

 University of Groningen

Software Service Engineering
Heuvel, Willem-Jan van den; Zimmermann, Olaf; Leymann, Frank; Lago, Patricia;
Schieferdecker, Ina; Zdun, Uwe; Avgeriou, Paris
Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Heuvel, W-J. V. D., Zimmermann, O., Leymann, F., Lago, P., Schieferdecker, I., Zdun, U., & Avgeriou, P.
(2009). Software Service Engineering: Tenets and Challenges. In EPRINTS-BOOK-TITLE University of
Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 08-06-2022

https://research.rug.nl/en/publications/64232a4d-4683-490c-b0ee-57fdd9198df2

Software Service Engineering: Tenets and Challenges

Willem-Jan van den Heuvel1, Olaf Zimmermann2, Frank Leymann3,
Patricia Lago4, Ina Schieferdecker5, Uwe Zdun6, and Paris Avgeriou7

1Tilburg University, 2IBM Zurich Research Lab, 3Stuttgart University,
4VU University Amsterdam, 5Fraunhofer Institute,

 6Vienna University of Technology, 7University of Groningen

Abstract

Service-Oriented Architecture (SOA) constitutes a

modern, standards-based and technology-independent
paradigm and architectural style for distributed
enterprise computing. The SOA style promotes the
publishing, discovery, and binding of loosely-coupled,
network-accessible software services. With SOA
systems operating in distributed and heterogeneous
execution environments, the engineers of such systems
are confined by the limits of traditional software
engineering. In this position paper, we scrutinize the
fundamental tenets underpinning the development and
maintenance of SOA systems. In particular, we
introduce software service engineering as an emerging
discipline that entails a departure from traditional
software engineering disciplines, embracing the ‘open
world assumption’. We characterize software service
engineering via seven defining tenets. Lastly, we
survey related research challenges.

1. Introduction

Service Oriented Architecture (SOA) is rapidly
emerging as a premier distributed computing paradigm
for developing, integrating, and maintaining enterprise
applications [8]. Many organizations are now in their
early use of SOA, and assume that they can simply
apply principles and techniques from pre-existing
software engineering paradigms such as Object Orien-
tation (OO) [5] or Component-Based Development
(CBD) [2], or the traditional architecting approaches
(e.g., based on component-and-connector views) to
engineer services. These principles and techniques are
independent of any architectural style. SOA-enabled
applications operate in distributed, non-deterministic,
unpredictable, and highly dynamic heterogeneous
execution environments; hence, SOA engineers
quickly encounter the limits of such traditional
software engineering paradigms, which do not provide
any style-specific advice. Moreover, SOA confines

itself to a rather simple reference model for
development and deployment, defining basic roles
such as service consumer, service provider, and service
broker. It is left up to the discretion of the engineers
how to construct software service applications in this
rather generic model.

Our ultimate objective is to scrutinize the viability
of existing engineering paradigms for developing and
evolving software service-based applications,
including CBD and OO, and to explore their
shortcomings. In this particular paper we investigate
the distinguishing characteristics of an emerging
engineering discipline for development and
maintenance of SOA-enabled applications, which we
call Software Service Engineering (SSE). We introduce
the key SSE tenets. Furthermore, we landscape the key
challenges for establishing SSE as a discipline.

The research that is presented herein has been
conducted adopting a research approach combining
our background from literature surveys, case studies,
and industrial best practices with brainstorming
sessions involving representatives of several
communities – including researchers and practitioners
from the domain of software engineering, software
patterns, SOA, and method engineering.

The remainder of the paper is organized in the
following way. Section 2 presents background
information on SOA as an architectural style and
introduces an example. Section 3 identifies SSE tenets.
Section 4 derives SSE research challenges from the
tenets. Section 5 provides a synthesis and gives an
outlook to future work.

2. Principles and Patterns in SOA Design
SOA is an architectural style based on principles

such as location, protocol, format, and technology
platform independence and patterns including Service
Contract, Service Composition, Enterprise Service Bus
(ESB), [6], and Service Registry. SOA allows service
engineers to (re-)organize and (re-)deploy business
processes, functional components, and information

PESOS’09, May 18-19, 2009, Vancouver, Canada
978-1-4244-3716-0/09/$25.00 © 2009 IEEE ICSE’09 Workshop26

assets as business-aligned, loosely-coupled, and
autonomous software services. SOA is unique in that it
combines elements from various related, yet up to now
largely isolated disciplines such as business process
modeling and management, software architecture,
CBD, OO, Enterprise Application Integration (EAI),
distributed computing, and systems management.

First and foremost, SOA design is architecture
design: software architects on SOA projects are
responsible for defining the architecturally significant
requirements (ASRs) during architectural analysis [3].
ASRs include functional requirements typically
captured in stories, use cases, or business process
models, but also non-functional requirements such as
software quality attributes. Subsequently, architects
make design decisions to satisfy the ASRs during
architectural synthesis [3]. A number of architectural
views covering different design aspects are chosen and
populated iteratively and incrementally during this
activity. During the activity of architectural evaluation
[3], the architects ensure that their decisions satisfy the
ASRs in an optimal (or at least good enough) way.
Furthermore, architects lead project teams via coaching
and review activities, and manage the relationships
with external stakeholders on the technical level. All
these activities and interactions influence each other.

At the early elaboration stages of architectural
synthesis, the conceptual architectures of SOA-based
systems can be designed in a straightforward manner:
they are variations of logically layered two- or three-
tier client-server architectures. In such architectures,
enterprise integration patterns are used to let
consumers and providers of software services
exchange messages via the ESB; workflow concepts
provide one way of composing services [6]. A service
registry serves as directory of service providers
available to respond to service consumer requests. The
service request and response message formats are
defined in the service contract. Architects are also
concerned with the design and configuration of
middleware such as ESBs (responsible for request
routing, adaptation, and mediation), workflow and
process orchestration engines (facilitating service
composition), and service registries (supporting
provider lookup). Individual service consumers and
providers are designed, developed, and then deployed
into such SOA infrastructures.

Solutions to these and numerous other design issues
have been successfully codified into design patterns
and architectural patterns by the software patterns
community. However, the application of style-specific
patterns in the daily practice of architects during SOA
design has not been particularly successful to date.

Example. To give an example for SOA design, Figure
1 shows a traditional application landscape:

User 1

Database Legacy System

Application Access Integration Middleware (e.g., WWW, Portal Server)

Resource Access Integration Middleware (e.g., EAI)

Application 1 Application 2 Application 3

Presentation Logic

Business Activities

Data/Resource Access Logic

Presentation Logic

Business Activities

Data/Resource Access Logic

Presentation Logic

Business Activities

Data/Resource Access Logic

Process Flow Process Flow Process Flow

Client Logic Client Logic Client Logic

External System

User 2 User 3

Figure 1. Logically layered applications

Three applications serve three user clients over an
application access integration middleware, e.g., a
portal server which can be reached over HTTP and the
World-Wide Web (WWW). The applications are
logically layered, conforming to the layers pattern and
a particular layering scheme for enterprise applications
proposed in the literature. Each of these applications is
statically assembled and deployed to a runtime
platform (i.e., hardware, operating system, and
container). An example is the deployment of the three
applications (in the form of .war/.ear) files to a Java
Enterprise Edition (JEE) Web application server which
may run on a Linux server. Via EAI middleware, the
three applications integrate a database, a legacy
system, and an external system (backend systems).

Figure 2 shows the same three user clients and three
backend systems. The three applications are refactored
into an SOA comprising two service consumption
assemblies and a service provider pool.

User 1

Database Legacy System

Service Consumption Assembly 1

Service (Provider) Pool

Client Logic Client Logic Client Logic

External System

User 2 User 3

Process
Service

Data/Resource
Access Service

Business
Activity
Service

Process
Service

Data/Resource
Access Service

Business
Activity
Service

Process
Service

Data/Resource
Access Service

Business
Activity
Service

Service Consumption Assembly 2

SOA

Figure 2. SOA with service pool

27

The service provider pool contains process services,
e.g., business processes implemented in the Business
Process Execution Language (BPEL), business activity
services (e.g., wrapped Java components), and
data/resource access services (e.g., provided by SQL
adapters and connectors). The service consumption
assemblies can take several forms, e.g., traditional
application or Web 2.0 mash up. Service consumers
and providers communicate over the ESB, often using
SOAP as a message exchange protocol (note that the
ESB is not shown in the diagram for reasons of space).
Each service provider exposes a service contract.

We will return to this example and reveal more
SOA design details in the next section on SSE tenets.

3. SSE Tenets
Software architects and designers cannot be

expected to embark on large-scale SOA projects
without relying on sound defining principles
underpinning the methods, techniques, and tools
required for SOA application and infrastructure design,
development, and maintenance. Without such
principles, which we refer to as SSE tenets, it cannot be
guaranteed that the developed software systems meet
the SOA principles which ensure that services are
loosely coupled and specified via clean interfaces that
are geared towards flexible and dynamic (re-
)composition.

During a Schloss Dagstuhl seminar in January 2009
[1], we gathered such distinguishing SSE tenets. This
was achieved by facilitating two half-day working
sessions. During the first session, candidate SSE tenets
were identified and analyzed in two groups of about 25
participants. The second session was a plenary session
during which the two proposed lists were correlated,
integrated, and consolidated. Note that due to reasons
of space, we have not included transcripts of these
discussions. The discussions were initiated with the
help of a list of potential tenets that had been distilled
in a literature survey that analyzed the tenets
underpinning OO and CBD (including seminal works
such as [9], [10], [11], and [12]), but also input from
other fields such as telecommunication services [13],
networking [14] and testing [15]. The following
unordered list of SSE tenets was identified:

1. Technical federation. SSE has to cater for service-
enabled software applications that are logically and
physically distributed. Message-based communication
via an ESB permits and encourages asynchronous,
non-blocking interactions between service consumers
and service providers: A provider reacts on an
incoming request message (which can be seen as an
event), by default not knowing of and not making any

assumptions about the originator of the request. The
provider may, but does not have to, respond with a
response message, which may be sent over a separate
communication channel.

In the example from Section 2, asynchronous
communication is suited for the channel between a
data/resource access service and a legacy system which
is located in a different location and slow and
unreliable when responding to requests. As a
consequence, process and business activity service
execution (which we assume to have invoked the
data/resource access service) is not blocked while
waiting for the response from the legacy system
(referred to as the send-and-forget principle). The
request and response messages are queued by the ESB
(following the store-and-forward principle). This is an
example of loose coupling in the time dimension; it
makes the SOA design flexible and reliable. This
increase in flexibility and reliability, however, comes
at a price: The amount of design and development
increases significantly as the service consumers have
to keep track of open requests, correlate incoming
responses to requests, handle timeouts, resequence
messages arriving out of order, and so forth.

As of today, distribution is typically either realized
with EAI middleware such as message brokers or with
remote procedure (or object) invocations as supported
by application servers. Both integration styles continue
to be relevant for SSE; if asynchronous, message-
based integration is used, service providers and
consumers as message endpoints can not make any
assumptions about the technical nature or lifecycle of
their communication partners. Fewer assumptions
mean more design work: SSE has to provide architects
and other software service engineers with concepts,
languages, methods, and tools that help them manage
this increased technical complexity, sometimes
referred to as “programming without a call stack” [6].

2. Dynamism (virtualization). A key tenet of SSE is
dynamism regarding the services that are aggregated
into service compositions at runtime via late binding
(forming agile service networks), as well as the highly
volatile context in which such services operate. First,
dynamism implies that SSE methods, techniques, and
tools have to deal with emergent properties and
behavior of complex service networks, which may be
comprised of thousands of independent – yet
cooperating – services. In fact, complex and emergent
behaviors includes both technical issues such as
performance and security, as well as business issues
including profitability, return-on-investment, and
indices of value creation. Dynamism puts requirements
on virtually all elements of an SOA platform, ranging

28

from the ESB messaging infrastructure to composition
engines. Loose coupling and late binding constitute
two key principles for increasing the adaptability of
service applications, accommodating the flexible,
dynamic (re-)composition and (re-)configuration of
services in a network. This flexibility and dynamicity
may lead to a large number of consumers per provider.
SSE also has to accommodate various styles of service
composition, fostering user-friendly enterprise service
mash-ups as well as heavy-weight compositions of
industry-strength enterprise applications.

In our example, the service consumption assemblies
may look up available process services at runtime,
depending on the content of incoming user requests
(e.g., premium vs. regular customer) and the current
environmental context (e.g., load). Similarly, a process
service may pick a different business activity service
based on current processing state and required Quality
of Service (QoS). The SOA can be set up in such a
way that multiple service providers implementing the
same service contract are provisioned. The actual
provider can be dynamically selected at runtime based
on certain policies, e.g., content-, QoS, and load-based
routing; it is hidden from the consumer (service
virtualization). In such a setting, the service pool is a
single deployment entity shared by all user clients
(unlike in traditional application development).

The composition (assembly) of programming
language artifacts such as modules into higher order
constructs is a known concept; for instance, patterns
such as pipes-and-filters and model-view-controller
promote it. The SOA style adds workflow concepts as
an additional conceptual means of process service
composition.

The runtime lookup of components via a naming
and directory service also is well understood and
supported in existing middleware, e.g., in the CORBA
directory service and JNDI defined in JEE. Lookups in
an SOA differ from those in OO and CBD in that the
unit of lookup is not a remote object reference
accessible via a home and/or remote interface (such as
in CORBA or in JEE Enterprise JavaBeans), but a
network-accessible service with always-on semantics.
In the absence of a formal specification or a
universally agreed industry reference model for SOA,
the line between services and components is somewhat
blurred. In the literature, we find different positions
such as: a) services are equivalent to components; b)
services are a superior paradigm making components
obsolete; and c) services and components complement
each other, i.e., components can be used to implement
and provide services. Future SSE assets (e.g., methods,
tools) must make their own interpretation of the two
terms and their relation explicit. Service registries in an

SOA must support diverse lookup scenarios such as by
name as in existing middleware, but also by contract
type, by business taxonomy, and by QoS policy.

3. Organizational federation. SSE should be shaped
around the doctrine stating that development and
maintenance are often conducted in distributed
organizational units, possibly involving multiple lines
of business, other enterprises, and government institu-
tions. Development and maintenance of applications
becomes a collaborative effort, implying that design,
coding, deployment, etc. occur in networks of
collaborative service clients and providers. The
presence of a central governance body such as an
architecture board can not be assumed. Organizational
federation requires sound distributed governance
mechanisms, accommodating the individual needs of
the various stakeholders, which often stem from
organization-specific constraints or governmental rules
and legislations. Organizational federation may adopt a
range of coordination mechanisms, ranging from a
classical central control system to a decentralized
structure, relying on mechanisms such as service
markets and contracts.

In the example from Section 2, each of the three
traditional applications is typically developed by a
separate project team (which may be geographically
distributed, but are managed centrally). In the SOA
case, each service provider in the service pool and each
service composition assembly may be developed
autonomously by a different unit or legal entity.

Organizational federation in itself is not new. For
instance, the Eclipse project team is spread over
several locations in Europe and North America. It
employs a self-governing, agile engineering process,
the Eclipse Way. In an SOA design context, the strong
emphasis on technical federation, dynamism, and
heterogeneity (as expressed as separate SSE tenets)
makes the need for supporting concepts particularly
relevant. The reuse of shared services required a sound
approach to service ownership and lifecycle
management. For instance, a particular difficulty is the
versioning of shared services that are used by multiple
consumers in different organizational domains.

4. Explicit boundaries (contracts). Services
developed with SSE methods or tools have to be
endowed with clear boundaries, which are made
explicit in the form of contracts. In particular, SSE has
to provide service contracts that capture goals and
constraints (pre- and post-conditions and invariants),
capitalizing Meyer’s classical design-by-contract
principle [16]. An intrinsic part of the service contract
entails the service interface that specifies the messages
a service understands and the service endpoints that are

29

available (structural contract). Enriching the service
interfaces with additional semantic information such as
scenarios or behaviors allows a more robust and stable
service composition (behavioral contract). In addition,
given the highly distributed and volatile nature of
service applications, there is a clear need to amend
service contracts with Service Level Agreements
(SLAs) between service consumers and service
providers which allow service consumers to express
the expected and service providers to specify the
available QoS (policy contracts). Machine-readable
contracts allow the ESB and service composition
middleware to support other SSE tenets such as
dynamism and business-IT alignment.

In the example from Section 2, each of the
rectangles representing an architectural component
may expose such contract (both in the traditional
application landscape and in the SOA).

Traditional software engineering emphasizes the
need for explicit boundaries and contracts; the tenet is
one of the key elements of OO and CBD.
Traditionally, the main focus has been the structural
contract as seen from the provider perspective. In SSE,
a particular challenge is the absence of a single
platform model defining a call stack and storage
model: It is not possible to look inside a service
implementation to verify postconditions and invariants.
However, SSE can use the principles of built-in testing
allowing for services to contain their own test
specification and enabling their run-time verification
[18].

5. Heterogeneity. Any SSE concept, method, or tool
has to embrace heterogeneity of SOA applications and
infrastructure and the context in which these
architecture elements operate. Just like dynamism,
heterogeneity impacts all phases of the service
development and maintenance lifecycle, posing
restrictions on how software services can be designed,
developed, deployed, and evolved over time. Note that
in contrast to current practices, no assumptions can be
made about the system’s programming, execution, and
management context before, during, or after
deployment. SSE has to deal with services that may be
deployed on various runtime platforms – including
mobile devices, compute clouds, and legacy systems –
and have been developed under various programming
paradigms – including OO and CBD.

In our SOA example, the user client may be a PHP
script; the process services might be executable BPEL
or BPELlight process hosted by a BPM engine; the
business activity services might be implemented as
Java or C# components; the data/resource access
services might be provided by an application server or

by ESB adapters; the database might be a relational
database; the legacy system might be a software
package (e.g., from an enterprise resource planning
vendor) or a homegrown COBOL program running on
an mainframe computer; the external system might be
a RESTful service available on the Internet; etc.

Integrating heterogeneous application landscapes is
the objective of EAI (and, to some extent, multi-
platform CBD platforms such as CORBA). SSE has to
integrate proven principles and patterns from these
fields and assets. The principles and patterns have to
be refined to take advantage of the SOA style-defining
concepts such as services, service composition into
processes, and asynchronous ESB messaging.

6. Business-IT alignment. SSE embraces a new style
of development assuming that SOA applications can be
systemically and routinely (re-) mapped to the business
processes they realize, and vice versa. This suggests
the need for a unification of concepts, models,
methods, and techniques from Business Process
Management (BPM) and software engineering to
ensure that these applications do not only meet system-
level QoS criteria, but also perform as specified in
certain business process-level Key Performance
Indicators (KPIs). The monitoring of such indicators is
referred to as Business Activity Monitoring (BAM)
nowadays.

In the example introduced in Section 2, the process
services are responsible for managing session state and
preserving process and resource integrity. The control
flows inside the executable processes have to be
aligned with the wants and needs of business users.
Selected business activity services can be instrumented
with logging features which can be used for KPI
performance management and BAM. Being aware of
all service invocations and having access to the service
contracts, the ESB can become an integral part of a
BAM solution. A key issue here is to avoid that
infrastructure elements morph into applications.

Any mature requirements engineering approach
adheres to the principle of business alignment; SSE
projects this principle to the later phases of the service
engineering lifecycle. From an architectural standpoint,
business rules provide an additional way of expressing
business semantics inside an application (architected as
an SOA or following another architectural style); such
business rules can then be used to express assertions
that help to assure that a system meets regulatory
compliance laws and other business policies (i.e.,
manage business integrity). A resulting SSE challenge
is how to integrate such business rules into the overall
service engineering lifecycle and programming model.

30

7. Holistic engineering approach. A distinguishing
“meta” characteristic of SSE pertains to its holistic
nature. More than in traditional software engineering
paradigms, SSE demands an interdisciplinary approach
towards the analysis and rationalization of business
processes, design of supporting software services, their
realization, deployment, provisioning, monitoring, and
evolution. This implies that SSE concepts, models, and
methods are integrated and that SSE tools are
interoperable, adhering to open standards and offering
integrated support for several stakeholders.

SSE concepts, models/languages, methods, and
tools can address/adhere to this tenet by combining and
integrating contributions from the fields we mentioned
as related work regarding the other six tenets.

4. SSE Research Challenges
To derive research and industry development

challenges from the defining tenets and characteristics,
a crowd-sourcing and -scoring game was conducted
during the SSE seminar at Schloss Dagstuhl. First, the
participants were asked to briefly answer the question:

What is the most important challenge of SSE?

32 participants submitted an answer. Next, these
answers served as input to a scoring game without any
upfront discussion or editing; duplicates were not
eliminated. Pairs of answers were scored against each
other in four iterations (the pairs were built randomly;
the facilitator of the game only was responsible for the
time management). The maximum score per iteration
was five points. Hence, the highest possible score was
20 points. The result of this sourcing and scoring game
is the following consolidated list of answers, ordered
by points scored:

1. Address the ‘open-world’ assumption: unforeseen
clients, execution context, usage (16 points)
2. Bridging a modeling chasm: design/develop and
delivery/execution (15)
3. ‘Open world assumption’: uncertainty (15)
4. IT-business alignment, adaptability (15)
5. Alignment of technical and business engineering for
services (14)
6. New models and abstractions to represent and
handle SOA dynamics (14)
7. To develop software without knowing in which
context it is used (14)
8. Programming models and runtime integration (14)
9. Service resilience, system level (robustness) (13)
10. The mapping from requirements to services
fulfilling them (13)
11. How to architect SOA with respect to the
heterogeneous nature; dealing with heterogeneity (13)

12. Making the leap from business service to the right
technical service design (11)
13. Alignment of business and technical SSE level (12)
14. Composability (11)
15. Testing (11)

Not surprisingly, many of these research challenges
are closely related to the SSE tenets. Table 1 loosely
correlates the 15 research challenges to the SSE tenets.
Note that SSE tenet 7 (holistic engineering approach)
pertains to all research challenges and is therefore not
included in this table.

Table 1. Relating SSE Tenets and Challenges

SSE
Tenet

Description Challenge
ID

1 Technical federation 7, 8, 9, 14,
15

2 Dynamism (virtualization) 1, 3, 6, 15
3 Organizational federation 1, 3, 7
4 Explicit boundaries (contracts) 10, 12
5 Heterogeneity 11
6 Business-IT alignment 2, 4, 5, 13,

15

From this informal cross-correlation we may
carefully draw first conclusions. It should be noted that
the level of granularity of the challenges varies; some
are very generic in nature – including challenge 1 and
3 – while others address specific problems such as
service composability and testing.

The number of challenges correlated to an SSE
tenet indicates how the participants of the game
perceive the tenet. The same holds true for the score of
the challenge, which is expressed by the challenge ID:
a small number indicates high importance.

The research challenges relating to tenet “technical
federation” include the design of service-based
applications without any knowledge about the context
in which these applications will be executed. This
research challenge is critical in open and agile service
networks, with many interactions between service
participants which are not known at design time. In
addition, there is a need for novel approaches to
integrate programming models and platforms while
processes in service networks are executed. The high
level of change in service networks also demands
services to be robust and reliable. Challenge 8 points
out that the traditional boundary between application
development and integration on the one hand and
application maintenance and change management on
the other hand becomes blurred in SSE. In response,
continuous integration, a term from agile development,
may be projected into the operations and maintenance
phase of the service development lifecycle to support

31

continuous evolution. Many backward and forward
compatibility issues have to be addressed.

The ‘open world assumption’ makes the current
architecting methods obsolete to a large extent, as they
are largely based upon a predefined organizational and
technical context. Some flexibility is taken into
account, but not nearly as much as required when
designing under the ‘open world assumption’.
Furthermore, the traditional architecture-business cycle
[19] that expresses the bidirectional influence between
the technical system and the business organization
cannot be managed using traditional architecting
methods in SSE because of the high dynamism and
heterogeneity put forward by the SOA style. Therefore
the architecting dimension of SSE needs to be
thoroughly re-considered, possibly leading to a new
architecting paradigm. Architecture knowledge
management with its focus on architectural decisions
and their rationale is an emerging sub-discipline of
software architecture that we expect to contribute
solutions to this new architecting paradigm [20].

Because of the ‘open world assumption’ and the
dynamisms of service-based applications, traditional
test methods for system development and deployment
are no longer sufficient: as not all usage contexts and
configurations can be predetermined in pre-
deployment tests setups, tests have to be extended into
the operation and maintenance of these applications.
Contract-oriented build-in tests, active online tests, and
runtime auditors and supervisors are first
developments in this direction.

5. Syntheses and Outlook
SOA-enabled applications can be developed and

evolved by applying aging software engineering
paradigms, notably CBD and OO [21]; however, such
conservative approach to SOA design and
development leads to certain liabilities that come with
these paradigms and, if done naively, a degradation of
specific quality attributes such as interoperability,
performance (response times, throughout), scalability,
and changeability (maintainability). The main reason
for these elements of risk is that conventional software
engineering paradigms typically adopt a closed world
assumption, hypothesizing that applications have clear
boundaries, and will be executed in fully controlled,
relatively homogeneous, statically assembled, and
stable execution environments. This thesis is backed
up by conclusions drawn from Boehm’s decade-to-
decade analysis of software engineering [17].

Instead, we claim that for SOA to be successful,
SSE has to embrace the ‘open world assumption’, in
which software services are composed in agile and

highly fluid service networks – that are in fact systems
of software systems – operating in highly complex,
distributed, dynamic, and heterogeneous execution
environments. In addition, the service networks that
are designed based on this assumption need to be
continuously (re-)aligned with business processes, and
vice versa. Adoption of the ‘open world assumption’ is
reflected in the seven SSE tenets, which are thus
strongly influenced by the underlying distributed
computing paradigm and architectural style, SOA.

Based on the research reported in this position
paper, we can come up with an initial definition of
SSE:

Software service engineering is the science and
application of concepts, models, methods, and tools to
design, develop (source), deploy, test, provision, and
maintain business-aligned and SOA-based software

systems in a disciplined, reproducible, and repeatable
manner.

Clearly, SSE will benefit from timeless principles
and lessons learned from its parent, software
engineering. However, we demonstrated that
traditional, computing paradigm-specific principles
and practices, e.g., CBD, have to be evaluated
carefully and, possibly, revised.

In our view, SSE will be based on standards;
solution will be frequently realized with Web services
of various kinds. Specifications such as SOAP,
WSDL, BPEL, WS-Policy, and WS-Agreement
already constitute the first step to realize the technical
aspects in some of the SSE tenets, including tenets 1,
2, 4, and 5. However, it is evident that research is
needed to more effectively satisfy the ‘open world
assumption’. This has also been reflected in the
outcome of the brainstorming session on the key open
research challenges.

The research questions that arise from the identified
challenges include, but are not limited to:

1. What are the development steps required and
patterns eligible when designing and developing
service consumers and providers that communicate
asynchronously and face a variable QoS mix?
2. How can the vision of service composition, dynamic
lookups, and runtime matchmaking be realized without
compromising the solutions found to overcome the
other challenges, e.g., testing and business alignment?
3. What is the right way of governing SOA design in
the absence of a central design authority, in particular
the ownership and lifecycle management of services?
4. How to apply design-by-contract within an
architectural style which promotes a loosely coupled,
platform-independent, and asynchronous integration

32

model which minimizes the amount of assumptions
shared by the communication parties?
5. How to leverage proven OO, CBD, and EAI
practices for SSE, for instance agile ones?
6. How to integrate business rules into an SOA and to
realize business activity monitoring in the context of
the SOA principles and patterns and the SSE tenets?
7. Which related fields can contribute to a holistic and
interdisciplinary SSE approach?

These research questions have to be answered as
SSE matures; the contribution of this position paper is
the SOA-specific selection and refinement of seven
engineering tenets and an initial discussion of related
research challenges. While none of the tenets in itself
is new, their assembly is; as we demonstrated, SOA
style-specific issues arise within each tenet. SSE as an
emerging discipline must incorporate the tenets as its
foundation and meet the related challenges.

The results presented in this article are preliminary
in nature. Further work is required in several
directions. Firstly, the list of seven tenets has to be
validated and possibly refined further. The presented
list is derived from a literature survey, and experience
from real-world SOA projects, and discussions with
leading industry experts and renowned researchers in
the field of software engineering, software patterns and
SOA. An analysis of more case studies is critical in
further validating this initial list. The workshop will
serve as a first step to achieve this. Further
consolidation of the tenets and research challenges
may lead to a future roadmap for SSE.

Acknowledgements
We would like to thank the participants of the

Schloss Dagstuhl seminar on SSE [1] for their input
and insights which made this paper possible.

References
[1] Software Service Engineering, Schloss Dagstuhl seminar,
www.dagstuhl.de/de/programm/kalender/semhp/?semnr=090
21
[2] F. Bachmann et al., Technical Concepts of Component-
Based Software Engineering, Technical Report, Carnegie-
Mellon Univ., CMU/SEI-2000-TR-008 ESC-TR-2000-007,
2nd Edition, May 2000
[3] C. Hofmeister, P. Kruchten, R. Nord, H. Obbink, A. Ran,
P. America. A General Model of Software Architecture
Design Derived from Five Industrial Approaches. J. Syst.
Softw., Elsevier Science Inc., 2007, 80, 106-126
[4] G. Alonso and F. Casati and H. Kuno and V. Machiraju,
Web Services: Concepts, Architectures and Applications,
Springer, Heidelberg, 2004
[5] B. Meyer, Object-oriented Software Construction, 2nd
Edition. Prentice Hall, 2000

[6] G. Hohpe, SOA Patterns – New Insights or Recycled
Knowledge? www.eaipatterns.com/docs/SoaPatterns.pdf
[7] M. P. Papazoglou, and W. van den Heuvel. Service-
oriented design and development methodology. Int. J. Web
Eng. Technol. Vol. 2(4), Jul. 2006
[8] M. P. Papazoglou, W. van den Heuvel, Service oriented
architectures: approaches, technologies and research issues.
VLDB J. 16(3): 389-415, 2007
[9] C. Szyperski, Component Technology: What, Where, and
How? In: Proceedings of the 25th International Conference
on Software Engineering International Conference on
Software Engineering. IEEE, 684-693, 2003
[10] P. Herzum, O. Sims. Business Component Factory. J.
Wiley & Sons Inc., 2000
[11] G. Booch, Object-Oriented Analysis and Design with
Applications (2nd Ed.). Benjamin-Cummings Publishing,
1994
[12] I. Jacobson, Object-Oriented Software Engineering.
ACM, 1992
[13] R. Popescu-Zeletin, S. Arbanowski, I. Fikouras, G.
Gasbarrone, M. Gebler, H. Henning, H. van Kranenburg, H.,
Portschy, E. Postmann, K. Raatikainen, Service
Architectures for the Wireless World. Computer
Communications, Vol. 26, No. 1, January 2003, pp. 19 – 25
[14] B. Sarikaya, Principles of Protocol Engineering and
Conformance Testing, Ellis Horwood, Series in Computer
Communications and Networking, 1993
[15] I. Schieferdecker, J. Grabowski, Advances in Test
Automation, STTT Special Issue, Springer Berlin /
Heidelberg, ISSN1433-2779, Apr. 2008
[16] B. Meyer, Object-oriented Software Construction (2nd
ed.), Prentice-Hall, Inc., Upper Saddle River, NJ, 1997
[17] B. Boehm, A View of 20th and 21st Century Software
Engineering. In Proceedings of the 28th International
Conference on Software Engineering ICSE, 12-29, ACM
Press, 2006
[18] C. Atkinson, D. Brenner, G. Falcone, M. Juhasz,
Specifying High-Assurance Services. Computer 41, 8 (Aug.
2008), 64-71
[19] L. Bass, P. Clements, R. Kazman, Software Architecture
in Practice, 2nd Edition, Addison Wesley, 2003
[20] Zimmermann O., Koehler J., Leymann F., Polley R.,
Schuster N., Managing Architectural Decision Models with
Dependency Relations, Integrity Constraints, and Production
Rules. Journal of Software and Services, Special Edition on
Architectural Decisions, Elsevier, 2009
[21] O. Zimmermann, P. Krogdahl, C. Gee, Elements of
Service-Oriented Analysis and Design, IBM developer-
Works, 2004

33

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [3600 3600]
 /PageSize [612.000 792.000]
>> setpagedevice

