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HIERARCHIAL DIGITAL COMMUNICATION PROCESSING IN A

MULTI-ACCESS TELE-COMMUNICATIONS ENVIRONMENT

I. INTRODUCTION

With the application of advanced techniques, digital
data communications is the rapidly expanding field whereby
large volumns of data are reliably and economically trans-
mitted over various types of digital networks. The
advanced techniques involve several fields, such as
computer software, signal transmission, computing structures
and computer firmware/hardware. This paper will be con-
cerned with the latter two items, computing structures
and firmware/hardware. These subjects will be dealt with
in terms of the systems design, logic design, state
diagrams and the application to digital data communications
processing in a multi-access tele-communications environment.

The computing systeml from which data for II and IV
was derived is indicated in Figure 1, and functionally
hierarchial processing is accomplished on the data
stream as it passes bi-directionally through the individual
computing elements of the system. In general, the functions
accomplished in the various computing elements in Figure 1
are: 1) the lost computing system (Host) manages all

resources and is the only computing resource that processes
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user procedures; 2) the communication processing system

(CPS) provides data buffering functions, input/output

(I1/0) control functions, code translation, and line
discipline dependent functions; 3) the Line Interface

Units (LIU) perform bi-directional byte assembly/disassembly,
generate and check parity, generate statuses and interrupts,
edit certain of the data streams for control byte seguences

and take appropriate action independently or in conjunction

with the CPS.



Fail Soft Capability

The equipment configuration in Figure 2 is a simplified
block di&gram of the inconnection pattern that is utilized
for providing greaﬁer communications processing continuity
("fail soft" capability). The term "fail soft" is used to
define a computer processing system that can provide a
continuum of computing resources at a degraded level when
certain classes of failures occur within the system. It
is the intention to provide such a continuum of communica-
tions processing resources, "fail soft" capability, via
the processing structure indicated in Figure 2 in con-
junction with supporting software. More precisely, a
"fail soft" capability will be provided in a large percentage
of cases when failures occur in the CPS or the CPS/HOST
controllers. There is a set of failures that can occur
in the CPS/HOST controllers and in the CPS bus controllers
that would be fatal; however, the probability of this
set of failures occurring is small with respect to the
other failures that can occur in the above systems for
which "fail soft" capability does cover.

Basically, "fail soft" capability will be implemented
via having one of the CPS, CPS/HOST controller sets take
over the functions of the other CPS set. There are three

situations that may provoke the CPS's to degrade to a
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"fail soft" configuration. These are: manual initiation,
CPS set self imposed, and CPS set externally imposed. The
manual case is the situation where it is desired to take
one of the systems off-line for such purpose as maintenance,
testing, etc. The second case is the situation where a
CPS detects internal problems that impedes performing
functions correctly. Problems of this type include failures
in the CPS/HOST controllers, failures in the CPS is mal-
functioning to such an extent that it is unaware that it is
malfunctioning. This case is the most common. In this
case, via a default system the other CPS set, e.qg., CPS set
B, will be interrupted. The interrupt status will define
CPS set A as having failed. CPS set B will then commence
an initialization procedure and will finally enable the
operation of multiplexer A in conjunction with CPS set
B, see Figure 2a.

A default system approach that has merit is one where
CPS set A on a low priority interrupt driven basis must
execute a time dependent chain of events within prescribed
time windows, see Figure 2c. The code that is executed on
this low priority basis will examine many internal para-
meters to detect system failures or degradation. From
past experience and analysis this technique seems to offer
a high probability of successfully detecting CPS set mal-

functions.



Symetrical failure detection and enabling systems are
implied such that system continuity remains through
degradation if either CPS set A or CPS set B fails,

Figures 2a and 2b. .
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Referring to Figure 2c, the lack of occurrance of an
enable signal within a timing window causes an interrupt
providing the interrupt was selected. The status defines
the cause of the interrupt. It has been suggested by others
that n cycles of faults defines a CPS failure and m cycles
of absence of faults defines a properly running CPS and

a similar technique could be used for start up conditions.
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CORRECT TIMING IS DEFINED AS FOLLOWS:
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Distributed Processing

The general philosophy of hierarchial and parallel
processing can effectively be applied to digital data
communications. The set of functions to be accomplished
on a data stream can be divided into a number of subsets.
The functions of each subset should share the property
that they can all be accomplished with a common, and as
limited as possible, set of computing resources. The
functions that have been grouped into subsets, with the
previously defined properties, are then assigned to computing
elements, such that the computing elements cover the
functional requirements of the subsets assigned. The
objective herein is to assign the functions as far from the
top of the structure, the HOST, as possible, contingent
upon remaining consistent with the previously defined
criteria for the assignment of the functions to computing
elements within the structure. The magnitude of the
computational functions that can be effectively distributed
increases as micro-electronics technology advances in cost/
per formance, i.e., as single chip computational complexities
increase and cost per chip decreases. The technology

determines whether it is effective to distribute functions
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horizontally in a structure and also whether it is effective
to distribute functions vertically as well.

Insofar as digital data communications is concerned,
in those applications where the data stream has to be edited
on a byte basis sophisticated direct memory access I/0
system without distributed processing is ineffective. It
is this bit by bit, byte by byte processing of the data
stream that is particularly appropriate for the application
of distributed (distributed as used herein implies a
hierarchial/parallel structure) especially when the pro-
cessing function resource requirement is well bounded.
There are techniques that can be applied to attack the
problem of functional processing requirements that are
not well bounded, such as common and slave memory
architectures.

It is with these concepts that an overview of a CPS
with distributed PLIU's will be analyzed in terms of typical

applications.
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II. SYSTEM OVERVIEW

This chapter contains a justification for the distri-
buted architecture'approach to communications processing
based on data collected, Appendix B, on the system indicated
in Figure 1. This data is then summarized in Table 1. The
data in Table 1 is then extrapolated, Table 2, to satisfy
the specifications for the system indicated in Figure 2
.which utilize the same computing resources and implementation
techniques of the system in Figure 1. The capacities for
each CPS, Figure 2, are maximum of 256K (where X=1024)

12 bit words with 1.2 microsecond cycle time, 262 LIU's

144 bi-directional direct memory access channels under the
control of 18 programmable controllers (PLIU's). Table 3
indicates the distributed architecture cycle loadings for

the same I/0 activity levels as indicated in Table 2.
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Data Gathered

Data was gathered on the I/0 activity for interactive
non-buffered remote terminals from the system indicated
in Figure 1. Remote terminal access to CPS ports is a
system without contention limitations. This environment
is capitalized on in the design of the PLIU in several
ways to minimize the cost per channel. The general
philosophy is to minimize the facilities which are dedicated
to specific channels, because of the low duty cycles, and
to share the majority of the logic through hierarchial
control schemes. The total number of terminals which are
available to users is approximately 200. Typical concurrent
usage is indicated in Figure 2d. However, data gathered
on the instantaneous I/0 activity indicates an activity
substantially less than the number of users concurrently
using the system. Ttems that affect instantaneous I/0
activity are user program resource demanding characteristics
relative to the host computing system resource capacities.
If user program resource reguirements are significant with
respect to the available resources from the host system
then the host computing system may not be able to sustain
user programs in an I/0 activity. Hence, the instantaneous

terminal I/O activity is only loosely correlated with the
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number of concurrent users because the preceeding resource
relationéhip is relevant in this case.

The data, Appendix B, was collected from the Oregon
State University time-shaering system 0S-3, Figure 1. The
number of concurrent users associated with each of the
data sets (1, 2, 3, 4, 5, 6, 7, 8, and 9) is 29, 32, 39,
43, 41, 32, 35, 44, 44 and 43, respectively. For each
of the data sets there is a histogram. For the composite
data set there is a frequency distribution, cumulative
frequency distribution, histogram and a variable description
table. The various histograms indicate the frequency of

occurrence of instantaneously active terminals.
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System Cycle Loading

Table 1 is derived from an analysis of the interrupt
service times and architecture for the system indicated in
Figure 1. The impact of the I/O activity is given as a
precentage of available CPS cycles required to support the
activity level for one second. The I/O activity in
categories A and B of Tables 1, 2 and 3 have a low level
of hardware support whereas thé I/0 activity in other
categories have a higher level of support. According to
the data collected, see Appendix B, the I/O activity in-
dicated in category A and B, Table 1, is equivalent of
approximately 38 logged on interactive terminals. The
I/0 activity in category C is eqguivalent to approximately
5 logged on interactive graphics terminals operating at a
20% duty cycle. And finally, the I/O activity in category D
is that required to support one Remote Job Entry terminal
(RJE) at 50% cuty cycle.

Table 2 and 3, I/0 activity is extrapolated from Table 1
which is consistent with the channel capacities and band-
widths that are objectives for the system indicated in
Figure 2: 1) category A and B, the interactive terminal
I/0 activity is eqguivalent to 114 logged on interactive

terminals each at 110 bits per second; 2) category C,
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25 interactive asynchronous high speed terminals each at
9600 bits per second and at a 20% duty cycle, and 3)
category D, 10 sophisticated line discipline high speed
devices each at 9600 bits per second, full duplex and at
a 50% duty cycle operation.

The CPS cycle loading data that appears in Table 2
assumes the same implementations as that in Table 1.

Table 3 has the same I/0 loadings as does Table 2 but
utilizes the distributed architecture of the system
indicated in Figure 2. The lower cycle loading figures in
Table 3 reflects the off loading of processiné’functions
from the CPS processor to the distributed PLIU processors.
As indicated in Table 3 the impact of the PLIU's appears
only on category D. The PLIU supnorts category C also,
however, the CPS overhead is ne=arly the same for this
approach as in Table 1. The PLIU's can be used to off
load the main CPS processor f{rom other tasks if desired,
this aspect is not addressad further herein.

It is apparent from Table 2 that the desired I/0
activity loading cannot be supported by utilizing the same
implementations and resources that existed in the Table 1,
Figure 1 cas2, cince the CPS cycles reguired per second
exceeds the number available from the CPS. The required

CPS cycles listed in Tables 1, 2 and 3 are not maximums
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since the CPS has to perform several other overhead functions
not included. Also, the CPS haé to have a surplus of

cycles above the typical requirement such that the probabil-
ities of short duration data overruns (lost data) and

other time critical functions are within desired design
limits (very small). In other words, the cycle requirement
is not constant but is a summation of synchronous and
asynchronous events some of which are time critical and

some of which are not time critical. The more sophisticated
the hardwére and software designs are in addressing this
aspect of the design problem, the closer 100% cycle
utilization can be approached. For the subject application,
a utilization of 50% is maximum considering data completeness.
The distributed processor approach, Figure 2 and Table 3,

can satisfy the I/0 activity requirements as well as the

CPS cycle limits.
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WITHOUT DISTRIBUTED PROCESSORS

TRANSFER % TOTAL
ACTIVITY CYCLES | TOTAL AVAILABLE
PER SECOND EACH CYCLES CYCLES
ASTYNCHRONOUS 12
A. 3580 3500 .43
INPUT BYTES
ASYNCHRONOUS 60
B. 450 27000 3.8
OUTPUT BYTES
ASYNCHRONOUS 2
c. HIGH SPEED BLOCKS 600 1200 0.16
DIRECT MEMORY ACCESS
SOPHISTICATED 2.5
D. HIGH SPEED 10000 25000 3.2
BLOCKS
DIRECT MEMORY ACCESS
20
E. INTER COMPUTER REMD BLOCKS 700 1400 1.8
20
F. INTER COMPUTER WRITE BLOCKS 650 13000 1.7

10.81%
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TABLE 2. CPS CYCLE LOADING
WITHOUT DISTRIBUTED PROCESSORS
TRANSFER % TOTAL
ACTIVITY CYCLES | TOTAL | AVAILABLE
PER SECOND | EACH | cYcLES| cCYCLES
ASYNCHRONOUS 30
A 350 10500 1.4
INPUT BYTES
ASYNCHRONOUS 180
8. 450 81000 10.5
QUTPUT 8YTES
ASYNCHRONOUS 20
c. HIGH SPEED BLOCKS 600 12000 1.8
DIRECT MEMORY ACCESS
SOPHISTICATED
100 8
D. HIGH SPEED 10000 10 130.
BLOCKS
DIRECT MEMORY ACCESS
80
€. INTER COMPUTER READ | g ocks 700 63000 8.2
60
F. INTER COMPUTER WRITE | o oo 650 365000 4.7

156.4%



TABLE 3. CPS CYCLE LOADING
WITH DISTRIBUTED PROCESSORS

TRANSFER . % TOTAL
ACTIVITY GYCLES | TOTAL | AVAILABLE
PER SECOND | EACH | CYCLES| CYCLES
ASYNCHRONOUS 30
A 350 10500 1.4
INPUT BYTES
ASYNCHRONOUS 180
8. 450 81000 10.5
OUTPUT BYTES
ASYNCHRONOUS 20
c. HIGH SPEED BLOCKS 600 12000 1.6
DIRECT MEMORY ACCESS
SOPHISTICATED -
D. HIGH GPEED 700 70000 s.1
BLOCKS
DIRECT MEMORY ACCESS
90
E. INTER COMPUTER READ | g ocxs 700 63000 8.2
60
F. INTER COMPUTER WRITE | gLocks 650 36000 4.7

35.5%

23



24

III. LINE INTERFACE UNITS PROGRAMMABLE

TO THE BYTE LEVEL

This section pertains to a line interface unit design
programmable to the byte level, a design that utilizes
universal receiver/transmitters (URT). This approach
utilizes the URT processing capabilities to off-load certain
processing requirements from the PLIU programmatic control.
The URT's have a significant amount of processing capability,
are economical mass produced MOS LSI, and are flexible
because of programmatic features. The particular URT
utilized in this design is the INTEL 8251. It performs
double buffered bi-directional byte parallel/bit serial
assembly/disassembly, detects synchronous idle input codes,
and can be programmed for various types of byte parity
generating and checking as well as for insertion of output
synchronous idles. The utilization of the URT processing
capabilities is an example of the partitioning of the total
set of processing functions into subsets that can be

accomplished on a hierarchial basis.
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Systems Design of the PLIU to the Byte Level

The architecture of the PLIU is indicated in Figure 3
as well as each of the subsystems. As indicated in Figure 3,
the subsystems are interconnected over an internal bi-
directional bus. This bus is buffered from the bi-directional
multiplexer bus for three reasons: 1) to minimize loading
on the multiplexer bus; 2) to re-establish the signal to
noise ratio, and 3) such that data transmission on the two
buses can be occurring independently. In this manner, the
performance of each PLIU system is determined by the
communication lines with which it is communicating and not
restricted unnecessarily by the transmission requirements
of the multiplexer control to the other LIU's and PLIU's.
Only when a PLIU has to access common memory Over the
dynamic time-multiplexed bus will throughput of a PLIU be
affected by loading on the multiplexer refers to the
technique of utilizing the bus for various functions on a
dynamic time slot allocation basis. Time on the bus 1is
divided into slots and functions are accomplished in these
time slots on a basis determined by a priority resolving

network.
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An important aspect of the system's design is the
allocation of the address space to various memory subsystems:
ROM, local slave read/write RAM, common read/write RAM, and
interlock read/write RAM (see Figure 4). A segment of the
address space is also allocated to micro-operation decodes.
The ROM is a memory space used for initialization, debug,
restart and interrupt vectors. The slave RAM is used for
nearly all program and data storage necessary to support
the required communications processing. It is desirable
to have most of the processor operators and operands in
local memory from a performance standpoint. If the dis-
tributed processors had to contend with each other for
access to operators and operands over the multiplexed bus
to common memory the performance would be degraded. (The
multiplexed bus can sustain 0.4 MHZ.) The address spaces
in the distributed processors that overlaps with the other
processors and with the CPS processor is called the common
memory space. There are no restrictions on the use of this
address space except for programmatic write access control.
For optimum performance, usage should be limited to necessary
interprocessor communication, and dump and restart
routines. It can be used for seldomly executed or referenced

common operator and operands also. The interlock memory
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can be used to set logical interlocks such that a particular
processor can restrict access by other processors while
a subset of common storage is being manipulated. The basic
interlock memory operations include:
1) conditional destructive read
a) if interlock not set, set interlock and set I.D.
and transfer interlock bit and I.D. to processor
b) if interlock is set, transfer interlock bit
and I.D. to processor

2) reset interlock, reset interlock and set I.D.
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Discussion of Appendix A Schematics

Figure 13 details the logic for PDP-8 control over the
PLIU's. The decoding of the various instructions is defined
here. Figure 14 delineates the logic in the PLIU that
detects Direct Memory Access (DMA) references to the PLIU
and decodes the commands which in turn control the trans-
mission of control and data information. Ficure 15 details
the PLIU micro-processor address decode (the micro operations).
These micro operations are used for setting and resetting
flops, testing, loading and reading registers, etc. It
should be noted that micro operation decodes are grouped
into three mutually independent sets all of which are
enabled by the signal micro-op's.

Figure 16 contains the logic for PDP-8 enable of
PLIU DMA activity, PLIU micro-processor address decode and
DMA request setting logic. The DMA request enable must
be set by the PDP-8 in order for the PLIU to access common
memory. The PLIU micro processor address decode classifies
the address into six sets: 32k absolute common memory
reference, 16k local RAM reference, 4k micro-operations
decode, 4k relocateable common memory references, 4k inter-

lock memory reference, and 4k local ROM.
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Figure 17 indicates the gating, testing and flip flops
available for inter-processor interrupting, enabling, etc.
Figure 18 indicates the tri-state buffers that are used to
minimize loading on the bus and to isolate and regenerated
signal-to-noise ratios. Figure 19 is the logic that imple-
ments the multiplexing of control and data information
between the PLIU and the common memory system controller.
This logic multiplexes the addresses for absolute references
and for relocateable references, and control information.
The control information is transmitted for every common
memory reference. Figure 20 multiplexes the least signi-
ficant address bits to the common memory controller, these
bits are transmitted for every common memory reference.

Figure 21 is the logic for the high order 4 bits of
the data that is transmitted for every common memory
reference. Figure 22 is the logic necessary for the trans-
mission of the lower 8 bits of data between the PLIU's
and the common memory over the bi-directional multiplexer
bus. Figure 23 consists of two of the URT's out of the 8
that are the serial/parallel line communication controllers.
Figure 24 is the logic for generating the URT serial clocks
for synchronous, asynchronous and loopback modes of operation.

Figures 25, 26, 27, 28 and 29 are 4 bits out of the 8 bits
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that interface control and data signals between the EIA
RS-232 interface, LED displavs, and URT's for synchronous,
asynchronous and loopback modes.

Figures 30 and 31 are the interrupt support logic.
Figure 32 is the 4k RAM local memory and support logic.
-The RAM's used are the AM 9140's. These are bussed together
in the usual fashion to yield a 8 bit word and an address
space of 16k words. Figure 33 is the microprocessor and

support logic.
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IV. APPLICATIONS

Input/Output Command Queuing

The PLIU's syStem design includes the facilities and
can be programmed to utilize the technique of data block
chaining. Data block chaining is the technique that allows
the operating system to queue input and/or output commands
(I0C) preceding I/0 initiation or during I/O activity.

Some implementations of the technique restrict queuing of
IOC to occurring previous to initiation of the I/0O activity.
There are several applications for the technique, such as:
1) for accommodating computer system input activity with
unknown message lengths; 2) for accomplishing_continuous

I/0 message transmission across segmented or paged computer
memory structures; 3) for accommodating variable length
message 1/0 activity with CPS control of time dependency

of I/0 interrupt servicing, and 4) for transparent text
transmission.

The manner in which data block chaining is used to
control I/0 interrupt service time will be discussed here.
This technique is implemented in this design such that the
CPS can queue IOC's for each concurrent activity beyond
the currently utilized IOC. The CPS has control of the

block size for each I0C. The PLIU's issue interrupts to
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the CPS as IOC's are expended, and if at least one IOC

has been queued by the CPS the PLIU starts utilizing it
transparent to the CPS. The CPS can service PLIU issued
I/0 interrupts while the PLIU is utilizing the previously
queued IOC. As long as the interrupt processing is com-
pleted previous to the PLIU expending the current IOC

queue no timing, data over-run or lost data error conditions
will occur. Since the CPS controls the block length of

the TIOC and since block length is directly related to

the time required by the PLIU to expend the IOC, hence

the I/0 interrupt service time dependency is CPS controlled.
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Processing Synchronous Data:

The PLIU design has been evaluated to verify that its
verformance capabilities include the processing functions
of the data streams indicated in figures 6 and 7. Their
data streams are bi-directionally independent (full duplex)
and are of the synchronous type. The objective in synchronous
communications is to minimize the amount of control infor-
mation that has to be transmitted along with the data.
The synchronous type of line discipline has a sequence of
control characters called the header which prcedes the
message to be transmitted. The message is immediately
followed by an end of message sequence - the trailer. The
header is used via the receiving PLIU to determine the byte
boundaries the message is assembled in and finally the
trailer sequence is detected. Usually the latter contains
a message checkword which is used to verify proper reception

of the message by the receiving PLIU.



37

BYTE
SEQUENCE
0 SYNC CODE HEADER
1

2

NON-TRANSPARENT
DATA CHANNELS K
K+1
N
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FIGURE 7. SYNCHRONOUS DATA FORMAT
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Interlock Free Communications:

This discussion brings attention to the important
problem of communication between the asynchronously
executing processors. As indicated previously, it is
implied here that the communication be accomplished with
linked queue structures. Two closed structures are used,
where each structure is: 1) a queue is stuffed at the tail
by processor A and fetched at the head by processor B,

2) a second gueue is stuffed at the tail by processor B and
fetched at the head by processor A - see figure 8. Inter-
lock free inter-processor communication for the asynchron-

ously executing grocessors can be sustained by this scheme.
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TABLE 4. TYPICAL CODE OCCURRENCE

CODE PROBABILITY OF
TYPE OCCURRENCE
IDLES 84

oaTA 16

CONTROL
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FIGURE 9., TIME-MULTIPLEXED INPUT DATA FLOW
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Processing Time-Multiplexed Data

Figure 9 is a sketch of the data flow for time multi-
plexed input to the CPS. The period is 13 bytes long -
one synchronous idie code and 12 channel of multiplexed
data. The data in period one consists of several idle codes
(233's), a break code (037), and control codes (235 and
267). This data stream is edited by the PLIU and stored in
the two data blocks in the CPS memory as indicated. Time-
multiplexed data from the remote terminals that pertains
only to the HOST is placed in a separate block by the PLIU.
This block can then be gqueued for transmission to the HOST
without requiring any CPS editing. The block of control
codes does require CPS analysis. This control information
is stored in the separate block such that the CPS does not
have the overhead of sifting through non-control information
in order to get to the control information. In practice
the probabilities of idles, data and control information is
such that this processing is very effective.

Table 4 lists a more typical occurrence of code types
in the multiplexed data stream. From this tabulation, it
is evident that PLIU preprocessing of the data stream can
significantly off-load the CPS and HOST via editing the

data stream.
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Figure 10 is a sketch of the data flow for a time-
multiplexed output data stream from the CPS. As indicated
ih Figure 10, on each multiplexed period bytes of information
are fetched from the byte queues. In the majority of cases,
as in the input situation discussed previously, the duty
cycle of remote terminals in active I/O state is typically
16%. Various techniques can be used to provide a low CPS
overhead method of supplying the idles to the PLIU. One
such technique is to have the CPS fill the linked byte
queues with data and the PLIU fetch the data off the other
end of the linked byte queues. 1In this manner the CPS only
references the linked byte queues if data (non-idles) are

to be queued.
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Processing Transparent Text Data

Another telecommunication technique is transparent
text transmission. Transparent text transmission capability
presents some tedious processing overhead to the CPS, as
in the case of the previously discussed time-multiplexed
communications, since both input and output data byte
streams have to be edited. The concept of transparent
text transmission allows data codes to be transmitted which
consists of all possible binary combinations with a minimum
of control code overhead. The problem that arises is that
at least one code is required for control purposes. A
common format for transparent text transmission, see
figure 12, involves a header, text body, and trailer.

The header and trailer are non-transparent. The header
consists of a sync sequence and addressing, and ends with

a control sequence that indicates transparent text follows.
Then transparent text is processed until a control sequence
is detected that indicates non-transparent text mode exists
and finally the trailer is processed. When in transparent
text mode all occurrances of a predefined bit pattern are
recoded into two such codes. The only existence of a single
occurance of this code initiates an exit to non-transparent

text mode in the PLIU receiver. The encoding and decoding



FIGURE 12.

DATA
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TRANSPARENT TEXT DATA FORMAT
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required in transparent text transmission is another task
that can readily be accomplished by the PLIU.

There are many other applications of the distributed
PLIU concept in a €CPS, such as communication description,
protocal control, code compression/expansion, and code
conversion. Quite often the situation exists that there
is fixed and dynamic tabular data utilized in these and
other applications. Of course, this requires a significant
amount of memory space. This does not have to restrict
these applications from the range of PLIU's. Techniques
can be utilized such that the PLIU's have access to common
memory. For example, the PLIU's can have access to the CPS
main memory. In some applications, the PLIU's would require
only read-only access. It is important for integrity
purposes to restrict areas of access as well as write

access if the applications allow.
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V. SUMMARY AND CONCLUSIONS

Computing utilities can best be achieved by multiple
computer structures because of the service continuity
requirements as well as because of cost/performance
considerations. The overall CPS structure discussed
herein is one with a hierarchial and parallel structure
that effectively accomplishes digital communications

processing functions.
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VARIABLE DESCRIPTION TABLE

Sample Size
Sum
Raw Sum of Squares

Corrected Sum of Squares

Average

Standard Error of Mean
Median

Maximum Value

Minimum Value

Sample Variance

Sample Standard Deviation
Coefficient of Variation
Range

Skewness

Kurtosis

5946.
40996.
4013.

956
00000
00000
87030

.21967

.06631

.00000
14.

00000
0

.20301
.05012

. 32962

14.

00000

.20679

.11009
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