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Abstract

The main objective of this research is to develop a fault detection and isolation (FDI)
methodologies for Cylla-Haase polymerization reactor, and implement the developed
methods to the nonlinear simulation model of the proposed reactor to evaluate the
effectiveness of FDI methods. The first part of this research focus of this chapter is to
understand the nonlinear dynamic behaviour of the Chylla-Haase polymerization reactor.
In this part, the mathematical model of the proposed reactor is described. The Simulink
model of the proposed reactor is set up using Simulink/MATLAB. The design of
Simulink model is developed based on a set of ordinary differential equations that
describe the dynamic behaviour of the proposed polymerization reactor.

An independent radial basis function neural networks (RBFNN) are developed and
employed here for an on-line diagnosis of actuator and sensor faults. In this research, a
robust fault detection and isolation (FDI) scheme is developed for open-loop exothermic
semi-batch polymerization reactor described by Chylla-Haase. The independent
(RBFNN) is employed here when the system is subjected to system uncertainties and
disturbances. Two different techniques to employ RBF neural networks are investigated.
Firstly, an independent neural network is used to model the reactor dynamics and generate
residuals. Secondly, an additional RBF neural network is developed as a classifier to
isolate faults from the generated residuals.

In the third part of this research, a robust fault detection and isolation (FDI) scheme is
developed to monitor the Chylla-Haase polymerization reactor, when it is under the
cascade PI control. This part is really challenging task as the controller output cannot be
designed when the reactor is under closed-loop control, and the control action will correct
small changes of the states caused by faults. The proposed FDI strategy employed a radial
basis function neural network (RBFNN) in an independent mode to model the process
dynamics, and using the weighted sum-squared prediction error as the residual. The
Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to
overcome the training difficulty of the independent mode of the network. Then, another
RBFNN is used as a fault classifier to isolate faults from different features involved in
the residual vector.

In this research, an independent MLP neural network is implemented here to generate

residuals for detection task. And another RBF is applied for isolation task performing as



a classifier. The fault diagnosis scheme is developed for a Chylla-Haase reactor under
open-loop and closed-loop control system.

The comparison between these two neural network architectures (MPL and RBF) are
shown that RBF configuration trained by (RLS) algorithm have several advantages. The
first one is greater efficiency in finding optimal weights for field strength prediction in
complex dynamic systems. The RBF configuration is less complex network that results
in faster convergence. The training algorithms (RLs and ROLS) that used for training
RBFNN in chapter (4) and (5) have proven to be efficient, which results in significant
faster computer time in comparison to back-propagation one.

Another fault diagnosis (FD) scheme is developed in this research for an exothermic semi-
batch polymerization reactor. The scheme includes two parts: the first part is to generate
residual using an extended Kalman filter (EKF), and the second part is the decision
making to report fault using a standardized hypothesis of statistical tests. The FD
simulation results are presented to demonstrate the effectiveness of the proposed method.
In the lase section of this research, a robust fault diagnosis scheme for abrupt and incipient
faults in nonlinear dynamic system. A general framework is developed for model-based
fault detection and diagnosis using on-line approximators and adaptation/learning
schemes. In this framework, neural network models constitute an important class of on-
line approximators. The changes in the system dynamics due to fault are modelled as
nonlinear functions of the state, while the time profile of the fault is assumed to be
exponentially developing. The changes in the system dynamics are monitored by an on-
line approximation model, which is used for detecting the failures. A systematic
procedure for constructing nonlinear estimation algorithm is developed, and a stable
learning scheme is derived using Lyapunov theory. Simulation studies are used to
illustrate the results and to show the effectiveness of the fault diagnosis methodology.
Finally, the success of the proposed fault diagnosis methods illustrates the potential of the
application of an independent RBFNN, an independent MLP, an Extended kalman filter

and an adaptive nonlinear observer based FD, to chemical reactors.
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Chapter 1

Introduction

1.1. Importance of Process Monitoring

In the recent years the task of monitoring the complex nonlinear process plants, have
been intensively studied in process industry to detect faults. The fault detection and
isolation (FDI) techniques are getting a lot of interest, because of the increasing demands
for good performance and higher standards of safety and reliability of technical plants
for improving the supervision and monitoring as part of the overall control of processes
(Isermann, 1984, Isermann, 1993, Isermann, 1997, Gertler, 1988).

The fault detection and isolation has become a critical issue in the operation of high-
performance chemical plants, nuclear plant, airplanes, ships, submarines, and space
vehicles (Gertler, 1988, Isermann, 1997). In the chemical industry, fault can occur due to
sensor failure, equipment failure or changes in process parameters. The occurrence of a
fault may cause a process performance degradation (e.g., lower product quality), or in the
worst cases, disastrous accidents, such as temperature runaway, which may require plant
shut down for maintenance or will lead to break down the plant and even human fatalities.
However, Fault detection and isolation (FDI) can help avoid all these major consequences
(Deibert and Isermann, 1992, Isermann, 1984, Pierri et al., 2008). Deibert and Isermann
(1992) illustrated that fault models can be divided into external faults: changes of power
supply, contamination, collision, external disturbance, actuator faults: electric power
failure, pomp failure and valve failure, process faults: abrupt variation and deviations in

the process coefficients as heat transfer coefficient, and sensor faults.



FD system must avoid two kinds of errors, false alarms and missed alarms. A false alarm
occurs when a fault is declared but the system is operating in healthy conditions; typically,
they are due to model uncertainties and disturbances. On the other hand, a missed alarm
occurs when under faulty condition, the FD system does not detect any fault. Usually,
minimization of false alarm and missed alarms are conflicting requirements. Primary
methods to fault diagnosis were often based on the so-called physical redundancy. The
physical redundant methods are very reliable, but they need extra equipment and extra
maintenance costs. For this reason, lots of research works have been carried out on
techniques not requiring extra equipment. These techniques can be classified into two

general categories, model free data-driven approaches and model-based approaches.

During the last decades theoretically and experimentally research has shown ways to
detect and diagnose faults. One distinguish fault detection to recognize that the fault

happened, fault diagnosis to find the cause and the location of fault.

Isermann (1997) illustrated that, the advanced methods of supervision and fault diagnosis
are needed, which satisfy the following requirements:

(i) Early detection of small faults with abrupt or incipient time behaviour.

(ii) Diagnosis of faults in the actuator, process components or sensors.

(iii) Detection of faults in closed loops.

(iv)Supervision of processes in transient states.

The goal for the early detection and diagnosis is to have enough time for counteractions
such as other operations, reconfiguration, maintenance or repair. The earlier detection can
be achieved by gathering more information, especially by using the relationship between

the measurable quantities in the form of mathematical models (Isermann, 1997).



1.2. Aims and Objectives

The aim of this project is to develop new fault detection and isolation (FDI)
methodologies for nonlinear processes, and implement the developed methods to the
nonlinear simulation model of the Chylla-Haase reactor to evaluate the effectiveness of
the developed methods.
In order to achieve these aims, the research is designed with the following objectives:
e Develop and evaluate FDI method for open-loop reactor using an independent
radial basis function (RBF) neural network and evaluate it on the Simulink model.
e Develop and evaluate FDI method for closed-loop reactor using an independent
radial basis function (RBF) neural network and evaluate it on the Simulink model.
e Develop and evaluate FDI method for open-loop and closed-loop reactor using an
independent multilayer perceptron (MLP) neural network and evaluate it on the
Simulink model.
e Develop and evaluate FD method for reactor using extended Kalman filter and
evaluate it on the Simulink model.
e Develop and evaluate an adaptive nonlinear observer based fault detection using

a learning methodology and evaluate it on Simulink/Matlab model.
1.3. Thesis outline

The thesis is organized into nine chapters. Chapter one is an introduction chapter which
gives an overview of the conducted work. It explains the motivation behind this research
and the importance of monitoring the complex high nonlinear process systems. It also
states the aims and objectives of the research. Chapter two reviews the cumulative
research works that have been carried out over the last two decades on monitoring of
chemical reactors. Chapter three gives a wide description of the process modelling and

simulation. The main aim of this chapter is to understand the nonlinear dynamic



behaviour of the Chylla-Haase reactor. In this chapter, the mathematical model of the
proposed reactor is described. The Simulink model of the proposed reactor is set up using
Simulink/MATLAB. The Simulink block diagrams and the performances of the reactor
are presented and discussed in details.

Chapter four illustrates the design and development of FDI method for open-loop Chylla-
Hasse system using an independent radial basis function (RBF) neural network. In this
chapter the investigation of employing two different techniques of RBFNN is described.
Firstly, an independent RBFNN is employed to model the reactor dynamics and generate
residuals for the detection part. Secondly, an additional RBFNN is designed as a classifier
to perform the isolation task. The simulation performances are presented to demonstrate
the effectiveness of the proposed techniques.

Chapter five investigates the dynamic fault detection and isolation for Chylla-Haase
reactor under closed-loop control. In this chapter a cascade PI controller is designed. An
independent RBF network is employed to model the process dynamics and generate
residuals. The Recursive Orthogonal Least Squares algorithm (ROLS) is used to train the
independent mode of the network. An additional RBFFNN is developed to isolate faults.
The simulation results are presented.. Chapter six describes the design scheme of FDI for
the proposed reactor in open-loop and closed-loop mode using an independent multilayer
perceptron (MLP) neural network. In this chapter an independent MLP is employed to
perform detection task, and another RBFNN is employed as a classifier for isolate faults.
The simulation results are presented and discussed.

Chapter seven describes a fault detection (FD) scheme for the proposed reactor. In this
chapter an Extended Kalman Filter (EKF) is designed and developed for online state and
parameter estimation. Also a hypothesis testing is employed for fault detection. The

simulation results are discussed and presented. Chapter eight illustrates the development



of an adaptive nonlinear observer based fault detection in nonlinear multivariable system
using a learning methodology. A general framework is developed for model-based fault
detection and diagnosis using on-line approximators and adaptation/learning schemes. In
this chapter the proposed method is applied for CSTR reactor. Simulation results are
presented to illustrate the effectiveness of the fault diagnosis methodology. Chapter nine

gives a summary of main contributions and achievements of the conducted work.
1.4. Research Novelty and Originality

This research work will be focused on studying and developing a monitoring system for
Chylla-Haase reactor, which is used as a benchmark problem in chemical industry. The
main contribution of this research lies behind the fact that, there are no existing
investigations into the FDI for the reactor. In addition, there are few papers dealing with
FDI based on closed —loop performance for chemical reactors. The novelty and unique
contribution of this research to knowledge is divided into four sections. First section will
be focus on developing a new FDI method for open-loop and closed-loop reactor using
an independent RBFNN, which will be a new contribution to knowledge. The second
section will be focus on developing a new FDI method for open-loop and closed-loop
reactor using an independent MLPNN, which will be a new contribution to knowledge.
The third section is to develop a new FD method for reactor using EKF to against
disturbances, which also will be a major challenge and a new contribution to knowledge.
Finally, developing and designing an adaptive nonlinear observer based fault detection
for reactor using a learning methodology is a new contribution to knowledge. These
proposed methods are robust against the disturbances and can also cope with high
nonlinearities of the reactor. The application of all proposed fault detection and isolation

strategies for monitoring reactor. Thus the originality of the proposed research stands.



Chapter 2

Literature review

2.1. Introduction

Over the last two decades fault detection and isolation techniques have been widely used
in chemical process industry to detect faults in actuators and sensors. Deibert and
Isermann (1992) described that, in the chemical industry, fault can take place in the
system, as result of sensors failures, equipment failures or changes in process parameters.
The existence of a fault may cause a process performance degradation (e.g., lower product
quality), or in the worst cases, disastrous accidents, such as run-away. Fault models can
be divided into external faults: changes of power supply, contamination, collision,
external disturbance, actuator faults: electric power failure, pomp failure and valve failure,
process faults: abrupt variation and deviations in the process coefficients as heat transfer
coefficient, and sensor faults.

Frank (1996) and, Frank and Képpen-Seliger (1997) describe that, in the chemical process
faults can be classified in process faults, sensor faults and actuators. A graphical diagram

of Faults is shown in Figure 2.1.

Actuator Faults Process Faults Sensor Faults
Input U Output Y
———>» ACTUATORS > PROCESS > SENSORS ——»

! T !

Unknown Inputs

Figure 2.1 Fault classifications (Frank, et.al, 1997)
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2.2. Fault Diagnosis Strategies

According to Fabrizio Caccavale (2011), Gertler (1988), Frank (1990), Isermann (1984)
various types of failures may affect the safety, reliability and efficiency in chemical
processes. The existence of faults may affect productivity of the process or, in the worst
circumstances, may cause serious accidents. For that reason, fault detection and diagnosis
has been widely studied in the recent years. The term fault is generally defined as a
departure of an observed variable or a Parameter from an acceptable range. The causes of
this abnormality, such as a failed coolant pump or a failed sensor, are called basic events
or root events and are often referred as malfunctions or failures.
Fabrizio Caccavale (2011), Isermann (1997) and Venkatasubramanian et al. (2003d)
explain that, fault diagnosis (FD) consists of three main tasks:

e Fault detection, i.e., the detection of the occurrence of a fault

e Faultisolation, i.e., the determination of the type and/or location of the fault; and

e Fault identification, i.e., the determination of the time evolution of the fault.
Fabrizio Caccavale (2011) illustrated that, FD system must avoid two kinds of errors,
false alarms and missed alarms. A false alarm occurs when a fault is declared but the
system is operating in healthy conditions; typically, they are due to model uncertainties
and disturbances. On the other hand, a missed alarm occurs when, under faulty condition,
the FD system does not detect any fault. Usually, minimization of false alarm and missed
alarms are conflicting requirements. Early approaches to fault diagnosis were often based
on the so-called physical redundancy, i.e., the duplication of sensors, actuators, computers,
and software’s to measure and/or control a variable. Typically, a voting scheme is applied
to the redundant system to detect and isolate a fault. The physical redundant methods are

very reliable, but they need extra equipment and extra maintenance costs. For this reason,
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lots of research works have been carried out on techniques not requiring extra equipment.
These techniques can be classified into two general categories, model free data-driven
approaches and model-based approaches.

The classification of faults have been demonstrated by Isermann (1984), Patton and Chen
(1992a), Venkatasubramanian et al. (2003b), Gertler (1988), Isermann (1997) as
following:

2.2.1. Model free approaches

The classification of model free approaches is illustrated in figure 2.2. In contrast to the
model-based approaches where a priori knowledge (either quantitative or qualitative)
about the process is needed, in process free (history) based methods, only the availability
of large amount of historical process data is needed. There are different ways in which
this data can be transformed and presented as a priori knowledge to a diagnostic system.
This is known as feature extraction. This extraction process can be either qualitative or
guantitative in nature. Two of the major methods that extract qualitative history
information are the expert systems and trend modelling methods. Methods that extract
quantitative information can be broadly classified as non-statistical or statistical methods.
Neural networks are an important class of non-statistical classifiers. Principal component
analysis (PCA)/partial least squares (PLS) and statistical pattern classifiers form a major
component of statistical feature extraction methods.(Gertler, 1988, Isermann, 1984,

Isermann, 1997, Venkatasubramanian et al., 2003b, Patton and Chen, 1992b).
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Figure 2.2 Classification of process history methods (Venkatasubramanian et al.,2003).

2.2.2. Model based approaches

Model-based approaches to fault diagnosis can be divided into qualitative methods and
quantitative methods as shown in figure 2.3. In the recent years many research works
have been carried out and focused mainly on gquantitative model-based methods. Patton
and Chen (1997), Venkatasubramanian et al. (2003b), Patton (1997) explain that in the
following figure 2.3, model based methods based on the concept of analytical or
functional redundancy, which use a mathematical model of the process to obtain the
estimates of a set of variables characterizing the behaviour of the monitored system. The
inconsistencies between estimated and measured variables provide a set of residuals,
sensitive to the occurrence of faults. Later, the residuals are evaluated in order to identify
and localize faults. Although there is a close relationship among the various quantitative
model based techniques, observer-based approaches have become very important and
diffused, especially within the automatic control community. Luenberger observers,
unknown input observers, and Extended Kalman Filters have been mostly used in fault

detection and identification for chemical processes and plants.
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Figure 2.3 Classification of model based methods (Venkatasubramanian et al.,2003).

Deibert and Isermann (1992) explain that, using model based methods for fault detection
in control loop have some advantages, first advantage is obtaining much deeper diagnosis
as standard limit, and the second advantage is it can be use modelling once for controller
design and fault diagnosis. Isermann (2005) illustrate that, Process model-based methods
require the knowledge of a usually dynamic process model in form of a mathematical
structure and parameters. For linear processes in continuous time the models can be
impulse responses (weighting functions), differential equations of frequency responses.
Corresponding models for discrete-time (after sampling) are impulse responses,
difference equations or z-transfer functions. For fault-detection in general differential
equations or difference equations are primarily suitable. In most practical cases the
process parameters are partially not known or not known at all. Then, they can be
determined with parameter estimation methods by measuring input and output signals if
the basic model structure is known. Deibert and Isermann (1992) demonstrate that, most
of the state space approaches yields the information about faults via so called residuals.

The only difference is how to design the observer feedback matrix H and the weighting
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matrix W. In the fault free case the residual equals zero, and if a fault occurs, the residual
deviates from zero in a matter which is typical for the specific algorithm used. The figure
below shows the common block diagram. State space approaches which are sensitive for
sensor faults in the sense of having influence on the C-Matrix are not useful for control
loops, because the C-Matrix of the sensor subsystem occurs in both A-Matrix and C-
Matrix of the entire control loop representation. Isermann (2005) explain that, if the
process parameters are known, either state observers or output observers can be applied.
Frank (1996), Patton and Chen (1997), Frank (1990) and Patton (1997) explained that,
the unknown input observer can be derived through the generalised Luenberger observer.
The main goal of the unknown input observer is to force each of the state estimation error
to become independent of the uncertainty. Once, the estimation error vector is de-coupled
from the uncertainty, the residual will also be de-coupled from uncertainty.

Venkatasubramanian et al. (2003d) explain that, the plant disturbances are random
fluctuations and oftentimes only their statistical parameters are known. One solution to
the fault diagnosis problem in such systems entails monitoring the innovation process or
the prediction errors. The objective is to design a state estimator with minimum estimation
error. It involves the use of optimal state estimate, e.g. the Kalman filter, which is
designed on the basis of the system model in its normal operating mode. It is well known
that the Kalman filter is a recursive algorithm for state estimation and it has found wide

applications in chemical as well as other industrial processes.
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Figure 2.4 General Scheme of model based FD (Patton, 1997).

2.3. RBF Model based FDI

In recent years, the task of monitoring complex nonlinear processes has been intensively
studied. Fault detection and isolation (FDI) techniques have attracted much interest due
to the increasing demand for good performance and higher standards of safety and
reliability of technical plants for improving the supervision and monitoring as part of the
overall control of processes (Isermann, 1984). FDI has become a critical issue in the
operation of high-performance chemical plants, nuclear plants, airplanes, ships,
submarines, and space vehicles, etc. (Gertler, 1988). In the chemical industry, faults can
occur due to sensor failures, equipment failures or changes in process parameters.
Occurrence of a fault may cause process performance degradation, or in the worst cases,
may cause disastrous accidents such as temperature runaway, which may require plant
shut down for maintenance to prevent break down of the plant and perhaps even human
fatalities. However, early detection of faults can help avoid all these major consequences

(Deibert and Isermann, 1992, Pierri et al., 2008, Wang et al., 2006).
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Fabrizio Caccavale et al. (2011) illustrated that, FD system must avoid two kinds of
errors, false alarms and missed alarms. A false alarm occurs when a fault is declared but
the system is operating in healthy conditions; typically, they are due to model
uncertainties and disturbances. On the other hand, a missed alarm occurs when under
faulty condition, the FD system does not detect any fault. Usually, minimization of false
alarm and missed alarms are conflicting requirements. Primary methods to fault diagnosis
were often based on the so-called physical redundancy. The physical redundant methods
are very reliable, but they need extra equipment and extra maintenance costs. For this
reason, lots of research works have been carried out on techniques not requiring extra
equipment. These techniques can be classified into two general categories, model free
data-driven approaches and model-based approaches (Patton and Chen, 1992b,
Venkatasubramanian et al., 2003c).

Due to severe nonlinearity and time varying feature of the reactor dynamics, the observer
methods, parity space methods, and other first-principle model-based methods cannot be
successfully applied for FDI of the Chylla-Haase reactor. The application of neural
networks (NN) for FDI has been intensively studied over the last two decades. Patton et
al. (1994) proposed an approach for detecting and isolating faults in a non-linear dynamic
process using neural networks. Firstly, a multi-layer perceptron (MLP) network was
trained to predict the future system states, and then the residual was generated using the
differences between the actual and predicted states. Secondly, another neural network was
used as a classifier to isolate faults from these state prediction errors. However, this
method used the neural network model in its so-called dependent mode.

Many research works have been carried out to study NNs for FDI. Yuetal. (1999) studied
sensor fault diagnosis in chemical process via RBF neural networks; a semi-independent

NN was used for sensor fault diagnosis. Moreover, the thins-plate-spline function was
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used for the neural model and the Gaussian function was used for the neural classifier.
Another study was conducted by Gomm and Yu (2000) that introduced the selection of
radial basis function (RBF) network centres with recursive orthogonal least squares
training. Frank and Koppen-Seliger (1997), Koppen-Seliger and Frank (1995) studied
fuzzy logic and neural network applications for fault diagnosis. Their paper introduced
fuzzy logic for residual evaluation, a dependent neural network for residual generation,
and a neural network for residual evaluation by using another dependent neural network
for generating residuals. All those authors used dependent and semi-dependent mode of
NN for FDI. As the residual of these methods is affected by the plant output, the residual
Is made insensitive to the faults. Although a partial dependent mode is used to enhance
the residual to fault sensitivity, the fault detect threshold is still high such that fault with
small amplitude cannot be detected.

Ferrari et al. (2008), Xiaodong (2011), Xiaodong et al. (2002), Zhang et al. (2010) studied
the design and analysis of a robust fault detection and isolation scheme for nonlinear
uncertain dynamic systems, the proposed architecture consists of a bank of nonlinear
adaptive estimator, one of the estimators is used for the detection and approximation of a
fault, whereas the rest are used for online fault isolation decision scheme is based on
adaptive threshold functions. In their method they used state space nonlinear model and
then used a simple NN as an estimator for online learning the system output to be equal
to the plant output, however this method needs to have plant nonlinear model and
sometimes model need to be very accurate, this accurate model is difficult to produce.
These methods may not be applicable to some industrial plants where accurate analytical
models are difficult to derive and the physical parameters are not all available, for

example, the chemical reactors. However, in their method they have used a dependent
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mode of RBFNN which is performs as one-step ahead prediction and cannot run
independently of the process.

In the first part of this research, a new robust FDI scheme is developed for open-loop
Chylla-Haase polymerization reactor using an independent RBFNN. The independent
RBFNN is employed here for on-line diagnosis of faults on the actuator and sensors when
the system is subjected to system uncertainties and disturbances. The independent neural
network mode is developed to generate enhanced residuals for diagnosing faults in the
reactor. Then, a second neural network is developed as a classifier to isolate these faults.
The basis Gaussian function is used for the neural network model, and for the neural
network classifier. The K-means clustering algorithm is used to choose the centres of the
RBF networks, and a p-nearest-neighbours algorithm is used to choose the widths.
Moreover, a recursive least squares (RLS) algorithm is used to update the weights. Most
of the recent investigations of fault diagnosis for chemical reactors using an independent
RBF neural networks have been studied by (Ertiame et al., 2013).

Most of the previous research studied a dependent RBFNN based FDI for open-loop
systems. In contrast to develop FDI methods for open loop system, the second part of this
research will be focused on developing a new robust FDI scheme for the Chylla-Haase
polymerization reactor that is under cascade PI control. An independent RBFNN is
employed to predict the process output on-line and consequently to generate the residual.
Then, a second neural network is used as a classifier to isolate these faults. The Gaussian
function is used for the neural network model and the classifier as the nonlinear basis
function. The K-means clustering algorithm is used to choose the centres for the RBF
networks, and a P-nearest-neighbours algorithm is used to choose the widths. Moreover,

a recursive orthogonal least squares (ROLS) algorithm is used to train the weights.
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2.4. MLP model based FDI

In contrast to the model-based approaches where a priori knowledge about the model
(either quantitative or qualitative) of the process is assumed, in process history based
methods only the availability of large amount of historical process data is assumed There
are different ways in which this data can be transformed and presented as a priori
knowledge to a diagnostic system. This is known as the feature extraction process from
the process history data, and is done to facilitate later diagnosis. This extraction process
can mainly proceed as either quantitative or qualitative feature extraction. In quantitative
feature extraction one can perform either a statistical or non-statistical feature extraction.
(Venkatasubramanian et al., 2003b, Willsky, 1976, Frank, 1996, Isermann, 1997,
Isermann, 1984).

The literature presents several classes of strategies to deal with fault detection and
isolation. These strategies, in general, can be divided into two kind of approaches (i)
qualitative and (ii) quantitative. In this section we focus mainly on diagnostic systems
that are built on non-statistical feature extraction quantitative model known as Multilayer
Perceptron Neural Networks (MLP NNs). The requirement of a mathematical model of
the plant can lead to several difficulties in the implementation of these approaches, for
instance due to factors such as system complexity, high dimensionality, nonlinearities and
parametric uncertainties. Further, in the case the neural network plays a role as an
observer, it falls into the class of quantitative approaches.

Neural networks have been proposed for classification and function approximation
problems. In general, neural networks that have been used for fault diagnosis can be
classified along two dimensions: (i) the architecture of the network such as sigmoidal,
radial basis and so on; and (ii) the learning strategy such as supervised and unsupervised

learning. Different network architectures have been used for the problem of fault

16



diagnosis (Venkatasubramanian et al., 2003b). In supervised learning strategies, by
choosing a specific topology for the neural network, the network is parameterized in the
sense that the problem at hand is reduced to the estimation of the connection weights. The
connection weights are learned by explicitly utilizing the mismatch between the desired
and actual values to guide the search. This makes supervised neural networks a good
choice for fault classification as the networks are capable of generating, hence classifying,
arbitrary regions in space (Venkatasubramanian et al., 2003b). On the other end of the
spectrum are neural network architectures which utilize unsupervised estimation
techniques. These networks are popularly known as self-organizing neural networks as
the structure is adaptively determined based on the input to the network. The most popular
supervised learning strategy in neural networks has been the back-propagation algorithm.
During the past two decades there are many researchers have addressed the problem of
fault detection and diagnosis using multilayer perceptron (MLP) neural networks.
Mrugalski and Korbicz (2007) studied in their work the application of MLP neural
networks to the robust fault detection. Another study has been conducted by Maki and
Loparo (1997), in their study, the multilayer feedforward neural network that has one
hidden layer was used, A two-stage neural network was proposed as the basic structure
of the detection system. The first stage of the network detects the dynamic trend of each
measurement, and the second stage of the network detects and diagnoses the faults.
Akhoondzadeh (2013) investigated the Total Electron Content (TEC) time series by using
a Multi-Layer Perceptron (MLP) neural network to detect seismo-ionospheric anomalous
variations induced by the powerful Tohoku earthquake of March 11, 2011. The results
show that the MLP presents anomalies better than referenced and conventional methods
such as Auto-Regressive Integrated Moving Average (ARIMA) technique. Young-Moon

et al. (1996) used feedforward neural networks are used to solve an optimal tracking
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control problem for discrete-time nonlinear dynamic systems. Two multilayer neural
networks were constructed as the feedforward and the feedback controllers. The feedback
controller is trained by Backpropagation through algorithm to minimize a general
quadratic cost function. The proposed methodology was useful as an off-line control
method. Another study conducted by Parlos et al. (1994), A nonlinear dynamic model
was developed for a process system, namely a heat exchanger, using the recurrent
multilayer perceptron network. A dynamic gradient descent learning algorithm is used to
train the recurrent multilayer perceptron, resulting in an order of magnitude improvement
in convergence speed over a static learning algorithm used to train the same network. In
developing the empirical process model the effects of actuator, process, and sensor noise
on the training and testing sets are investigated. Johnson et al. (2009) studied the
application of a spiking neural network (SNN) and a multi-layer perceptron (MLP) for
online identification of generator dynamics in a multi-machine power system. Jung-Wook
et al. (2002) studied the performances of a multilayer perceptron network (MLPN) and a
radial basis function network (RBFN) were compared, for the on-line identification of the
nonlinear dynamics of a synchronous generator.(Mahmud et al., 2014) investigated multi-
layered perceptron (MLP) network using various types of training algorithms for fault
classification in extra high voltage (EHV) transmission lines. The performance of the
suitable training algorithm in MLP network resulted the highest accuracy for fault
classification. Dash et al. (2010) studied the application of MLP NN techniques for the
detection of stator inter-turn fault of an induction motor. Clark and Warwick (1995)
considered a multilayer perceptron (MLP) neural network for detection of faults in a high
speed packaging machine.Wen et al. (2000) proposed a stable learning law of the dynamic
multilayer neural Networks (DMPL). A Lyapunov-like analysis is used to derive this

stable learning procedure for the hidden layer as well as for the output layer. An algebraic
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Riccati equation is considered to construct a bound for the identification error. The
suggested learning algorithm is similar to the well-known backpropagation rule of the
static multilayer perceptron. Gomm et al. (1996) described two methods for representing
data in a multi-layer perceptron (MLP) neural network, and the resultant ability of
networks, trained by the standard back-propagation algorithm, to identify the dynamics
of non-linear systems was investigated. Souahlia et al. (2012) discussed MLP neural
network-based decision for power transformers fault diagnosis using an improved
combination of Rogers and Doernenburg ratios DGA. Another study conducted by
Golovko et al. (2001) Modelling nonlinear dynamic using multilayer neural Networks,
Proposed method provides the calculation of Lyapunov exponents using multilayer neural
networks trained by modified backpropagation error (BPE) algorithm.(Pandey and Barali,
1995) presented an application of multilayer perceptron in the damage detection of steel
bridge structures, the issues relating to the design of network and learning paradigm are
addressed and network architectures have been developed with reference to trussed bridge
structures. The training patterns are generated for multiple damaged zones in a structure
and performance of the networks with one and two hidden layers were examined.

Most of the previous mentioned approaches studied a dependent MLPNN based FD for
open-loop systems. Whereas, in this research work a new FDI approach is developed for

open-loop and closed-loop systems using an independent mode of MLPNN.

The comparison between using RBFNN and MLPNN for FDI is discussed in more details

in chapter 6.
2.5. Extended Kalman filter based FD

Batch and semi-batch reactors are widely used in chemical industry for the production of
fine chemicals, pigment, polymers, and pharmaceuticals. The dynamics of these reactors

are nonlinear in nature and this makes them are very difficult to control and monitoring

19



(Gertler, 1988, Isermann, 1984) . In chemical processes, different types of failure may
cause safety and productivity problems. Deibert and Isermann (1992) Have illustrated
that fault models can be divided into external faults: changes of power supply,
contamination, collision, external disturbance; actuator faults: electric power failure,
pump failure and valve failure; and process faults: abrupt variation and deviations in the

process coefficients such as heat transfer coefficient and sensor faults.

In the recent years monitoring and fault detection for complex nonlinear processes have
been intensively studied. The early approaches to fault diagnosis were based on so called
physical redundancy. Despite the reliability of using the physical redundancy method, it
requires extra equipment and extra maintenance costs. Isermann (1984) and
Venkatasubramanian et al. (2003b) have classified the fault diagnosis techniques that
don’t required extra equipment into two general categories, model free data-driven
approaches and model-based approaches(Ertiame et al., 2013, Ertiame et al., 2015,
Ertiame, 2015).

In the first category, the methods require the availability of large amount of historical
process data. There are different ways in which this data can be transformed and presented
as a priori knowledge to a diagnostic system. This is known as feature extraction. This
extraction process can be either qualitative or quantitative in nature. Two of the major
methods that extract qualitative history information are the expert systems and trend
modelling methods. Methods that extract quantitative information can be broadly
classified as non-statistical or statistical methods. Neural networks are an important class
of non-statistical classifiers. Principal component analysis (PCA)/partial least squares
(PLS) and statistical pattern classifiers form a major component of statistical feature
extraction methods (Patton and Chen, 1992a, Venkatasubramanian et al., 2003b,

Isermann, 1984, Isermann, 1997). Many research works have been carried out to study

20



model free data-driven approaches for FDI (Gomm and Yu, 2000, Barton and
Himmelblau, 1997, Patton et al., 1994, Frank and Kdppen-Seliger, 1997, Yu et al., 1999,
Zhou et al., 2003, Ertiame et al., 2013, Ertiame et al., 2015, Ertiame, 2015) .

The second category referred to model-based approaches. These approaches can be
divided into qualitative and quantitative. Qualitative methods are divided into casual
models and abstraction hierarchy. In addition, the quantitative methods are classified into
observers, parity space, and extended Kalman filter (EKF) (Patton and Chen, 19923,
Venkatasubramanian et al., 2003b, Isermann, 1984).

In the recent years, the EKF has been intensively for state and parameter estimation. Many
research works have been carried out to study EKF for fault detection for chemical
processes. Menaa et al. (2003) studied the estimation of the rotor resistance in induction
motor by application of the spiral vector theory associate to extended Kalman filter.
Ouhrouche et al. (1998) presented the application of an extended Kalman filter to rotor
speed and resistance estimation in induction motor vector control. Loron and Laliberte
(1993) studied the application of the extended Kalman filter to parameters estimation of
induction motors, in their paper the extended Kalman filter was used as a parameter
estimator for the tuning of the indirect field-oriented controller. Another study carried out
by Graichen et al. (2005a) presented an adaptive feedforward Control with Parameter
Estimation for the Chylla-Haase Polymerization Reactor, an extended Kalman filter is
designed to estimate the reaction heat and the heat transfer coefficient during
polymerization. Wei and Yang (2011) studied the localization of a mobile robot based on
neural network based extended Kalman filter (NNEKF) algorithm. Extended Kalman
filter (EKF) is used to fuse the information acquired from both the robot optical encoders
and ultrasonic sensors in order to estimate the current robot position and orientation. Then

the error covariance of the EKF is tracked by the covariance matching technique.
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Fu et al. (2015) employed an adaptive extended kalman filter for navigation system based
on red shift for spacecraft mission in solar system. Another study was conducted by Kai
et al. (2010) presented a novel robust extended kalman filter (REKF) for discrete-time
nonlinear systems with stochastic uncertainties is proposed. The filter is derived to
guarantee an optimized upper bound on the state estimation error covariance despite the
model uncertainties as well as the linearization errors. The method was applied in an X-
ray pulsar positioning system. Khanesar et al. (2012) presented a method of using
extended Kalman filter for the optimization of the parameters of type-2 fuzzy logic
systems. The extended Kalman filter was shown a better performance as compared to the
gradient descent-based methods and particle swarm optimization method.Jassemi-
Zargani and Necsulescu (2002) studied extended Kalman filter-based sensor fusion for
operational space control of a robot arm. Senjyu et al. (2003) presented a high efficiency
control of synchronous reluctance motors using extended Kalman filter. He et al. (2015)
presented a model-based fault diagnosis scheme to detect and isolate the faults of the
current and voltage sensors applied in the series Lithium-lon battery pack based on an
adaptive extended kalman filter. Hatami et al. (2014) designed of a fault tolerated
intelligent control system for a nuclear reactor power control by using extended Kalman
filter. Salahshoor and Mosallaei (2008) proposed a model-based process fault monitoring
approach which utilizes a multi-sensor data fusion technique. The fusion algorithm is
based on a discrete-time extended Kalman filter (EKF). The presented EKF was modified
to incorporate the asynchronous sensor measurements. Liu (1999) presented an extended
Kalman filter and neural network cascade fault diagnosis strategy for the glutamic acid
fermentation process. Dalle Molle and Himmelblau (1987) Studied fault detection in a
single-stage evaporator via parameter estimation using Kalman filter. Another study was

conducted by Chetouani (2004) that introduced fault detection method based on statistical
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information generated by EKF. De Vallie re and Bonvin (1989) Studied the estimation of
states and parameters of batch reactor using EKF. Benkouider et al. (2009) proposed an
approach for fault detection in semi-batch and batch reactor based on statistical approach
test and discrete extended Kalman filter with parameter estimation. Another study carried
out by Benkouider et al. ((2009) introduced a hybrid approach for the detection and
isolation of faults in semi-batch and batch reactors based on statistical test using extended
Kalman filter and neural network for the diagnosis part. Li and Olson (1991) Developed
fault detection method in a closed-loop nonlinear distillation process using EKF, where
the EKF is applied inside the control loop. Walker and Huang (1995) Studied FDI using
extended Kalman filter for parameter estimation of an industrial actuator benchmark.
Mehra and Peschon (1971) Proposed a method for fault detection in dynamic systems
using statistical test decision theory based Kalman filter.

The approaches as stated above are not fit for use in high nonlinear processes such a
Chylla-Haase polymerization reactor because they cannot meet the requirements for (i)
sensitivity to incipient failure and (ii) robustness to model uncertainties in maintaining
low false rates. In this research the FDI scheme is developed for Chylla-Haase
polymerization reactor using EKF. The idea of using the proposed approach is to estimate
on-line the states. Then a standardized innovation sequence for the standardized
hypothesis of statistical tests is used for fault detection. Therefore, two hypotheses are
defined; the first one is the hypothesis HO referred to the innovation statistics in the

normal mode, the second one is the hypothesis H1 referred to an abnormal mode.
2.6. Nonlinear observer based FD

With associate increasing demand for higher performance moreover as for a lot of safety
and reliability of dynamic systems, fault diagnosis has received a lot of attention. The

matter of on-line fault detection and isolation has become a serious issue in chemical
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engineering. Several fault diagnosis (FD) approaches have been proposed for processes
operating mainly in steady-state conditions e.g., continuous reactors. Due to the high
nonlinear dynamics and unsteady operating conditions of batch chemical systems, the
application of these techniques are very challenging task to implement. Moreover, the full
state measurements and an accurate knowledge of parameters of batch reactors are hardly
available. Existing fault diagnosis approaches for chemical processes can be roughly
classified in model-free approaches i.e., approaches based on statistical analysis, neural
networks or expert systems and model-based approaches e.g., observer-based techniques.
Model-free approaches do not require a model of the system but only a database of
historical data collected in normal operating conditions (Caccavale et al., 2009).

The traditional engineering approach to achieving fault in dynamical systems is through
the use of hardware redundancy. This approach corresponds to constructing redundant
physical subsystems. However, often times the additional cost, space and/or complexity
of incorporating redundant hardware makes this approach unattractive. Most of the

current research in FDA is based on the use of analytical redundancy.

In the last two decades numerous approaches to FDA have been intensively studied using
analytical redundancy. Some of these approaches can be categorized as following: the
detection filter; the innovation test, the parity space approach; and the parameter
estimation technique. The derivation of an accurate mathematical model of the physical
system is believed to be one of major issues in applying analytical redundancy approaches
to FDA (Demetriou and Polycarpou, 1998, Polycarpou and Helmicki, 1995, Trunov and
Polycarpou, 2000, Vemuri and Polycarpou, 1997, Xiaodong et al., 2002).

The most commonly used quantitative model-based FDI methods are: analytical
redundancy, diagnostic observers, parity relations, Kalman filters and parameter

estimation. One of the major advantages of using the quantitative model-based approach
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is that we will have some control over the behaviour of the residuals. However, several
factors such as system complexity, high dimensionality, process nonlinearity And/or lack
of good data often render it very difficult even impractical, to develop an accurate
mathematical model for the system. This, of course, limits the usefulness of this approach
in real industrial processes. The evaluation of residuals usually involves threshold testing.
Statistical tests have been utilized for residuals generated from parity relation as well as
observer-based designs (Venkatasubramanian et al., 2003d).

Various approaches to FDA using analytical redundancy have been studied during last
two decades. Most of these results can be categorized based on the use of a few basic
concepts, such as: linear observers (Corradini et al., 2012, de Lira et al., 2011, Pierri and
Paviglianiti, 2007, Pierri et al., 2008, Wang et al., 2015, Zhang et al., 2016); the detection
filter (Iftikhar et al., 2015, Wang and Shang, 2015, Chen et al., 2007, Zhuang et al., 2014);
the parity space approach (Zhong et al., 2015, Odendaal and Jones, 2014, Zhang et al.,
2006, Naik et al., 2009, Medvedev, 1995, Kabbaj et al., 2009); and parameter estimation
technique(Gertler, 1997). For more details on the general FDA problem we refer to
comprehensive survey articles by (Gertler, 1988, Patton and Chen, 1992b, Frank and
Ding, 1997, Willsky, 1976, Venkatasubramanian et al., 2003a).

It is very interesting to notice that in practice, instead of residuals, output signals of the
process under consideration are often directly evaluated and compared with a given
threshold. In the analytical observer-based approach, the generation of residuals reflecting
the faults is done by estimating outputs of the process and using the estimation errors as
the residuals. For the fault detection task, a single observer or Kalman filter is sufficient
whereas, for the localization of the faults, properly structured sets of residuals are
required. The latter can be generated by using banks of the observers, so-called dedicated

and generalized observer schemes (DOS and GOS). Depending on the circumstances, one
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may use linear or nonlinear, full or reduced-order, or fixed or adaptive observers(Frank
and Ding, 1997).

Robustness is a vital task in control and monitoring of dynamic systems, which can be
easily accomplished using the observer based fault detection technique. Nevertheless, the
faults with slow time constants might not be detected, since the improvement of
robustness is related with the decrease of the sensitivity of the observer to faults with slow
time constants. Therefore, an adaptive observer is proposed to use to overcome this
difficulty. An adaptive observer is a dynamical system that estimates states and (slowly
varying) unknown parameters of the observed system. One may expect that a residual
generator based on an adaptive observer does not only maintain the important property of
early detection of abrupt changes, but also delivers estimates of faults with slow time
constants. Another motivation is that by applying on-line identification the process model
can continuously be updated and the robustness of the residual with respect to model
uncertainties can thus be enhanced (Frank and Ding, 1997).

In Ballesteros-Moncada et al. (2015), FD method was developed for CSTR using
Luenberger fuzzy observer and Walcott-Zak observer. However, this method cannot be
worked in more complex chemical reactors such as Chylla-Haase reactor. In Zhu and Cen
(2010), FDI for a class of uncertain nonlinear systems based on observers is designed.
Firstly, by using the sliding model control and adaptive observer design techniques, we
develop a robust and adaptive full-order observer design method. The full-order observer
is considered as a detection observer directly since it is robust to the disturbances of the
system but sensitive to the actuator faults. Secondly, by choosing a special gain matrix, a
reduced-order observer is constructed and it can eliminate the influence of the
disturbances and faults directly. However, this method is sensitive for disturbances when

applied to complex processes.
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Another study conducted by Zarei and Shokri (2014), FD method was proposed for CSTR
using a Nonlinear Unknown Input Observer NUIO) for robust sensor fault detection. The
proposed method is based on cubature rule. NUIO decouples disturbances and
uncertainties from estimated states in nonlinear systems.

The above studies deal almost with linear systems subject to simple additive failures. In
this work we present a nonlinear observer based fault detection. The application of
observer based fault detection (FD) has been intensively studied over the last two decades.
In Polycarpou and Helmicki (1995), detecting faults in nonlinear dynamic systems using
observer model based approach was proposed. Another method was studied in
Polycarpou and Vemuri (1995)used a learning methodology for failure detection and
accommodation. The main idea behind this approach is to monitor the physical system
for any off-nominal behaviour in its dynamics using nonlinear modelling techniques. In
Demetriou and Polycarpou (1998) authors studied the design and analysis of a general
framework for model-based fault detection and diagnosis of a class of incipient faults. An
automated fault diagnosis architecture using nonlinear online approximators with an
adaptation scheme is designed and analysed. In Trunov and Polycarpou (2000)
researchers presented in their paper a robust fault diagnosis scheme for detecting and
approximating state and output faults occurring in a class of nonlinear multiinput—
multioutput dynamical systems. The robust fault diagnosis scheme utilizes on-line
approximators and adaptive nonlinear filtering techniques to obtain estimates of the fault
functions. In Keliris et al. (2015)authors developed a nonlinear observer-based approach
for distributed fault detection of a class of interconnected input—output nonlinear systems,
which is robust to modelling uncertainty and measurement noise. First, a nonlinear
observer design is used to generate the residual signals required for fault detection. Then,

a distributed fault detection scheme and the corresponding adaptive thresholds are
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designed based on the observer characteristics. In Xiaodong et al. (2002) researchers
studied a robust fault diagnosis scheme for abrupt and incipient faults in nonlinear
uncertain dynamic systems. A detection and approximation estimator is used for online
health monitoring. Once a fault is detected, a bank of isolation estimators is activated for
the purpose of fault isolation.

In this work a fault diagnosis methodology for incipient and abrupt faults is developed.
We consider nonlinear dynamical systems whose dynamics change at some unknown
time due to a failure. This change is modelled as an unknown nonlinear function of the
state and input variables with a time-varying failure profile. In order to capture the
nonlinear characteristics of faults, we design a nonlinear estimator using the online
approximation (OLA) approach with an adaptive scheme for the adjustable parameters or
weights. The stability and performance properties of the fault diagnosis scheme are
rigorously established under the assumption of full state measurement. These results are
obtained in the presence of approximation errors, that is, errors arising as a result of
imperfect modelling of the system deviations due to faults by the online approximator.
From an adaptive theory viewpoint, the objective of this section is to develop a learning
methodology for incipient failure detection. In this framework, online approximators such
as neural networks are used to monitor the system for any deviations due to faults. By
using the adaptively capabilities of online approximators, they can be used not only to
detect the occurrence of System failures, but also to provide an online estimate of the fault
characteristics (diagnosis). The main limitations in the use of learning methods for fault
diagnosis are the need for significant computational capabilities and the requirement to
obtain rigorous analytical results on the performance properties of the fault diagnosis
scheme. The derivation of analytical results on the performance properties of the fault

diagnosis scheme is difficult due to the nonlinear nature of the problem and the inherent
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coupling between estimation and adaptation. The fault diagnosis scheme is developed for
MIMO nonlinear systems with both state and sensor faults, which may occur
simultaneously or independently. The fault in each of the states/outputs is allowed to

evolve at a different rate, covering both incipient and abrupt faults.

29



Chapter 3
Chylla-Haase Benchmark Process

Modelling

In the last two decades, batch and semi-batch processes have been widely used in the fine
chemicals industry. Many chemical manufactures such as polymer and pharmaceutical
products are manufactured in batch and semi-batch operations. From a process system
point of view, the semi-batch operations are described as a reactant may be added with
no product removal. Whereas, in batch operations, all the reactants are added and charged
in a reactor at the start with no material added or removed (Bonvin, 1998, Srinivasan et
al., 2003).

In this research, a semi-batch polymerization reactor benchmark is considered which is
described by Chylla and Haase (1993) and used as a benchmark for process control
applications, Due to its semi-batch nature, the process shows time varying behaviour and
high nonlinear. In addition, changes in the viscosity of the polymer solution over the
course of the reaction is resulted changing in heat transfer characteristics. Due to the
increasing of the fouling of the reactor walls, the behaviour of the process change from
batch to batch. Also the behaviour often changes due to changes in the environmental
conditions such as cooling water temperatures and external temperatures. All those semi-
batch nature make the reactor very complex high nonlinear and difficult to control

(Clarke-Pringle and MacGregor, 1997).
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3.1. Description of the Process

The schematic diagram of the semi-batch polymerization reactor is shown in Figure 3.1
(Chylla and Haase, 1993). It consists of a stirred tank reactor with cooling jacket and a
coolant recirculation. The reactor temperature is controlled by manipulating the
temperature of the coolant, which is recirculated through the cooling jacket of the reactor.
The heat released through the reaction must be removed by circulating cold water through
the jacket, where both hot and cold jacket streams are available. When the jacket
temperature controller output is between 0 and 50%, the valve is opened and cold water
is inserted, and when the jacket controller output is between 50 and 100%, the valve is

opened and steam is inserted (Beyer et al., 2008, Graichen et al., 2005b).

MonomerFeed

Cooling Mode

Dump Valve

Figure 3.1 Chylla-Haase Reactor Schematic (Chylla and Haase,1993).

3.1.1. Polymerization Reactor Dynamic Model

The mathematical model of the Chylla-Haase reactor is described by a set of five ordinary
differential equations (ODE) which come from material and heat balances inside the

reactor. The reactor simulation model used here in this research work is developed using
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MATLAB/SIMULINK. The material balances for monomer mass m,, and polymer mass

mp are described by equations (3.1) and (3.2) respectively, as follows:

dm,, N Q
— min t rea 31
dt M (1) + AH 3.4
de :_Qrea
dt AH (3.2)

Wheremi? is the monomer feed rate, AH is the heat enthalpy and Q,,, is the reaction

heat. The reaction heat here is defined as:

Qrea=—AH *Rp (3.3)

Where R, is the rate of polymerization. The reaction rate is usually defined as a function
of temperature and represented as:
—i 3.4
Rp =jxk * My (3.4)

k=ko &xp (~E/RT) (kyst) 2 (3.5)

Where i is the impurity factor, k is the reaction rate, E the activation energy, R the ideal

gas constant, 4 the batch viscosity which is described as:

u=cy exp(cy f)#1062(80/T=3) (3.6)

¢ _Mp (3.7)
(mF>+m,\,I +me)

Where f is the solid mass fraction.

The reactor model includes the material balances (3.1) and (3.2) for the monomer mass

my, (t) and the polymer mass m;, (t) , the energy balance (3.8) with the reactor temperature
T(t), plus the energy balances (3.9) and (3.10) of the cooling jacket and the recirculation

loop with the outlet and inlet temperatures T, (t) and T, (t) of the coolant. The
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available measurements of the process are the temperature of the reactor and the cooling

circuitry (Graichen et al., 2006):

dT 1 (3.8)
E =Z|TCP,|[mu (t) CP,M (Tamb -T )_UA(T _Tj)' (UA )Ioss (T _Tamb) + Qrea ]
AT jout 1 (3.9)
i mo G C[mCCP,C(Tjin(t_61)_Tj0ut)+UA(T -T)]
P,
dein _ deout(t - 92) " Tjout(t - 62) _Tjin n Kp (C) (3-10)
dt dt Tp Tp

The overall heat transfer coefficient U is calculated as following:

N :/]{h1+hf1> (3.11)

h=dg exp(dy yair) (3.12)

Where h is the heat transfer coefficient , and h;* is the fouling factor and should change

as illustrated in Table 3.1.

Table 3.1 Fouling factor values

Batch 1 2 3 4 5

h?l 0.0 0.176 0.352 0.528 0.704

The heating/cooling function K (c) is influenced by an equal-percentage valve with

valve position c(t) as shown in equation (6):

0.8x30 ~°"* (T = Tjin (1), ¢ <50%
Ky (c) =10, c=50%
01530 ¢/ AT T, (),  c>50% (3.13)
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For c <50%, cold water with inlet temperature T;,,.; iS injected in the cooling jacket,

whereas a valve positionc >50% leads to a heating of the coolant by injecting steam with

temperature T, iNto the recirculating water steam.(Graichen et al., 2006).

3.1.2. Uncertainties and Disturbances in the Process
In order to model the following practical issues of the control of polymerization reactors,
various disturbances and uncertainties are identified:

e The impurity factor i<[0.8:1.2] in the polymerization rate R, is random but
constant during one batch, which tries to simulate fluctuations in monomer
Kinetics caused by batch to batch variations in reactive impurity.

e The fouling factor 1/h; in the overall heat transfer coefficient U increases with
each batch and accounts for the fact that during successive batches a polymer film
builds up on the wall resulting in a decrease ofU .

e The delay times#, and 6, of the cooling jacket and the recirculation loop may
vary by + 25% compared to nominal values.

e The ambient temperatureT,,,, is different during summer and winter. This affects

the temperature of the monomer feed m;\r,} , as well as the initial conditionsT(0),

Tin(0)and T;,,(0) given byT,,, (Graichen et al., 2006).

Table 3.3 describes the empirical relations for the polymerization rate, the jacket heat

transfer area, and the overall heat transfer coefficient (Graichen et al., 2006).
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Table 3.2 Parameters value of the reactor

Symbol Unit Value of Polymer A | Value of Polymer B
My o kg 0 0

Mp kg 11.227 11.010
My kg 42.750 42.010
P kgmS 900 900

Py kgm3 1040 1040

Pu kgm3 1000 1000
Com Kj kg—l K1 1.675 1.675
Cpp ki kg—l K1 3.140 3.140
Cow kj kg_l K1 4.187 4.187

Mc kg 21.455 21.455
Mg kg 1 0.9412 0.9412
Cp.e Kj kg_l K1 4.187 4.187

Ko st 55 20

K, mskg 1000 1000

Kz mskg™ 04 04

E kj kmol - 29560.89 29560.89
Co kgm™ts 5.2%107° 3.2%107°
c kgm L 16.4 19.1

c, kg mLgl 2.3 2.3

C3 kg mLgl 1.563 1.563

ag K 555.556 555.556
~AH, K kmol ~70152.16 — 765,593 2
do kWwm=2 K™ 0.814 0.814

d; ms kg_l -513 -5.13
miMn,max kg gl 0.007560 0.006048
[tli\s; ot ;\2 1 min [30,100] [30,90]
[th 2.t 3] min [120,160]
Tset K 355.382 353.160
P m 1.594

B, m? 0.193

B, m? 0.167

R kjkmol L K L 8.314
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(UA) joss kw K1 0.00567567

(Y s 40.2

Z s 22.8

0, s 15

Tamb K 280.38(W),305.38(S)
Tinlet K 278.71(W),294.26(S)
Tsteam K 449.82

[ _ [0.8:1.2]

3.2. Matlab Simulink Model Development

Simulink is a part of MATLAB software that provides a graphical environment and
solvers for modelling, simulating and analysing of dynamic systems. Here in this section,
the Simulink model for the proposed reactor is developed by material and energy balances
equations described in (3.1) -(3.13). Figure 3.2 describes the main Simulink model for
Chylla-Haase polymerization reactor. The proposed model consists of five main sub-

system blocks as shown in Figure 3.3. Each sub-system block represents a mathematical

model for material and energy balances as described in previous section.

Y

mMin

Tjin

Tjout

Reactor Model

Figure 3.2 Chylla-Haase simulink model
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Figure 3.3 Subsystem block of reactor simulink

Figure 3.4 represents the mathematical model for material balances as described in
equations (3.1)-(3.7). It can be seen that, the three embedded MATLAB function have

been created to solve the empirical relations for the rate of polymerization as described

in Table 3.3.
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Figure 3.4 Simulink block diagram for material balances

Figure 3.5 shows the Simulink model diagram of the mathematical model for overall heat

transfer coefficient which is described by equations (3.11) and (3.12) and illustrated in

Table 3.3.
y = 5.2410%-5%exp(16.4°u)100 (2.3+(555.566/u1-1.563) ¥ = 0.814%exp(-5.13'y) D
. y=((1Y(uut)) u
f :u ey Miowall N . h=U o
o5 " oy o v
Embedded Embedded :
Twall MATLAB Function MATLAB Functiont Embedded To Workspace
MATLAB Function2
hf2

Figure 3.5 Simulink block diagram for overall heat transfer

The Simulink models of the recirculation loop, jacket temperature, and reactor
temperature are designed and developed according to the mathematical equations (3.9) -

(3.10) as shown in Figures 3.6, 3.7 and 3.8 below.
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Figure 3.6 Simulink block diagram for jacket
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Figure 3.7 Simulink block diagram for recirculation loop
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3.3. Performances and Discussion

After building up the Simulink model for the reactor, the polymerization process is
simulated using the parameters values as described in Table 3.4. Firstly, we run the reactor
using the parameter values for polymer A. the initial parameters of polymer, monomer,
and water are set into reactor at ambient temperature. Before feeding in monomer into the
reactor, the valve is set up to fully open mode in order to heat up the reactor and full steam
inserted. After 1800s the monomer is fed into reactor at 0.0075 kg/s until 6000s as shown
in Figure 3.9.and the reactor temperature reached 450K as shown in Figure 3.10. After

the feed of monomer has stopped the reactor temperature is decreased at held at its set

point value as shown in Figure 3.10.
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Figure 3.8 Simulink block diagram for reactor temperature
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Figure 3.9 Monomer feed rate (Polymer A)
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Figure 3.10 Reactor temperature (Polymer A)

Figure 3.11 and 3.12 show the response of the jacket input temperature and jacket output

temperature respectively.
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Jacket input temperature (K)

Jacket output temperature (K)

Due to nonlinearity of reaction kinetics, the heat transfer coefficient sharply decreases
during a batch because of viscosity increasing, as shown in Figure 3.13. It can be clearly
noticed that, the difference between the responses from batch one when fouling factor is

equal to zero to batch five when fouling factor is 0.704, due to the increase of the fouling
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Figure 3.11 Jacket input temperature (Polymer A)
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Figure 3.12 Jacket output temperature
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factor and viscosity. So this conclude that, the heat transfer coefficient is related inversely

with the fouling factor and the viscosity.

Heat transfer coefficient (KW nf K1)

Batchl |
Batch5
O. 1 r r r r r r L
(o] 1000 2000 3000 4000 5000 6000 7000 8000
Time(sec)

Figure 3.13 Overall heat transfer coefficient (Polymer A)

Figure 3.14 shows the response of the reaction heat. It can be clearly seen that, the direct
correlation between the reaction heat and the rate of polymerization as described
previously in equations (3.3)-(3.7). When the monomer fed into the reactor at 1800s the
reaction heat of the reactor is increased and stayed steady until the monomer is stopped

feeding at 6000s then the reaction heat is rapidly decreased to zero at 6000s.
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Figure 3.14 The reaction heat (Polymer A)
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Figure 3.15 and 3.16 show the response of the polymer mass and monomer mass

respectively. It can be clearly noticed from both figures the relation between monomer

mass, polymer mass, rate of polymerization and reaction heat as illustrated in equations

(3.1) -(3.7).
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Figure 3.16 Monomer mass (Polymer A)
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In this section, the polymerization reactor is simulated using the parameter values for
polymer B as described in Table 3.4. Two recipe of polymer b product is feed into the
reactor. The monomer of first recipe of polymer B product is fed into reactor at 0.006048
kg/s for 3600s, starting form 1800s stopped at 5400s. Then the second recipe is fed at
0.006048 kg/s starting from 7200s and stopped at 9600s as shown in figure 3.17. Figure
3.18 shows the open-loop response of the reactor temperature for different batches. It can
be clearly seen that the reactor temperature is increased when the monomer is fed into
reactor, and decreased when the monomer is stopped feeding. Moreover, it can be noticed
that the difference of the reactor temperature from first batch to fifth batch, that’s due to
the increase of fouling factor from batch to batch.

x 107°

Monomer feed rate (Ks)

o 2000 4000 6000 8000 10000 12000 14000
Time(sec)

Figure 3.17 Monomer feed rate (Polymer B)
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Figure 3.18 Reactor temperature (Polymer B)
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The effect of increasing the fouling factor from batch to batch on the overall heat transfer
coefficient can be clearly seen in Figure 3.19. This proved the invers relation between the
fouling factor and overall heat transfer coefficient as described in equations (3.11) and

(3.12).
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Figure 3.19 Overall heat transfer coefficient (Polymer B)
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Figure 3.20 Reaction heat (Polymer B)

Figure 3.21 and 3.22 describe the response of polymer mass and monomer mass,
respectively.it can be clearly noticed that, the polymer mass is linearly increased with the
feeding of the monomer, then stayed steady when the monomer stopped feeding into
reactor.
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The main aim of this chapter is to understand the nonlinear dynamic behaviour of the

Chylla-Haase polymerization reactor. In this chapter, the mathematical model of the

proposed reactor is described. The material and energy balances of the reactor are

illustrated in more details. All the uncertainties and disturbances in the process is
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discussed. Moreover, all parameter values for polymer A and B and all the empirical
relations for the polymerization rate, the jacket heat transfer area, and the overall heat
transfer coefficient are represented. The Simulink model of the proposed reactor is set
up using Simulink/MATLAB. The design of Simulink model is developed based on a set
of ordinary differential equations (3.1)-(3.12) that describe the dynamic behaviour of the
proposed polymerization process. The Simulink block diagram of the proposed reactor is
presented and discussed in more details. The simulation results of open-loop

Polymerization process for both polymer A and B are presented and discussed.
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Chapter 4
RBF NN Model Based FDI for Open-loop

System

An independent radial basis function (RBF) neural networks (RBFNN) are developed and
employed here for an on-line diagnosis of actuator and sensor faults. In this research, a
robust fault detection and isolation (FDI) scheme is developed for open-loop exothermic
semi-batch polymerization reactor described by Chylla-Haase. The independent (RBFNN)
is employed here for on-line diagnosis of faults when the system is subjected to system
uncertainties and disturbances. Two different techniques to employ RBF neural networks
are investigated. Firstly, an independent neural network is used to model the reactor
dynamics and generate residuals. Secondly, an additional RBF neural network is
developed as a classifier to isolate faults from the generated residuals. Three sensor faults
and one actuator fault are simulated on the reactor. Moreover, many practical disturbances
and system uncertainties, such as monomer feed rate, fouling factor, impurity factor,
ambient temperature and measurement noise are modelled. The simulation results are

presented to illustrate the effectiveness and robustness of the proposed method.

4.1. Radial Basis Function Neural Networks (RBFNN)

The RBF network performs nonlinear mapping for modelling nonlinear dynamic systems.
Figure 4.1 illustrates the structure of the RBFNN, which consists of three layers: input

layer, hidden layer and output layer. The hidden layer contains a number of RBF neurons,
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and each of them represents a single radial basis function, with associated centre and

width. The transfer function of the hidden layer neurons is radial basis function.

Input Layer Hidden Layer Output Layer
Xq ji yq -
X3 Vo
Xn Ym

Y

Figure 4.1 RBF NN Structure

4.2. RBF Neural Network Modelling of Cylla-Haase Reactor

4.2.1. Training Algorithm
The output of the hidden layer nodes in RBFNN is produced by so called a nonlinear

activation function ¢;(t) . In this work the Gaussian basis function is chosen as the

nonlinear activation function.

Ixo-,0f
2

(¢}

(I)J(t):exp ’ j=11"'1nh (41)

]
Wherec(t) is i centre, here in this research K-means clustering algorithm is used to

choose the centres of the RBF to minimize the sum squared distance from each input data

to its closest centre so that the data is adequately covered by the activation function.

x(t) is the neural network input vector which is given as:

x()="f [y(t-D),...,y(t-ny)u(t-1-d),...,ut-n, -d)] (4.2)
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Whereo; is a positive scalar called a width and ny, is the number of centres. Here in this

work the p-nearest algorithm is used to choose the widths, and the recursive training

algorithm is employed to update and calculate the weights.

The network outputs are then computed as a linear weighted sum of the hidden node

outputs and bias as shown below in equation (4.3):
. Mh T :
yi()=2¢;®) w; ,i=l...q (4.3)
j

Wherew; is the output layers weight connecting the i™ centre output and i™ network

output, and q is the number of outputs.

4.2.2. Independent and Dependent Modes of RBF Modelling

Using RBFNN for modelling, a non-linear dynamic system can be modelled in two
modes: a dependent mode and an independent mode as shown in figure 4.2 and 4.3. The
first model referred to is a dependent mode, since the past system output is used as
network input. Thus, the model is dependent on the system output and cannot operate
independently from the system. In the independent mode, the past model output is used
as network input. Therefore, the model is not dependent on the system output and can
operate independently from the system. The independent model has an advantage in that
the model can be used to simulate the system to obtain long-range prediction. In contrast,
the dependent model performs as one-step-ahead predication.

The RBF model of the dependent form uses both input and output of the process to be
modelled. Then, when the process has a fault, the fault will affect the process output, and
consequently affect the RBF model output. When the model output is compared with the
process output to generate the residual, the residual will not be sensitive to the fault. On
the contrary, the RBF model of the independent form use process input and the model

output rather than the process output. In this way the occurring fault will not affect the
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model output because the process is not fed into the RBF model. Thus, the residual

generated by comparing the model output with the process output will be sensitive to the

fault.

THE INPUT THE OUTPUT
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Figure 4.2 Dependent mode
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Figure 4.3 An independent mode

b,

The nonlinear dynamic plant to be modelled is presented by the non-linear autoregressive

with exogenous inputs (NARX) model as shown in equation (4.4) below:
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Yy = f[yt-1,...yt-n,)ut-1-d),...ut-n,-d)+et)  (4.4)

Whereu e R™ and y e P are plant input and output respectively. e e RP is random noise,

m and pare the number of plant inputs and outputs respectively, n, and n, are the

maximum lags in the model output and input, respectively, d is the time delay in inputs,
and f(x) is a vector valued non-linear function.

The dependent mode of the network model can be represented by equation (4.5), which
is referred to dependent mode as the prediction uses the process output and therefore, the

model cannot run independent of the process.
§ @) =flyt-1)...yt-n,)ut-1-d),...ut-n, —d)] (4.5)
Where f () is a function approximation of f(«) . If the past process outputs in the

network input are replaced by the network outputs as in equation (4.6) below, then the
model is referred to an independent model
y(t) = fA[)A/(t—l),...,§/(t—ny),u(t—l—d),...,u(t—nu —d)] (4.6)

4.2.3. Input-Output Determination of RBF Model

The first step towards developing a neural network model of the process is to obtain
training data. Training data is obtained by designing a set of random amplitude signals
(RAS) for the five inputs to the reactor: monomer feed rate, fouling factor, ambient
temperature, impurity factor, and valve position, as shown in figure 4.3. These five inputs
are the system inputs (monomer feed rate, manipulated variable) included the
uncertainties and disturbances in the process. The second step towards developing a
neural network model of the process is to determine the network input variables and the
input vector and output vector. The network input vector consists of the past values of the
five system inputs and the past values of the three system outputs. The determination of
the inputs and outputs of the system is based on the equations (1) to (5). A total data set
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of 2000 samples is collected from the system Simulink model, and 4s are used as the
sampling time. The first 1500 samples are used for training the network model, and the
remaining 500 samples are used for testing the network model. Before training and

testing, the raw data is scaled linearly into the range of [0 1] using the following formulae:

",
1/hy Tiin
U=|Tamp |+ ¥Y=|Tjout (47
i T
L C ]
Uscaled (k):m Yscaled (k)zm (4.8)

max — “'min max — Ymin

4.2.4. Data Acquisition and Pre-processing

In this research, an independent RBF network is used to represent the NARX model in
equation (4.6). Thus, in order to get a good training result with minimum modelling error,
several numbers of maximum lags in the outputs and inputs, and several numbers of the
maximum time delay in the inputs are tried. The maximum lags in the output were
selected as 3, the maximum lags in the input is selected as 3, and the maximum time delay
in the inputs is selected as 2, as described in equation (4.9). Thus, the RBF model is
designed to have 24 inputs and 3 outputs, as shown in figure 4.8. The hidden layer nodes
are selected as 21. The centres are chosen using a K-means clustering algorithm as 21.
Moreover, a p-nearest-neighbours algorithm is used to choose the widths. In the training
of the network model, the recursive least squares (RLS) algorithm is used to update the

weight matrix since the weights are linearly related to the output, and the parameters of

the RLS algorithm are selected as follows: x=0.999 , w(0)=10"°*U(n,,3) and
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p(0)=10° = I(n,) where  is the forgetting factor, | is an identity matrix, U is the
element unity matrix, and n,, is the number of hidden layer nodes.

X =[9-1) §-2) §(t-3) ut-k-1) ut-k-2)ut-k-3]" (49)
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Figure 4.4 RAS signal

Based on equations (4.7) -(4.9), figure 4.5 demonstrates the fault detection approach.

An independent model is implemented in parallel with the system to generate the

residuals for detecting the sensor and actuator faults in the reactor.
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Figure 4.5 The structure of FD using an independent RBFNN
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Figure.4.6, 4.7, and 4.8 shows the last 200 sample intervals in the training data set and
the first 200 sample intervals in the testing data set. It can be clearly seen that the model
outputs track the system output with a small modelling error. The mean absolute error
(MAE) for the jacket input temperature, jacket output temperature and reactor

temperature are 0.004, 0.0054 and 0.0072, respectively.
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Figure 4.6 Jacket input temperature and RBF model
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Figure 4.7 Jacket output temperature and RBF model

56



r
1 .
0.9
0.8
0.7
0.6

0.5
0.4 T
0.3 T

1

Reactor Temperature(K)

0.2~ n

0.1~ System output

; ; ; ; . RBFNN model output

1300 1350 1400 1450 1500 1550 1600 1650 1700
Number of Samples

Figure 4.8 Reactor temperature and RBF model

4.3. Fault Detection

4.3.1. Simulating Faults

In this study, after training the independent RBF network model with healthy data, the
model will be tested with faulty data. The faulty data is obtained by simulating different
faults in the proposed reactor. These faults are classified as three sensor faults and one
actuator fault. The sensor faults are jacket input temperature sensor fault, jacket output
temperature sensor fault, and reactor temperature sensor fault, and the actuator fault is the

inlet temperature. These faults are simulated as following:

e Simulating Sensor Faults
The jacket input temperature sensor fault is superimposed with 10% change of the
measured jacket input temperature, and simulated from the sample number 400 to 500, as
shown in Figure 4.9 and 4.10. Additionally, the jacket output temperature sensor fault is
superimposed with 10% change of the measured jacket output temperature, and simulated
from the sample number 600 to 700, as shown in figure.4.9 and 4.10. Furthermore, the
sensor fault of the reactor temperature is superimposed with 10% change of the measured
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temperature, and simulated from the sample number 800 to 900, as shown in figure.4.9
and 4.10.
e Simulating Actuator Fault

The heating-cooling function is influenced by an equal-percentage valve with valve
position. When the valve positionc<50% , cooling water with inlet temperature (278.71
K) is inserted into the cooling jacket. When the valve position ¢>50% , steam with
temperature (449.82 k) is injected into the recirculating water stream, which will lead to
heating up of the coolant. Consequently, it is assumed here that a failure in the pump
position of cooling mode has occurred, which leads to increase in the temperature by 10%
change of the measured inlet temperature. This inlet temperature fault is simulated from

the sample number 1000 to 1100, as shown in figure.4.9 and 4.10.
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Figure 4.9 The schematic of Chylla-Haase reactor with four faults
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4.3.2. Residual Generation

After training the network model with healthy random data, as described in the previous
section, all four faults were simulated to the reactor model. Then, with another set of 2000
samples, faulty square data is collected. These faulty data are collected by designing a set
of square waves for all inputs.

These five inputs are the system inputs (monomer feed rate, manipulated variable)
included the uncertainties and disturbances in the process. The second step towards
developing a neural network model of the process is to determine the network input
variables and the input vector and output vector. The network input vector consists of the
past values of the five system inputs and the past values of the three system outputs.

Where themy, (t),1/h¢ , Tamp » 1, @nd c(t) are the inputs of the system; and jacket input
temperatureT j;, (t) , jacket output temperature T, (t) and reactor temperatureT (t) are the

outputs of the system. Moreover, the collected data is scaled linearly. After determining
and scaling the input and output vectors of the system, the multivariable NARX is used
to represent the non-linear dynamics of the reactor, the maximum lags in the output were
selected as 3, the maximum lags in the input is selected as 2, and the maximum time delay
in the inputs is selected as 2, as described in equation (4.9). Here again the neural network
is realised by a RBF network with Gaussian basis functions. Moreover, the centres are

chosen again using a K-means clustering algorithm and the widths are chosen using p-
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nearest-neighbours. Different numbers of hidden nodes, such as 21, 31, and 51, are used
in order to get good results. The recursive least squares algorithm is used to update the

weight matrix. The parameters of the recursive least algorithm are selected as follows:
£=0.999 ,w(0) =10 =U (ny,,5)and p(0) =10° * I(n,) where xis the forgetting factor, |

Is an identity matrix, U is the element unity matrix, and n,, is the number of hidden layer
nodes. The RBF network model is tested with these faulty square data to generate fault—
detection residuals. The filtered model prediction errors are shown in figure 4.10, 4.11,
and 4.12. In this study, the residual ¢is generated as the sum-squared filtered modelling
error as follows:

e(t)=[y(®)-y()]

£(0)=(Cr )2+ Erigy ) +(er)?

The residuals of testing the neural model are slightly bigger than the residuals of training
the neural model. The mean absolute error (MAE) index is used to evaluate the modelling
effects. The MAE for the jacket input temperature, jacket output temperature and reactor
temperature are 0.004, 0.0054and 0.0072, respectively. Figure 4.11, 4.12, and 4.13
demonstrate the residuals after using a low pass filter. The first model prediction error of
jacket input temperature is shown in figure 4.11 and that for jacket output temperature
and reactor temperature are shown in figure 4.12 and figure 4.13, respectively. It can be
observed that the independent network model output is not influenced by any type of
fault, because an independent model does not use past faulty measurements as inputs.
Thus, it can be clearly noticed that all faults have been clearly detected since all signals
are over the threshold setting, the detection threshold is chosen as 0.2 for jacket input
sensor fault ,0.3 for jacket output sensor fault and 0.7 reactor temperature fault. Moreover,
no false alarms are thereby produced, so this verifies that the proposed scheme has shown

excellent diagnostic performance.
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4.4. Fault Isolation

Figure 4.14 illustrates the fault isolation strategy; an additional neural network is applied
as a classifier for fault isolation. The application of NNs for fault isolation has been used
by many researchers, such as Patton et al. (1994) and Yu et al. (1999) used an RBF
network, Yu et al.(1996a) using an MLP network, and Patton and Benkhedda (1996) used
a B-spline network. In the fault detection, a residual is generated to report a fault
occurring. However, it is difficult to identify which fault has occurred among all pre-
specified possible faults using the residual, due to the fact that the residual is a scalar and
carries little information about fault types. In this work, it is proposed to isolate faults
according to model prediction errors. The model prediction errors are multi-dimensional,
three-dimension in this case, and different faults will have different impacts on these
vectors in three-dimension vector space. Classification of these features of different faults
on the model prediction error vectors will lead to classification of different faults.
Therefore, the faults that have occurred can be isolated. In this work, the neural classifier
is developed by an RBF network with Gaussian basis functions. The residuals that shown
in Figure 4.11, 4.12, and 4.13. which are the difference between the real system output
and the tested neural output were used as inputs for RBF network classifier.

Moreover, the neural classifier was developed with five outputs, with four outputs
associated to the four faults, and one output for (no-fault) case. The centres are chosen
again using a K-means clustering algorithm and the widths are chosen using p-nearest-
neighbours. Different numbers of hidden nodes, such as 51, 151, and251, are used in order
to get good results. Finally, 51 hidden layer nodes are selected and the centres are chosen

as 51. The parameters of the recursive least algorithm are selected as follows: zz=0.9999

, W(0)=10"% U (n,,,5)and p(0)=10° = I(n,,) The samples arranged for fault occurrence

are illustrated in Table 3. Moreover, the target is set such that all four outputs are set as
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zero for the healthy condition data, and one output is set as 1 for a specific fault, with the
others remaining at zero. Thus, once the first output is 1 and the other outputs are zero,

this means that the jacket input temperature sensor fault with 10% change has occurred.

In the same way, the jacket output temperature sensor fault with 10% is believed to have
occurred when the second output is 1, while the others remain at zero. Similarly, the
reactor temperature sensor fault and the inlet temperature actuator fault with 10% changes
will have occurred when the third and the forth outputs are 1. After training, the RBF
network classifier is tested with another set of faulty data with the same arrangement of
training data. The samples arranged for fault occurrence can be different from those of
the training data. Table 4.1 shows the classification of faults with respect to the number
of samples. The four outputs of the neural classifier after use of a filter are displayed in
figure 4.15-4.18. It can be clearly noticed that all faults have been clearly detected and
isolated. The isolation thresholds are chosen as 0.4 for all cases as shown in Figures 4.15-
4.18.
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Figure 4.14 Block diagram for fault isolation
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4.5. Discussion

Robust is that the fault detection always sees residual sensitive to the fault but insensitive
to the disturbances. When the disturbances come in it will not affect the report of the fault,
and will not increase false alarm reading. False alarm reading is that where there is no
fault but fault is reported and when there is a fault but is not reported. False alarm reading
should be zero percentage when all faults are reported, if there is no fault but report
affected by disturbances this should be zero, but if not zero then should be reduced as
small as possible.in this research work, when collecting training data all disturbances are
simulated, because of this the model is trained considering the disturbances. When
disturbances happened will not affect the residual that because the disturbances in this
system is not big enough to make the residual high, in this process the disturbances just
change the nonlinear function of the system and that is big enough from the control point
of view. Its observed from simulation results that all faults have been clearly detected and
isolated, and no false alarm were thereby produced, so this verifies that the proposed
scheme has shown an excellent performance. Note that the outputs are not zero when no

faults occur, as a result of the effects of the disturbances.
4.6. Summary

A new robust fault diagnosis scheme has been developed for open-loop Chylla-Haase
reactor using an independent RBFNN. Three sensor faults and one actuator fault have
been simulated on the reactor. All the simulated faults are superimposed with 10%
changes of the measured temperatures, and simulated for different numbers of samples.
Moreover, the uncertainties and disturbances in the process have been simulated. Two
different techniques to employ RBF neural networks for fault diagnosis have been
investigated. The first technique is implementing an independent RBNN for residual

generation. Moreover, the generated residuals were used for detecting actuator and sensor
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faults. The second technique is applying an additional RBFNN as a classifier to perform
the classification task for residual evaluation and therefore to diagnose and isolate the
actuator and sensor faults from the generated residuals. The simulation results show that
all faults were clearly detected and isolated. Moreover, no false alarms are thereby
produced, so this verifies that the proposed scheme has shown excellent diagnosis
performance. The main contribution of this work is to show how to apply an independent
RBFNN to open-loop Chylla-Haase reactor fault diagnosis.so this proposed method can

contribute to the safety of chemical reactors.
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Chapter 5
RBF Model Based FDI for Closed-Loop

System

In this chapter, a new robust fault detection and isolation (FDI) scheme is developed to
monitor a multivariable nonlinear chemical process called the Chylla-Haase
polymerization reactor, when it is under the cascade Pl control. The scheme employs a
radial basis function neural network (RBFNN) in an independent mode to model the
process dynamics, and using the weighted sum-squared prediction error as the residual.
The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model
to overcome the training difficulty of the independent mode of the network. Then, another
RBFNN is used as a fault classifier to isolate faults from different features involved in
the residual vector. Several actuator and sensor faults are simulated in a nonlinear
simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults
on-line. The simulation results show the effectiveness of the scheme even the process is
subjected to disturbances and uncertainties including significant changes in the monomer
feed rate, fouling factor, impurity factor, ambient temperature and measurement noise.
The simulation results are presented to illustrate the effectiveness and robustness of the

proposed method.

5.1. Closed-loop control system design and performances
In order to produce polymer of desired quality a very tight temperature control is essential

for the reactor. The controller should be able to keep the reactor temperature T within
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an interval of £0.6K around the desired set-point under all operating conditions and
disturbances. Commonly used for a chemical reactor is a Pl cascade control structure.

The block diagram of the cascade PI control is shown in Figure 5.1. The master control
regulates the reactor temperature T by manipulating the set pointTfet of the mean
cooling jacket temperature T;.The slave controller adjusts the valve position ¢ in order to

control the mean jacket temperature T;set by the master controller.

Disturbances hl Disturbances

.......................................

Setpoint

..........................................

Quter loop

Figure 5.1 Block diagram of CASCADE control scheme

The parameters of the conventional cascade PI controllers have been tuned in simulation

studies as K, =21, K, =0.08 for the master controller, and K, =2.3,K, =0.09 for the

slave controller. The sampling times for both the slave and master controllers are set to
4s. Figure 5.2 illustrates the reactor temperature response of the designed cascade Pl
control for the fifth batch, where the monomer was added at t = 1200 sec and withdrawn
att=6000 sec. As the reaction release heat energy, the control variable was reduced when
the monomer was added and increased when the monomer was withdrawn. It can be
observed that the control scheme is effective to maintain the reactor temperature within
the tolerance interval limit£0.6K around the set-point under major disturbance. The PI
controller tuning is not optimal (see the oscillatory response when the monomer was

added), this will not affect the FDI system design and evaluation. Note that all the
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uncertainties and disturbances in the process, such as fouling factor, impurity factor, and

measurement noise, have been simulated and taken into consideration.
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5.2. Training algorithm

In this chapter, a radial basis function neural network (RBFNN) in an independent mode
is employed to model the process dynamics. In this work the centres of the RBFNN are
set by the K-means clustering method (Chen et al., 1990),whose objective is to minimise
the sum squared distances from each input data to its closest centre so that the data is
adequately covered by the activation functions ¢(t) . Moreover, the widths are computed
by the p-nearest neighbours method(Chen et al., 1990). The excitation of each node
should overlap with other nodes (usually closest) so that a smooth interpolation surface
between nodes is obtained. In this method, the widths for each hidden node are set as the
average distance from the centre to the p nearest centres as given by:

In this work, the weights were trained using the ROLS algorithm. Because the
independent mode of RBF model requests much higher accuracy compared with
dependent mode, also due to that the ROLS is a numerically robust algorithm. Training
of the RBF network weights with the ROLS algorithm is as follows. Considering the
network output as described in previous chapter in equation (4.3) at sample interval k for
a set of N samples of input-output training data fromk-N+1tok ,in other words a

window going back in time N samples, we have
Y (K)=Y (K)+E(K)=®(K)W (K)+E(K) (5.1)

whereY elRV*P is the desired output matrix,Y elR"N*F is the neural network output matrix,

@R s the hidden layer output matrix, EeR™N*P is the error matrix and equation
(5.1) can be solved for W (k) using the recursive MIMO Least Squares algorithm to

minimize the following time-varying cost function,
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W k-1] [Jrok-1)
JK=|| ——— || ———- (k) (5.2)
y' (k) ¢ (k)

Where the F-norm of a matrix is defined as ||A|||2: —trace(AT A) and A<1 is used to

introduce exponential forgetting to the past data. It has been shown Gomm and Yu (2000)

that minimizing (5.2) is equivalent to minimizing the following cost function,

Y (k-1 | [VAR(K-1)
JK=| -——— |-| ——— W(&) (5.3)

T T
G RO

Where R is an n,xn, upper triangular matrix, andY is computed by an orthogonal

decomposition as follows,

JAR(k —1) RK)T[ Y (k) JAY (k -1)
———— [=QWK)| = |;| = [=QT ()| ———~ (5.4)
o' (k) 0 ||n' (k) y' (k)

Where Q is an orthogonal matrix. Combining (5.3) and (5.4) and considering that the F-
norm is preserved by orthogonal transformation, the following equivalent cost function

is obtained,

Y (k) = R(K)W (k)
JK=|| ———————- (5.5)

F

This allows the optimal solution of w (k) to be solved straightforwardly from

R(K)W (k) =Y (k) (5.6)

And leaves the residual at sample interval k as|ln" ||g . Since R(k) is an upper triangular

matrix, W (k) can be easily solved from (5.6) by backward substitution.
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The decomposition in (5.4) can be achieved efficiently by applying Givens rotations to

an augmented matrix to obtain the following transformation by Gomm and Yu (2000):

ARk -1 JAY (K —1)} . {R(k) Y (k) } 5

T
(SN (9 0 n'(k
The procedure of the ROLS algorithm is therefore the following: for on-line training,

calculate ¢(k) at each sampling period to update the augmented matrix and compute the

Givens rotations to realize the transformation in (5.7). Then solveW (k) in (5.6) with

R(k) andY (k) obtained in (5.7). In this case, W (k) is needed at each sample instant for
prediction. Also, A<1 is needed to follow time-varying dynamics at the current time. For
use in off-line mode, the Givens rotations can be computed to realize the transformation

in (5.7) continuously to the end of training, and then W is solved finally from (5.6). In this

case, 4 is set to 1. Initial values for Rk) and Y (k) in both cases can be assigned as

R(0)=zd andY(0)=0, where £ is a small positive number, and | is a unity matrix with
appropriate dimension.
5.3. RBF model development

The first step is to obtain training data. When acquiring training data, the excitation signal
should be designed such that the training data has the persistently exciting property and
should span over the entire network input space in every dimension, which can provide a
good network model interpolation property and good generalization. A set of modified
random amplitude signals (RAS) were designed for monomer feed rate, fouling factor,
ambient temperature and impurity factor as shown in figure 5.3. the fifth input is the valve
position which is the controller output and it cannot be designed. The second step in
developing the RBF model of the process is to determine the network input variables. The

network input variables consist of the input vector and output vector. According to the
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reactor dynamics, the input vector was determined to include the five process inputs:
monomer feed rate, fouling factor, ambient temperature, impurity factor and the fifth
input is the controller output. The controller output cannot be designed when the reactor
is under closed-loop control; this is one of the problems in closed-loop identification. In
practice most systems work under closed-loop control. Most chemical processes operate
as a part of a control configuration, and the control action will correct small changes of
the states caused by faults. FDI system design for a plant itself or for the plant under
closed-loop control would be quite different. The major difference lies in that the
operating point for the closed-loop control system is in a small range while for an open-
loop plant is the whole operating space. The FDI has been investigated in this paper for
the chemical reactor under cascade control. The output vector was determined to include
the three system outputs, jacket input temperature, jacket output temperature and reactor
temperature. Therefore, the input and vector and output vector that used to determine the

RBFNN input variables are shown in (5.8).

I’nM
1/h, Tiin
u= Tamb ! y: Tjout (58)
[ T
_ C .

Before training and testing, the input vector and output vector were scaled linearly into
the range of [0 1] using the formulae (5.9). Then, in order to implement the proposed
network in an independent mode, the network input vector x used the past value of the
system output as mentioned in previous chapter in equation (4.6). Different lags and time
delays have been tried, and one giving minimal model prediction error was used in the
model development. The maximum lag in the output and the input are selected as 3 and

2 respectively. The time delay in the inputs is selected as 2, as described in equation (5.10).
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Thus, the RBF model is designed to have 19 inputs and 3 outputs, as shown in Fig.8. The
RBF model is implemented using Matlab. Different numbers of hidden layers’ nodes,
such as 21, 31, and 51, were used in order to get good results. Finally, 21 hidden layer
nodes were selected with the centres being chosen using the K-means clustering algorithm.
Moreover, the P-nearest-neighbours algorithm was used to choose the widths, and the
ROLS algorithm was used to update the weight matrix. A data set of total 2000 samples
was collected from the Simulink model of the closed-loop system, and 4 secs was used
as the sampling time. The first 1500 samples were used for training the network model,

and the remaining 500 samples were used for the model test.

Uscaled (K) = M Yscaled (K) = M (5.9)
max — Umin max ~ Ymin
X(t)=[y(t-1) Y(t-2) y(t-3) u (t-k-D)u (t—k-2)]" (5.10)
g X 10° L L L L L L L
- H 71 N ﬁ { W i
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O-rrrr’rrr

0] 1000 2000 3000 4000 5000 6000 7000 8000
Time(sec)

Figure 5.3 RAS signal
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Figure 5.4 Structure of FD using an independent RBFNN
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5.4. Residual generation

In this chapter, after training the independent RBF network model with healthy data, the
model will be used to detect faults that occurred in the system, i.e. generate residual when
the system is subjected to any fault. The faulty data is obtained by simulating different
faults in the proposed reactor. The type and classification of faults that used in this work
are similar to that used in previous chapter. Figure 5.4 demonstrates the fault detection
approach. An independent model is implemented in parallel with the system to generate
the residuals for detecting the sensor and actuator faults in the reactor. After training the
network model with healthy random data, as described in the previous section, all four
faults were simulated to the reactor model. Then, the fault detection is conducted with the
network model using another set of 2000 samples faulty square data. These faulty data
were collected when the system is given a set of designed square waves for monomer
feed rate, fouling factor, ambient temperature and impurity factor as shown in figure 5.5-
5.8 to simulate the realistic situation in the practical applications. The fifth input is the
controller output which cannot be designed and with smaller amplitude is added to the
controller output to excite the dynamics in different frequencies. Then, the input vector x
of the independent RBFNN designed as shown in (5.10). Testing the proposed model was
done many times with different sets of faulty square data, to ensure the efficiency
performance of the proposed network model. Different numbers of hidden nodes, such as

21, 31, and 51, were used in order to get good results.
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The filtered model prediction errors are shown in figure 5.9-5.12. The first model
prediction error of jacket input temperature is shown in figure 5.9 and that for jacket
output temperature and reactor temperature are shown in figure 5.10 and 5.11 respectively.
It can be observed that the independent network model output is not influenced by any
type of fault. Therefore, it can be clearly noticed that all faults have been clearly detected,
since the faults are over the chosen thresholds. Here in this section the thresholds are
chosen as (+0.1/-0.1) for all cases. Moreover, no false alarms were thereby produced, so
this verifies that the proposed scheme has shown excellent diagnostic performance. The
model prediction errors of the FD are slightly bigger than the modelling prediction errors
of training the neural model. The mean absolute error (MAE) for the jacket input
temperature, jacket output temperature and reactor temperature are 0.004, 0.0054and

0.0072, respectively.
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Figure 5.12 Filtered sum-squared residuals
Since the independent model does not use past faulty measurements as inputs. It is
observed that the neural model outputs did not track the faulty system outputs. Thus, the
residuals are sensitive to these faults, and consequently can be used to detect faults in the
presence of noise and modelling errors. A pre-specified threshold o is marked in figure
5.9-5.12, the value of o is determined according to the specific application and is directly
related to the noise level in the system and the level of modelling error in nominal
condition. A lower value of the threshold will increase the false-alarm rate, while a higher
value will reduce detection sensitivity. It can be clearly noticed in figure 5.9-5.12 that all
faults have been clearly detected, and no false alarm was thereby produced. So, this
verifies that the proposed scheme has shown excellent detection performance and
robustness against disturbance and time-varying parameters. Fault magnitudes other than
10% have also been tested and the detection results are similar. The results therefore are

not presented here for limited space.

5.5. Fault Isolation

In fault detection, a residual is generated to report a fault occurring. However, it is

difficult to identify which fault has occurred among all pre-specified possible faults using
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the residual, due to the fact that the residual is a scalar does not carry direct information
about fault types. In this work, it is proposed to isolate faults according to model
prediction errors. The model prediction errors are three-dimensional in this work.
Different faults will have different impacts on these vectors in three-dimension vector
space. Classification of these features will lead to classification of different faults.
Therefore, the faults that have occurred can be isolated. According to the above arguments,

the fault isolation scheme is developed in this work and is displayed in figure 5.13.

eTJ'in No fault case
—_— = =
Isolated T i, Sensor fault
eTjout RBF Isolated Tjout Sensor fault
—| Filter1 > lassifi > Filter 2
Classifier Isolated T Sensor fault
er Isolated Actuator fault
| > >

Figure 5.13 Block diagram of fault isolation

The isolation is achieved in the following way. The three model prediction error signals
are used as the inputs of the classifier. The classifier has 5 outputs with each of the first 4
outputs dedicated to one fault, and the fifth output for no-fault case. The training data set
contains 5 parts, with each part of the first 4 including data with one fault occurring and
the fifth part for no-fault data. The training target is arranged that for each part of training
data with a fault, the target for the dedicated output is “1”, while that for all the other 4
outputs are “0”. So, each output of the classifier is trained sensitive to only its
corresponding fault and insensitive to the other pre-defined faults. After training, the
classifier is used on-line to receive the three model prediction error signals. When the

fifth output is “1” and all the other outputs are “0”, it indicates the system is healthy. If
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any output among the first 4 is “1” while the others are “0”, it indicates the fault associated
to this output occurs.

The network training for classification is different from that for modelling. The centres
of the classifier were chosen again using the K-means clustering algorithm, so that the
sum squared distance of each input data from the centre is minimized. The widths were
chosen using p-nearest-neighbours. In the updating of the classifier weights, the recursive

least squares (RLS) algorithm was used. The parameters of the RLS algorithm are
selected as follows: 12=0.99999 , w(0)=107° *U(n,,5) and p(0)=10° = I(n,), where  is
the forgetting factor, I is an identity matrix,U is the element unity matrix, and n,, is the

number of hidden layer nodes. As the classifier was trained to classify a number of
different patterns statically, a bigger number of centres than that of model were needed.in
this study, different numbers of hidden nodes, such as 51, 151, and 251 were used. Finally,
51 hidden layer nodes are selected and the centres are chosen as 51. In addition to the
optimization of weights using RLS algorithm, both centre locations and amplitude of
width have also been optimized. As the objective function is nonlinearly related to both
the centre and the width, a nonlinear optimization algorithm, the gradient descent method
is employed for this task. The samples arranged for fault occurrence are illustrated in
Table 3. Moreover, the target is set such that all four outputs are set as zero for the healthy
condition data, and one output is set as 1 for a specific fault, with the others remaining at
zero. Thus, once the first output is 1 and the other outputs are zero, this means that the
jacket input temperature sensor fault occurred. In the same way, the jacket output
temperature sensor fault is believed to have fault when the second output is 1 and the
other outputs remain at zero. Similarly, the reactor temperature sensor fault and the valve
actuator fault occurred when the third and the forth outputs are 1. After training, the RBF

network classifier is tested with another set of faulty data with the same fault arrangement.
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To ensure the reliable performance, the developed network classifier was tested many
times with different sets of faulty data. The samples arranged for fault occurrence have
been different from those of the training data. For the simulated faults shown in table 3,
the four outputs of the neural classifier after use of a filter are displayed in figure 5.14-
5.17. It is clearly that all faults are isolated. In isolation part here, the thresholds are
chosen as 0.4 for all cases

Table 5.1 Classification of faults with respect to number of samples

Faults Number of samples
No fault 0 ~ 400

Tjin SENSOr fault 401 ~ 400

No fault 501 ~ 600

T jout SENSOr fault 601 ~ 700

No fault 701 ~ 800

T sensor fault 801 ~ 900

No fault 901 ~ 1000
Actuator fault 1001 ~ 1100

No fault 1101 ~ 2000
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Figure 5.17 Classifier output 4
5.6. Discussion

Figure 5.14-5.17 illustrate the fault isolation results for the four faults. The classifier
outputs were filtered to get rid of specks before they were used to indicate isolated fault.
It is noticed that all faults have been clearly detected and isolated. Robustness of a fault
detection system indicates its ability to distinguish between faults and model uncertainties
or disturbances. When the disturbances come in the system it will not affect the report of
the fault, and will not increase false alarm rate. False alarm is that where there is no fault
but fault is reported or when there is a fault but it is not reported. In this research, the
training data is acquired with all disturbances and time-varying parameters simulated.
Therefore, the trained RBF model generates residual that is insensitive to these
disturbances and time-varying parameters. It is observed from simulation results that all
faults have been clearly detected and isolated, and no false alarm was produced. This

verifies that the proposed scheme has shown an excellent performance.
5.7. Summary

A new robust fault diagnosis scheme has been developed for a Chylla-Haase reactor under
closed-loop control using an independent RBF neural network model and a RBF classifier.

Due to the increased difficulty in training an independent RBF model compared with the
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dependent model, the network weights were updated using the ROLS algorithm. 10%
changes on the three sensor outputs and one actuator output were simulated in the Chylla-
Haase reactor Simulink model. Moreover, the disturbance such as the monomer feed rate,
the time-varying parameters such as the fouling factor and impurity factor, and
measurement noise were simulated and used. Consequently, the robustness of the fault
detection to these disturbances and time-varying parameters was achieved. RBF classifier
was implemented for fault isolation, where three dimension vectors of model prediction
errors were used as the input for the network classifier. The different ways of faults
affecting the model prediction error vector was classified, so that the occurring fault was
identified. Optimisation of centre location and magnitude of the width significantly
increased the classifying ability. The simulation results confirmed that the simulated
faults have been clearly detected and isolated with zero false alarm rate. The research
indicates the feasibility of the developed scheme applied to industrial systems, especially
chemical and biochemical processes, for which the mathematical model is difficult to

develop.
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Chapter 6
MLP NN Based FDI for Open-Loop

and Closed-Loop Systems

6.1. Multilayer Perceptron Neural Networks (MLPNN)

The MLP neural networks became the most commonly used type of feedforward neural
networks after Rumelhart developed a training algorithm called back error propagation
or BP algorithm (David and James, 1987, Lippmann, 1987). Typically, A MLP consists
of an input layer, several hidden layers, and an output layer. Each layer contains a number
of node, a neuron, which is the basic element of a neural network. A neuron is modelled
as shown in figure 6.1.

hj =

j Viji Xj +6j Activation function h, = @(h)

I M=
-

Y

Figure 6.1 Neuron modelling
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Figure 6.2 MLP NN structure

The activation h; and the output signal h, are obtained by Lippmann (1987).

k
hi = ZVji Xj +9i (61)
j=1
ho=® (hy) (6.2)

Where h; is output from each hidden neuron, X=[X; X, ...xk]T is a nby linput vector,

V=[VyVy ...V Misn byl weight vector which connecting the input vector with the hidden

layer inputs, where T denotes the transpose operation, ¢ is an additive bias, and @ is the
activation function. In this work the tangent sigmoid activation function is used which is

defined as

2
hy = @(h;) = ( (rexp(_h »_J (6.3)

The output of network is given by:

Ymip = Wik h, (6.4)
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Where Wy is the weight connecting the output layer and the output of the hidden neuron .

6.1.1. Learning algorithm
Since the network architecture is modelled, the first step to apply the neural network is to
train the network. In this section we will discuss the development of the learning

algorithm, we will briefly introduce the popular back-propagation learning algorithm.

6.1.2. Back-propagation learning algorithm

The BP learning algorithm which is a gradient decent algorithm is designed to minimize
the cost function iteratively equal to the mean square difference between the desired
output and actual network output (Lippmann, 1987, Yu Chang et al., 1994, David and
James, 1987).the desired output of all nodes is typically “low” (0 or <0.1) . The network is
trained by initially selecting small random weights and then presenting all training data
repeatedly. Weights are adjusted after every trail using side information specifying
correct class until all weights converge and the cost function is reduced to an acceptable
value. An essential component of the algorithm is the iterative method that propagates
error terms required to adapt weights back from nodes in output layer to nodes in lower
layer. After training pattern is added the neural network weights at each layer are updated
according to the following rule(Lippmann, 1987).Use a recursive algorithm starting at the

output nodes and working back to hidden layer, weigh adjusted by

Wi; (t+1):Wij (t)+u Awij (6.5)
Where £ is the learning rate and AWij is the gradient of the error with respect to the
network weights. To ensure the convergence and stability of the BP training algorithm.
The initial network weights Wj; is set to be small random value and the learning rate £ is

selected to be (0<x<1) . The above formula can be rewritten as following:
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Wij (t+12) = w;; (t) + 4 hi (6.6)
In this equation hyis the output of the hidden node, andd is an error term for node j, if
node j is an output node, then

oj=yj@-y)d;-y;) (6.7)
Where d; is the desired output of node j and y;is the actual output. If node jis an

hidden node then,

5] = ho(l—ho)%:é‘ijk (6.8)

Convergence is sometimes faster if a momentum term is added and weights changes are

smoothed by

Wi (t +3) = w;; (t) + i - e (Wi (t) - w (t-1) (6.9)
Were 0<a <1
6.2. An independent mode of MLP

An independent MLP is applied here for modelling a non-linear dynamic system as shown:

THE INPUT THE OUTPUT
- PLANT
THE
ERROR
\
THE
NE L OUTPUT
NETWO
MODEL \

Figure 6.3 Independent mode
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The nonlinear dynamic plant to be modelled is presented by the non-linear autoregressive

with exogenous inputs (NARX) model as shown in equation (6.10) below:

y©) = flyt-2),-,y(t-ny),u(t-1-d), - u(t-n,—-d)]+et) (6.10)

WhereueR™ and yeR Pare plant input and output respectively. eeRP is random noise,

mand p are the number of plant inputs and outputs respectively, n, and n, are the

maximum lags in the model output and input, respectively, d is the time delay in inputs,

and f () is a vector valued non-linear function.

The independent mode of the network model can be represented by equation (6.11), which
is referred to an independent mode as the prediction uses the past process outputs in the

network input and therefore, the model cannot run independent of the process.
=1 [§ D) - (t-ny),ut-1-d), - u (t-n,—d)] (6.11)
6.3. Fault Detection

6.3.1. Data Acquisition for open-loop reactor model

Training data is obtained here in the same way that described in chapter (4) by designing
a set of random amplitude signals (RAS) for the five inputs to the open-loop reactor model:
monomer feed rate, fouling factor, ambient temperature, impurity factor, and valve
position. The network input vector consists of the past values of the five system inputs
and the past values of the three system outputs. While in closed-loop reactor model, when
acquiring training data, the excitation signal should be designed such that the training data
has the persistently exciting property and should span over the entire network input space
in every dimension, which can provide a good network model interpolation property and
good generalization. The network input variables here in closed-loop system consists of

the input vector and output vector. The input vector was determined to include the five
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process inputs: monomer feed rate, fouling factor, ambient temperature, impurity factor
and the fifth input is the controller output. A total data set of 2000 samples is collected
from the system Simulink model, and 4s are used as the sampling time. The first 1500
samples are used for training the network model, and the remaining 500 samples are used
for testing the network model. Before training and testing, the raw data is scaled linearly

into the range of [0 1] using the following formulae

_ m,
1/ hf Tjin
U=| Tamp |+ Y= Tjout (6.12)
[ T
- C -
u(k)—upq; K)=V.
Uscaled (k):M Yscaled (k):w (6.13)
max ~— “'min max ~ Ymin

In order to get a good training result with minimum modelling error, several numbers of
maximum lags in the outputs and inputs, and several numbers of the maximum time delay
in the inputs are tried. The maximum lags in the output were selected as 2, the maximum
lags in the input is selected as 4, and the maximum time delay in the inputs is selected as
2, as described in equation (6.14). Thus, the MLP model is designed to have 26 inputs
and 3 outputs as shown in figure 6.7. Several number of hidden layer nodes are tried. The
initial value of weight connecting network input and the input of hidden layer nodes is
selected asv=0.1xrand (n,,,n) , where n, is the number of hidden layers and »number of
inputs to the proposed network. The initial value of weights connecting network output

and then output of hidden layer nodes is chosen as p=0.1xrand (p,n;,), where p is the
number of network outputs. x The learning rate is selected here as 0.0001, and the

training epochs is chosen as15000 . The back-propagation training algorithm is used here

for training the proposed network as described in the previous section.
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x(®)=[y(t-1) y(t—2) u(t—k-1) u{t—k—2) ut—k—-3)u(t—k—4)]" (6.14)
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Figure 6.4 Jacket input temperature with MLPNN model for open-loop
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Figure 6.5 Jacket output temperature with MLPNN model for open-loop
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Figure 6.6 Reactor temperature with MLPNN for open-loop
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Figure.6.4, 6.5, and 6.6 show the last 500 sample intervals in the training data set and the
first 500 sample intervals in the testing data set. It can be clearly seen that the model
outputs track the system output with a small modelling error.

6.3.2. Data Acquisition for closed-loop reactor model

Similar to acquiring training data for closed-loop reactor in chapter (5), the excitation
signal is designed such that the training data has the persistently exciting property and
should span over the entire network input space in every dimension, which can provide a
good network model interpolation property and good generalization. A set of modified
random amplitude signals (RAS) were designed for monomer feed rate, fouling factor,
ambient temperature, impurity factor, and valve position setpoint. Then the network input
variables is determined. The network input variables consist of the input vector and output
vector. The input vector was determined to include the five process inputs: monomer feed
rate, fouling factor, ambient temperature, impurity factor and the fifth input is the
controller output. Here in this study the network input vector is designed such that, the
maximum lags in the output were selected as 2, the maximum lags in the input is selected
as 2, and the maximum time delay in the inputs is selected as 2, as described in equation.
(6.15). Thus, the MLP model is designed to have 16 inputs and 3 outputs as shown in
figure 6.7. Several number of hidden layer nodes are tried. The initial value of weight
connecting network input and the input of hidden layer nodes is selected as

v=0.3xrand (n,,n) .The initial value of weights connecting network output and then
output of hidden layer nodes is chosen as p=0.3xrand (p,n,). 4 The learning rate is

selected here as0.01, and the training epochs is chosen as10000 . The back-propagation
training algorithm is used here for training the proposed network as described in the

previous section.
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x(t) =[yt -1yt —2)ut—k-Dut—k—-2)]" (6.15)
6.4. Simulating Faults

In this study, after training the independent RBF network model with healthy data, the
model will be used to detect faults that occurred in the system, i.e. generate residual when
the system is subjected to any fault. The faulty data is obtained by simulating different
faults in the proposed reactor. The classification and structure of faults are done in the

same patter in previous chapter 4 and chapter 5.
6.5. Residual generation for open-loop reactor model

An independent model is implemented in parallel with the system to generate the residuals
for detecting the sensor and actuator faults in the reactor. After training the network model
with healthy random data, as described in the previous section, all four faults were
simulated to the reactor model. Then, with another set of 2000 samples, faulty square data
is collected. These faulty data are collected by designing a set of square waves for all
inputs. The back-propagation training algorithm is used here for testing the proposed
network as described in the previous section. Figure 6.7 demonstrates the fault detection
approach. Figure 6.8, 6.9, and 6.10 demonstrate the residuals after using a low pass filter.
The first model prediction error of jacket input temperature is shown in figure 6.8 and
that for jacket output temperature and reactor temperature are shown in figure 6.9 and
figure 6.1, respectively. It can be observed that the independent network model output is
not influenced by any type of fault, and the thresholds are chosen here as 0.1 for all cases.
The residuals of testing the neural model are slightly bigger than the residuals of training
the neural model. The MAE for the jacket input temperature, jacket output temperature

and reactor temperature are 0.0061, 0.0044and 0.0068, respectively.
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Figure 6.8 Filtered residual model prediction error of Tjin for open-loop system
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Figure 6.9 Filtered residual model prediction error of Tjout for open-loop system
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6.6. Fault Isolation

In this section, Radial basis neural network is used for fault classification. The network
training for classification is similar from that for modelling in chapter (4). The centres of
the classifier were chosen using the K-means clustering algorithm, so that the sum
squared distance of each input data from the centre is minimized. The widths were chosen
using p-nearest-neighbours. In the updating of the classifier weights, the recursive least
squares (RLS) algorithm was used. The parameters of the RLS algorithm are selected as
follows £,=0.99999 , w(0) =102 *U (n,,5) and p(0) =108 = I (n,) . Where 4 is the forgetting
factor, Iis an identity matrix, U is the element unity matrix, and n, is the number of
hidden layer nodes. Different numbers of hidden nodes, such as151,251 and 500 were
used. Finally 151 hidden layer nodes are selected. Figure 6.12 shows the block diagram
for fault isolation using RBFNN classifier. The samples arranged for fault occurrence and
the isolation methodology are described in chapter (4) and (5). The outputs of the RBFNN
classifier are displayed in Figures 6.13-6.16. the thresholds are chosen as 0.4 for all cases.

It can be observed that all faults are isolated.

eTjin

No fault case

Isolated T Sensor fault
eTjout
lsolated T Sensor fault

Isolated Actuator fault

Figure 6.12 Block diagram of fault isolation
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6.7. Residual generation for closed-loop reactor model

In order to produce polymer of desired quality a very tight temperature control is essential
for the reactor. The controller should be able to keep the reactor temperature T within
an interval of +0.6K around the desired set-point under all operating conditions and
disturbances. Commonly used for a chemical reactor is a Pl cascade control structure.
The block diagram of the cascade Pl control and the parameters of the conventional
cascade PI controllers are shown in chapter (5). Figure 6.17 illustrates the fault detection
approach, an independent MLP neural network is implemented to generate the residuals
for the detection task. After training the network model with healthy random data, as
described in the previous section, all four faults are simulated to the reactor model. Then,
the fault detection is conducted with the network model using another set of 2000 samples
faulty square data. These faulty data were collected when the system is given a set of
designed square waves for monomer feed rate, fouling factor, ambient temperature and
impurity factor. To simulate the realistic situation in the practical applications, a smaller
amplitude signal is added to the fifth input of the system which is the controller output to
excite the dynamics in different frequencies. Again the independent is tested using back-
propagation training algorithm as described in previous training section. Figure 6.18,
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6.19, and 6.20 demonstrate the residuals after using a low pass filter. The first model
prediction error of jacket input temperature is shown in figure 6.18 and that for jacket
output temperature and reactor temperature are shown in figure 6.19 and figure 6.20,
respectively. It can be observed that the independent network model output is not
influenced by any type of fault, and all fault signal are over the thresholds setting. Here
in this section the thresholds are chosen as 0.1. The MAE for the jacket input temperature,
jacket output temperature and reactor temperature are 0.0033, 0.0031land 0.0053,

respectively.
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Figure 6.17 Structure of FD using an independent MLPNN for closed-loop system
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Figure 6.21 Filtered residual sum-squared model prediction errors

6.8. Fault isolation

2000

Here again similar to the previous section a RBFF neural network is implemented to

isolate faults and perform as a classifier . for more details see chaptre (4) and (5). The

classifier outpurs are displayed in Figures 6.22-6.25. it can be observed that all faults have

been isolated. The threshoulds here are chosen as 0.4 for all cases.
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Figure 6.22 Classifier output 1
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6.9. A comparison and discussion

In this work an independent MLP neural network is implemented to generate residuals
for detection task. In the independent model, the past model output is fed back as part of
the network input. Therefore, the model can operate independently from the process.
Obviously, the dependent model can predict the process output for one step ahead only,
while the independent model can predict the process output for multi-step ahead and can
also operate as a simulation model independent of the process. The simulation results
show that the independent network model output is not influenced by any type of fault.
Therefore, it can be clearly noticed that all faults have been clearly detected. Moreover,
no false alarms were thereby produced, so this verifies that the proposed scheme has
shown excellent diagnostic performance. Since the independent model does not use past
faulty measurements as inputs. It is observed that the neural model outputs did not track
the faulty system outputs. However, one of most important criteria in fault diagnosis is
the length of training time. The RBF network is implemented in chapter (4) and (5) for
fault diagnosis, and is used because of its advantages over the multi-layer perceptron
(MLP) of short training time. The comparison of two neural network architectures (MPL
and RBF) has shown that RBF configuration trained by (RLS) algorithm have several
advantages. The first one is greater efficiency in finding optimal weights for field strength
prediction in complex dynamic systems. The RBF configuration is less complex network
that results in faster convergence. The training algorithms (RLs and ROLS) that used for
training RBFNN in chapter (4) and(5) have proven to be efficient, which results in

significant faster computer time in comparison to backpropagation one.

6.10. Summary

An independent MLP neural network is implemented here to generate residuals for
detection task. And another RBF is applied for isolation task performing as a classifier.
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The fault diagnosis scheme is developed for a Chylla-Haase reactor under open-loop and
closed-loop control system. The simulation results confirmed that the simulated faults
have been clearly detected and isolated with zero false alarm rates. So this verifies that
the proposed scheme has shown excellent diagnostic performance. . The research
indicates the feasibility of the developed scheme applied to industrial systems, especially
chemical and biochemical processes, for which the mathematical model is difficult to

develop.
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Chapter 7
Extended Kalman Filter (EKF)

Based FD

A fault diagnosis (FD) scheme is developed in this section for an exothermic semi-batch
polymerization reactor. The scheme includes two parts: the first part is to generate
residual using an extended Kalman filter (EKF), and the second part is the decision
making to report fault using a statistical method. The reactor is a multivariable nonlinear
dynamic process and is subjected to several major disturbances. A mathematical model
is developed for the reactor with some model parameters identified from the input/output
data, and then the developed continuous model is discretized into a discrete model. Three
sensor faults and one actuator fault are simulated on the reactor and are detected using
the developed method. Moreover, several practical disturbances and system uncertainties,
such as significant changes in monomer feed rate, fouling factor, impurity factor and
ambient temperature, as well as measurement noise are also simulated. The FD simulation

results are presented to demonstrate the effectiveness of the proposed method.

7.1. Extended Kalman Filter (EKF)

In this section the filtering problem in nonlinear dynamic systems is addressed. The EKF
algorithm in discrete-time form is reviewed. Consider the following nonlinear system,

described by difference equation and the observation model with additive noise:

Xga=F (X, U)Wy (7.1)
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Y1 =h(X} ) +V, (7.2)

Where:

Xk State vector

Y Observation vector
W Process noise vector

Vi Measurement noise vector

f () Process nonlinear vector function

h(x)  Observation nonlinear vector function

The EKF uses a 2 step prediction-correction algorithm. The first step involves projecting
both the most recent state estimate and an estimate of the error covariance (from the
previous time period) forwards in time to compute a predicted (or a-priori) estimate of
the states at the current time. The second step involves correcting the predicted state
estimate calculated in the first step by incorporating the most recent process measurement
to generate an updated (or a-posteriori) state estimate. However, due to the non-linear
nature of the process being estimated the covariance prediction and update equations

cannot use f and h directly. Rather the Jacobean of f and h will be used.

Predict and update equations
Predict
Predict state
Xika =T (Xiegp1,Ux 1) (7.3)

Predict estimate covariance
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.
Pik-1=Fr-1 Pk Fra +Qx (7.4)

Update

Innovation or measurement residual

7k =Yk —h (X 1) (7.5)

Innovation or residual covariance

Sk =H k Pk|k—1 H-kr +Rk (76)
Optimal Kalman gain
K =Peks He Si* (7.7)
Update state estimate
Xk =X i1+ Ky 7k (7.8)
Update estimate covariance
P =(1 =Ky Hy) Py (7.9)

Where w, and v, are the process and measurement noise which assumed to be zero mean

Gaussian noise with covariance @, and R, , and they are given as:

Diagonal process noise covariance matrix

Qc=Ew; wy] (7.10)

Diagonal measurement noise covariance matrix

Ry=E[vy Vi1 (7.11)

Where F and H are the Jacobean matrixes that allowing the linearization of the reactor

model and they are given by the following equations:
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F is the Jacobean matrix of partial derivatives of f () with respect tox:

k
Fy =[af (x, %X} (7.12)
H is the Jacobean matrix of partial derivatives of h(x) with respect tox:
h(x,k
H, {6 (x, %X} (7.13)

Where x, is defined as [T, Tjin, Tjout] -

7.2. Discretization of reactor model

The Cyhlla-Haase reactor is described by a set of continuous time differential equations.
However, the extended Kalman filter requires a set of discrete equations. Hence for use
within an extended Kalman filter the reactor model equations must be discretized. The

simple and efficient approach for discretization is to use a backward Euler method.

Euler method is the simplest method for solving differential equations numerically; it’s
also called backward Euler method or explicit method. It was developed by truncate the

Tylor series at first term and neglecting the high order terms.

y'=1f(x,y) (7.14)

Y=Yk N f (X1, Y1) (7.15)

Whereh is a step size.

7.3. Online states and parameters estimations

An online estimation of the states and parameters with an EKF requires a simplified
reactor model, which is still accurate enough to obtain reliable estimation. In order to

obtain a more accurate model, all the empirical relations for the polymerization rate,
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jacket heat transfer area, and overall heat transfer coefficient are substituted. Then the
simplified reactor model equations are discretized using first order backward Euler
method described in (7.14) -(7.15) as following:

Material balance for monomer mass

de e in Qrea
=M (t) + e
dt w (©) AH

Where, Qrea:_AH*Rpa Rp:i*k*mM ,  k=kgexp (_E/RT)(klﬂ)kZ,

t=mes pi=cq exp(cy 1)#10°2(%0/T3)
( P+Mmy +Mc)

So, then

My ) = M k-g) +Ts x (M)

(1M -1y Ix[Ko €XP(=E / RT3 _qy ) *

T om ko (7.17)
-T. x _ -
S kl*CO exp( 1P (k-1) )*1002(a0/T(k_1) c3) ]
Mp (k-1) TMpk-1) +Mc
Material balance for polymer mass
dmp _ Qrea
dt AH
Mp (k) = Mp (k1) + Ts x[1* My gy Ix
[ko eXp(—E / RT(k_]_)) *
- - ko (7.18)
s kl *, exp( 1P (k-1) )*10c2(a0 IT(k-1)—¢3) ]
Mpm (k-1 + Mpk-1) +Mc

Energy balance for reactor temperature

aT 1

E_ZITCP,I[mm (t)CP,M (ramb -T )_UA(T _Tj)'(UA )Ioss (T _Tamb) +Qrea ]

Where,
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(r+TJ)2 Az(ml\/l _'_mP_'_rn\N)ﬂﬂ_B2

Twan =
Pv Pp A By

So, then

(_mli\r)l *Com Tk )”‘(_UAioss *T(k—l)) J

Tk :T(k—l) +TS X
(Mm k- C pm )+ (Mpr1)Cpp)+H My Cpw)

Myk-1) Mpk-1
(Mt Pty

my , P
+—0) —+B)* (T(ay)
T x PM Pp Pw B
S

1 1
+7
GMp(k-1) )*1002(a0/2T(k—1)+Tjin(k—1)+Tj0ut(k—1)/4—‘33)) hy
Mm k-1) TMpk-1) TMc

Ts X( L ]X[(mll\} *C p.M *Tamb )-F(UA|OSS *Tamb )]+

(My k-Cpm )+ (MpyCpp)+(My Cpw)

do exp(dq*cq exp(

Tgx 1 X
(Myk-Cpm )+ (MpyCpp)+(My Cpw)

M (k-1) . Mp (k1) My ) P, Bz)*(Tjin(k—l) )
Pm P pw B 2
1 1

+7
G1Mp(k-1) )*1002(60/2T(k—1)+Tjin(k—1)+Tjout(k—1)/4—03)) hy
My (k-1) TMpk-1) TMc

((

dg exp(d;*co exp(

1
X
(M kCpm )+ (MpyCpp)+H My Cpw)

Pm Pp pw B 2
1 1

+7
G Mp(k-1) )*1002(a0/2T(k—1)+Tjin(k—l)*Tjout(k—l)/4*03)) hy
My (k-1 TMpk-1) +Mc

Myeeny Mpk T iUt (k—
(« M (k 1)+ P(k 1)+mw) P+Bz)*( jout (k 1))

dq exp(d;*cq exp(

1 .
Tox x|(-aH*ixmy g
) (M kCpm)+(MpyCpp)+H My Cpw) D

(ko exp(—E/RT y_1))*| ky*Co exp(

ko
C1Mp(k-1) )*1002(30/T(k—1)—03) )
Mm (k-1 +Mpk-1 TMc

(7.19)
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Energy balance for jacket output temperatu

Tiout(e) = Tjout(kn) +

re

MMk-1) Mp-y My, P 1
(P TR T B * () *( )
Pm Pp Pw By Mg Cpe
T, x I I +
cim ﬂT
d exp(d; * ¢, exp( 1P (k-1) )*10C2(30/2T(k—1)+Tjin(k—1)+Tjout(k—1)/4—03)) f
I My k-1 + Mp-1) + Mc |
((mM(k—l) . Mp(k-1) +ml)£+ BZ)*(_Tjin(k—l))*( 1 )
Pm pp o Pw B 2 meCpc
T x 1 T
cim The
dg exp(dy * ¢y exp( 1P (k-1) )*1002(30/2T(k—1)+Tjin(k—l)+Tjout(k—1)/4‘03)) f
I My k-1 + Mpk-1) T Me(k-1) |
(mM(k—l) . Mp(k-1) +ml)£+ BZ)*(_Tjout(k—l))*( 1 )
Pm pp Pw B 2 me Cpc
T x 1 1
cim e
d exp(d; * cq exp( 1P (k-1) )*1002(30/2T(k—1)+Tjin(k—l)+Tjout(k—l)/4—03)) f
I My k-1) + Mpk-1) + Me(k-1) |
Ty x| () * (1 C Ty - 01) =Ty ¥| (——)* Ty
| Mc Cpe me Cpc
(7.19)
Energy balance for jacket input temperature
deout (t—92) _ Tjout _Tjout (t—ez)
dt 6,
Tioutkny =T iout (1—6 Tiqut 0=65)=Ts 11— Ko (C
T. ) —T.. - +hx jout(k-1) jout( 2) N jOUt( 2) jin(k-1) N p( )
jin(k) = "jin(k-1) 6, Tp Tp
(7.20)

The overall estimation vector of EKF is as following:
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=l mp T Tiin Tiourl" (7.21)

With the initial conditions:

>A<(0)=[m|v|(0) Mpy Tamb  Tamb Tamb]T (7.22)

Where F and H are the Jacobian matrixes that allowing the linearization of reactor

model, and the linearized system matrixes can be written as following:

Where F is the Jacobian matrix of partial derivatives of f (s) with respect to x:

(Fia(k) Fio(k) Fiak) Fiak) Fis(k)]
o (x(K) For(k) Foo(k) Fog(k) Foa(k) Fps(k)
F =) Faa(k) Fga(k) Fga(k) Fza(k) Fss(k)

Faa(k) Faa(k) Fas(k) Faa(k) Fys(k)
| Fsa(k) Fsa(k) Fsa(k) Fsa(k) Fss(k) ]

(7.23)

F11 is the partial derivative of the monomer mass equation with respect to m,, :

Fup =1+ T x (i)
(i+my (k1) *Ko exp(-E/ RT(k—l)))*

_ c,m _
Ts X kl*CO exp( 1P (k-1) )*1002(a0/T(k_1) c3)
Mm (k-1) TMpk-1) TMc

ko
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=1+T, x ()
(i*k0 exp(-E/ RT(k_l)))*

ko
‘ e e)(p( ClmP(k—l) )*1OC2(a0/T(k_1)—03) .
My (k-1) TMpk-1) TMc

(*mM(k _1) ¥Ko exp(—E /RT 1)))

ko-1
_ C{Mp(y_ _
Ts x | Ky #cq exp( 1P (k-1) )*1Oc2(a0/T(k_1) c3) .
Mp (k-1 TMpk-1 +Mc
o 102000/ T(k-2)=¢3) —C1Mp (k-1 .

2
(MM (k1) TMp(k-2) +Mc)
C1Mp (k-1

(M (k-1 TMpk-1) +Mc)

exp(

(7.24)

F| 2 is the partial derivative of the monomer mass equation with respect to mp -

Fio=
(l *Mpy (k-1) *ko eXp(-E / RT(k—l) ))*

ko-1

CyMpyp_ B
K, | kq*Cq exp( 17P(k-) 10230 Tk =¢3)
Mm (k-1) TMpk-1) TMc

10c2(a0/T(k py-c3) C1* (—C1Mp (k1)) *(Mm (k-1) +Mp (k 1)+mc)

(M g1y +Mp gy +Me )

kiC

C1Mp(k-1)
(MM k-1) *Mpk-1) +Mc )

exp(

(7.25)

F\ 3is the partial derivative of the monomer mass equation with respectto T :
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(l *Mpy (k-1) *ko eXp(—E / RT(k—l) )*(—E / RT(k—l) )2 )*

2
ky *Cq exp( C1Mp (k-1 )*1002(a0 IT(k-1)-¢3) .
M (k-1) +Mp(k-1) *Mc

(l *Mpy (k-1) *kO eXp(—E / RT(k—l) ))*

ko-1
—Tg x o C1Mp (k-1 )*1002(a0/T(k_1)—03) .
Mm (k-1) TMpk-1) TMc
iC 10220/ Tk-1)=ca) —C1Mp (k-1 .

(M (k-1) +Mpk-1) TMc)

_C2a0 5 *1002(8.0/T(k_1)—C3) *Ln(lO)
(Tk-1)—C3)
(7.26)
F1,4 is the partial derivative of the monomer mass equation with respect to T jout -
Fr4=0 (7.27)
F1,5 is the partial derivative of the monomer mass equation with respectto T jin®
Fi5=0 (7.28)

Next, the partial derivatives of the material balance polymer mass equation with respect

to all states will be derived.

F, 1 is the partial derivative of the polymer mass equation with respect to m,, :
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F, 2 is the partial derivative of the polymer mass equation with respect to m, :

F2,2 = 1+

(ko Xp(~E /RT 4 y) )

k2
K #Co exp( ClmP(k—l) )*lOCZ(aO IT(k-1)—C3) .
Mm (k-1 TMpk-1) TMc

(l*mM(k 1)*k0 exp( E/RT(k 1)))

ko-1
| kg exp( C1Mp (k-1 )*1002(a0/T(k_1)—C3) )
Mp (k-1 TMpk-1) +Mc
o 10%20 T3, —C1Mp (k-1 .

2
(MM k1) *Mp (k1) TMc )
C1Mpk-1)

(M (k1) +Mpk-1) *Mc)

exp(

(i+my (k1) *Ko eXp(-E/ RT(k—l)))*

ko-1

Mm (k-1) TMpk-1) +*Mc
10c2(a0/T(k -3, Cy*(=C1Mp(i—1) ) * (M1 (k1) +Mp(k 1)+mc)

(M g1y +Mp gy +Me )

C{Mp(y_ B
kZ(kl*CO exp( 1P (k-1) )*10c2(a0/T(k_1) 3)

kiC

C1Mp(k-1)
(Mm k-1) +Mpk-1) +Mc )

exp(

F, 3is the partial derivative of the polymer mass equation with respectto T :
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Fos =

F2,4 is the partial derivative of the polymer mass equation with respect to T jout -

Foa=0

F,5is the partial derivative of the polymer mass equation with respect to T jin®:

F2’5 = 0

Next, the partial derivatives of the energy balance for reactor temperature equation with

(l *Mp (k-1) *ko eXp(—E / RT(k—l) )*(—E / RT(k—l) )2 )*

My (-1) *Ko exp(-E/ RT(k—l)))*

cim IT ’
k]_*CO exp( 17P(k-1) )*1002(30 (k—l)_c?;)J N

Mm (k-1 TMpk-1) TMc

C1Mp(k-1) ¢ (ag / T(k_1)-C )]kzl

)10 (k-1)-C3 .

My (k-1) +Mpk-1) +Mc

,C102 (a0/T(k-1)¢3) , —C1Mp(k-1) .
(MM k1) *Mp (k1) *Mc )

*1002(ao/T(k—1)—03) +Ln(10)

kZ(kl *Co exp(

—C23
(Toeny —€3)°

respect to all states will be derived.

Fgl]_ is the partial derivative of the reactor temperature equation with respect to m, :

Let F33=a+b+c , where
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(M k-C pm )+ (Mp1yC pp ) +(My C o )

(Cp,M *Tamb *mi{/} )*{ “Com J}L

L _C M
(€ p #Tge gl )*( : ]}

(Mm k-yCpm)+(Mpk-1yCp.p)+(My Cpw ))°

e
(_T(k—l) *UAgss )*[ P D+

(M 2C pm )+ (Mp(1yC pp ) +(My Cpw )

(Vs o
amb 0SS
(M k- C pm )+ (Mp1yC pp ) +(My C o )

(7.34)

(ko eXp(~E / RT e p) )

cim K2 *
ky#co oxp(———— Y )*10°2‘a°”(k—1)‘°3)]

My (k-1) TMpk-1) +Mc

((mM k-1Cpm)T(Mp-nyCpp)+(MyCpw )X—AH *i)+(AH *My k- C p.m )
(M) C )+ (Mp ) Cp ) +(My C )

(AH *i*mM(k_l)) .
(M k= Cp M )+ (Mp2Cpp)+(My C )

ko-1
CiMpyy,_ _
Tox| | ko ©XD(~E / RT gy ¥y ky ¥ eXp( 1P yx10200 Ty ea) |y
MM (k-1) TMpk-1) +Mc

T _ CiMpy_ —CiMpy_
ky *Co *1002(30 (k) CB)*EXP( . * —H 2)
M k-9 TMpk-0 FMe - (Mpy -1 TMp(k—1) +Mc)

(7.35)

For more simplicity the reactor temperature equation is more simplified as following:
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C1Mp (k-1 ) %102 (@0 2T(c=1) +Tjin (k1) *Tjout (k1) /4-3) )

h =dg exp(d; *cq exp(
MM (k-1) +Mpk-1) +Mc

P+m P#m i . ]
(( M (k-1) n P(k-1) + I:)*m\N )+Bz)*(—T 1 +Tj|n(k—1/+Tjout(k—l) )
By *pwm Bi*pp  Blipy A 2 2

((Mm k- Cpm )+ MpyCpp)+(My Cpw )

B =

T +Tjin(k—l%_'_Tjout(k—l%j*(PBlpV ZJ*
($1PM)
[ 1 J* (Mmk-Cp.m )+ (Mpr)Cpp)+(My Cpw )

((Mp k)€ p,m )+ (Mp1yCpp)+(My Cp )?

(h)=* (dlco 10°2(@0/ 2T(k-1)+Tjin (k1) +T jout (k-1) /4-€3) )*

_ Cyx
)2 1%Mp
Tox| (7 exp[ %mm(k—l)cp,m)+(mP(k—1)Cp,P)+(mWCp'W ))j*

(My k-Cpm) +MpryCpp)+(MyCphy )

(7.36)

F3,2 is the partial derivative of the reactor temperature equation with respect to mp, :

Let F3, =a+b+cC, where
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(ko eXp(~E /RTyy) )

(M k-2yC pm )+ (Mp1yC pp ) +(My C o )

(M2 Cpm )+ (Mp(1yC pp)+H(My Cpw )

—C
(_T(k—l) *UAloss )*[ PP ]}'

My -2y C pm )+ (Mp1)C pp )+ My Cpw )

(Tam*Uhes ) o
o > ((mM(k—l)Cp,M)+(mP(k—1)Cp,P)+(mWCp,W))2

cym 2

_ _ *

ky %Co exp( 1"P(k-1) ) *1002(30/T(k—1) c3)
Mm (k-1) tMpk-1) *Mc

(aH *i*mM(k—l)Cp,P)
My 1) Cpm ) H(MpyCpp ) H(My C oy ))2

—(AH *i*mM(k_l)) .
(Mmk-0Cpm)+Mpk-1Cpp)+(My Cpw))

ko-1

CyMp_ B
ko Xp(—E / RT 5 _g))#ky| k;#co exp( 17P(k-D) )*1002(30/T(k—1) ¢3)
My (k-1 TMp(k-1) TMc

C1Mp(k-1)

K #c#10°2%0 Tk ~c3) e i}
Mm (k-1) tMpk-1) *Mc

C1 (M (k-1) +Mp k1) *Mc ) —C1Mp k1)

2
(My (k1) +Mp ) *Mc)
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PB
. Tiin(k 1/ jout (k 1/}( 1p/ 2 J
1PM
T X[ 1 J* ((My k-C pm )+ (Mp)Cpp)+(My C pw))
S

((Mp k1€ p,m )+ (Mp1yCpp)+(My Cpwy )?

(h) " (dlco 10230/ 2T(k-1) +Tjin (k-1) +T jout (k1) /4-C3) )*
Crxemp
g x| (0) 2| exp ") :
(Mymk-)Cpm) + (MpyCpp) +(MyCpw))
{ C1(My (k-1 + Mp(k-1) + M) = Cremp g
(

My k-Cpm )+ (MpryCpp) +(MyCpw))?

(7.39)

F3 3is the partial derivative of the reactor temperature equation with respect to T :
Let F33=a+b+c+d
To simplify the equation we let:

C{Mpy_ . : _
h = do exp(d; * ¢ exp( 1P (k-1) )*1002(60/2T(k—1)+TJm(k—1)+TJout(k—1)/4 03))
Mm (k-1 T Mpk-1) T Mc

P*myk-1)  P*Mp-y)  Pxm

(o M TR T gy
B *pum By *pp Bl*Pw

(MM k-2 C pm )+ (MpyCpp)+(My C i ))

a =

p={(my, k=0)Cpm)HMpayCpp)+(My Cpw ))
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— | kg * ¢y exp( C1MP (k1) %102 (20 T(k-1)~23)
Mm k-1) + Mpk-1) +Mc

A=AH *i*k *Mp (k1) exp( )

RT(k -1)

So, from the discretised reactor temperature equation we can find F3 3 as following:

[ H)*(= m *prM )}_{ﬂ*u'?oss ]_,_
7

ﬂ.*(a)*Lnlo*( Cap /(T(k_1—C3) )*kz(co)kz_l)-F((w)k2 *A*(~ER/(RT(y ) )]

y7;
(7.40)
1
b= a*(-T-y))
hten? (T
1
= a) +
hL+hit
CyMpyy_
dy*cq exp( 1Mp(k-1) .
mM(k_1)+mp(k_l)+mC
(h—2 *h)* 1002(a0/2T(k—1)+Tjin(k—1)+Tjout(k_1)/4—03) + L0
-8cyay
( ) (2T (k-1 +Tjink-0) +T jout (k-1) —403)2
a*(=Tk-y))
. h™2+h;?
(7.41)
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Tiout (k—
C= 1 * a*(gfyghjl)
htehit 2

C1Mp(k-1) -

dq *cq exp(

MM (k-1) tMp(k-1) tMc
(-2 <h | 10262020 Tiin(k-1 Tiout k- 4-63) | 10,

—8C2&0
2T +Tiinck) + T iout (k1) —4¢3) 2
Tjout(k—l) ( (k-12) jin(k-1) jout(k-1) 3)
a*( ) [*
h™2+h;?
(7.42)
T..
d= * a*(AEEQ:QJ
ht+hit 2
L
htehit
dy*cq exp( “MP(k-1) *
MM (k-1) TMpk-1) TMc
(h -2 *h)* 10207 2T(k=1)+Tjin (k-1) +Tjout (k1) 14-63) .| 114
—8023.0
2T +T ik + T iout (k1) —4C3)>
a*(Tjin(k—l)) ) (2T(k-1) +Tjin(k-1) + T jout (k-1) —4C3)
2 h™2+h;?
(7.43)

F3 4is the partial derivative of the reactor temperature equation with respect to T jout -

Let F34 =a+b+c , where
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a=| 1 | a*(M)
ht+hit 2

1
) [hl+h1}*(a*(1/2)) n

(72 on}

C1Mp (k-1

dy*co exp(

MM (k-1) *MP(k-1) *Mc
1062(ao/ 2T(k-1)*Tjin (k-1) T jout (k-1) /4-€3) Ln10#

—4Czao

*

(2T k1) +Tjin(k1) *+ T jout (k_1) ~4¢3)*

[a*(TjoutZ(k—l) )J*

po| 1 |uf guinGD
ht+hit 2
1 .
ht+hit

-2 =2
h +h]c

>J

d1 *cq exp(

C1Mp(k-1)

MM (k-1) +Mp(k-1) +Mc

*

106230/ 2T(k-1) +Tjin(k-1) +Tjout (k1) 14-3) , | 11,
—-4cyag

(2T () +Tjin(k-1) * T jout k1) ~4¢3)°

h=2+h;2
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1
€= *la*(=T(k-p)
_ 1 .
ht+hit
cim _
dy*cq exp( 1Mp (k-1 .

MM (k-1) *Mp(k-1) +Mc
10°2(@0/ 2T(k-2) +Tjin (k=) *Tjout (k1) /4-63) , | 1104

—4cyag

(2T () + T jin(k-1) * T jout k1) ~4¢3)°

2 -2
h +hf

(7.46)

F35is the partial derivative of the reactor temperature equation with respect to Tjin

Let F3g5 =a+b+c , where

a=| 1 *(a*(-rji";k‘l))J

=|| = [*a*1/2) |+

(h‘z*h)*

C1Mp (k-1)

MM (k-1) *Mp(k-1) +Mc
10°2(@0/ 2T(k-2) +Tjin (k=) *Tjout (k1) /4-83) , | 1104

—4cyag

*

d1 *cq exp(

(2T (1) +Tjincka) *+ T jout k1) ~4¢3)

T jin (k=
BeS

-2, -2
h +hf
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- 1 . a*(Tjout(k—l))
htehit ?

1, -1
h +hf

C1Mp (k-1

Mpm (k-1) tMpk-1) tMc
(h—z *h)* 10230/ 2T(k=1)+Tjin (k-1) +Tjout (k1) 14-3) | 11,

*

dq*cq exp(

—4c2a0
2T ety + T jin(en) * T jout (k1) —4C3) 2
[a*(Tjout(k—l))J* (2T (k=) +Tjin(k-1) + T jout (k-1) —4€3)
2 h2+h;?
(7.48)
1
c= #la*(=Tk-))
htih? Ty
1
= *(0) +
htih?
C1Mp (K
d, ey exp( 1Mp (k-1) .
MM (k-1) TMpk-1) TMc
(h 2 *h)* 102307 2T(k-1)+Tjin (k-1) +Tjout (k1) 14-63) | 11,
—4C23.0
2Ty +Tjink1) + T jout (k1) —4C3)
a*(Tjin(k—l)) . ( (k-1) T jin(k-1) T jout(k-1) 3)
2 h~2+h2
(7.49)

Now we will find F41is the partial derivative of the jacket output temperature equation

with respect to m,, :

Let F4; =a+b+c , where
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P¥My .y P*Mpg gy P _
( —— - ) +B5) ( )¥(mcCpc)
n= B ow By *pp By *pw &= B *om ,
(McCpc) , (mccplC)Z
w=( C1Mp (k1)

Mm (k-1) *Mpk-1) +*Mc

. [hl] 0+ Ter)

endt

) {rﬁthfl}(fﬂ(kl)) +

d;*co exp(l//)*loCZ(aO/2T(k—1)+Tjin(k_1)+Tjout(k_1) 1a-ca)
(h2 e eMeg
2
(mM (k-1) +mp(k_1) +mC)
h=2+h?

(77 * (T(k—l) ))*

(7.50)

B I S N S VS )
= 1 x| £x _Tjout(k—l)
_ [hl‘l'hfl] [5 5 )j]+

d;*co eXp(w)*lOCZ(aO/ 2T(k-1)*Tjin (k- *Tjout (k-1) /4-¢3)

(h_z *h)* ~C1Mp k-1
2
: h=2+h;?
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(7.51)

1 ~Tjin(k-1)
C= #pr(—— )
[h1+hf1} [ 2

_ 1| g*(_Tjin(k—l))
h™+hi 2
I ( )*dl*co exp(l//)*locz(ao/2T(k—1)+Tjin(k—1)+Tjout(k—1)/4—C3) N 1
h=2xh —C1Mpk-1)

n*(_Tjin(k—l)) ) (mM(k—1)+mP(k—1)+mC)2

2 h=2+h7?
L |
(7.52)

Now we will find Fyis the partial derivative of the jacket output temperature equation
with respect to mp :

Let Fyo =a+b+cC, where

a= (hl} * (77*(T(k—1)))

_1+h;1

1
B [h1+hf1]”‘(€f*T(k1))]+

d; *c, eXp(W)*:LOCZ(aO/2T(k—1)+Tjin(k_1)+Tjout(k_1) l4-c3)
(b2 h | —Cumegesy +1 (M -y +Meey +Mc)
(M (k1) +Mp - +Mc)?
h=2+h7?

(77 *(Tikon ))*

(7.53)
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~ 1 o —Tjout(k-1)
b[h%hﬁ} [77 (72 )J
~ 1., —Tjout (k-1)

dy*Co exp(y
(h 2 *h)* —C1Mp k-1)C1 (M (k-1) TMp(k-1) +Mc)

)*1Oc2(ao/2T (k=) *Tijin (k=1)+T jout (k1) /4-3)

nﬂ—Tmmw45 . (Mt (k-1 +Mp(x-9 +Mc )’
2 h=2+h;?

(7.54)

1 ~Tjin(k-1)
C= #pr(—— )
[h1+hﬁJ [ 2

c2(a0/2T(k-1)+Tjin (k1) *T jout (k-1) /4-C3) ,

d;*cq exp(w)*10
(h‘2 *h)* —C1Mp (k1) C1 (M (k-1) +Mp k1) TMc )
U*(_Tjin(k_l)) . (mM(k—l)‘HnP(k—l)"rmc)2
2 h™2+h;?

(7.55)

Now we will find Fy4 3is the partial derivative of the jacket output temperature equation

with respect toT :

Let Fy3=a+b+c, where
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(h 2 *h)* -8c,ag

dl*co EXp(l//)*]_OCZ(aO/ZT(k_l)+Tjin(k_l)+TjOUt(k_l) /4—c3) «Lnl0*

(ZT(kfl) +Tjin (k-1) +Tjout (k-1) —4c3) 2

h=+ht?

(7.56)

d,*c, exp(z//)*10C2(a0/ 2T(k-1)*+Tjin (k-1)*T jout (k1) / 4-¢3) «Ln10* 1
(h -2 *h}K —802a0
2
(2T gy + T jin (k1) + T jout (k1) —4C3)

h™+hi?

(7.57)
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(72}

dl*Co EXp(l//)*locZ (a0 /2T(k-1)+T jin (k-1)+T jout (k—1) / 4-¢3) +Lnl0
—8¢,ag

(ZT(k—l) +Tjin (k-1) +Tjout (k-1) —4c3) 2

h=2 +hp?

(7.58)

Now we will find Fy44is the partial derivative of the jacket output temperature equation

with respect to T oy

Let F4’4=a+b+C+d ’Where

1
a{h—uhﬁ}*("*(

2

(h—z*h)* d; *Co eXp(y/

>J

)*locz(ao 12T(k-1)+Tjin (k1) *T jout (k1) / 4-¢3) +Lnl0%
—402 ap

(2Tt +Tjingiey * T jout ey ~403)°

h=2+h7?

(7.59)

133



1 . n*(_Tjin(k—l))
h~+h¢t 2

i d; *c, exp(l//)*locz(ao/2T(k—1)+Tjin(k—1)+Tjout(k—1)/4—C3) «Lnl0*

(h2n): Zicya
*(_Tjin(kfl) ) | (ZT(kfl) +Tjink-1) T jout (k-1 —403)2
h=2 +hy?

(7.60)

1
= —=—— [*(0) |+
{h‘1+hf‘1] ( )]
I dy *cg eXp(W)*locZ(aO/2T(k—1)+Tjin(k—1)+Tjout(k—1)/4—‘33) «Ln10% ]
(h -2 *h)* —4C2a0
2T +Tiinckn + T iout (k1) —4C3) 2
(ﬂ*(T(k_l)))* (2T -1y + Tjink-1) Joutz(k 1) : 3)
h™ +hy
(7.61)
a—f 1 (7.62)
mC*CnC

Now we will find F4sis the partial derivative of the jacket output temperature equation

with respect to T iy :

Let H5=a+b+c+d,mmae
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-T..
77*( jin(k-1) )J*

o

dy*o exp()*10

—4c,ag

€2(a0/ 2T(k-1) +Tjin (k-1 *Tjout (k-1 463) .| 1104

2
(2T -1 T jink-1) + T jout (k-1) —4C3)

2

! | % (
ht+hit

~Tjout(k-1)

2

>J

e

h-

d;*co exp(y)*10

€2(a0/ 2T(k-1) *Tjin(k-1) T jout (k-1)4-63) , | 11 4

—4c,a,

(ZT(kfl) +Tjin(k71) +Tj0ut(k71) —403)2

(7.63)
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dy *c, exp(y/)*locZ(aO/ 2T(k-1)*Tjin (k-1) * T jout (k1) /4-C3) Ln10*
(h—2 *h)* —4c,a,
(2T k1) + Tjingk-1) + T jout (c_1) —4C3)
h=2+h?

(7.65)

d=

Mc (T jin(k=1) T jin (k_el)/ Hlj 7.6

Mc

Now we will find Fs1is the partial derivative of the jacket input temperature equation
with respect tom,, :

F51=0 (7.67)

Now we will find Fsis the partial derivative of the jacket input temperature equation

with respect to m, :
F5,=0 (7.68)

Now we will find Fs 3is the partial derivative of the jacket input temperature equation

with respect toT :

Fs3=0 (7.69)
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Now we will find Fs4is the partial derivative of the jacket input temperature equation

with respect to T joy:

T iouten T o (k=0
o :[1J_ (1+1J>{ jout(k—1) Jout( ZJ (7.70)
02 92 Tp 02

Now we will find Fssis the partial derivative of the jacket input temperature equation

with respect to T jin :

F5,5=—( 1 j (7.71)

Tp

Next step is to find the Jacobian matrix of partial derivatives of h(e) with respect to x:

sz[ah(x,k%x}[l 111 1] (7.72)

In this work, the uncertainties of the system are modelled as process noise in the

covariance matrix of the EKF as following:
Qc =107 xdiag((0 0 3 3 3)) (7.73)

The diagonal covariance matrix of the measurement noise is set with standard deviation

o(y)=0.05k and is given as:

R, =10 xdiag((5 5 5)) (7.74)
The state covariance matrix is set as:

P, =107" xdiag(1 1 1 1 1)) (7.75)
Moreover, the measurement vector is selected as:
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YEKF =[m|v| Mp T Tiout + Tiin (7.76)

The choice of these covariance matrixes will affect the performance and the convergence
of the EKF. The tuning of the EKF involves an iterative modification of the covariance
in order to yield the best estimates of the states. Changing the covariance matrices Q and
R affects both transient and steady state operation of the filter. After implementing the

EKF and in order to get a better estimation of the states, the initial values of @, and R,
are selected randomly and tuned accordingly. From experience, the values of R, matrix

elements are higher than the values of @, matrix elements.

Figures (7.1)-(7.3) show the estimated value of the reactor temperature, jacket output
temperature and jacket input temperature compared to the measured nominal values.
These results obtained from simulation of EKF estimation. It can be clearly seen that the

EKF achieves a good estimates of these variables under normal nominal mode.
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Figure 7.1 Reactor temperature estimation using EKF
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Figure 7.3 Jacket input temperature estimation using EKF

7.4. Fault Detection

The faulty data is obtained by simulating different faults in the proposed reactor. These
faults are classified as three sensor faults and one actuator fault. The sensor faults are

jacket input temperature sensor fault, jacket output temperature sensor fault, and reactor
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temperature sensor fault, and the actuator fault is the inlet temperature. These faults are
simulated as described in previous chapters.

Figure 7.4 demonstrates the fault detection method. An on-line implementation of the
EKF is presented. During normal behaviour of the process and after EKF convergence,
the innovation fluctuation is a small and a white noise sequence of a zero mean. When
any fault occurs, the innovation will be influenced by the fault type. In addition, an on
line implementation of the standardized hypotheses statistical test is presented in order to

distinguish normal behaviour of the process from an abnormal behaviour.

Output
| PROCESS
Input
NOMINAL
MODEL
(EKF)
Y STATISTICAL Decision
> HYPOTHESE =~ ——
TEST

Figure 7.4 FD scheme by standardized hypotheses statistical test

7.5. Fault detection via hypothesis testing

After the residual is generated by the EKF estimation, the decision making is made by a

statistical method called hypothesis testing.
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7.5.1. Generation of innovation sequence
The innovation sequence is the difference between the measured output and estimated

output and is defined as:

7 =Yg —h=* (Xk|k—1) (7.77)
7.5.2. Statistics of the innovation sequence
In the normal healthy operating conditions, the innovation sequence i is a zero mean

Gaussian white noise sequence with covariance (Mehra and Peschon, 1971).

T
Sk = Hk Pk|k—l Hk + Rk (778)

7.5.3. Hypothesis testing

The standardized innovation statistical parameters (mean and variance) that obtained
under an abnormal behaviour will be compared on-line with those obtained under normal
behaviour. So, two hypotheses are defined; hypothesis H, refers to the innovation
statistics in the normal mode, and hypothesis H, refers to the innovation in an abnormal
mode. Mehra and Peschon (1971) described that it’s more appropriate to consider the

standardized innovation sequence for the hypothesis testing purposes. This sequence is

defined as
Tk :(Hk Peks Hi' +Re )_0'5 (1 ~n#(Xp 1) (7.79)
M = (Hk Pek Hi' +Ry )_0'5 7, (7.80)
Then
Ebr; 1 5 (7.81)

Where | denotes the identity matrix.

141



In the normal operating conditions, 7, has a zero mean and a unit variance. So, when any
fault occurs, the standardized innovation sequence », will depart from zero mean. In this
study, the hypothesis testing on mean is applied. This test checks whether the observed
standardized sequence has a zero mean or not. The mean of the standardized innovation
sequence is estimated as

_1
Nk

M=

Mk (7.82)

=)

Where N is the sample size and 77 refers to the true mean. Under the null hypothesis

Ho .77 hasa Gaussian distribution with zero mean and covariance

SRS (7.83)
Therefore at any given significance level of acceptance (hypothesis H, ), the null

hypothesis H , is rejected whenever

5196+

7 (7.84)

JN
7.6. Simulating Faults

In this study, the faulty data is obtained by simulating different faults in the proposed
reactor. The classification and structure of faults are done in the same patter in previous

chapters 4-6.

7.7. Performances and discussion

Before applying the fault detection method, the knowledge model parameters and the

initial state vector are correctly initialized. The EKF algorithm is tuned using process
noise covariance matrix Q , and measurement noise covariance matrix R by hand until

obtaining a compromise between quick detection and as small as possible of false alarm
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rate. The knowledge of these two covariance matrices is the mean key to adjust the EKF.
Figures 7.5 to7.7 demonstrate the evolution of the standardized hypothesis statistical test
for the four simulated faults. It can be clearly noticed that all faults have been clearly
detected. Moreover, no false alarms are thereby produced, so this verifies that the
proposed scheme has shown excellent diagnostic performance. Figures 7.5 to 7.7 show
two different regions, which are fault region and confidence region. The fault region is

defined as at any given significance level of acceptance (hypothesis H, ), the null

hypothesis H , is rejected wheneverlﬁ [>a. Where « is the threshold and is selected as

5% . In addition, it should be pointed out from Figure 7.7 that the actuator fault (inlet
temperature fault) occurs at 2800 s, and is detected using statistical test with200s. The

dynamic error is defined as an initial value effects.
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7.8. Summary

In this study, a fault detection scheme based on standardized hypothesis of statistical tests
(Mehra test) generated by extended kalman filter (EKF) was developed. The proposed
method is applied for online fault detection in exothermic semi-batch polymerization
reactor. The simulation results show that all faults were clearly detected. Moreover, no
false alarms are thereby produced, so this verifies that the proposed scheme has shown

excellent detection performance. In order to implement the proposed method, the EKF
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algorithm was tuned using process noise covariance matrix Q , and measurement noise

covariance matrix R by hand until obtaining a compromise between quick detection and
as small as possible of false alarms. The knowledge of these two covariance matrices was
the mean key to adjust the EKF. Moreover, the ability of the EKF to estimate both the
states and parameters was the main key for applying the proposed method successfully.
However, the implementation of the proposed method requires a prior knowledge of the
model, and the linearization technique for the nonlinear model is a challenging task in

order to implement EKF.
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Chapter 8

Nonlinear Observer Based FD

In the recent engineering issues, the task of the detection and diagnosis of the system
failures are being intensively more significant. This section presents a robust fault
diagnosis scheme for abrupt and incipient faults in nonlinear dynamic system. A general
framework is developed for model-based fault detection and diagnosis using on-line
approximators and adaptation/learning schemes. In this framework, neural network
models constitute an important class of on-line approximators. The changes in the system
dynamics due to fault are modelled as nonlinear functions of the state, while the time
profile of the fault is assumed to be exponentially developing. The changes in the system
dynamics are monitored by an on-line approximation model, which is used for detecting
the failures. A systematic procedure for constructing nonlinear estimation algorithm is
developed, and a stable learning scheme is derived using Lyapunov theory. Simulation
studies are used to illustrate the results and to show the effectiveness of the fault diagnosis

methodology.

8.1. Modelling A non-adiabatic Continues Stirred Tank Reactor

A common chemical system encountered in the process industry is the continuously
stirred tank reactor (CSTR). Here we will study a jacketed non-adiabatic tank reactor, the
vessel is assumed to be perfectly mixed, and a single first-order exothermic and
irreversible reaction, A—»B take place. A schematic diagram of the vessel and the
surrounding cooling jacket is shown in figure 8.1. It can be noticed that in the reality the

coolant flow is normally surrounding whole jacket. A model of the CSTR is required for
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more advanced control approaches. The inlet stream of reagent A is fed into the tank
(the volumeV in the reactor tank is kept constant). The control strategy requires that the
jacket temperature u,(t) is manipulated in order to keep the concentration of reagent A
y, (t) at the desired level, in spite of disturbances arising from the inlet feed stream
concentration and temperature ( inputsu, (t)and u,(t) ). As the temperature in the tank

y, (t) can vary significantly during operation of the reactor.

U2(t): inlet feed stream temperature
U1(t): concentration of A in inlet feed stream

Y2(t): Reactor temperature

U3(t): Jacket coolant temperature
Y1(t): concentration of A in reactor

Figure 8.1 Schematic diagram of CSTR ( Zhai and Ma,2012).

The CSTR system is modelled using basic accounting and energy conservation principles.

The change of the concentration of reagent A in the vessel per time unit can be modelled

as.

dCA L =FX) *(CAT ()-CA®) -r (1) (8.1)
Where the first term expresses concentration changes due to differences between the
concentration of reagent A in the inlet stream and in the vessel, and the second term
expresses concentration changes that occurs due to the chemical reaction in the vessel.

The reaction rate per unit volume is described by Arrhenius rate law:
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r(t):k*exp[—%R*T (t)))*CA(t) (8.2)

Which states that the rate of chemical reaction increases exponentially with the absolute
temperature. k Is here an unknown non-thermal constant, E is the activation energy, R

Boltzmann’s ideal gas constant and T (t)=y,(t) the temperature in the reactor. Similarly,

using the energy balance principle (assuming constant volume in the reactor), the

temperature change per time unit in the reactor can be modelled as:

O =P T O-TO M e TO-C A o TO-TI 0 @9

Where the first and third terms describe changes due to that the feed stream temperature

Tf (t) and the jacket coolant temperatureT; (t) differ from the reactor temperature. The

second term is the influence on the reactor temperature caused by the chemical reaction

in the vessel. In this equation, H is a heat reaction parameter, cp a heat capacity term,

rho a density term, U an overall transfer coefficient and A the area for the heat
exchange (coolant/vessel area) (Zhai and Ma, 2012).

The CSTR has three input signals:

u; (t)=CAf (t) Concentration of Ain inlet feed stream [kg mol m®]
U, (t)=Tf (t) Inlet feed stream temperature [K]
U(t)=T;(t) Jacket coolant temperature [K]

And two output signals:

y; (t)=CA(t) Concentration of A in reactor tank [kg mol m®]

Yy, (t)=T (t) Reactor temperature [K]
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After lumping together some of the original parameters we end up with eight different

model parameters as given follows:

Table 8.1 parameter values

F Volume flow rate 1 [m3/h]

\Y/ Volume in reactor 1 [m3]

k Non-thermal factor 3 5xe’ [L/h]

E Activation energy 11850 [kcal/kgmol]

R Boltzmann’s gas constant 1.98589 [kcal /(kgmol*K)]
H Heat of the reaction —5960 [kcal /kgmol]
HD=cp=rho | Heat capacity time density 480 [keal /(m3 +K)]

HA=U *A Overall heat times tank area 145 [kcal /(K *h)]

10.04 Input #1: Concentration of A in inlet feed stream

F 19 T T
10.02 KL//( =
10 — -
9.98 — -
£ r r r c
o 5 10 15 20

Input #2: Inlet feed stream temperature
299 r

T T T T -]
298 - k -

r r r r

Input #3: Jacket coolant temperature

WW &) MW .

Tlme (hours)

Figure 8.2 Inputs of CSTR
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Figure 8.3 Outputs of CSTR

8.2. Fault diagnosis scheme

8.2.1. Representation of Failures

The class of dynamical systems under study is described by

X(t) = S(x(t) ,u(®) + B -T) £ (x(t) ,u(t)) (8.4)
Where xeR" is the state vector,ueR™ is the input vector, &, f:R"*R™ ->R™ are smooth
vector fields, T>0 is the beginning time of the failure, and g is a square n*n matrix

function representing the time profiles of failures. We consider incipient and abrupt faults

that are modelled by

PA-T)=diag(f(t-T), So(t=T), -, By (t=T)) (8.5)
Where
|0 if 7<0 i_12
Fi (T)_{l—e_p” if ;>0 o (86)

And p; >0 is unknown constant that represent the rate at which the failure in state x;

evolves. For large value of p;, the time profile function ; approaches a step function ,
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which models abrupt failures. The objective is to design a fault diagnosis scheme that
processes input and state information to determine the presence and characteristics of any
incipient and abrupt faults. Since this task does not address fault accommodation, below
we make the standard assumption that the control input v and the state vector xremain
bounded prior and after the occurrence of a fault:

The “healthy” system in the absence of any faults is described by

xh (©)=£(xh 1), O)=E" (h©).u () +¢ (xh O, (1) ®.7)
Where &*represents the nominal dynamics (known) and & characterizes any discrepancy

between the actual plant and nominal model that may occur due to modelling errors. It is
well known in the fault diagnosis literature that the presence of modelling errors, in
general, increases the probability of false alarms. During the last few years the designs of
so-called robust fault diagnosis schemes have resulted in a variety of tools for dealing
with such modelling uncertainties. An intuitive approach is to use a small threshold in the
residual error to account for modelling uncertainties; in this case fault is declared if the
residual error is greater than the selected threshold. Another approach attempts to
decouple the effects of faults and modelling errors as a way of improving robustness. In
this work we first consider the ideal case where £=0 and then the case Where|E(x,u)|g§0
for all (x,u)e(x*u), where &, is a known constant. In general, the design and analysis of
robust diagnosis architectures based on nonlinear modelling techniques requires further
investigation.

In many system applications there are more state variables than sensors. Therefore, the
availability for measurement of the full state vector is a critical and limiting assumption.
The design and analysis of fault diagnosis schemes using OLA approach for input-output

systems becomes considerably more complex. The separation principle which for linear
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systems allows combination of state-feedback controllers with state observers does not
hold for nonlinear systems.

8.2.2. Nonlinear Estimator

The failure representation described by (8.4) provides a framework for characterizing a
wide class of faults. Demetriou and Polycarpou (1998), Polycarpou and Helmicki (1995)
In general, the magnitude of faults in practical applications depends on the state of the
system as well as the system input. The nonlinear fault representation (8.4) captures these

dependencies of f on the state x and input u, furthermore, since the above nonlinear

fault representation is function of the control input u, the fault detection scheme works
even in the case where the feedback control compensates the effect of small incipient
faults on the system output. The price that one has to pay for the potential to model a
larger class of failures is the need to approximate unknown nonlinear functions, which
leads to nonlinear fault diagnosis techniques. This can be realized by utilization of
parameterized OLA structure with adjustable parameters. Such an adaptive nonlinear

estimator is given by

=W (5)[2] (8.8)
Z = &(x,u;0) (8.9)
6=n (x,u,%:0) (8.10)

Where W (s) is n=nstable filter matrix, (8.8) and (8.9) represent an observer-based
nonlinear estimation scheme, and (8.10) is the adaptive law of the adjustable parameters.

Next we proceed to the design of W (s) ,¢ andn.
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Now we consider the construction of a nonlinear estimator for modelling deviation in
system dynamics due to failure. Based on the system representation described by (1), we

choose an estimated model of the form

X=AR ()+&" (X O, O+ F(x(©),u ©):0 O)-AX () (8.11)
Where xeR" is the estimated state vector, f represents an online approximation (OLA)
model, § is a vector of adjustable parameters or weights, and A is a constant square

matrix of dimensionn#n, we choose eigenvalues lie in the left-half complex, A is a

stability matrix. The initial value of the estimated parameter vector for the estimated
model (8.11) is 6(0)=8° chosen such that f (x,u;8)=0 for all (x,u), corresponding to the
case of no failure (healthy condition), while the initial value of the estimated state vector
is selected as %(0)=x(0) . Starting from these initial conditions, the main objective is to

adjust (using input/output information) the parameter estimate 4(t) at each timet so that

f(x,y,0) approximates the unknown function g(t—-T) f(x,u) as closely as possible.
Polycarpou and Helmicki (1995), Demetriou and Polycarpou (1998) explained that, once
this is achieved then the output of the online approximator f can be used to detect and
diagnose as well as accommodate any system failures. The online approximator, denoted
by f represents the adjustable component of the estimation model.

Demetriou and Polycarpou (1998), Polycarpou and Helmicki (1995) proved that, to

construct the estimated model (8.11) the following assumptions need to be made:

e The state vector xis available for measurement. This is a critical assumption that
limits the applicability of this approach. Removal of this assumption requires the

use of nonlinear observers. It is noted that the time derivative of the state vector X
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is not assumed to be available for measurement so that the overall learning scheme

is free of any differentiators.

e The nominal system (in the absence of any failures) described by &* (x(t),u(t)) is

known. In practice, the inevitable presence of modelling errors will cause some
discrepancy between the actual plant and the nominal model. The issue of
robustness is further investigated in the development of learning schemes and in
the simulation example (both described in details below) where modelling

inaccuracies and measurement noise are included.

A block diagram representation of the estimated model (8.11) is described in figure 8.4.
The construction of an accurate nonlinear model-based estimator, able to follow any

variations in the physical system, is a crucial component of the overall learning scheme.

u_, A

Figure 8.4 Block diagram representation of estimation model ( Polycarpou and Vemuri,
1995).

8.2.3. On-line approximators

Polycarpou and Vemuri (1995) explained that, the adjustable component of the estimated
model (8.11) is the on-line approximator f ,depending on its specific structure, f isalso

referred to as an approximation model or network. In the network formulation, the (n+m)
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dimensional vector z:=(x,u) is the input to the network, deRY is a set of adjustable
parameters or weights in vector form, and ¢:= f (z;0)is the output of the network. By

changing the value of § it is possible to change the input/output z+— ¢ response of the

network f and hence monitor the physical system for different kinds of failures.

From an analytical viewpoint it is convenient to distinguish between linearly and

nonlinearly parameterized approximation methods. In the case of linearly parameterized

A

approximators, f is of the form:

f(2:0)=Q(2)" 6 (8.12)
In this work a class of radial basis function (RBF) neural networks is used as an online

approximator for detection. The output of RBF networks is of the form:
~ A n . A
fn(z ;9):={2¢9i w; (z) :6; efﬁ} (8.13)
i=1

Where w; is the output of i"™ the basis function. The Gaussian function

W (2):=exp ("Z‘Ci%zJ (8.14)

Where Cj and ojare thei—th centre and width respectively, is usually chosen as the basis

function. RBF networks are also capable of universal approximation. The approximation
properties of ERBF networks are similar to those of spline functions. For example if the
centre and width are kept fixed then RBF networks are linearly parameterized
approximators; if they are allowed to vary then RBF networks become nonlinearly

parameterized.
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8.3. Learning Schemes

In the presence of system faults, changes in the dynamics cause a mismatch in the
behaviours of the estimated and the nominal system model. The objective of a learning
schemes is to develop an adaptive procedure that not only detects changes in the dynamics
but also able to learn these changes for the purposes of identifying and correcting the fault.
Therefore, learning is an inherent component of a FDA architecture, especially for
unanticipated faults. We now describe a methodology for designing and analysing

learning schemes based on the on-=line approximation approach discussed above.

We start by rewriting f as:

f(x,u,0,t)=B{t-T) f(xu)-f(x,u:0)

. o . (8.15)
=Bt-T) f(x,u;0%) - f(x,u;0)+v(t)

Where §* eRY is a constant parameter vector, and v is denotes the approximation error,

given by:

v(O)=At-T)[f (x(¥) u @)~ (x(¥),u ):0")] (8.16)
The approximation error v is a critical quantity, representing the minimum possible

deviation between the unknown function f and the output of the on-line approximator

A

f . Ideally we would like to have v(t)=0; in other words, we wish to approximate the

function f by exactly letting 0=0", where 6* is some “optimal” parameter estimate.
Unfortunately, this is not always possible, and a residual approximation error is
something that needs to be dealt with. The type of on-line approximator, the number of
nodes, and the number of network layers are some of the factors that influence the value

of v (Polycarpou and Helmicki, 1995, Demetriou and Polycarpou, 1998)
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The optimal parameter vector * is an “artificial” quantity required only for analytical
purposes. We choose 6*as the value of 6 that minimizes the distance between f(x,u)
and f (x,y,6) overall (x,u) in some compact (i.e., closed and bounded) learning domain

D, subject to the restriction that 6* belongs to a compact, convex region Méc‘f{q le.
6*:=arg min { sup |f(x,u)—"f(x,u;0) (8.17)
0eM | (x,u)eD
In the development of the adaptive law, the parameter estimate vectorg is also restricted
within My, using a projection algorithm. By doing so, we avoid any numerical problems

that may otherwise arise due to very large parameter values. More importantly, the
projection algorithm prevents parameter drift, a phenomenon that may occur with
standard adaptive laws in the presence of modelling uncertainty. One of the problems

associated with the projection algorithm is the selection of an appropriate region M, in
the parameters space R9. In general M éshould be selected such that it contains the

“optimal” parameter vector 6", which is the reason 6" is restricted within the region M
in (8.17). This restriction may undermine the approximation power of f by increasing
the approximation error v, however, by selecting the “size” of M ésufﬁciently large, the
increase will be negligible.

Now using (8.11),(8.14), the output estimation error e satisfies the following differential

equation:

e=Ge+ A (t-T) f(x,u;6")—f (x,u;0)+v (8.18)
Demetriou and Polycarpou (1998) explained that, based on (8.13), we use the Lyapunov

synthesis approach to derive the adaptive law for updating the parameter estimates. The
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Lyapunov synthesis approach is based on choosing a Lyapunov function whose time
derivative can be made negative semi-definite by an appropriate adaptive law. Hence, in
this approach the adaptive law is derived by the Lyapunov function in contrast to
optimization methods where minimization techniques such as gradient descent and least
squares are used to derive the adaptive law. The appeal of the Lyapunov synthesis

approach is that, when applicable, it guarantees the stability of the adaptive scheme.

In our case, the Lyapunov synthesis approach yields the following adaptive law for

updating the parameter estimates:

0=P{rze} (8.19)
Where
~ A T
7= af(x,u,e/ T=rT>0 (8.20)
06

Where eis the estimation error, T is the positive definite matrix "e3R4*9 is known as the

learning rate matrix, while ZeR" is the sensitivity function between the output of the
network approximator and the adjustable or weights. The adaptive law derived by the

Lyapunov synthesis approach is modified by the use of a projection algorithm P, so that

the parameter estimates 6 remain within the bounded region M. The projection

algorithm goes into effect only if the parameter estimate vector 4 reaches the boundary of

the region M 4 denoted by M 4, and is directed outwards. In such situation, the algorithm
projects the standard adaptive law (8.19) onto the tangent hyper plane of M4, at the

current value of @ , denoted byét .
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Polycarpou and Helmicki (1995) illustrated that, the projection algorithm is illustrated
geometrically in figure 8.5. Thus, the overall adaptive law for updating the parameter
estimates of the on-line approximator, using the Lyapunov synthesis approach and the

projection modify cation, is given by:

A « AT
0=TZe-X r(% %lZJFZe (8.21)

Where X * denotes the indicator function given by:

. |0, if (0]<M ;) or (|0|<M , and O'T'Ze<0
y { (61<M;) or (61<M, 622

L, if (0<M,) and 0'IZe>0

s Y
] P[IZe] |
| |
I ' I
I : I
. B[ Ze] L :
| |
| bl |
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Figure 8.5 Geometric interpretation of projection algorithm ( Polycarpou and Vemuri,
1995).

8.4. Stability and Robust Fault Diagnosis
Under ideal conditions of no modelling errors, a fault is declared whenever the output of
the online approximator y= f(x,u;0) becomes nonzero. A straightforward and practical

way of improving the robustness of the algorithm with respect to modelling uncertainties
IS to start adaptation whenever the state error is above a certain threshold. This approach
to improving robustness is incorporated into the learning methodology developed above

by modifying the adaptive law (8.19) as follows:
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=P {C Z D[e]} (8.23)

Where D[e] is the dead-zone operator, defined as

Dle]:= 0, Iiflel<e 824
T le, if le ¢ (8:24)
Where¢>0 is a design constant. The selection of the dead-zone size ¢ clearly induces a
trade-off between reducing the possibility of false alarms (robustness) and improving the

sensitivity to faults. In the next section we derive a value for the dead-zone size ¢ (in

terms of modelling uncertainty bound &,) that guarantees robustness in the presence of

any modelling uncertainty satisfying the given bound (Demetriou and Polycarpou, 1998).

Demetriou and Polycarpou (1998) illustrated that, the online approximation approach has
certain inherent robust properties: first, since this approach is formulated in a nominal
modelling framework, it allows the use of nonlinear nominal models, hence minimizing
any modelling inaccuracies that would otherwise be introduced due to linearization of the
system. Second, as a result of its learning capability, the on-line approximator is able to
update the nominal model during operation; this fine-tuning of the nominal model may
improve the accuracy between the real system and the nominal model, which, in turn
leads to better performance. Finally, the ability of the on-line approximator to learn the
characteristics of the off-nominal system behaviour provides a means of comparing these
characteristics to any known disturbance or any known failure modes, hence

discriminating between disturbances and failures.

8.5. FD for CSTR__ Case Study

8.5.1. State Space Model

The following state space representation is obtained for the CSTR
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PO, =P -a0) -k *ep(-Epem) e (629

P2 =P 20 - x2 @) ~ ko *ep(E L x2 ) O - (A o)

*(X2(t) —u3 (1)) (8.26)

Where
y1(t)=x1(t) (8.27)
y2(t)=x2(t) (8.28)

State equation:

F/ )ko*eXp E/*x )X ()
F/*(u(z ko*exp %*x ~(H %HD*V) **X@)-u@) | (g.29)
Output equation:
[ x(@
y{x (2)} (8.30)

Using the methodology described in previous sections, an estimated model is constructed.
This estimated model is described by the following state-space representation as

following:

. F{Hu@-x@)-ko*ep(-Bprx (2)*x @
U@ x @)k (- E g @) O~ iy ) (<) - i@ | g3

0 X=X
{f(xz,é)}_ p[xz —xj

Where [xg,%,]" =[y1.Y,]" is the state vector of the system; X=[%;,%,]" is the estimated

state vector; p>0is the pole location of the filter; f is the online approximator model

used to monitor the system; andé is a vector of adjustable parameters.
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8.6. Simulating faults

The classes of failures considered in this work are strictly related to the dispositioning of
the hot and cool water valves of the cooling system. This leads to a temperature of the
fluid entering the jacket different with respect to the command value. Hence, an actuator

fault result in a faulty input temperature given by

u™(t)=u (t)+f,(t) (8.32)

Whereu(t) is the command value. The time profile adopted for the fault function f,is

f,(t)=uy(1—e#0))  txt, (8.33)
Whereug is the maximum amplitude, tyis the fault occurrence time, and 4 is the fault

evolution rate. Parameter £¢ is used to simulate a desired time evolution: small value

characterize slowly developing faults (incipient fault); large values are used to model

step-like behaviours of the fault (abrupt fault).

The reactor temperature sensor fault is superimposed with 10% change of the measured

reactor temperature and simulated from time10sto15s.

8.7. Residual generation

In this simulation example we use a class of neural networks, known as Radial Basis
Function (RBF) networks, as the on-line approximator model. Specifically, we use
Gaussian RBF networks which are described by

N
f(x2,0)=> 6 exp (‘“Xz ~Ci |%2) (8.34)

i=1

We choose a uniform width =0.6 for the basis functions, and N=19 fixed centres Cj»

which are evenly distributed in the interval [-9 9].

162



The standard adaptive law in this case is

0=P{rze) (8.35)
H=T'Ze—X* r(ééT | élszZe (8.36)
Where
~ A T
7 = ﬁf(X,Uﬁ/A , FZFT >0 (837)
o0

Where X * denotes the indicator function given by:

. |0, if (0|<M ;) or (|9|<M; and §'T'Ze<0
y ={ 101<M ) or (6]<M, ©.38)

L if (0l<M,) and 0'T'Ze>0

The OLA output norm and state error norm may be used to monitor the system for failure
detection. In Figure.6 the evolution of the output state estimation error norm is

represented for the time interval [0, 60]s . The rapid jump att=10 provides a measure for

detecting the system’s failure. The evolution of the output estimation norm is given by

en (M=o —z1()? + (x2t) - s2(t) 2 [° (8.39)

o O=[F 0aw) 01| (8.40)

8.8. Performance and Discussion
In this simulation we use the adaptive law given by (8.35)-(8.38), where the learning rate

is chosen as I'=y 1 and »=10. The projection operator P is used to constrain ¢ within
Mé:{éemlgz|é|3100}. Finally, the filter pole is set to p=1, and the initial parameter

estimation vector is chosen as #(0)=0, which corresponds to modelling a no-failure
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situation. The online approximator (OLA) output norm is used as an indicator of a system
failure. It can be clearly seen from figure (8.6)-(8.10) that, the output estimation error

norm ey (t) increasing after the first failure occurs at t=10s and then to converge to zero

after few seconds. Similarly, for the second failure the output estimation error norm
increased after the second failure occurred at t =30s and then converge to zero after few

seconds. Therefore, the OLA output norm ¢y (t) provides a good measure for detecting

system failure. This indicates that, the estimated model approximates well post-failure
system. It is noted that the initial nonzero value of the output estimation error norm is due
to a simulated difference in initial conditions between the physical system and the
estimated model. This is because the OLA is trying to learn the deviation between the
dynamics of the real system and the nominal model, which is nonzero as a result of

modelling uncertainty

Evolution of State Estimation Error Norm
1 T T T

— Fault 1 occurs at t=30s

0.2} . v T N f
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Figure 8.6 Evolution of output estimation error norm with actuator fault occurred at
t=30s
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Figure 8.7 Evolution of output estimation error norm with sensor fault at t=10s and
incipient actuator fault at t=30s
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Evolution of State Estimation Error Norm
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Figure 0.8 Evolution of output estimation error norm with sensor fault at t=10s and
incipient actuator fault at t=30s
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Figure 0.9 Evolution of output estimation error norm with sensor fault at t=10s and

abrupt fault at t=30s
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Figure 0.10 Evolution of output estimation error norm with sensor fault at t=10s and
actuator fault at t=30s
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8.9. Summary

In this work we have presented a general learning methodology and some preliminary
analytical results concerning the use of neural networks and other on-line approximation
models for diagnosis of failure in dynamical systems. Nonlinear modelling techniques
have been employed for monitoring the dynamical system and for estimating any changes
that may occur due to a failure. The estimated model is used for detecting failures in
nonlinear systems. The main advantages of using nonlinear estimation techniques in FDA
is the ability to model a larger and more practically realistic class of failure. The
methodology developed in this work is based on analytical redundancy techniques. In
particular, we have assumed that the nominal model provides an accurate description of
the physical system in the absence of any failures. In the presence of modelling
uncertainty, the FDA learning scheme may perceive this uncertainty as a change in the
system dynamics, thus confusing the effect of faults and possibly leading to false alarms.
Another assumption that we have made is the availability for measurement of all states.
These assumptions and investigation of the effect of modelling uncertainty on the

performance of the learning scheme, are main topics for future work.
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Chapter 9

Conclusions and Future Work

9.1. Conclusions

This research investigates the potential use of Fault diagnosis methods for multivariable
dynamic processes such as Chylla-Haase polymerization reactor and continues stirred
tank reactor. In this section the main contributions and key results of this research project
are summarised.

The main aim of first section of this research is focused on the understanding of the
nonlinear dynamic behaviour of the Chylla-Haase polymerization reactor. In this chapter,
the mathematical model of the proposed reactor is described. The material and energy
balances of the reactor are illustrated in more details. All the uncertainties and
disturbances in the process is discussed. Moreover, all parameter values for polymer A
and B and all the empirical relations for the polymerization rate, the jacket heat transfer
area, and the overall heat transfer coefficient are represented. The Simulink model of the
proposed reactor is set up using Simulink/ MATLAB. The design of Simulink model is
developed based on a set of ordinary differential equations that describe the dynamic
behaviour of the proposed polymerization process. The Simulink block diagram of the
proposed reactor is presented and discussed in more details. The simulation results of

open-loop Polymerization process for both polymer A and B are presented and discussed.

In the next part of this research a fault diagnosis scheme is developed for open-loop
Chylla-Haase reactor using an independent RBFNN. Three sensor faults and one actuator

fault are simulated on the Chylla-Haase reactor. Moreover, the uncertainties and
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disturbances in the process are simulated. Two different techniques to employ RBF neural
networks for fault diagnosis are investigated. The first technique is implementing an
independent RBNN for residual generation. Moreover, the generated residuals were used
for detecting actuator and sensor faults. The second technique is applying an additional
RBFNN as a classifier to perform the classification task for residual evaluation and
therefore to diagnose and isolate the faults. The simulation results show that all faults
were clearly detected and isolated. Moreover, no false alarms are thereby produced, so
this verifies that the proposed scheme has shown excellent diagnosis performance. The
main contribution of this work is to show how to apply an independent RBFNN to open-
loop Chylla-Haase benchmark polymerization reactor fault diagnosis.so this proposed

method can contribute to the safety of chemical reactors.

The third part of this research is focused on the development of robust fault diagnosis
scheme for a Chylla-Haase reactor under closed-loop control using an independent RBF
neural network model and a RBF classifier. In the independent model, the past model
output is fed back as part of the network input. Therefore, the model can operate
independently from the process. Due to the increased difficulty in training an independent
RBF model compared with the dependent model, the network weights were updated using
the ROLS algorithm. Moreover, the disturbances are simulated and used. Consequently,
the robustness of the fault detection to these disturbance is achieved. RBF classifier is
implemented for fault isolation. As in practice most of systems work under closed-loop
control. One of vital problems in closed-loop identification is that, the controller output
cannot be designed when the reactor is under closed-loop control. Most chemical
processes operate as a part of a control configuration, and the control action will correct
small changes of the states caused by faults. The proposed FDI strategy is dealt with this

problem.
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Fault detection and isolation methods are investigated here for open-loop and closed-loop
Cylla-Haase polymerization reactor using an independent mode of MLPNN. An
independent MLP neural network is implemented here to generate residuals for detection
task. And another RBF is applied for isolation task performing as a classifier. The
simulation results confirmed that the simulated faults are clearly detected and isolated
with zero false alarm rates. So this verifies that the proposed scheme has shown excellent
diagnostic performance. The main contribution of this work is using an independent MLP

for open-loop and mainly for closed-loop control system.

In chapter seven, a fault detection scheme based on standardized hypothesis of statistical
tests generated by extended kalman filter (EKF) is developed. The proposed method is
applied for online fault detection in Cylla-Haase exothermic semi-batch polymerization
reactor. The simulation results show that all faults were clearly detected. Moreover, no
false alarms are thereby produced, so this verifies that the proposed scheme has shown
excellent detection performance. The application of using online estimation by extended
kalman filter for Chylla-Haase reactor is believed to be a new contribution to industrial

process.

The final part of this study focused on the development of a robust fault diagnosis scheme
for abrupt and incipient faults in nonlinear dynamic system. A general framework is
developed for model-based fault detection and diagnosis using on-line approximators and
adaptation/learning schemes. In this framework, neural network models constitute an
important class of on-line approximators. The changes in the system dynamics due to
fault are modelled as nonlinear functions of the state, while the time profile of the fault is
assumed to be exponentially developing. The changes in the system dynamics are
monitored by an on-line approximation model, which is used for detecting the failures. A
systematic procedure for constructing nonlinear estimation algorithm is developed, and a
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stable learning scheme is derived using Lyapunov theory. Simulation studies are used to
illustrate the results and to show the effectiveness of the fault diagnosis methodology.
The main contribution of this work is to apply this method to the proposed nonlinear

continuous stirred tank reactor.

The novelty and unique contribution of this research to knowledge is divided into four
sections. First section will be focus on developing a new FDI method for open-loop and
closed-loop reactor using an independent RBFNN, which will be a new contribution to
knowledge. The second section will be focus on developing a new FDI method for open-
loop and closed-loop reactor using an independent MLPNN, which will be a new
contribution to knowledge. The third section is to develop a new FD method for reactor
using EKF to against disturbances, which also will be a major challenge and a new
contribution to knowledge. Finally, developing and designing an adaptive nonlinear
observer based fault detection for reactor using a learning methodology is a new
contribution to knowledge. These proposed methods are robust against the disturbances
and can also cope with high nonlinearities of the reactor. The application of all proposed
fault detection and isolation strategies for monitoring reactor. Thus the originality of the

proposed research stands.

9.2. Recommendation for future work

In this section, some recommendations for future work will be given. These
recommendations will significantly improve the performance of the developed FDI
schemes. The recommended future works are (1) design fault isolation scheme for
detected fault by using EKF, (2) development of adaptive nonlinear observer based fault
detection using learning methodology for Chylla-Haase reactor.

e The developed fault detection method is based on the using of Extended Kalman

Filter (EKF) and statistical test. Although the method presented in this thesis have
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demonstrated the effectiveness of the proposed approach, it has some limitation
In estimating the parameters of the reactor due to its high nonlinearity. The further
improvement will be by designing The EKF to estimate on-line to the state of
reactor and the overall heat transfer coefficient (U). The diagnosis method will be
based on a probabilistic neural network classifier. The Inputs of the probabilistic
classifier are the input-output measurements of reactor and the parameter U
estimated by EKF, while the outputs of the classifier are fault types in reactor.

In this thesis we have presented a general learning methodology and analytical
results concerning the use of RBF neural networks as on-line approximation
model for diagnosis of failure in dynamical systems. Although the method
presented in this thesis have demonstrated the effectiveness of the proposed
approach applied to CSTR reactor. It has some limitation when applied to Chylla-
Haase reactor, due to the high nonlinear dynamics and unsteady operating
conditions of the reactor, the application of these techniques are very challenging
task to implement. Moreover, the full state measurements and an accurate
knowledge of parameters of Chylla-Haase reactor are hardly available. Obtaining
a nominal model of Cyhlla-Haase reactor that provides an accurate description of
the physical system in the absence of any failures will be a challenging task. The
future work will be designing an adaptive nonlinear observer based FD using
learning methodology for Chylla-Haase reactor.

Due to the nonlinearities present both within the plant and within the neural
network, suitable stability based training rules for on-line approximator based on
the RBF network. Therefore, in the future work, gradient-based adaptive control
laws, will be employed, utilizing the backpropagation algorithm to determine the

gradients of some suitable cost function with respect to each weight in the network.
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The weight vector can then be adapted, using the gradient descent update. Hence
it is necessary to develop a technique by which the error at the output of the plant
could be fed back to provide a suitable descent direction at the output of the neural
network. If the Jacobian of the plant is known, the gradient of the cost with respect
to each input is then readily determined. In some cases, a nonlinear model of the
plant may be available for analytic differentiation to provide the necessary
Jacobian as the output of a sensitivity model. Differentiation of these equations
yields the sensitivity model which can be executed in parallel with the nonlinear
system to provide a continuous estimate of the Jacobian, required for on-line
approximators. Differentiation of these equations will be one of the future work.
After designing a detection and approximation estimator for online monitoring.
Once a fault is detected, a bank of isolation estimators will be activated for the
purpose of fault isolation. A key design issue of the proposed fault isolation
scheme is the adaptive residual threshold associated with each isolation estimator.
A fault that has occurred can be isolated if the residual associated with the
matched isolation estimator remains below its corresponding adaptive threshold,
whereas at least one of the components of the residuals associated with all the
other estimators exceeds its threshold at some finite time. A bank of nonlinear
adaptive estimators are used in the proposed FDI scheme, One of the nonlinear
adaptive estimators is the fault detection and approximation estimator (FDAE)
used to detect faults. The remaining ones are fault isolation estimators (FIESs) that
are used for isolation purposes only after a fault has been detected. Each FIE

corresponds to a particular type of fault.
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