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HIERARCHIAL DIGITAL COMMUNICATION PROCESSING IN A

MULTI-ACCESS TELE-COMMUNICATIONS ENVIRONMENT

I. INTRODUCTION

With the application of advanced techniques, digital

data communications is the rapidly expanding field whereby

large volumns of data are reliably and economically trans-

mitted over various types of digital networks. The

advanced techniques involve several fields, such as

computer software, signal transmission, computing structures

and computer firmware/hardware. This paper will be con-

cerned with the latter two items, computing structures

and firmware/hardware. These subjects will be dealt with

in terms of the systems design, logic design, state

diagrams and the application to digital data communications

processing in a multi-access tele-communications environment.

The computing systeml from which data for II and IV

was derived is indicated in Figure 1, and functionally

hierarchial processing is accomplished on the data

stream as it passes bi-directionally through the individual

computing elements of the system. In general, the functions

accomplished in the various computing elements in Figure 1

are: 1) the Host computing system (Host) manages all

resources and is the only computing resource that processes
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user procedures; 2) the communication processing system

(CPS) provides data buffering functions, input/output

(I /O) control functions, code translation, and line

discipline dependent functions; 3) the Line Interface

Units (LIU) perform bi- directional byte assembly/disassembly,

generate and check parity, generate statuses and interrupts,

edit certain of the data streams for control byte sequences

and take appropriate action independently or in conjunction

with the CPS.
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Fail Soft Capability

The equipment configuration in Figure 2 is a simplified

block diagram of the inconnection pattern that is utilized

for providing greater communications processing continuity

("fail soft" capability). The term "fail soft" is used to

define a computer processing system that can provide a

continuum of computing resources at a degraded level when

certain classes of failures occur within the system. It

is the intention to provide such a continuum of communica-

tions processing resources, "fail soft" capability, via

the processing structure indicated in Figure 2 in con-

junction with supporting software. More precisely, a

"fail soft" capability will be provided in a large percentage

of cases when failures occur in the CPS or the CPS/HOST

controllers. There is a set of failures that can occur

in the CPS /HOST controllers and in the CPS bus controllers

that would be fatal; however, the probability of this

set of failures occurring is small with respect to the

other failures that can occur in the above systems for

which "fail soft" capability does cover.

Basically, "fail soft" capability will be implemented

via having one of the CPS, CPS/HOST controller sets take

over the functions of the other CPS set. There are three

situations that may provoke the CPS's to degrade to a
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"fail soft" configuration. These are: manual initiation,

CPS set self imposed, and CPS set externally imposed. The

manual case is the situation where it is desired to take

one of the systems off-line for such purpose as maintenance,

testing, etc. The second case is the situation where a

CPS detects internal problems that impedes performing

functions correctly. Problems of this type include failures

in the CPS/HOST controllers, failures in the CPS is mal-

functioning to such an extent that it is unaware that it is

malfunctioning. This case is the most common. In this

case, via a default system the other CPS set, e.g., CPS set

B, will be interrupted. The interrupt status will define

CPS set A as having failed. CPS set B will then commence

an initialization procedure and will finally enable the

operation of multiplexer A in conjunction with CPS set

B, see Figure 2a.

A default system approach that has merit is one where

CPS set A on a low priority interrupt driven basis must

execute a time dependent chain of events within prescribed

time windows, see. Figure 2c. The code that is executed on

this low priority basis will examine many internal para-

meters to detect system failures or degradation. From

past experience and analysis this technique seems to offer

a high probability of successfully detecting CPS set mal-

functions.
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Symetrical failure detection and enabling systems are

implied such that system continuity remains through

degradation if either CPS set A or CPS set B fails,

Figures 2a and 2b..
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Referring to Figure 2c, the lack of occurrance of an

enable signal within a timing window causes an interrupt

providing the interrupt was selected. The status defines

the cause of the interrupt. It has been suggested by others

that n cycles of faults defines a CPS failure and m cycles

of absence of faults defines a properly running CPS and

a similar technique could be used for start up conditions.
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Distributed Processing

The general philosophy of hierarchial and parallel

processing can effectively be applied to digital data

communications. The set of functions to be accomplished

on a data stream can be divided into a number of subsets.

The functions of each subset should share the property

that they can all be accomplished with a common, and as

limited as possible, set of computing resources. The

functions that have been grouped into subsets, with the

previously defined properties, are then assigned to computing

elements, such that the computing elements cover the

functional requirements of the subsets assigned. The

objective herein is to assign the functions as far from the

top of the structure, the HOST, as possible, contingent

upon remaining consistent with the previously defined

criteria for the assignment of the functions to computing

elements within the structure. The magnitude of the

computational functions that can be effectively distributed

increases as micro-electronics technology advances in cost/

performance, i.e., as single chip computational complexities

increase and cost per chip decreases. The technology

determines whether it is effective to distribute functions
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horizontally in a structure and also whether it is effective

to distribute functions vertically as well.

Insofar as digital data communications is concerned,

in those applications where the data stream has to be edited

on a byte basis sophisticated direct memory access I/O

system without distributed processing is ineffective. It

is this bit by bit, byte by byte processing of the data

stream that is particularly appropriate for the application

of distributed (distributed as used herein implies a

hierarchial/parallel structure) especially when the pro-

cessing function resource requirement is well bounded.

There are techniques that can be applied to attack the

problem of functional processing requirements that are

not well bounded, such as common and slave memory

architectures.

It is with these concepts that an overview of a CPS

with distributed PLIU's will be analyzed in terms of typical

applications.
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II. SYSTEM OVERVIEW

This chapter contains a justification for the distri-

buted architecture approach to communications processing

based on data collected, Appendix B, on the system indicated

in Figure 1. This data is then summarized in Table 1. The

data in Table 1 is then extrapolated, Table 2, to satisfy

the specifications for the system indicated in Figure 2

which utilize the same computing resources and implementation

techniques of the system in Figure 1. The capacities for

each CPS, Figure 2, are maximum of 256K (where K =1024)

12 bit words with 1.2 microsecond cycle time, 262 LIU's

144 bi-directional direct memory access channels under the

control of 18 programmable controllers (PLIU's). Table 3

indicates the distributed architecture cycle loadings for

the same I/O activity levels as indicated in Table 2.
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Data Gathered

Data was gathered on the I/O activity for interactive

non-buffered remote terminals from the system indicated

in Figure 1. Remote terminal access to CPS ports is a

system without contention limitations. This environment

is capitalized on in the design of the PLIU in several

ways to minimize the cost per channel. The general

philosophy is to minimize the facilities which are dedicated

to specific channels, because of the low duty cycles, and

to share the majority of the logic through hierarchial

control schemes. The total number of terminals which are

available to users is approximately 200. Typical concurrent

usage is indicated in Figure 2d. However, data gathered

on the instantaneous I/O activity indicates an activity

substantially less than the number of users concurrently

using the system. Items that affect instantaneous I/O

activity are user program resource demanding characteristics

relative to the host computing system resource capacities.

If user program resource requirements are significant with

respect to the available resources from the host system

then the host computing system may not be able to sustain

user programs in an I/O activity. Hence, the instantaneous

terminal I/O activity is only loosely correlated with the
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number of concurrent users because the preceeding resource

relationship is relevant in this case.

The data, Appendix B, was collected from the Oregon

State University time-sharing system OS-3, Figure 1. The

number of concurrent users associated with each of the

data sets (1, 2, 3, 4, 5, 6, 7, 8, and 9) is 29, 32, 39,

43, 41, 32, 35, 44, 44 and 43, respectively. For each

of the data sets there is a histogram. For the composite

data set there is a frequency distribution, cumulative

frequency distribution, histogram and a variable description

table. The various histograms indicate the frequency of

occurrence of instantaneously active terminals.
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System Cycle Loading

Table 1 is derived from an analysis of the interrupt

service times and architecture for the system indicated in

Figure 1. The impact of the I/O activity is given as a.

precentage of available CPS cycles required to support the

activity level for one second. The I/O activity in

categories A and B of Tables 1, 2 and 3 have a low level

of hardware support whereas the I/O activity in other

categories have a higher level of support. According to

the data collected, see Appendix B, the I/O activity in-

dicated in category A and B, Table 1, is equivalent of

approximately 38 logged on interactive terminals. The

I/O activity in category C is equivalent to approximately

5 logged on interactive graphics terminals operating at a

20% duty cycle. And finally, the I/O activity in category D

is that required to support one Remote Job Entry terminal

(RJE) at 50% cuty cycle.

Table 2 and 3, I/O activity is extrapolated from Table 1

which is consistent with the channel capacities and band-

widths that are objectives for the system indicated in

Figure 2: 1) category A and B, the interactive terminal

I/O activity is equivalent to 114 logged on interactive

terminals each at 110 bits per second; 2) category C,
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25 interactive asynchronous high speed terminals each at

9600 bits per second and at a 20% duty cycle, and 3)

category D, 10 sophisticated line discipline high speed

devices each at 9600 bits per second, full duplex and at

a 50% duty cycle operation.

The CPS cycle loading data that appears in Table 2

assumes the same implementations as that in Table 1.

Table 3 has the same I/O loadings as does Table 2 but

utilizes the distributed architecture of the system

indicated in Figure 2. The lower cycle loading figures in

Table 3 reflects the off loading of processing functions

from the CPS processor to the distributed PLIU processors.

As indicated in Table 3 the impact of the PLIU's appears

only on category D. The PLTU supports category C also,

however, the CPS overhead is nearly the same for this

approach as in Table 1. The PLIU's can be used to off

load the main CPS processor from other tasks if desired,

this aspect is not addressed further herein.

It is apparent from Tiable 2 that the desired I/O

activity loading cannot be supported by utilizing the same

implementations and resources that existed in the Table 1,

Figure 1 case, since the CPS cycles required per second

exceeds the number available from the CPS. The required

CPS cycles listed in Tables 1, 2 and 3 are not maximums
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since the CPS has to perform several other overhead functions

not included. Also, the CPS has to have a surplus of

cycles above the typical requirement such that the probabil-

ities of short duration data overruns (lost data) and

other time critical functions are within desired design

limits (very small). In other words, the cycle requirement

is not constant but is a summation of synchronous and

asynchronous events some of which are time critical and

some of which are not time critical. The more sophisticated

the hardware and software designs are in addressing this

aspect of the design problem, the closer 100% cycle

utilization can be approached. For the subject application,

a utilization of 50% is maximum considering data completeness.

The distributed processor approach, Figure 2 and Table 3,

can satisfy the I/O activity requirements as well as the

CPS cycle limits.
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TABLE 1. CPS CYCLE LOADING
WITHOUT DISTRIBUTED PROCESSORS

TRANSFER

ACTIVITY

PER SECOND

CYCLES

EACH

TOTAL

CYCLES

X TOTAL

AVAILABLE

CYCLES

ASYNCHRONOUS
A.

INKIT

us

BYTES
350 3500 0.4$

ASYNCHRONOUS
B.

OUTPUT

60

BYTES
480 27000 3.5

ASYNCHRONOUS

C. HIGH SPEED

DIRECT MEMORY ACCESS

2

BLOCKS 600 1200 0.16

SOPHISTICATED

D. HIGH SPEED

DIRECT MEMORY AccEss

2.5

BLOCKS
10000 25000 3.2

E. INTER COMPUTER READ
20

BLOCKS 700 1400 1.8

F. INTER COMPUTER WRITE
20

BLOCKS 650 13000 1.7

10.81X
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TABLE 2. CPS CYCLE LOADING
WITHOUT DISTRIBUTED PROCESSORS

TRANSFER

ACTIVITY

PER SECOND

CYCLES

EACH

TOTAL

CYCLES

% TOTAL

AVAILABLE

CYCLES

ASYNCHRONOUS
A.

INPUT

30

BYTES
350 10500 L4

ASYNCHRONOUS
0.

OUTPUT

180

BYTES
450 81000 10.5

ASYNCHRONOUS

C. HIGH SPEED

DIRECT MEMORY ACCESS

20

BLOCKS 600 12000 1.6

SOPHISTICATED

D. HIGH SPEED

DIRECT MEMORY ACCESS

100

BLOCKS
10000

6
10 130.

E. INTER COMPUTER READ
80

BLOCKS 700 63000 8.2

F. INTER COMPUTER WRITE
60

BLOCKS
650 36000 4.7

156.4%
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TABLE 3. CPS CYCLE LOADING
WITH DISTRIBUTED PROCESSORS

TRANSFER

ACTIVITY

PER SECOND

CYCLES

EACH

TOTAL

CYCLES

% TOTAL.

AVAILABLE

CYCLES

ASYNCHRONOUS
A.

INPUT

30

BYTES
350 10500 1.4

ASYNCHRONOUS
B.

OUTPUT

180

BYTES
450 81000 10.5

ASYNCHRONOUS

C. HIGH SPEED

DIRECT MEMORY ACCESS

20

BLOCKS 600 12000 1.6

SOPHISTICATED

D. HIGH SPEED

DIRECT MEMORY ACCESS

100

BLOCKS
700 70000 9.1

E. INTER COMPUTER READ
90

BLOCKS 700 63000 8.2

F. INTER COMPUTER WRITE
60

BLOCKS 650 36000 1.7

35.5%
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III. LINE INTERFACE UNITS PROGRAMMABLE

TO THE BYTE LEVEL

This section pertains to a line interface unit design

programmable to the byte level, a design that utilizes

universal receiver/transmitters (URT). This approach

utilizes the URT processing capabilities to off-load certain

processing requirements from the PLIU programmatic control.

The URT's have a significant amount of processing capability,

are economical mass produced MOS LSI, and are flexible

because of programmatic features. The particular URT

utilized in this design is the INTEL 8251. It performs

double buffered bi-directional byte parallel/bit serial

assembly/disassembly, detects synchronous idle input codes,

and can be programmed for various types of byte parity

generating and checking as well as for insertion of output

synchronous idles. The utilization of the URT processing

capabilities is an example of the partitioning of the total

set of processing functions into subsets that can be

accomplished on a hierarchial basis.
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Systems Design of the PLIU to the Byte Level

The architecture of the PLIU is indicated in Figure 3

as well as each of the subsystems. As indicated in Figure 3,

the subsystems are interconnected over an internal bi-

directional bus. This bus is buffered from the bi-directional

multiplexer bus for three reasons: 1) to minimize loading

on the multiplexer bus; 2) to re-establish the signal to

noise ratio, and 3) such that data transmission on the two

buses can be occurring independently. In this manner, the

performance of each PLIU system is determined by the

communication lines with which it is communicating and not

restricted unnecessarily by the transmission requirements

of the multiplexer control to the other LIU's and PLIU's.

Only when a PLIU has to access common memory over the

dynamic time-multiplexed bus will throughput of a PLIU be

affected by loading on the multiplexer refers to the

technique of utilizing the bus for various functions on a

dynamic time slot allocation basis. Time on the bus is

divided into slots and functions are accomplished in these

time slots on a basis determined by a priority resolving

network.
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An important aspect of the system's design is the

allocation of the address space to various memory subsystems:

ROM, local slave read/write RAM, common read/write RAM, and

interlock read/write RAM (see Figure 4). A segment of the

address space is also allocated to micro-operation decodes.

The ROM is a memory space used for initialization, debug,

restart and interrupt vectors. The slave RAM is used for

nearly all program and data storage necessary to support

the required communications processing. It is desirable

to have most of the processor operators and operands in

local memory from a performance standpoint. If the dis-

tributed processors had to contend with each other for

access to operators and operands over the multiplexed bus

to common memory the performance would be degraded. (The

multiplexed bus can sustain 0.4 MHZ.) The address spaces

in the distributed processors that overlaps with the other

processors and with the CPS processor is called the common

memory space. There are no restrictions on the use of this

address space except for programmatic write access control.

For optimum performance, usage should be limited to necessary

interprocessor communication, and dump and restart

routines. It can be used for seldomly executed or referenced

common operator and operands also. The interlock memory
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can be used to set logical interlocks such that a particular

processor can restrict access by other processors while

a subset of common storage is being manipulated. The basic

interlock memory operations include:

1) conditional destructive read

a) if interlock not set, set interlock and set I.D.

and transfer interlock bit and I.D. to processor

b) if interlock is set, transfer interlock bit

and I.D. to processor

2) reset interlock, reset interlock and set I.D.
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Discussion of Appendix A Schematics

Figure 13 details the logic for PDP-8 control over the

PLIU's. The decoding of the various instructions is defined

here. Figure 14 delineates the logic in the PLIU that

detects Direct Memory Access (DMA) references to the PLIU

and decodes the commands which in turn control the trans-

mission of control and data information. Fiaure 15 details

the PLIU micro-processor address decode (the micro operations).

These micro operations are used for setting and resetting

flops, testing, loading and reading registers, etc. It

should be noted that micro operation decodes are grouped

into three mutually independent sets all of which are

enabled by the signal micro-op's.

Figure 16 contains the logic for PDP-8 enable of

PLIU DMA activity, PLIU micro-processor address decode and

DMA request setting logic. The DMA request enable must

be set by the PDP-8 in order for the PLIU to access common

memory. The PLIU micro processor address decode classifies

the address into six sets: 32k absolute common memory

reference, 16k local RAM reference, 4k micro-operations

decode, 4k relocateable common memory references, 4k inter-

lock memory reference, and 4k local ROM.
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Figure 17 indicates the gating, testing and flip flops

available for inter-processor interrupting, enabling, etc.

Figure 18 indicates the tri-state buffers that are used to

minimize loading on the bus and to isolate and regenerated

signal-to-noise ratios. Figure 19 is the logic that imple-

ments the multiplexing of control and data information

between the PLIU and the common memory system controller.

This logic multiplexes the addresses for absolute references

and for relocateable references, and control information.

The control information is transmitted for every common

memory reference. Figure 20 multiplexes the least signi-

ficant address bits to the common memory controller, these

bits are transmitted for every common memory reference.

Figure 21 is the logic for the high order 4 bits of

the data that is transmitted for every common memory

reference. Figure 22 is the logic necessary for the trans-

mission of the lower 8 bits of data between the PLIU's

and the common memory over the bi-directional multiplexer

bus. Figure 23 consists of two of the URT's out of the 8

that are the serial/parallel line communication controllers.

Figure 24 is the logic for generating the URT serial clocks

for synchronous, asynchronous and loopback modes of operation.

Figures 25, 26, 27, 28 and 29 are 4 bits out of the 8 bits
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that interface control and data signals between the EIA

RS-232 interface, LED displays, and URT's for synchronous,

asynchronous and loopback modes.

Figures 30 and 31 are the interrupt support logic.

Figure 32 is the 4k RAM local memory and support logic.

The RAM's used are the AM 9140's. These are bussed together

in the usual fashion to yield a 8 bit word and an address

space of 16k words. Figure 33 is the microprocessor and

support logic.
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IV. APPLICATIONS

Input/Output Command Queuing

The PLIU's system design includes the facilities and

can be programmed to utilize the technique of data block

chaining. Data block chaining is the technique that allows

the operating system to queue input and/or output commands

(IOC) preceding I/O initiation or during I/O activity.

Some implementations of the technique restrict queuing of

IOC to occurring previous to initiation of the I/O activity.

There are several applications for the technique, such as:

1) for accommodating computer system input activity with

unknown message lengths; 2) for accomplishing continuous

I/O message transmission across segmented or paged computer

memory structures; 3) for accommodating variable length

message I/O activity with CPS control of time dependency

of I/O interrupt servicing, and 4) for transparent text

transmission.

The manner in which data block chaining is used to

control I/O interrupt service time will be discussed here.

This technique is implemented in this design such that the

CPS can queue IOC's for each concurrent activity beyond

the currently utilized IOC. The CPS has control of the

block size for each IOC. The PLIU's issue interrupts to



34

the CPS as IOC's are expended, and if at least one IOC

has been queued by the CPS the PLIU starts utilizing it

transparent to the CPS. The CPS can service PLIU issued

I/O interrupts while the PLIU is utilizing the previously

queued IOC. As long as the interrupt processing is com-

pleted previous to the PLIU expending the current IOC

queue no timing, data over-run or lost data error conditions

will occur. Since the CPS controls the block length of

the IOC and since block length is directly related to

the time required by the PLIU to expend the IOC, hence

the I/O interrupt service time dependency is CPS controlled.
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Processing Synchronous Data:

The PLIU design has been evaluated to verify that its

performance capabilities include the processing functions

of the data streams indicated in figures 6 and 7. Their

data streams are bi-directionally independent (full duplex)

and are of the synchronous type. The objective in synchronous

communications is to minimize the amount of control infor-

mation that has to be transmitted along with the data.

The synchronous type of line discipline has a sequence of

control characters called the header which prcedes the

message to be transmitted. The message is immediately

followed by an end of message sequence the trailer. The

header is used via the receiving PLIU to determine the byte

boundaries the message is assembled in and finally the

trailer sequence is detected. Usually the latter contains

a message checkword which is used to verify proper reception

of the message by the receiving PLIU.
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FIGURE 6. TIME MULTIPLEXED DATA FORMAT
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Interlock Free Communications:

This discussion brings attention to the important

problem of communication between the asynchronously

executing processors. As indicated previously, it is

implied here that the communication be accomplished with

linked queue structures. Two closed structures are used,

where each structure is: 1) a queue is stuffed at the tail

by processor A and fetched at the head by processor B,

2) a second queue is stuffed at the tail by processor B and

fetched at the head by processor A see figure 8. Inter-

lock free inter-processor communication for the asynchron-

ously executing processors can be sustained by this scheme.
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FIGURE 8. CPS/PLIU COMMUNICATION PHILOSOPHY
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TABLE 4. TYPICAL CODE OCCURRENCE

CODE

TYPE

IDLES

PROBABILITY OF

OCCURRENCE

.84

DATA AS

CONTROL <.01
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FIGURE 9. TIME-MULTIPLEXED INPUT DATA FLOW
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Processing Time-Multiplexed Data

Figure 9 is a sketch of the data flow for time multi-

plexed input to the CPS. The period is 13 bytes long

one synchronous idle code and 12 channel of multiplexed

data. The data in period one consists of several idle codes

(233's) , a break code (037) , and control codes (235 and

267). This data stream is edited by the PLIU and stored in

the two data blocks in the CPS memory as indicated. Time-

multiplexed data from the remote terminals that pertains

only to the HOST is placed in a separate block by the PLIU.

This block can then be queued for transmission to the HOST

without requiring any CPS editing. The block of control

codes does require CPS analysis. This control information

is stored in the separate block such that the CPS does not

have the overhead of sifting through non-control information

in order to get to the control information. In practice

the probabilities of idles, data and control information is

such that this processing is very effective.

Table 4 lists a more typical occurrence of code types

in the multiplexed data stream. From this tabulation, it

is evident that PLIU preprocessing of the data stream can

significantly off-load the CPS and HOST via editing the

data stream.
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Figure 10 is a sketch of the data flow for a time-

multiplexed output data stream from the CPS. As indicated

in Figure 10, on each multiplexed period bytes of information

are fetched from the byte queues. In the majority of cases,

as in the input situation discussed previously, the duty

cycle of remote terminals in active I/O state is typically

16%. Various techniques can be used to provide a low CPS

overhead method of supplying the idles to the PLIU. One

such technique is to have the CPS fill the linked byte

queues with data and the PLIU fetch the data off the other

end of the linked byte queues. In this manner the CPS only

references the linked byte queues if data (non-idles) are

to be queued.
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FIGURE 10. TIME-MULTIPLEXED OUTPUT DATA FLOW
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FIGURE 11. TIME-MULTIPLEXED OUTPUT DATA FLOW
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Processing Transparent Text Data

Another telecommunication technique is transparent

text transmission. Transparent text transmission capability

presents some tedious processing overhead to the CPS, as

in the case of the previously discussed time-multiplexed

communications, since both input and output data byte

streams have to be edited. The concept of transparent

text transmission allows data codes to be transmitted which

consists of all possible binary combinations with a minimum

of control code overhead. The problem that arises is that

at least one code is required for control purposes. A

common format for transparent text transmission, see

figure 12, involves a header, text body, and trailer.

The header and trailer are non-transparent. The header

consists of a sync sequence and addressing, and ends with

a control sequence that indicates transparent text follows.

Then transparent text is processed until a control sequence

is detected that indicates non-transparent text mode exists

and finally the trailer is processed. When in transparent

text mode all occurrances of a predefined bit pattern are

recoded into two such codes. The only existence of a single

occurance of this code initiates an exit to non-transparent

text mode in the PLIU receiver. The encoding and decoding
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required in transparent text transmission is another task

that can readily be accomplished by the PLIU.

There are many other applications of the distributed

PLIU concept in a CPS, such as communication description,

protocal control, code compression/expansion, and code

conversion. Quite often the situation exists that there

is fixed and dynamic tabular data utilized in these and

other applications. Of course, this requires a significant

amount of memory space. This does not have to restrict

these applications from the range of PLIU's. Techniques

can be utilized such that the PLIU's have access to common

memory. For example, the PLIU's can have access to the CPS

main memory. In some applications, the PLIU's would require

only read-only access. It is important for integrity

purposes to restrict areas of access as well as write

access if the applications allow.
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V. SUMMARY AND CONCLUSIONS

Computing utilities can best be achieved by multiple

computer structures because of the service continuity

requirements as well as because of cost/performance

considerations. The overall CPS structure discussed

herein is one with a hierarchial and parallel structure

that effectively accomplishes digital communications

processing functions.
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VARIABLE DESCRIPTION TABLE

Sample Size 956

Sum 5946.00000

Raw Sum of Squares 40996.00000

Corrected Sum of Squares 4013.87030

Average 6.21967

Standard Error of Mean .06631

Median 6.00000

Maximum Value 14.00000

Minimum Value 0

Sample Variance 4.20301

Sample Standard Deviation 2.05012

Coefficient of Variation .32962

Range 14.00000

Skewness .20679

Kurtosis 3.11009


