 Moreover, the neural classifier was developed with five outputs, with four outputs 

associated to the four faults, and one output for (no-fault) case.   The centres are chosen 

again using a K-means clustering algorithm and the widths are chosen using p-nearest-

neighbours. Different numbers of hidden nodes, such as 51, 151, and251, are used in order 

to get good results. Finally, 51 hidden layer nodes are selected and the centres are chosen 

as 51. The parameters of the recursive least algorithm are selected as follows: 9999.0  

, )5,(10)0( 6
hnUw   and )(10)0( 6

hnIp   The samples arranged for fault occurrence 

are illustrated in Table 3. Moreover, the target is set such that all four outputs are set as 
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zero for the healthy condition data, and one output is set as 1 for a specific fault, with the 

others remaining at zero. Thus, once the first output is 1 and the other outputs are zero, 

this means that the jacket input temperature sensor fault with 10% change has occurred. 

 In the same way, the jacket output temperature sensor fault with 10% is believed to have 

occurred when the second output is 1, while the others remain at zero. Similarly, the 

reactor temperature sensor fault and the inlet temperature actuator fault with 10% changes 

will have occurred when the third and the forth outputs are 1. After training, the RBF 

network classifier is tested with another set of faulty data with the same arrangement of 

training data. The samples arranged for fault occurrence can be different from those of 

the training data. Table 4.1 shows the classification of faults with respect to the number 

of samples. The four outputs of the neural classifier after use of a filter are displayed in 

figure 4.15-4.18. It can be clearly noticed that all faults have been clearly detected and 

isolated. The isolation thresholds are chosen as 0.4 for all cases as shown in Figures 4.15-

4.18.  

RBF
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Figure 4.14 Block diagram for fault isolation 
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Table 4.1 Classification of faults with respect to number of samples 

Faults Number of samples 

No fault 0 ~ 400 

  T jin sensor fault  401 ~ 400 

No fault 501 ~ 600 

  T jout sensor fault  601 ~ 700 

No fault 701 ~ 800 

Reactor temperature 

sensor fault  

801 ~ 900 

No fault 901 ~ 1000 

Inlet temperature actuator 

fault  

1001 ~ 1100 

No fault 1101 ~ 2000 

 

Figure 4.15  Classifier output 1 
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Figure 4.16 Classifier output 2 

 

Figure 4.17 Classifier output 3 

 

Figure 4.18 Classifier output 4 
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4.5. Discussion 

Robust is that the fault detection always sees residual sensitive to the fault but insensitive 

to the disturbances. When the disturbances come in it will not affect the report of the fault, 

and will not increase false alarm reading. False alarm reading is that where there is no 

fault but fault is reported and when there is a fault but is not reported. False alarm reading 

should be zero percentage when all faults are reported, if there is no fault but report 

affected by disturbances this should be zero, but if not zero then should be reduced as 

small as possible.in this research work, when collecting training data all disturbances are 

simulated, because of this the model is trained considering the disturbances. When 

disturbances happened will not affect the residual that because the disturbances in this 

system is not big enough to make the residual high, in this process the disturbances just 

change the nonlinear function of the system and that is big enough from the control point 

of view. Its observed from simulation results that all faults have been clearly detected and 

isolated, and no false alarm were thereby produced, so this verifies that the proposed 

scheme has shown an excellent performance. Note that the outputs are not zero when no 

faults occur, as a result of the effects of the disturbances. 

4.6. Summary  

A new robust fault diagnosis scheme has been developed for open-loop Chylla-Haase 

reactor using an independent RBFNN. Three sensor faults and one actuator fault have 

been simulated on the reactor. All the simulated faults are superimposed with 10% 

changes of the measured temperatures, and simulated for different numbers of samples. 

Moreover, the uncertainties and disturbances in the process have been simulated. Two 

different techniques to employ RBF neural networks for fault diagnosis have been 

investigated.  The first technique is implementing an independent RBNN for residual 

generation. Moreover, the generated residuals were used for detecting actuator and sensor 
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faults. The second technique is applying an additional RBFNN as a classifier to perform 

the classification task for residual evaluation and therefore to diagnose and isolate the 

actuator and sensor faults from the generated residuals. The simulation results show that 

all faults were clearly detected and isolated. Moreover, no false alarms are thereby 

produced, so this verifies that the proposed scheme has shown excellent diagnosis 

performance. The main contribution of this work is to show how to apply an independent 

RBFNN to open-loop Chylla-Haase reactor fault diagnosis.so this proposed method can 

contribute to the safety of chemical reactors. 
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Chapter 5 

RBF Model Based FDI for Closed-Loop 

System 

In this chapter, a new robust fault detection and isolation (FDI) scheme is developed to 

monitor a multivariable nonlinear chemical process called the Chylla-Haase 

polymerization reactor, when it is under the cascade PI control. The scheme employs a 

radial basis function neural network (RBFNN) in an independent mode to model the 

process dynamics, and using the weighted sum-squared prediction error as the residual. 

The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model 

to overcome the training difficulty of the independent mode of the network. Then, another 

RBFNN is used as a fault classifier to isolate faults from different features involved in 

the residual vector. Several actuator and sensor faults are simulated in a nonlinear 

simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults 

on-line. The simulation results show the effectiveness of the scheme even the process is 

subjected to disturbances and uncertainties including significant changes in the monomer 

feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. 

The simulation results are presented to illustrate the effectiveness and robustness of the 

proposed method. 

5.1. Closed-loop control system design and performances 

In order to produce polymer of desired quality a very tight temperature control is essential 

for the reactor. The controller should be able to keep the reactor temperature T  within 
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an interval of K6.0   around the desired set-point under all operating conditions and 

disturbances. Commonly used for a chemical reactor is a PI cascade control structure. 

The block diagram of the cascade PI control is shown in Figure 5.1. The master control   

regulates the reactor temperature T   by manipulating the set point set
jT  of the mean 

cooling jacket temperature jT .The slave controller adjusts the valve position c  in order to 

control the mean jacket temperature jT set by the master controller.  

Reactor
Cooling 

Jacket

Slave 

Controller

Master 

Controller
jT

Tc

--

T

)(tin
M

m Disturbances

Setpoint

Plant
Inner Loop

Outer Loop

Disturbances

 

Figure 5.1 Block diagram of CASCADE control scheme 

The parameters of the conventional cascade PI controllers have been tuned in simulation 

studies as 21PK , 08.0IK  for the master controller, and 3.2PK , 09.0IK  for the 

slave controller. The sampling times for both the slave and master controllers are set to

s4 . Figure 5.2 illustrates the reactor temperature response of the designed cascade PI 

control for the fifth batch, where the monomer was added at t = 1200 sec and withdrawn 

at t = 6000 sec. As the reaction release heat energy, the control variable was reduced when 

the monomer was added and increased when the monomer was withdrawn.   It can be 

observed that the control scheme is effective to maintain the reactor temperature within 

the tolerance interval limit K6.0   around the set-point under major disturbance. The PI 

controller tuning is not optimal (see the oscillatory response when the monomer was 

added), this will not affect the FDI system design and evaluation. Note that all the 
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uncertainties and disturbances in the process, such as fouling factor, impurity factor, and 

measurement noise, have been simulated and taken into consideration. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.2 Cascade PI control: (a) Reactor temperature, (b) Jacket temperature, (c) 

Valve position 

0 1000 2000 3000 4000 5000 6000 7000 8000
260

280

300

320

340

360

Time (sec)

R
ea

ct
or

 T
em

pe
ra

tu
re

 (K
)

0 1000 2000 3000 4000 5000 6000 7000 8000
100

150

200

250

300

350

400

450

Time (sec)

Ja
ck

et
 T

em
pe

ra
tu

re
 (k

)

0 1000 2000 3000 4000 5000 6000 7000 8000

0

20

40

60

80

100

Time(sec)

Va
lv

e 
Po

si
tio

n 
(%

)



71 
 

5.2. Training algorithm 

In this chapter, a radial basis function neural network (RBFNN) in an independent mode 

is employed to model the process dynamics. In this work the centres of the RBFNN are 

set by the K-means clustering method (Chen et al., 1990),whose objective is to minimise 

the sum squared distances from each input data to its closest centre so that the data is 

adequately covered by the activation functions )(t . Moreover, the widths are computed 

by the p-nearest neighbours method(Chen et al., 1990). The excitation of each node 

should overlap with other nodes (usually closest) so that a smooth interpolation surface 

between nodes is obtained. In this method, the widths for each hidden node are set as the 

average distance from the centre to the p nearest centres as given by:  

In this work, the weights were trained using the ROLS algorithm. Because the 

independent mode of RBF model requests much higher accuracy compared with 

dependent mode, also due to that the ROLS is a numerically robust algorithm. Training 

of the RBF network weights with the ROLS algorithm is as follows. Considering the 

network output as described in previous chapter in equation (4.3) at sample interval k  for 

a set of N samples of input-output training data from 1Nk to k  ,in other words a 

window going back in time N samples, we have 

 )()()()()(ˆ)( KEKWKKEKYKY   (5.1) 

where PNY  is the desired output matrix, PNY ˆ  is the neural network output matrix,

hnN
  is the hidden layer output matrix, PNE   is the error matrix and equation 

(5.1) can be solved for )(kW using the recursive MIMO Least Squares algorithm to 

minimize the following time-varying cost function, 
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Where the F-norm of a matrix is defined as )(
2

ATAtrace
F

A   and 1  is used to 

introduce exponential forgetting to the past data. It has been shown Gomm and Yu (2000) 

that minimizing (5.2) is equivalent to minimizing the following cost function, 
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Where R is an hh nn   upper triangular matrix, and Y


  is computed by an orthogonal 

decomposition as follows, 
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Where Q is an orthogonal matrix. Combining (5.3) and (5.4) and considering that the F-

norm is preserved by orthogonal transformation, the following equivalent cost function 

is obtained, 
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This allows the optimal solution of )(kW to be solved straightforwardly from 

 )()( )( kYkWkR


  (5.6) 

And leaves the residual at sample interval k as F
T |||| . Since )(kR  is an upper triangular 

matrix, )(kW  can be easily solved from (5.6) by backward substitution.  
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The decomposition in (5.4) can be achieved efficiently by applying Givens rotations to 

an augmented matrix to obtain the following transformation by Gomm and Yu (2000): 
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The procedure of the ROLS algorithm is therefore the following: for on-line training, 

calculate )(k  at each sampling period to update the augmented matrix and compute the 

Givens rotations to realize the transformation in (5.7). Then solve )(kW    in (5.6) with

)(kR   and )(ˆ kY   obtained in (5.7). In this case, )(kW  is needed at each sample instant for 

prediction. Also, 1  is needed to follow time-varying dynamics at the current time. For 

use in off-line mode, the Givens rotations can be computed to realize the transformation 

in (5.7) continuously to the end of training, and then W is solved finally from (5.6). In this 

case,   is set to 1. Initial values for )(kR   and )(ˆ kY  in both cases can be assigned as

IR )0(   and 0)0(ˆ Y , where   is a small positive number, and I  is a unity matrix with 

appropriate dimension. 

5.3. RBF model development 

The first step is to obtain training data. When acquiring training data, the excitation signal 

should be designed such that the training data has the persistently exciting property and 

should span over the entire network input space in every dimension, which can provide a 

good network model interpolation property and good generalization. A set of modified 

random amplitude signals (RAS) were designed for monomer feed rate, fouling factor, 

ambient temperature and impurity factor as shown in figure 5.3. the fifth input is the valve 

position which is the controller output and it cannot be designed. The second step in 

developing the RBF model of the process is to determine the network input variables. The 

network input variables consist of the input vector and output vector. According to the 
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reactor dynamics, the input vector was determined to include the five process inputs: 

monomer feed rate, fouling factor, ambient temperature, impurity factor and the fifth 

input is the controller output. The controller output cannot be designed when the reactor 

is under closed-loop control; this is one of the problems in closed-loop identification. In 

practice most systems work under closed-loop control. Most chemical processes operate 

as a part of a control configuration, and the control action will correct small changes of 

the states caused by faults. FDI system design for a plant itself or for the plant under 

closed-loop control would be quite different. The major difference lies in that the 

operating point for the closed-loop control system is in a small range while for an open-

loop plant is the whole operating space. The FDI has been investigated in this paper for 

the chemical reactor under cascade control. The output vector was determined to include 

the three system outputs, jacket input temperature, jacket output temperature and reactor 

temperature. Therefore, the input and vector and output vector that used to determine the 

RBFNN input variables are shown in (5.8). 
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Before training and testing, the input vector and output vector were scaled linearly into 

the range of [0 1] using the formulae (5.9). Then, in order to implement the proposed 

network in an independent mode, the network input vector x used the past value of the 

system output as mentioned in previous chapter in equation (4.6). Different lags and time 

delays have been tried, and one giving minimal model prediction error was used in the 

model development. The maximum lag in the output and the input are selected as 3 and 

2 respectively. The time delay in the inputs is selected as 2, as described in equation (5.10). 
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Thus, the RBF model is designed to have 19 inputs and 3 outputs, as shown in Fig.8. The 

RBF model is implemented using Matlab. Different numbers of hidden layers’ nodes, 

such as 21, 31, and 51, were used in order to get good results. Finally, 21 hidden layer 

nodes were selected with the centres being chosen using the K-means clustering algorithm. 

Moreover, the P-nearest-neighbours algorithm was used to choose the widths, and the 

ROLS algorithm was used to update the weight matrix. A data set of total 2000 samples 

was collected from the Simulink model of the closed-loop system, and 4 secs was used 

as the sampling time. The first 1500 samples were used for training the network model, 

and the remaining 500 samples were used for the model test. 
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Figure 5.3 RAS signal 
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Figure 5.4 Structure of FD using an independent RBFNN 
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5.4. Residual generation 

In this chapter, after training the independent RBF network model with healthy data, the 

model will be used to detect faults that occurred in the system, i.e. generate residual when 

the system is subjected to any fault. The faulty data is obtained by simulating different 

faults in the proposed reactor. The type and classification of faults that used in this work 

are similar to that used in previous chapter. Figure 5.4 demonstrates the fault detection 

approach. An independent model is implemented in parallel with the system to generate 

the residuals for detecting the sensor and actuator faults in the reactor. After training the 

network model with healthy random data, as described in the previous section, all four 

faults were simulated to the reactor model. Then, the fault detection is conducted with the 

network model using another set of 2000 samples faulty square data. These faulty data 

were collected when the system is given a set of designed square waves for monomer 

feed rate, fouling factor, ambient temperature and impurity factor as shown in figure 5.5-

5.8 to simulate the realistic situation in the practical applications. The fifth input is the 

controller output which cannot be designed and with smaller amplitude is added to the 

controller output to excite the dynamics in different frequencies. Then, the input vector x

of the independent RBFNN designed as shown in (5.10). Testing the proposed model was 

done many times with different sets of faulty square data, to ensure the efficiency 

performance of the proposed network model. Different numbers of hidden nodes, such as 

21, 31, and 51, were used in order to get good results.  
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Figure 5.5 Monomer feed rate 

 

Figure 0.6 Fouling factor 

 

Figure 5.7 Ambient temperature 
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Figure 5.8 Impurity factor 

The filtered model prediction errors are shown in figure 5.9-5.12. The first model 

prediction error of jacket input temperature is shown in figure 5.9 and that for jacket 

output temperature and reactor temperature are shown in figure 5.10 and 5.11 respectively. 

It can be observed that the independent network model output is not influenced by any 

type of fault. Therefore, it can be clearly noticed that all faults have been clearly detected, 

since the faults are over the chosen thresholds. Here in this section the thresholds are 

chosen as (+0.1/-0.1) for all cases. Moreover, no false alarms were thereby produced, so 

this verifies that the proposed scheme has shown excellent diagnostic performance. The 

model prediction errors of the FD are slightly bigger than the modelling prediction errors 

of training the neural model. The mean absolute error (MAE) for the jacket input 

temperature, jacket output temperature and reactor temperature are 0.004, 0.0054and 

0.0072, respectively. 
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Figure 5.9 Filtered residual model prediction error of Tjin 

 

Figure 0.10 Filtered residual model prediction error of Tjout 

 

Figure 5.11 Filtered residual model prediction error of T 
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Figure 5.12 Filtered sum-squared residuals 

Since the independent model does not use past faulty measurements as inputs. It is 

observed that the neural model outputs did not track the faulty system outputs. Thus, the 

residuals are sensitive to these faults, and consequently can be used to detect faults in the 

presence of noise and modelling errors.  A pre-specified threshold  is marked in figure 

5.9-5.12, the value of   is determined according to the specific application and is directly 

related to the noise level in the system and the level of modelling error in nominal 

condition. A lower value of the threshold will increase the false-alarm rate, while a higher 

value will reduce detection sensitivity. It can be clearly noticed in figure 5.9-5.12 that all 

faults have been clearly detected, and no false alarm was thereby produced. So, this 

verifies that the proposed scheme has shown excellent detection performance and 

robustness against disturbance and time-varying parameters. Fault magnitudes other than 

10% have also been tested and the detection results are similar. The results therefore are 

not presented here for limited space. 
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the residual, due to the fact that the residual is a scalar does not carry direct information 

about fault types. In this work, it is proposed to isolate faults according to model 

prediction errors. The model prediction errors are three-dimensional in this work. 

Different faults will have different impacts on these vectors in three-dimension vector 

space. Classification of these features will lead to classification of different faults. 

Therefore, the faults that have occurred can be isolated. According to the above arguments, 

the fault isolation scheme is developed in this work and is displayed in figure 5.13.  

RBF
Classifier

Filter 2Filter 1

  
jinTe

  
joutTe

  Te

    faultSensor Isolated  jin T

    faultSensor Isolated  jout T

    faultSensor Isolated   T

  r   faultActuato Isolated  

    casefaultNo

 

Figure 5.13 Block diagram of fault isolation 

The isolation is achieved in the following way. The three model prediction error signals 

are used as the inputs of the classifier. The classifier has 5 outputs with each of the first 4 

outputs dedicated to one fault, and the fifth output for no-fault case. The training data set 

contains 5 parts, with each part of the first 4 including data with one fault occurring and 

the fifth part for no-fault data. The training target is arranged that for each part of training 

data with a fault, the target for the dedicated output is “1”, while that for all the other 4 

outputs are “0”. So, each output of the classifier is trained sensitive to only its 

corresponding fault and insensitive to the other pre-defined faults. After training, the 

classifier is used on-line to receive the three model prediction error signals. When the 

fifth output is “1” and all the other outputs are “0”, it indicates the system is healthy. If 
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any output among the first 4 is “1” while the others are “0”, it indicates the fault associated 

to this output occurs. 

The network training for classification is different from that for modelling. The centres 

of the classifier were chosen again using the K-means clustering algorithm, so that the 

sum squared distance of each input data from the centre is minimized. The widths were 

chosen using p-nearest-neighbours.  In the updating of the classifier weights, the recursive 

least squares (RLS) algorithm was used. The parameters of the RLS algorithm are 

selected as follows: 99999.0 , )5,(10)0( 6
hnUw    and )(10)0( 6

hnIp  , where  is 

the forgetting factor, I  is an identity matrix,U  is the element unity matrix, and hn  is the 

number of hidden layer nodes. As the classifier was trained to classify a number of 

different patterns statically, a bigger number of centres than that of model were needed.in 

this study, different numbers of hidden nodes, such as 51, 151, and 251 were used. Finally, 

51 hidden layer nodes are selected and the centres are chosen as 51. In addition to the 

optimization of weights using RLS algorithm, both centre locations and amplitude of 

width have also been optimized. As the objective function is nonlinearly related to both 

the centre and the width, a nonlinear optimization algorithm, the gradient descent method 

is employed for this task.  The samples arranged for fault occurrence are illustrated in 

Table 3. Moreover, the target is set such that all four outputs are set as zero for the healthy 

condition data, and one output is set as 1 for a specific fault, with the others remaining at 

zero. Thus, once the first output is 1 and the other outputs are zero, this means that the 

jacket input temperature sensor fault occurred. In the same way, the jacket output 

temperature sensor fault is believed to have fault when the second output is 1 and the 

other outputs remain at zero. Similarly, the reactor temperature sensor fault and the valve 

actuator fault occurred when the third and the forth outputs are 1. After training, the RBF 

network classifier is tested with another set of faulty data with the same fault arrangement. 
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To ensure the reliable performance, the developed network classifier was tested many 

times with different sets of faulty data. The samples arranged for fault occurrence have 

been different from those of the training data. For the simulated faults shown in table 3, 

the four outputs of the neural classifier after use of a filter are displayed in figure 5.14-

5.17.  It is clearly that all faults are isolated. In isolation part here, the thresholds are 

chosen as 0.4 for all cases  

Table 5.1 Classification of faults with respect to number of samples 

Faults Number of samples 

No fault 0 ~ 400 

  T jin sensor fault 401 ~ 400 

No fault 501 ~ 600 

  T jout sensor fault 601 ~ 700 

No fault 701 ~ 800 

T sensor fault 801 ~ 900 

No fault 901 ~ 1000 

Actuator fault 1001 ~ 1100 

No fault 1101 ~ 2000 
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Figure 5.14 Classifier output 1 

 
Figure 5.15 Classifier output 2 

 
Figure 5.16 Classifier output 3 
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Figure 5.17 Classifier output 4 

5.6. Discussion 

Figure 5.14-5.17 illustrate the fault isolation results for the four faults. The classifier 

outputs were filtered to get rid of specks before they were used to indicate isolated fault. 

It is noticed that all faults have been clearly detected and isolated. Robustness of a fault 

detection system indicates its ability to distinguish between faults and model uncertainties 

or disturbances. When the disturbances come in the system it will not affect the report of 

the fault, and will not increase false alarm rate. False alarm is that where there is no fault 

but fault is reported or when there is a fault but it is not reported. In this research, the 

training data is acquired with all disturbances and time-varying parameters simulated. 

Therefore, the trained RBF model generates residual that is insensitive to these 

disturbances and time-varying parameters. It is observed from simulation results that all 

faults have been clearly detected and isolated, and no false alarm was produced. This 

verifies that the proposed scheme has shown an excellent performance.  

5.7. Summary 

A new robust fault diagnosis scheme has been developed for a Chylla-Haase reactor under 

closed-loop control using an independent RBF neural network model and a RBF classifier. 

Due to the increased difficulty in training an independent RBF model compared with the 
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dependent model, the network weights were updated using the ROLS algorithm. 10% 

changes on the three sensor outputs and one actuator output were simulated in the Chylla-

Haase reactor Simulink model. Moreover, the disturbance such as the monomer feed rate, 

the time-varying parameters such as the fouling factor and impurity factor, and 

measurement noise were simulated and used. Consequently, the robustness of the fault 

detection to these disturbances and time-varying parameters was achieved. RBF classifier 

was implemented for fault isolation, where three dimension vectors of model prediction 

errors were used as the input for the network classifier. The different ways of faults 

affecting the model prediction error vector was classified, so that the occurring fault was 

identified. Optimisation of centre location and magnitude of the width significantly 

increased the classifying ability. The simulation results confirmed that the simulated 

faults have been clearly detected and isolated with zero false alarm rate. The research 

indicates the feasibility of the developed scheme applied to industrial systems, especially 

chemical and biochemical processes, for which the mathematical model is difficult to 

develop.  
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Chapter 6 

MLP NN Based FDI for Open-Loop  

and Closed-Loop Systems 

6.1.  Multilayer Perceptron Neural Networks (MLPNN) 

The MLP neural networks became the most commonly used type of feedforward neural 

networks after Rumelhart developed a training algorithm called back error propagation 

or BP algorithm (David and James, 1987, Lippmann, 1987). Typically, A MLP consists 

of an input layer, several hidden layers, and an output layer. Each layer contains a number 

of node, a neuron, which is the basic element of a neural network. A neuron is modelled 

as shown in figure 6.1.  
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Figure 6.1 Neuron modelling 
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Figure 6.2 MLP NN structure 

The activation ih and the output signal oh are obtained by Lippmann (1987). 
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 )( 0 ihh   (6.2) 

Where ih is output from each hidden neuron,
T

kxxxx ]  [ 21   is a n by 1 input vector, 

T
kvvvv ]  [ 21  is n  by1  weight vector which connecting the input vector with the hidden 

layer inputs, where T denotes the transpose operation,  is an additive bias, and  is the 

activation function. In this work the tangent sigmoid activation function is used which is 

defined as 

 




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





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1))exp(1(

2
)(

i
io

h
hh  (6.3) 

The output of network is given by: 

 ojkmlp hwy  ˆ   (6.4) 
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Where jkw is the weight connecting the output layer and the output of the hidden neuron . 

6.1.1. Learning algorithm  

Since the network architecture is modelled, the first step to apply the neural network is to 

train the network. In this section we will discuss the development of the learning 

algorithm, we will briefly introduce the popular back-propagation learning algorithm. 

6.1.2. Back-propagation learning algorithm  

The BP learning algorithm which is a gradient decent algorithm is designed to minimize 

the cost function iteratively equal to the mean square difference between the desired 

output and actual network output (Lippmann, 1987, Yu Chang et al., 1994, David and 

James, 1987).the desired output of all nodes is typically “low” 0.1)  0( or . The network is 

trained by initially selecting small random weights and then presenting all training data 

repeatedly. Weights are adjusted after every trail using side information specifying 

correct class until all weights converge and the cost function is reduced to an acceptable 

value. An essential component of the algorithm is the iterative method that propagates 

error terms required to adapt weights back from nodes in output layer to nodes in lower 

layer. After training pattern is added the neural network weights at each layer are updated 

according to the following rule(Lippmann, 1987).Use a recursive algorithm starting at the 

output nodes and working back to hidden layer, weigh adjusted by 

 jjj iwtiwtiw   )()1(   (6.5) 

Where    is the learning rate and ijw  is the gradient of the error with respect to the 

network weights. To ensure the convergence and stability of the BP training algorithm. 

The initial network weights ijw is set to be small random value and the learning rate   is 

selected to be )10(  . The above formula can be rewritten as following: 
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 ioiijj htwtiw  )()1(   (6.6) 

In this equation 0h is the output of the hidden node, and  is an error term for node j , if 

node j  is an output node, then 

 ))(1( jjjjj ydyy   (6.7) 

Where jd is the desired output of node j  and jy is the actual output. If node j is an 

hidden node then, 

 
k

jkkooj whh  )1(  (6.8) 

 

Convergence is sometimes faster if a momentum term is added and weights changes are 

smoothed by 

 ))1()((  )()1(   twtiwhtwtiw ijjioiijj   (6.9) 

Were 1 0   

6.2. An independent mode of MLP  

An independent MLP is applied here for modelling a non-linear dynamic system as shown:  

 

Figure 6.3 Independent mode 
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The nonlinear dynamic plant to be modelled is presented by the non-linear autoregressive 

with exogenous inputs (NARX) model as shown in equation (6.10) below: 

 )()](  ,, ) 1(  , )( ,, )1([ )( tedntudtuntytyfty uy    (6.10) 

 

Where mu   and py  are plant input and output respectively. pe  is random noise, 

m and p are the number of plant inputs and outputs respectively, yn   and un are the 

maximum lags in the model output and input, respectively, d  is the time delay in inputs, 

and )(f  is a vector valued  non-linear function. 

The independent mode of the network model can be represented by equation (6.11), which 

is referred to an independent mode as the prediction uses the past process outputs in the 

network input and therefore, the model cannot run independent of the process. 

 )](  ,, ) 1(  , )( ˆ,, )1( ˆ[ ˆ)(ˆ dntudtuntytyfty uy    (6.11) 

6.3. Fault Detection 

6.3.1. Data Acquisition for open-loop reactor model 

Training data is obtained here in the same way that described in chapter (4) by designing 

a set of random amplitude signals (RAS) for the five inputs to the open-loop reactor model: 

monomer feed rate, fouling factor, ambient temperature, impurity factor, and valve 

position.  The network input vector consists of the past values of the five system inputs 

and the past values of the three system outputs. While in closed-loop reactor model, when 

acquiring training data, the excitation signal should be designed such that the training data 

has the persistently exciting property and should span over the entire network input space 

in every dimension, which can provide a good network model interpolation property and 

good generalization. The network input variables here in closed-loop system consists of 

the input vector and output vector. The input vector was determined to include the five 
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process inputs: monomer feed rate, fouling factor, ambient temperature, impurity factor 

and the fifth input is the controller output. A total data set of 2000 samples is collected 

from the system Simulink model, and 4s are used as the sampling time. The first 1500 

samples are used for training the network model, and the remaining 500 samples are used 

for testing the network model. Before training and testing, the raw data is scaled linearly 

into the range of [0 1] using the following formulae 
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


  (6.13) 

In order to get a good training result with minimum modelling error, several numbers of 

maximum lags in the outputs and inputs, and several numbers of the maximum time delay 

in the inputs are tried. The maximum lags in the output were selected as 2, the maximum 

lags in the input is selected as 4, and the maximum time delay in the inputs is selected as 

2, as described in equation (6.14). Thus, the MLP model is designed to have 26 inputs 

and 3 outputs as shown in figure 6.7. Several number of hidden layer nodes are tried. The 

initial value of weight connecting network input and the input of hidden layer nodes is 

selected as ),(1.0 nnrandv h , where hn is the number of hidden layers and n number of 

inputs to the proposed network. The initial value of weights connecting network output 

and then output of hidden layer nodes is chosen as ),(1.0 hnprandp  , where p  is the 

number of network outputs.   The learning rate is selected here as 0001.0 , and the 

training epochs is chosen as15000 . The back-propagation training algorithm is used here 

for training the proposed network as described in the previous section. 
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 Tktuktuktuktutytytx ])4()3( )2()1()2()1([)(   (6.14) 

 
Figure 6.4  Jacket input temperature with MLPNN model for open-loop 

 
Figure 6.5 Jacket output temperature with MLPNN model for open-loop 

 

Figure 6.6 Reactor temperature with MLPNN for open-loop 
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Figure.6.4, 6.5, and 6.6 show the last 500 sample intervals in the training data set and the 

first 500 sample intervals in the testing data set. It can be clearly seen that the model 

outputs track the system output with a small modelling error. 

6.3.2. Data Acquisition for closed-loop reactor model 

Similar to acquiring training data for closed-loop reactor in chapter (5), the excitation 

signal is designed such that the training data has the persistently exciting property and 

should span over the entire network input space in every dimension, which can provide a 

good network model interpolation property and good generalization. A set of modified 

random amplitude signals (RAS) were designed for monomer feed rate, fouling factor, 

ambient temperature, impurity factor, and valve position setpoint. Then the network input 

variables is determined. The network input variables consist of the input vector and output 

vector. The input vector was determined to include the five process inputs: monomer feed 

rate, fouling factor, ambient temperature, impurity factor and the fifth input is the 

controller output. Here in this study the network input vector is designed such that, the 

maximum lags in the output were selected as 2, the maximum lags in the input is selected 

as 2, and the maximum time delay in the inputs is selected as 2, as described in equation. 

(6.15). Thus, the MLP model is designed to have 16 inputs and 3 outputs as shown in 

figure 6.7. Several number of hidden layer nodes are tried. The initial value of weight 

connecting network input and the input of hidden layer nodes is selected as

),(3.0 nnrandv h .The initial value of weights connecting network output and then 

output of hidden layer nodes is chosen as ),(3.0 hnprandp  .  The learning rate is 

selected here as 01.0 , and the training epochs is chosen as10000 . The back-propagation 

training algorithm is used here for training the proposed network as described in the 

previous section. 
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 Tktuktutytytx )]2( )1( )2()1([)(   (6.15) 

6.4. Simulating Faults  

In this study, after training the independent RBF network model with healthy data, the 

model will be used to detect faults that occurred in the system, i.e. generate residual when 

the system is subjected to any fault. The faulty data is obtained by simulating different 

faults in the proposed reactor. The classification and structure of faults are done in the 

same patter in previous chapter 4 and chapter 5.  

6.5. Residual generation for open-loop reactor model 

An independent model is implemented in parallel with the system to generate the residuals 

for detecting the sensor and actuator faults in the reactor. After training the network model 

with healthy random data, as described in the previous section, all four faults were 

simulated to the reactor model. Then, with another set of 2000 samples, faulty square data 

is collected. These faulty data are collected by designing a set of square waves for all 

inputs. The back-propagation training algorithm is used here for testing the proposed 

network as described in the previous section. Figure 6.7 demonstrates the fault detection 

approach. Figure 6.8, 6.9, and 6.10 demonstrate the residuals after using a low pass filter. 

The first model prediction error of jacket input temperature is shown in figure 6.8 and 

that for jacket output temperature and reactor temperature are shown in figure 6.9 and 

figure 6.1, respectively.  It can be observed that the independent network model output is 

not influenced by any type of fault, and the thresholds are chosen here as 0.1 for all cases. 

The residuals of testing the neural model are slightly bigger than the residuals of training 

the neural model. The MAE for the jacket input temperature, jacket output temperature 

and reactor temperature are 0.0061, 0.0044and 0.0068, respectively. 



97 
 

PLANT
OPEN-LOOP

System

MLP
NEURAL

NETWORK
MODEL

-
-

-

in
M

m

fh/1

ambT

i
c

  
jinTe

  
joutTe

  Te

   jin T

   jout T

   T

  ˆ
 jinT 

  ˆ
 joutT 

  T̂ 

Sample

and

Delay

Sample

and

Delay 1)-(k 

2)-(k  

1)-(k 

1)-(k 

1)-(k 

1)-(k 

1)-(k 

1)-(k 

1)-(k 

 2)-(k  

 2)-(k  

)4( k

)4( k

)4( k

)4( k

)4( k











 

Figure 6.7 Structure of FD using an independent MLPNN for open-loop system 

 

 

Figure 6.8 Filtered residual model prediction error of Tjin for open-loop system 
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Figure 6.9 Filtered residual model prediction error of Tjout for open-loop system 

 

Figure 6.10 Filtered residual model prediction error of T for open-loop system 

 

Figure 6.11 Filtered sum-squared model prediction errors 
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6.6. Fault Isolation  

In this section, Radial basis neural network is used for fault classification. The network 

training for classification is similar from that for modelling in chapter (4). The centres of 

the classifier were chosen using the K-means clustering algorithm, so that the sum 

squared distance of each input data from the centre is minimized. The widths were chosen 

using p-nearest-neighbours.  In the updating of the classifier weights, the recursive least 

squares (RLS) algorithm was used. The parameters of the RLS algorithm are selected as 

follows 99999.0 , )5,(10)0( 8
hnUw   and )(10)0( 8

hnIp  . Where   is the forgetting 

factor, I is an identity matrix, U is the element unity matrix, and hn is the number of 

hidden layer nodes. Different numbers of hidden nodes, such as151 , 251  and 500 were 

used. Finally 151   hidden layer nodes are selected. Figure 6.12 shows the block diagram 

for fault isolation using RBFNN classifier. The samples arranged for fault occurrence and 

the isolation methodology are described in chapter (4) and (5). The outputs of the RBFNN 

classifier are displayed in Figures 6.13-6.16. the thresholds are chosen as 0.4 for all cases. 

It can be observed that all faults are isolated. 
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Figure 6.12 Block diagram of fault isolation 
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Figure 6.13 Classifier output 1 

 

Figure 6.14 Classifier output 2 

 

Figure 6.15 Classifier output 3 
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Figure 6.16 Classifier output 4 

6.7. Residual generation for closed-loop reactor model 

In order to produce polymer of desired quality a very tight temperature control is essential 

for the reactor. The controller should be able to keep the reactor temperature  T  within 

an interval of  K6.0  around the desired set-point under all operating conditions and 

disturbances. Commonly used for a chemical reactor is a PI cascade control structure. 

The block diagram of the cascade PI control and the parameters of the conventional 

cascade PI controllers are shown in chapter (5). Figure 6.17 illustrates the fault detection 

approach, an independent MLP neural network is implemented to generate the residuals 

for the detection task.  After training the network model with healthy random data, as 

described in the previous section, all four faults are simulated to the reactor model. Then, 

the fault detection is conducted with the network model using another set of 2000 samples 

faulty square data. These faulty data were collected when the system is given a set of 

designed square waves for monomer feed rate, fouling factor, ambient temperature and 

impurity factor. To simulate the realistic situation in the practical applications, a smaller 

amplitude signal is added to the fifth input of the system which is the controller output to 

excite the dynamics in different frequencies. Again the independent is tested using back-

propagation training algorithm as described in previous training section. Figure 6.18, 
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6.19, and 6.20 demonstrate the residuals after using a low pass filter. The first model 

prediction error of jacket input temperature is shown in figure 6.18 and that for jacket 

output temperature and reactor temperature are shown in figure 6.19 and figure 6.20, 

respectively.  It can be observed that the independent network model output is not 

influenced by any type of fault, and all fault signal are over the thresholds setting. Here 

in this section the thresholds are chosen as 0.1.  The MAE for the jacket input temperature, 

jacket output temperature and reactor temperature are 0.0033, 0.0031and 0.0053, 

respectively. 
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Figure 6.17 Structure of FD using an independent MLPNN for closed-loop system 
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Figure 6.18 Filtered residual model prediction error of Tjin for closed-loop system 

 

Figure 6.19 Filtered residual model prediction error of Tjout for closed-loop system 

 

Figure 6.20 Filtered residual model prediction error of T for closed-loop system 
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Figure 6.21 Filtered residual sum-squared model prediction errors 

6.8. Fault isolation 

Here again similar to the previous section a RBFF neural network is implemented to 

isolate faults and perform as a classifier . for more details see chaptre (4) and (5). The 

classifier outpurs are displayed in Figures 6.22-6.25. it can be observed that all faults have 

been isolated. The threshoulds here are chosen as 0.4 for all cases. 
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Figure 6.23 Classifier output 2 

 

Figure 6.24 Classifier output 3 

 

Figure 6.25 Classifier output 4 
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6.9. A comparison and discussion  

In this work an independent MLP neural network is implemented to generate residuals 

for detection task. In the independent model, the past model output is fed back as part of 

the network input. Therefore, the model can operate independently from the process. 

Obviously, the dependent model can predict the process output for one step ahead only, 

while the independent model can predict the process output for multi-step ahead and can 

also operate as a simulation model independent of the process. The simulation results 

show that the independent network model output is not influenced by any type of fault. 

Therefore, it can be clearly noticed that all faults have been clearly detected. Moreover, 

no false alarms were thereby produced, so this verifies that the proposed scheme has 

shown excellent diagnostic performance. Since the independent model does not use past 

faulty measurements as inputs. It is observed that the neural model outputs did not track 

the faulty system outputs. However, one of most important criteria in fault diagnosis is 

the length of training time. The RBF network is implemented in chapter (4) and (5) for 

fault diagnosis, and is used because of its advantages over the multi-layer perceptron 

(MLP) of short training time. The comparison of two neural network architectures (MPL 

and RBF) has shown that RBF configuration trained by (RLS) algorithm have several 

advantages. The first one is greater efficiency in finding optimal weights for field strength 

prediction in complex dynamic systems. The RBF configuration is less complex network 

that results in faster convergence. The training algorithms (RLs and ROLS) that used for 

training RBFNN in chapter (4) and(5) have proven to be efficient, which results in 

significant faster computer time in comparison to backpropagation one.  

6.10. Summary  

An independent MLP neural network is implemented here to generate residuals for 

detection task. And another RBF is applied for isolation task performing as a classifier. 
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The fault diagnosis scheme is developed for a Chylla-Haase reactor under open-loop and 

closed-loop control system. The simulation results confirmed that the simulated faults 

have been clearly detected and isolated with zero false alarm rates. So this verifies that 

the proposed scheme has shown excellent diagnostic performance. . The research 

indicates the feasibility of the developed scheme applied to industrial systems, especially 

chemical and biochemical processes, for which the mathematical model is difficult to 

develop.  
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Chapter 7 

Extended Kalman Filter (EKF) 

 Based FD 

A fault diagnosis (FD) scheme is developed in this section for an exothermic semi-batch 

polymerization reactor. The scheme includes two parts: the first part is to generate 

residual using an extended Kalman filter (EKF), and the second part is the decision 

making to report fault using a statistical method. The reactor is a multivariable nonlinear 

dynamic process and is subjected to several major disturbances. A mathematical model 

is developed for the reactor with some model parameters identified from the input/output 

data, and then the developed continuous model is discretized into a discrete model. Three 

sensor faults and one actuator fault are simulated on the reactor and are detected using 

the developed method. Moreover, several practical disturbances and system uncertainties, 

such as significant changes in monomer feed rate, fouling factor, impurity factor and 

ambient temperature, as well as measurement noise are also simulated. The FD simulation 

results are presented to demonstrate the effectiveness of the proposed method. 

7.1.  Extended Kalman Filter (EKF) 

In this section the filtering problem in nonlinear dynamic systems is addressed. The EKF 

algorithm in discrete-time form is reviewed. Consider the following nonlinear system, 

described by difference equation and the observation model with additive noise: 

 1111 ),(   kkkk WuXfX  (7.1) 
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 kkk VXhY  )(1  (7.2) 

Where: 

kX         State vector  

 kY         Observation vector 

kW         Process noise vector 

 kV         Measurement noise vector 

)(f     Process nonlinear vector function 

)(h       Observation nonlinear vector function 

The EKF uses a 2 step prediction-correction algorithm. The first step involves projecting 

both the most recent state estimate and an estimate of the error covariance (from the 

previous time period) forwards in time to compute a predicted (or a-priori) estimate of 

the states at the current time. The second step involves correcting the predicted state 

estimate calculated in the first step by incorporating the most recent process measurement 

to generate an updated (or a-posteriori) state estimate. However, due to the non-linear 

nature of the process being estimated the covariance prediction and update equations 

cannot use f  and h  directly. Rather the Jacobean of f  and h  will be used. 

Predict and update equations  

Predict  

Predict state 

 ),ˆ( ˆ
11|11|   kkkkk uXfX  (7.3) 

Predict estimate covariance  
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 k
T
kkkkkk QFPFP   11|111|    (7.4) 

Update  

Innovation or measurement residual  

 )ˆ( 1|  kkkk XhY  (7.5) 

Innovation or residual covariance  

 k
T
kkkkk RHPHS     1|  (7.6) 

Optimal Kalman gain  

 
1

1|   
 k

T
kkkk SHPK  (7.7) 

Update state estimate 

 kkkkkk KXX  ˆˆ
1||    (7.8) 

Update estimate covariance  

 1||  ) (  kkkkkk PHKIP  (7.9) 

Where kW and kV are the process and measurement noise which assumed to be zero mean 

Gaussian noise with covariance kQ and kR , and they are given as: 

Diagonal process noise covariance matrix 

 ]  [ T
kkk wwEQ   (7.10) 

Diagonal measurement noise covariance matrix 

 ]   [ T
kkk vvER   (7.11) 

Where F and H  are the Jacobean matrixes that allowing the linearization of the reactor 

model and they are given by the following equations: 
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F is the Jacobean matrix of partial derivatives of )(f with respect to x : 

 











x
kxf

Fk
),(  (7.12) 

H is the Jacobean matrix of partial derivatives of )(h with respect to x : 

 











x
kxh

Hk
),(  (7.13) 

Where kx is defined as ],,[ joutjin TTT . 

7.2. Discretization of reactor model 

The Cyhlla-Haase reactor is described by a set of continuous time differential equations. 

However, the extended Kalman filter requires a set of discrete equations. Hence for use 

within an extended Kalman filter the reactor model equations must be discretized. The 

simple and efficient approach for discretization is to use a backward Euler method.  

Euler method is the simplest method for solving differential equations numerically; it’s 

also called backward Euler method or explicit method. It was developed by truncate the 

Tylor series at first term and neglecting the high order terms. 

 ),( yxfy   (7.14) 

 

 ),( 111   kkkk yxfhyy  (7.15) 

Where h  is a step size. 

7.3. Online states and parameters estimations 

An online estimation of the states and parameters with an EKF requires a simplified 

reactor model, which is still accurate enough to obtain reliable estimation. In order to 

obtain a more accurate model, all the empirical relations for the polymerization rate, 
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jacket heat transfer area, and overall heat transfer coefficient are substituted. Then the 

simplified reactor model equations are discretized using first order backward Euler 

method described in (7.14) -(7.15) as following: 

Material balance for monomer mass 
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Material balance for polymer mass 
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Energy balance for reactor temperature 
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Energy balance for jacket output temperature 
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Energy balance for jacket input temperature 
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The overall estimation vector of EKF is as following: 
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With the initial conditions: 
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1,1F is the partial derivative of the monomer mass equation with respect to Mm : 
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2,1F is the partial derivative of the monomer mass equation with respect to 
Pm : 
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3,1F is the partial derivative of the monomer mass equation with respect to T : 
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4,1F is the partial derivative of the monomer mass equation with respect to joutT : 

04,1 F                                                                                                                                                                (7.27) 

5,1F is the partial derivative of the monomer mass equation with respect to jinT : 

05,1 F                                                                                                                                                     (7.28) 

Next, the partial derivatives of the material balance polymer mass equation with respect 

to all states will be derived. 

 

1,2F is the partial derivative of the polymer mass equation with respect to Mm : 
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2,2F is the partial derivative of the polymer mass equation with respect to Pm : 
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3,2F is the partial derivative of the polymer mass equation with respect to T : 
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4,2F is the partial derivative of the polymer mass equation with respect to joutT : 

04,2 F                                                                                                                                              (7.32) 

5,2F is the partial derivative of the polymer mass equation with respect to jinT : 

05,2 F                                                                                                                                  (7.33) 

Next, the partial derivatives of the energy balance for reactor temperature equation with 

respect to all states will be derived. 

1,3F is the partial derivative of the reactor temperature equation with respect to Mm : 

Let  cbaF 1,3   , where 
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For more simplicity the reactor temperature equation is more simplified as following: 
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2,3F is the partial derivative of the reactor temperature equation with respect to 
Pm : 

Let  cbaF 2,3  , where 
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3,3F is the partial derivative of the reactor temperature equation with respect to T : 

Let  dcbaF 3,3    

To simplify the equation we let: 
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4,3F is the partial derivative of the reactor temperature equation with respect to joutT : 

Let  cbaF 4,3  , where  
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5,3F is the partial derivative of the reactor temperature equation with respect to jinT : 

Let  cbaF 5,3  , where  
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Now we will find 1,4F is the partial derivative of the jacket output temperature equation 

with respect to Mm : 

Let  cbaF 1,4  , where 
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Now we will find 2,4F is the partial derivative of the jacket output temperature equation 

with respect to Pm : 

Let  cbaF 2,4  ,  where 
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Now we will find 3,4F is the partial derivative of the jacket output temperature equation 

with respect toT  : 

Let  cbaF 3,4  ,  where 
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Now we will find 4,4F is the partial derivative of the jacket output temperature equation 

with respect to joutT : 

Let  dcbaF 4,4   , where  
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Now we will find 5,4F is the partial derivative of the jacket output temperature equation 

with respect to jinT : 

Let  dcbaF 5,4   , where  
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Now we will find 1,5F is the partial derivative of the jacket input temperature equation 

with respect to Mm : 

01,5 F                                                                                                                                      (7.67) 

Now we will find 2,5F is the partial derivative of the jacket input temperature equation 

with respect to Pm : 

02,5 F                                                                                                                                     (7.68) 

Now we will find 3,5F is the partial derivative of the jacket input temperature equation 

with respect toT : 

03,5 F                                                                                                                                      (7.69) 
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Now we will find 4,5F is the partial derivative of the jacket input temperature equation 

with respect to joutT : 
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                                                                     (7.70) 

Now we will find 5,5F is the partial derivative of the jacket input temperature equation 

with respect to jinT : 



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
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P

F
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1
5,5                                                                                                                                          (7.71) 

Next step is to find the Jacobian matrix of partial derivatives of )(h with respect to x : 

 11111
),(













x
kxh

Hk                                                                                                      (7.72) 

In this work, the uncertainties of the system are modelled as process noise in the 

covariance matrix of the EKF as following: 

 )33300(10 5 diagQk  
                                                                                             (7.73) 

The diagonal covariance matrix of the measurement noise is set with standard deviation 

ky 05.0)(   and is given as: 

 )555(10 3 diagRk  
                                                                                                           (7.74) 

The state covariance matrix is set as: 

 )11111(10 7 diagPk  
                                                                                                (7.75) 

Moreover, the measurement vector is selected as: 
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 TjinjoutPMEKF TTTmmy , , , ,                                                                                                    (7.76) 

The choice of these covariance matrixes will affect the performance and the convergence 

of the EKF. The tuning of the EKF involves an iterative modification of the covariance 

in order to yield the best estimates of the states. Changing the covariance matrices Q and 

R affects both transient and steady state operation of the filter. After implementing the 

EKF and in order to get a better estimation of the states, the initial values of  kQ and kR

are selected randomly and tuned accordingly. From experience, the values of kR  matrix 

elements are higher than the values of kQ matrix elements. 

Figures (7.1)-(7.3) show the estimated value of the reactor temperature, jacket output 

temperature and jacket input temperature compared to the measured nominal values. 

These results obtained from simulation of EKF estimation. It can be clearly seen that the 

EKF achieves a good estimates of these variables under normal nominal mode. 

 

Figure 7.1 Reactor temperature estimation using EKF 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
250

300

350

400

450

500

T
em

pe
ra

tu
re

 (
K

)

Time (Second)

 

 

Reactor Temperature

EKF Estimated



139 
 

 

Figure 7.2 Jacket output temperature estimation using EKF 

 

Figure 7.3  Jacket input temperature estimation using EKF 

7.4. Fault Detection  
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temperature sensor fault, and the actuator fault is the inlet temperature. These faults are 

simulated as described in previous chapters. 

Figure 7.4 demonstrates the fault detection method. An on-line implementation of the 

EKF is presented. During normal behaviour of the process and after EKF convergence, 

the innovation fluctuation is a small and a white noise sequence of a zero mean. When 

any fault occurs, the innovation will be influenced by the fault type. In addition, an on 

line implementation of the standardized hypotheses statistical test is presented in order to 

distinguish normal behaviour of the process from an abnormal behaviour.  

PROCESS

  NOMINAL

  MODEL

(EKF)

STATISTICAL

HYPOTHESE

TEST

       Input

       

Output

Decisionγ  

 

Figure 7.4   FD scheme by standardized hypotheses statistical test 

7.5. Fault detection via hypothesis testing 

After the residual is generated by the EKF estimation, the decision making is made by a 

statistical method called hypothesis testing. 
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7.5.1. Generation of innovation sequence 

The innovation sequence is the difference between the measured output and estimated 

output and is defined as: 

  1|  kkkk XhY


  (7.77) 

7.5.2. Statistics of the innovation sequence   

In the normal healthy operating conditions, the innovation sequence k  is a zero mean 

Gaussian white noise sequence with covariance (Mehra and Peschon, 1971). 

 k
T

kkkkk RHPHS     1|  (7.78) 

7.5.3. Hypothesis testing 

The standardized innovation statistical parameters (mean and variance) that obtained 

under an abnormal behaviour will be compared on-line with those obtained under normal 

behaviour. So, two hypotheses are defined; hypothesis 0H refers to the innovation 

statistics in the normal mode, and hypothesis 1H refers to the innovation in an abnormal 

mode. Mehra and Peschon (1971) described that it’s more appropriate to consider the 

standardized innovation sequence for the hypothesis testing purposes. This sequence is 

defined as 

     1|

5.0

1|   



  kkkk
T

kkkkk XhYRHPH


  (7.79) 

   kk
T

kkkkk RHPH  




5.0

1|    (7.80) 

Then 

      jk
T

kj IE    (7.81) 

Where I denotes the identity matrix. 
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In the normal operating conditions, k  has a zero mean and a unit variance. So, when any 

fault occurs, the standardized innovation sequence k  will depart from zero mean. In this 

study, the hypothesis testing on mean is applied. This test checks whether the observed 

standardized sequence has a zero mean or not. The mean of the standardized innovation 

sequence is estimated as 

 


N

k
k

N 1

1



 (7.82) 

Where N  is the sample size and   refers to the true mean. Under the null hypothesis

0H ,


 has a Gaussian distribution with zero mean and covariance 

  
N

IE T 


  (7.83) 

Therefore at any given significance level of acceptance (hypothesis 1H ), the null 

hypothesis 0H  is rejected whenever 

 
N

I 96.1


 (7.84) 

7.6. Simulating Faults 

In this study, the faulty data is obtained by simulating different faults in the proposed 

reactor. The classification and structure of faults are done in the same patter in previous 

chapters 4-6.  

7.7. Performances and discussion 

Before applying the fault detection method, the knowledge model parameters and the 

initial state vector are correctly initialized. The EKF algorithm is tuned using process 

noise covariance matrix Q  , and measurement noise covariance matrix R  by hand until 

obtaining a compromise between quick detection and as small as possible of false alarm 
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rate. The knowledge of these two covariance matrices is the mean key to adjust the EKF. 

Figures 7.5 to7.7 demonstrate the evolution of the standardized hypothesis statistical test 

for the four simulated faults. It can be clearly noticed that all faults have been clearly 

detected. Moreover, no false alarms are thereby produced, so this verifies that the 

proposed scheme has shown excellent diagnostic performance. Figures 7.5 to 7.7 show 

two different regions, which are fault region and confidence region. The fault region is 

defined as at any given significance level of acceptance (hypothesis 1H ), the null 

hypothesis 0H  is rejected whenever  ||


. Where  is the threshold and is selected as

%5 .  In addition, it should be pointed out from Figure 7.7 that the actuator fault (inlet 

temperature fault) occurs at s 2800 , and is detected using statistical test with s 200 . The 

dynamic error is defined as an initial value effects. 

 

Figure 7.5  Evolution of Tjin using standardized hypotheses test 
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Figure 7.6 Evolution of Tjout using standardized hypotheses test 

 

Figure 7.7 Evolution of T using standardized hypotheses test 
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algorithm was tuned using process noise covariance matrix Q  , and measurement noise 

covariance matrix R   by hand until obtaining a compromise between quick detection and 

as small as possible of false alarms. The knowledge of these two covariance matrices was 

the mean key to adjust the EKF. Moreover, the ability of the EKF to estimate both the 

states and parameters was the main key for applying the proposed method successfully. 

However, the implementation of the proposed method requires a prior knowledge of the 

model, and the linearization technique for the nonlinear model is a challenging task in 

order to implement EKF. 
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Chapter 8 

Nonlinear Observer Based FD 

In the recent engineering issues, the task of the detection and diagnosis of the system 

failures are being intensively more significant. This section presents a robust fault 

diagnosis scheme for abrupt and incipient faults in nonlinear dynamic system. A general 

framework is developed for model-based fault detection and diagnosis using on-line 

approximators and adaptation/learning schemes. In this framework, neural network 

models constitute an important class of on-line approximators. The changes in the system 

dynamics due to fault are modelled as nonlinear functions of the state, while the time 

profile of the fault is assumed to be exponentially developing. The changes in the system 

dynamics are monitored by an on-line approximation model, which is used for detecting 

the failures. A systematic procedure for constructing nonlinear estimation algorithm is 

developed, and a stable learning scheme is derived using Lyapunov theory. Simulation 

studies are used to illustrate the results and to show the effectiveness of the fault diagnosis 

methodology.   

8.1. Modelling A non-adiabatic Continues Stirred Tank Reactor  

A common chemical system encountered in the process industry is the continuously 

stirred tank reactor (CSTR). Here we will study a jacketed non-adiabatic tank reactor, the 

vessel is assumed to be perfectly mixed, and a single first-order exothermic and 

irreversible reaction, BA  take place. A schematic diagram of the vessel and the 

surrounding cooling jacket is shown in figure 8.1. It can be noticed that in the reality the 

coolant flow is normally surrounding whole jacket. A model of the CSTR is required for 
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more advanced control approaches. The inlet stream of reagent A   is fed into the tank 

(the volumeV  in the reactor tank is kept constant). The control strategy requires that the 

jacket temperature )(3 tu   is manipulated in order to keep the concentration of reagent A   

)(1 ty at the desired level, in spite of disturbances arising from the inlet feed stream 

concentration and temperature ( inputs )(1 tu and )(2 tu ). As the temperature in the tank

)(2 ty  can vary significantly during operation of the reactor. 

TT

TC
TT

U2(t): inlet feed stream temperature

A-B

Y2(t): Reactor temperature

U3(t): Jacket coolant temperature
Y1(t): concentration of A in reactor

F

F

TC

U1(t): concentration of A in inlet feed stream

TT

 

Figure 8.1 Schematic diagram of CSTR ( Zhai and Ma,2012). 

The CSTR system is modelled using basic accounting and energy conservation principles. 

The change of the concentration of reagent A  in the vessel per time unit can be modelled 

as: 

 )())()(( trtCAtCAf
V

F
dt

dCA   (8.1) 

Where the first term expresses concentration changes due to differences between the 

concentration of reagent A   in the inlet stream and in the vessel, and the second term 

expresses concentration changes that occurs due to the chemical reaction in the vessel. 

The reaction rate per unit volume is described by Arrhenius rate law: 
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 )(
))((

exp)( tCA
tTR

Ektr 









  (8.2) 

Which states that the rate of chemical reaction increases exponentially with the absolute 

temperature. k Is here an unknown non-thermal constant, E is the activation energy, R  

Boltzmann’s ideal gas constant and )()( 2 tytT    the temperature in the reactor. Similarly, 

using the energy balance principle (assuming constant volume in the reactor), the 

temperature change per time unit in the reactor can be modelled as: 

 )()((*
)**(

)*(
)(*)

*
())()((

)(
tTtT

Vrhocp
AU

tr
rhocp

HtTtTf
V

F
dt

tdT
j  (8.3) 

Where the first and third terms describe changes due to that the feed stream temperature

)(tTf   and the jacket coolant temperature )(tT j   differ from the reactor temperature. The 

second term is the influence on the reactor temperature caused by the chemical reaction 

in the vessel. In this equation, H  is a heat reaction parameter, cp  a heat capacity term, 

rho a density term, U  an overall transfer coefficient and A  the area for the heat 

exchange (coolant/vessel area) (Zhai and Ma, 2012). 

The CSTR has three input signals: 

)()(1 tCAftu  Concentration of A in inlet feed stream ]  [ 3mmolkg   

)()(2 tTftu   Inlet feed stream temperature ][K   

)()(3 tTtu j  Jacket coolant temperature ][K  

And two output signals: 

)()(1 tCAty  Concentration of A in reactor tank ]  [ 3mmolkg  

)()(2 tTty  Reactor temperature ][K  
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After lumping together some of the original parameters we end up with eight different 

model parameters as given follows: 

Table 8.1 parameter values 

F  Volume flow rate ]/[   1 3 hm  

V  Volume in reactor ][   1 3m  

k  Non-thermal factor ]/1[   5.3 7 he  

E  Activation energy  ]/[   11850 kgmolkcal  

R  Boltzmann’s gas constant )]/([   98589.1 Kkgmolkcal   

H  Heat of the reaction ]/[  5960 kgmolkcal  

rhocpHD   Heat capacity time density )]/([   480 3 Kmkcal   

AUHA   Overall heat times tank area )]/([   145 hKkcal   

 

 

Figure 8.2 Inputs of CSTR 
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Figure 8.3 Outputs of CSTR 

8.2. Fault diagnosis scheme 

8.2.1. Representation of Failures  

The class of dynamical systems under study is described by 

 ))(, )(()())(, )(()( tutxfTttutxtx    (8.4) 

Where nx   is the state vector, mu   is the input vector, mmnf :,  are smooth 

vector fields, 0T  is the beginning time of the failure, and   is a square nn  matrix 

function representing the time profiles of failures. We consider incipient and abrupt faults 

that are modelled by 

 ))(,),(),(()( 21 TtTtTtdiagTt n     (8.5) 
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And 0
i

  is unknown constant that represent the rate at which the failure in state
i

x  

evolves. For large value of
i

 , the time profile function
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which models abrupt failures. The objective is to design a fault diagnosis scheme that 

processes input and state information to determine the presence and characteristics of any 

incipient and abrupt faults. Since this task does not address fault accommodation, below 

we make the standard assumption that the control input u  and the state vector x remain 

bounded prior and after the occurrence of a fault: 

The “healthy” system in the absence of any faults is described by 

 ))( ),( (
~

))( ),( ()):( ),( ()( tutxhtutxhtutxhthx     (8.7) 

Where  represents the nominal dynamics (known) and
~

 characterizes any discrepancy 

between the actual plant and nominal model that may occur due to modelling errors. It is 

well known in the fault diagnosis literature that the presence of modelling errors, in 

general, increases the probability of false alarms. During the last few years the designs of 

so-called robust fault diagnosis schemes have resulted in a variety of tools for dealing 

with such modelling uncertainties. An intuitive approach is to use a small threshold in the 

residual error to account for modelling uncertainties; in this case fault is declared if the 

residual error is greater than the selected threshold. Another approach attempts to 

decouple the effects of faults and modelling errors as a way of improving robustness. In 

this work we first consider the ideal case where 0  and then the case where 0|),(
~

|  ux  

for all )(),( uxux  , where 0  is a known constant. In general, the design and analysis of 

robust diagnosis architectures based on nonlinear modelling techniques requires further 

investigation. 

In many system applications there are more state variables than sensors. Therefore, the 

availability for measurement of the full state vector is a critical and limiting assumption. 

The design and analysis of fault diagnosis schemes using OLA approach for input-output 

systems becomes considerably more complex. The separation principle which for linear 
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systems allows combination of state-feedback controllers with state observers does not 

hold for nonlinear systems.  

8.2.2. Nonlinear Estimator  

The failure representation described by (8.4) provides a framework for characterizing a 

wide class of faults. Demetriou and Polycarpou (1998), Polycarpou and Helmicki (1995) 

In general, the magnitude of faults in practical applications depends on the state of the 

system as well as the system input. The nonlinear fault representation (8.4) captures these 

dependencies of f on the state x  and input u , furthermore, since the above nonlinear 

fault representation is function of the control input u , the fault detection scheme works 

even in the case where the feedback control compensates the effect of small incipient 

faults on the system output. The price that one has to pay for the potential to model a 

larger class of failures is the need to approximate unknown nonlinear functions, which 

leads to nonlinear fault diagnosis techniques. This can be realized by utilization of 

parameterized OLA structure with adjustable parameters. Such an adaptive nonlinear 

estimator is given by 

 ][ )(ˆ zsWx  (8.8) 

 

 )ˆ; ,(  uxZ   (8.9) 

 

 )ˆ; ˆ, , ( ˆ  xux


 (8.10) 

Where )(sW  is nn stable filter matrix, (8.8) and (8.9) represent an observer-based 

nonlinear estimation scheme, and (8.10) is the adaptive law of the adjustable parameters. 

Next we proceed to the design of )(sW  ,  and . 
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Now we consider the construction of a nonlinear estimator for modelling deviation in 

system dynamics due to failure. Based on the system representation described by (1), we 

choose an estimated model of the form 

 )( ))( ̂; )( , )( (ˆ))( ),( ()( ˆˆ tAxttutxftutxtxAx     (8.11) 

Where nx ˆ  is the estimated state vector, f̂  represents an online approximation (OLA) 

model, ̂  is a vector of adjustable parameters or weights, and A is a constant square 

matrix of dimension nn , we choose eigenvalues lie in the left-half complex, A  is a 

stability matrix. The initial value of the estimated parameter vector for the estimated 

model (8.11) is 0ˆ)0(ˆ    chosen such that 0)ˆ; ,(ˆ uxf  for all ),( ux , corresponding to the 

case of no failure (healthy condition), while the initial value of the estimated state vector 

is selected as )0()0(ˆ xx  . Starting from these initial conditions, the main objective is to 

adjust (using input/output information) the parameter estimate )(ˆ t at each time t   so that

)ˆ,,(ˆ yxf  approximates the unknown function ),( )( uxfTt   as closely as possible. 

Polycarpou and Helmicki (1995), Demetriou and Polycarpou (1998) explained that, once 

this is achieved then the output of the online approximator f̂  can be used to detect and 

diagnose as well as accommodate any system failures. The online approximator, denoted 

by f̂ represents the adjustable component of the estimation model.  

Demetriou and Polycarpou (1998), Polycarpou and Helmicki (1995) proved that, to 

construct the estimated model (8.11) the following assumptions need to be made: 

 The state vector x is available for measurement. This is a critical assumption that 

limits the applicability of this approach. Removal of this assumption requires the 

use of nonlinear observers. It is noted that the time derivative of the state vector x  
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is not assumed to be available for measurement so that the overall learning scheme 

is free of any differentiators. 

 The nominal system (in the absence of any failures) described by ))(),(( tutx  is 

known. In practice, the inevitable presence of modelling errors will cause some 

discrepancy between the actual plant and the nominal model. The issue of 

robustness is further investigated in the development of learning schemes and in 

the simulation example (both described in details below) where modelling 

inaccuracies and measurement noise are included.  

A block diagram representation of the estimated model (8.11) is described in figure 8.4. 

The construction of an accurate nonlinear model-based estimator, able to follow any 

variations in the physical system, is a crucial component of the overall learning scheme. 

f̂



1)( AsI

A

u

x
x̂

 

Figure 8.4 Block diagram representation of estimation model ( Polycarpou and Vemuri, 

1995). 

8.2.3. On-line approximators 

Polycarpou and Vemuri (1995) explained that, the adjustable component of the estimated 

model (8.11) is the on-line approximator f̂ ,depending on its specific structure, f̂  is also 

referred to as an approximation model or network. In the network formulation, the )( mn   
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dimensional vector ),(: uxz   is the input to the network, q̂  is a set of adjustable 

parameters or weights in vector form, and )ˆ;(ˆ:  zf is the output of the network. By 

changing the value of̂   it is possible to change the input/output z  response of the 

network f̂  and hence monitor the physical system for different kinds of failures. 

From an analytical viewpoint it is convenient to distinguish between linearly and 

nonlinearly parameterized approximation methods. In the case of linearly parameterized 

approximators, f̂  is of the form: 

  ˆ )( )ˆ; (ˆ Tzzf   (8.12) 

In this work a class of radial basis function (RBF) neural networks is used as an online 

approximator for detection. The output of RBF networks is of the form: 

 

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

n

i
iiin zwzf

1

ˆ:  )( ˆ):ˆ; (ˆ   (8.13) 

Where iw  is the output of thi  the basis function. The Gaussian function  

 



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

 
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2||
 exp):(

i

i
i

cz
zw


 (8.14) 

Where ic  and i are the thi  centre and width respectively, is usually chosen as the basis 

function. RBF networks are also capable of universal approximation. The approximation 

properties of ERBF networks are similar to those of spline functions. For example if the 

centre and width are kept fixed then RBF networks are linearly parameterized 

approximators; if they are allowed to vary then RBF networks become nonlinearly 

parameterized. 
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8.3. Learning Schemes  

In the presence of system faults, changes in the dynamics cause a mismatch in the 

behaviours of the estimated and the nominal system model. The objective of a learning 

schemes is to develop an adaptive procedure that not only detects changes in the dynamics 

but also able to learn these changes for the purposes of identifying and correcting the fault. 

Therefore, learning is an inherent component of a FDA architecture, especially for 

unanticipated faults. We now describe a methodology for designing and analysing 

learning schemes based on the on-=line approximation approach discussed above. 

We start by rewriting f
~

 as: 

 
)( )ˆ; , (ˆ)ˆ; , (ˆ )(                  

)ˆ; , (ˆ),( )(),ˆ,,(
~

tvuxfuxfTt

uxfuxfTttuxf





 


 (8.15) 

Where q̂  is a constant parameter vector, and v  is denotes the approximation error, 

given by: 

 )]ˆ; )( , )( (ˆ))( , )( ([ )():(   tutxftutxfTttv  (8.16) 

The approximation error v is a critical quantity, representing the minimum possible 

deviation between the unknown function f  and the output of the on-line approximator 

f̂ . Ideally we would like to have 0)( tv ; in other words, we wish to approximate the 

function f by exactly letting  ˆˆ , where ̂   is some “optimal” parameter estimate. 

Unfortunately, this is not always possible, and a residual approximation error is 

something that needs to be dealt with. The type of on-line approximator, the number of 

nodes, and the number of network layers are some of the factors that influence the value 

of v  (Polycarpou and Helmicki, 1995, Demetriou and Polycarpou, 1998) 
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The optimal parameter vector ̂  is an “artificial” quantity required only for analytical 

purposes. We choose ̂ as the value of ̂  that minimizes the distance between ),( uxf  

and )ˆ,,(ˆ yxf  overall ),( ux in some compact (i.e., closed and bounded) learning domain

D , subject to the restriction that ̂  belongs to a compact, convex region qM 
̂

 i.e. 

 















 |)ˆ; , (ˆ), (|supmin arg:ˆ

),(ˆMˆ



uxfuxf

Dux
 (8.17) 

In the development of the adaptive law, the parameter estimate vector ̂  is also restricted 

within
̂

M , using a projection algorithm. By doing so, we avoid any numerical problems 

that may otherwise arise due to very large parameter values. More importantly, the 

projection algorithm prevents parameter drift, a phenomenon that may occur with 

standard adaptive laws in the presence of modelling uncertainty. One of the problems 

associated with the projection algorithm is the selection of an appropriate region
̂

M  in 

the parameters space q . In general 
̂

M should be selected such that it contains the 

“optimal” parameter vector ̂ , which is the reason ̂ is restricted within the region
̂

M  

in (8.17). This restriction may undermine the approximation power of f̂  by increasing 

the approximation error v , however, by selecting the “size” of 
̂

M sufficiently large, the 

increase will be negligible. 

Now using (8.11),(8.14), the output estimation error e satisfies the following differential 

equation: 

 vuxfuxfTtGee   )ˆ; , (ˆ)ˆ; , (ˆ )(   (8.18) 

Demetriou and Polycarpou (1998) explained that, based on (8.13), we use the Lyapunov 

synthesis approach to derive the adaptive law for updating the parameter estimates. The 
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Lyapunov synthesis approach is based on choosing a Lyapunov function whose time 

derivative can be made negative semi-definite by an appropriate adaptive law. Hence, in 

this approach the adaptive law is derived by the Lyapunov function in contrast to 

optimization methods where minimization techniques such as gradient descent and least 

squares are used to derive the adaptive law. The appeal of the Lyapunov synthesis 

approach is that, when applicable, it guarantees the stability of the adaptive scheme. 

In our case, the Lyapunov synthesis approach yields the following adaptive law for 

updating the parameter estimates: 

  ZeP 
̂

 (8.19) 

Where  
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 (8.20) 

Where e is the estimation error,  is the positive definite matrix qq  is known as the 

learning rate matrix, while nqZ   is the sensitivity function between the output of the 

network approximator and the adjustable or weights. The adaptive law derived by the 

Lyapunov synthesis approach is modified by the use of a projection algorithm P , so that 

the parameter estimates ̂   remain within the bounded region
̂

M . The projection 

algorithm goes into effect only if the parameter estimate vector ̂ reaches the boundary of 

the region
̂

M , denoted by ̂M , and is directed outwards. In such situation, the algorithm 

projects the standard adaptive law (8.19) onto the tangent hyper plane of ̂M , at the 

current value of ̂  , denoted by t̂ .  
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Polycarpou and Helmicki (1995) illustrated that, the projection algorithm is illustrated 

geometrically in figure 8.5. Thus, the overall adaptive law for updating the parameter 

estimates of the on-line approximator, using the Lyapunov synthesis approach and the 

projection modify cation, is given by: 

 ZeXZe
T


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



   
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2



 (8.21) 

Where X  denotes the indicator function given by: 
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Figure 8.5 Geometric interpretation of projection algorithm ( Polycarpou and Vemuri, 

1995). 

8.4. Stability and Robust Fault Diagnosis 

 Under ideal conditions of no modelling errors, a fault is declared whenever the output of 

the online approximator )ˆ; ,(ˆ uxfy   becomes nonzero. A straightforward and practical 

way of improving the robustness of the algorithm with respect to modelling uncertainties 

is to start adaptation whenever the state error is above a certain threshold. This approach 

to improving robustness is incorporated into the learning methodology developed above 

by modifying the adaptive law (8.19) as follows: 
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  ][    ˆ eDZP 


 (8.23) 

Where ][D  is the dead-zone operator, defined as 
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eD  (8.24) 

Where 0  is a design constant. The selection of the dead-zone size   clearly induces a 

trade-off between reducing the possibility of false alarms (robustness) and improving the 

sensitivity to faults. In the next section we derive a value for the dead-zone size   (in 

terms of modelling uncertainty bound 0 ) that guarantees robustness in the presence of 

any modelling uncertainty satisfying the given bound (Demetriou and Polycarpou, 1998). 

Demetriou and Polycarpou (1998) illustrated that, the online approximation approach has 

certain inherent robust properties: first, since this approach is formulated in a nominal 

modelling framework, it allows the use of nonlinear nominal models, hence minimizing 

any modelling inaccuracies that would otherwise be introduced due to linearization of the 

system. Second, as a result of its learning capability, the on-line approximator is able to 

update the nominal model during operation; this fine-tuning of the nominal model may 

improve the accuracy between the real system and the nominal model, which, in turn 

leads to better performance. Finally, the ability of the on-line approximator to learn the 

characteristics of the off-nominal system behaviour provides a means of comparing these 

characteristics to any known disturbance or any known failure modes, hence 

discriminating between disturbances and failures.  

8.5. FD for CSTR__Case Study 

8.5.1. State Space Model 

The following state space representation is obtained for the CSTR 
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Where  

 )(1)(1 txty   (8.27) 

 )(2)(2 txty   (8.28) 
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Output equation: 

 
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Using the methodology described in previous sections, an estimated model is constructed. 

This estimated model is described by the following state-space representation as 

following: 
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Where TT yyxx ],[],[ 2121  is the state vector of the system;
Txxx ]ˆ,ˆ[ˆ 21  is the estimated 

state vector; 0p is the pole location of the filter; f̂  is the online approximator model 

used to monitor the system; and ̂  is a vector of adjustable parameters. 
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8.6. Simulating faults 

The classes of failures considered in this work are strictly related to the dispositioning of 

the hot and cool water valves of the cooling system. This leads to a temperature of the 

fluid entering the jacket different with respect to the command value. Hence, an actuator 

fault result in a faulty input temperature given by 

 )()( )( tftutu a
 (8.32) 

Where )(tu  is the command value. The time profile adopted for the fault function af is 

 0
)0(

0   ,    )1()( tteutf
tt

a 


 (8.33) 

Where 0u  is the maximum amplitude, 0t is the fault occurrence time, and  is the fault 

evolution rate. Parameter   is used to simulate a desired time evolution: small value 

characterize slowly developing faults (incipient fault); large values are used to model 

step-like behaviours of the fault (abrupt fault). 

The reactor temperature sensor fault is superimposed with %10 change of the measured 

reactor temperature and simulated from time stos 15  10 . 

8.7. Residual generation 

In this simulation example we use a class of neural networks, known as Radial Basis 

Function (RBF) networks, as the on-line approximator model. Specifically, we use 

Gaussian RBF networks which are described by  
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We choose a uniform width 6.0  for the basis functions, and 19N  fixed centres ic , 

which are evenly distributed in the interval ]9  9[ . 
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The standard adaptive law in this case is 

        ˆ eZP 


 (8.35) 
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Where X denotes the indicator function given by: 
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The OLA output norm and state error norm may be used to monitor the system for failure 

detection. In Figure.6 the evolution of the output state estimation error norm is 

represented for the time interval s ]60 , 0[ . The rapid jump at 10t  provides a measure for 

detecting the system’s failure. The evolution of the output estimation norm is given by 

   5.022 ))(2ˆ)(2( ))(1ˆ)(1():( txtxtxtxteN   (8.39) 

 

 ))(ˆ, )(1(ˆ)( ttxftN    (8.40) 

 

8.8. Performance and Discussion  

In this simulation we use the adaptive law given by (8.35)-(8.38), where the learning rate 

is chosen as I  and 10 . The projection operator P is used to constrain ̂ within

 100|ˆ| :ˆ 19
ˆ  


M . Finally, the filter pole is set to 1p , and the initial parameter 

estimation vector is chosen as 0)0(ˆ  , which corresponds to modelling a no-failure 
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situation. The online approximator (OLA) output norm is used as an indicator of a system 

failure. It can be clearly seen from figure (8.6)-(8.10) that, the output estimation error 

norm )(teN increasing after the first failure occurs at st 10  and then to converge to zero 

after few seconds. Similarly, for the second failure the output estimation error norm 

increased after the second failure occurred at st 30 and then converge to zero after few 

seconds. Therefore, the OLA output norm )(tN provides a good measure for detecting 

system failure. This indicates that, the estimated model approximates well post-failure 

system. It is noted that the initial nonzero value of the output estimation error norm is due 

to a simulated difference in initial conditions between the physical system and the 

estimated model. This is because the OLA is trying to learn the deviation between the 

dynamics of the real system and the nominal model, which is nonzero as a result of 

modelling uncertainty 

 
Figure 8.6 Evolution of output estimation error norm with actuator fault occurred at 

t=30s 

 
Figure 8.7 Evolution of output estimation error norm with sensor fault at t=10s and 

incipient actuator fault at t=30s 
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 Fault 1 occurs at t=30s
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Fault 1 occurs at t=10s and Fault 2 occurs at t=30s



165 
 

 

 
Figure 0.8 Evolution of output estimation error norm with sensor fault at t=10s and 

incipient actuator fault at t=30s 
 

 
Figure 0.9 Evolution of output estimation error norm with sensor fault at t=10s and 

abrupt fault at t=30s 

 
Figure 0.10 Evolution of output estimation error norm with sensor fault at t=10s and 

actuator fault at t=30s 
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Fault 1 occurs at t=10s and Fault 2 occurs at t=30s
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Fault 1 occurs at t=10s and Fault 2 occurs at t=30s
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8.9. Summary   

In this work we have presented a general learning methodology and some preliminary 

analytical results concerning the use of neural networks and other on-line approximation 

models for diagnosis of failure in dynamical systems. Nonlinear modelling techniques 

have been employed for monitoring the dynamical system and for estimating any changes 

that may occur due to a failure. The estimated model is used for detecting failures in 

nonlinear systems. The main advantages of using nonlinear estimation techniques in FDA 

is the ability to model a larger and more practically realistic class of failure. The 

methodology developed in this work is based on analytical redundancy techniques. In 

particular, we have assumed that the nominal model provides an accurate description of 

the physical system in the absence of any failures. In the presence of modelling 

uncertainty, the FDA learning scheme may perceive this uncertainty as a change in the 

system dynamics, thus confusing the effect of faults and possibly leading to false alarms. 

Another assumption that we have made is the availability for measurement of all states. 

These assumptions and investigation of the effect of modelling uncertainty on the 

performance of the learning scheme, are main topics for future work. 
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Chapter 9 

Conclusions and Future Work 

9.1. Conclusions  

This research investigates the potential use of Fault diagnosis methods for multivariable 

dynamic processes such as Chylla-Haase polymerization reactor and continues stirred 

tank reactor. In this section the main contributions and key results of this research project 

are summarised. 

The main aim of first section of this research is focused on the understanding of the 

nonlinear dynamic behaviour of the Chylla-Haase polymerization reactor. In this chapter, 

the mathematical model of the proposed reactor is described. The material and energy 

balances of the reactor are illustrated in more details. All the uncertainties and 

disturbances in the process is discussed. Moreover, all parameter values for polymer A 

and B and all the empirical relations for the polymerization rate, the jacket heat transfer 

area, and the overall heat transfer coefficient are represented.  The Simulink model of the 

proposed reactor is set up using Simulink/MATLAB. The design of Simulink model is 

developed based on a set of ordinary differential equations that describe the dynamic 

behaviour of the proposed polymerization process. The Simulink block diagram of the 

proposed reactor is presented and discussed in more details. The simulation results of 

open-loop Polymerization process for both polymer A and B are presented and discussed. 

In the next part of this research a fault diagnosis scheme is developed for open-loop 

Chylla-Haase reactor using an independent RBFNN. Three sensor faults and one actuator 

fault are simulated on the Chylla-Haase reactor. Moreover, the uncertainties and 
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disturbances in the process are simulated. Two different techniques to employ RBF neural 

networks for fault diagnosis are investigated.  The first technique is implementing an 

independent RBNN for residual generation. Moreover, the generated residuals were used 

for detecting actuator and sensor faults. The second technique is applying an additional 

RBFNN as a classifier to perform the classification task for residual evaluation and 

therefore to diagnose and isolate the faults. The simulation results show that all faults 

were clearly detected and isolated. Moreover, no false alarms are thereby produced, so 

this verifies that the proposed scheme has shown excellent diagnosis performance. The 

main contribution of this work is to show how to apply an independent RBFNN to open-

loop Chylla-Haase benchmark polymerization reactor fault diagnosis.so this proposed 

method can contribute to the safety of chemical reactors. 

The third part of this research is focused on the development of robust fault diagnosis 

scheme for a Chylla-Haase reactor under closed-loop control using an independent RBF 

neural network model and a RBF classifier. In the independent model, the past model 

output is fed back as part of the network input. Therefore, the model can operate 

independently from the process. Due to the increased difficulty in training an independent 

RBF model compared with the dependent model, the network weights were updated using 

the ROLS algorithm. Moreover, the disturbances are simulated and used. Consequently, 

the robustness of the fault detection to these disturbance is achieved. RBF classifier is 

implemented for fault isolation. As in practice most of systems work under closed-loop 

control. One of vital problems in closed-loop identification is that, the controller output 

cannot be designed when the reactor is under closed-loop control. Most chemical 

processes operate as a part of a control configuration, and the control action will correct 

small changes of the states caused by faults. The proposed FDI strategy is dealt with this 

problem. 
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Fault detection and isolation methods are investigated here for open-loop and closed-loop 

Cylla-Haase polymerization reactor using an independent mode of MLPNN. An 

independent MLP neural network is implemented here to generate residuals for detection 

task. And another RBF is applied for isolation task performing as a classifier. The 

simulation results confirmed that the simulated faults are clearly detected and isolated 

with zero false alarm rates. So this verifies that the proposed scheme has shown excellent 

diagnostic performance. The main contribution of this work is using an independent MLP 

for open-loop and mainly for closed-loop control system. 

In chapter seven, a fault detection scheme based on standardized hypothesis of statistical 

tests generated by extended kalman filter (EKF) is developed. The proposed method is 

applied for online fault detection in Cylla-Haase exothermic semi-batch polymerization 

reactor. The simulation results show that all faults were clearly detected. Moreover, no 

false alarms are thereby produced, so this verifies that the proposed scheme has shown 

excellent detection performance. The application of using online estimation by extended 

kalman filter for Chylla-Haase reactor is believed to be a new contribution to industrial 

process. 

The final part of this study focused on the development of a robust fault diagnosis scheme 

for abrupt and incipient faults in nonlinear dynamic system. A general framework is 

developed for model-based fault detection and diagnosis using on-line approximators and 

adaptation/learning schemes. In this framework, neural network models constitute an 

important class of on-line approximators. The changes in the system dynamics due to 

fault are modelled as nonlinear functions of the state, while the time profile of the fault is 

assumed to be exponentially developing. The changes in the system dynamics are 

monitored by an on-line approximation model, which is used for detecting the failures. A 

systematic procedure for constructing nonlinear estimation algorithm is developed, and a 
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stable learning scheme is derived using Lyapunov theory. Simulation studies are used to 

illustrate the results and to show the effectiveness of the fault diagnosis methodology.  

The main contribution of this work is to apply this method to the proposed nonlinear 

continuous stirred tank reactor. 

The novelty and unique contribution of this research to knowledge is divided into four 

sections. First section will be focus on developing a new FDI method for open-loop and 

closed-loop reactor using an independent RBFNN, which will be a new contribution to 

knowledge. The second section will be focus on developing a new FDI method for open-

loop and closed-loop reactor using an independent MLPNN, which will be a new 

contribution to knowledge. The third section is to develop a new FD method for reactor 

using EKF to against disturbances, which also will be a major challenge and a new 

contribution to knowledge. Finally, developing and designing an adaptive nonlinear 

observer based fault detection for reactor using a learning methodology is a new 

contribution to knowledge. These proposed methods are robust against the disturbances 

and can also cope with high nonlinearities of the reactor. The application of all proposed 

fault detection and isolation strategies for monitoring reactor. Thus the originality of the 

proposed research stands. 

9.2. Recommendation for future work 

In this section, some recommendations for future work will be given. These 

recommendations will significantly improve the performance of the developed FDI 

schemes. The recommended future works are (1) design fault isolation scheme for 

detected fault by using EKF, (2) development of adaptive nonlinear observer based fault 

detection using learning methodology for Chylla-Haase reactor. 

 The developed fault detection method is based on the using of Extended Kalman 

Filter (EKF) and statistical test. Although the method presented in this thesis have 
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demonstrated the effectiveness of the proposed approach, it has some limitation 

in estimating the parameters of the reactor due to its high nonlinearity. The further 

improvement will be by designing The EKF to estimate on-line to the state of 

reactor and the overall heat transfer coefficient (U). The diagnosis method will be 

based on a probabilistic neural network classifier. The Inputs of the probabilistic 

classifier are the input-output measurements of reactor and the parameter U 

estimated by EKF, while the outputs of the classifier are fault types in reactor. 

 In this thesis we have presented a general learning methodology and analytical 

results concerning the use of RBF neural networks as on-line approximation 

model for diagnosis of failure in dynamical systems. Although the method 

presented in this thesis have demonstrated the effectiveness of the proposed 

approach applied to CSTR reactor. It has some limitation when applied to Chylla-

Haase reactor, due to the high nonlinear dynamics and unsteady operating 

conditions of the reactor, the application of these techniques are very challenging 

task to implement. Moreover, the full state measurements and an accurate 

knowledge of parameters of Chylla-Haase reactor are hardly available. Obtaining 

a nominal model of Cyhlla-Haase reactor that provides an accurate description of 

the physical system in the absence of any failures will be a challenging task. The 

future work will be designing an adaptive nonlinear observer based FD using 

learning methodology for Chylla-Haase reactor. 

 Due to the nonlinearities present both within the plant and within the neural 

network, suitable stability based training rules for on-line approximator based on 

the RBF network. Therefore, in the future work, gradient-based adaptive control 

laws, will be employed, utilizing the backpropagation algorithm to determine the 

gradients of some suitable cost function with respect to each weight in the network. 
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The weight vector can then be adapted, using the gradient descent update. Hence 

it is necessary to develop a technique by which the error at the output of the plant 

could be fed back to provide a suitable descent direction at the output of the neural 

network. If the Jacobian of the plant is known, the gradient of the cost with respect 

to each input is then readily determined. In some cases, a nonlinear model of the 

plant may be available for analytic differentiation to provide the necessary 

Jacobian as the output of a sensitivity model. Differentiation of these equations 

yields the sensitivity model which can be executed in parallel with the nonlinear 

system to provide a continuous estimate of the Jacobian, required for on-line 

approximators. Differentiation of these equations will be one of the future work. 

 After designing a detection and approximation estimator for online monitoring. 

Once a fault is detected, a bank of isolation estimators will be activated for the 

purpose of fault isolation. A key design issue of the proposed fault isolation 

scheme is the adaptive residual threshold associated with each isolation estimator. 

A fault that has occurred can be isolated if the residual associated with the 

matched isolation estimator remains below its corresponding adaptive threshold, 

whereas at least one of the components of the residuals associated with all the 

other estimators exceeds its threshold at some finite time. A bank of nonlinear 

adaptive estimators are used in the proposed FDI scheme, One of the nonlinear 

adaptive estimators is the fault detection and approximation estimator (FDAE) 

used to detect faults. The remaining ones are fault isolation estimators (FIEs) that 

are used for isolation purposes only after a fault has been detected. Each FIE 

corresponds to a particular type of fault. 
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