498 research outputs found

    CAMAC bulletin: A publication of the ESONE Committee Issue #14 December 1975 [last pub. of series]

    Get PDF
    CAMAC is a means of interconnecting many peripheral devices through a digital data highway to a data processing device such as a computer

    CAMAC bulletin: A publication of the ESONE Committee Issue #13 September 1975

    Get PDF
    CAMAC is a means of interconnecting many peripheral devices through a digital data highway to a data processing device such as a computer

    Mapeo estático y dinámico de tareas en sistemas multiprocesador, basados en redes en circuito integrado

    Get PDF
    RESUMEN: Las redes en circuito integrado (NoC) representan un importante paradigma de uso creciente para los sistemas multiprocesador en circuito integrado (MPSoC), debido a su flexibilidad y escalabilidad. Las estrategias de tolerancia a fallos han venido adquiriendo importancia, a medida que los procesos de manufactura incursionan en dimensiones por debajo del micrómetro y la complejidad de los diseños aumenta. Este artículo describe un algoritmo de aprendizaje incremental basado en población (PBIL), orientado a optimizar el proceso de mapeo en tiempo de diseño, así como a encontrar soluciones de mapeo óptimas en tiempo de ejecución, para hacer frente a fallos de único nodo en la red. En ambos casos, los objetivos de optimización corresponden al tiempo de ejecución de las aplicaciones y al ancho de banda pico que aparece en la red. Las simulaciones se basaron en un algoritmo de ruteo XY determinístico, operando sobre una topología de malla 2D para la NoC. Los resultados obtenidos son prometedores. El algoritmo propuesto exhibe un desempeño superior a otras técnicas reportadas cuando el tamaño del problema aumenta.ABSTARCT: Due to its scalability and flexibility, Network-on-Chip (NoC) is a growing and promising communication paradigm for Multiprocessor System-on-Chip (MPSoC) design. As the manufacturing process scales down to the deep submicron domain and the complexity of the system increases, fault-tolerant design strategies are gaining increased relevance. This paper exhibits the use of a Population-Based Incremental Learning (PBIL) algorithm aimed at finding the best mapping solutions at design time, as well as to finding the optimal remapping solution, in presence of single-node failures on the NoC. The optimization objectives in both cases are the application completion time and the network's peak bandwidth. A deterministic XY routing algorithm was used in order to simulate the traffic conditions in the network which has a 2D mesh topology. Obtained results are promising. The proposed algorithm exhibits a better performance, when compared with other reported approaches, as the problem size increases

    Framework for simulation of fault tolerant heterogeneous multiprocessor system-on-chip

    Full text link
    Due to the ever growing requirement in high performance data computation, current Uniprocessor systems fall short of hand to meet critical real-time performance demands in (i) high throughput (ii) faster processing time (iii) low power consumption (iv) design cost and time-to-market factors and more importantly (v) fault tolerant processing. Shifting the design trend to MPSOCs is a work-around to meet these challenges. However, developing efficient fault tolerant task scheduling and mapping techniques requires optimized algorithms that consider the various scenarios in Multiprocessor environments. Several works have been done in the past few years which proposed simulation based frameworks for scheduling and mapping strategies that considered homogenous systems and error avoidance techniques. However, most of these works inadequately describe today\u27s MPSOC trend because they were focused on the network domain and didn\u27t consider heterogeneous systems with fault tolerant capabilities; In order to address these issues, this work proposes (i) a performance driven scheduling algorithm (PD SA) based on simulated annealing technique (ii) an optimized Homogenous-Workload-Distribution (HWD) Multiprocessor task mapping algorithm which considers the dynamic workload on processors and (iii) a dynamic Fault Tolerant (FT) scheduling/mapping algorithm to employ robust application processing system. The implementation was accompanied by a heterogeneous Multiprocessor system simulation framework developed in systemC/C++. The proposed framework reads user data, set the architecture, execute input task graph and finally generate performance variables. This framework alleviates previous work issues with respect to (i) architectural flexibility in number-of-processors, processor types and topology (ii) optimized scheduling and mapping strategies and (iii) fault-tolerant processing capability focusing more on the computational domain; A set of random as well as application specific STG benchmark suites were run on the simulator to evaluate and verify the performance of the proposed algorithms. The simulations were carried out for (i) scheduling policy evaluation (ii) fault tolerant evaluation (iii) topology evaluation (iv) Number of processor evaluation (v) Mapping policy evaluation and (vi) Processor Type evaluation. The results showed that PD scheduling algorithm showed marginally better performance than EDF with respect to utilization, Execution-Time and Power factors. The dynamic Fault Tolerant implementation showed to be a viable and efficient strategy to meet real-time constraints without posing significant system performance degradation. Torus topology gave better performance than Tile with respect to task completion time and power factors. Executing highly heterogeneous Tasks showed higher power consumption and execution time. Finally, increasing the number of processors showed a decrease in average Utilization but improved task completion time and power consumption; Based on the simulation results, the system designer can compare tradeoffs between a various design choices with respect to the performance requirement specifications. In general, designing an optimized Multiprocessor scheduling and mapping strategy with added fault tolerant capability will enable to develop efficient Multiprocessor systems which meet future performance goal requirements. This is the substance of this work

    Development of Electronics, Software, and Graphical User Control Interface for a Wall-Climbing Robot

    Get PDF
    The objective for this project is to investigate various electrical and software means of control to support and advance the development of a novel vacuum adhesion system for a wall-climbing robot. The design and implementation of custom electronics and a wirelessly controlled real-time software system used to define and support the functionalities of these electronics is discussed. The testing and evaluation of the overall system performance and the performance of the several different subsystems developed, while working both individually and cooperatively within the system, is also demonstrated

    Code Merging for Programmable Data Plane Virtualization

    Get PDF
    Tese de mestrado, Engenharia Informática (Arquitetura, Sistemas e Redes de Computadores) Universidade de Lisboa, Faculdade de Ciências, 2021Recent advances in the hardware capabilities of switching chips have enabled programmability of the data plane. The development of new network protocols and functions, which historically demanded long ASIC design lifecycles to be operated, can now happen quickly and flexibly on Programmable Data Planes (PDPs). Network administrators can directly deploy custom packet processing logic as programs (written in high-level languages such as P4) into their programmable switching ASICs. There are, however, some unresolved problems associated with current PDPs, which hinder their adoption in production networks. One such problem is that a PDP target (e.g., a switch) is currently only capable of running one program at any given time. This limitation has several important consequences. First, it constrains network administrators to write large and complex programs whenever they need to deploy multiple functionalities, which is the common case. Second, it precludes resource sharing between multiple programs, potentially written by different users, limiting resource utilization and thus impacting efficiency. Inspired by the success story of virtualization in the domain of operating systems, researchers have started proposing solutions to overcome the above issue by virtualizing PDPs. Unfortunately, existing solutions are either very inefficient or lack generality. Hence, this work aims at designing a programmable data plane virtualization platform that enables the deployment of many independently-developed P4 programs on a PDP while introducing the minimum resource overhead. We achieve virtualization at the compiler-level by merging network functionalities into a single, monolithic program, where the individual P4 programs coexist fully isolated from each other. We leverage a state-of-the-art system for code merging, P4Visor, but we improve it by extending the number and variety of P4 programs that can be virtualized, from only two to multiple, and by improving resource efficiency, specifically in the packet parsing module

    Aerospace Applications of Microprocessors

    Get PDF
    An assessment of the state of microprocessor applications is presented. Current and future requirements and associated technological advances which allow effective exploitation in aerospace applications are discussed

    Tem_357 Harnessing the Power of Digital Transformation, Artificial Intelligence and Big Data Analytics with Parallel Computing

    Get PDF
    Traditionally, 2D and especially 3D forward modeling and inversion of large geophysical datasets are performed on supercomputing clusters. This was due to the fact computing time taken by using PC was too time consuming. With the introduction of parallel computing, attempts have been made to perform computationally intensive tasks on PC or clusters of personal computers where the computing power was based on Central Processing Unit (CPU). It is further enhanced with Graphical Processing Unit (GPU) as the GPU has become affordable with the launch of GPU based computing devices. Therefore this paper presents a didactic concept in learning and applying parallel computing with the use of General Purpose Graphical Processing Unit (GPGPU) was carried out and perform preliminary testing in migrating existing sequential codes for solving initially 2D forward modeling of geophysical dataset. There are many challenges in performing these tasks mainly due to lack of some necessary development software tools, but the preliminary findings are promising. Traditionally, 2D and especially 3D forward modeling and inversion of large geophysical datasets are performed on supercomputing clusters. This was due to the fact computing time taken by using PC was too time consuming. With the introduction of parallel computing, attempts have been made to perform computationally intensive tasks on PC or clusters of personal computers where the computing power was based on Central Processing Unit (CPU). It is further enhanced with Graphical Processing Unit (GPU) as the GPU has become affordable with the launch of GPU based computing devices. Therefore this paper presents a didactic concept in learning and applying parallel computing with the use of General Purpose Graphical Processing Unit (GPGPU) was carried out and perform preliminary testing in migrating existing sequential codes for solving initially 2D forward modeling of geophysical dataset. There are many challenges in performing these tasks mainly due to lack of some necessary development software tools, but the preliminary findings are promising.Traditionally, 2D and especially 3D forward modeling and inversion of large geophysical datasets are performed on supercomputing clusters. This was due to the fact computing time taken by using PC was too time consuming. With the introduction of parallel computing, attempts have been made to perform computationally intensive tasks on PC or clusters of personal computers where the computing power was based on Central Processing Unit (CPU). It is further enhanced with Graphical Processing Unit (GPU) as the GPU has become affordable with the launch of GPU based computing devices. Therefore this paper presents a didactic concept in learning and applying parallel computing with the use of General Purpose Graphical Processing Unit (GPGPU) was carried out and perform preliminary testing in migrating existing sequential codes for solving initially 2D forward modeling of geophysical dataset. There are many challenges in performing these tasks mainly due to lack of some necessary development software tools, but the preliminary findings are promising
    • …
    corecore