

January - February 2020

ISSN: 0193 - 4120 Page No. 5657 - 5664

5657

Published by: The Mattingley Publishing Co., Inc.

Tem_357 Harnessing the Power of Digital

Transformation, Artificial Intelligence and Big Data

Analytics with Parallel Computing

Article Info

Volume 82

Page Number: 5657 - 5664

Publication Issue:

January-February 2020

Article History

Article Received: 18 May

2019

Revised: 14 July 2019

Accepted: 22 December 2019

Publication: 27 January 2020

Abstract

Traditionally, 2D and especially 3D forward modeling and inversion of

large geophysical datasets are performed on supercomputing clusters.

This was due to the fact computing time taken by using PC was too time

consuming. With the introduction of parallel computing, attempts have

been made to perform computationally intensive tasks on PC or clusters

of personal computers where the computing power was based on Central

Processing Unit (CPU). It is further enhanced with Graphical Processing

Unit (GPU) as the GPU has become affordable with the launch of GPU

based computing devices. Therefore this paper presents a didactic

concept in learning and applying parallel computing with the use of

General Purpose Graphical Processing Unit (GPGPU) was carried out

and perform preliminary testing in migrating existing sequential codes for

solving initially 2D forward modeling of geophysical dataset. There are

many challenges in performing these tasks mainly due to lack of some

necessary development software tools, but the preliminary findings are

promising.

Keywords: Geophysical Dataset, GPGPU, Jetson TX2, Parallel

Computing.

I. INTRODUCTION

This paper reviews the didactic concept

in learning and applying parallel

computing in academic and industrial

environments. The content covers the

background, history, concepts,

architectures, current and potential

applications, APIs, programming

languages and models of supercomputing

or High Performance Computing (HPC)

notably parallel computing/Embedded

Parallel Computing (EPC). Serial

computing performance is limited in

scaling CPU frequencies to around 10

GHz and continues to increase power

consumption; the advantages of parallel

computing are best befitted for solving

problems with multiprocessors (multi-core

and many-core) and continue to increase

transistor density according to Moore‟s

Law.

In 1955 IBM 704[1],[2]created the first

[1,2]
Hoe Min,

[3]
Bong Chin Wei,

[4]
Jamal Ahmad Dargham

[1]
Graduate Student, School of Science and Technology, Wawasan Open University, Malaysia.

[2]
Technical Manager, Hisco (Malaysia) Sdn. Bhd., Malaysia.

[3]
Dean, School of Science and Technology, Wawasan Open University, Malaysia.

[4]
Associate Professor, Computer Engineering Program, Faculty of Engineering,

University Malaysia Sabah, Malaysia
 [1,2]

hoemin@hiscomalaysia.com.my,
[3]

cwbong@wou.edu.my,
[4]

jamalad@ums.edu.my

January - February 2020

ISSN: 0193 - 4120 Page No. 5657 - 5664

5658

Published by: The Mattingley Publishing Co., Inc.

commercial mainframe computer with

floating-point capability of around 5

kFLOPS, Gene Amdahl who defined the

Amdahl‟s laws in parallelization was the

principal architect. To practise digital

transformation that embraces Industry 4.0,

Artificial Intelligence (AI) and Big Data

Analytics with parallel computing, basic

knowledge of HPC/parallel computing

require to learn Linux and one or more

programming languages and models

available depending on the types of multi-

core and many-core systems use, viz.

Parallel libraries, POSIX Threads or

Pthreads, JAVA and wrappers, C/C++,

FORTRAN, MPI, OpenMP, OpenCL,

SYCL, OpenACC,

Python/Numpy/Numba/Keras, Julia,

CUDA and so forth as well as for GPU

accelerated computing and hybrid parallel

schemes, MATLAB, Mathematical; R,

Scala, Hadoop and others depending on

the data size, applications, complexity and

features require to implement on low cost

PCs and laptops, edge/IoT devices,

embedded systems, clouds or to high cost

data centers and supercomputer facilities

for Massively Parallel Processing (MPP)

capable of providing many folds of

performance and speed than sequential

uniprocessing.

The embedded system utilizes HPC with

upcoming systems having fused sensor

processing and AI programming; GPUs

are coming into the mix. There is a lot of

work going on autonomous and self-aware

robots and other demanding and critical

applications that use embedded systems

thus knowledge of HPC, GPU

programming and EPC become essential to

render performance and scalability with its

advantages to work out problems quicker

or address larger problems and perform

many things simultaneously by using

multiple computing resources such as

standard computing resources like laptop,

desktop or workstation and embedded

systems.

The down side of Parallel Computing

are programming to target parallel

architecture is difficult and require proper

apprehension and practice, various codes

tweaking are demanded for different target

architectures to meliorate performance

otherwise often execute worse than their

serial counterparts due to communication

and coordination overhead. With MPP

where in certain occasions can affect

control algorithm and does not yield good

results, require more efficient cooling and

higher electric power consumption.

HPC depends on using parallelism to

cater performance betterments and

generally involves connecting to very large

computing systems or supercomputing

clusters and data centres. However, with

the advent of technologies HPC can also

deploy in laptops, desktops, cell phones,

embedded systems and edge/IoT devices

with multi-core CPU or many-core CPU

and GPU (vector processor), these

additional cores create several challenges

that virtually all applications need to be

“reprogrammed” to make use of these

extra cores.

Linux[3] is main operating system use in

this research, it is the most popular

operating system for HPC, the

entireworld‟s Top500[4]supercomputers

operate on Linux and most of them

enhanced with GPGPUs. The main reasons

are open source and customizable to

particular needs. Linux is developed by

Linus Benedict Torvalds in

1991.According to Linux Foundation,

Linux is planet earth‟s most prominent and

largest pervasive open source software

project in the history of computing, it is

the operating system of choice to support

cutting-edge technologies such as the

Internet of Things, cloud computing, and

big data that helps to transform industries

January - February 2020

ISSN: 0193 - 4120 Page No. 5657 - 5664

5659

Published by: The Mattingley Publishing Co., Inc.

and disrupt the status quo. Linux is

scalable and portable to any hardware

platform and deeply rooted in UNIX, but

Linux Kernel Organization distributes the

Linux kernel and other Open Source

software to the public under a free

software license called the GNU (Gnu's

Not UNIX)General Public License (GPL)

hence one can build GNU/Linux out of its

source code and GNU-tool-chain's sources

from Linux From Scratch distribution.

Today there are more than a thousand of

Linux distros of different versions, it can

be very confusing in terms of selection, but

that is the attractive feature of Linux. A

random listing of the types of Linux

distros that are available free according to

user levels are Ubuntu, Linux Mint,

elementary OS, MX Linux, Zorin OS and

Pop!_OS for beginners; Arch Linux,

Gentoo, Slackware and Knoppix for

advanced users; and Fedora(Redhat),

Manjaro, Debian, Open SUSE for

multipurpose usage on both desktops and

servers depending on the Package

Management Systems likeDPKG, gnome,

APT-GET, APT-CACHE, KDE, RPM,

CentOS,Yum, Zypper and others to install

with resources, libraries, or other packages

for all its dependencies.The enterprise

versions of Ubuntu, SUSE Linux

Enterprise, Redhat and others are available

for clouds and data centres, but usually

come with fees.

The main languages utilize for this

research are C/C++ and CUDA C/C++.C

is a procedural language revolves around

the functions and was originated from a

language called B developed by Ken

Thompson, followed by Martin Richards

meliorated with BCPL and adopted by

Dennis Ritchie in 1972 and created the C.

The purpose for C was to port the UNICS

operating system (renamed UNIX) from

DEC PDP-7 to the PDP-11 therefore not

particularized to any specific

applicationmake it well befit and effectual

for various undertakings than many other

powerful languages.C++ is a subset of the

C. When Bjarne Stroustrup exercising

work with Simula software for simulations

and discovered its object-oriented

programming paradigm was practicable for

software development, but sluggish for

pragmatic use thus began to work on "C

with Classes" for its portability and

supports object-oriented programming

features like inheritance, polymorphism,

abstraction, encapsulation, etc. which

released in 1985 without enduring the loss

of speed or low-level functionality. C/C++

allows implementing parallelism and can

combine with Threads, MPI and OpenMP.

CUDA originated from Brook project in

Stanford University is the acronym for

Compute Unified Device Architecture

created by Nvidia is a parallel computing

platform and programming model using

CUDA C/C++, CUDA Fortran, pyCUDA

and Open ACC which are Nvidia GPU

specific. Together with their Unified

Memory comprising of single memory

address space capable of accessing from

any processor in a system and NVLink that

comes with stacked memory enabling

GPU applications to gain access to larger

datasetand provide a higher bandwidth and

high-speed path between GPUs

communicate at peak data rates of 300

gigabytes per second (GB/s) which is 10

times faster than PCIebettering efficiency

and computational throughput, and

abridging the frequency of off-GPU

transfersin the direction of exascale

computing.

II. OTHER HPC PROGRAMMING

LIBRARIES AND LANGUAGES

The study and research may need to

apply some of other HPC programming

libraries and languages when needed

especially hybrid parallel schemes, e.g.

January - February 2020

ISSN: 0193 - 4120 Page No. 5657 - 5664

5660

Published by: The Mattingley Publishing Co., Inc.

MPI + POSIX, MPI + OpenMP + CUDA,

and CUDA + OpenMX, etc.

A. Standard Libraries for Parallel

Programming

The simplest form of parallel

programming is to make use of the parallel

libraries; many are available in open

source that can be appropriated for

particular problem or needs.

B. POSIX Thread (Pthreads)

POSIX is theacronym for Portable

Operating System and developed in 1980

to settle the portability issuebased on

System V and BSD Unixstandard.

POSIX Threads or Pthreads[5]is an

execution model in UNIX and Linux

independent from a languageaccords a

program to control overlap in time in

multiple different flows of work to execute

parallelism in shared memory

multiprocessor architectures. Its C

language threads API is specified in IEEE

POSIX 1003.1c standard embracing

routines on Thread Management, Mutex

Variables, and Condition Variables.

C. JAVA and wrappers

James Gosling at Sun Microsystems

(acquired by Oracle) developed JAVA to

have the similar appearance and behavior

of the C++ but easier to use and enforcean

object-oriented programming model. The

emerging interest in Java for HPC[6] is

established on the attractivecharacteristics

for programming multi-core cluster

architectures and its inbuilt networking

and multithreading support plusJava

Virtual Machine (JVM) performance.

Wrapper classes are to convert any data

type into an object.

D. Fortran

Fortranstands for Formula Translator is

the first high-level programming language

in the world. It was developed in 1957 at

IBM headedby John Backusas a

programming tool for the IBM 704

mainframe. Today Fortranis still in use for

many HPC applications and remains the

preferred programming language for large-

scale simulation of physical systems,

climate models, and numerical calculations

in science and engineering especially in

array processing as not requiring other

sophisticated data structures.

E. MPI

Message passing interface (MPI) began

in 1991 during a retreat with a small group

of researchers in Austria, the purpose was

to create a standardized approachin

running a parallel program written in C,

C++ and Fortran across distributed

memoryin exchanging messages between

multiple computers. It is the most generic

approach in using the classic MPI model

with basic multicore nodes, butmemory

can be a problem as CPU core counts

increases.

MPI provides basic set of well-specified

routines to parallel hardware vendors to

expeditiously implement to produce

higher-level routines not only for the

distributed-memory communication

environment to permit simple-to-use

portable interface for the basic user, yet

potent enough to provide experienced

programmers to utilize the high-

performance message passing operations

on advanced systems.

F. OpenMP

OpenMP is abbreviation of Open Multi-

Processing is the established standard in

1997 for portable API assigned for C/C++

and Fortran jointly defined and certified by

major computer hardware and software

marketers offers substantial benefits over

both hand-threading and MPI to explicitly

direct multi-threaded, shared memory

parallelism with three primary API

components, i.e. Runtime Library Routines,

Compiler Directives and Environment

Variables.

January - February 2020

ISSN: 0193 - 4120 Page No. 5657 - 5664

5661

Published by: The Mattingley Publishing Co., Inc.

G. OpenCL and SYCL

OpenCL (Open Computing Language)

was initially developed by Apple. Khronos

in collaboration with CPU, GPU,

embedded-processor, and software

companiesAltera (acquired by Intel), AMD,

Apple, ARM, IBM, Intel, Nvidia,

Qualcomm, ST, TI, Xilinx, and others had

its first version 1.0 public releasein 2008.

OpenCL is the open standard for parallel

computing of heterogeneous system‟s

framework for writing C and C++

programs that execute across CPUs, GPUs,

DSPs (Digital Signal Processors), FPGA

(Field-Programmable Gate Arrays) and

other processors or hardware

acceleratorsplatforms, its APIs control the

platform and execute programs on various

compute devices and provide standard

interface on task- and data-based

parallelism with headers and shared

objectloaded at runtime for open source

executions.

Nvidia, RapidMind and

Gallium3Dimplementations of OpenCL

use the front end Clang compiler are

established on LLVM (Low Level Virtual

Machine) compiler technology.

Khronos also developed the open

standard SYCL in 2014.OpenCL and

SYCL are similar to vendor-specific

Nvidia CUDA, However, SYCL is the

high-level single-source C++ domain-

specific embedded language where as

OpenCL is the low-level non-single source

API.

Standard Portable Intermediate

Representation or SPIR was initially

created by Khronos for use by OpenCL

and SPIR based on LLVM technology, but

SPIR has evolved into a cross-API

intermediate language with native support

for shader and kernel lineaments used by

APIs such as Vulkan named SPIR-V as

first open standard to support OpenGL 4.6

extension. Even though SPIR–V does not

use LLVM instead Khronos furnishes open

source SPIR-V/LLVM conversion tools

for building toolchains that apply to both

intermediate languages.

H. OpenACC

OpenACC is short form for Open

Accelerators developed in 2011 by CAPS,

Cray, Nvidia, and PGI(Portland Group,

acquired by Nvidia) for high-level

heterogeneous parallel programmingthat

comment directives in new and existing

Fortranand C/C++ codes where the codes

still remain portable and compile to run

CPUs, GPUs/GPGPUsand APUs

(Accelerated Processing Units) include

both the CPU and GPU on a single chip.

I. Python/Numpy/Numba/Keras

Python is an interpreted, high-level and

general-purpose programming language

created by Guido van Rossum 1991as a

successor to the ABC language which was

developed atDutch Centrum Wiskunde &

Informatica (CWI). Python looks and feels

like MATLAB, but embarked in areas

where MATLAB was ineffective. Python

interpreter requires compiling the .py

source file into a .pycbytecode and

executing on the Python virtual machine.

Python is dynamically typed with define

variable type and garbage-collected with

automatic memory management to reclaim

garbage or memory resided by objects that

are no more needed by the program. It

supports various programming paradigms

with procedural, object-oriented, and

functional programming available in

multiple operating systems and is one of

the most popular computing languages.

CPython is an open source reference

implementation by community. Python

Software Foundation (PSF)deals and

directs resources for both Python and

CPython developments.

Python being interpreter is sluggish in

processing and not suited for numerical

January - February 2020

ISSN: 0193 - 4120 Page No. 5657 - 5664

5662

Published by: The Mattingley Publishing Co., Inc.

computations where as NumPy is the

underlying package for scientific

computing with Python contains powerful

N-dimensional array object, sophisticated

broadcasting functions with static array

data structure, quick mathematical

operations for multidimensional arrays and

tools for random numbers and linear

algebra.

Numba is a just-in-time compiler for

Python that perform well on code that uses

NumPy arrays, functions, and loops.

Keras is an open-source neural-network

Python library for fast investigation with

deep neural networks running on top of

TensorFlow, Microsoft Cognitive Toolkit,

Theano, or PlaidMemphasizes on user-

friendly, modularity, and scalability.

J. Julia

Julia began in 2009 by Jeff Bezanson,

Stefan Karpinski, Viral B. Shah, and Alan

Edelman of MIT and released Julia 1.0 in

2012is a fairy new high-level, high-

performance, dynamic and general purpose

computing language inherently parallelize

for implementation and worthy to embed

easily to any application for numerical

analysis and computational science with its

distinctive features that include a type

system with parametric polymorphism and

multiple dispatch as its core computing

paradigm on concurrent, parallelism with

or without the MPI and/or OpenMP type

of threads. Its other characteristics

included is tributed computing and direct

calling of C and Fortran libraries.

Julia is garbage-collected engages eager

evaluation, and effective libraries for

floating-point computations, linear

algebra, random number generation and

regular expression matching. Julia‟s high

speed, capacity, functionality, flexibility

and scalability make it the premier

selection for GPUs and other

supercomputers that employ accelerators.

K. MATLAB

MATLAB (Matrix Laboratory) was

invented by Cleve Moler in 1970 to make

less difficult of coding endeavours needed

to develop amulti-paradigm numerical

programming workplace and computing

language that allows matrix manipulations,

functions and data plotting, algorithms

execution, user interfaces, and interfacing

with other languages including C, C++, C#,

Fortran, Java, Python and with various

toolboxes like MuPAD engine to access

symbolic computing powers, Simulink for

multi-domain graphical simulation and

model-based design for embedded and

dynamic systems.

The freeware version similar to

MATLAB is called Octave.

L. Mathematica

In 1968 Stephen Wolfram created

Mathematical is a general multi-paradigm

computational language called Wolfram

Language utilizes computer algebra system

to manipulate symbolic relationships in

technical programming fields be that in

neural networks, machine learning, image

processing, data science, geometry and

visualizations, etc.

M. R

R is a programming language primarily

applied for statistical analysis that

facilitates the analysis of Big Data using R

code distributes across multiple systems

and run on almost all operating systems

with its excellent graphical capabilities for

visualization patterns and associations

within Big Data systems.

N. Scala

Scala is a general-purpose and popular

programming language in data science,

particularly in Big Data Analytics. Scala is

to work with Spark, in fact the Apache

Spark cluster computing solution is written

in Scala. The opening of API endpoints

January - February 2020

ISSN: 0193 - 4120 Page No. 5657 - 5664

5663

Published by: The Mattingley Publishing Co., Inc.

can access to other languages with Scala

superior concurrency support in

parallelizing lot of the processing needed

for large data sets. Scala operates on Java

virtual machine (JVM) making best use

with a framework like Apache Hadoop.

O. Hadoop

Hadoop was built by Doug Cutting who

also created Apache Lucene open sourced

web search engine from Apache Nutch

project in 2002. Hadoop is a distributed

file system and Map Reduce framework

for big data where the primary hardware

employs clusters of hundreds or thousands

of commodity servers in peta byte range

which is different from HPC that uses

supercomputing clusters.

III. PARALLEL PROCESSING ON

GEOPHYSICAL DATA

Parallel Computing for geophysical data

processing and Big Data Analytics are

widely use with traditional programing

models like MPI, Fortran, JAVA and

MATLAB, etc. including more recent

Deep Learning (DL) neural network and

cloud for large geophysical datasets such

as pyGIMLi which is an open source

library for modeling and inversion in

geophysics[7], parallelizing large-scale

geophysical applications in Java[8],

parallel computing in seismic data

processing[9], Apache Spark big data

analytics scalable to seismic data analytics

and computation[10], large-scale parallel

geophysical algorithms in Java[11],

Electromagnetic (EM) for 3D parallel

inversion of time-domain airborne EM

data[12], deep learning in electromagnetic

inversion with convolutional neural

networks[13], Magnetotelluric (MT)

engaging a MPI + OpenMP + CUDA

Hybrid Parallel Scheme for MT Occam

Inversion[14], and joint inversion

expending Parallel, large and dense matrix

problems for application to 3D sequential

integrated inversion of seismological and

gravity data[15]plus many others.

However, only rarely see articles

employing C++ and in particular EPC with

GPGPU as the technology and embedded

systems only available in recent years.

The author initial attempt is to modify

the MT2D MT Forward Modeling

program written in C++with the

permission from the developer Prof. Ren

Zhengyong to CUDA platform and

programming models with the Nvidia

Jetson TX2 Developer Kitthat comes

withPascal Architecture GPU, 2 Denver

64-bit CPUs + Quad-Core ARMA57

Complex, 8 GB L128 bit DDR4 Memory,

32 GB eMMC 5.1 Flash Storage and

carrier board comprising various types of

interfaces, interconnects and a camera.

TX2 embedded system is to harness AI at

the Edge. However, Nvidia PGI compilers

and Tools for Open ACC and CUDA

Fortran only available for Linux x86-64,

IBM Open POWER, and Windows x64

CPU with Nvidia specific GPGPU, but not

on TX2 as it uses ARM CPU. According

to recent Nvidia announcement, PGI shall

support ARM processors at the end of

2019.

For MT2D code, it make use of

numerous third party software packages

that include open source Eigen libraries for

linear algebra, matrices, vectors, numerical

solvers, and related algorithms; Intel MKL

PARDISO Solver;Carnegie Mellon

University (CMU)2D Mesh Generator and

Delaunay Triangulator, and output to

MATLAB for visualization.

In the meantime the author is working

on alternate method with laptop PC

consists of x86 CPU and Nvidia GPU to

install with Ubuntu Linux OS, PGI and

Python compilers and tools until such time

PGI is able to support on TX2. With the

January - February 2020

ISSN: 0193 - 4120 Page No. 5657 - 5664

5664

Published by: The Mattingley Publishing Co., Inc.

release of CUDA Toolkit 10.1 in August

2019, the author‟s aim is to use CUDA

GPU-based Method for generating

Delaunay Triangulations[16], CUDA

cuBLAS library with standard basic linear

algebra subroutines (BLAS), Eigensolver,

CuSPARSE Sparse Matrix library and

cuSOLVER library of dense and sparse

direct solvers for GPU-accelerated

implementation.

IV. DISCUSSION AND

CONCLUSION

In this paper HPC/Parallel

Computing/EPC encompasses its

background, history, concepts,

architectures, applications, Linux OS and

various libraries and programmable

languages and in particular for geophysical

data processing, 2D/3D Forward Modeling

and Inversion and Big Data Analytics are

presented. Although presently lack of

suitable and essential software tools for

use with TX2, but foresee the growth of

edge computing especially for high-end

embedded systems is about to take a huge

leap in generating their data outside the

traditional data center or cloud.

REFERENCES

1. Wilson, Gregory V., "The History of the

Development of Parallel Computing".

2. Wikipedia, "IBM 704".

3. M. K. Dalheimer, M. Welsh, Running

Linux, 5th Edition, O‟Reilly Media, Inc.,

2006.

4. Top 500 Organization, "Top 500".

5. B. Barney, "POSIX Threads

Programming".

6. Guillermo L. Taboada, et al., "Java in the

High Performance Computing Arena:

Research, Practice and Experience,"

Science of Computer Programming, May

2013.

7. Carsten Rücker, Thomas Günther, Florian

M. Wagner, "pyGIMLi: An open-source

library for modelling and inversion in

geophysics," Computers and

Geosciences, vol. 109, pp. 106-123, 2017.

8. M. Karrenbach, M. Jacob, M. Philippsen,

"Parallelizing Large-Scale Geophysical

Applications in Java".

9. D. Bhardwaj, S.Yerneni, S. Phadke,

"Parallel Computing in Seismic Data

Processing," in Proceedings Third Int.

Pet. Conf. & Exbn.,, New Delhi, 1999.

10. Yuzhong Yan, Lei Huang, Liqi Yi, "Is

Apache Spark Scalable to Seismic Data

Analytics and Computations?," 2015.

11. Matthias Jacob, Michael Philippsen,

Martin Karrenbach, "Large-Scale Parallel

Geophysical Algorithms in Java: A

Feasibility Study," Citeseerxf.

12. Liu Yun-He Liu, Chang-Chun Yin, Ren

Xiu-Yan Ren, Chang-Kai Qiu, "3D

parallel inversion of time-domain

airborne EM data," APPLIED

GEOPHYSICS, vol. 13, no. 4, pp. P. 701-

711, 2016.

13. Vladimir Puzyrev, "Deep learning

electromagnetic inversion with

convolutional neural networks,"

arXiv:1812.10247v1 [physics.geo-ph] 26

Dec 2018.

14. Yu Liu, Renhao Xiong, "A MPI +

OpenMP + CUDA Hybrid Parallel

Scheme for MT Occam Inversion,"

International Journal of Grid and

Distributed Computing, vol. Vol. 9, no.

No. 9, pp. pp.67-82, 2016.

15. R. Tondi, C. Cavazzoni, P. Danecek, A.

Morelli, "Parallel, „large‟, dense matrix

problems: Application to 3D

sequentialintegrated inversion of

seismological and gravity data,"

Computers & Geosciences, vol. 48, pp.

143-156, 2012.

16. Cristobal A. Navarro, Nancy Hitschfeld-

Kahler, Eliana Scheihing, "A GPU-based

Method for Generating quasi-Delaunay

Triangulations based on Edge-flips," in

GRAPP2013-International Conference on

Computer Graphics Theory and

Applications, 2013.

