
João Nuno Silva Tabar Domingos (26333)

Licenciado em Engenharia Informática

On the Cloud Deployment of a Session

Abstraction for Service/Data Aggregation

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientadora: Profa. Doutora Maria Cecília Gomes

Co-orientador: Prof. Doutor Hervé Paulino

Júri:

Presidente: Prof. Doutor Adriano Martins Lopes

Vogais: Profa. Doutora Ana Paula Pereira Afonso

Profa. Doutora Maria Cecília Farias Lorga Gomes

March, 2013

ii

iii

On the Cloud Deployment of a Session Abstraction for Service/-
Data Aggregation

Copyright c© João Nuno Silva Tabar Domingos (26333), Faculdade de Ciências e
Tecnologia, Universidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o di-
reito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação
através de exemplares impressos reproduzidos em papel ou de forma digital, ou
por qualquer outro meio conhecido ou que venha a ser inventado, e de a divul-
gar através de repositórios científicos e de admitir a sua cópia e distribuição com
objectivos educacionais ou de investigação, não comerciais, desde que seja dado
crédito ao autor e editor.

iv

Abstract

The global cyber-infrastructure comprehends a growing number of resources,
spanning over several abstraction layers. These resources, which can include
wireless sensor devices or mobile networks, share common requirements such as
richer inter-connection capabilities and increasing data consumption demands.
Additionally, the service model is now widely spread, supporting the develop-
ment and execution of distributed applications. In this context, new challenges
are emerging around the “big data” topic. These challenges include service ac-
cess optimizations, such as data-access context sharing, more efficient data fil-
tering/aggregation mechanisms, and adaptable service access models that can
respond to context changes. The service access characteristics can be aggregated
to capture specific interaction models. Moreover, ubiquitous service access is a
growing requirement, particularly regarding mobile clients such as tablets and
smartphones.

The Session concept aggregates the service access characteristics, creating spe-
cific interaction models, which can then be re-used in similar contexts. Exist-
ing Session abstraction implementations also allow dynamic reconfigurations of
these interaction models, so that the model can adapt to context changes, based
on service, client or underlying communication medium variables. Cloud comput-
ing on the other hand, provides ubiquitous access, along with large data persis-
tence and processing services.

This thesis proposes a Session abstraction implementation, deployed on a Cloud
platform, in the form of a middleware. This middleware captures rich/dynamic
interaction models between users with similar interests, and provides a generic
mechanism for interacting with datasources based on multiple protocols. Such

v

vi

an abstraction contextualizes service/users interactions, can be reused by other
users in similar contexts. This Session implementation also permits data persis-
tence by saving all data in transit in a Cloud-based repository,

The aforementioned middleware delivers richer datasource-access interaction
models, dynamic reconfigurations, and allows the integration of heterogenous
datasources. The solution also provides ubiquitous access, allowing client con-
nections from standard Web browsers or Android based mobile devices.

Keywords: Big Data, Cloud Computing, Sessions, Dynamic Reconfigurations, Mo-
bile Platforms

Resumo

Hoje em dia, existe um número crescente de recursos na ciber-infraestrutura
global, distruibuídos em várias camadas de abstracção. Estes recursos, que po-
dem incluir redes de sensores sem fios ou redes móveis, têm como denominador
comum a necessidade de mais e melhores mecanismos de interacção, bem como
uma crescente necessidade de consumo de dados. Para além destes factores, o
modelo de serviços está hoje em dia amplamente divulgado, servindo de suporte
para o desenvolvimento e execução de aplicações distribuídas. Neste contexto,
novos desafios estão a emergir relaccionados com o tópico “big-data”. Estes de-
safios incluem optimizações ao nível do serviços, tais como a partilha do contexto
de acesso a dados, mecanismos mais eficientes de agregação e filtragem de da-
dos, bem como a criação de modelos de acesso a serviços adaptáveis a mudanças
de contexto. Estas características de acesso a serviços podem ser agregadas, de
forma a capturar modelos de interacção particulares. Adicionalmente, o acesso
ubíquo a serviços é um requisito cada vez mais relevante, particularmente no
contexto de clientes móveis, tais como tablets e smartphones.

O conceito de Sessão agrega características de acesso a serviços, criando mo-
delos de interacção específicos, que podem ser reutilizados em contextos seme-
lhantes. Implementações de Sessão existentes permitem ainda reconfigurações
dinâmicas destes modelos de interacção, para que o modelo se adapte a mudan-
ças no contexto, baseando-se em variáveis relaccionadas com o serviço, o cliente,
ou o meio de comunicação. O Cloud computing por outro lado, facilita o acesso
ubíquo, e fornece ainda serviços para persistência e processamento de grandes
quantidades de dados.

Esta tese propõe uma implementação da abstracção de Sessão, instalada numa

vii

viii

plataforma Cloud, sob a a forma de um middleware. Este middleware captura mode-
los de interação ricos e dinâmicos, entre utilizadores com interesses semelhantes,
para além de fornecer um mecanismo genérico para acesso a fontes de dados ba-
seadas em múltiplos protocolos. Esta abstracção cria contextos que englobam as
interacções entre fontes de dados e utilizadores, de forma a que este possam ser
reutilizados por outros utilizadores em contextos semelhantes. A implementação
de Sessão referida permite também que os eventos sejam persistidos, ao guardar
todos os dados em trânsito num repositório baseado na Cloud.

O middleware mencionado anteriomente oferece modelos mais ricos para in-
teracção com fontes de dados, reconfigurações dinâmicas mais ricas, e permite
a integração de fontes de dados heterogéneas. Esta solução disponibiliza tam-
bém acesso ubíquo, na medida em que permite o acesso a clientes através de Web
browsers comuns, bem como através de clientes móveis baseados em Android.

Palavras-chave: Big Data, Cloud Computing, Sessões, Reconfigurações Dinâmicas,
Plataformas Móveis

Contents

1 Introduction 1
1.1 Problems . 3

1.2 Proposed Solution . 5

1.3 Contributions . 6

1.4 Document Organization . 6

2 State of the Art 9
2.1 Cloud Computing . 9

2.1.1 Advantages / Disadvantages 10

2.1.2 Cloud Computing Model . 10

2.1.3 Provider Examples . 16

2.2 Mobile Platforms . 22

2.2.1 iOS . 23

2.2.2 Android . 24

2.2.3 Mobile Platforms and Cloud Services 24

2.3 Patterns . 25

2.3.1 Object-Oriented Patterns . 25

2.3.2 Architectural Patterns . 26

2.3.3 System Integration Patterns 27

2.3.4 Patterns as Abstractions . 29

2.4 Enterprise Integration . 31

2.5 Session-Based Dynamic Interaction Models 32

3 A Middleware for Service/Data Aggregation 35
3.1 Requirements . 35

3.2 Solution Domain . 37

ix

x CONTENTS

3.3 Session Abstraction . 38
3.4 On the Use of a Cloud-Based Approach 43
3.5 Architecture . 45

3.5.1 Architecture Modules . 45
3.5.2 Architecture Extensibility . 47

4 Implementation 49
4.1 Inter-Module Communication . 50

4.1.1 Route Specification . 52
4.2 Data Source Interface . 57
4.3 Middleware Core . 59

4.3.1 Data Source Messaging Layer 60
4.3.2 Session Messaging Layer . 64
4.3.3 Client Messaging Layer . 71
4.3.4 Session Container . 74

4.4 Client Interface . 75
4.4.1 Services API . 79

4.5 Cloud Integration . 83
4.6 Web Administration . 85
4.7 Mobile Client . 89

5 Case-Study 93
5.1 Dynamic Data Driven Applications Systems 93
5.2 Urban Flooding Analysis and Monitoring 94

5.2.1 General Considerations . 95
5.2.2 Example Description . 97
5.2.3 Scenario Evolution . 98

6 Conclusions 121
6.1 Discussion . 122
6.2 Contributions . 123
6.3 Future Work . 125

List of Figures

2.1 Session concept . 33

3.1 Session abstraction . 38
3.2 The extended session abstraction . 40
3.3 Session lifecycle . 41
3.4 Solution architecture . 45
3.5 Solution architecture modules . 47

4.1 Implementation overview . 49
4.2 Camel and Esper integration . 51
4.3 Camel route lifecycle . 53
4.4 Generic route builder . 53
4.5 Camel Esper base class diagram . 56
4.6 Camel endpoint connectors . 58
4.7 Middleware core . 60
4.8 Camel data source Esper producer routes 61
4.9 Camel internal event class . 62
4.10 Data source data model . 62
4.11 Polling data source data model . 63
4.12 Event driven data source data model 63
4.13 Camel session Esper consumer routes 64
4.14 Session domain entity . 65
4.15 Dynamic Reconfiguration data model 66
4.16 Client routes . 72
4.17 UserSessionConnection data model 73
4.18 RoutesWrapper object . 75
4.19 WebSocket class hierarchy . 76

xi

xii LIST OF FIGURES

4.20 WebSocketMessage . 78
4.21 BaseBean partial hierarchy . 78
4.22 WebSocketServices . 80
4.23 SessionEventHandler . 81
4.24 ClientWebSocketContext . 82
4.25 AWS EC2 management console . 83
4.26 AWS RDS management console . 84
4.27 Web interface authentication . 85
4.28 RSS data source creation screen . 86
4.29 Twitter data source creation screen 86
4.30 Session condition creation screen . 87
4.31 Dynamic reconfiguration creation screen 87
4.32 Session creation screen . 88
4.33 Login screen . 89
4.34 Home screen . 89
4.35 Echo screen . 90
4.36 Listings screen . 90
4.37 Data source test screen - selection . 91
4.38 Data source test screen - connection 91

5.1 Humidity data source definition . 99
5.2 Normal humidity topic definition . 99
5.3 Publisher-Subscriber interaction model definition 100
5.4 Esper expression adds esper humidity precipitation data 100
5.5 Alert dynamic reconfiguration . 101
5.6 Calculate humity average every 5 minutes 101
5.7 Session definition . 102
5.8 Session operations . 102
5.9 Local authority connection definition 103
5.10 Connection detail . 103
5.11 Session monitoring screen . 104
5.12 Fire department alert dynamic reconfiguration 104
5.13 Fire department connection definition 105
5.14 Normal scenario overview . 105
5.15 Mobile session connection . 107
5.16 Mobile session events . 107
5.17 Fire department monitoring new firemen connections 107
5.18 Wind speed and direction data source addition 108

LIST OF FIGURES xiii

5.19 Emergency dynamic reconfiguration 108
5.20 Emergency dynamic reconfiguration definition 109
5.21 Alert scenario overview . 109
5.22 Local authority adds new data sources 110
5.23 Emergency scenario intermediate status 111
5.24 Disaster dynamic reconfiguration . 112
5.25 Emergency scenario overview . 113
5.26 Mobile client receives disaster notification 114
5.27 Twitter account setup . 114
5.28 Aftermath dynamic reconfiguration 115
5.29 Disaster scenario overview . 115
5.30 RSS news feed definition . 116
5.31 Ground water level values from the last hour expression 117
5.32 Back to normal reconfiguration . 118
5.33 Esper expression . 118

xiv LIST OF FIGURES

List of Tables

2.1 Cloud provider comparison . 22

xv

xvi LIST OF TABLES

Listings

4.1 Generic route builder . 54
4.2 Esper event producer . 55
4.3 Esper event consumer . 56
4.4 Session esper consumer internal route 67
4.5 Client esper queue broadcasting . 68
4.6 Session interaction retrieval . 68
4.7 Session pattern operations . 69
4.8 Session dynamic reconfiguration processing 70
4.9 Session event persistence . 71
4.10 ServerSideWebSocketHelper . 77
5.1 Email sending event handler . 106
5.2 Android client low battery event . 111

xvii

xviii LISTINGS

1
Introduction

In the online world of today, the characteristics of what is called the cyber-
infrastructure and of the resulting synergies with its users are changing at a fast
pace. The cyber-infrastructure [ADF+03] comprehends a large diversity of hard-
ware, software, and information resources, spanning several abstraction layers.
These include wireless sensor devices, mobile networks, cloud storage and com-
puting services, etc., with a common denominator - their increasing interconnec-
tion and integration being supported by high-speed networks.

In the above context, one major characteristic concerns the "big data" prob-
lem [JMB11]. Increasingly, there is more data being generated which has to be
stored, accessed, processed, and disseminated, potentially to a large number of
users, and at a global scale. On one hand, there are more sensing devices of
all types, from small cheap wireless sensing devices deployed in large scale ar-
eas [GHIGGHPD07], to mobile devices with diverse types of embedded sensors
[LML+10], or to wide-scale sensors in satellites. Additionally, applications in
many areas are also generating and processing large amounts of data like sci-
entific/engineering applications [CFK+00], but also business applications (e.g.
e-commerce/recommender systems [KR12]) including in the novel area of social
networks applications [Gao12]. Likewise, users themselves are demanding more
information access, either based on fresh data and/or on accumulated histori-
cal data, and with a specific Quality of Service (QoS) in terms dependability (e.g.
providing availability, reliability, maintainability, and security concerns) but also
response times.

1

1. INTRODUCTION

On the other hand, the challenges concerning big data mining and processing
and large scale data access, require high-performance/high-throughput capabil-
ities’ support (which may include co-locating data and processing code), also to
respond to peaks, both of data production and on data access interest from user-
s/applications. Forms of timely data delivery, and in a way which is perceived
as ubiquitous, are hence required for modern applications and users. Moreover,
applications and users demand also novel ways on data access and composition
(e.g. [FDFB12, LBC10]), including real-time data incorporation [Dar10]. Addi-
tionally, the service concept has been extensively used as an uniform and sim-
ple way of providing access to the diverse entities of the cyber-infrastructure
and to compose them. The trend on XaaS (i.e. providing everything as a ser-
vice) spans the representation of wireless sensor devices as services [KBLK07],
the access to federated computational resources (e.g. Grid computing services
[Fos06]), to full-fledged remotely accessed applications (e.g. Software as a Ser-
vice [TBB03, CC66]).

Cloud computing, provides interesting solutions concerning large scale data
and processing capabilities, and provides economies of scale, from resource shar-
ing (which, for instance, is essential for scientific data sharing since it is infeasible
to move large amounts of data frequently), to on-demand resource provision-
ing (e.g. dynamic allocation of computational resources to serve peak requests).
Cloud computing can be seen as the on-demand delivery of resources and appli-
cations, existing in a Cloud, which are accessed as services, hiding the underlying
physical and operational resources [Gro10, JNL10]. A Cloud, in turn, can be per-
ceived as a distributed system, backed by hardware and virtual machines, which
can be dynamically allocated or released, and which are presented as a unified
resource.

Applications that use Cloud services take advantage of features that are usu-
ally only available in large data centers. These features include automatic re-
source scaling1, data replication and disaster recovery processes. Moreover, Cloud
computing services offer resource elasticity, supporting elastic storage or dynamic
resource allocation on application usage. Associated with high availability, these
applications are accessed ubiquitously, specifically regarding mobile clients inter-
actions such as smartphones and tablets. In this context, users are provided with
ubiquitous access to resources, and mobile users in particular, benefit from Cloud

1Resource scaling refers to the process of adding resources when they are needed (up-scaling)
or removing them when they are not needed (down-scaling)

2

1. INTRODUCTION 1.1. Problems

computing support as a widely available backend storage and computational in-
frastructure.

1.1 Problems

Although Cloud computing provides a sound support on large-scale storage
and computational capabilities, several open problems can still be identified in
terms of data/service management and from the user perspective on service/-
data access.

First, data management problems include the need to store data, but also share
its access, since it is unfeasible to frequently move large amounts of data (e.g.
scientific data on the human genome decoding is of interest to a large number of
scientists world-wide). Resource sharing, not only of data storage but also of pro-
cessing power, is hence essential to up port cost effective applications. Namely,
the data processing applications, in particular, can be moved near the data, in or-
der to avoid big data transfers whenever possible. Likewise, the reuse of similar
big data mining functions (e.g. over the human genome) which are applicable in
similar applications, as well as the sharing of such data processing to users/ap-
plications with similar interests, is necessary in order to reduce costs, processing
times, and CO2 emissions.

Second, the large number and diversity of possible data sources, e.g. from
wireless sensors, entities in the Internet of Things domain, Web applications like
HTML pages, RSS feeds, etc, require a uniform access support that may simplify
the development of applications that require access and aggregation of several of
such data sources. Moreover, the provision of such uniform access, may allow
the application of custom defined filters to the acquired data (e.g. application of
co-relation functions to data sensing values on temperature and humidity and
the topology of the area where those values are collected).

Third, many of the cited data sources produce data streams, over which con-
tinuous filtering has to be performed (e.g. real time data mining on users’ in-
terests from tweets), either independently over individual data sources or over
different streams. Data streams’ clustering may also be of interest to different
users, e.g. over the same period of time. However, in case the data sources do
not produce a continuous flow of data, for instance if they are based on the Clien-
t/Server model, user applications have to continuously interrogate those sources if
they are to produce a continuous flow of data. Again, different applications with
interest in the same data sources would benefit from a common service providing

3

1. INTRODUCTION 1.1. Problems

the same data, without the need to individually interrogate the service continu-
ously. The problem is aggravated if the continuous data access requests degrade
in some way the data service, e.g. wireless sensor devices have limited autonomy.
Data access sharing is hence beneficial in this case, and for the same reasons, se-
lecting an adequate access model depending on the situations, is also beneficial.
For instance, it would be useful to interrogate the service with lower periodicity,
if the information provided is no longer urgent. Richer interaction models on
service access like Publish/Subscriber (for notification of subscribed data) or Pro-
ducer/Consumer (producers and consumers do not have to coexist) are interesting
options on adapting data access and dissemination to specific context needs.

Fourth, mobile devices are here to stay, and may be themselves sources of data
which also has to be managed, but in spite of their limited processing and stor-
age capabilities, they are increasingly used as a front end to distributed services,
including on big data management. Although Cloud computing is the backend
solution for mobile devices on ubiquitous data storage and processing capabili-
ties, many wireless connections still experience frequent problems and provide
a more reduce bandwidth. Problems on data dissemination optimization, e.g.
based on mobile devices location and/or common data interests, still have to be
considered.

Fifth, the user perspective/interests on data access, processing/aggregation
and sharing have to be taken into account. Users not only want to access large
quantities of data and be provided with timely extracted knowledge from it, but
they also want to share that data and knowledge. Social applications are changing
the way entertainment but also business is perceived, and they are one of the
sources of the large amounts of data to be processed/mined. Providing users
with filtering data mechanisms that they can tune according to their needs, as
well as context sharing among users, it is a pressing need for today.

Finally, dynamic adaptation in the above context is still an open problem.
On one hand, it is necessary to allow the dynamic modification of which ser-
vices/data sources to access at any time, depending on the necessities. Moreover,
the aggregation/filtering functions should be also dynamically adaptable both
to novel data sources as well to users’ requirements. Such modifications should
be allowed both on-demand but also be automatically triggered, avoiding an ex-
plicit interaction with users/applications. Rule-based systems, for instance, al-
low the inclusion of new rules tuned for new requirements, and also support an
automatic triggering of the dynamic reconfigurations. On the other hand, dy-
namic adaptation is also necessary in terms of which users/applications may be

4

1. INTRODUCTION 1.2. Proposed Solution

interested on which services/data at any time. The interaction models in use to
support data dissemination also have to be dynamically reconfigurable according
to data sources’ values, communication status or specific user related variables.

1.2 Proposed Solution

This work proposes a Cloud-based Session abstraction as a way to capture
the interaction of a set of users, with similar interests on the access to a set of
data sources. The Session abstraction provides the access to different types of
data sources via an uniform access, and supports a rule-based system on events’
processing. Data is disseminated to users in the session according to specific
interaction models like Publish/Subscriber, Producer/Consumer or Streaming.

The Session abstraction can be reused for similar contexts/applications, and
can be shared by different users supporting hence a common environment, as
well the reuse of the data access definitions. Additionally, the Session is persis-
tent in time, allowing data received from accessed data sources to be stored in a
repository, as well as data pertaining the state of the session itself (e.g. how many
users exist at any point in time) and any other generated events (e.g. reconfigu-
ration notifications like a new client joining the session). Namely, Session clients
may inspect the saved data at anytime.

Moreover, the Session abstraction captures the available dynamic reconfigura-
tion capabilities. These include the possibility to modify the accessed data sources
and the interaction model for data dissemination, as well the rules filtering data
and the rules that trigger the dynamic reconfigurations themselves (e.g. switch-
ing from a Publish/Subscriber model to a Streaming model). The implemented in-
teraction models are based on the pattern concept and with well-defined reconfig-
uration possibilities which are conform to the patterns’ semantics. For instance,
it is possible to implement intra-pattern modifications like tuning the rate of the
Producer/Consumer interaction module, and switch the interaction module of the
session itself, meaning that all clients will possess the same role within the pat-
tern (e.g. on switching a Session to a Producer/Consumer model, all clients become
consumers).

Finally, being deployed in the Cloud, standalone and mobile clients may ac-
cess the Session context, with guarantees on ubiquitous access, storage scalability,
and data persistence.

5

1. INTRODUCTION 1.3. Contributions

1.3 Contributions

Most of the contributions of this thesis are related to the Session abstraction
implementation and a Cloud-based middleware.

• A Cloud-based middleware for the Session abstraction: middleware Cloud de-
ployment, with Session abstraction support;

• Heterogeneous datasources: integrate datasources using multiple protocols in
the Session context;

• Session/client level interaction models: interaction model definitions at Session
or client level;

• Rule-based dynamic reconfigurations: automatic dynamic reconfiguration ca-
pabilities via a rule-based system, which can be applied at Session or client
level;

• Repository and session replay: session events storage and replay functionality;

• Richer aggregation functions: aggregation functions that allow further defini-
tions, other than datasource selection;

• Ubiquitous clients: allow client access using different approaches, such as
Web browsers or mobile devices;

This thesis work offers richer interaction models, by using a Session abstrac-
tion implementation, which are accessible through a Cloud-based middleware.

1.4 Document Organization

The document structure is organized in six chapters. A description for each of
these chapters follows.

• Introduction in Chapter 1 describes the thesis context, motivation and prob-
lem. This chapter also describes the proposed solution and enumerates the
thesis contributions.

• State of the art in Chapter 2 describes the technological areas related to
the thesis. Each area will be relevant to one or more steps of the solution
implementation.

6

1. INTRODUCTION 1.4. Document Organization

• A Middleware for Service/Data Aggregation in Chapter 3 provides a high
level view of the proposed solution. The architecture details are discussed
and the major components are analyzed.

• Implementation in Chapter 4 provides a detailed description on the so-
lution implementation, including the technologies used and how they are
interconnected. All the major modules and components are described in
detail as well as some of the most important processes.

• Case-Study in Chapter 5 includes a detailed scenario that showcases the
more relevant features of the implemented solution.

• Conclusions in Chapter 6 describes the case-study results and how they
respond to the problems and challenges raised in the introduction. The
chapter also recapitulates the thesis contributions and scopes some possible
future work in this area.

7

1. INTRODUCTION 1.4. Document Organization

8

2
State of the Art

This chapter describes the current state of the art and work of the areas related
with this thesis, mainly, cloud computing, mobile platforms and patterns. The
last section, in particular, describes solution considerations about how the state
of the art sections relate to the proposed solution.

2.1 Cloud Computing

The expression cloud computing gained particular media attention in 2006 when
Amazon launched the Amazon Elastic Computing Cloud [Ser] (EC2) service. From
then on, many companies launched their own services, sometimes re-branding
existing products to compete in the growing cloud computing market. Many
aspects of cloud computing were already in use in large datacenters as a way
of assuring scalability and reliability [Gro10, JNL10]. Some companies saw an
opportunity to profit from the existing resources and created services allowing
clients to access the capabilities of their clouds. Consequently, companies found
a way to lower their datacenter costs, and the clients gained access to the capa-
bilities of large datacenters. Cloud computing services are closely related to the
everything as a service (XaaS) concept [AFG+09, Hog11].

9

2. STATE OF THE ART 2.1. Cloud Computing

2.1.1 Advantages / Disadvantages

One of the main advantages of cloud computing is the possibility to develop
and deploy applications quickly, without prohibitive start-up costs, and with
minimal logistics [JNL10]. Users do not need to scale their systems for peak sit-
uations usage because clouds adapt dynamically either by up-scaling1 or down-
scaling2 resources, and billing is proportional to resource usage3. Such storage
and processing scalability allows for applications to quickly respond to new busi-
ness and operational requisites, and therefore, cloud-based applications can be
easily accessed from the internet using a browser and can have a higher average
up-time.

Cloud computing disadvantages include an increased dependency of network
connection availability - since data transfers through the internet are usually slower
than transfers in private networks, the data transfers in cloud-based applications
can become a bottleneck [AFG+09]. Moreover, when subscribing to cloud com-
puting services the organizations migrate internal data and processes to the cloud
provider infrastructures which can raise a number of security and privacy is-
sues. Additionally, one of the main aspects still to be improved in cloud comput-
ing is standardization and the various providers of cloud computing should in
the future follow common standards to promote interoperability and portability
[BYV08, Hog11]. Users nowadays cannot easily migrate between providers, spe-
cially if the systems were developed using proprietary tools. This causes vendor
lock-ins and prevents a free market where users can effortlessly change providers
if a more competitive product is available.

2.1.2 Cloud Computing Model

The cloud computing model [Hog11, AFG+09, JNL10] involves three major ac-
tors (Providers, Brokers and Consumers), three deployment models (Private, Public
and Hybrid clouds) and three delivery models (SaaS, PaaS and IaaS). Additionally,
the main characteristics of cloud computing can be grouped into three categories
: Non-functional, Technological and Commercial.

1Up-scaling refers to the dynamic increase of resources.
2Down-scaling refers to the dynamic decrease of resources.
3Cloud billing takes into account impacts all the dynamically allocated resources.

10

2. STATE OF THE ART 2.1. Cloud Computing

2.1.2.1 Actors

The provider owns the datacenters on which clouds are based and offers ser-
vices to access them. These offers take the form of SaaS, PaaS or IaaS.

The broker uses provider services to build its own cloud services. These ser-
vices can extend the capacities of existing services or aggregate multiple existing
clouds and present them as a single interface. The broker acts as an intermediate
between the provider and the consumer.

The consumer makes use of clouds to optimize internal processes, optimize
business needs or develop applications that take advantage of clouds. If the
consumer develops applications that provide cloud services, he can become a
provider as well.

2.1.2.2 Deployment Models

In private clouds an organization installs and maintains its own infrastructures
and uses cloud computing technologies to implement a cloud according to their
needs. This approach provides maximum flexibility on choosing which infras-
tructure and levels of service are available. However, the organization must han-
dle all performance and scalability issues having full control over its data and
processes.

In public clouds providers allow public access to their clouds. Users avoid the
costs and logistics of installing and maintaining the infrastructure. This approach
does not require the user to handle performance and scalability issues and allows
the services to be accessed immediately. Service level agreements (SLAs)4 are
defined according to business needs. Public cloud users loose some degree of
control over their data and applications since they do not directly control the
resources involved.

Hybrid clouds combine private clouds and public clouds. Organizations that
own private clouds can extend their capacities with existing public clouds. In
this approach, the organizations can keep sensitive data and processes in their
private cloud and delegate the remaining data and processes to one or more pub-
lic clouds. Such allows benefiting from the cloud performance and scalability
while keeping full control over a selected number of resources.

4SLAs are client-provider agreements that define the service delivered.

11

2. STATE OF THE ART 2.1. Cloud Computing

2.1.2.3 Delivery Models

There are three distinct service levels currently available in cloud computing
[Hog11, AFG+09, JNL10]: software as a service, platform as a service and infras-
tructure as a service. The Software as a Service model was already familiar before
cloud computing5 but the Platform as a Service and Infrastructure as a Service are rel-
atively new and are more closely related to the "utility computing" concept since
they provide access to computing resources in a way similar to common utilities
like electricity and water.

Software as a Service (SaaS)

The SaaS concept and its advantages are well known [JNL10, Lou10]. An or-
ganization develops an application and controls the maintenance and versioning
process providing only a frontend to the user. The application can be accessed
from anywhere as long as a network connection is available and there is no need
for application specific installation processes, a simple browser is generally suffi-
cient. The data used by the applications can be safely stored in the cloud. At this
level, users access full applications as services and pay for a subscription. Most
of these applications do not allow a high level of customization. The customiza-
tions available are usually similar to adapting a generic business application like
an enterprise resource planning (ERP) application to the specific business needs.
However the application itself can be a high level software development platform
in which case a much higher level of customization is possible (ex. Force.com).
Cloud computing did not change the concept of SaaS but allowed for SaaS solu-
tions to be developed and deployed more quickly and with lower costs by using
PaaS and IaaS solutions.

Examples of SaaS include Google Apps [Goob] or Salesforce CRM [Sal]. Google
Apps is an application suite that includes an email client (Gmail), office produc-
tivity suite (Google Docs), or a calendar application (Google Calendar). Sales-
force CRM is a costumer relationship management application delivered by Sales-
Force.com, designed for backing sales businesses. The application centralizes con-
tacts, customer accounts, and generates reports and business analysis.

5SaaS concept is well known in Service-oriented architectures (SOA).

12

2. STATE OF THE ART 2.1. Cloud Computing

Platform as a Service (PaaS)

In PaaS, users access a development platform on which they can develop and
deploy their applications in the cloud. PaaS providers deliver a set of develop-
ment tools or an interface that allows the user to choose the tools from a pre-
defined set. These tools can include application servers, database systems, and
programming languages. Applications can be quickly developed and automat-
ically benefit from dynamic or programmatic scalability, and the reliability of a
robust datacenter. PaaS providers usually offer APIs so that the developer can
access Cloud resources like databases, message queues, and file storage. Usually
there are some development restrictions such as incompatible libraries or limited
access to the file system. This approach is best suited for users who want to focus
on the solution implementation, ignoring the platform specific issues.

Examples of PaaS include Google App Engine [GAE] or Red Hat Openshift [Hat].
The Google App Engine allows developing applications written in Java, Python, or
Go. Access to the file system is read only, and Java applications cannot start new
threads. These limitations can be overcome to a greater extent by using the Google
App Engine datastore and Google Task Queues services. The Red Hat Openshift is
a PaaS layer on top of the Amazon Web Services. Openshift allows to develop
applications written in Ruby, PHP, Java, Perl, or Python. The user can also select
the database between MySQL, SQLite, MongoDB or Membase.

Infrastructure as a Service (IaaS)

At IaaS service level, users access computing, networking, and storage re-
sources in order to deploy their applications. These resources can be physical
but are mostly virtualized. This approach allows maximum flexibility because
in most cases the user accesses a virtual machine on which it can install all re-
quired libraries and tools. IaaS providers may impose restrictions on the type
of VM supported such as imposing a specific operating system. Some providers
may or may not provide parallelism for applications running in the cloud. The
persistence of data stored in VMs may also vary between providers. The main
resources available in IaaS are virtual machines and users usually have access to
a set of tools for monitoring and resource provisioning. New virtual machines
can be assigned on demand and quickly started according to user needs.

Examples of IaaS include Amazon Elastic Compute Cloud (EC2) [Ser] or Rackspace
Cloud Servers [Rac]. Amazon EC2 offers machine instances from several categories
according to business needs - from micro instances that are suited for small to

13

2. STATE OF THE ART 2.1. Cloud Computing

medium websites, to cluster compute instances suited for high performance com-
puting. The instance creation and management process is performed using a spe-
cific web interface. The instances can be accessed by connecting to the virtual
server using a regular SSH client. Rackspace Cloud Servers offers offers a similar
service to Amazon EC2.

2.1.2.4 Model Characteristics

There are several non-functional, technological and commercial aspects in the
Cloud Computing model [Lou10, Gro10].

Non-Functional Aspects

Agility and elasticity describe the ability to continuously adapt to context changes.
These changes can be new performance demands, data storage needs, or any
other kind. Clouds offer this adaptability by implementing horizontal and ver-
tical up-scaling and down-scaling. Horizontal scaling changes the number of
instances while vertical scaling changes each instance capacities. These charac-
teristics allows clouds to build an illusion of infinite resources.

Clouds offer reliability and availability by guaranteeing that systems have a
high up-time and high fault tolerance. This is achieved mainly by complex re-
dundancy mechanisms that allow systems to operate regardless of most critical
hardware or software errors. Redundancy also allows for most maintenance tasks
to occur without disrupting the services.

Cloud providers define a level of quality of service (QoS) for their cloud service
products. The parameters involved can be response times, data throughput, up-
time, concurrent connections, or custom parameters agreed with the clients. All
of these parameters can be described in SLAs that describe the service delivered.

Technological Aspects

Virtualization is a fundamental aspect of cloud computing since it provides
the ability to deliver multiple virtual resources in a single physical resource. This
process is transparent to the user and is responsible for the quick up-scaling and
down-scaling provided by clouds. Virtualization also offers users the flexibility
to choose the hardware characteristics of their resources in order to fulfill the
needed requirements.

Multitenancy is the process of sharing the same instance among different users.

14

2. STATE OF THE ART 2.1. Cloud Computing

This is an important aspect of cloud computing because, similarly to virtualiza-
tion, it allows providers to have multiple clients using a single physical resource
optimizing usage rate. Using virtualization does not necessarily mean that a sin-
gle instance of a virtual machine is delivered to each client. In a cloud context, it
is possible that a single instance, or a virtual machine, is shared among several
users. This process, like virtualization, is transparent to the user. Multitenancy
raises some complex data protection and sharing issues that must be efficiently
addressed by cloud providers.

Cloud providers supply specific Application Programming Interfaces (APIs) and
Software Development Kits (SDKs). These tools allow developers to access each
provider’s services like databases, file storage, or message queues. They also pro-
vide mechanisms to deploy the applications in the cloud. Since there is no stan-
dard for developing these APIs and SDKs, applications developed using these
tools are not easily migrated to other cloud provider platforms.

Metering is also one main characteristic in cloud computing because it pro-
vides the metrics to bill the service usage and it allows users to better understand
the applications behavior. Although metering is mainly a commercial aspect, it
also concerns technological aspects, e.g. complex software processes are neces-
sary to efficiently measure the resource usage.

Commercial Aspects

Cloud computing development is commercially driven. Providers reduce
costs and profit from their existing infrastructures. Cloud users minimize costs
by avoiding resource and maintenance expenses, reducing the time needed to
deliver applications, and only paying fees proportional to resource usage.

The pay per use approach is one of the main economic characteristics of cloud
computing - users do not have to invest on acquiring resources since they can
agree with a cloud provider which resource package6 they prefer and pay a sub-
scription proportional to resource usage.

Time to market can be a fundamental success factor, specially for small and
medium companies. Cloud services shorten time to market by allowing develop-
ers to focus on the solutions without spending time and effort on infrastructure
and logistics issues.

Service Level Agreements (SLAs) define the relation between the provider and
the consumer [Gro10]. SLAs define which service package is delivered, describe

6The resource package can include instances of virtual machines, databases, message queues
among other resources.

15

2. STATE OF THE ART 2.1. Cloud Computing

each service, define the provider and consumer responsibilities, lists which met-
rics should be evaluated or which auditing mechanisms will be used. It should
be clear how the SLA will evolve over time and what are the consequences if the
agreement is not followed.

2.1.3 Provider Examples

Two of the most established cloud service providers today are Amazon with
their Amazon Web Services (AWS) [AWS], and Google with the Google App En-
gine (GAE) [GAE]. This chapter focuses on these two solutions and provides
an overview of the main services available in each one. The analysis for each
provider will be organised in the following topics: Storage, Messaging, Security,
and Monitoring.

2.1.3.1 Amazon Web Services

Amazon was one of the first cloud computing providers with the Amazon Elas-
tic Compute Cloud (EC2) service. Since then Amazon has added many services
to the Amazon Web Services solution. As the name implies, Amazon Web Services
[AWS] provides most of the services through web services. Most of the ser-
vices can be used independently in a standard application simply by creating
an AWS account and using the service web service interface. This allows the user
to choose which degree of commitment that his application will have with the
AWS. Even though this flexibility exists, most of these services are optimized to
work with other AWS services.

Examples of these optimizations are near LAN speeds guaranteed between
EC2 instances and other services like SimpleDB or Simple Queue Service, or the
integration of most AWS services with the Amazon user authentication system
(used on Amazon itself). The base of the AWS products is the Amazon EC2 which
provides virtual instances with multiple configurations. This product fits the In-
frastructure as a Service (IaaS) paradigm. More recently Amazon launched the
Amazon Elastic Beanstalk which provides a Platform as a Service (PaaS) layer on top
of Amazon EC2 instances and the other AWS services. Many AWS services allow
the user to select in which region the se rvice will be deployed. This can be used
to improve application latency or to address legal requirements regarding data
location.

16

2. STATE OF THE ART 2.1. Cloud Computing

Storage

Amazon SimpleDB is a distributed, highly available non-relational database,
based on key-value pairs that provides automatic indexation, and secure https
connections. Amazon Simple Storage Service (S3) is a cloud file storage ser-
vice that allows file sizes from 1 byte to 5 terabytes and offers SOAP or REST
interfaces. Amazon Relational Database Service (RDS) is a relational database
service that allows access to cloud-based MySQL and Oracle database instances.
Amazon Elastic Block Storage (EBS) is a virtual storage volumes system that of-
fers unformatted virtual drives from can be formatted and can support any type
of file system. The volume size can vary from 1 gigabyte to 1 terabyte. Amazon
ElastiCache is a in-memory cache service compliant with Memcached7.

Messaging

Amazon Simple Queue Service (SQS) is a highly available, and reliable mes-
sage queue system in which the queues can be anonymous, shared with another
AWS accounts, or restricted to certain ip ranges. Amazon Simple Notification
Service (SNS) is a publisher-subscriber based message delivery service that uses
a "push" based notification system and supports many protocols such as HTTP,
EMAIL, or SMS. Amazon Simple Email Service (SES) is a transactional mailing
system that allows the basic send and receive operations with multiple recipients.
Users can send raw or SMTP mails as well as define the mail headers and MIME
types.

Security

AWS Identity and Access Management (IAM) is the Amazon user authenti-
cation system. Most of the AWS services offer integration with IAM. The user can
control how the application resources are accessed based on several conditions
that include the user account, the access time or ip address. The access can also
be restricted to https. The users can be arranged into groups to easily centralize
the security policy.

Monitoring

Amazon CloudWatch is the AWS application monitoring service. Cloud-
Watch can be used in the application directly using the API or can be used through

7Memcached is a widely used free, open source, high-performance, distributed memory object
caching system.

17

2. STATE OF THE ART 2.1. Cloud Computing

the Administration Console screen in the AWS website. In this screen, the user
can visualize graphics for the selected metrics and statistical information. The
user can define alarms based on conditions involving certain metrics. These
alarms can trigger actions like up-scaling or down-scaling resources. The user
can obtain values and statistical information on a variety of metrics involving
each one of the AWS services used.

Development

When developing applications using the Amazon Web Services, the user can
choose different approaches with a variable degree of AWS coupling. One loosely
coupled method is to develop a standard application, just as if no cloud services
would be used, but using only certain AWS services such as a cloud database
or message queue services. This can be accomplished by using the web service
interface for the specified services. Another method, more coupled to AWS, is
to install a development environment on a Amazon EC2 instance and develop
the application using this environment. In this approach the application is fully
deployed in the cloud and the other AWS resources can be accessed with optimal
performance.

The user can also choose a PaaS approach by using the Elastic Beanstalk to
deploy a pre-configured development platform. In this approach it is not nec-
essary to configure a development environment but the user has to choose from
predefined environment configurations. Amazon Elastic Beanstalk is a PaaS so-
lution based on EC2 instances that guarantees automatic load balancing, scaling,
and monitoring. Amazon provides a SDK for developing application using Java,
Ruby, Python, PHP and .NET programming languages. There is also an SDK for
developing mobile application for Android or iOS.

2.1.3.2 Google App Engine

Google App Engine (GAE) [GAE] is a Platform as a Service (PaaS) provided by
Google. The underlying resources are transparent to the user which only needs
to care about the development. Issues such as resource management, platform
configuration, application scaling, and backups are automatically managed by
the service.

18

2. STATE OF THE ART 2.1. Cloud Computing

Storage

Memcache is a high performance, distributed memory caching system, that
supports JCache8. Datastore is a non-relational, transactional, distributed database
service built on top of BigTable9, that supports JDO10, and JPA11. Blobstore is a
large object storage service, where the maximum size of each object is much larger
than for Datastore.

Messaging

Task queues is an asynchronous processing queues service. Tasks can be
scheduled to run at a specific time or can run in user defined intervals. Task
queues can be Push queues (default) or Pull queues.

• Push queues tasks are executed at a predefined rate defined by the user. In
push queues, when a task is added, a user defined action is executed (usu-
ally a http request), preventing periodic polling for new tasks. In push
queues, GAE automatically scales processing according to the processing
volume and deletes the tasks after processing.

• Pull queues allow the user to define workers that periodically monitor the
queue and consume new tasks. With pull queues it is possible to interact
with non GAE based applications using the experimental Task Queue REST
API. In pull queues the application itself is required to handle resource scal-
ing and task deletion tasks.

Mail is a mail messaging service. It is possible to send emails on behalf of the
application administrators or on behalf of google account users. XMPP is a chat
message processing service. It allows applications to send and receive chat mes-
sages, send chat invitations and request user status, among other features. URL
Fetch is a http communication service that allows GAE applications to commu-
nicate with other web resources through http and https requests and responses.
Channel is a server to client communication service. When using Channel the
application creates a persistent connection with the Google servers which allows
to send messages to javascript based clients.

8Java Specification Request 107 (JSR 107): JCACHE - Java Temporary Caching API
9BigTable is a compressed, high performance, and proprietary database system built on Google

File System (GFS)
10Java Specification Request 243 (JSR 243): JavaTM Data Objects 2.0 - An Extension to the JDO

specification
11Java Specification Request 317 (JSR 317): Java Persistence 2.0

19

2. STATE OF THE ART 2.1. Cloud Computing

Security

A GAE application can be accessed by anonymous users or can have restricted
access. For restricted access the applications can use the Users API. Users API is
an access management service which provides three distinct authentication meth-
ods. Users can be authenticated by their global google account, by a domain
specific account, or by an OpenID identifier.

Monitoring

Administration Console is a web interface for application management. From
this interface it is possible to create new applications, configure domain names,
manage application versions, select the active version, go through application
logs, or consult the application datastore. AppStats is a API call monitoring tool.
By monitoring all API calls it is possible to have statistical information regard-
ing all of GAE services. This tool can be accessed from within the application or
by using the provided rich web interface which allows users to visualize statis-
tical information. Datastore Statistics allows applications to check the amount
of data stored in the Datastore, check the total number of items, and review the
most recent updates. Prospective search allows applications to register a number
of queries that are simultaneously matched against a set of input documents. The
matched documents are defined by the user.

Development

Google App Engine currently allows developers to use Java, Ruby, Python, and
Go programming languages. Java based GAE applications are based on Servlets
and JSPs. Developers can use their own domains or choose a free name from the
"appspot.com" domain to host their apps. GAE provides an SDK for each spec-
ified language which includes a sandbox for local development and testing that
simulates the real GAE application environment. GAE applications run in an
isolated executing environment where the underlying resources and execution
detail are transparent to the user. However the above execution environment
has some limitations. Namely, applications can only contact other applications
through the internet by using URL Fetch or Email services; Additionally, appli-
cations can only be contacted by receiving http and https requests on standard
ports; Moreover, processing can only be triggered by web requests or executing
tasks and each request must be answered within 30 seconds.

20

2. STATE OF THE ART 2.1. Cloud Computing

GAE applications can include source files, static files, deployment descrip-
tors, and other configuration files in a standard WAR structure. GAE uses a cus-
tomized JVM that allows developing in Java 5 or 6. However, GAE JVM imposes
the some restrictions: sockets are not allowed; it’s not possible to write in the
filesystem; threads cannot be explicitly launched by the application; each request
must be answered within 60 seconds; and JNDI access is not available.

2.1.3.3 Comparison

In the storage section, AWS offers a relational database service (Amazon RDS)
that can be very useful when migrating existing applications to the cloud. Both
AWS and GAE offer a non-relational database service (Amazon SimpleDB and
Google Datastore), file storage services (Amazon S3 and Google Blobstore), and
both include a memory caching services (Amazon ElastiCache and Google Mem-
cache).

In the messaging section, both cloud platforms offer an asynchronous queue
service (Amazon SQS and Google Task Queues) and an email service (Amazon
SES and Google Mail). Amazon provides a generic notification service (Amazon
SNS) supporting multiple protocols such as HTTP or SMS, while GAE provides
the XMPP service that is specific to the XMPP protocol as the name implies. Addi-
tionally GAE includes Channel, a specific server to client communication service
which is useful for rich javascript client applications that need data refreshing.

In the security section, both solutions allow the applications to use the providers
underlying authentication system (Amazon IAM and Google Users).

In the monitoring section, Amazon offers CloudWatch which is a comprehen-
sive metric based monitoring service that provides fine grained statistical infor-
mation on each AWS resource. CloudWatch can be used for global statistics and
quota usage information, as well as real time application usage. GAE includes
AppStats which is an API calls resource monitoring system that allows devel-
opers to identify which calls are using most of the application resources. GAE
also includes Datastore Statistics which allows developers to access current and
global database statistics. However, GAE does not provide a specific quota sta-
tus service to monitor each resource quota individually. GAE offers Prospective
Search which can be used for monitoring purposes, nevertheless, this is not a
pure monitoring feature, .

In the development section, both services include SDKs for multiple program-
ming languages and mobile development both in Android and iOS. Amazon Web

21

2. STATE OF THE ART 2.2. Mobile Platforms

Services allows developers to use only specific services without a full commit-
ment to AWS. Google App Engine requires the application to be deployed in the
GAE environment to take advantage of the services.

In Table 2.1 we can find an overview of the main services and features for both
providers in each category:

Amazon Web Services Google App Engine
Storage SimpleDB; Simple Storage

Service (S3); Relational
Database Service(RDS);
Elastic Block Storage
(EBS); Elasticache

Datastore; Blobstore;
memcache

Messaging Simple Queue Service
(SQS); Simple Notification
Service (SNS); Simple
Email Service (SES)

Task Queues; Mail; XMPP;
URL Fetch; Channel

Security Identity and Access Man-
agement(IAM)

Users API

Monitoring CloudWatch AppStats; Datastore Statis-
tics; Prospective Search

Development Possible to use only spe-
cific services

Deploy needed to use GAE
services

Table 2.1: Cloud provider comparison

2.2 Mobile Platforms

Mobile devices and tablets are becoming common in modern society in what
can be seen as a manifestation of ubiquitous computing, with mobile device own-
ers demanding internet connectivity everywhere and as many associated related
services as possible. In this context of global connectivity mobile devices are be-
coming prominent computing service consumers in general, and of cloud com-
puting service clients in particular.

Mobile devices have evolved largely in recent years. Hardware advances such
as faster processors, better screen resolutions, or larger memories, augmented the
functionality of these devices to a point where, nowadays, their capabilities are
comparable to many laptop computers.

Parallel to these hardware advances, the operating systems have also evolved
and the struggle to gain advantage in this growing market has distinguished
two companies: Apple with iOS [Appb] and Google with Android [Gooa]. Each
of these companies has developed its own mobile operating system and this is,

22

2. STATE OF THE ART 2.2. Mobile Platforms

nowadays, one of the main criterias consumers look for when selecting a mobile
device.

2.2.1 iOS

Apple introduced iOS [Appb] with the release of the first iPhone in January
2007. The operating system was built based on the existing Max OS X that Apple
used in its laptop and desktop computers, and it is currently used in the iPhone,
iPod Touch, and iPad devices. The operating system includes a number of core
applications such as the Phone, Mail, and Safari browser applications. The most
recent iOS version is iOS 5.0.1 (9A406) and was released in December 12, 2011.

Native applications are created using the iOS system frameworks and the
Objective-C language. Native applications are installed physically on a device
and they reside next to other system applications. Applications and user data
can be synced through iTunes. The iOS Software Development Kit contains all
the tools and interfaces needed to develop, install, run, and test native iOS appli-
cations.

Similarly to Mac OS X, iOS acts as an intermediary between the underlying
hardware and the applications that appear on the screen. Native applications
communicate with the hardware through a set of well-defined system interfaces
that protect native applications from hardware changes. iOS architecture is di-
vided in four layers: Cocoa Touch layer, Media layer, Core Services layer, and
Core OS layer. When developing iOS applications the top layer should be ana-
lyzed first and only if it does not provide the required functionality should the
developer use the other layers.

The Cocoa Touch layer provides the key frameworks for building iOS applica-
tions such as multitasking, touch based input, and push notifications. The Media
layer includes the graphics, and the audio and video technologies needed to de-
velop multimedia applications. The Core Services layer contains the fundamen-
tal system services transversal to all applications. Usually the developer does
not need to use this layer directly but the top layers use the features it provides.
The Core OS layer includes low-level features that most other technologies are
built upon. Developers only need to use this layer directly, in situations where
they explicitly deal with security issues or when communicating with an external
hardware accessory.

23

2. STATE OF THE ART 2.2. Mobile Platforms

2.2.2 Android

Android [Gooa, SRS+09] was first announced in November 2007 and is nowa-
days the leading mobile operating system in terms of market share [cI11, com11].
The commercial breakthrough happened in October 2008 when the T-Mobile G1
smartphone was launched, in the United States, with the Android 1.0 mobile op-
erating system. Google was the initial developer of Android and was later backed
by the Open Handset Alliance (OHA)12.

Android is a highly optimized Linux based mobile operating system that uses
the Dalvik virtual machine (DVM), which is a register-based Java Virtual Ma-
chine optimized for Android that focused on memory efficiency and application
runtime performance. Android runs a DVM per application, and these appli-
cations communicate with each other by using the Android Interface Definition
Language (AIDL). To be precise, Dalvik is not exactly a Java virtual machine be-
cause Dalvik can not read standard Java classes. An additional step is need to
convert Java classes to DEX, the DVM custom byte code.

A drawback of the Android mobile operating system it is the incompatibility
with Java SE or Java ME class libraries, because DVM does not handle standard
Java bytecode. Since android Java libraries are based on Apache Harmony run-
time13 implementation and not Sun (Oracle) runtime, standard Java SE libraries
cannot be directly used in Android. However, there are equivalent Android
classes for most Java SE libraries.

Android applications are developed using a set of Java based libraries devel-
oped by Google. The libraries along with the core applications and tools com-
pose the Android Software Development Kit. The Android SDK includes a mo-
bile device emulator which is a virtual mobile device that runs in the developer
workspace.

2.2.3 Mobile Platforms and Cloud Services

Both iOS and Android offer cloud interaction capabilities. In iOS users can
access iCloud [Appa] which is data storage cloud backup service. iCloud offers
5GB of free storage for backing up contacts, music, photos, documents and other
data. Android offers native applications for interacting with SaaS Google Apps
[Goob] such as Gmail, GDocs, Calendar and contacts. In both mobile platforms
this data can be accessed by other devices by using the same account. This allows

12Open Handset Alliance (OHA) a confederation of 50 Telecom companies, mobile hardware
and software companies headed by Google.

13Apache Harmony is a modular Java runtime with class libraries and associated tools

24

2. STATE OF THE ART 2.3. Patterns

users to change devices without worrying about losing contacts, documents or
other previously backed up data.

2.3 Patterns

Patterns describe behaviors and processes which can be reused in different
contexts. They are particularly useful in software development as a way to cap-
ture knowledge regarding component and service interactions. A user may par-
tially or completely design an application by combining the most adequate pat-
terns for each functionality.

Patterns were initially by Christopher Alexander [AIS77], which wrote "Each
pattern describes a problem which occurs over and over again in our environment, and
then describes the core of the solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it the same way twice". Patterns
have since then evolved and today assume different forms that include: object-
oriented patterns [GHJV95], architectural patterns [BMR+96], system integration
patterns [HW03] or more recently pattern templates [GRC08].

2.3.1 Object-Oriented Patterns

Object oriented design makes extensive usage of design patterns. The main
object-oriented patterns described in the Gang of Four book [GHJV95] can be di-
vided into three major groups : creational, structural and behavioral:

• Creational design patterns describe forms by which an object can be cre-
ated, and constraints in creation process. Examples of creational design
patterns include the Builder and Singleton patterns:

· Builder: This pattern describes how a complex object creation should
be separated from its representation thus allowing different object rep-
resentations to use the same creation mechanism.

· Singleton: This pattern describes the process by which a single instance
can exist for a given class.

• Structural design patterns describe common object relationship contexts.
Examples of structural design patterns include the Composite and Decorator
patterns:

· Composite: This pattern describes a tree like object hierarchy where
each group of object implements a specific interface.

25

2. STATE OF THE ART 2.3. Patterns

· Decorator: This pattern describes the process of adding functionality to
an object at runtime by wrapping the original class.

• Behavioral design patterns describe common object communication con-
texts. Examples of behavioral design patterns include the Iterator and Ob-
server patterns:

· Iterator: This pattern describes how to sequentially access elements,
without exposing their representation.

· Observer: This pattern describes how object can register as listeners to
a certain event that should be raised by another object. This pattern is
also know as Event Listener.

2.3.2 Architectural Patterns

Architectural patterns describe fundamental structural organization schemas
for software systems and provide the means to specify the fundamental structure
of applications [BMR+96]. These patterns help to identify a system subsystems,
specify their responsibilities and define how the subsystems should relate and
communicate with each other. Each architectural pattern helps to achieve a spe-
cific global system property, such as the adaptability of the user interface. Pat-
terns that help to support similar properties can be grouped into four categories:

• Structure Patterns define the system architecture. They provide a method
to divide the system into its constituent parts. Examples of these patterns
include the Layers pattern and the Pipes and Filters pattern:

· Layers: This pattern groups the system components with a similar level
of abstraction into groups, and each of these groups defines a system
layer. These layers should be loosely coupled.

· Pipes and Filters: This pattern structures systems in terms of data streams
and processing steps. By encapsulating each step in a filter component,
and passing data through the pipes that connect adjacent filters, it’s
possible to build families of related systems.

• Distributed System Patterns describe common distributed system scenar-
ios. An example of such patterns is the Broker pattern:

26

2. STATE OF THE ART 2.3. Patterns

· Broker: This pattern structures distributed software systems with de-
coupled components that interact with each other using remote ser-
vice invocations. Broker components are responsible for coordinating
communication.

• Interactive Systems Patterns describe common user interaction scenarios
using graphical user interfaces. Examples of these patterns include the
Model-View-Controller pattern and the Presentation-Abstraction-Control pat-
tern:

· Model-View-Controller: This pattern divides an interactive application
in three layers. The model contains core functionality and data, the
view displays information to the user and the controller handles all
user inputs.

· Presentation-Abstraction-Control: This patterns structures interactive ap-
plications in a hierarchy of cooperating agents, where each agent is
responsible a specific functionality.

• Adaptable System Patterns: describe common system evolution context
and mechanisms for adapting to these evolutions. Examples of these pat-
terns are the Reflection and Microkernel patterns:

· Reflection: This pattern allows for dynamic structure and behavior changes
by dividing the application into two levels: a meta level and a base
level.

· Microkernel: This patterns isolates a minimal functionality core from
peripheral functionality. Additional functional extensions are coupled
to the microkernel.

2.3.3 System Integration Patterns

System integration deals with the heterogeneous system communication, and
for capturing these scenarios various integration patterns have been identified.
In many contexts the system involved can be abstracted as services and the ma-
jority of these integration patterns can be applied as service interaction patterns.
System integration patterns [HW03] deal primarily with messaging systems since
messages are a generic form of data transportation. These patterns can describe
operations on the messaging system or on the message itself. System integration
patterns can be divided in the following types:

27

2. STATE OF THE ART 2.3. Patterns

• Messaging System patterns describe high level interactions between the
applications and the messaging system. Examples of system patterns in-
clude the Router and Translator patterns:

· Message Router pattern decouples individual processing steps so that
messages can be passed to different filters depending on a set of condi-
tions. The Message Router differs from the most basic notion of Pipes
and Filters [BMR+96] in that it connects to multiple output channels.

· Message Translator: describes how systems that use different data for-
mats can communicate with each other using messages. The Message
Translator a messaging equivalent to the Adapter pattern [GHJV95].

• Messaging Channel patterns describe how messages are delivered or broad-
casted to the receivers. Examples of channel patterns include the Message-
Bus and Publish-Subscribe:

· Message Bus: describes how separate applications can work together
in a decoupled fashion so that each application can be easily added or
removed without affecting the others.

· Publish-Subscribe Channel: describes how a sender can broadcast an
event to all registered receivers. The pattern has one input channel
that splits into several output channels, one for each subscriber.

• Messaging Endpoint patterns describe different contexts regarding end-
point message consumption. Examples of endpoint patterns include the
Polling Consumer and Selective Consumer patterns:

· Polling Consumer: describes the process by which receivers monitor
senders to consume messages when they are ready. This pattern is also
known as synchronous receiver since the receiver blocks until a new
message is received.

· Selective Consumer: describes how consumers filter which messages
they would like to receive. The consumer only receives messages that
are available on a registered channel and pass a certain filter.

• Message Construction patterns describe message building behaviors. Ex-
amples of these patterns include the Correlation Identifier and Return Address
patterns:

28

2. STATE OF THE ART 2.3. Patterns

· Correlation Identifier: describes how the requestor knows which request
does a received reply relates to. Each reply message should contain a
unique identifier that indicates which request message this reply is for.

· Return Address: describes how repliers know where they should send
the replies. A return address should be part of the request so that the
replier can ask the request where it should send the reply.

• Message Routing patterns describe how messages can move between com-
ponents. Examples of these patterns include the Splitter and Aggregator pat-
terns:

· Splitter: describes how to process messages that contain multiple ele-
ments and each element can be processed in a different way. The Split-
ter breaks composite messages into individual messages.

· Aggregator: describes the process of combining results of related mes-
sages so that they can be processed as a a single message. By using
a stateful filter it’s possible to collect and store each message until a
complete set of related messages has been received.

• Message Transformation patterns describe operations that change the mes-
sage. Examples of these patterns include the Normalizer and Content Filter
patterns:

· Normalizer: describes the process of handling semantically equivalent
semantically messages that are received with different format. The
Normalizer applies a Message Translator to each message so that they
are transformed to a common format if they are equivalent.

· Content Filter: describes how to deal with large messages when only
certain parts of the messages are relevant.The Content Filter removes
non relevant data from the message leaving only the relevant items.

2.3.4 Patterns as Abstractions

Patterns capture structured solutions for common problems based on the ex-
perience of experts. Patterns also capture commonly recurring aspects of com-
ponent and services interaction. These patterns can be grouped into two distinct
groups [GRC08, GRC03] : structural and behavioral pattern templates.

29

2. STATE OF THE ART 2.3. Patterns

• Structural patterns describe components and services connectivity. They
represent how these components can be grouped, creating distinct struc-
tures to perform a certain operation or processing task. Furthermore, struc-
tural patterns be embedded in other structural patterns, forming hierarchies
of patterns. Patterns in this group describe topologies like a Ring, a Star or
a Pipeline or structural design patterns such as Facade, Proxy or Adapter. Ex-
amples of structural patterns include:

· Star: This pattern consists of a nucleus that communicates through
simple connectors to a number of satellite components.

· Pipeline: This pattern represents a sequence of ordered stages, where
one stage produces data to the next.

· Ring: This pattern can be seen as an extension to the pipeline where
the last stage is connected to the first.

· Facade: This pattern is used to restrict access to a set of sub-systems,
through a common interface.

· Proxy: This pattern allows the local presence of an entity’s surrogate
which transparently supports access to the remote entity.

· Adapter: This pattern allows communication between two elements
when they do follow the same interface.

• Behavioral patterns describe dependencies among a set of component and
services at runtime, by defining the aggregated runtime behavior. Behav-
ioral patterns do not necessarily specify the exact components and services
involved. Patterns in this group capture temporal control and data flow de-
pendencies between components such as loops and execution order. Behav-
ioral patterns can also describe synchronization and interaction constraints
between the components. Examples of behavioral patterns include Client-
Server, Publish-Subscriber, Producer-Consumer, Streaming or Master-Slave:

· Client-Server: This pattern involves a server application that is accessed
by multiple clients. Clients issue requests and synchronously wait for
a server response.

· Publisher-Subscriber: This pattern describes how message senders (Pub-
lishers) publish messages without explicitly stating the message des-
tination. The published messages belong to a type and only the mes-
sage receivers interested in this message type (Subscribers) will receive
them.

30

2. STATE OF THE ART 2.4. Enterprise Integration

· Producer-Consumer: This pattern describe the message senders (Pro-
ducers) send messages to a message block, and how message receivers
(Consumers) read these messages from that message block.

· Streaming: This patterns describes how a continuous flow of data is
broadcasted and captured.

· Master-Slave: This pattern describes how a main component (Master)
distributes work to identical components (Slaves) and computes a final
result from the results returned by slaves.

This separation between structure and behavior [GRC03, GRC08] allows to
compose systems in which the behavior is captured by behavioral templates,
and component connections are captured by structural patterns. This specifica-
tion allows more flexibility in system definition because the system components
can switch behavior or structure patterns independently, allowing the system to
adapt to context changes.

2.4 Enterprise Integration

Integration tools allow the creation of networks where each node can be a het-
erogeneous sub-system or application and each of these nodes can use a specific
protocol/technology. By using these integration tools users can abstract from
each node specific characteristics and define routing rules the control how the in-
formation is transferred between nodes. Usually these rules are based on some
of the patterns described in Section 2.3.3. In a cloud computing context, these
nodes may involve some of the cloud computing services described in Section
2.1. Examples of integration tools are Spring Integration [Spr] and Apache Camel
[Cam]:

• Spring Integration is a lightweight messaging system that supports system
integration via declarative adapters. These adapters provide higher-level
abstractions that support messaging, and scheduling operations. Spring In-
tegration focuses on providing simple models for building enterprise inte-
gration solutions, while maintaining the separation of concerns required for
producing maintainable and testable code. Camel also supports well known
enterprise integration patterns [HW03] that can be used for workflow compo-
sition.

31

2. STATE OF THE ART 2.5. Session-Based Dynamic Interaction Models

• Apache Camel is an open source integration framework that allows the use
of patterns in system composition. Users can implement routing and me-
diation rules using XML configuration files or a specific Java based Domain
Specific Language (DSL). Furthermore, Camel can work with a number of
transport messaging models such as HTTP, ActiveMQ or JMS, and the same
API is used for all transport models. Camel allows workflow composition
using a number of enterprise integration patterns [HW03], and provides cloud
service integration for Google App Engine Task Queues [GAE] and Amazon
Simple Queue Service [AWS].

2.5 Session-Based Dynamic Interaction Models

The concept of Session-based dynamic interaction models [BGP12] applies the
notion of session to capture client-service interaction configurations. The interac-
tion context can be shared by multiple clients and each clients can join or abandon
an active session. The client that created the session is the session owner, and the
owner can explicitly change the session interaction model. If the owner modifies
the session, all clients connected to that session will be affected by these changes.
If a client other that the owner requests a change in the session configuration, he
will be moved to a session with these characteristics, or to a new session if such a
session does not exist. The session maintains a context for these interactions, and
this context specifies: the session owner; the services being accessed by clients;
the current interaction model, and optional quality of service properties.

By decoupling services and interaction model, it is possible to apply dynamic
changes to the interaction model at runtime, according to eventual context changes
in the client, services, or communication medium. This flexibility allows to create
dynamic reconfiguration behaviors. Figure 2.1 describes the session structure:

In this work the session concept is used to capture interactions context be-
tween clients and cloud services that serve as interfaces to multiple datasources.
In this context the session should also be able to define the possible dynamic
reconfigurations, either based on the mobile device state, cloud metrics or user
defined reconfiguration functions.

32

2. STATE OF THE ART 2.5. Session-Based Dynamic Interaction Models

Figure 2.1: Session concept

33

2. STATE OF THE ART 2.5. Session-Based Dynamic Interaction Models

34

3
A Middleware for Service/Data

Aggregation

This chapter offers an overview of the solution implemented in this thesis.
This overview includes the initial requirements list, the key domains that relate
to these requirements and a high-level description of the solution architecture.

3.1 Requirements

The goal of this work is to develop a middleware for supporting supporting
the access to heterogeneous data sources via richer and dynamically adaptable
interaction models. This access can be reused among clients with similar interests
hence supporting a shared context. The key characteristics identified to build
such a system are described in the following.

Access to heterogeneous data sources: Clients should be able to access and
aggregate several heterogeneous data sources, and apply custom defined filters to
the acquired data. It should be possible to integrate data sources that use different
protocols and belong to different domains, so the solution should not be tightly
coupled to any specific protocol or domain;

Richer interaction models on service access: The solution should provide ad-
ditional interaction models besides the standard client/service model, in order

35

3. A MIDDLEWARE FOR SERVICE/DATA AGGREGATION 3.1. Requirements

to better capture the characteristics of the accessed service and its clients’ re-
quirements. Examples may be a streaming interaction model with a constant
pre-defined rate; a producer/consumer model supporting a true decoupling be-
tween data generation and data acquisition; or the possibility to select a subset
of the overall generated data, in order to reduce data processing requirements.
Moreover, the solution should also allow the definition of the particular interac-
tion model to use in a particular situation.

Dynamic reconfiguration mechanisms of interaction models: The solution
should allow dynamic reconfiguration mechanisms, either on-demand or auto-
matic / pre-defined. These mechanisms should include: changing the number of
data sources accessed at some point in time, adapting the parameterization of the
current interaction model (e.g. data rate modification on a streaming interaction
model triggered by a pre-defined alert threshold) and changing the interaction
model in use (e.g. switching to a producer/consumer interaction model to reduce
data loss); These dynamic reconfigurations should be “rule-based", i.e. triggered
according to a set of rules applicable at some point in time. These rules should
relate to:

• Data source related information (e.g. wireless sensor generated data);

• Session characteristics (e.g. number of clients in the session);

• Client characteristics (e.g. location or battery autonomy in case of mobile
clients).

Context sharing among clients: The solution should allow that multiple clients
with similar interests may share the same data source access context. This im-
proves reusability since each individual client does not have to set up the access
to different services/data sources if a similar access already exists. This reusabil-
ity offers some performance optimization since one data source connection may
be shared by multiple clients. Moreover, allowing multiple clients to access the
same data under the same conditions creates common information views which
could be used to make decisions dependent on that common information (e.g.
a single interaction model modification can trigger similar actions on all clients
sharing the same context).

Large data storage and processing: The solution should be scalable so that
large quantities of data can be accessed, stored, and processed. This is necessary

36

3. A MIDDLEWARE FOR SERVICE/DATA AGGREGATION 3.2. Solution Domain

in domains where the data to be processed is generated in large quantities (eg.
weather simulation applications);

Ubiquitous access and service reliability: The middleware should have high
availability and fault tolerance. The solution should also allow mobile clients to
connect and offer some optimization for these devices;

3.2 Solution Domain

In order to satisfy the above requirements, the proposed solution incorporates
concepts/technologies from the domains described in the following.

Session abstraction: The session concept is commonly used to contextualize
the interaction between a service and its clients, and the work in [BGP12], in
particular, defines a session abstraction that provides dynamic reconfiguration
mechanisms on service/data access, aggregation, and dissemination of results to
clients with similar interests. These mechanisms include the dynamic addition of
services/data sources, as well as pattern-based interaction models for data dis-
semination which can be dynamically adapted according to their suitability for
several scenarios (eg. streaming for constant data flows or publisher-subscriber
to broadcast data that relates to a specific topic). This session abstraction offers
richer/dynamic interaction models on service/data access and aggregation, de-
fines a common reusable interaction context, and can hence be used to support
some of the requirements previously described;

Enterprise integration tools: Existing enterprise integration tools [Cam, Spr] al-
low the connection of heterogenous endpoints in message oriented contexts. Us-
ing a tool specific notation it is possible to create routes that connect these end-
points. This ability allows integration tools to aggregate heterogeneous data
sources by implementing custom endpoints that support the necessary protocols;

Complex event processing: By using complex event processing (CEP) tools like
Esper [Esp] clients can define complex aggregation functions that operate on mul-
tiple sources. Complex event processing tools also allow clients to apply process-
ing logic so that meaningful events are filtered and processed (e.g. detect if the
values generated by a sensor decreased in a certain period of time);

37

3. A MIDDLEWARE FOR SERVICE/DATA AGGREGATION 3.3. Session Abstraction

Cloud service providers: Cloud providers [AWS, GAE] offer services that allow
clients to upscale resources according to the context. This ability enables cloud
services to respond to large data storage and processing requirements. Cloud ser-
vice providers offer high availability, uptime and Quality of Service (QoS). Most
cloud providers also offer support and optimized services for mobile devices op-
erating systems [Gooa, Appb]. These characteristics can answer ubiquitous ac-
cess and service reliability requirements;

Since this work extends the session abstraction described in [BGP12], the fol-
lowing section describes the dimensions of this abstraction in more detail, as well
as how it was extended in order to respond to the requirements identified in this
section.

3.3 Session Abstraction

The server/clients interactions can be characterised by how the clients per-
form requests, how the services respond to these requests, or how the commu-
nication between clients and the services’ platform is managed. The sum of all
these characteristics define a specific interaction model. In this context, a the Ses-
sion concept [MP95, HKLP05] can be used as an abstraction that encapsulates these
characteristics and describes interaction model contexts, as described in previous
works [BGP12, GPBdSA12].

Figure 3.1: Session abstraction

38

3. A MIDDLEWARE FOR SERVICE/DATA AGGREGATION 3.3. Session Abstraction

This existing session abstraction is used as a guideline, and the main character-
istics are described in the following. The extended session abstraction proposed
in this work is described subsequently. The main characteristics of a session as
proposed in [BGP12] are:

• A unique id identifies a session in the system and thus can be used by
clients to reference the session they want to connect to;

• Each session has an owner which is the user that created it. The owner has
special privileges and is the only user allowed to execute administrative
session operations;

• The session may include an aggregation function that will operate on the
data generated by the session related data sources. This allows message fil-
tering from multiple sources according to what is defined in the aggregation
function;

• Pattern-based interaction models are implemented between the middle-
ware and the session clients. These patterns are the Publisher-Subscriber,
Producer-Consumer or Streaming;

· Publisher-Subscriber: This interaction model is used in case the clients
are interested only in a specific topic, and therefore only a subset of
events are delivered to the session clients;

· Producer-Consumer: in case the clients want to consume events at
their own rate with guarantees on event delivery, this interaction model
supports a true decoupling from producers and consumers. he clients
can connect / reconnect to the session when they see fit, and from that
moment on they will be able to receive all produced events;

· Streaming: this model is used when the clients want to receive a con-
tinuous stream of events. There is no guarantee of event delivery when
using this interaction model pattern;

• The session supports a set of dynamic reconfigurations. These reconfigura-
tion definitions trigger modifications in the session interaction model when
specific events are generated. An example of such an event is when a data
source, that produces numeric values, generates a value above a certain
threshold pre-defined in the dynamic reconfiguration rule.

39

3. A MIDDLEWARE FOR SERVICE/DATA AGGREGATION 3.3. Session Abstraction

For example, an existing client is receiving data from a humidity sensor us-
ing a Producer-Consumer interaction model. The same client specifies a dy-
namic reconfiguration to be triggered when the humidity passes 70%, and
alter the current interaction model to a Streaming based interaction model.

This particular take on the concept of session answers some of the requirements
identified for this solution, by providing rich interaction models and dynamic re-
configuration mechanisms. In order to fulfill the enumerated requirements, in
this work we have extended this sessions abstraction described above by adding
some characteristics such as the possibility of integrating domain independent
data sources or storing large amounts of data. The extended session abstraction
defined in this work is illustrated in Figure 3.2 and the added characteristics de-
scription follows.

Figure 3.2: The extended session abstraction

The implementation of the extended session abstraction proposed in this thesis
admits a set of heterogeneous data sources, meaning that they are not tied to a
specific protocol like web services. This is opposed to the available implemen-
tation of the session abstraction previously described, which was focused on the
domain of web-enabled wireless sensors network. Therefore, the web services
protocol was the only data source type supported by that implementation;

A complex event processing tool is used to define the aggregation functions
associated with the session. This allows clients to define data source aggregations

40

3. A MIDDLEWARE FOR SERVICE/DATA AGGREGATION 3.3. Session Abstraction

and specific events’ detection expressions either on the session definition stage
(inactive session) or in real-time (session is active);

The session is now persistent and stateful. The notion of session repository is
added so that all generated events produced in the context of a particular session
can be stored. All the stored events can be completely or partially reproduced
at any given moment, thus allowing the replay of session events for posterior
analysis (e.g. offline weather data analysis for simulation purposes). Stored events
can be external events or internally generated events:

• External events are mainly data sources’ generated events that are included
in the session (e.g. events generated by a wireless humidity sensor, acting
as a session data source);

• Internally generated events include all session related events such as dynamic
reconfigurations, client connection/disconnection or session status modi-
fications. For example, when a dynamic reconfiguration that changes the
interaction model from Streaming to Producer-Consumer is triggered, an in-
ternal event is generated. This generated event can also be stored and later
reproduced;

The session is equipped with a notion of lifecycle. Between session creation
and termination there are intermediate non-final statuses that allow sessions to be
paused/resumed while maintaining the session context (e.g. connected clients).
All clients that can connect to the session can consult the session status, but
only the owner can perform operations that modify the status (e.g. pause/re-
sume). The possible session statuses are New, Starting, Started, Stopping, Paused
and Ended. The session lifecycle is illustrated in Figure 3.3.

Figure 3.3: Session lifecycle

41

3. A MIDDLEWARE FOR SERVICE/DATA AGGREGATION 3.3. Session Abstraction

A description for each possible session status follows.

• New: This is the initial status, when the session is created but was never
started. At this point the only possible session operation is to start it;

• Starting: This is an intermediate status when the session is performing all
necessary initializations. This status can occur initially , on starting the ses-
sion (i.e. New) or when resuming from a previously paused session (from
status Paused). No session status operations are possible at this stage (e.g.
stop or pause the session);

• Started: This status indicates that the session is fully functional. There are
two operations possible at this stage, pause the session (to status Paused) or
end the session (automatic process on session lifetime expiration);

• Stopping: This is an intermediate status indicating the all the necessary
processes are being stopped. This status can occur when manually paus-
ing a session or when the session lifetime has expired while the session is
running (while being at Started status). No session status modification op-
erations are possible at this stage (e.g. start or pause the session);

• Paused: this status indicates that the session has been explicitly paused
(from status Started). The session can be restarted at this stage;

• Ended: this status occurs when the session lifecycle has expired (from any
status). The session cannot be restarted at this point. However the session
definition is maintained all the events generated by the session are kept
in the session repository. This allows to perform session replay operations
even after the session has ended;

42

3. A MIDDLEWARE FOR SERVICE/DATA AGGREGATION 3.4. On the Use of a Cloud-Based Approach

3.4 On the Use of a Cloud-Based Approach

Due the cloud platforms capabilities discussed in 2.1 the deployment of a ses-
sion abstraction in one of these platforms, provides an easier ubiquitous access to
session clients, as well as the provision of a large/persistent storage capacity for
the session’s state. These characteristics are described below.

Databases are easily scalable when deployed in a cloud service system since in
theory it is possible to have almost unlimited storage space, being the associated
cost its only limitation. Data sources generating large amounts of data to be per-
sisted may benefit from this storage scalability characteristics. For example, if a
certain running simulation produces an amount of data that is much larger that it
was initially expected, thus causing the available storage to reduce dramatically,
it is possible to request an increase of the database storage space without inter-
rupting the running processes. This can be performed on demand or based on
pre-defined conditions (e.g. when data limit reaches 90%, duplicate the storage
data);

Performance issues can also be handled by upscaling the hardware where the
middleware is deployed. It is possible to provide faster processors and more
memory as a response to increased performance demands. Clients that perform
complex operations on large portions of data (e.g. simulation clients) may benefit
from the performance scalability available in cloud deployed applications. For
example, if the hardware requirements for a certain simulation were underesti-
mated and the total time prediction is much larger than required, it is possible to
upgrade the current hardware to higher-end specifications so that the simulation
can be completed more quickly;

Applications deployed in the cloud (ou in a cloud platform) offer high service
reliability by offering end-users advanced error recovery mechanisms, that previ-
ously were only accessible in large data centers. Cloud providers also use com-
plex redundancy mechanisms so that most of the hardware maintenance oper-
ations are performed transparently, without compromising cloud deployed ap-
plication. By combining these features, cloud-based applications offer high QoS
levels such as fast response times and above average application up times. These
characteristics are particularly important in the context of critical real-time appli-
cations (e.g. health or aeronautical applications);

43

3. A MIDDLEWARE FOR SERVICE/DATA AGGREGATION 3.4. On the Use of a Cloud-Based Approach

Cloud service providers usually offer mobile device optimized services. Combined
with the service reliability factors describe before, these services are favorable to
ubiquitous contexts where there is an increased dependency of service connec-
tivity. Scenarios where mobile clients are required to interact with the middle-
ware and take part in sessions will benefit from these features. For example, a
session involving a fire department, with firemen deployed on the field that need
to receive real-time information regarding the weather conditions and fire pro-
gression;

In the context of session concept described before, the following cloud-based
features will be used:

• The session repository will be implemented using a cloud deployed database
instance, thus taking advantage of all the database features previously de-
scribed. The repository will benefit from cloud scalability by using high per-
formance storage services that can scale and take into account large amounts
of data while maintaining data access reliability and access speed;

• By upscaling/downscaling the hardware specifications, cloud deployed ses-
sion will be able to perform complex hardware demanding operations, such
as long running weather simulations.

• The middleware cloud deployment will enable sessions to be used in real-
time scenarios where the QoS level are a key factor;

• Session ubiquitous access will be improved since mobile clients will bene-
fit from mobile optimized services and the service reliability characteristics
previously described;

The next section will provide an overview of the solution architecture. The
main modules will be enumerated and each modules’ scope will be defined and
explained in detail.

44

3. A MIDDLEWARE FOR SERVICE/DATA AGGREGATION 3.5. Architecture

3.5 Architecture

Based on the requirements highlighted in section 3.1 the architecture of the
proposed solution is composed of three main modules: the datasource interface
that handles the heterogeneous data sources, the middleware core that handles ses-
sion management operations and the client interface that handles clients’ session
connections. The middleware is deployed in a cloud platform and hence uses
cloud-based services. This solution overview is illustrated in Figure 3.4.

Figure 3.4: Solution architecture

3.5.1 Architecture Modules

The middleware architecture can be seen as a three tiered architecture where
the data source interface represents the data tier, the middleware core represents the
business logic tier and the client interface represents the presentation tier.

The datasource interface module is responsible for handling multiple proto-
cols (e.g. XMPP or RSS) and forwarding the data events to the middleware core.
This interface performs preliminary data source events’ processing related to the
data source definition (e.g. applying a regular expression to filter the generated
data). This filtering is perceived by all clients in each session that receive input
from this data source, thus creating an additional data source validation layer.

45

3. A MIDDLEWARE FOR SERVICE/DATA AGGREGATION 3.5. Architecture

This interface decouples protocol specific operations from the underlying session
operations;

The middleware core encapsulates all session specific operations such as dy-
namic reconfigurations, interaction model modifications or event persistence. The
module consumes and processes the events generated by the data source interface,
and forwards these events to the client interface. To perform these operations the
module follows a message oriented approach composed of three layers: the data
source messaging layer, the session messaging layer and the client messaging layer:

• Data source messaging layer: handles all data source data events and send
these events to the session messaging layer. These events represent data
sources’ generated data such as wireless sensors’ sensing data (e.g. humid-
ity, temperature). Each of these data source may use a specific protocol as
described in the datasource interface;

• Session messaging layer: handles the data sources’ generated events ac-
cording to each session’s context. This includes processing events accord-
ing to the session’s aggregation function or modifying the interaction model
according to a pre-defined dynamic reconfigurations. These dynamic recon-
figurations impact all clients that take part in the session. Afterwards, the
processed events are forwarded to the client messaging layer;

• Client messaging layer: performs any client related operations, such as
client side dynamic reconfigurations and delivers the events to the appro-
priate clients through the client interface. These dynamic reconfigurations
are only related the specific client that created the reconfiguration, no other
session client is impacted;

The client interface module is responsible for delivering the session processed
events to heterogeneous clients such as standalone, web or mobile clients. The
events to be disseminated can include data sources’ generated events and session
context events such as dynamic reconfiguration notifications or new client con-
nection notifications. The client interface is flexible enough to allow for mobile
clients to interact with the middleware and take part in sessions. The client inter-
face should provides a web based interface that allows administrative tasks such
as data source definition. This web interface allows clients to set up sessions and
control their lifecycle;

46

3. A MIDDLEWARE FOR SERVICE/DATA AGGREGATION 3.5. Architecture

The middleware architecture can be seen as a three tiered architecture where
the data source interface represents the data tier, the middleware core represents the
business logic tier and the client interface represents the presentation tier. Figure
3.5 represents the three tiered organization described before.

Figure 3.5: Solution architecture modules

3.5.2 Architecture Extensibility

One possible extension to this architecture might be to allow clients to input
data to the session context, acting like specialized data sources. This extension
would allow clients to create session conditions related to other clients character-
istics or actions, thus widening the scope of possible applications that could take
advantage of this solution. One example could be to develop a framework for
collective stock trading data access by clients. In this scenario all clients would
access stock quotations data sources and send their buy/sell order to the ses-
sion. All other clients could then create some dynamic reconfiguration rules that
would be triggered by these events. For instance, user B could define a dynamic
reconfiguration rule describing that if user A buys stocks of type X, then user B
subsequently starts receiving live information on values of type X.

47

3. A MIDDLEWARE FOR SERVICE/DATA AGGREGATION 3.5. Architecture

The architecture organization and module’s description included in this chap-
ter are intended to be a high level view of the solution developed in this thesis.
The specific development choices and technologies used for each of the architec-
ture components are described in more detail in the next chapter.

48

4
Implementation

The proposed solution for the cloud-based session abstraction is composed of
three main modules, as discussed on Chapter 3: the data source interface, the mid-
dleware core and the client interface. In this three tiered architecture the data source
interface represents the data access, the middleware core controls the business
logic and the client interface represents the presentation layer. Figure 4.1 pro-
vides an precise overview of the solution implementation.

Figure 4.1: Implementation overview

49

4. IMPLEMENTATION 4.1. Inter-Module Communication

4.1 Inter-Module Communication

Data events are generated by the data sources and pass through each of these
modules until they are delivered to one or more clients. In order to move these
messages between layers some routing system is necessary. Enterprise integra-
tion tools like Apache Camel [Cam] and Spring Integration [Spr] allow the definition
of routing systems that can be used for this effect. Integration tools can also be
used to satisfy the requirement on heterogeneous data sources, since they pro-
vide support for end points that use different protocols. Additionally, these tools
have built in support for some pattern based interaction models as described in
Section 2.4, which is useful for the session interaction models’ definition.

On the possibility of choosing between Apache Camel and Spring Integration,
the choice fell on Apache Camel mainly because it supports more useful technolo-
gies for the data source interface (e.g. the WebSocket endpoint is not supported by
Spring Integration), and its expression language is more intuitive. This expression
language is used for defining the routes that inter-connect each endpoint node.

The Apache Camel tool was used to implement all necessary routes from the
data source interface to the client interface. These routes are used in the mid-
dleware core for each of the messaging layers, namely, the data source, session,
and client messaging layers. Dedicated routes were implemented for each layer
to layer communication, and each session possesses one group of such routes
associated with it. Apart from the characteristics that define a session, which
were described in Section 2.5, each session is associated with the following Camel
routes:

• Data source routes: one route for each data source is linked to the session.
These routes are defined in the data source messaging layer (Figure 4.1) and act
as the bridge between the data source interface and the session messaging
layer. Each of these routes applies data source’s specific logic, such as regu-
lar expressions (i.e. client these regular expression serve as a pre-validation
filter that is applied on all data sources’ generated values), and delivers the
processed messages to the session messaging layer;

• Session routes: one internal session route is linked to each session. These
routes are defined in the session messaging layer and act as the bridge be-
tween the data source messaging layer and the client messaging layer. All ses-
sion specific operations such as the session’s dynamic reconfigurations and
the definition of the session’s interaction models are supported by these
routes.

50

4. IMPLEMENTATION 4.1. Inter-Module Communication

These are operations are defined using Camel processors that are executed
on each message;

• Client routes: each client is linked to a session through a route. These are
defined in the client messaging layer and act as a bridge between the session
messaging layer and the client interface. Each of these routes supports client
specific operations such as client level dynamic reconfigurations or client
interaction model modifications. These are operations are defined using
custom Camel processors that are executed on each message;

To allow for rich aggregation function definition while maintaining a message
oriented approach that would be coherent with the Apache Camel philosophy,
a complex event processing tool was used: Esper [Esp]. Esper provides special
message queues upon which it is possible to apply complex expressions. These
expressions can aggregate different types of data sources or apply other opera-
tions such as calculating averages or sums in specified time slots. Apache Camel
supports Esper endpoints so this integration was performed by using the Camel
domain language. Session or client level aggregation operation are performed
when the messages are consumed from the Esper queues. Figure 4.2 illustrates
the detailed implementation with Apache Camel routes and Esper queues.

Figure 4.2: Camel and Esper integration

51

4. IMPLEMENTATION 4.1. Inter-Module Communication

There are two types of Esper queues defined in this architecture:

• Session queues: there is one Esper session queue for each session. These
queues are the entry point for messages in the session messaging layer. The
previously described Camel data source routes will add messages to these
queues coming from the data source interface.

The previously described Camel session routes routes will consume messages
from these queues and deliver them to the correspondent Esper client queues.
Session level aggregation operations are performed by applying Esper ex-
pressions when consuming events from these queues;

• Client queues: there is one Esper client queue for each client connected to
each session. The previously described Camel client routes will consume
messages from these queues and deliver them to the clients though the
client interface.

Client level aggregation operations are performed by applying Esper expres-
sions when consuming events from these queues;

4.1.1 Route Specification

Apache Camel philosophy is based on the concept of routes that connect dis-
tinct endpoints. Several routes can be combined to form complex networks where
each node is an endpoint. A route complexity can range from a simple pass
through style route to complex routing that involve patterns such as Publisher-
Subscriber, dynamic endpoint definitions or custom Camel processor classes that
are applied on each message.

These routes can either be defined in static file descriptors or entirely in the Java
source code. The second approach was chosen to allow for runtime flexibility and
route definition.

The base class used by Apache Camel to define these routes is RouteBuilder.
This class allows to create one or more routes, using the Camel expression lan-
guage to define the endpoints and more complex routing options.

52

4. IMPLEMENTATION 4.1. Inter-Module Communication

The RouteBuilder class also allows to control the route lifecycle which is
described in Figure 4.3.

Figure 4.3: Camel route lifecycle

The base class used by the middleware to integrate Apache Camel base func-
tionalities is GenericRouteBuilder, that extends the RouteBuilder class in-
cluded in the Apache Camel libraries. The constructor forces implementations to
associate a session id with the route, which will later be used to indicate which
routing endpoint should be used.

The abstract class described before defined routes with the layout illustrated in
Figure 4.4.

Figure 4.4: Generic route builder

53

4. IMPLEMENTATION 4.1. Inter-Module Communication

The main GenericRouteBuilder method signatures are displayed in List-
ing 4.1.

Listing 4.1: Generic route builder
1 public abstract class GenericRouteBuilder

2 extends RouteBuilder {

3 ...

4 /**

5 * The constructor receives a session id

6 */

7 public EsperEventProducer(... Long sessionId ...) { ... }

8

9 /**

10 * Define a filter to be applied before the Camel processor

11 */

12 protected Class<?> getPreFilterClass() { ... }

13

14 /**

15 * Define a filter to be applied after the Camel processor

16 */

17 protected Class<?> getPosFilterClass() { ... }

18

19 /**

20 * Define the Camel processor class to be applied

21 */

22 protected abstract Processor getProcessor();

23

24 /**

25 * Start the route

26 */

27 public final boolean start() { ... }

28

29 /**

30 * Stop the route

31 */

32 public final boolean stop() { ... }

33

34 /**

35 * Suspend the route

36 */

37 public final boolean suspend() { ... }

38 ...

39 }

54

4. IMPLEMENTATION 4.1. Inter-Module Communication

From the previously described Apache Camel routes and Esper queues two high
level routes were defined to implement this integration: Esper event producers
and Esper event consumers. The description for each type follows.

EsperEventProducer routes send events to a specified Esper queue. These
routes are used by the data source interface to send data to session queues through
the data source messaging layer. EsperEventProducer is an abstract class that
forces implementations to associate a data source with the route. This data source
will later be used as the input endpoint.

Listing 4.2 depicts the abstract methods that EsperEventProducer adds to
its superclass.

Listing 4.2: Esper event producer
1 public abstract class EsperEventProducer

2 extends GenericRouteBuilder {

3 ...

4 /**

5 * Retrieve the data source associated with this route

6 */

7 public abstract DSSDataSource getDataSource();

8 ...

9 }

EsperEventConsumer routes consumes events from a specified Esper queue.
These routes are used by the session messaging layer to read data from the session
queues and send the data to the respective client queues. This is actually a special
route since it consumes from Esper queues and sends messages to Esper queues.
EsperEventConsumer routes are also used by the client messaging layer to read
messages from each client’s Esper queue and send the data to the actual clients
though the Client interface. EsperEventConsumer is an abstract class that forces
implementations to provide the Esper queue name from where messages should
be consumed. Implementing classes must also provide the Esper expression that
should be used to consume events.

Listing 4.3 depicts the abstract methods that EsperEventConsumer adds to
its superclass.

55

4. IMPLEMENTATION 4.1. Inter-Module Communication

Listing 4.3: Esper event consumer
1 public abstract class EsperEventConsumer

2 extends GenericRouteBuilder {

3 ...

4 /**

5 * Specify the Esper queue name from which this route

6 * will consume events

7 */

8 protected abstract String getEsperName();

9

10 /**

11 * Specify the Esper expression used to consume events

12 */

13 protected abstract String getEsperExpressionQuery();

14 ...

15 }

The EsperEventProducer and EsperEventConsumer class organization
described in this section is illustrated in the Figure 4.5.

Figure 4.5: Camel Esper base class diagram

56

4. IMPLEMENTATION 4.2. Data Source Interface

4.2 Data Source Interface

To incorporate heterogeneous data sources a thin connector layer was built on
top of Apache Camel. The datasource interface is the data events’ entry point to the
middleware. A set of custom generic classes that facilitate the creation of Apache
Camel based endpoints.

The base connector class is ComponentHelper which is an abstract class. All
implementations are forced to implement three methods: buildComponent()
to perform any connector specific initializations, getFromUri() to provide the
Camel routing expression, should this connector act as a input endpoint, and
getToUri() to provide the Camel expression, should this connector act as a out-
put endpoint.

Connector classes abstract from the Camel specific syntax and provide a more
intuitive object oriented data source creation process and act as connectors for
protocols supported by Camel and that will be used to incorporate heterogeneous
data sources. To showcase this functionality four connectors were developed:
HTTP, RSS, Twitter and XMPP. These data source connectors are organised in
two main groups according to the nature of the data event generation process:

• Polling data sources refer to data sources that need to be interrogated with a
certain periodicity. From the implemented connectors, both HTTP and RSS
fall into this category. This implies that one of the characteristics necessary
to define the data source is a polling period;

• Event driven data sources refer to data sources that send data to the middle-
ware without the need to be interrogated. This fits into the push notification
definition and implies that the middleware must be aware that events can
be pushed at any given moment. From the implemented connectors, both
Twitter and XMPP fall into this category;

These connectors serve mainly as protocol specific interfaces, the actual sepa-
ration between Polling data sources and Event driven data sources in the source code
is implemented in Camel routes and in the data model. This organization will be
described in more detail in Section 4.3.1.

57

4. IMPLEMENTATION 4.2. Data Source Interface

Figure 4.6 describes the connector organization.

Figure 4.6: Camel endpoint connectors

The implemented connectors are the following:

• HTTP connector: for this connector the main attribute to be defined is the
URL that should be interrogated. The “from URI” which defines the Camel
expression that should be used to use HTTP as an input endpoint is very
simple and takes the form of “http://url.of.some.site.com” in Camel notation;

• RSS connector: for this connector the main attribute to be defined is the
URL that should be interrogated. The “from URI” which defines the Camel
expression that should be used to use RSS as an input endpoint takes the
form of “rss://url.of.some.site.com?splitEntries=true” in Camel notation. The
splitEntries parameter indicates that the rss feed should be consumed one
by one instead of being consumed in batches;

58

4. IMPLEMENTATION 4.3. Middleware Core

• Twitter connector: for this connector the main attributes to be defined are
the consumer key and access tokens that indicate the twitter developer ac-
count that should be used to connect to the Twitter services and the user
ids that should be followed. The “from URI” which defines the Camel ex-
pression that should be used to use Twitter as an input endpoint takes
the form of “twitter://streaming/filter?type=event &userIds=userA,userB &con-
sumerKey=A &consumerSecret=B &accessToken=C &accessTokenSecret=D”;

• XMPP connector: for this connector the main attributes to be defined are
the user account information, username and password. The “from URI”
which defines the Camel expression that should be used to use XMPP as an
input endpoint takes the form of “xmpp://talk.google.com:5222/?serviceName=
gmail.com &user=A &password=B” in Camel notation;

The connection between the client interface connectors and the middleware core
that allows events produced by the data sources to be consumed by the middle-
ware sessions is performed by a specific set of Camel routes from the data source
messaging layer present in the middleware core. This messaging mechanism will be
described in the next chapter.

4.3 Middleware Core

Internally the middleware uses a message based routing system composed
of three layers: the data source messaging layer, the session messaging layer and the
client messaging layer. These messaging layers consist mainly of specific sets of
Esper queues, Camel routes and Camel processors.

The middleware core also contains a sessions container which is transversal to
the messaging layers since each session is associated with routes from the three
layers.

The database support necessary to all middleware components is provided by
a MySQL database instance deployed in the cloud. Each of these elements will be
described in detail in the next chapters.

59

4. IMPLEMENTATION 4.3. Middleware Core

Figure 4.7 displays the middleware’s core organization.

Figure 4.7: Middleware core

4.3.1 Data Source Messaging Layer

The data source messaging layer provides a set of Camel routes that forward the
messages from the data sources connectors defined in the data source interface to
a specific Esper session queue present in the session messaging layer. As described
before in Section 4.1, the base class for defining routes that send events to an Esper
queue is the EsperEventProducer class.

Since these routes will send data source events to a session Esper queue, the
concrete implementations will extend the EsperEventProducer class and im-
plement/override the necessary methods so that the functionality for each con-
nector type is available.

60

4. IMPLEMENTATION 4.3. Middleware Core

The EsperEventProducer class organization is displayed in Figure 4.8.

Figure 4.8: Camel data source Esper producer routes

EsperEventProducer classes are directly linked with a data model entity
which contains the attributes necessary to build the route. The constructor for
these routes receives one of these entities as a parameter as illustrated in Figure
4.8.

The EsperEventProducer routes use data source connectors to generate
the necessary Camel routing expressions, used to obtain events from Camel end-
points. Internally Camel may generate an arbitrary event class according to the
type of endpoint. In order to transparently integrate all endpoints and re-use the
same processes, the same event class must be generated, independently of the
connector type. To accomplish this, the events produced by Camel are normal-
ized to a middleware specific format, specified by an internal class, that is used
to broadcast events between layers.

61

4. IMPLEMENTATION 4.3. Middleware Core

The internal event class CamelInternalEvent is illustrated in Figure 4.9.

Figure 4.9: Camel internal event class

When a client creates a data source, a correspondent domain entity is gener-
ated and persisted in the database. The data model reflects the data source types
described before, and the separation between polling data sources and event
driven data sources. Apart from the class hierarchy separation the main charac-
teristic that separates these two data source types is that the PollingDataSource
entity defines a polling interval. This value will be used in the routes to define the
periodicity which will be used to interrogate the adjacent polling data source. The
class diagram in Figure 4.10 reflects the EsperEventProducer base hierarchy.

Figure 4.10: Data source data model

62

4. IMPLEMENTATION 4.3. Middleware Core

The class diagram in Figure 4.11 reflects the PollingDataSource hierarchy.

Figure 4.11: Polling data source data model

The class diagram in Figure 4.11 reflects the EventDrivenDataSource hier-
archy.

Figure 4.12: Event driven data source data model

The constructor for each data source route also receives a unique session id
and this id will be used to send the generated events to the appropriate session
Esper queue in the session messaging layer. If the Esper queue was not yet created
the queue is created automatically transparently by Camel. This process will be
described in more detail in the next chapter.

63

4. IMPLEMENTATION 4.3. Middleware Core

4.3.2 Session Messaging Layer

The session messaging layer consumes messages from each session Esper queue
and forwards them to the client messaging layer, more specifically, to every client
Esper queue that is linked with this session. Operations such as dynamic recon-
figurations at session level are handled in this layer by using specific Camel pro-
cessors that operate on the data source events. The session aggregation function
is also handled in this layer by applying a specific Esper expression in the session
Esper queue.

The class that implements these routes is EsperEventConsumerInternal,
and since these routes consume events from Esper queues, the class extends the
EsperEventConsumer class. The constructor for each of these routes receives
a session id that will be used to fetch the appropriate Session object from the
data model whenever it is necessary to inspect it’s attributes. A session has one
interaction model, a set of dynamic reconfigurations, a set of allowed users and a
session status among other attributes. The class diagram in Figure 4.13 represents
the session route hierarchy.

Figure 4.13: Camel session Esper consumer routes

64

4. IMPLEMENTATION 4.3. Middleware Core

The Session object contains one SessionStatus enum that represents the
current status, one ExperExpression object that represents the aggregation
function, one InteractionModel object that represents the current pattern, a
list of DynamicReconfiguration objects and a list of AuthUser objects that
represents the clients that are allowed to connect to the session. The Session

object is illustrated in Figure 4.14.

Figure 4.14: Session domain entity

There are three key attributes in the Session object that describe the interac-
tion model. The description for each attribute follows.

65

4. IMPLEMENTATION 4.3. Middleware Core

The EsperExpression entity allows the definition of an aggregation function
using Esper notation. Each expression contains one EsperExpressionType

enum which indicate if this is a Pattern or EQL expression (Esper specific expres-
sion types). The default is a simple pass through Pattern expression: “select *

from pattern [every e=Event]”;
The InteractionModel entity allows to describe which pattern will be ap-

plied to the session by default. Each InteractionModel contains a single
PatternTemplate enum that identifies the pattern in use. There are three avail-
able patterns: Streaming, Publisher-Subscriber and Producer-Consumer;

The DynamicReconfiguration entity list allows clients to specify which
reconfigurations will be included in the session context. These reconfigurations
are defined three objects: a SessionCondition , an InteractionModel and
an EsperExpression. Each SessionCondition contains a value, a single
DataSource object and a ConditionOperator enum that indicates which op-
erator to use (e.g. greater / smaller than). When each reconfiguration is triggered,
the associated InteractionModel or EsperExpression can be applied to the
running session.

This data model mapping is illustrated by the class diagram in Figure 4.15.

Figure 4.15: Dynamic Reconfiguration data model

66

4. IMPLEMENTATION 4.3. Middleware Core

Apart from the routing characteristics described before the core functionality
is implemented in the Camel processor class returned by the getProcessor()
method. This code organization is described in Listing 4.4.

Listing 4.4: Session esper consumer internal route

1 class EsperEventConsumerInternal extends EsperEventConsumer {

2 ...

3 /**

4 * Fetch the Camel processor that encapsules the required behavior

5 */

6 @Override

7 protected Processor getProcessor() {

8 return new Processor() {

9 @Override

10 public void process(Exchange exchange) {

11 ...

12 };

13 }

14 ...

15 }

This Camel processor is executed on each event that is consumed from the ses-
sion Esper queue and the first operation it performs is to fetch the session domain
entity that describes the session.

The pattern based interaction model is applied on the process() method of
the Camel processor class. The most relevant operations performed for each pat-
tern are: for publisher-subscriber all events are matched with the associated condi-
tion and will be discarded if the match fails, for the producer-consumer the associ-
ated polling interval will be set.

The event broadcasting to each client queue is handled using Camel expres-
sion language. This route class implements the appendToRouteSpecific()

method inherited from the EsperEventConsumer class and adds a parallel pro-
cessing that will disseminate the event to a client queue for each client that is
allowed to connect to the session. This client list is included in the Session

domain entity obtained by the processor as described before.

67

4. IMPLEMENTATION 4.3. Middleware Core

Listing 4.5 illustrates the event broadcasting process

Listing 4.5: Client esper queue broadcasting
1 class EsperEventConsumerInternal extends EsperEventConsumer {

2 ...

3 /**

4 * Specific route rules are added to use Camel broadcast

5 */

6 @Override

7 protected void appendToRouteSpecific(ExpressionNode route) {

8 // Camel built-in recipient list pattern support

9 route.recipientList(header(

10

11 // Recipient list is fetched from the message header

12 EsperEventConsumer.HEADER_RECIPIENT_LIST),

13 EsperEventConsumer.DELIMITER_RECIPIENT_LIST)

14

15 // Camel built-in parallel processing improves performance

16 .parallelProcessing().ignoreInvalidEndpoints();

17 }

18 ...

19 }

The EsperEventConsumerInternal processor first retrieves the latest ses-
sion InteractionModel, then applies all necessary pattern related operations
according to this InteractionModel. Listing 4.6 demonstrates the interaction
model retrieval process.

Listing 4.6: Session interaction retrieval
1 class EsperEventConsumerInternal extends EsperEventConsumer {

2 ...

3 protected Processor getProcessor() {

4 return new Processor() {

5 ...

6 // Retrieve session interaction model

7 InteractionModel interactionModel = session

8 .getInteractionModel();

9 Long oldInteractionModel = interactionModel.getId();

10 Collection<DynamicReconfiguration> reconfs = session

11 .getDynamicReconfigurations();

12 ...

13 };

14 }

15 ...

16 }

68

4. IMPLEMENTATION 4.3. Middleware Core

Listing 4.7 demonstrates the pattern operations.

Listing 4.7: Session pattern operations

1 class EsperEventConsumerInternal extends EsperEventConsumer {

2 ...

3 protected Processor getProcessor() {

4 return new Processor() {

5 ...

6 // Process pattern related operations

7 switch (interactionModel.getPattern()) {

8 case PUBLISHER_SUBSCRIBER:

9 DSSSessionCondition condition = interactionModel

10 .getDssSessionCondition();

11 eventOk = EsperEventConsumerHelper.checkCondition(

12 condition, event);

13 // if not ok, clean recipient list

14 if (!eventOk) {

15 msg.setHeader(HEADER_RECIPIENT_LIST,

16 org.apache.commons.lang3.StringUtils.EMPTY);

17 }

18 break;

19 case PRODUCER_CONSUMER:

20 msg.setHeader(HEADER_DELAY, interactionModel.getEventDelay());

21 break;

22 ...

23 };

24 }

25 ...

26 }

The dynamic reconfigurations are applied in the process() method of the
Camel processor class. For each event received all existing dynamic reconfigu-
ration conditions are checked and if any condition is verified that modified the
current interaction model, then the dynamic reconfiguration is applied. First, all
the dynamic DynamicReconfiguration objects related to this Session are
fetched. Then these reconfiguration objects are iterated and for each one, the
associated SessionCondition is matched with the current event. If the con-
dition is verified then the InteractionModel associated with the Session is
replaced with the new one.

69

4. IMPLEMENTATION 4.3. Middleware Core

The most relevant code that performs these dynamic reconfiguration opera-
tions can be in Listing 4.8.

Listing 4.8: Session dynamic reconfiguration processing
1 class EsperEventConsumerInternal extends EsperEventConsumer {

2 ...

3 protected Processor getProcessor() {

4 return new Processor() {

5 ...

6 // Iterate all session DynamicReconfiguration objects

7 for (DSSDynamicReconfiguration rec : reconfs) {

8

9 // Fetch the DynamicReconfiguration related condition

10 DSSSessionCondition condition = rec.getDssSessionCondition();

11

12 // If the condition is verified apply new interaction model

13 if (EsperEventConsumerHelper.checkCondition(condition,

14 event)) {

15 Long newModel = rec.getDssInteractionModel().getId();

16

17 // only apply if this is a different interaction model

18 if (!oldInteractionModel.equals(newInteractionModel)) {

19 updateSessionInteractionModel(session, newModel);

20 ...

21 }

22 ...

23 }

24 ...

25 }

The cloud repository data storage is also implemented on the process()method
of the Camel processor class. The object can be persisted using standard Hibernate
/ JPA.

For each processed event the custom Camel processor checks if the repository
flag is enabled for this session, and if this is the case, the Event object is persisted
in the cloud-based data base instance.

The most relevant code that performs these repository persistence operations
can be found in Listing 4.9.

70

4. IMPLEMENTATION 4.3. Middleware Core

Listing 4.9: Session event persistence
1 class EsperEventConsumerInternal extends EsperEventConsumer {

2 ...

3 @Override

4 protected Processor getProcessor() {

5 return new Processor() {

6 ...

7

8 // If the session repository is enables, store the event

9 // in the cloud-based repository

10 if (... && session.isRepositoryEnabled()) {

11 Event evt = buildEvent(event);

12 if(evt != null) {

13 ...

14

15 // Persist the object using Hibernate/JPA

16 evt.persist();

17 ...

18 }

19 }

20 };

21 }

22 ...

23 }

The session Esper consumer routes described in this chapter are simultaneously
Esper event producers since they broadcast events to client Esper queues that are
present in the client messaging layer that will be described in detail on the next
chapter.

4.3.3 Client Messaging Layer

This layer consumes events from each client Esper queue and forwards these
messages to the appropriate client through the Client interface. Client level dy-
namic reconfigurations are handled in this layer by applying an Esper expression
to the client Esper queue.

Unlike session level reconfigurations, client level reconfigurations are only ap-
plied to this specific client. Client dynamic reconfigurations are also handled in
this layer.

71

4. IMPLEMENTATION 4.3. Middleware Core

The class diagram in Figure 4.16 represents the client routes hierarchy.

Figure 4.16: Client routes

These routes are closely linked with the UserSessionConnection domain
entity. The UserSessionConnection describes to which session should the
client connect to, and how this connections should be performed. Apart from
the session id, there are three main attributes used to describe a connection: an
EsperExpression, a InteractionModel and a DynamicReconfiguration
list. This organization is similar to what was described in the Section 4.3.2 for the
Session object.

When a client connects to the middleware through the client interface, one sin-
gle UserSessionConnection object reference is passed and this reference is
used to create one EsperEventConsumerUser route. This route will then con-
sume events from the appropriate client Esper queue according to the user de-
fined EsperExpression, InteractionModel and also using all reconfigura-
tions defined in the DynamicReconfiguration list.

72

4. IMPLEMENTATION 4.3. Middleware Core

The constructor for each of these routes receives a UserSessionConnection
that contains all the necessary attributes to manage client routes and perform
client level operations. Similarly to the session routes, client level core function-
ality is implemented by a Camel processor that is consumed from the client Esper
queue. This processor behavior id defined by the anonymous inner class returned
by the method getProcessor().

Event broadcasting to the clients is performed by calling the broadcast()
method from helper class UserSessionConnectionHelper. This class is a
middleware entry point to the client interface that manages the client connec-
tions. In the source code, the interaction model specific event processing and
the dynamic reconfigurations are implemented using the same approach used in
the session routes Camel processors. These operations are described in detail
in Section 4.3.2. The UserSessionConnection object relevant data model is
described in Figure 4.17.

Figure 4.17: UserSessionConnection data model

73

4. IMPLEMENTATION 4.3. Middleware Core

The client Esper consumer routes described in this chapter are consume events
from the client Esper queues associated with each session. As described before
there is a specific Camel processor that applies client level operations. This same
processor is responsible for sending the events to the actual clients, through the
client interface, by invoking the broadcast() method from the helper class
UserSessionConnectionHelper. The details of client connection manage-
ment will be described in Section 4.4

4.3.4 Session Container

The session container component is a group of classes that manage the session
creation and life cycle. The user performs session operations by manipulating the
data model associated with the session, specifically the Session entity. When a
Session entity object is modified, an event is triggered and if the route is active
the modifications performed by the client will be propagated to the associated
routes or client connections. These modifications can include adding/removing
dynamic reconfigurations, adding/removing data sources, explicitly modifying
the interaction model or modifying the allowed users set.

When a Session is created and the session is started all the routes associated
with this session are also created and encapsulated in a RoutesWrapper object.
The main attributes are the following:

• A map that stores the EsperEventProducer objects associated with the
session. There is one of these objects for each data source linked to the
session. These objects represent data source routes present in the data source
messaging layer;

• One session EsperEventConsumer that references the single session route
associated with the session. This route is present in the session messaging
layer;

• A map that stores EsperEventConsumer objects associated with the ses-
sion. There is one of these objects for each client currently connected to the
session. These objects represent client routes present in the client messaging
layer

74

4. IMPLEMENTATION 4.4. Client Interface

Figure 4.18 represents the RoutesWrapper object main attributes and opera-
tions.

Figure 4.18: RoutesWrapper object

4.4 Client Interface

The client interface is responsible for the direct connections between clients
and middleware. Clients connect to the middleware using the WebSockets [IET11]
protocol. Websockets protocol allows client/server bi-directional communication
using an client application that implements the specification or using a standard
web-browser.

The middleware is listening on a specific port for WebSockets connections. This
is performed using a specialized Java Servlet class that implements the WebSock-
ets protocol. There are several server side implementations of the protocol but
for this thesis the Jetty server implementation was used. The Servlet class cre-
ated on server side is ServerSideWebSocketServlet and this class extends
the Servlet class WebSocketServlet provided by Jetty. Extending classes must
override the method doWebSocketConnect(). This method returns an object
that implements the WebSocket interface, which is also provided by Jetty.

75

4. IMPLEMENTATION 4.4. Client Interface

A new WebSocket object is created for each connection and this object is in-
ternally called whenever an operation is required. In this implementation the
concrete WebSocket class used is ServerSideWebSocket. This class imple-
ments the interface OnTextMessage provided by Jetty which extends the inter-
face WebSocket. The ServerSideWebSocket class hierarchy is illustrated in
Figure 4.19.

Figure 4.19: WebSocket class hierarchy

By implementing the OnTextMessage interface, the previously mentioned
ServerSideWebSocket classes must define three methods:

• onOpen(Connection): This method handles the initial handshake. In-
formation about the client trying to establish a connection is included in the
Connection) object. The reference to this Connection) object is main-
tained to send messages back to clients.

• onMessage(String): This method handles all incoming messages. Af-
ter the initial handshake is established, the actual communication is per-
formed by exchanging custom JSON serialized messages. The required
marshalling/unmarshalling mechanisms are implemented in the helper class
WebSocketMessageHelper which is common to both server and client
applications. To access any of the services a authentication request mes-
sage must sent by the client and validated by the server. After the au-
thentication is successful, the WebSocket is linked to a client and is ready
to accept further service requests. This association is implemented in class
ServerSideWebSocketHelper which maintains a map that links user
ids with the matching WebSocket

76

4. IMPLEMENTATION 4.4. Client Interface

Listing 4.10 illustrates the client - WebSocket mapping:

Listing 4.10: ServerSideWebSocketHelper
1 public class ServerSideWebSocketHelper {

2 ...

3 /**

4 * Map the links user ids with ServerSideWebSocket objects

5 */

6 private static Map<Long, ServerSideWebSocket> connections =

7 Collections.synchronizedMap(

8 new HashMap<Long, ServerSideWebSocket>());

9 ...

10 }

At this point the middleware is also able to spontaneously send messages to
this client (e.g. broadcast some relevant middleware context modification).
If the authentication is not validated, the association between the user and
this ServerSideWebSocket is not stored, but the connection itself is not
automatically closed to allow further authentication attempts.

• onClose(int, String): This method handles all connection closing
and resource cleanup operations. This closing operation can occur explic-
itly by invoking the close() method in the Connection) object associ-
ated with this WebSocket or as a result of a connection timeout. The main re-
source cleanup operation is to remove any association between the user and
this WebSocket in the previously referred ServerSideWebSocketHelper

helper class.

Additionally, if the client is taking part in any session, then all related client
Camel routes are closed (Section 4.4 describes the client Camel routes). All
route cleanup operations are handled in class RouteHelper by calling the
method closeUserSessionConnection(Long).

All the exchanged message classes must extend from a base WebSocketMessage
class. As described before, the ServerSideWebSocketHelper class is respon-
sible for marshalling/unmarshalling all messages, and the methods in this class
expect message that extend WebSocketMessage.

77

4. IMPLEMENTATION 4.4. Client Interface

Figure 4.20 illustrates a the WebSocketMessage class:

Figure 4.20: WebSocketMessage

There are four main attributes in each WebSocketMessage:

• requestId: This attribute is used whenever a synchronous request is per-
formed. The associated response must include the same request id so that
the caller can relate the message to a specific previously issued request.

• payload: This attribute can include either all objects passed in a request or
all the objects returned by a service call.

• serviceName: This attribute described which service is being requested. The
list of available services will be described in detail in Section 4.4.

• errors: This attribute contains all error message that may result of a service
request.

The payload attribute contains the actual exchanged data in a BaseBean collec-
tion. All marshalling/unmarshalling operations expect that the payload beans
extend this class. Figure 4.21 illustrates a partial BaseBean class hierarchy.

Figure 4.21: BaseBean partial hierarchy

78

4. IMPLEMENTATION 4.4. Client Interface

As described in Section 4.3.3, when a session generates events that need to be
delivered to specific clients, the method broadcast(UserSessionConnection,
Event) from class UserSessionConnectionHelper is called. The necessary
session id and user id are extracted from the UserSessionConnection object
and then the previously described class ServerSideWebSocketHelper, more
specifically the method broadcastEvent(Long, Event).

The next section will enumerate the available services provided by the middle-
ware, and describe the base client side services implementation on top of which
new clients can be developed.

4.4.1 Services API

The services API is an interface that provides access to the all the middleware
functionalities. Any Java based application that implements the API can be a
middleware client and thus create or take part in existing sessions. There are four
service groups defined:

• Core services: This group includes services that do not require client au-
thentication. These services include the testing method echo(String)

and the authenticate(AuthenticationBean)method. All the remain-
ing services require a previous successful authentication;

• Listing services: This group includes all services that allow clients to fetch
data model information that will be used to display and to serve as input
to another services. Mostly these are methods that fetch lists of a certain
domain entity or return a single entity with a specified id. These services
only return the entities created by this client. Examples of such services are
listDataSources() or getSession(Long). The listSessions() is
a particular service because it returns not only the client owned sessions
but also the session to which the client can connect to. There is a spe-
cific listOwnedSessions() that only returns the sessions created by the
client;

• Updating services: This group includes all services that explicitly modify
the data model, either by creating a new entity or by updating an existing
entity. Similarly to the listing services, the updating operations are only
available for entities created by this client. Examples of such services in-
clude createEsperExpression(DSSEsperExpression) or the equiv-
alent update updateEsperExpression(DSSInteractionModel);

79

4. IMPLEMENTATION 4.4. Client Interface

• Session services: This group includes all session related services. These ser-
vices include the connectToSession(DSSUserSessionConnection)

or the replaySession(DSSReplaySession) methods. There is a con-
venient service defined by method startTestDataSourceSession()

that allows clients to quickly setup a session with a single data source and
a specified interaction model by providing the ids for each one;

The class diagram in figure 4.22 illustrates the services hierarchy.

Figure 4.22: WebSocketServices

80

4. IMPLEMENTATION 4.4. Client Interface

This services interface is implemented on server and client side. On server
side the operations requested by the server are performed and the result of these
operations is returned via the previously described WebSocket channels. On client
side the implementation involves creating the appropriate WebSocketMessage
object with the all the necessary attributes as described in Section 4.4. These at-
tributes include the service name and the arguments in the form of BaseBean
objects.

The base client side services implementation is ClientSideServices. This
class is used by all implementing clients to handle all the base functionalities.
When creating new clients to interact with the middleware it is necessary to in-
tegrate these services with the client specific graphical user interface (GUI). One
of the key aspects of the (GUI) integration is the event handling operations. Each
client may have different requirements and to handle these specific requirements,
the base client side services implementation includes a SessionEventHandler
object.

SessionEventHandler is an interface whose contract defines a single method
handleEvent(EventBean). In the base implementation the concrete event
handler is the DefaultSessionEventHandler class which simply writes the
events to the default output stream “System.out”. Figure 4.23 illustrates this
hierarchy.

Figure 4.23: SessionEventHandler

81

4. IMPLEMENTATION 4.4. Client Interface

To implement client specific event handling each client must define it’s own
event handler class that implements the SessionEventHandler interface. This
event handler will then be used instead of the default event handler by calling
the setEventHandler(SessionEventHandler) method included in helper
class ClientWebSocketContext.

Figure 4.24 illustrates the ClientWebSocketContext helper.

Figure 4.24: ClientWebSocketContext

ClientWebSocketContext is a Singleton helper that maintains client side
context data such as the authentication status. This helper is also responsible for
creating the WebSocket connection with the middleware. This operation is de-
fined in the method connect(WSConnectionBean). The object WSConnectionBean
defines all connection characteristics such as the connection URL, the connection
timeout or the maximum message size.

The next section describes the middleware cloud integration details.

82

4. IMPLEMENTATION 4.5. Cloud Integration

4.5 Cloud Integration

Amazon Web Services [AWS] was the chosen cloud services provider for imple-
menting this solution. The main reasons for choosing Amazon Web Services over
Google App Engine [GAE] are described below.

IaaS over PaaS: As previously described in Section 2.1.3, AWS offers mainly
with Infrastructure as a Service (IaaS) services offers a Google App Engine is a Plat-
form as a Service (PaaS) service. For example, when configuring the deployment
environment necessary to deploy the middleware a specific application service
was used (Jetty) and this kind of configuration is not possible in GAE. There are
also some limitations in the Java Virtual Machine (JVM) used by GAE that were
an important constraint on this particular development (e.g. no explicit thread
launching allowed). The Amazon Elastic Computing Cloud (EC2) was used so that
a virtual machine could be configured from scratch with the necessary environ-
ment. The middleware was deployed in a Amazon EC2 instance that was config-
ured with a Ubuntu based operating system and a Jetty application server where
the middleware application was deployed. The Amazon EC2 virtual instance can
be managed from the AWS EC2 management consoled illustrated in Figure 4.25.

Figure 4.25: AWS EC2 management console

83

4. IMPLEMENTATION 4.5. Cloud Integration

Relational over Non-relational database: The Amazon Relational Database Ser-
vice (RDS) allowed the middleware to take advantage of cloud-based storage
without resorting to a non-relational based solution which would require a greater
learning curve and a larger effort for integrating the necessary tools such as Apache
Camel. The middleware requires database access in several contexts and sev-
eral data model sections were already described in the previous chapters. The
RDBMS used is MySQL and the database instance is deployed in the cloud sup-
ported by Amazon Relational Database Service. The database communication is
implemented using Hibernate/JPA.

Apart from supporting the entire middleware data model, one key advan-
tage of having a cloud-based database instance is when it is used to store data
events. Since Amazon RDS service provides scalability transparently, it is possi-
ble to use the database using the same mechanisms used in standard databases.
The database instance can be managed from the AWS RDS management console
illustrated in Figure 4.26.

Figure 4.26: AWS RDS management console

Cloud provider maturity: Overall AWS services are more complete and mature
than the GAE offer. In particular when referring to cloud deployed virtual ma-
chines, Amazon were pioneers with the EC2 service and nowadays many cloud
providers based their own offer on Amazon EC2 virtual machines.

84

4. IMPLEMENTATION 4.6. Web Administration

The next section will describe the web administration interface that was devel-
oped in this thesis to demonstrate how a client can manage the middleware using
a standard web browser.

4.6 Web Administration

The web administration interface is a middleware management web site that
clients can use to perform operations using a standard web browser. This inter-
face allows to perform administrative tasks such as datasource creation, session
definition or creating dynamic reconfigurations. There is a CRUD (Create, Read,
Update, Delete) based approach that allows clients to manipulate the data model
on which the middleware is based upon. Certain detail screens allow for more
operations such as session start/stop on the session detail screen or session con-
nection open/close on the user connection detail screen. The web interface also
allows for clients to connect to sessions using a standard web browser. The func-
tionalities offered by the web interface are also possible for any client by using
the services API. This interface is implemented mainly using web technologies
(HTML, JavaScript) and Java based technologies (JSP, Spring MVC, Spring Security,
AspectJ). The base source code used was created using Spring Roo and customized
to address the needs of the project. When connecting to the web interface a client
must be authenticated. The authentication screen is displayed in Figure 4.27.

Figure 4.27: Web interface authentication

The home screen menu organization described the main feature categories
allowed in the web interface: data source, interaction model and session management.

Data source management: this section allows clients to access the screens used
for managing the data source definitions through the related DataSource enti-
ties. There is one menu entry for each data source type: HTTP, RSS, Twitter and
XMPP.

85

4. IMPLEMENTATION 4.6. Web Administration

Figure 4.28 illustrates the RssDataSource creation screen and Figure 4.29 il-
lustrates the TwitterDataSource creation screen.

Figure 4.28: RSS data source creation screen

Figure 4.29: Twitter data source creation screen

86

4. IMPLEMENTATION 4.6. Web Administration

Interaction model management: this section allows clients to access the screens
used for managing interaction model related entities such as the SessionCondition,
DynamicReconfiguration, EsperExpression or InteractionModel do-
main entities. Figure 4.31 illustrates the SessionCondition creation screen and
4.31 illustrates the DynamicReconfiguration creation screen.

Figure 4.30: Session condition creation screen

Figure 4.31: Dynamic reconfiguration creation screen

Session management: this section allows clients to access the screens used for
managing session related entities. These entities include the Session and the
UserSessionConnection objects.

87

4. IMPLEMENTATION 4.6. Web Administration

Figure 4.32 illustrates the Session creation screen.

Figure 4.32: Session creation screen

The next section will describe the base mobile client developed in this the-
sis. This mobile client demonstrates some of the middleware functionalities and
serves as a base implementation for other mobile applications that need to inter-
act with middleware.

88

4. IMPLEMENTATION 4.7. Mobile Client

4.7 Mobile Client

The mobile client is an Android based application that implements the services
API. Base functionalities are offered such as authentication, session listing and
session connections. This mobile client is also meant to be used as a platform for
richer mobile clients with specific behavior (e.g. generate actions on some specific
middleware event). The main reason for choosing Android over iOS was the Java
based programming language that allowed for a quicker learning curve. Another
element that contributed to this choice was the unavailability of iOS supported
hardware. The Android application developed in this thesis serves as a prototype
to showcase the core middleware functionality from a mobile device client.

The initial screen is the login screen, which is linked with the LoginActivity.
This activity collects user input from the username and password fields, connects
to the middleware using the method connect(WSConnectionBean) from the
previously described ClientWebSocketContext.

If the connection is successful, the authenticate(AuthenticateBean)

service is called with the collected user input. If the authentication is not success-
ful the user is redirected to the login screen with an error message, otherwise the
user is redirected to the application home screen. Figure 4.33 illustrates the login
screen and Figure 4.34 illustrates the home screen.

Figure 4.33: Login screen Figure 4.34: Home screen

89

4. IMPLEMENTATION 4.7. Mobile Client

The home screen allows clients to access six operations:

• Echo: This activity provides a quick connectivity test with the classic echo
functionality. This operations calls the echo() service from the API in-
terface WebSocketServicesSession. Serves merely as a bi-directional
communication test. Figure 4.35 illustrates the echo screen;

• Listings: This menu allows clients to consult the domain entities that are
accessible to them. These can include data sources, dynamic reconfigura-
tions or sessions among others. This operations relates to the services de-
scribed in the API interface WebSocketServicesListings. Figure 4.36
illustrates the listings screen;

Figure 4.35: Echo screen Figure 4.36: Listings screen

•• Data Sources: This activity allows users to quickly create a test session with
a single data source. On server side a temporary session will be created with
a Streaming interaction model and a simple pass-through Esper expression.
This should be used to test if a certain data source is working correctly. This
operations calls the startTestDataSourceSession() service from the
API interface WebSocketServicesSession;

90

4. IMPLEMENTATION 4.7. Mobile Client

Figures 4.37 and 4.38 illustrate the data source test session screen.

Figure 4.37: Data source test
screen - selection

Figure 4.38: Data source test
screen - connection

•• Sessions: The screen access by this menu displays a list of possible sessions
from which he can choose to which session he wishes to connect. This oper-
ations the collects the chosen session and calls the connectToSession()
service from the API interface WebSocketServicesSession. The screen
layout is similar to the data source test screen described before, but in this
screen the user selects a session instead of a data source;

• Replay: This menu allows users to access the replay session functionality.
The replay screens lists all possible sessions from which the user can se-
lected one. This operations calls the replaySession() service from the
API interface WebSocketServicesSession. The screen layout is similar
to the session connection screen;

• Logout: This menu allows users to logout from the application. This oper-
ation calls the disconnect() method from ClientWebSocketContext

to close the WebSocket connection. On server side, all user Camel routes are
closed as described in the previous chapters;

91

4. IMPLEMENTATION 4.7. Mobile Client

92

5
Case-Study

This chapter describes an application scenario that demonstrates the features
of the proposed middleware. Some of the implemented features, such as the dy-
namic modification of the data sources, or the ability to replay and analyse previ-
ously stored data, are common to the domain of Dynamic Data Driven Applications
Systems (as described in [Dar05]). Given these similarities, the example scenario
described in this chapter will be also be contextualized in the domain of DDDAS.

The chapter will start by identifying the DDDAS domains and its dimensions,
followed by a detailed description of a simulated natural disaster scenario.

5.1 Dynamic Data Driven Applications Systems

The DDDAS concept was first proposed by Frederica Darema [Dar05] and
“entails the ability to incorporate dynamically data into an executing simulation appli-
cations, and in reverse, the ability of applications to dynamically steer measurement pro-
cesses". These dynamic data inputs include real-time data but also data that was
previously stored for posterior analysis. In [Dar10] the author discusses the main
characteristics of DDDAS and its requirements, some of which are mentioned in
the following.

The DDDAS concept aims to improve the “modelling methods, augmenting the
analysis and prediction capabilities of simulations applications" [Dar05], so that a more

93

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

accurate view of an evolving event is available. This may be achieved by integrat-
ing fresh/live application related data, or by dynamically selecting only the rele-
vant data at some point in time (e.g. restricting data collection from a forest only
from a specific sub-area already on fire). This selective data gathering mechanism
promotes hence the “efficiency of simulations and the effectiveness of measurement sys-
tems" [Dar05] by reducing the amount of data that needs to be handled (e.g. using
data only from the affected area, instead of from the whole forest). Since only the
selected devices (e.g. wireless sensors) have to be interrogated, this contributes
to reducing the energy consumption of the remainder, hence increasing their au-
tonomy. (e.g. restricting data sensing to sensors in a sub-area allows saving other
sensors autonomy, which typically is limited).

On the other hand, the dynamic inclusion of previously stored data into an
simulation application also promotes this efficiency. Instead of only consuming
and processing real-time data, an simulation application may filter already pro-
cessed data from a repository, to extract useful information related to the evolving
event (e.g. data from the same area in a previous fire event). By applying these
mechanisms, the processing power demands are reduced, the sensing devices
autonomy is extended, and the simulation can produce quicker results.

An additional dimension in DDDAS is the possibility to dynamically acquire
or upscale hardware resources from the infrastructure if required [Dar10]. This is
useful in areas such as simulation applications where the hardware requirements
may need to adjust according to the simulation evolution. As described in Section
2.1, cloud-based systems allow the dynamic scaling of resources. This may include
incrementing the storage space, upscaling the underlying machines to a higher-
end processor or adding extra virtual machine instances as a response to usage
peeks. These characteristics allow these cloud-based systems to respond some to
some of the requirements of the DDDAS domain.

5.2 Urban Flooding Analysis and Monitoring

This section describes the modelling of an application scenario of our pro-
posed solution in the domain of DDDAS [Dar05]. The example describes a sup-
port system for natural disaster monitoring, analysis and simulation.

94

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

5.2.1 General Considerations

The specific context for the example is an urban flash flooding [IBM96] emer-
gency event resulting from unexpected heavy rain. This is a recurrent situation
in certain urban areas, where sudden high levels of precipitation require a coor-
dinated effort from local authorities. The example application that supports this
scenario will be referred to as “Urban Flooding Analysis and Monitoring” (UFAM).
The next sections describe the data acquisition process and how this example re-
lates to the DDDAS domain. Afterwards, a simulated flash flooding scenario is
described in detail.

5.2.1.1 Data acquisition

Meteorological data is is required when flash flooding incidents occur, in order
to build statistical information, and help to define the probability of new events.
Data such as the air temperature, humidity, precipitation or wind strength can
be used by human agents (or simulation applications) during the course of the
event, to support all required operations. In particular, data concerning the water
levels of nearby rivers and water saturation levels on the affected provide crucial
information on how the incident may evolve.

Geographical data collection is also important in these scenarios to help de-
termine how the water may flow in the affected areas. For example, hydrological
models can provide terrain analysis information that can be used to determine
the soil types, terrain roughness, area flatness or if there are any nearby sloped
areas. Likewise, information on the presence of streams, rivers, lakes, and dams
in the vicinities also should to be taken into account. Typically, geographical data
is accessed from repositories, both for off-line and on-line processing. This data
can be accessed by simulation applications, in contexts such as the scientific mod-
elling of natural systems [Sys]. These simulations may be executed after a critical
event to gather further data on how the event evolved, or they may be executed in
real-time (e.g. during a flooding incident) to provide an insight on current status,
and help determine alternate course of action.

In the context of this example, the data acquisition is performed by accessing
a group of data sources, using two models: client-server requests (pull data), and
topic subscription (push data). The middleware will interpret these services as
data sources, and in turn, deliver this data with a different QoS to the clients that
take part in a session, depending on pre-defined conditions or on their explicit
request. This allows, for instance, that live data sources (e.g. humidity sensing

95

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

devices) may be accessed infrequently during a severe drought period, and in
short intervals if it’s more likely to rain.

Moreover, the previously mentioned data accesses may have direct or indirect
costs associated with it. For instance, meteorology services that provide accurate
weather predictions may be charged, and a frequent acquisition of sensing data
reduces the sensor devices’ autonomy, which is usually low. Therefore, in the
context of a session, the variables that determine how the data is delivered to all
interested entities, might not only be scenario related, but may also depend on
cost assessment factors.

The Case-Study environment used simulated wireless sensors, since no real
sensors were used in the course of this thesis. The example described in this chap-
ter assumes that the live data sources (e.g. humidity or precipitation sensors) are
wireless sensing devices [GPBdSA12], that use the XMPP communication pro-
tocol [HBD09]. All these sensors were simulated by using a small customized
application, which injects data into sessions, so that the scenarios described in
Chapter 4 could be reproduced and tested. This approach allows full control of
the testing data and helped the course of the implementation and testing pro-
cesses.

5.2.1.2 Characteristics related with DDDAS

As discussed in [Dar05, Dar10], a few distinctive characteristics are common
to DDDAS applications. Some of these characteristics are also present in this
UFAM example, and are described in the following.

This example takes into account entities such as local authority agents, emer-
gency team personnel deployed in the affected area or an flood simulation. These
entities are able to dynamically include additional data sources , according to
pre-defined dynamic reconfiguration rules. Additionally, the session owner may
explicitly include new data source definitions in the session context, while the
session is running. These actions are accomplished in the context of a session
that monitors an area prone to flash flooding events. In this session abstraction’s
implementation, these dynamic data sources can be selected from a list, which is
defined while creating the session (but can later be explicitly modified).

The notion of people in the loop is present, since all session members observe/are
notified of session events (e.g. dynamic reconfiguration events). For example,
the local authority could define a dynamic reconfiguration rule describing an alert
situation, and all session clients would be notified when this reconfiguration was
triggered. This would allow all subordinated entities to include some pre-defined

96

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

action, coherent with the emergency plan, that would be triggered automatically
on an alert situation (e.g. start receiving weather data more frequently). In some
situations, these pre-defined behaviors can aid session clients to act based only
on local information (e.g. real-time data or saved session events), without having
to request new instructions. Session clients may include a local authority in charge
of the affected area, or subordinated entities following a pre-defined emergency
plan (e.g. firemen, medical emergency teams or city hall workers).

Off-line data, including all relevant session’s events and data sources’ pro-
cessed data, can be consumed and processed by interested entities by using the
session replay functionality. In this session abstraction’s implementation, off-line
data access is mutually exclusive to live-data acquisition, which implies that in
order to access off-line data (i.e. data stored in the repository), the session must
evolve to a status where no live-data is consumed (i.e. the session is paused).
There are two off-line data types that can be stored in the repository: session
events (e.g. dynamic reconfigurations, client connections) and data sources’ pro-
cessed data (e.g. values produced by a sensing device). Session events replaying
may be used by quality assurance entities who, for instance, have to evaluate if
there were enough emergency teams deployed in the area at some point in time,
or if some entity joined the session too late. Processed data may be used by sim-
ulation applications to create an event evolution knowledge base, which can be
offer valuable information in future similar events.

5.2.2 Example Description

A critical urban area is being monitored via wireless sensor networks (WSN).
The Web integration of these networks is built on top of the XMPP protocol
[HBD09], that collect data such as water levels, precipitation, humidity values
and wind speed. Some of these sensors may be located at different heights from
the ground (e.g. like humidity and wind values) in order to calculate more accu-
rate values. The collected data is persisted for data mining and analysis purposes.

Having experienced flash flooding events in recent years, the area requires
surveillance by the local authority department. The fire department may also con-
nect to the session to monitor relevant data. In the field, firemen or emergency
teams’ personnel are also involved in certain phases. At some point, a flood sim-
ulation application connects to the session to perform some analysis. The next
section is composed by a sequential list of scenarios that capture one possible
evolution of a flash flooding event. A brief description for each scenario follows.

97

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

• A normal scenario represents all the periods when the probability of an emer-
gency is low (e.g. in summer period);

• An alert scenario represents a higher probability of a flash flooding event (e.g.
on fall/winter period, when significant precipitation values can occur). This
assessment is based on a weather forecast warnings or on fresh data col-
lected from the critical area (e.g. an abnormal rise of humidity values);

• An emergency situation occurs when a sequence of meteorological occur-
rences results in a actual flash flooding event;

• A disaster scenario occurs when the flash flooding conditions are aggravated;

• An aftermath scenario is reached when the situation is normalized, but it is
necessary to assist the population. At this point it is necessary to perform a
post-event analysis while maintaining some monitoring (e.g. the event may
yet worsen);

• A return to normal scenario occurs when the situation is stabilized and all
rescue operations are finished, hence it is possible to return to one of the
initial scenarios;

5.2.3 Scenario Evolution

This section provides a detailed description of all the scenarios listed in Sec-
tion 5.2.2. For each scenario the involved actors will be identified, as well as the
key actions performed by each one. All relevant interactions between the actors
and the middleware will also be described.

5.2.3.1 Normal Scenario

Under normal weather conditions the local authority agent monitors the criti-
cal area using a previously created session. This session is configured for a de-
fault scenario, where no abnormal events were recorded. In this context the lo-
cal authority is only interested in receiving notifications regarding above average
humidity levels. This is accomplished by setting up the session with a Publisher-
Subscriber interaction model. This model allows the local authority to subscribe
to events generated by a humidity XMPP WSN data source, that are above 60%.
Figure 5.1 illustrates the humidity XMPP data source definition.

98

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

Figure 5.1: Humidity data source definition

To define the interaction model there are two steps involved, first it is neces-
sary to define a condition that will serve as a subscription topic, then it is neces-
sary to define an interaction model object, of type Publisher-Subscriber, that will
use the previously created condition. The interaction model will be based on
the session condition that represents the subscription topic. All these operations
are performed using the middleware’s Web administration interface. Figure 5.2 il-
lustrates the topic’s definition and Figure 5.3 illustrates the Publisher-Subscriber
interaction model definition.

Figure 5.2: Normal humidity topic definition

99

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

Figure 5.3: Publisher-Subscriber interaction model definition

The local authority also defines a dynamic reconfiguration rule so that whenever
the humidity value increases above 70%, a new data source on precipitation val-
ues for the same area is added to the session. This is accomplished by creating a
new dynamic reconfiguration that modifies the Esper expression associated with
the session. Note that the definition of the precipitation data source must be per-
formed in advance, similarly to the humidity data source definition. Figure 5.4
illustrates this new Esper expression definition.

Figure 5.4: Esper expression adds esper humidity precipitation data

This ALERT dynamic reconfiguration is based on a new session condition that
describes the referred humidity conditions. Note that the local authority could
have added the data source manually by updating the session definition directly.
Figure 5.5 illustrates the dynamic reconfiguration creation process.

When the condition linked to this dynamic reconfiguration is matched, the
associated Esper expression is applied and a notification is broadcasted to all con-
nected clients. This reconfiguration modifies the session to an aggregation session
in which notifications of humidity and precipitation values may be also com-
bined/filtered according to a rule. In this situation, no rule is applied, i.e. both
values on humidity and precipitation are sent to all clients without transforma-
tions, but a rule can be applied by the session’s owner at any time.

100

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

Figure 5.5: Alert dynamic reconfiguration

An example of such a transformation is to calculate the average humidity ev-
ery five minutes. This is accomplished by applying the Esper expression illus-
trated in Figure 5.6.

Figure 5.6: Calculate humity average every 5 minutes

Moreover, the session is configured with a session repository, meaning that all
session’s data, including filtered data from the data sources, is saved in the repos-
itory associated to this session. To accomplish this, the flag “Repository enabled"
must be checked when creating the session definition, as illustrated in Figure 5.7.

The session is started by pressing the “Start session” button present in the ses-
sion detail screen. In the same screen it is also possible to pause, end or replay the
session, by pressing the correspondent operation buttons. Figure 5.8 illustrates
the session detail screen.

The client connection is performed by creating a user connection definition.
The local authority will define client level connection characteristics, such as the
client level interaction model or dynamic reconfigurations. These attributes will
only be applied to this specific client and have no influence at session level. In
this case, the local authority is responsible for the session, hence it wants to receive

101

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

Figure 5.7: Session definition

Figure 5.8: Session operations

the events exactly as they are broadcasted. To ignore client level definitions a
Streaming interaction model and a pass-through Esper expression are used. The
Streaming interaction model, applied at client level, allows all events broadcasted
by the session to be delivered to this client. The pass-through Esper will eliminate
any aggregations, so that events from all data sources are considered, again, at
client level. Figure 5.9 illustrates the local authority connection definition. The
connection itself is established by pressing the “Open connection” button present
in the connection detail screen. In the same screen it is also possible to close the
connection. Figure 5.10 illustrates the connection detail screen.

102

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

Figure 5.9: Local authority connection definition

Figure 5.10: Connection detail

After the connection is established, the client is redirected to the session moni-
toring screen, where all the events are displayed. On the background, the nec-
essary routes are created, and a client WebSocket connection is established, so
that the middleware can push the events to the client, that in this case is a Web
browser. Figure 5.11 illustrates the session monitoring screen.

Typically, the local authority department is the only session client at this stage,
but other clients may join as well, such as the fire department responsible for the
this area. This client configures a Publisher/Subscriber that subscribes to humidity
values above 65%. To create this configuration, the fire department client must cre-
ate its own interaction model object, similar to the one created before by the local
authority. This client also creates a client side dynamic reconfiguration, so that
when an ALERT event is received, the interaction model is modified to start re-
ceving all the events generated in the context of the session. Figure 5.12 illustrates
this dynamic reconfiguration definition.

103

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

Figure 5.11: Session monitoring screen

Figure 5.12: Fire department alert dynamic reconfiguration

To connect to the session, the process is similar to the one described above for
the local authority connection, but since this client cannot modify the session (the
fire department is not the owner), the interaction model will have to be defined at
client level, as illustrated in Figure 5.13.

When the ALERT dynamic reconfiguration is triggered, all clients are notified
of this particular dynamic reconfiguration event within the session context, and
may respond with a specific action. This specific event represents the transition
to an Alert scenario, which is described in the next section. The normal scenario
described in this section is illustrated in Figure 5.14.

104

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

Figure 5.13: Fire department connection definition

Figure 5.14: Normal scenario overview

5.2.3.2 Alert Scenario

After the ALERT dynamic reconfiguration is triggered, the session starts re-
ceiving precipitation values together with the humidity values already received.
Additionally, each connected client can execute some specific behavior as a re-
sponse to this event. In particular, due to the dynamic reconfiguration created by
the fire department (Section 5.2.3.1), this client automatically starts receiving all the
events generated in the context of a session.

Custom client applications that implement the Services API may implement
more complex behaviors (e.g. such as sending emails or SMS messages) as a re-
sponse to these events. To accomplish this kind of customized behavior, the cus-
tom client application must implement a custom session event handler class, and

105

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

integrate this event handler as described in Section 4.4.1. Listing 5.1 illustrates a
custom handler that invokes a simulated email sending service.

Listing 5.1: Email sending event handler

1 public class MessagingEventHandler implements SessionEventHandler {

2

3 private enum EventName { ALERT, EMERGENCY, DISASTER, AFTERMATH }

4

5 /**

6 * This method would broadcast messages based on the received event

7 * using an existing email service to broadcast messages

8 */

9 @Override

10 public void handleEvent(EventBean evt) {

11 ...

12 // if the event is of type SESSION_DYNAMIC_RECONFIGURATION

13 // and the event name is ALERT, then broadcast alert message

14 switch (evt.getEventType()) {

15 case SESSION_DYNAMIC_RECONFIGURATION:

16 if(EventName.ALERT.name().equals(evt.getValue())) {

17 DummyEmailSendingService.broadcastAlerSignal();

18 ...

19 }

20 }

At this stage some firemen join the session to monitor the situation in the field.
These clients are constantly in motion, covering the entire area in danger to check
for signs that the situation may worsen. To be able to connect to the session
the firemen require a mobile device, such as a laptop or a smartphone. In this
case they connect to the session by using an Android based smartphone that in-
cludes the mobile client application described in Section 4.7. The connection’s
characteristics were previously configured by the fire department, so that the fire-
men only have to choose an existing connection configuration, thus speeding up
the session connection process. The existing connection definition assumes that
the only relevant events at the time are related to the precipitation values. Fig-
ures 5.15 and 5.16 demonstrate how each fireman connects to the session, using
the Android based mobile client.

106

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

Figure 5.15: Mobile session
connection

Figure 5.16: Mobile session
events

These firemen connection notifications can be followed by the fire department,
to verify the operational responsiveness. Figure 5.17 illustrates a broadcasted
fireman connection event, as perceived by the fire department.

Figure 5.17: Fire department monitoring new firemen connections

An alert scenario represents a high probability of a flash flooding event. As a
response to this situation some emergency teams are instructed to move into the

107

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

area and join the same session. The connection definition used by these teams
is not client customized, hence they will be notified of the same events as all
the clients that did not define a custom client interaction model (e.g. the local
authority). The emergency team personnel connection process is similar to what
was previously described for the firemen.

In order to obtain more data on the possible evolution of the situation, the
local authority explicitly adds new data sources providing information from the
area on wind speed and direction. These data sources are defined by following
the procedure established for the remainder in Section Section 5.2.3.1. Figure 5.18
illustrates this explicit data source addition.

Figure 5.18: Wind speed and direction data source addition

Additionally, the local authority creates a EMERGENCY dynamic reconfigura-
tion rule, so that when the precipitation values rise above 130mm an emergency
scenario is set. In this case, a new data source on ground water level values for
the same area is added to the session. To implement this behavior, the local author-
ity creates a new dynamic reconfiguration, as described in Section 5.2.3.1. Figure
5.19 illustrates the new reconfiguration being added to the session, and Figure
5.20 illustrates this reconfiguration definition.

Figure 5.19: Emergency dynamic reconfiguration

108

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

Figure 5.20: Emergency dynamic reconfiguration definition

Figure 5.21 illustrates the alert scenario described in this section.

Figure 5.21: Alert scenario overview

This EMERGENCY dynamic reconfiguration to an aggregation session is then
notified to all session members, and the novel aggregated data is automatically
disseminated to all clients. Note that all the data generated in the context of the
session, including this aggregated data, is being persisted for later processing and
can be monitored by additional agents, as will be described ahead.

109

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

5.2.3.3 Emergency Scenario

An emergency situation is reached when a sudden rise on the precipitation
values results in a flash flooding event. In this scenario the local authority adds
new data sources that provide water levels of dams, lakes and rivers, located in
the vicinities. These have been identified as a possible risks, so it is necessary to
monitor them. These data sources are defined using similar processes as in the
previously referred data sources (Section 5.2.3.1), and they are explicitly added to
the session by the session owner (the local authority client). Figure 5.22 illustrates
how the local authority includes this new data sources in the session context.

Figure 5.22: Local authority adds new data sources

To provide additional information regarding these possible risks, the local
authority starts a flood simulation to analyse and predict how the situation may
evolve. This application also becomes a session’s client so that it can inspect and
process all relevant events. This simulation will help local authority agents on the
evaluation of this scenario. The simulation application is assumed to execute on
a cloud platform, so that it is possible to dynamically provision additional storage
resources as well as computational ones. Also, the simulation application could
be organised in modules which would be executed on-demand as necessary (e.g.
first an analysis simulation would be launched, then a prediction tool).

This simulation application was not implemented in this work, and the goal
of this description is to refer that such an application could be integrated in the
session context. In this example, the simulation application client would be pre-
viously configured in the Web administration interface. This includes setting up
the simulation client credentials, including the simulation client in the existing
session, and setup a new client connection. Afterwards, the simulation would be
launched (e.g. from the command line), using the login credentials and connec-
tion identifier as arguments. This simulation application would then performs
calculations to help the local authority to predict the evolution of this situation.

The mobile devices used by the some clients may experience low battery lev-
els during the course of the event. If such situations occur, the situation is han-
dled transparently by the Android mobile client, by triggering a pre-defined rule

110

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

that automatically adjusts the interaction model in use. This rule states that if
the mobile client is currently connected to a session, and the battery levels drop
dramatically, then the client interaction model is explicitly modified to a Producer-
Consumer model, that will consume data once every five minutes. This modifica-
tion is transparent to the client. Listing 5.2 illustrates the Android listener class
that requests this interaction model modification.

Listing 5.2: Android client low battery event
1 BroadcastReceiver batteryLevelReceiver = new BroadcastReceiver() {

2 public void onReceive(Context context, Intent intent) {

3 // if the battery low

4 if(intent.getIntExtra("level", 0) < LOW_BATTERY_THRESHOLD) {

5 InteractionModelBean currentModel = getCurrentInteractionModel();

6 // modify the model to a PRODUCER-CONSUMER (every 5 minutes)

7 currentModel.setPattern(Pattern.PRODUCER_CONSUMER);

8 currentModel.setEventDelay(5L*60*1000);

9 // update the interaction model object on server side

10 ClientWebSocketContext.getServices().updateInteractionModel(model);

11 ...

Figure 5.23 illustrates an overview of the scenario at this moment.

Figure 5.23: Emergency scenario intermediate status

111

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

Based on the simulation results, and in order to reduce the amount of data that
has to be processed, the local authority tunes the data sources used by the simu-
lation in order to restrict the data acquisition to a certain sub-area. This charac-
teristic of live data influencing a running simulation and, in turn, the simulation
results, is a major characteristic of the DDDAS area, i.e “closing the loop”. This is
accomplished by explicitly removing some of the previously added data sources
from the session Esper expression.

During this phase, the local authority creates a dynamic reconfiguration rule to
be triggered if the scenario worsens. The label for this dynamic reconfiguration
is DISASTER. This dynamic reconfiguration will be based on the ground water
level data source defined in Section 5.2.3.2. When the ground water level raises
above 200mm, it means that the situation has aggravated dramatically. The dy-
namic reconfiguration is then triggered, modifying the session interaction model
to a Producer-Consumer model that consumes events every ten seconds. This will
ensure that no data is lost, even in the presence of a bad/intermittent network
connection, while delivering data with a high frequency. Figure 5.24 illustrates
this dynamic reconfiguration definition.

Figure 5.24: Disaster dynamic reconfiguration

This DISASTER dynamic reconfiguration is then broadcasted to all session
clients, allowing each client to perform some specific behavior if necessary. This
specific event represents the transition to a Disaster scenario, which is described in
the next section. Figure 5.25 illustrates the alert scenario described in this section.

112

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

Figure 5.25: Emergency scenario overview

5.2.3.4 Disaster Scenario

When a DISASTER scenario is reached, new firemen and emergency staff per-
sonnel are deployed and join the session. These new clients start receiving the
same information as the other clients in the session. Since the previous dynamic
reconfiguration described in Section 5.2.3.3 modified the interaction model to a
Producer-Consumer model, all new clients that joins the session from this point on,
may receive the produced data at their own pace, by connecting/disconnecting
from the session when necessary (e.g. to preserve battery life). Whenever they
join the session, they will consume all produced data and, in this way, receive the
same context information as all the other clients. The session concept provides
hence a simple way for context sharing under such difficult circumstances.

The establishing of a disaster scenario also results in a message that is broad-
casted to all clients connected to the session. Figure 5.26 illustrates a emergency
team member receiving this notification, using a mobile client.

At this point, the population of the affected area is in danger, and several res-
cue operations are on course. Several civilian volunteers are cooperating with
the rescue teams in these operations. In this context, the local authority decides to

113

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

Figure 5.26: Mobile client receives disaster notification

add a new Twitter data source to the session. This data source will allow the local
authority to monitor tweets from several accounts. These accounts may belong to
volunteers, helping in the field, to enable them to communicate and input infor-
mation to the session context. This data source can also be used by any of the
clients already connected to the session, providing an extra information input.
Figure 5.27 illustrates how this Twitter data source is defined.

Figure 5.27: Twitter account setup

Meanwhile, the local authority creates a new dynamic reconfiguration to be
triggered when the flood conditions are again normalized. This dynamic re-
configuration will be based on the ground water level defined in Section 5.2.3.2.
When the ground water level drops below 50mm, this means that the water lev-
els are now at standard levels. The dynamic reconfiguration is then triggered,
removing unnecessary data sources from the session. From the field sensors,

114

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

only the ground water level and precipitation data sources are maintained after
this reconfiguration. The Twitter data source is also maintained so that the field
personnel may continue to provide feedback. The interaction model remains as
Publisher/Subscriber, but the interval will be increased so that information is re-
ceived once every thirty minutes. The label for this dynamic reconfiguration is
AFTERMATH. Figure 5.28 illustrates this dynamic reconfiguration definition.

Figure 5.28: Aftermath dynamic reconfiguration

Figure 5.29 illustrates the disaster scenario.

Figure 5.29: Disaster scenario overview

115

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

The AFTERMATH dynamic reconfiguration is then broadcasted to all con-
nected clients, and each client may trigger any specific behavior. This specific
event represents the transition to an Aftermath scenario, which is described in the
next section.

5.2.3.5 Aftermath Scenario

When an aftermath scenario is established it is necessary to perform an after-
event analysis and still remain in a prevention situation. In a first phase, it is
necessary to answer all help emitted by the population. To assist this process an
additional news feed is added to the session, in the form of a RSS data source
that generates messages from the local newspaper. The session will interrogate
this data source every ten minutes for recent news that include the term “flood".
The news filtering is accomplished by applying a regular expression on the data
source generated events. This news feed, together with the Twitter data source
described in the previous section, will help field personnel to direct the opera-
tions according to the broadcasted information. Figure 5.30 illustrates the news
feed data source definition.

Figure 5.30: RSS news feed definition

Upon the conclusion of the rescue operations, the fire department, firemen and
emergency team members leave the session. At this point, the session is “paused”
by the local authority, so that all the data stored by the session can be reviewed.

116

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

This may be of interest to scientific experts who post-analyse the flash flood evo-
lution, or to quality assurance entities who, for instance, have to evaluate if there
were enough emergency teams deployed in the area at some point in time or if
some entity joined the session too late. In particular a quality assurance responsible
joins the session at this point. In order to allow all connected clients to review the
sessions’ events, the local authority requests a session replay operation, by press-
ing the respective button in the session detail screen. The output for the session
replay will be similar to what the standard session monitoring, as described in
section 5.2.3.1, the only difference being that the events are now past event.

During this "off-line" session, new clients may join the session as well. For
this analysis, each client can also define which data should be received, based on
date/time of datasource related constraints. These definitions are accomplished
by modifying the user connection interaction model and setting up a new Esper
expression. For instance, figure 5.31 illustrates the configuration for on client who
is only interested on the groundwater levels collected on the last hour.

Figure 5.31: Ground water level values from the last hour expression

In case of the situation of the "session replay" described above, new clients will
only receive the events sent to all clients from the point in time when they join
the session. For simplification reasons, clients do not have access to live data at
this point (i.e. fresh data collected from the data sources). The local authority can,
however, resume the session at any time, so that the session replay is interrupted
and live data is again delivered to all connected clients. This process should be
well handled with criteria, since while the session is being replayed, the area is
not being monitored.

After the analysis is finished, the local authority defines a new NORMAL dy-
namic reconfiguration, that will reconfigure the session back to a normal scenario.
The reconfiguration will be triggered when there is nearly zero precipitation. This
dynamic reconfiguration is illustrated in figure 5.32

117

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

Figure 5.32: Back to normal reconfiguration

Figure 5.33 illustrates the aftermath scenario, with the main actors and data
sources involved.

Figure 5.33: Esper expression

118

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

5.2.3.6 Return to a Normal Scenario

When all operations are finished, the session is configured back to a normal
configuration, as a response to the NORMAL dynamic reconfiguration. The local
authority could have also explicitly modified the session to match the initial con-
figuration, instead of relying on a dynamic reconfiguration. The local authority
could also “end” the session and create a new session with the same characteris-
tics, thus ensuring a clean configuration, and fresh repository data, which is only
linked with this new session. In this scenario, the configuration is the same as
described for the normal scenario in Section 5.2.3.1.

119

5. CASE-STUDY 5.2. Urban Flooding Analysis and Monitoring

120

6
Conclusions

As described in Chapter 1, the computing resources delivery model is shifting
towards XaaS (everything as a service) providing a true decoupling between ser-
vice access and service implementation, may this be elastic storage capabilities,
high-performance computing power, aggregation of small entities in the context
of the Internet of Things (IoT), or widely used applications like Twitter.

Moreover, the service access context is becoming increasingly ubiquitous as a
result of the mass usage of mobile devices such as smartphones or tablet devices.

Cloud computing answers some of the challenges in these environments by
offering distinct service delivery models (e.g. IaaS, PaaS, SaaS) with simplified
resource management and ubiquitous access, and by offering optimized services
for mobile devices.

Considering service-based platforms, several relevant characteristics can be
identified when describing client-service interactions. Namely, they can relate to
the service status (e.g. low storage space, high CPU usage, the rate at which a
stateful resource interfaced by a service is generating data, etc.); the client sta-
tus (e.g. low mobile device battery level); or the communication medium (e.g.
communication protocol changes from 2G to 3G).

By aggregating all these service access characteristics, it is possible to define
interaction models, which in turn describe how each service is being accessed by
a particular client or set of clients, at a particular point in time.

In the XaaS context described before, there is a growing demand for richer and
more adaptable interaction models so that the service/data access characteristics

121

6. CONCLUSIONS 6.1. Discussion

can be adjusted to each user’s requirements or may reflect dynamic modifications
in the provided service.

This adaptability should ideally take into account context variables from the
three dimensions previously referred: the service status, the communication medium
or user context variables. The Session concept defined and implemented in this
work responds to some of these requirements by capturing these interaction mod-
els and by allowing their dynamic reconfiguration according to particular context
variables.

The work in this thesis combines the concepts of Session and a Cloud-based
middleware that supports the implementation of a Session abstraction. This Ses-
sion captures the access of a set of clients with similar interests in a set of ser-
vices/generic data sources, building a common context where all relevant dy-
namic events are disseminated to the interested session clients. Therefore, on
one hand the implemented middleware offers Session abstraction’s characteris-
tics (e.g. the dynamic reconfiguration of the session’s interaction models in use at
some point in time, and the possibility to share the service access context to novel
clients with minimal effort). On the other hand, the middleware enriches the Ses-
sion abstraction with Cloud deployed applications characteristics (e.g. large data
storage and wide accessibility).

In the following, the thesis work that led to the implemented middleware is
discussed, as well as the work contributions followed by some guidelines regard-
ing possible future work extensions.

6.1 Discussion

The proposed solution in Section 1.2 describes characteristics such as applica-
tion ubiquitous access or the existence of persistent Sessions, so that the events
produced in the context of a Session could be stored. To this extent, the Session
abstraction implemented in this thesis was deployed in a Cloud platform (Ama-
zon EC2), to take advantage of Cloud characteristics such as the elastic storage.
The implemented Session abstraction characteristics are extensions to an existing
Session abstraction implementation [BGP12], as described in Section 3.3. They
include the notion of session repository (to store the events produced by the ses-
sion) and simplified support for heterogeneous data sources (for integrating data
sources based on multiple protocols).

However, one characteristic of the existing Session was not included in this
implementation: the separation between behavioural and structural patterns and

122

6. CONCLUSIONS 6.2. Contributions

the associated validation mechanisms needed to prevent incoherent operations
on them. For simplification, due to time constraints, the Session implementation
discussed in this work considers only behavioural patterns (e.g. Publisher/Sub-
scriber, Producer/Consumer) which are validated by the underlying data model,
preventing thus incoherent operations.

Nevertheless, the Cloud-based middleware together with the Session imple-
mentation developed in this work, respond to many of the problems/limitations
identified in Section 1.1, as described in the following.

• By using a Cloud-based storage service, it is possible to store large amounts
of data without compromising the overall performance, by using elastic
storage characteristics. It’s also possible to apply database replication, or
scale the underlying hardware transparently, by using a specific Web ad-
ministration interface offered by the Cloud provider;

• The usage of protocol connectors, based on the Apache Camel system, al-
lows the integration of heterogeneous data sources, using a wide array of
protocols. Implemented connectors include XMPP, Twitter, HTTP and RSS,
but it is possible to develop and integrate further connectors if necessary.
All the data produced by these data sources are handled and delivered in
uniformly;

• The Session implementation allows dynamic reconfigurations of the inter-
action models. These reconfigurations can be performed explicitly/on-demand
or they can be automatic, i.e. triggered by pre-defined rules which can
themselves by modified dynamically;

• Ubiquitous access is improved by using the base Android mobile client de-
veloped in this thesis work. This client can be extended if necessary.

Overall, the main goals defined for this thesis were achieved. The next section
describes this work’s main contributions.

6.2 Contributions

As described in Section 1.3, this thesis work’s contributions are mostly re-
lated to the Cloud-based middleware and the Session abstraction implementa-
tion. Namely,

123

6. CONCLUSIONS 6.2. Contributions

• Cloud-based middleware for the Session abstraction: As described in Sec-
tions 3 and 4, a middleware was deployed in the Cloud using the Elastic
Computing Cloud (EC2) service, offered by Amazon Web Services (AWS). This
middleware instantiates the Session abstraction for service/data aggrega-
tion and filtering. The middleware also includes a Web based administra-
tion that can be used to perform administrative tasks (e.g. new client profile
definitions), and to execute operations such as to start/pause one Session or
connecting users to existing sessions. The middleware is also used for cre-
ating dynamic reconfigurations, session conditions, Esper expressions, and
all the remaining operations that modify the data model;

• Heterogeneous Data Sources: The middleware allows data sources’ access
using a wide array of protocols, by using the Apache Camel based connec-
tors developed in this thesis. This feature allows a unified access to hetero-
geneous data sources. Moreover, the implemented architecture allows to
integrate further connectors if necessary, as long as the necessary protocols
are supported by Apache Camel (e.g. Web Services, JMS);

• Session/client level interaction models: The Session implementation al-
low interaction model definition at Session level or at client level. At Ses-
sion level, the interaction model impacts all the clients that are connected
to the session, while at client level, the interaction model modifications im-
pact only that specific client. Session level modifications can only be per-
formed by the Session owner, while client level modifications can only be
performed by that specific client;

• Rule-based dynamic reconfigurations: This session implementation allows
dynamic reconfiguration based on rules. These rules can also be defined at
Session or client level. When a Session level dynamic reconfiguration is trig-
gered, a specific event is broadcasted to all clients connected to that session,
stating that has occurred the dynamic reconfiguration rule labeled X (each
rule has an associated label). These rules can be based on the values pro-
duced by the data sources (e.g. if humidity > 60% then modify pattern to
Streaming), or they can be triggered by a Session level dynamic reconfigu-
ration that was triggered (e.g. if rule X was triggered, then modify pattern
to Streaming). The later approach allows the composition of chained rules
where one rule triggers additional rules consecutively, thus triggering com-
plex modifications that can impact each Session client specifically (i.e. if
each client defines a client level rule based on that event);

124

6. CONCLUSIONS 6.3. Future Work

• Repository and session replay: The notion of an events’ repository is also
included in this Session implementation. The stored events include data
source generated values and internal Session events, such as the triggering
of dynamic reconfigurations or new client connection notifications. These
stored events can then be reviewed by using the session replay operation,
which allows all connected clients to receive all previously generated data;

• Richer aggregation functions: By using Esper, it is possible to use richer
function constructions, which can include operations like calculating av-
erages on time periods. Moreover, these aggregations can be linked with
the previously mentioned dynamic reconfigurations, since each dynamic
reconfiguration rule can also modify the aggregation function whenever is
triggered;

• Ubiquitous clients: The Android based mobile client developed in this the-
sis showcases the middleware’s functionalities by implementing the service
API in a mobile device. This client can be used to connect clients to sessions
and visualize the received session data. Clients can also connect to the mid-
dleware by using the Web administration interface;

6.3 Future Work

There are several extensions and improvements of this thesis work that could
be addressed in future work, as described in the following.

• Instance pararellization: Optimizing the middleware’s Cloud integration
to allow parallelization of multiple middleware instances, hence improving
overall performance. This would allow the middleware to take advantage
of the virtual machine instance auto scaling service, provided by Amazon
Web Services. By using these service it would be possible to define rules
based on Cloud service metrics (e.g. CPU usage, number of disk accesses).
These rules would allow to automatically add virtual machine instances to
face high processing peaks, or remove existing instances in periods of low
usage, so that the underlying costs could be minimized;

• Improving repository access: The repository access could be improved,
both in functionality and performance. Some of these repository improve-
ments possibilities are described in the following.

125

6. CONCLUSIONS

· Extend the existing implementation so that it is possible to access repos-
itory data, simultaneously with the live data. Clients would then be
able to filter or aggregate historical data, together with current data
(e.g. verify if the current temperature is greater that the average tem-
perature, from the session’s beginning);

· Perform experiments using repository specific, Cloud-based NoSQL in-
stances. Given the nature of the repository data (e.g. one single re-
lation), the usage of this kind of non-relational key-value databases
could result in improved performance. Amazon DynamoDB could be
used for this purpose;

• Elastic sessions: The aforementioned performance improvements would
allow the middleware to support a large number of data sources, produc-
ing large amounts of data, as well as support a large number of clients.
Nonetheless, data delivery should optimized whenever possible, e.g. if data
is to be disseminated to a set of session clients using the same interaction
model, and with the same parameterization (e.g. the same data rate). These
extensions are to be investigated in the context of a new MSc which is start-
ing;

• Simplified user interface: Provide a simpler interface for performing mid-
dleware operations, such as complex rule definition. For instance, clients
could be presented with a wizard, or simplified GUI that offers visual guide-
lines for creating Esper expressions intuitively (e.g. aggregate all received
events from different data sources at the same interval in time);

• Richer dynamic reconfigurations: As described before, the existing dy-
namic reconfiguration rules can be based on the data generated by data
sources, or based on other dynamic reconfigurations with a specific label.
The rule set could be enriched by allowing to create rules based on other
factors, such as the Cloud service metrics. This would allow users to in-
spect the service state, and define dynamic reconfigurations based on met-
rics such as CPU usage, data usage, or service usage associated costs;

• More protocol connectors: By developing and integrating new connectors
based on Apache Camel, the middleware would broaden the possible data
sources that could be integrated in Session. Examples of useful connectors
would be a WebServices connector, or a Java Messaging Services (JMS) connec-
tor;

126

Bibliography

[ADF+03] Daniel E. Atkins, Kelvin K. Droegemeier, Stuart I. Feldman,
Hector Garcia-Molina, Michael L. Klein, David G. Messer-
schmitt, Paul Messina, Jeremiah P. Ostriker, and Margaret H.
Wright. Revolutionizing Science and Engineering Through Cy-
berinfrastructure: Report of the National Science Foundation
Blue-Ribbon Advisory Panel on Cyberinfrastructure, 2003.

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.
Joseph, Randy H. Katz, Andrew Konwinski, Gunho Lee,
David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei Za-
haria. Above the clouds: A berkeley view of cloud comput-
ing. Technical Report UCB/EECS-2009-28, EECS Department,
University of California, Berkeley, Feb 2009.

[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein.
A Pattern Language: Towns, Buildings, Construction. Oxford Uni-
versity Press, 1977.

[Ama] Amazon. Amazon cloud player. http://www.amazon.com/
b?ie=UTF8&node=2658409011.

[Appa] Apple. Apple icloud. https://www.icloud.com/.

[Appb] Apple. ios technology overview. http://developer.

apple.com/library/ios/.

[AWS] Amazon Web Services AWS. Amazon web services - aws).
http://aws.amazon.com/.

127

http://www.amazon.com/b?ie=UTF8&node=2658409011
http://www.amazon.com/b?ie=UTF8&node=2658409011
https://www.icloud.com/
http://developer.apple.com/library/ios/
http://developer.apple.com/library/ios/
http://aws.amazon.com/

BIBLIOGRAPHY

[BGP12] Adérito Baptista, M. Cecilia Gomes, and Hervé Paulino.
Session-based dynamic interaction models for stateful web ser-
vices. In Exploring Services Science - Third International Con-
ference, IESS 2012, Geneva, Switzerland, February 15-17, 2012,
Lecture Notes in Business Information Processing. Springer-
Verlag, 2012.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som-
merlad, and Michael Stal. Pattern-Oriented Software Architecture:
a system of patterns, volume 1. John Wiley and Sons, 1996.

[BYV08] Rajkumar Buyya, Chee S. Yeo, and Srikumar Venugopal.
Market-Oriented Cloud Computing: Vision, Hype, and Reality
for Delivering IT Services as Computing Utilities. In HPCC ’08:
Proceedings of the 2008 10th IEEE International Conference on High
Performance Computing and Communications, pages 5–13, Wash-
ington, DC, USA, September 2008. IEEE Computer Society.

[Cam] Apache Camel. Apache camel. http://camel.apache.org.

[CC66] Gianpaolo Carraro and Fred Chong. Software as a service
(saas): An enterprise perspective. Technical report, Microsoft,
2066.

[CFK+00] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury,
and Steven Tuecke. The data grid: Towards an architecture
for the distributed management and analysis of large scientific
datasets. Journal of network and computer applications, 23(3):187–
200, 2000.

[cI11] comScore (Information Technology Analytics). U.s. mobile sub-
scriber market share. http://www.comscore.com/Press_
Events/Press_Releases/2011/8/comScore_Reports_

July_2011_U.S._Mobile_Subscriber_Market_Share,
2011.

[com11] comScore. Market share analysis: Mobile devices, world-
wide, 1q11. http://www.gartner.com/it/page.jsp?

id=1689814, 2011.

[CRPN08] Manuel Caeiro-Rodriguez, Thierry Priol, and Zsolt Németh.
Dynamicity in scientific workflows. Technical Report TR-0162,

128

http://camel.apache.org
http://www.comscore.com/Press_Events/Press_Releases/2011/8/comScore_Reports_July_2011_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Press_Events/Press_Releases/2011/8/comScore_Reports_July_2011_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Press_Events/Press_Releases/2011/8/comScore_Reports_July_2011_U.S._Mobile_Subscriber_Market_Share
http://www.gartner.com/it/page.jsp?id=1689814
http://www.gartner.com/it/page.jsp?id=1689814

BIBLIOGRAPHY

Institute on Grid Information, Resource and Workflow Moni-
toring Services , CoreGRID - Network of Excellence, August
2008.

[Dar05] Frederica Darema. Dynamic data driven applications sys-
tems: New capabilities for application simulations and mea-
surements. In International Conference on Computational Science
(2), pages 610–615, 2005.

[Dar10] Frederica Darema. Cyberinfrastructures of cyber-applications-
systems. Procedia CS, 1(1):1287–1296, 2010.

[Esp] Esper. Esper: Complex event processing. http://esper.

codehaus.org/.

[FDFB12] E. Ferrara, P. De Meo, G. Fiumara, and R. Baumgartner. Web
Data Extraction, Applications and Techniques: A Survey. ArXiv
e-prints, July 2012.

[Fos06] Ian Foster. Service-oriented science: Scaling escience impact. In
Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence, WI ’06, pages 9–10, Washington, DC, USA,
2006. IEEE Computer Society.

[GAE] Google App Engine GAE. Google app engine - gae. http:

//code.google.com/appengine/.

[Gao12] Dehong Gao. Opinion influence and diffusion in social net-
work. In Proceedings of the 35th international ACM SIGIR con-
ference on Research and development in information retrieval, SIGIR
’12, pages 997–997, New York, NY, USA, 2012. ACM.

[GCR05] M. Cecília Gomes, Jose C. Cunha, and Omer Rana. A Pattern-
based Software Engineering Tool for Grid Environments, pages 213–
222. NATO Science Series III: Computer and Systems Sciences.
IOS PRESS, 05 2005.

[GHIGGHPD07] Carlos F. García-Hernández, Pablo H. Ibargüengoytia-
González, Joaquín García-Hernández, and Jesús A. Pérez-Díaz.
Wireless sensor networks and applications: a survey. Interna-
tional Journal of Computer Science and Network Security, 17(3):264
–273, 2007.

129

http://esper.codehaus.org/
http://esper.codehaus.org/
http://code.google.com/appengine/
http://code.google.com/appengine/

BIBLIOGRAPHY

[GHJV95] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, Reading, MA, 1995.

[GHS95] Diimitrios Georgakopoulos, Mark Hornick, and Amit Sheth.
An overview of workflow management: From process model-
ing to workflow automation infrastructure. In DISTRIBUTED
AND PARALLEL DATABASES, pages 119–153, 1995.

[Gooa] Google. Android developers. http://developer.

android.com.

[Goob] Google. Google apps. http://www.google.com/apps/

intl/en/business/index.html.

[Gooc] Google. Google reader. http://www.google.com/reader.

[GPBdSA12] M. Cecília Gomes, Hervé Paulino, Adérito Baptista, and Fil-
ipe Jorge da Silva Araújo. Accessing wireless sensor networks
via dynamically reconfigurable interaction models. Interna-
tional Journal of Interactive Multimedia and Artificial Intelligence,
1(7):52–61, 12 2012.

[GRC03] M. Cecilia Gomes, O. Rana, and Jose C. Cunha. Pattern oper-
ators for grid environments. Scientific Programming, 11(3):237–
261, 2003.

[GRC08] M. Cecilia Gomes, O. Rana, and Jose C. Cunha. Extending grid-
based workflow tools with patterns/operators. IJHPCA - The
International Journal of High Performance Computing Applications,
22(3):301–318, 08 2008.

[Gro10] Cloud Computing Use Case Group. Cloud Computing Use
Cases Whitepaper, 2010.

[Hat] Red Hat. Red hat openshift. https://openshift.redhat.
com/app/.

[HBD09] A. Hornsby, P. Belimpasakis, and I. Defee. Xmpp-based wire-
less sensor network and its integration into the extended home
environment. In Consumer Electronics, 2009. ISCE ’09. IEEE 13th
International Symposium on, pages 794–797, 2009.

130

http://developer.android.com
http://developer.android.com
http://www.google.com/apps/intl/en/business/index.html
http://www.google.com/apps/intl/en/business/index.html
http://www.google.com/reader
https://openshift.redhat.com/app/
https://openshift.redhat.com/app/

BIBLIOGRAPHY

[HKLP05] Hal Hildebrand, Anish Karmarkar, Mark Little, and Greg
Pavlik. Session modeling for web services. In Third European
Conference on Web Services (ECOWS 2005), 14-16 November 2005,
Växjö, Sweden. IEEE Computer Society, 2005.

[Hog11] Liu F. Sokol A. W. Jin T. Hogan, M. D. Nist-sp 500-291, nist
cloud computing standards roadmap. Technical report, NIST,
National Institute of Standards and Technology, U.S. Depart-
ment of Commerce, Aug 2011.

[HW03] Gregor Hohpe and Bobby Woolf. Enterprise Integration Pat-
terns: Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003.

[IBM96] Charles A. Doswell III, Harold E. Brooks, and Robert A. Mad-
dox. Flash flood forecasting: An ingredients-based methodol-
ogy. American Meterological Society, 11(2), 12 1996.

[IET11] IETF. The websocket protocol. http://tools.ietf.org/

html/rfc6455, 2011.

[JMB11] Brad Brown Jacques Bughin Richard Dobbs Charles Roxburgh
James Manyika, Michael Chui and A.H. Byers. Big data: The
next frontier for innovation, competition, and productivity.
Technical report, McKinsey Global Institute, 2011.

[JNL10] Keith J. and Burkhard Neidecker-Lutz, editors. The Future Of
Cloud Computing, Opportunities for European Cloud Computing
Beyond 2010. EUROPA > CORDIS > FP7, January 2010.

[KBLK07] Tomasz Kobialka, Rajkumar Buyya, Christopher Leckie, and
Ramamohanarao Kotagiri. A sensor web middleware with
stateful services for heterogeneous sensor networks. In Intelli-
gent Sensors, Sensor Networks and Information, 2007. ISSNIP 2007.
3rd International Conference, pages 491–496, 2007.

[KR12] JosephA. Konstan and John Riedl. Recommender systems:
from algorithms to user experience. User Modeling and User-
Adapted Interaction, 22:101–123, 2012.

131

http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455

BIBLIOGRAPHY

[LBC10] N. Laga, E. Bertin, and N. Crespi. Composition at the frontend:
The user centric approach. In Intelligence in Next Generation Net-
works (ICIN), 2010 14th International Conference on, pages 1–6,
2010.

[LML+10] Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles,
Tanzeem Choudhury, and Andrew T. Campbell. A survey of
mobile phone sensing. Comm. Mag., 48(9):140–150, September
2010.

[Lou10] Panagiotis Louridas. Up in the air: Moving your applications
to the cloud. IEEE Software, 27(4):6–11, 2010.

[MP95] Nelson R. Manohar and Atul Prakash. The session capture
and replay paradigm for asynchronous collaboration. In In
Proc. of European Conference on Computer Supported Cooperative
Work (ECSCW)’95, pages 149–164. Kluwer Academic Publish-
ers, 1995.

[Rac] Rackspace. Rackspace cloud servers. http://www.

rackspace.co.uk/.

[Sal] Salesforce. Salesforce crm. http://www.salesforce.com/
crm/.

[Ser] Amazon Web Services. Amazon elastic compute cloud (EC2).
http://aws.amazon.com/ec2/.

[Spr] Spring. Spring integration. http://www.springsource.

org/spring-integration.

[SRS+09] Hans-Gunther Schmidt, Karsten Raddatz, Aubrey-Derrick
Schmidt, Seyit Ahmet Camtepe, and Sahin Albayrak. Google
android - a comprehensive introduction. Technical Report
TUB-DAI 03/09-01, Technische Universitat Berlin - DAI-Labor,
2009. http://www.dai-labor.de/fileadmin/files/

publications/GoogleAndroid.pdf.

[SWJ08] Christoph Stasch, Alexander C. Walkowski, and Simon Jirka. A
geosensor network architecture for disaster management based
on open standards. In Digital Earth Summit on Geoinformatics
2008: Tools for Climate Change Research., pages 54–59, 2008.

132

http://www.rackspace.co.uk/
http://www.rackspace.co.uk/
http://www.salesforce.com/crm/
http://www.salesforce.com/crm/
http://aws.amazon.com/ec2/
http://www.springsource.org/spring-integration
http://www.springsource.org/spring-integration
http://www.dai-labor.de/fileadmin/files/publications/GoogleAndroid.pdf
http://www.dai-labor.de/fileadmin/files/publications/GoogleAndroid.pdf

BIBLIOGRAPHY

[Sys] South Florida Water Management System. Natural system
model. http://www.sfwmd.gov/portal/page/portal/

xweb%20-%20release%202/natural%20system%

20model.

[TBB03] Mark Turner, David Budgen, and Pearl Brereton. Turning soft-
ware into a service. IEEE Computer, 36(10):38–44, 2003.

[vdAHW03] Wil van der Aalst, Arthur Ter Hofstede, and Mathias Weske.
Business process management: A survey. In Proceedings of the
1st International Conference on Business Process Management, vol-
ume 2678 of LNCS, pages 1–12. Springer-Verlag, 2003.

[YB05] Jia Yu and Rajkumar Buyya. A taxonomy of scientific workflow
systems for grid computing. SIGMOD Rec., 34:44–49, Septem-
ber 2005.

133

http://www.sfwmd.gov/portal/page/portal/xweb%20-%20release%202/natural%20system%20model
http://www.sfwmd.gov/portal/page/portal/xweb%20-%20release%202/natural%20system%20model
http://www.sfwmd.gov/portal/page/portal/xweb%20-%20release%202/natural%20system%20model

	Introduction
	Problems
	Proposed Solution
	Contributions
	Document Organization

	State of the Art
	Cloud Computing
	Advantages / Disadvantages
	Cloud Computing Model
	Provider Examples

	Mobile Platforms
	iOS
	Android
	Mobile Platforms and Cloud Services

	Patterns
	Object-Oriented Patterns
	Architectural Patterns
	System Integration Patterns
	Patterns as Abstractions

	Enterprise Integration
	Session-Based Dynamic Interaction Models

	A Middleware for Service/Data Aggregation
	Requirements
	Solution Domain
	Session Abstraction
	On the Use of a Cloud-Based Approach
	Architecture
	Architecture Modules
	Architecture Extensibility

	Implementation
	Inter-Module Communication
	Route Specification

	Data Source Interface
	Middleware Core
	Data Source Messaging Layer
	Session Messaging Layer
	Client Messaging Layer
	Session Container

	Client Interface
	Services API

	Cloud Integration
	Web Administration
	Mobile Client

	Case-Study
	Dynamic Data Driven Applications Systems
	Urban Flooding Analysis and Monitoring
	General Considerations
	Example Description
	Scenario Evolution

	Conclusions
	Discussion
	Contributions
	Future Work

