609 research outputs found

    Challenges for the comprehensive management of cloud services in a PaaS framework

    Full text link
    The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. The major innovations proposed by 4CaaSt are the blueprint and its lifecycle management, a one stop shop for Cloud services and a PaaS level resource management featuring elasticity. 4CaaSt also provides a portfolio of ready to use Cloud native services and Cloud-aware immigrant technologies

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Decentralized planning for self-adaptation in multi-cloud environment

    Get PDF
    The runtime management of Internet of Things (IoT) oriented applications deployed in multi-clouds is a complex issue due to the highly heterogeneous and dynamic execution environment. To effectively cope with such an environment, the cross-layer and multi-cloud effects should be taken into account and a decentralized self-adaptation is a promising solution to maintain and evolve the applications for quality assurance. An important issue to be tackled towards realizing this solution is the uncertainty effect of the adaptation, which may cause negative impact to the other layers or even clouds. In this paper, we tackle such an issue from the planning perspective, since an inappropriate planning strategy can fail the adaptation outcome. Therefore, we present an architectural model for decentralized self-adaptation to support the cross-layer and multi-cloud environment. We also propose a planning model and method to enable the decentralized decision making. The planning is formulated as a Reinforcement Learning problem and solved using the Q-learning algorithm. Through simulation experiments, we conduct a study to assess the effectiveness and sensitivity of the proposed planning approach. The results show that our approach can potentially reduce the negative impact on the cross-layer and multi-cloud environment

    Many-Task Computing and Blue Waters

    Full text link
    This report discusses many-task computing (MTC) generically and in the context of the proposed Blue Waters systems, which is planned to be the largest NSF-funded supercomputer when it begins production use in 2012. The aim of this report is to inform the BW project about MTC, including understanding aspects of MTC applications that can be used to characterize the domain and understanding the implications of these aspects to middleware and policies. Many MTC applications do not neatly fit the stereotypes of high-performance computing (HPC) or high-throughput computing (HTC) applications. Like HTC applications, by definition MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. However, MTC applications have significant features that distinguish them from typical HTC applications. In particular, different engineering constraints for hardware and software must be met in order to support these applications. HTC applications have traditionally run on platforms such as grids and clusters, through either workflow systems or parallel programming systems. MTC applications, in contrast, will often demand a short time to solution, may be communication intensive or data intensive, and may comprise very short tasks. Therefore, hardware and software for MTC must be engineered to support the additional communication and I/O and must minimize task dispatch overheads. The hardware of large-scale HPC systems, with its high degree of parallelism and support for intensive communication, is well suited for MTC applications. However, HPC systems often lack a dynamic resource-provisioning feature, are not ideal for task communication via the file system, and have an I/O system that is not optimized for MTC-style applications. Hence, additional software support is likely to be required to gain full benefit from the HPC hardware

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    On the cloud deployment of a session abstraction for service/data aggregation

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaThe global cyber-infrastructure comprehends a growing number of resources, spanning over several abstraction layers. These resources, which can include wireless sensor devices or mobile networks, share common requirements such as richer inter-connection capabilities and increasing data consumption demands. Additionally, the service model is now widely spread, supporting the development and execution of distributed applications. In this context, new challenges are emerging around the “big data” topic. These challenges include service access optimizations, such as data-access context sharing, more efficient data filtering/ aggregation mechanisms, and adaptable service access models that can respond to context changes. The service access characteristics can be aggregated to capture specific interaction models. Moreover, ubiquitous service access is a growing requirement, particularly regarding mobile clients such as tablets and smartphones. The Session concept aggregates the service access characteristics, creating specific interaction models, which can then be re-used in similar contexts. Existing Session abstraction implementations also allow dynamic reconfigurations of these interaction models, so that the model can adapt to context changes, based on service, client or underlying communication medium variables. Cloud computing on the other hand, provides ubiquitous access, along with large data persistence and processing services. This thesis proposes a Session abstraction implementation, deployed on a Cloud platform, in the form of a middleware. This middleware captures rich/dynamic interaction models between users with similar interests, and provides a generic mechanism for interacting with datasources based on multiple protocols. Such an abstraction contextualizes service/users interactions, can be reused by other users in similar contexts. This Session implementation also permits data persistence by saving all data in transit in a Cloud-based repository, The aforementioned middleware delivers richer datasource-access interaction models, dynamic reconfigurations, and allows the integration of heterogenous datasources. The solution also provides ubiquitous access, allowing client connections from standard Web browsers or Android based mobile devices

    Software Service Engineering:Tenets and Challenges

    Get PDF

    Contingency Manager for Icarus Simulated Integrated Scenario

    Get PDF
    Contingency analysis and reaction is a critical task to be carried out by any airplane to guarantee its safe operation in a non-segregated airspace. Pilot's reactions to any kind of incidences that may occur in-flight, like engine malfunctions, loss of electrical power, hydraulic failure, unexpected weather, etc, will determine the fate of the flight. Nowadays, contingency reactions are mainly driven by the airplane manufacturer, with pre-analyzed contingency scenarios covered in the airplane documentation, and by ICAO's rules as defined in the way flight plans should be prepared and landing alternatives implemented. Flight dispatching is the set of tasks related to flight preparation, such as load and balance, meteorology study and briefing, operational flight planning, contingency analysis and planning, etc. However, managing contingencies on a UAS is a much more complex problem basically due to the automated nature of the vehicle and the lack of situational awareness that pilot's in command should face. It is well known from the short history of UAS accidents that many of them are directly imputable to pilot errors when trying to manage an unexpected contingency. The project proposes to develop a Contingency Manager Service in the Icarus Simulated Platform. Also, it is part of this project to develop a Weather Simulator, Engine Simulator and an Electrical Simulator in order to generate contingency situations

    1 - Introduction to Distributed Systems

    Get PDF

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00
    • …
    corecore