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Resumo

O desenvolvimento das Redes Definidas por Software (em inglês, Software-Defined Networks,

ou SDNs) foi impulsionado pela necessidade de os administradores de redes aumentarem a sua

capacidade de controlo. Para tal, as SDNs introduzem a ideia de centralizar o plano de controlo,

removendo-o do equipamento de encaminhamento e promovendo a sua desagregação do plano de

dados, permitindo agilizar a implementação das polı́ticas de rede.

Apesar de as SDNs permitirem assim programar o plano de controlo, o plano de dados mantém-

se inflexı́vel, sendo a sua funcionalidade definida pelos fabricantes de equipamento de rede e

mantendo-se inalterável após o fabrico. A implementação de certas polı́ticas leva muitas vezes

os administradores de rede a ter necessidade de realizar operações especificas sobre o tráfego da

rede, ou mesmo a criar novos protocolos não suportados pelo equipamento. Uma solução para este

problema impleica a utilização de middleboxes, isto é, hardware especı́fico que é inserido na rede

para executar computações que os switches e routers tradicionais não têm capacidade para execu-

tar. Este hardware traz, no entanto, algumas desvantagens, nomeadamente o custo de aquisição e

o facto de ser especializado para uma única tarefa, forçando os administradores de rede a adquirir

diferentes middleboxes para diferentes operações, e a adquirir novas versões caso a funcionali-

dade desejada se altere. Este processo é dispendioso, lento, e torna a operação da rede ainda mais

difı́cil.

Recentemente, desenvolvimentos ao nı́vel dos chips presentes nos switches, até então apenas

capazes de processar pacotes de acordo com o definido pelo fabricante no momento de produção

do hardware, permitiram que o processamento de pacotes pudesse ser programado pelo utilizador,

desta forma introduzindo o conceito de Plano de Dados Programável (PDP). Com a utilização,

por exemplo, da linguagem de programação P4, os operadores de rede têm agora a capacidade de

desenvolver novos protocolos para o plano de dados, especificando o modo como os pacotes são

processados sem recorrer ao plano de controlo e sem a necessidade de hardware especializado.

Existem, no entanto, algumas restrições associadas aos PDPs atuais. Uma destas restrições é o

facto de cada switch programável só ter capacidade de correr um único programa P4 de cada vez.

Isto traz problemas de modularidade e de eficiência. Por um lado, para ter múltiplas funcionali-

dades a serem executadas simultaneamente, os administradores de rede são obrigados a produzir

programas monolı́ticos que ficam progressivamente maiores e mais complexos à medida que au-

mentamos os requisitos. Por outro lado, não é possı́vel integrar múltiplos programas diferentes,

potencialmente desenvolvidos por utilizadores diversos, impedindo assim a utilização partilhada

dos recursos de hardware e limitando a sua utilização efetiva.
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Para colmatar este problema, alguns autores têm vindo a propor soluções de virtualização de

PDPs, que têm como objetivo principal permitir aos utilizadores programar diferentes funcionali-

dades de forma modular e juntá-las de forma dinâmica de modo a correrem simultaneamente no

switch. Estas soluções dividem-se em dois tipos: Emulação e Fusão de Código (Code Merging).

No caso da Emulação, é gerado um programa que utiliza uma série de tabelas (Match-Action Ta-

bles) para emular as primitivas básicas do P4. Os programas que contêm as funcionalidades que os

administradores desejam implementar na rede são depois traduzidos como entradas nestas tabelas,

emulando assim a sua execução como se corressem isoladamente no dispositivo. Esta técnica de

virtualização permite que novos programas sejam adicionados e que antigos sejam retirados sem

que o dispositivo precise de reiniciar, permitindo a execução de múltiplos programas simultanea-

mente. No entanto, a emulação é muito ineficiente, requerendo a utilização de inúmeros recursos.

Este elevado custo torna esta abordagem impraticável. As soluções de Fusão de Código intro-

duzem uma abordagem diferente, que consiste na capacidade de juntar múltiplos programas P4,

escritos individualmente, e combinar as suas funcionalidades num só programa, que é depois ins-

talado no switch. O isolamento entre programas, ou seja, a garantia de que um programa não vai

interferir com outro de forma não planeada (e.g., acessos concorrentes à mesma zona de memória),

é garantido normalmente através da utilização de tags, marcadores que distinguem os recursos de

cada programa.

As soluções de Fusão de Código têm a desvantagem de gerar um programa que precisa de ser

instalado no switch após a sua compilação, obrigando à remoção do antigo programa e a colocação

do novo, resultando numa disrupção momentânea devido à paragem do processamento de pacotes.

No entanto, esta abordagem apresenta bons nı́veis de eficiência e reduzido overhead, tornando-a

na solução mais efetiva na prática. A solução que representa o estado da arte, o P4Visor, apre-

senta, no entanto, limitações adicionais. Em primeiro lugar, só permite fundir dois programas

muito semelhantes, impedindo dessa forma o desenvolvimento modular e flexı́vel de novas fun-

cionalidades. Adicionalmente, como os switches programáveis possuem restrições relativamente

à quantidade de recursos que podem ser utilizados por um determinado programa, é um desafio

a integração de várias funcionalidades no mesmo switch. Para mitigar este problema, o P4Visor

desenvolve mecanismos que reduzem a quantidade de tabelas utilizadas, mas trata de forma inefi-

ciente do problema fusão dos grafos de parsing dos pacotes, limitando as possibilidades de fusão

de código.

Neste trabalho, reconhecendo os problemas de eficiência e desempenho das soluções baseadas

em emulação, propomos uma nova plataforma que permita a modularidade de desenvolvimento

de múltiplos programas P4 e a sua execução em simultâneo em switches programáveis, usando

uma abordagem centrada na Fusão de Código. Esta solução inova relativamente ao estado da arte,

ao permitir a integração de múltiplos programas P4 (isto é, mais de dois) desenvolvidos de forma

modular, num único programa, e partilhando recursos do grafo de parsing, reduzindo dessa forma

a quantidade total de recursos utilizados, atingindo em certos casos melhorias na ordem dos 60%.
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Abstract

Recent advances in the hardware capabilities of switching chips have enabled programmabil-

ity of the data plane. The development of new network protocols and functions, which historically

demanded long ASIC design lifecycles to be operated, can now happen quickly and flexibly on

Programmable Data Planes (PDPs). Network administrators can directly deploy custom packet

processing logic as programs (written in high-level languages such as P4) into their programmable

switching ASICs. There are, however, some unresolved problems associated with current PDPs,

which hinder their adoption in production networks. One such problem is that a PDP target (e.g.,

a switch) is currently only capable of running one program at any given time. This limitation

has several important consequences. First, it constrains network administrators to write large and

complex programs whenever they need to deploy multiple functionalities, which is the common

case. Second, it precludes resource sharing between multiple programs, potentially written by

different users, limiting resource utilization and thus impacting efficiency.

Inspired by the success story of virtualization in the domain of operating systems, researchers

have started proposing solutions to overcome the above issue by virtualizing PDPs. Unfortu-

nately, existing solutions are either very inefficient or lack generality. Hence, this work aims at

designing a programmable data plane virtualization platform that enables the deployment of many

independently-developed P4 programs on a PDP while introducing the minimum resource over-

head. We achieve virtualization at the compiler-level by merging network functionalities into a

single, monolithic program, where the individual P4 programs coexist fully isolated from each

other. We leverage a state-of-the-art system for code merging, P4Visor, but we improve it by ex-

tending the number and variety of P4 programs that can be virtualized, from only two to multiple,

and by improving resource efficiency, specifically in the packet parsing module.

Keywords: Software-Defined Networks, Programmable Data Planes, Network Virtualization, the

P4 Language
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Chapter 1

Introduction

The rise of Software-Defined Networks (SDNs) [1] over the past decade has changed the way

networks are managed. SDNs feature a logically centralized entity that maintains a logical view of

the network and has the ability to reconfigure the network’s behaviour by informing switches about

new packet forwarding rules. In this way, it becomes simpler for administrators to implement and

enforce network policies that had, before SDNs, to be performed using low-level, ad-hoc tools

that often required per-device human-assisted operations.

Recently, programmable data planes (PDPs) have emerged in the market [2] as a result of hard-

ware developments responding to operator demands, allowing the execution of customized packet

processing code on the data plane (e.g., switches) while maintaining comparable performance with

legacy fixed-function switches [3]. Network operators and users can now define, in a top-down

fashion, the packet processing capabilities of their switching equipment by means of a high-level

programming language as P4 [4]. With these tools, operators are now able to deploy, for example,

complex congestion-aware load-balancing techniques [5], that analyze the traffic traversing the

switch and dynamically change forwarding rules when needed to change path.

The main focus of this work is to investigate techniques to enable multi-tenancy on PDPs; a

requirement which is today hardly achievable, but of foremost importance for this programmable

networking infrastructure to serve better in production networks. This work is integrated within the

context of the User-centric Programmable Virtual Networks (uPVN) project. uPVN aims to confer

on users, through a specific platform, the ability to define the packet processing and forwarding in

the elements of their virtual networks.

This chapter serves as an introduction to this thesis. The motivation for this work is described

in Sec. 1.1. Then, the contributions are summarized in Sec. 1.2. Finally, the structure of the rest

of the document is outlined in Sec. 1.3.

1.1 Motivation

Despite bringing important advantages, it is widely accepted that PDPs [2] still have some impor-

tant problems that limit their full potential. One of such limitations is that they can only run one

program (written, for example, in P4 [4], a Domain Specific Language for network data planes)

1
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at any given time. Therefore, the common requirement of supporting multiple networking con-

texts forces developers to write programs that increase both in size and in complexity as more

functionalities are introduced. This inherently restricts the flexible and dynamic deployment and

composition of network functions.

To mitigate these problems, some researchers have proposed virtualization solutions [6, 7, 8,

9], breaking the hardware’s single-program restriction and allowing for multiple programs to be

deployed simultaneously. These virtualization solutions can be broadly classified into two differ-

ent categories, namely Emulation-based and Code Merging. The former class of solutions consists

in generating an uber P4 program that emulates the device’s hardware, serving as a platform for

the deployment of multiple other programs. To do so, the emulator allocates resources on the

target architecture (e.g., match-action tables on the switch’s pipelines) for each one of P4’s prim-

itive actions. The use of primitives by other programs can then be translated into entries to these

tables in the control plane. This way, emulator-based solutions allow for multiple programs to

run simultaneously by populating the emulator’s tables with the translated entries. Through such

a mechanism, the emulator enables the addition and removal of programs in run-time (seamless

reconfiguration). Yet, despite this advantage, the emulator’s resource usage overhead introduces a

very large performance penalty, making the deployment of such solution impractical.

The second type of solutions takes multiple P4 programs as input, merges and compiles them

into one monolithic program that is finally deployed on the PDP. This approach leverages the fact

that it is possible to share resources between different P4 programs when those have equivalent

program functionalities, which is a common case. Code merging solutions orchestrate through

the introduction of a small amount of resources the order in which the different input programs

must execute within the execution flow of the merged program. To maintain isolation between the

programs (i.e., input programs cannot access resources in the merged program that they do not

originally instantiate), the resources of each individual programs are tagged, to solve ambiguities

(e.g., resources with the same name belonging to different programs). Once the resources have

been correctly tagged, they are merged into a single, larger program, alongside with the aforemen-

tioned virtualization-specific resources. However, the state of the art in Code Merging, P4Visor

[8], restricts the number of programs that can be merged to only two, and to be very similar

programs. Thus, it fails to provide a platform that truly allows developers to deploy various net-

working functionalities without the need to write large and complex P4 programs. Furthermore, as

the number of functionalities deployed increases, so does the amount of resources used. For this

reason, an efficient resource sharing mechanism is fundamental, minimizing the resources used

while guaranteeing isolation and correctness (i.e, the merged program does not differ in func-

tionality from the input programs). P4Visor also presents limitations on that respect, namely by

employing an inefficient mechanism for packet parsing.
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1.2 Contributions

With our work, named P4Visor++, we improve the state of the art in PDP virtualization by tackling

limitations in the existing Code Merging solutions to avoid some performance and inflexibility

issues associated with those systems.

More precisely, we have improved upon the system in [8], P4Visor, by allowing the merge of

multiple programs (i.e., more than two) and by designing a new parse graph merging technique.

Our design was driven by the empirical observation that the mechanism used by P4Visor to merge

the parse graphs from the different programs does not optimize the resources required to store the

merged graph. As a consequence, merged graphs produced by [8] cannot be practically complied

and executed on certain programmable targets, because of their large sizes, for relevant common

use-cases.

In summary, the main contributions of this work are the following:

• the design and implementation of an algorithm that merges parse graphs from several input

P4 programs by sharing equivalent program blocks.

• the design of mechanisms to enforce correctness and isolation properties for the input pro-

grams in the merged parse graph.

• an extensive evaluation of our merge algorithm performed using several real P4 programs,

through a test suite developed for this work.

1.3 Structure of the document

The rest of this thesis is organised as follows:

• Chapter 2 - Related Work

– This chapter first introduces some fundamental concepts about the P4 language for

packet processors and the target programmable switching architecture, then it reviews

the state of the art on PDP virtualization.

• Chapter 3 - Design

– This chapter details our algorithm for merging parse graphs in P4 programs, illus-

trating the design rationale. It presents the criteria defined to establish equivalence

between headers and between parse states, the algorithm designed to correctly merge

those equivalent program’s elements and the mechanisms used to optimize resource

usage in such a process.

• Chapter 4 - Implementation

– This chapter describes the implementation of our solution built by extending the soft-

ware provided with [8]. Our software implements the mechanisms used to determine:
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(i) how headers and parse states can be shared, (ii) how the original parser states and

transitions must be modified in order to preserve correctness and isolation within the

merged graph, and (iii) how the merged graph can be further optimized to save re-

sources.

• Chapter 5 - Evaluation

– This chapter first illustrates the development environment and the P4 programs used

for testing purposes. Then, it presents an extensive evaluation of our work, with the

correctness of our merging algorithm being tested and our resource usage results being

compared against the state-of-the-art.

• Chapter 6 - Conclusion

– This chapter summarizes the work done in this thesis, followed by a discussion of

future work.



Chapter 2

Related Work

The emergence of programmable data planes has brought a new level of flexibility and control

to large-scale network administrators. However, the devices’ inability to provide multi-tenancy

represents an open issue that some have attempted to mitigate.

Across the state of the art, there exist two main approaches to network data plane virtual-

ization, which we respectively name Emulation-Based and Code Merging, for reason that will

be made clear in this chapter. The ultimate goal of both approaches is to create a platform that

enables multiple P4 programs to be executed simultaneously on the same physical PDP. Both ap-

proaches also aim to guarantee important properties such as isolation between programs, that is,

each program should operate without its functional and non-functional properties being altered by

the other programs; and correctness, that is, the merged program does not differ in functionality

from the input programs. In this chapter, we first provide an introduction to the P4 language and

to a P4-programmable target’s architecture, and, afterward, we illustrate these two virtualization

approaches, by presenting the existing related systems and techniques. To conclude this chapter,

we present a comparison between the state-of-the-art PDP Virtualization solutions, focusing on

the limitations that motivate our work.

2.1 Target Architecture and P4 Language

The switching architecture widely used in most of today’s programmable high-speed switches is

the Protocol-Independent Switch Architecture (PISA) [10], which is illustrated in Figure 2.1. The

functionality of this switching ASIC is not bound to recognize and process a fixed set of standard

protocols defined at chip design-time. Rather, it can be entirely defined and reconfigured by a P4

program. A P4 program defines the packet processing logic which is compiled down into, and ex-

ecuted by, the PISA switch’s hardware. In order to achieve Terabit speeds, PISA switches process

packets using a feed-forward data pipeline, i.e., processed packets follow a path of execution that

always moves forward along the next stages of the pipeline, with strict, deterministic timings. The

switch’s pipeline is composed of Match-Action Tables (MATs) stages programmable through two

main control blocks, one block for Ingress processing and one block for Egress processing. Ta-

bles in MAT stages can be populated by control plane logic through a program-independent API,

5
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such as P4Runtime [11]. PISA switches can also maintain state across multiple packets by using

some stateful memory per-stage, called registers in the P4 language. Registers can be accessed

and modified along the processing pipeline.

Figure 2.1: Protocol Independent Switch Architecture (PISA) model

The P4 language [4] allows developers to define the packet processing logic of a PDP through

a high-level program. At first, a P4 program defines the format of the packet headers, stating the

size and fields of each header, and a sequence of operations to extract the defined headers and their

fields from the received packets for further processing. This P4 Parser block specifies the order in

which the protocol headers must be extracted, by instantiating parse states (blocks responsible for

extracting headers) and defining conditional transitions between such states (e.g., an IPv4 parse

state can only transition to a TCP parse state if the extracted IPv4 header contains a value of 6 in

its protocol field). An example implementation of a parser can be seen in Figure 2.2 (b), with

the related headers definition reported in Figure 2.2 (a). An illustration of the resulting parse graph

for this program can also be seen in Figure 2.2 (c).

The main packet processing logic is implemented in P4 through control blocks (an example is

provided in Figure 2.3), where MATs and the sequence of their execution are expressed. A MAT

consists of two kinds of functional parts: one table and one or more actions as seen in Figure 2.3. A

match table is defined by matching fields (which can be protocol fields or packet metadata), match

types (e.g., exact, ternary, longest-prefix match) for its matching fields and associated actions.

Actions are fragments of code performing modifications on the packet data, metadata and stateful

memory, whose executions can be triggered by packets matching tables entries. The control plane

logic, running in the switch CPU or in an external controller, is responsible for populating the

MATs defined in the P4 program with table entries, binding matches with actions and optionally

with actions data. For example, in Fig. 2.3, if an IPv4 destination address matches to a certain

prefix, the table ipv4 lpm will execute the ipv4 forward action to set the correct forwarding

egress port for that packet.
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(a) (b) (c)

Figure 2.2: Example of headers (a) and parser (b) definitions in P414, for a simple Ethernet/IP
protocols stack. In (c), an illustration of the resulting parse graph.

Figure 2.3: Example of a P4 control block consisting of a single table matched only by valid IPv4
packets.
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2.2 Emulation-based approach to PDP Virtualization

Figure 2.4: Emulation-Based illustration from [6].

Emulation-Based solutions consists of a “uber” P4 program which emulates the device’s hard-

ware to execute more than one P4 program simultaneously. The emulator program, which physi-

cally sits between the hardware and any deployed program, manages the resource usage for each

of the latter, giving it the illusion that it is operating alone and directly on the hardware. These

virtualization solutions usually include two main software modules: i) a compiler, responsible for

generating the emulator program and for translating P4 programs into table entries for the emu-

lator, and ii) a management unit, responsible for translating programs’ run-time configuration to

entries of the emulator’s tables. An illustration of the workflow of these approaches can be seen

in Figure 2.4.

Emulation-Based not only provides a platform for multiple programs running simultaneously,

but it also enables an invaluable feature to PDPs: seamless reconfiguration. Normally, changes

to the deployed P4 functionality requires rebooting the PDP device so that some new compiled

code can be loaded. This represents a problem, as maintaining devices available at all times is

highly desirable. Featuring seamless reconfiguration, Emulation-Based allows PDPs to introduce

and remove programs in run-time without service disruption, for as long as changes to the main

program (the “emulator”) are not required.

2.2.1 HyPer4

HyPer4 [6] represents the seminal work in the area of virtualization platforms for P4-programmable

PDPs. The system consists of a single generic P4 program virtualizing the target PDP and working

as an emulator for other P4 programs.

The HyPer4’s program declares a number of tables which depends on the complexity of the

programs to be emulated. More precisely, the emulator program provides a platform that declares

multiple tables for each P4 primitive action. This way, the use of primitives in a native P4 program

is now translated into a set of entries that will then populate the emulator’s tables. To guarantee

isolation between different programs, each of the emulator’s tables contains a special ID that
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uniquely identifies what original program each table entry belongs to. At the reception of each

packet, a metadata field in the packet is associated to one of those IDs via some deterministic

process, e.g., based on the ingress port or on a specific protocol field within the packet, to ensure

that only one emulated program executes certain table entries.

Additionally, HyPer4 allows for Virtual Networking, that is, the chaining of different emulated

programs. This is achieved by changing the program’s ID in the metadata field and by recirculating

the packet (operation achieved leveraging a target’s primitive), once that has been processed by the

current program. This process achieves sequential processing, allowing for multiple functionalities

to be applied to the same packet without the need for multiple physical devices.

Despite some advantages, HyPer4’s virtualization platform suffers from some serious draw-

backs. The main one is intrinsic to the Emulation-Based approach. Specifically, the emulator

program must contain a large number of tables to emulate other programs, leading to a significant

overhead when compared to native P4 programs. Furthermore, the periodic use of the recirculation

primitive, used by HyPer4 to implement both a generic parser of the emulated programs and the

service chaining mechanisms, may considerably reduce the overall throughput, as new packets are

prevented from entering the pipeline by the recirculated packets (at full traffic rate, each recircu-

lation step represents halving the throughput, and in normal conditions HyPer4 requires multiple

recirculation steps). Finally, despite providing isolation among the deployed programs, HyPer4

does not provide CPU isolation, hence it does not guarantee that every action can be completed

within a CPU cycle. As potential consequence, programs can cause stalls in the pipeline and so

delay other programs’ execution.

Overall, HyPer4 does not provide a practical solution for the PDP virtualization problem,

since it introduces a performance loss which is undesirable for most deployments in production

networks. Anyway, it represented the first attempt to showcase the benefits of programmable data

plane virtualization and fostered other related works.

2.2.2 HyperVDP

Similarly to HyPer4, HyperVDP [7] emulates multiple P4 programs using a single P4 program

as operations and resources manager. HyperVDP improves upon the HyPer4 emulation technique

with regard to performance and efficiency. HyPerVDP addresses those issues by avoiding part of

the recirculation reducing the amount of resources, mainly MATs, used to emulate generic packet

processing on the PISA pipeline.

The first issue with HyPer4 tackled by HyperVDP is the use of recirculation for parsing. To

extract a sequence of header types, HyPer4 identifies the size and position of a header, extracts it

and then resubmits the packet to the ingress so that the process can be repeated for the following

headers. This recirculation of packets introduces a significant reduction of the overall device’s

throughput.To avoid recirculation, HyperVDP encapsulates each packet with a description header

(DH) that contains the size of the header and the ID of the program that will process it. In so

doing, HyperVDP can extract the entire headers stack and then parse it without recirculating the
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packet. This process, named “rapid parsing” in HyperVDP, trades an increase in performance for

the extra space required by encapsulation.

HyperVDP also optimizes the placement of the emulated programs at the stage level in the

pipeline. To achieve this goal, it develops a technique called “Control Flow Sequencing”, a process

that creates a DAG (Directed Acyclic Graph) of all the stages of a program as nodes and the

path between stages as branches. Graphs from multiple programs can then be mapped into slots,

similarly to how virtual memory is mapped to physical one. This mapping is done accordingly not

to create inner loops which would alter the correct flow of execution of the executed programs.

If, at the end of the mapping process, the number of stages exceeds the number of available slots,

HyperVDP uses the recirculation primitive to processes the rest of the graph.

Finally, HyperVDP reduces the number of tables used for such a purpose by performing ag-

gregation into compound actions. In contrast, HyPer4 uses a predefined number of tables for each

primitive, requiring more resources to scale up the number of supported primitive actions.

The optimizations in HyperVDP considerably improve performance and efficiency upon Hy-

Per4. The experiments reported with HyperVDP show, in the best case, an increase of 466.3%

in throughput, and on average a decrease of 26.5% in delay. However, when compared with run-

ning native P4 programs individually, HyperVDP shows an increase between 27 to 41% in delay

and a decrease between 34 to 70% in throughput, proving that the performance issues associated

with Emulation-Based approaches are still very present. In conclusion, the drawbacks of this

kind of virtualization solution make very hard any deployment in practice, especially since other

techniques (see Sec. 2.3) offer similar properties with largely better performance and efficiency.

2.3 Code Merging approach to PDP Virtualization

Figure 2.5: Illustration, from [8], of the P4Visor system for the virtualization of P4-PDPs through
Code Merging.

Often called lightweight virtualization, code merging solutions tackle the problem of running

multiple P4 programs on the same PDP target by merging them into one monolithic program at

compile-time. These solutions are less flexible than the Emulation-Based ones since they do not

support seamless reconfiguration. The reason is that deploying a new program on a PDP device
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implies replacing the current one, forcing a reboot of the target and a consequent downtime for

that change to occur. However, these solutions use significantly less resources and their overall

performance considerably improves. As for Emulation-Based approaches, these lightweight vir-

tualization platforms usually feature, besides a compiler responsible for merging the programs, a

management unit responsible for translating the original programs’ table entries into the merged

program’s table entries.

2.3.1 P4Visor

The P4Visor virtualization platform [8], illustrated in Fig. 2.5, consists of four main components:

PVI (P4Visor Interface), PVC (P4Visor Compiler), PVM (P4Visor Management agent) and PVA

(P4Visor controller Application). The PVI is the tool used by the developer to manage how the

different P4 programs will interact. Given the programs and specifications inserted in PVI, the

PVC will generate a monolithic, merged P4 program and an additional “P4VisorConfiguration”

file. This file contains the mapping between original and virtual IDs that distinguish the resources

used by each program. This is necessary because table IDs are unique for each program, but when

the programs are merged, some IDs may be reused. This mapping between old and new IDs allows

the administrators to correctly insert the run-time configuration into the PDP, for example, adding

an entry to a program’s table. This task is performed by the PVM, an agent that runs on the PDP

device, and uses the IDs mappings to multiplex and demultiplex messages between the control

plane and the PDP.

To merge the parse graphs of two P4 programs (the maximum supported), P4Visor analyses

the DAGs of each program and merges them. This is performed by introducing a specific flag,

resulting in a shared node proceeding to nodes that exist only in the DAG of one of the programs.

The introduced flag defines whether or not a packet should be processed by a certain node in the

merged graph. The same logic is applied to share tables and actions between the two programs.

Besides merging only two programs, P4Visor does not deal with target dependency, that is, it

does not consider possible constraints placed on the merging process by the target’s architecture,

such as available number of pipeline stages and memory resources. Besides this issue, P4Visor

does not support seamless reconfiguration and so, when a new program needs to be merged, or

simply an old one needs to be modified, the merged program must be entirely recreated, com-

piled and loaded onto the target. As we explained in previous sections, this operation implies a

downtime for the target.

2.3.2 P4Bricks

P4Bricks [9] differs from P4Visor an the remaining virtualization approaches by providing a differ-

ent form of multi-tenancy. More precisely, P4Bricks allows for independently-written P4 programs

to process the incoming traffic simultaneously, rather than deciding which functionality must pro-

cess each packet. P4Bricks consists of two main components, Linker and Runtime, responsible

respectively for merging the programs and updating the table entries. A high-level illustration of
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Figure 2.6: Illustration, from [9], of the P4Bricks system for the virtualization of P4-PDPs through
Code Merging.

the P4Bricks system is provided in Figure 2.6.

In the Linker, P4Bricks identifies equivalencies between the header types used in each pro-

gram, with the aim of merging the programs’ parsers. Each header type is given a unique ID and

then, for each program, the Linker maps the headers to those IDs and stores this mapping into a

table. Intrinsic metadata associated with each packet can also be shared across multiple programs

as it is related with the target’s architecture, but user-defined metadata, as it is specific to each

program, is given a different ID using the program’s name to guarantee isolation. To merge the

parsers, the Linker looks for equivalent parse states between programs. To be considered equiv-

alent, the parser states must satisfy three conditions: i) must extract from the same bit index in

the packet, ii) must advance the same number of bits and extract the equivalent header types (i.e.,

headers that have the same number of fields, with each field having the same width) and iii) if

both states have “select” expressions, the lookup fields must be equivalent (the select operation

allows for conditional branching to different states, and so the fields must be the same to ensure

that equivalence is maintained). For example, relatively to point iii), two states from different in-

put programs, both extracting an Ethernet header, will not be equivalent if one of them selects on

the etherType of the header, while the other selects on the destination address. Deparsers, unlike

parsers, are not represented with DAGs in the P4 language. For this reason, P4Bricks merges de-

parsers by using the parsers of the programs and creating from those DAGs that can be merged. As

a result, P4Bricks can only merge programs that use the same networking protocol stack to parse

and deparse. This approach has the drawback that cannot merge correctly programs performing

packet encapsulations, since those new layers cannot be inferred by the initial parser.

As explained in Section 2.1, each program has its own pipeline, that is, its sequence of MATs.

This sequence is represented by another DAG, named Control Flow Graph (CFG), where each

node is a MAT and the edges are transitions between the different MATs. The P4Bricks Linker

analyzes, for each match and action of a program, the order of accesses to resources and the

operations performed on them (read/write), and proceeds to create an Operation Schedule Graph
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(OSG). An OSG is therefore a graph that represents all the accesses made to a certain resource

during the execution of the program. Once each program’s CFGs and OSGs have been computed,

the Linker merges all CFGs into one new CFG and one OSG for each resource, and then maps

them to the physical memory capacity in the stages, while respecting the operation orders. Two

techniques are used to facilitate the mapping of these graphs: decomposing merged MATs into

sub-MATs and allowing out-of-order writes in the OSGs. Sub-MATs are necessary because there

may not be enough hardware capacity to execute all the operations present in a stage, and so the

Linker divides the operations so that they can occur in the subsequent stage, while maintaining

referential integrity between them. Out-of-order writes are implemented to prevent reads to a

certain resource from happening after a write that the original OSG does not contain.

Once the merged program is deployed, the Runtime component is responsible for translating

the table updates from the control plane of the original programs into entries for the tables of the

merged program. Special attention is devoted to sub-MATs , since an update to a MAT must reflect

to the related sub-MATs as well.

In theory, P4Bricks allows for two modes of composition, sequential and parallel, that the

other solutions cannot provide. To perform sequential composition (that is, a packet processed by

a sequence of programs), P4Bricks merges and maps the CFGs and OSGs to the same pipeline,

avoiding the performance drop of recirculation. P4Bricks supports parallel composition by impos-

ing hard locks onto the target’s resources.

Unlike P4Visor, P4Bricks [9] is not available open-source and does not provide experimental

results1. Anyway, it provides valuable insights to address this problem.

2.4 Analysis of the state-of-the-art PDP Virtualization Solutions

To better illustrate the main differences between the state-of-the-art approaches, we present a

summary in Table 2.1, alongside a detailed description of each feature presented.

2.4.1 Number of Programs Supported

This metric represents the number of P4 programs that can be deployed simultaneously on a de-

vice using each virtualization solution. For the purpose of compiling this table, the data here

reported came from the original experiments performed in those works. There is not, in any of

these approaches, a theoretical upper bound on the number of programs that can be deployed si-

multaneously. Yet, when “hardware limited” is indicated, both hardware capabilities and program

complexity are important factors defining a practical upper limit.

2.4.2 Seamless Reconfiguration

This category refers to the ability that administrators have to add or remove programs from the data

plane without disrupting the “normal” functioning of the PDP target. In the “Emulation-Based”
1P4bricks was presented as a technical report and was not peer-reviewed. After contacting the authors we understood

the project was put on hold for undetermined time.
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HyPer4 HyperVDP P4Visor P4Bricks

Type Emulation
Based

Emulation
Based

Code Merging Code Merging

#Programs
Supported

Hardware limited
(examples with 8)

Hardware limited
(examples with 5)

2
Hardware limited
(examples with 2)

Seamless
reconfig. Yes Yes No No

P4 Version P414 P414 P414 P416
Parallel
Processing No No No Partially

Sequential
Processing Via Recirculation Via Recirculation Via Recirculation Yes

Shared
Tables Yes Yes Yes No

Delay Increase
(vs P4) 70 to 90% 27 to 41%

<1%
<3%

Not Available

Throughput
Drop (vs P4) 80 to 90% 34 to 70%

<1%
<1.5%

Not available

Table 2.1: Comparison of the virtualization systems in terms of selected features and offered
performance. The values for delay and throughput are taken from [8] and [7].

approaches, programs can be removed or added without causing any downtime to the other running

programs, the only exception being the emulator program. The “Code Merging” approaches, on

the other hand, require the programs to be merged and compiled before deployment. Therefore,

the addition or removal of any program requires modifying the deployed merged program and

loading a new one, forcing a reboot of the device.

2.4.3 P4 Version

This category indicates the version of the P4 language supported by each virtualization solution.

As P416 is a relatively new version, most approaches were designed and implemented to support

the earlier P414 language version. Among the four approaches, only P4Bricks supports P416

programs.

2.4.4 Parallel and Sequential Processing

Parallel processing refers to the ability to have multiple programs processing a packet simulta-

neously through the same pipeline stages. The Emulation-Based solutions do not allow this, as

each emulated program executes in isolation from the others. Differently, with the code merging

solutions different operation modes can be specified. In P4Bricks, parallel processing is allowed

as long as access to shared resources is restricted (if the traffic flows are disjoint, meaning there are

no shared resources, no such restriction is required). For example, multiple programs are merged

if only one of these programs writes to a certain resource, and every read performed by other pro-

grams on this same resource happens before that write. For this reason, we consider that P4Bricks

only partially allows this mode of operation.
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With regards to sequential processing, all the solutions analyzed by our work provide this fea-

ture. Sequential processing refers to the ability to state an order of execution for the programs,

which will be applied on a packet basis. The way this is achieved in the Emulation-Based so-

lutions and in P4Visor is by using recirculation. Recirculation is a commonly available device

primitive allowing for packets to be processed multiple times across the same processing pipeline.

This primitive is very useful to apply a different program at each recirculation, but it decreases

the overall throughput. P4Bricks enables this operation mode by merging the operation graphs of

different programs, forcing a sequence to be followed by linking the end of a program to the be-

ginning of another. If the hardware supports the number of physical stages required by the merged

graph, multiple programs can, in the end, be executed in the same pipeline without recirculation

being used.

2.4.5 Shared Tables

Different programs may have equivalent tables, so instead of separately allocating resources for

each program, the equivalent tables can be shared. This process eliminates redundancy and opti-

mizes tables usage. With the Emulation-Based solutions, this optimization is achieved by design,

as emulated programs are restricted to using the tables instantiated by the emulator. In the Code

Merging solutions, tables are shared when an equivalence is established during the merging pro-

cess. From the two Code Merging techniques presented, only P4Visor performs this optimization.

2.4.6 Delay and Throughput

These two metrics refer to the performance loss introduced by each virtualization solution when

compared to running P4 programs natively. The evaluation methodology varied across the ana-

lyzed systems. In HyperVDP and HyPer4 the tests consisted in deploying simultaneously different

programs (several combinations of different types and number of programs per test) and then com-

paring the results with the same overall packet processing logic combined into a single native P4

program. For P4Visor, two random programs are picked to be merged and then the performance of

a program in the merged context is compared with the performance of the same program written

in a single P4 program.

The results show that, with regards to delay, the Emulation-Based approaches are at best 27% and

at worst 90% slower, while throughput results show a 34 to 90% drop in relation to native P4 pro-

grams. The cost is therefore very high. P4Visor introduces a smaller overhead, ranging from 1.5

to 3% in software switches and an overall 1% drop in hardware. There is no evaluation reported

in the P4Bricks work.

2.5 Summary

In this chapter, we provided a brief introduction to the P4 language and to the target architecture

used in programmable switches in Section 2.1. Then, in Sections 2.2 and 2.3, we overviewed the
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two main approaches to data plane virtualization, followed by a summary of the most relevant

works in this area. Finally, in Section 2.4 we provided a detailed comparison between the state-

of-art PDP virtualization solutions.



Chapter 3

Design

In this chapter, we present the design of our system to run multiple programs on the same P4

programmable data plane. In particular, we illustrate and explain the design choices that we made

in order to correctly merge parse graphs from multiple P4 input programs.

Our design introduces a custom header, used to track which portion of the merged parse graph

must process packets belonging to each program, thus allowing a potentially unrestricted number

of input P4 programs to be deployed concurrently. Furthermore, our design achieves an efficient

parse graph merge by facilitating resource sharing, while performing minor modifications to the

input programs in order to guarantee correctness and isolation. Although our work considers

the P414 language specification (as that is the language version supported by the state-of-the-

art system we targeted to improve upon), all design choices described in this thesis are easily

applicable to the newer P416 version of the P4 language.

This chapter is organized as follows. Firstly, in Section 3.1, we enumerate the requirements

of our solution. Secondly, in Section 3.2, we dissect some design choices made by the state-of-

the-art P4Visor [8] system, to highlight the limitations of that solution that motivate our work. In

Section 3.3, we present a high-level description of our system. In Section 3.4, we define P4 header

equivalence, a core concept that our algorithm leverages in the merge process. In Section 3.5, we

specify the criteria that must be met for two parse states to be shared, followed by a description of

a mechanism for state transitions to be correctly merged. Finally, in Section 3.6, we describe how

our algorithm detects and removes duplicate transitions from shared states in order to optimize the

resources used in the merged program.

3.1 Requirements

In the process of designing our virtualization solution, we first established a series of requirements

that must be met by our platform.

• Our solution must allow for an unrestricted1 number of independently-written P4 programs

to be integrated into the final merged program.

1By unrestricted we mean that any restrictions that limit the number of merged programs arises not from our design,
but from constraints of the underlying hardware (e.g., memory) or the network (e.g., header space).

17
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• Our solution must ensure the programs are functionally equivalent and fully isolated from

each other, effectively behaving as if they were deployed standalone in the target switch.

• Our solution must optimize resource usage, as hardware switches have scarce amounts of

resources available. The necessity for this optimization becomes more evident as the number

of virtualized programs increases.

• Our solution must introduce a minimum amount of platform-specific resources (that is, not

present in the input programs) in the merged program. This requirement is specially im-

portant for preventing performance losses relatively to natively-deployed P4 programs, as

occurring with emulation-based virtualization approaches.

3.2 Limitations of the State of the Art

To be able to fulfill one of our main requirements - efficiency - we have decided not to resort to

emulation-based approaches, as they require an excessive amount of resources to operate [6][7].

Our solution thus opts for a code merging approach for virtualization of the switch data plane.

Our work is motivated by some limitations of the state-of-the-art code-merging solution P4Visor

[8]. After performing an in-depth analysis of this system, including the published paper [8] and

the available code base [12], we identified issues that demonstrate P4Visor does not guarantee a

correct and resource-efficient merging of P4 programs in some cases. In addition, P4Visor is only

able to merge two programs. In this section, we present in more detail some of those limitations.

3.2.1 Incorrect Merge of Header and Metadata Structures

When merging different P4 programs, the headers and metadata structures present in each indi-

vidual input program must be carefully merged to ensure their correct and unambiguous repre-

sentation in the merged program. By analysing P4Visor’s code, we can observe that the merge of

these program elements is achieved by updating the merged program’s intermediate representa-

tion (HLIR) with the headers from the input programs. More precisely, P4Visor first generates the

HLIR of two input programs (this system only works with two input programs) and only afterward

it merges the contents of both objects into a third HLIR object.

In the HLIR object, headers and metadata are stored in a dictionary, with the name of the

header used as a key and the corresponding header object stored as the value. By updating the

merged HLIR’s header dictionary with the input programs, P4Visor adds every header with a

unique name to the merged program, and replaces pre-existing headers in case the names are equal.

In practical terms, this means that P4Visor establishes equivalence between headers based on their

names in the original programs, which are usually arbitrarily given by developers. Therefore, if

two headers have the same name, they are shared. Otherwise, if their names are different, the

headers are not considered equivalent and so they are not shared.

The above design choice raises the following issues. Firstly, headers and metadata that have

different structure organizations (i.e., different fields and different field widths) will be shared
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across programs if they have the same name. More precisely, the last header definition to be

merged will be the one included into the final HLIR object (as each update replaces any existing

header with the same name). For example, an IPv4 header definition may contain a three-bit

field, representing the three IPv4 flags, whose values are either one or zero. Alternatively, another

program may contain a different format for the extraction of the same fields. The merged program

produced by P4Visor will contain only one of these two definitions, with the other one being

deleted. This means that only one of the input programs will be able to correctly reference the

IPv4 flags, while the other program will reference a field that no longer exists in the merged

program, resulting in an error. This indicates that under these circumstances, the merged program

produced by P4Visor will not be correct.

Similarly, because P4 programs are usually [13] written by developers, there are no guarantees

that identical structures will be given the same name across different programs. For example, a

developer could define an Ethernet header, naming it ethernet, while, in a different P4 program,

the same developer could assign to the same header structure (i.e., the same number of fields and

the same width for each field) a different name (e.g., ether). In P4Visor, these two structures

will not be considered equivalent just because of the different names and, as a consequence, will

not be shared. It must be said that this last case does not affect correctness in the merged program,

as the two input programs will use the different headers accordingly, rather it increases the total

amount of resources used.

3.2.2 Naive Merge of Parse States

P4Visor’s mechanism to merge parse graphs consists in sharing states that extract equivalent head-

ers, using a custom parse state and custom header to “disambiguate and break conflicts in the

merged parse graph” [8]. P4Visor determines the right program to process an incoming packet by

verifying whether the packet has been encapsulated with the custom header or not. This can be

better explained through the example in [8] reported in Figure 3.1, where the parse graphs of two

programs (a) and (b) and the parse graph of the respective merged program generated by P4Visor

(c) are illustrated.

Figure 3.1: Example of a parse graph merge taken from [8]. In this example, a custom state,
named TFlag is introduced to separate the states that are unique to each program, and equivalent
states (i.e., Ethernet and IPv4) are shared.
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In this example, an encapsulation mechanism is used to guarantee that, once merged, pro-

gram (b) cannot transition to the VLAN state, and program (a) cannot transition to IPv6 through

the shared ethernet state. Specifically, P4Visor encapsulates packets meant to be processed

by program (b), replacing the original ethernet types (e.g., 0x800, 0x8100) for their custom

etherType value, 0xfff. The ethernet state in the merged parser transitions to a custom parse

state, named TFlag, when selecting on this custom etherType. The TFlag state then extracts

the custom header containing the original ethernet type of the packet (this field is copied from the

original ethernet header), and it transitions only to states present in program (b)’s parse graph (i.e.,

IPv4 and IPv6).

The above mechanism in P4Visor is not sufficient to guarantee the isolation of the input pro-

grams in the merged graph. This problem can be illustrated with the same example of Figure 3.1.

Based on the way the parser is defined, the Production Program (a) may drop or process an incom-

ing packet with the following protocol stack Ethernet/IPv4/UDP (e.g., it is not uncommon to

process a packet that does not have the expected protocol stack). However, the Merged parser (c)

now contains a conditional transition to UDP. Thus, a similar packet being received by the merged

program would lead to a transition from the shared IPv4 state to UDP, since no custom header

is expected to be encapsulated for packets belonging to the Production program. This means that

an input program would reach a state it would not have reached in its original parse graph, which

would represent a violation of the isolation property that the merging algorithm is expected to

guarantee.

Indeed, the implementation of P4Visor in [12] does not reflect the description of the mecha-

nism to merge parse graphs described above. Equivalent parser states and headers are not shared.

Rather, the states from one of the programs are only renamed (to prevent replacing the other pro-

gram’s states with equal names) by adding the shadow prefix, and are then added to the merged

program. This merge behavior is illustrated through the parse graph of the merged program ob-

tained by P4Visor merging two identical programs in Figure 3.2. In the merged graph, the parse

graphs of the two different programs are connected by the shadow parse ethernet parsing

state (P4Visor requires all input programs to contain a parse ethernet state) and the custom

parse state is added to parse the custom header and disambiguate the programs. While this guar-

antees isolation, this solution is very inefficient, being effectively equivalent to the naive merge

we present in Section 3.3.

3.2.3 Merging Multiple Programs

P4Visor was designed to provide a mechanism to test a new version of a P4 program. This is

achieved by merging two P4 programs, the production program and the test program, into a single

program, deploying it and comparing the output produced by processing the packets with each of

the merged programs, in order to detect if the new version is producing the expected output.

Although this solution presents an innovative platform for testing new versions of network

functionalities in large-scale networks, namely by facilitating the modular development of such
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Figure 3.2: Resulting parse graph from the merge of two identical programs (with the same pro-
tocol stack) using P4Visor. Highlighted in green, the shared first state, that either contains the
ethernet header belonging to the program highlighted in purple, or the custom header (highlighted
in orange), that leads to the other program’s graph, in yellow.

functionalities and by introducing a minimum resource-usage overhead, it restricts the number

of programs that can be merged and consequently deployed to two, very similar programs. This

restriction prevents this virtualization technique from achieving its potential as it (a) forces devel-

opers to write P4 programs that grow both in size and complexity as the number of functionalities

increases, since only two programs can be merged, and (b) it prevents the modular development

of a wide range of network functionalities, since each new functionality must be included in the

two input P4 programs.

In summary, the actual P4Visor’s merging mechanism produces merged parse graphs where

correctness of the input programs is not guaranteed. Furthermore, equivalent states between parse

graphs of the original programs are not shared. Hence, parser resources are not efficiently and cor-
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rectly shared with this mechanism. Finally, P4visor targets a testing environment and is therefore

not a generic virtualization solution as it only merges two similar programs.

3.3 System Overview

Our solution follows a Code Merging approach. A compiler receives multiple P4 programs (po-

tentially developed by different tenants) as input, and produces, as output, a unique compiled

representation of all the input programs which can potentially be deployed on a P4-programmable

target, as illustrated in Figure 3.3. The produced representation (hereinafter referred to as the

merged program) contains all of the necessary components to correctly apply the functionalities

implemented in each input program (functionally equivalent), while simultaneously guaranteeing

that those programs do not interfere with each other in the merged program (isolation).

Figure 3.3: High-Level representation of our system. In this example, three P4 input programs are
processed by our compiler and a merged program is produced.

In this work, we leverage an earlier version of the open-source P4 compiler, p4c [14], the one

used by the P4Visor system [8] we build our solution upon. In a front-end compilation pass, p4c

generates an HLIR of a P4 program. The HLIR is managed as a large Python object by the p4c

front-end compiler. This object can then be translated to different compiled formats by different

target-specific compiler back-ends. For example, our solution produces merged programs in JSON

format, which allows us to program the P4 reference software switch, bmv2 [15]. Working with

the HLIR allows our system to merge the programs without modifying the original source files and

to potentially produce an intermediate representation of a merged program which, fed to different

back-ends, can produce different target-specific compiled versions.

Our compiler generates the HLIR objects for every input program and creates the final merged

program by adding the elements from each program into a single HLIR object, which is finally

translated into a JSON file and deployed on bmv2 (for testing). To ensure that the original P4

programs are correctly represented in the merged program, and that the processing logic of each

individual program is not affected by other programs, the different components from each program

must be correctly integrated into that single HLIR with the dependencies between the different

programs’ objects being modified when necessary (e.g., an object that represents a parse state
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from a program has references to the states it reaches, and to the headers it extracts).

In addition to functional equivalence and isolation among the input programs, a code merging

solution should also aim at reducing the number of resources collectively used by the merged

programs. In practice, most P4 targets have strict restrictions on the amount of resources that can

be used by the deployed program. This is particularly important if we consider that virtualization

allows targets to run many different programs concurrently on the same programmable network

device. For this reason, our system includes optimizations to reduce the amount of resources

used by the merged program. At a high level, we achieve this goal by establishing equivalencies

between resources that belong to different programs, enabling its sharing without compromising

isolation, allowing for redundant components to be eliminated in the merged program. As a result,

our solution reduces the overall resource usage, enabling the deployment of more programs than

the alternatives.

In this work, we solely focus on the first stage of packet processing, namely packet parsing.

For the other components of the data plane we leverage the P4Visor system. In a parser written

in P4, received packets traverse a graph of user-defined parsing states. States are responsible

to parse the packet bitstream in specific structures, named headers. Transitions between states

represent conditional branching on protocol field values present in the packet (an example of a

parser in P4 can be seen in Figure 2.2). Since P4 requires the developers to define every aspect of

the packet processing behaviour, different programs commonly define different headers and parse

graphs. Additionally, the internal structure of the header definition for the same protocol, that is,

the number and width of its fields, may differ across different programs. For instance, a program

that uses the flags present in a TCP header may declare them individually, that is, one field per

flag, while another program that does not use them may declare a single field containing all of the

flags. The absence of any standard definition of the protocol headers in P4 makes the process of

finding and merging similarity across different programs challenging.

Figure 3.4: Naive parse graph merging process, introducing an additional state to combine multiple
input graphs.

Therefore, to represent multiple P4 programs into a single merged program, it is necessary

that the parse graphs from each input program are correctly incorporated in the merged program.
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A naive approach to achieve this is illustrated in Figure 3.4 (this is similar to the approach adopted

in P4Visor [8]). As it can be inferred from the figure, the parser graph of the merged program

would contain multiple separate states (i.e., Ethernet and IPv4), implementing equivalent func-

tionality. This choice is not optimal, since the presence of additional states and transitions require

additional resources to store the parser graph, and those resources are scarce on most targets [3].

To improve this naive merge approach, our key idea is to establish equivalences (precisely defined

later) between the headers and the related parser states across the input programs, with the goal

to reduce the overall resources used by removing redundant components in the merged graph. In

Figure 3.4 the two input parse graphs are entirely replicated in the merged program’s parse graph.

However, only the last states (TCP and UDP) are unique to each parse graph. Our compiler finds

those equivalences and merges the remaining equivalent states, thus reducing the overall resources

required to store the parse graph of the merged program, as can be seen in Figure 3.5. The chal-

lenge is to improve the efficiency of the merging process, while guaranteeing the correctness of

each input program and the isolation between programs.

Figure 3.5: Reducing the size of the parse graph in the merged program by sharing equivalent
states in the input programs. In a), we can see the result of naively merging the parse graphs,
while in b) we see an example of a merge performed by our system, with shared states.

3.4 Merging Headers and Metadata

In order to correctly merge multiple P4 programs into a single program, one must guarantee that

every header and metadata structure present in the input programs is properly represented in the

merged program. However, it is possible to reduce the total number of headers present in the

merged program by leveraging equivalences between header instances from the different input

programs. Towards that goal, we have defined the four following degrees of equivalence which

headers can exhibit between each other: Strong Equivalence, Simple Equivalence, Weak Equiva-

lence or No Equivalence. We use an example of header definition in Figure 3.6 to introduce the

terminology used to define the following header equivalences.
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Figure 3.6: Definitions used to describe the different components of a header declaration. The
Name represents the name given to this particular header. The Total Width represents the total
number of bits extracted into the structure. The Structure represents both the number of fields and
their individual widths. The Signature represents the names given to each field.

3.4.1 Header Equivalences

Header definitions for the same protocol in P4 may differ from each other in different ways. Since

even minor differences may turn crucial for the correct merge of the programs, with the aim to

guide the design of our merging algorithm, we have formally defined the differences between

headers and classified the following four different cases:

• Strong Equivalence:

– Two headers are considered strongly equivalent if and only if they have the same name,

total width, structure and signature.

• Simple Equivalence:

– Two headers are considered simply equivalent if and only if they have the same total

width and structure, but have different names or signatures.

• Weak Equivalence:

– Two headers are considered weakly equivalent if and only if they have the same total

width, but a different structure.

• No Equivalence:

– Two headers are considered non-equivalent if and only if they have different total

widths.

3.4.2 Equivalence Implications

Depending on the type of equivalence established between two headers, different processing steps

are required by our compiler to merge the parse states extracting those headers. In case a Strong

Equivalence is established, as fields in the two headers are defined in the exact same way, the
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headers can be shared by only including one of them in the merged program. In case a Simple

Equivalence is established, the headers can also be shared by only including one of them in the

merged program, but because their name and/or signature is different, some renaming is required

for one of the programs to match the header reported in the merged program. In case a Weak

Equivalence is established, the two headers can still be shared by only including one of them in

the merged program. However, because in this case the headers structure is also different the

necessary renaming turns to be more complex than for the Simple Equivalence case.

(a) (b)

Figure 3.7: Example of two Weakly Equivalent headers, with the differences in their structure
highlighted in red.

In summary, among the different types of equivalence described above, weak equivalence rep-

resents the one that requires the most careful treatment to perform a correct merge of the related

headers. To better illustrate that case, we compare the definitions of two weakly equivalent headers

side by side in Figure 3.7. The two header definitions hA (a) and hB (b) for the TCP protocol in

Figure 3.7 have a different structure. More precisely, hB replaces the six-bit ctrl field in hA,

which is meant to extract the TCP flags, by six individual one-bit fields. Although the structure

of these two headers is slightly different, it is still relatively clear that these two headers still rep-

resent the same protocol and could potentially be merged. However, the following considerations

must be taken for these headers to be merged. More specifically, the coarser-grained fields are

maintained and the finer-grained are properly translated. For example, as the ctrl field is more

coarser-grained in header hA, we kept hA on a single merged header. However, in the merged
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result, we must ensure that any reference to the hB fields in the original program is properly trans-

lated to the header definition included in the merged program. Hence, our compiler translates

any reference to those missing fields into the corresponding bits of the header hA included in the

merged program. Thus, for example, a reference to the ack field is replaced by a reference to the

second bit of the ctrl field.

3.4.3 Programs’ Metadata and P4Visor++ Custom Header

An analogous principle is also applied to the user-defined metadata structures potentially present

in the input programs, although those structures are merged separately from headers. Besides,

every P4 program contains Standard Intrinsic Metadata, a metadata structure associated with the

operation of the target, providing various information regarding the received packet, such as the

ingress port. Because those metadata are not user-defined, our solution ignores the multiple in-

stances present across the input programs, and considers only one instance of this metadata in the

merged program.

Additionally, the merged program also contains our custom header, which is used to infer the right

input program to process an incoming packet once the merged program is deployed. Our custom

header (called upvn) comprises a four-bit field (pvid) containing a unique ID assigned to the

original program. This header cannot be shared with any of the headers from the input programs.

The purpose and use of this header will be explained in the following section.

3.5 Merging Parse States

Parse states are meant to extract protocol headers in received packets. Each parse state can be

defined to extract one or more headers. Transitions to the next states in the graph are encoded by

matching values present in extracted header fields and/or metadata against specific values (e.g., an

IPv4 parse state will match the protocol field present in the IPv4 header, and transition to the

TCP state if that value is 6). Additionally, parse states can also modify packet metadata.

Our algorithm leverages equivalences between parse states in order to merge parse graphs from

different programs. In case such an equivalence is established, our algorithm shares the equivalent

states, applying the necessary modifications in order to preserve both isolation and correctness.

As first state of the merged parse graph, our algorithm includes a custom parse state, named

parse upvn. This state extracts our custom header containing the program ID in the pvid.

This state serves as the entry point for every program in our merged program. In fact, as programs

are added to the merged program, transitions are added to this state, pointing to the first state of

each program, whether that is shared or not. This mechanism was illustrated in Section 3.3, in

Figure 3.5.
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3.5.1 Equivalence Between Parse States

A parse state must meet certain criteria to be considered equivalent to another state, and thus

possibly being shared in our algorithm. Equivalent states must (i) extract equivalent headers (any

type of equivalence), (ii) not modify metadata possibly used by other programs (e.g., standard

intrinsic metadata exposed by a target architecture), and (iii) be in compatible topological levels.

The pseudo-code verifying these three criteria is summarized in Algorithm 1.

Algorithm 1 Determining if two parse states can be shared
1: Input
2: P1 Merged program
3: P2 Program being added
4: S2 Parse state from P2 being added
5: procedure SHARE STATE(P1, P2, S2)
6: H2← get extracted header(S2)
7: S1← get state extracts equivalent(P1, H2)
8: if !extracts same headers(S1, S2) then
9: P1.add(S2)

10: return
11: end if
12: if uses same metadata(P1, S2) then
13: P1.add(S2)
14: return
15: end if
16: if !compatible topo level(P1, P2, S1, S2) then
17: P1.add(S2)
18: return
19: end if
20: P1.current topo level = S1.topo level
21: P2.current topo level = S2.topo level
22: modify merged state(P1, S1, S2)
23: end procedure

As it can be seen in the pseudo-code, to assess whether a parse state S2 in program2 (P2) can

be shared, our algorithm first seeks a candidate parse state S1 in program1 (P1) by looking at the

first header that the former extracts, and looking for a state in the merged program that extracts an

equivalent header (lines 6 and 7). Then, the algorithm verifies whether the three conditions above

hold for the pair of states S1, S2. If any of these condition is not met, the state cannot be shared

and is therefore added to the merged program (lines 9, 13 and 17), and the algorithm continues

with the next state. The first test (line 8) verifies whether the states S2 and S1 extract equivalent

headers in the same order. The second test (line 12) verifies whether the state S2 modifies any

metadata which is used by any of the programs already added to the merged program. This check

is meant to avoid that different programs sharing this state will modify the same metadata with

different values risking to write unexpected values for some of the merged input programs. Finally,

the third test verifies whether the states S2 and S1 are in compatible topological levels (line 16).
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Maintaining a correct topological order between the programs is an important requirement in our

algorithm, because it prevents cycles from being created in the merged program. We explain this

property in further detail in the following section.

3.5.2 Topological Levels

In our merge algorithm, states in the parse graph of each program are assigned a topological level.

This level represents the position of a state relatively to the other states in the same parse graph,

providing information about the correct order in which headers must be extracted. A state will be

always assigned a level greater than the states preceding it, and lower than the states succeeding

it. Each state is assigned a level corresponding to the longest possible path on the parse graph to

it. As shown in Figure 3.8, state IPv4 is reached directly from Eth, but it is not assigned the

Figure 3.8: Example of the topological level attribution in a parse graph.

level 2 (which would be Ethernet state’s level plus one), since it is also reached through the VLAN

state. In the case of TCP and UDP, both states are in the same level, as they are reached only by the

IPv4 state. Before starting to add the states to the merged program, our algorithm sorts the states

by their topological level, forcing them to be added in the same order in which they are extracted

in their original graphs.

This mechanism is introduced to help detect states that are considered equivalent but do not

represent the same network protocol layer, and prevent those from being shared. This mechanism

is based on the assumption that standardized protocols are extracted in the same order across

different programs. For example, IPv4 headers are expected to be extracted after the Ethernet

header, while VLAN headers are expected to be extracted after the Ethernet header and before the

IPv4 header across all input parse graphs. Using this logic, any header extracted, for example,

after the IPv4 header in an input program, expects to find an equivalent instance in any other input

program where such header is not extracted before IPv4. Any case where this does not occur

indicates that these headers, although equivalent, may not represent the same network layer, and

sharing them can result in a loss of efficiency of our merging process (e.g., transitions within a

shared state are less likely to be equivalent across the programs if the headers extracted do not

represent the same networking layer).
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Figure 3.9: Example of a parse graph (b) being added to the merged program (a). In case (c), the
merge is topologically correct, while in (d) it is incorrect, as a cycle is introduced.

The concept of topological levels is illustrated through the merge examples in Figure 3.9. In

the example, states with the same name (in the figure) from both programs are candidate states

to be shared (i.e., Eth1 is a candidate for merging with Eth2, IPv41 with IPv42 and Custom1

with Custom2). Before our algorithm starts checking for equivalences between states, each state

(from both graphs) is assigned a topological level (this is represented, in the figure, by the number

visualized at the left side of each state). When our algorithm attempts to add the first state from

parser (b), the procedure previously described in Algorithm 1 is followed. In this case, Eth2
is equivalent to Eth1 and so these states are shared, with both programs updating their current

topological level (lines 20 and 21). The program’s current topological level represents the level

of the last state to be added for each program, so both programs will be at level 1 after sharing

states Eth1 and Eth2. At the next iteration, the algorithm attempts to add IPv42, identifying state

IPv41 as a candidate to be shared. This time, the topological level of the states is different (3 for

the merged program, and 2 for the program being added). However, the merge still occurs, as our

algorithm only enforces that the levels of each state are greater or equal than the last state that

was shared. After the merge of the states {IPv41, IPv42}, each program takes the level of the

last shared state as their current level, and so program (a) moves to level 3, while (b) moves to

level 2. Finally, when attempting to share state Custom2 with state Custom1, this condition does

not hold since the topological level of program (a) is greater than the level of its state (program

(a) is at level 3, while Custom1 is at level 2). For this reason, our algorithm decides that states

Custom2 and Custom1 cannot be shared, and Custom2 is added to the merged program. This

prevents the outcome seen in (d), by placing both Custom1 and Custom2 in their topologically

correct positions, that is, Custom1 before the shared IPv4 state, and Custom2 after the shared IPv4

state. The resulting graph is the one reported in (c).

If, however, the order of the input programs is swapped, that is, the parser from (b) is added

to (a), a different merged graph is produced, as shown in Figure 3.10. In this case, the states
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Custom1 and Custom2 are shared, since, this time, the program being added contains its Custom

state at a lower topological level than the IPv4 state. This example highlights the fact that, under

certain circumstances, changing the order in which programs are added produces different resource

sharing results with our algorithm. As a consequence, we have included some pre-processing

stages in our algorithm with the aim to explore multiple permutations of the sequence of the input

programs to obtain better optimization results.

Figure 3.10: Result of merging the programs in a different order.

Additionally, a different problem can occur when merging graphs that contain multiple states

at the same topological level. When merging the graphs, the states are sorted based on their

topological levels, and added from lowest to highest level. However, when multiple states are

at the same level, an extra processing step is required to decide the order in which they must be

added. The necessity for this mechanism is made clearer with the example illustrated in Figure

3.11.

In this figure we assume that Added Program is being added to Base Program, and that states

named with the same letter are equivalent. In this scenario, at the topological level 3, we could

merge state B from Added Program with B from Base Program. Once two states are shared, the

program’s current topological level is modified, identifying the topological level of the last shared

state. In this case, Added Program would be at level 3 and the Base Program would be at level

2. Then, state C from Added Program would be shared with state C from Base Program, and the

topological level would remain at 3 for Added Program, but move to 3 for Base Program. This

would prevent the E states from being subsequently shared, since in the Base Program, this state

has level 2, and according to our algorithm, a state cannot be shared if its level is inferior to the

current program’s topological level. However, if the C states are shared only after states B and

E have been shared, then all of the equivalent states can be shared. To prevent the first condition

from happening, we sort states at the same topological level in the Added Program program based

on the topological level of the equivalent states in the Base Program. Intuitively, we give priority
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Figure 3.11: Example of two parse graphs where the order in which states at the same topological
level are added impacts the merged parse graph.

to states that are equivalent to states that are at a lower topological level. This guarantees that the

problem described above does not occur, since we force our sharing mechanism to move the Base

Program’s current topological level from lower to greater, while maintaining the same level in the

Added Program.

3.5.3 Sharing Equivalent States

Once an equivalence between two states has been established, those states can be shared. Our

algorithm allows for states that select on distinct matching fields and transition to different states

to be shared. This is achieved by modifying accordingly the select statement and the transitions

present in the merged program’s related state. These changes are performed, however, preserving

isolation and correctness.

In order to guarantee these two properties, our algorithm must ensure that the possible paths of

any input program’s parse graph are maintained after the merge occurs (correctness) and that each

program only traverses states in the merged graph which are equivalent to the ones in its original

parse graph (isolation). For this purpose, our algorithm modifies states in the merged program to

additionally select on the program ID field, pvid, of our custom header. The P4 language allows

for multiple fields to be selected on, and so our algorithm adds the pvid field to the fields already

present in the select statements of the merged program, only where necessary, to disambiguate the

merged programs.

Equivalent states that select on different fields can be shared too, by selecting on the union of

respective fields (e.g., state A selects on field a, state B selects on field b. The merged state AB

will select on a + b). This technique allows our algorithm to increase the total number of shared

resources in the merged program, but it requires ignoring fields in select entries for states which

originally did not select on those fields.
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Figure 3.12: Example of two equivalent states with different select statements being shared

To rewrite accordingly the entries in the select statements of the merged program, we leverage

the P4’s masking operation to specify which bits are relevant for each select entry. Consider

the two programs, A and B, in Figure 3.12, both containing an IPv4 parse state. In program A,

that state selects on IPv4’s field protocol, and transitions to the TCP parse state for a protocol

value of 0x06. In B, the equivalent state selects on two IPv4 fields instead, ttl and protocol,

transitioning to the TCP state in case the combined values are 0x0106 (with a ttl value of 1 and

a protocol value of 6). When these two IPv4 states are shared, the resulting select statement

will be in the format select(ttl,protocol) (the program ID is not included for sake of

clarity in this example). For program B, the transition that must be present in the merged program

is the same as the original one specified in program B, as the select statement is the same. However,

for program’s A transition to TCP the IPv4 ttl field must be masked.

Algorithm 2 Adding different select fields to the state in the merged program
1: Input
2: S1 State from the merged program
3: S2 State from P2 being added
4: procedure ADD DIFFERENT SELECT FIELDS(S1, S2)
5: new fields← get new fields(S1, S2)
6: S1.select statement.append(new fields)
7: for (key,mask), next state in S1.transitions do
8: for field in new fields do
9: key = key + ”0” ∗ field.width

10: mask = mask + ”0” ∗ field.width
11: end for
12: end for
13: end procedure

For example, when selecting on two 4-bit long fields, masking the select entry with 11110000

will result in the state only looking at the first four ’1’ bits of the given value (while bits set to 0

are ignored). Following the example, program A’s transition in the merged program would look

like this : 0x0006 mask 0x00ff : tcp state (both ttl and protocol have 8 bits).
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Algorithm 3 Modifying the transitions of the state being added
1: Input
2: S1 State from the merged program
3: S2 State from P2 being added
4: procedure MODIFY ADDED STATE(S1, S2)
5: map f ← Dict()
6: index← 0
7: for f2 in S2.select statement do
8: map f [f2] = index
9: index = index+ f2.width

10: end for
11: for (key,mask), next state in S2.transitions do
12: new key = ””
13: new mask = ””
14: for f1 in S1.select statement do
15: if f1 in S2.select statement then
16: index = map f [f1]
17: new key+ = key[index : index+ f1.width]
18: new mask+ = ”1” ∗ f1.width
19: else
20: new key+ = ”0” ∗ f1.width
21: new mask+ = ”0” ∗ f1.width
22: end if
23: end for
24: end for
25: end procedure

In Algorithm 2, the process to introduce new fields to the shared state is illustrated. In line

5, we place in new fields every field from S2 that does not exist in S1. These fields are then

appended to the end of the select statement (line 6), and each transition is modified to ignore the

newly added fields, by adding a number of zeros equal to the number of added bits to both the

matching value and the mask (lines 9 and 10), thus ignoring the fields.

Then, as illustrated in Algorithm 3, the transitions of the state being added are also modified

prior to being introduced in the shared state. In lines 8 and 9, the selected fields are mapped to

their exact position in the bits being selected. This is required since the order in which fields are

selected in the shared state may not be the same as the order present in the state being added. To

modify the transitions in a way that they are prepared to be added to the shared state, the fields

selected in the shared state are traversed (line 14), and the transition is created by either retrieving

the bits relative to the equivalent field in S2, if such exists (lines 15 through 18), or by ignoring

the field, in case the field from the shared state does not exist in the state being added (lines 19

through 21).
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3.6 Optimizing Transitions in the Merged Graph

Once every input program has been added to the merged program, the resulting parse graph con-

tains every state present in the original parse graphs, with some of the equivalent states being

shared. However, every transition from the input programs is present in the merged parse graph,

as the introduction of the program ID duplicates transitions that were equivalent among original

programs into unique entries. Indeed, some of these transitions can also be merged and, as a result,

the total number of transitions in the parse graph of the merged program reduced.

Towards that goal, we must first identify the cases in which transitions are redundant and can

Figure 3.13: Example of the optimization algorithm reducing the number of transitions in a shared
state

therefore be merged, if and only if that does not violate the isolation of the merged programs. The

merge of these redundant transitions is possible only when every program sharing a state contains

the same transition value and the same following state. In this case, there is no need to leverage

the program ID to specify the programs which can perform a certain transition. This case is better

depicted through an example, in Figure 3.13, where a transition to the TCP state is removed. This

optimization can occur because both programs contain a transition to the TCP parse state (the TCP

state is shared in the merged program) and with the same value. Since only these two programs

share this state, a packet arriving at this state with a protocol value of 0x06 is always allowed

to transition to the TCP state, regardless of what program is expected to process the packet at the

moment. Hence, the two transitions can be represented by a single entry.

Differently, in the same example of Figure 3.13, the transition to the UDP state must check

the program’s ID to guarantee isolation. Program A must not transition to UDP upon receiving a

packet with a protocol value of 0x11, as that was not expressed in its original parse graph (a).

The optimization described above could not occur for any additional program sharing the IPv4

state but not containing a transition to TCP. To formalize the conditions enabling this optimization,

we consider a set of transitions within a state to be optimized into a single transition if and only if

all the following criteria are met:

• the number of transitions with the same transition value (ignoring the program IDs) is equal

to the number of programs sharing the state.

• the next state for each of those transitions is the same.
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The pseudo-code for this optimization is reported in Algorithm 4. As a first step, we find the

number of programs that are sharing a state by counting the number of unique program IDs present

in the transitions. We also create a copy of the transitions (transitions copy), and delete

redundant transitions if they exist. This copy will, at the end of the process, replace the original

transition dictionary. Additionally, we verify if every transition is present in each input program

(remove id), that is, if every transition can be optimized, and eliminate our custom select field

from the select statement, reducing the amount of memory used by the state.

Algorithm 4 Optimize transitions in shared states
1: Input
2: S1 State being optimized
3: procedure OPTIMIZE STATE(S1)
4: n← get programs sharing state(S1) . # of programs sharing the state
5: transitions copy ← S1.transitions
6: remove id← True
7: for transition in S1.transitions do
8: if transition in transitions copy then
9: similar transitions← get similar transitions(S1, transition)

10: if similar transitions.length() == n− 1 then
11: transitions copy.pop(similar transitions)
12: else remove id← False
13: end if
14: end if
15: end for
16: S1.transitions← transitions copy
17: if remove id then
18: S1.select statement.remove(pvid)
19: end if
20: end procedure

3.7 Summary

In this chapter, we presented the design of our solution to correctly and efficiently merge the

parse graphs of multiple P4 programs. Firstly, we enumerated the requirements of our solution, in

Section 3.1. Then, we presented a summary of the limitations of the state-of-the-art Code Merging

solution (P4Visor), in Section 3.2, followed by a high-level description of our system, in Section

3.3. Then, we specified the criteria used to establish equivalence between headers and how they

are added to the merged program, in Section 3.4. Afterwards, we described how the merging of

parse states is achieved, by specifying how states are shared and added to the merged program, in

Section 3.5. To finalize, in Section 3.6, we presented an optimization that allows our algorithm to

reduce the total number of transitions in the merged parse graph.
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Implementation

In this chapter we describe the implementation of P4Visor++, detailing the main system’s com-

ponents developed during the course of our work. Our work leverages the P4Visor’s code base,

which is available as open-source software under Apache License on github. More in detail, we

have modified P4Visor’s code base to integrate several mechanisms, namely, to share headers, to

merge parse graphs and to work with a number of input programs greater than two.

In Section 4.1, we present our system’s structure, describing at a high level how the P4Visor

code base has been modified. In Section 4.2, we describe how our custom header and parse state

are declared and integrated into the merged program’s intermediate representation. In Section

4.3, we detail how equivalencies between headers and metadata structures are established, and in

Section 4.4 we explain how equivalencies between parse states are determined, and how they are

leveraged to merge those states. To conclude, in Section 4.5, we present how the total resource

usage of the computed merged program is further optimized by removing duplicate transitions in

the merged parse graph.

4.1 System Structure

To merge different input P4 programs, our system leverages the High-level Intermediate Repre-

sentation, or HLIR [16], of a P4 program. As illustrated in the previous chapter, the HLIR can be

obtained as a python object by the front-end pass of the P4 reference compiler [14]. This python

object stores the different elements of a P4 program across different dictionaries, as illustrated in

Listing 4.1.

The names of the elements in the program are used as keys to index the HLIR dictionaries

(e.g., the object that represents the parse ethernet state of a program can be retrieved with

the syntax hlir.p4 parse states[’parse ethernet’]). The objects stored in these

dictionaries, that are program elements, are also often linked with each other, as is the case with

parse state objects which, in turn, contain a dictionary called state.branch to listing all the

next states which can be reached from the current state.

The open-source P4 compiler p4c [14] contains a python script, named main .py, that

receives a P4 program as input and produces its HLIR, that is then used by a second script, gen -

37
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json.py, to generate the JSON file that can be installed on the bmv2 software switch target. This

process can be seen in Figure 4.1a.

Listing 4.1: Organization of the P4 program’s elements inside a HLIR python object.

1 s e l f . p r i m i t i v e s = [ ]
2 s e l f . p 4 o b j e c t s = [ ]
3 s e l f . p 4 p r i m i t i v e s = O r d e r e d D i c t ( )
4 s e l f . p 4 a c t i o n s = O r d e r e d D i c t ( )
5 s e l f . p 4 c o n t r o l f l o w s = O r d e r e d D i c t ( )
6 s e l f . p 4 h e a d e r s = O r d e r e d D i c t ( )
7 s e l f . p 4 h e a d e r i n s t a n c e s = O r d e r e d D i c t ( )
8 s e l f . p 4 f i e l d s = O r d e r e d D i c t ( )
9 s e l f . p 4 f i e l d l i s t s = O r d e r e d D i c t ( )

10 s e l f . p 4 f i e l d l i s t c a l c u l a t i o n s = O r d e r e d D i c t ( )
11 s e l f . p 4 p a r s e r e x c e p t i o n s = O r d e r e d D i c t ( )
12 s e l f . p 4 p a r s e v a l u e s e t s = O r d e r e d D i c t ( )
13 s e l f . p 4 p a r s e s t a t e s = O r d e r e d D i c t ( )
14 s e l f . p 4 c o u n t e r s = O r d e r e d D i c t ( )
15 s e l f . p 4 m e t e r s = O r d e r e d D i c t ( )
16 s e l f . p 4 r e g i s t e r s = O r d e r e d D i c t ( )
17 s e l f . p4 nodes = O r d e r e d D i c t ( )
18 s e l f . p 4 t a b l e s = O r d e r e d D i c t ( )
19 s e l f . p 4 a c t i o n p r o f i l e s = O r d e r e d D i c t ( )
20 s e l f . p 4 a c t i o n s e l e c t o r s = O r d e r e d D i c t ( )
21 s e l f . p 4 c o n d i t i o n a l n o d e s = O r d e r e d D i c t ( )

To merge multiple programs, P4Visor has modified p4c to receive two input P4 programs

(rather than just one), and to create the respective HLIR objects. At this stage, P4Visor also

generates the HLIR for an additional program used to introduce custom program elements in its

merge process. The three HLIR objects are subsequently passed to SP4 merge.py, a script

that performs the merge of the two input programs and outputs a merged HLIR. SP4 merge.py

creates an empty HLIR object, fills its dictionaries with the content of one of the input programs

and of the custom program. Once these elements have been integrated into the new HLIR object,

SP4 merge.py starts the real merge process by adding program elements from the HLIR of the

second input program. An illustration of this process is provided in Figure 4.1b.

SP4 merge.py consists of a series of functions that are sequentially executed, each one

responsible for merging different types of elements from two input programs into a single HLIR

object. Except for a few program elements, this process consists of updating the dictionaries of

the merged HLIR with the content of the second program’s dictionaries.

In the original P4Visor’s execution, two functions are executed to merge the headers and the

parsers from two input programs, namely merge header instances and merge parser -

states. The former function performs the merge of the headers from the three programs, that

is, the two input programs and the additional P4Visor-specific P4 program. It updates the headers

dictionary in the merged HLIR with the content present in the respective dictionaries from the

input programs, replacing existing elements with equal names. The latter function updates the
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(a) p4c [14] workflow.

(b) P4Visor’s workflow.

Figure 4.1: Comparison between p4c and P4Visor’s workflow. The main .py script initiates
the process by generating the HLIR objects of each input program. Then, p4c generates the JSON
file, while P4Visor introduces SP4 merge.py, a script that receives the HLIRs as input and
returns a merged HLIR as output. Only then, is gen json.py used to generate the deployable
program, in JSON format.
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parse states’ dictionary with the states in a similar manner. It first, however, renames the states

already added to the merged program, preventing states from being replaced, as it occurs with

headers. Once every state is present in the merged HLIR, the two programs parse graphs are

linked through their first state (which must always be parse ethernet), using for that purpose

an ad-hoc parse state from the custom P4 program provided as a third input to SP4 merge.py.

We have mostly re-worked the above-described functions of the P4Visor’s SP4 merge.py

script to implement our solution. In detail, we have included mechanisms to (a) detect equivalent

headers and parse states, (b) merge those components, sharing them when possible and (c) op-

timize the merged parse graph to further reduce resource usage. Additionally, we have modified

main.py to receive and merge more than two P4 programs as input, and we have modified the

custom P4Visor’s P4 program to include additional program elements. We have also modified the

HLIR object (main.py and p4 parser.py) to contain attributes that are useful in the merg-

ing process, such has topological levels for both the HLIR and its parse states, and equivalence

lists that are auxiliary to the header merging mechanism. These elements are further explained

throughout this chapter.

4.2 Custom Header and Parse State

In order to guarantee isolation, our solution introduces the extraction of a custom header through

an ad-hoc parse state in the merged program. Our custom header, named upvn, was designed to be

a small header (4 bits), containing only a program identifier to be leveraged in the processing of

packets by the merged program to differentiate among the several input programs. For the purpose

of our evaluation, we carry some additional information, namely the expected traversed path in the

parse graph, encoded as a bitmap within our custom header through a special field called p map.

The p map field is later compared with an analogous metadata field, set as the packet is parsed

by the merged program (this mechanism will be fully explained in the next chapter presenting the

evaluation of this work). The structure of this custom header is reported in Listing 4.2.

Listing 4.2: Header type definition for our custom header.

1 h e a d e r t y p e u p v n t {
2 f i e l d s {
3 pv id : 4 ;
4 p map : 1 6 ;
5 }
6 }

Each packet for our merged program must be prepended by our custom header, because the

program ID is the first information required by the parser in the merged program to correctly

steer the packet along the correct path in the merged parse graph. To achieve this goal, a state

responsible for extracting the custom header and consequently selecting on the pvid field has

been added. In Listing 4.3, we see how this state is introduced in the merged program’s graph.

h mg is a reference to the merged program, that at this stage only contains states from one of the
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input programs, and the custom parse state. Our custom state is placed between the start state,

an initial state present in all programs and the next state it transitions to, by replacing transitions

accordingly (line 6 and line 14). Afterward, we replace every transition to the input program’s first

table in the Ingress stage with an equivalent transition (line 17) to a custom table introduced by

us. This table replaces the Ingress stage of the input programs for a simple forwarding mechanism

used for testing purposes.

Listing 4.3: Introducing the custom parse state into the base program.
1 # g e t t h e f i r s t s t a t e a f t e r s t a r t
2 f i r s t s t a t e = h mg . p 4 p a r s e s t a t e s [ ’ s t a r t ’ ] . b r a n c h t o [ d e f a u l t ]
3
4 # t r a n s i t i o n from s t a r t t o cus tom s t a t e i n s t e a d
5 h mg . p 4 p a r s e s t a t e s [ ’ s t a r t ’ ] . b r a n c h t o . c l e a r ( )
6 h mg . p 4 p a r s e s t a t e s [ ’ s t a r t ’ ] . b r a n c h t o [ d e f a u l t ] =
7 h mg . p 4 p a r s e s t a t e s [ ’ p a r s e u p v n ’ ]
8
9 #add t r a n s i t i o n s t o upvn s t a t e , e . g . ,

10 # s e l e c t ( upvn . p v i d )
11 # d e f a u l t : p a r s e e t h e r n e t
12 tempDic t = O r d e r e d D i c t ( )
13 tempDic t [ d e f a u l t ] = f i r s t s t a t e
14 h mg . p 4 p a r s e s t a t e s [ ’ p a r s e u p v n ’ ] . b r a n c h t o = tempDic t
15
16 # change I n g r e s s p o i n t e r t o our cus tom I n g r e s s t a b l e
17 s e t p a r s e r d e f a u l t t a b l e S T C ( h mg . p 4 p a r s e s t a t e s , h mg )
18
19 #add p v i d t o t h e s e l e c t o f each s t a t e , a l s o m o d i f y i n g t r a n s i t i o n s
20 a d d s h a d o w f i e l d t o s t a t e s ( h mg )

It is worth noting that this code is only applied in case the start state transitions directly to

the first state (in most programs, this is a default transition to the ethernet parse state). If, however,

the start state contains a conditional transition, that is, the state selects on a portion of the header

before anything is extracted, using the field reference current(..) which allows the state to

match on bits from the packet without extracting them, a different mechanism must take place. In

this case, that select statement must also be present in our custom state, and each transition from

the remaining input programs must reflect this change, by also matching on the bits that are looked

at with current(..) and ignoring them using a mask.

In the case where every start transition is the same across the input programs (i.e., default

transition to a shared state), the custom state’s operation can be reduced to the extraction of the

custom header, as isolation is already guaranteed by the fact every program transitions to the

same state. Therefore, after the programs are merged and the transitions have been optimized, the

parse upvn state can be removed, with the custom header being extracted at the beginning of

that state (lines 15 to line 19 of Listing 4.4). This deletion results in the reduction of the number

of states and transitions by one.
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Listing 4.4: Removing the custom parse state from the merged program.
1 i f l e n ( h mg . p 4 p a r s e s t a t e s [ ’ p a r s e u p v n ’ ] . b r a n c h t o . i t e m s ( ) ) == 1 :
2 e x t r a c t = p 4 h l i r . h l i r . p 4 p a r s e r . p a r s e c a l l . e x t r a c t
3 d e f a u l t = p 4 h l i r . h l i r . p 4 p a r s e r . P4 DEFAULT
4
5 # g e t t h e f i r s t s t a t e a f t e r p a r s e u p v n
6 s t a t e = h mg . p 4 p a r s e s t a t e s [ ’ p a r s e u p v n ’ ] . b r a n c h t o [ d e f a u l t ]
7 s t a r t = h mg . p 4 p a r s e s t a t e s [ ’ s t a r t ’ ]
8
9 # r e c o n n e c t t h e s t a r t s t a t e w i t h t h e f i r s t s t a t e

10 s t a r t . b r a n c h t o [ d e f a u l t ] = s t a t e
11 s t a t e . p r ev . pop ( )
12 s t a t e . p r ev . add ( s t a r t )
13
14 # remove t h e p a r s e s t a t e from t h e graph
15 h mg . p 4 p a r s e s t a t e s . pop ( ’ p a r s e u p v n ’ )
16
17 # e x t r a c t t h e cus tom header a t t h e b e g i n n i n g o f t h e f i r s t s t a t e
18 v i r t u a l = h mg . p 4 h e a d e r i n s t a n c e s [ ’ upvn ’ ]
19 s t a t e . c a l l s e q u e n c e . i n s e r t ( 0 , ( e x t r a c t , v i r t u a l ) )

4.3 Merging Headers and Metadata

To merge the headers of multiple programs, we compare each header of the program being added

with the headers already present in the merged program. This comparison is performed in order

to determine whether, each time, an equivalent header already exists in the merged program. As

explained in Chapter 3, we have defined several types of equivalency between two headers, and

each type of equivalence requires different considerations to ensure correctness is guaranteed by

our merging process.

In order to determine what equivalence type exists between two headers, we apply the function

shown in Listing 4.5.

This function first verifies if the number of fields present in both headers is the same (line 4).

This verification is performed as a different number of fields automatically excludes the possibility

of the headers being Strongly or Simply equivalent, and so the comparisons performed to establish

those types of equivalence can be ignored. If the number of fields is the same, the function com-

pares the names of the headers, followed by a comparison of the widths and names of its fields

(lines 10 through 17). In case any of the comparisons fails, the variables declared in lines 2 and 3

are updated, changing their values to False, depending on whether the name (of either the header

or any of its fields) or field width is different. After the fields are compared, the function verifies

if all the fields have the same width, meaning the headers are either Strongly or Simply equivalent,

with the distinction being made by verifying if the names are also the same. In case the field

widths are not the same for each field, the function verifies if the total number of bits present in

both headers is the same, and in case it is, the headers are considered Weakly equivalent.

If, however, the total number of fields is different, the portion of the function from lines 28

to 37 is executed. In this case, the function verifies only the total number of bits extracted by the
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headers (lines 30 through 34), and establishes that the headers are Weakly equivalent in case the

verification is positive (line 37). If no equivalence is established between the two headers, the

function returns ’No Equivalence’ as the result (line 38).

Listing 4.5: Function used to determine the equivalence type between two headers.
1 def c h e c k e q u i v a l e n t h e a d e r s ( header ins tMG , h e a d e r i n s t R ) :
2 sameWid thF i e ld s = True
3 sameNameFields = True
4 i f l e n ( h e a d e r i n s t R . f i e l d s ) == l e n ( heade r in s tMG . f i e l d s ) :
5 i f heade r in s tMG . name != h e a d e r i n s t R . name :
6 sameNameFields = F a l s e
7 m g l e n g t h = 0
8 r l e n g t h = 0
9 f o r i in xrange ( l e n ( heade r in s tMG . f i e l d s ) ) :

10 m g l e n g t h += heade r in s tMG . f i e l d s [ i ] . w id th
11 r l e n g t h += h e a d e r i n s t R . f i e l d s [ i ] . w id th
12 i f heade r in s tMG . f i e l d s [ i ] . w id th !=
13 h e a d e r i n s t R . f i e l d s [ i ] . w id th :
14 sameWid thF ie ld s = F a l s e
15 i f heade r in s tMG . f i e l d s [ i ] . name !=
16 h e a d e r i n s t R . f i e l d s [ i ] . name :
17 sameNameFields = F a l s e
18
19 i f s ameWid thF i e ld s :
20 i f sameNameFields :
21 re turn ’ S t r o n g E q u i v a l e n c e ’
22 e l s e :
23 re turn ’ S imple E q u i v a l e n c e ’
24 e l i f m g l e n g t h == r l e n g t h :
25 re turn ’Weak E q u i v a l e n c e ’
26
27 e l s e :
28 m g l e n g t h = 0
29 r l e n g t h = 0
30 f o r i in xrange ( l e n ( heade r in s tMG . f i e l d s ) ) :
31 m g l e n g t h += heade r in s tMG . f i e l d s [ i ] . w id th
32
33 f o r i in xrange ( l e n ( h e a d e r i n s t R . f i e l d s ) ) :
34 r l e n g t h += h e a d e r i n s t R . f i e l d s [ i ] . w id th
35
36 i f m g l e n g t h == r l e n g t h :
37 re turn ’Weak E q u i v a l e n c e ’
38 re turn ’No E q u i v a l e n c e ’

Once the algorithm has established if there is or not an equivalent header in the merged pro-

gram HLIR, the header is either shared, in the former case, or added separately, in the latter case.

However, as mentioned previously, different equivalence types require different approaches when

merging the various elements from the input programs, and so it is necessary to keep track of what

type of equivalence was used to share a certain header, linking it with the header in the merged

program HLIR that now represents it.

For this purpose, we have introduced three new dictionaries to the HLIR object, as seen in

Listing 4.6. As the headers from the HLIR of the input program are being merged, they are placed

in one of these three new dictionaries, depending on the type of equivalency that is established, and

linked to the equivalent header in the merged HLIR (e.g., if header header added from hlir -



Chapter 4. Implementation 44

new is strongly equivalent to header header merged from hlir merged, our system maps

the equivalence by declaring hlir new.lStrongEq[header new] = header merged).

These dictionaries are then used, across the different merging modules, to quickly translate the

header from the program being added to the header in the merged program, that represents it.

Listing 4.6: Dictionaries added to the HLIR object, used to identify equivalent headers.
1 h l i r . l S t r o n g E q = O r d e r e d D i c t ( )
2 h l i r . lS impleEq = O r d e r e d D i c t ( )
3 h l i r . lWeakEq = O r d e r e d D i c t ( )

4.4 Merging Parse States

To merge the parse states of an input program, we first look for equivalent states in the merged

program HLIR. To do so, we look at the first header extracted by a state, and find the state in the

merged program that extracts the equivalent header. In cases where such equivalent header is not

found in the merged program, no equivalence can be established among the respective parse states

(if there is no equivalent header in the merged program, there is also no equivalent state). Then, we

verify if the remaining extracted headers (if any) also have equivalent headers being extracted in

the state from the merged program, and if they are extracted in the same order. Then, we verify if

the state operates on metadata that is used by other programs (we have modified the dumper.py

and p4 table.py scripts from p4c to keep track of the metadata that is used by the programs).

Finally, we verify if the states are in a compatible topological order.

4.4.1 Topological Order

As explained in the previous chapter, parse states are merged in topological order, from the lowest

to the highest topological level. We have introduced this notion of topological levels in parse

graphs, which is not present in the original HLIR object. Our mechanism assigns a topological

level to each state, by recursively traversing the parse graph as shown in Listing 4.7.

Listing 4.7: Recursive function used to assign topological levels to parse states.
1 def f i l l t o p o o r d e r ( h mg , h r ) :
2 # a t t r i b u t i n g t o p o l o g i c a l l e v e l s t o t h e merged program
3 r e c u r s i v e f i l l ( h mg . p 4 p a r s e s t a t e s [ ’ p a r s e u p v n ’ ] , 0 )
4
5 # a t t r i b u t i n g t o p o l o g i c a l l e v e l s t o t h e added program
6 r e c u r s i v e f i l l ( h r . p 4 p a r s e s t a t e s [ ’ s t a r t ’ ] , 0 )
7
8 # f u n c t i o n used t o g i v e each s t a t e a t o p o l o g i c a l l e v e l
9 def r e c u r s i v e f i l l ( c u r r s t a t e , l e v e l ) :

10 s t a t e s = [ ]
11 # g e t a l l s t a t e s r e a c h a b l e by t h i s s t a t e ( no d u p l i c a t e s )
12 # removing d u p l i c a t e s r e d u c e s t h e number o f i t e r a t i o n s
13 f o r key , s t a t e in c u r r s t a t e . b r a n c h t o . i t e m s ( ) :
14 i f s t a t e not in s t a t e s :
15 s t a t e s . append ( s t a t e )
16
17 # i f t h e l e v e l r e c e i v e d from t h e l a s t s t a t e i s g r e a t e r
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18 # than t h e one t h e s t a t e c u r r e n t l y has , we up da t e
19 i f l e v e l > c u r r s t a t e . t o p o l e v e l :
20 c u r r s t a t e . t o p o l e v e l = l e v e l
21
22 # f o r e v e r y r e a c h a b l e s t a t e , c a l l t h e f u n c t i o n w i t h
23 # t h e c u r r e n t s t a t e ’ s t o p o l o g i c a l l e v e l + 1
24 f o r s t a t e in s t a t e s :
25 # i f t h e n e x t node i s a t a b l e , t h e n we have reached I n g r e s s
26 i f not i s i n s t a n c e ( s t a t e , p 4 h l i r . h l i r . p 4 t a b l e ) :
27 r e c u r s i v e f i l l ( s t a t e , c u r r s t a t e . t o p o l e v e l + 1 )

This mechanism receives the two HLIRs being merged (line 1), and assigns as a level to a state

the length of the longest possible path in the graph to reach the state. This level is stored into the

class attribute topo level (line 20) of the state’s object.

Since our algorithm merges the states present in the added HLIR as they are in the parse

state dictionary, we must sort the states using the topological levels before the merge starts. The

function used to sort the states can be seen in Listing 4.8.

Listing 4.8: Function used to sort the states by their topological level.
1 # f u n c t i o n used t o s o r t h r s t a t e s by t o p o l o g i c a l l e v e l ,
2 # e n s u r i n g s t a t e s are added i n t h e c o r r e c t s e q u e n c e
3 def s o r t p a r s e r s t a t e s ( h r , h mg ) :
4 # d i c t t h a t c o n t a i n s t h e s t a t e s o f h r , o r g a n i z e d by topo . l e v e l
5 # e . g . , ( 0 , [ s t a r t ] ) , ( 1 , [ e t h e r n e t ] ) , ( 2 , [ i p v 4 ] ) , ( 3 , [ t cp , udp ] )
6 t o p o l e v e l d i c t = O r d e r e d D i c t ( )
7 f o r name , s t a t e in h r . p 4 p a r s e s t a t e s . i t e m s ( ) :
8 l e v e l = s t a t e . t o p o l e v e l
9 i f l e v e l not in t o p o l e v e l d i c t :

10 t o p o l e v e l d i c t [ l e v e l ]= [ s t a t e ]
11 e l s e :
12 t o p o l e v e l d i c t [ l e v e l ] . append ( s t a t e )
13
14 # s o r t e d d i c t c o n t a i n i n g a l l s t a t e s
15 newDict = O r d e r e d D i c t ( )
16 # f o r each t o p o l o g i c a l l e v e l o f t h e graph
17 f o r i in range ( l e n ( t o p o l e v e l d i c t ) ) :
18 # i f o n l y one s t a t e i n t h i s t opo l e v e l
19 i f l e n ( t o p o l e v e l d i c t [ i ] ) == 1 :
20 # s i m p l y append t o t h e d i c t
21 newDict [ t o p o l e v e l d i c t [ i ] [ 0 ] . name ] =
22 t o p o l e v e l d i c t [ i ] [ 0 ]
23
24 # i f m u l t i p l e s t a t e s are a t t h e same l e v e l , s o r t based on
25 # t h e topo l o v e l o f t h e e q u i v a l e n t s t a t e i n h mg
26 e l s e :
27 s o r t e d t o p o l e v e l =
28 s o r t s a m e t o p o l e v e l ( t o p o l e v e l d i c t [ i ] , h mg , h r )
29 f o r s t a t e in s o r t e d t o p o l e v e l :
30 newDict [ s t a t e . name ] = s t a t e
31
32 h r . p 4 p a r s e s t a t e s = newDict

As it can be seen in the listing above, the function sort parser states handles topological levels

that contain a single state and those that contain multiple states differently. In fact, an extra sorting

operation (line 27) is required to establish the order in which states in the same topological level

must be merged. The importance of this mechanism was explained in the previous chapter, in
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Section 3.5.2.

4.4.2 Sharing Parse States

Once an equivalence between two parse states is established, our system shares those states. The

sharing mechanism, described in Chapter 3, is the same for both Strongly and Simply equivalent

states. However, it changes when states are Weakly equivalent due to the fact that one of the

shared states may select on fields that no longer exist in the merged program, as Weakly equivalent

headers have a different structure.

Listing 4.9: Finding fields not present in the merged program
1 f o r f i e l d R in headerR . f i e l d s :
2 o f f s e t R = f i e l d R . o f f s e t
3 widthR = f i e l d R . wid th
4 found = F a l s e
5 f o r f ieldMG in headerMG . f i e l d s :
6 i f f ieldMG . o f f s e t == o f f s e t R and f ieldMG . wid th == widthR :
7 found = True
8 break
9 i f not found :

10 d i f f f i e l d s . append ( f i e l d R )

For the above reason, we track the fields that are not present in the merged program. This

step is illustrated in Listing 4.9, where headerR represents the extracted header that will not

be included in the merged program, whereas headerMG is the equivalent header already in the

merged program.

Listing 4.10: Verifying if any translation must occur at this stage
1 # i f t h e r e i s no s e l e c t s t a t e m e n t , s h a r e s t a t e n o r m a l l y
2 i f s t a t e R . b r a n c h o n == [ ] :
3 s h a r e s t a t e ( h r , h mg , s t a t e R , header nameMG , h meta ,
4 f i r s t m e r g e , v i r t u a l )
5 # i f t h e r e i s s e l e c t s t a t e m e n t :
6 e l s e :
7 same = True
8 # s e e i f each f i e l d used i s p r e s e n t i n merged header
9 f o r f i e l d in s t a t e R . b r a n c h o n :

10 i f f i e l d in d i f f f i e l d s :
11 same = F a l s e
12 # i f t h e r e i s a d i r e c t t r a n s l a t i o n from t h e s e f i e l d s t o t h e ones
13 # i n t h e merged header , normal s h a r e
14 i f same :
15 s h a r e s t a t e ( h r , h mg , s t a t e R , header nameMG ,
16 h meta , f i r s t m e r g e , v i r t u a l )
17
18 # edge case : must t r a n s l a t e from header R f i e l d s t o merged
19 # header f i e l d s t o s e l e c t c o r r e c t l y
20 e l s e :
21 f i e l d s t o a d d = g e t f i e l d s t o a d d ( s t a t e R , headerMG )
22 m o d i f y m g t r a n s i t i o n s ( state MG , f i e l d s t o a d d )
23 m o d i f y r t r a n s i t i o n s ( s t a t e R , state MG , headerR ,
24 f i r s t m e r g e , v i r t u a l )

Once a weak equivalence between two states has been established, three possible cases can

occur (the related code is reported in Listing 4.10 ): (1) the state being added does not select on
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Listing 4.11: Finding the set of equivalent fields to be added
1 def g e t f i e l d s t o a d d ( p a r s e r s t a t e R , headerMG ) :
2 f i e l d s t o a d d = [ ]
3 f o r f i e l d R in p a r s e r s t a t e R . b r a n c h o n :
4 f o r f ieldMG in headerMG . f i e l d s :
5 i f f ieldMG . o f f s e t > f i e l d R . o f f s e t +
6 f i e l d R . wid th −1
7 or f ieldMG . o f f s e t + fieldMG . wid th −1 <
8 f i e l d R . o f f s e t :
9 pass

10 e l s e :
11 f i e l d s t o a d d . append ( fieldMG )
12 re turn f i e l d s t o a d d

any field, and so the sharing can occur normally, using the standard state sharing mechanism (line

2), (2) the state selects on a set of fields that exist in the merged program, meaning it can also be

shared using the standard mechanism (line 14), or (3) the state selects on a field that does not exist

in the merged program, and translation is required (line 20).

For the last case, the fields selected on the state being added that no longer exist (because

the equivalent header in the merged program has a different structure) must be represented in the

shared state’s select statement, by including the intersection of fields from the equivalent header

that contain all the bits present in the missing field. The steps performed to determine the set of

fields that must be added are reported in Listing 4.11.

After the fields have been added to the shared state, and the pre-existing transitions modified

to ignore them, the transitions from the state being added are also modified, to conform to the

set of fields being selected on the shared state. More precisely, the transitions must be re-written

to consider the fields that are selected (and their order) in the shared state, ignoring the fields that

were not originally present in the added state. Once these modifications are applied, the transitions

can be placed in the shared state.

4.4.3 Backtracking transitions

In our system, parse states are integrated into the merged program one by one, by either being

shared or simply added. However, parse graphs are represented by multiple objects within a

program’s HLIR, with objects possibly linked to other objects. So, when merging a parse state into

a different HLIR, we must modify the original links in these objects accordingly to the structures

and objects already presented in the merged program.

To better depict this problem, we consider the scenario illustrated in Figure 4.2 as an exam-

ple: Two programs to be merged, here named as A and B, both containing two states, namely

{ethernetA, ipv4A} and {ethernetB, ipv4B}. We assume that equivalences exist be-

tween respective ethernet and IPv4 states of both programs, and that program A serves as the base

program (i.e., states from B are added to A). When state ethernetB is shared with ether-

netA, we copy its transitions to the merged state’s transition dictionary. However, one transition
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of the state ethernetB references the state ipv4B in B. If we included this transition in the

merged program and then subsequently shared IPv4 states, thus only keeping the ipv4A state in

the merged program, we would achieve an incorrect merged result with the ethernet state contain-

ing two transitions - one to ipv4A, present in the merged program, and one to ipv4B, not present

in the merged program. However, it is also not possible for us to add a transition to the ipv4 state

in A when merging ethernet states, since at that stage we do not yet know if the IPv4 states will be

shared.

Figure 4.2: Step-by-step illustration of the merging process for the two example programs. The
two graphs are temporarily linked until all the states have been merged.

Listing 4.12: Changing the reference to the previous state in the HLIR being added
1 #add t r a n s i t i o n s
2 f o r key , s t a t e in p a r s e r s t a t e R . b r a n c h t o . i t e m s ( ) :
3 h mg . p 4 p a r s e s t a t e s [ s ta te MG . name ] . b r a n c h t o [ key ] = s t a t e
4 # change t h e r e f e r e n c e t o t h e p r e v i o u s s t a t e
5 i f not i s i n s t a n c e ( s t a t e , p 4 h l i r . h l i r . p 4 t a b l e ) :
6 s t a t e . p r ev . add ( s ta te MG )

To overcome the above problem, our solution allows transitions of states in the merged pro-

gram to be modified at a later stage to reflect those states which are shared later in the merging

process.

We achieve this in two steps. In the first step, in the related code reported in Listing 4.12,

we perform two operations at the end of the state sharing mechanism: (1) adding the original

transition from the state that was shared (line 3), with those transitions still referencing objects in

the HLIR being added (considering our previous example, adding the transition to ipv4B - here

called state - to ethernetA - here called state MG), and (2) modifying the next state in

the added HLIR to contain a reference to the new state in A (line 6), instead of the old state in B

(considering again our previous example, modifying ipv4B, by saying it is now reached through

ethernetA, instead of ethernetB - here called parser stateR).

Listing 4.13: Backtracking the old transitions, changing the state it transitions to if it has been
shared
1 #Change p a r s e s t a t e o b j e c t i n p r e v i o u s t r a n s i t i o n s
2 f o r s t a t e in p a r s e r s t a t e R . p r ev :
3 f o r key , t e m p S t a t e in s t a t e . b r a n c h t o . i t e m s ( ) :
4 i f t e m p S t a t e == p a r s e r s t a t e R :
5 s t a t e . b r a n c h t o [ key ] = s ta te MG
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In the second step, reported in Listing 4.13, once we have shared a state, and so we will not

include it in the merged program, every transition to this state must be modified, referencing the

shared state instead. To achieve this, we visit and verify every state that precedes the shared state

to modify the transitions to it. In case a transition is referencing the state (line 4), it is replaced

with the correct state (line 5), e.g., in the example above, when sharing ipv4B with ipv4A, we

must go to the state that precedes it (that is now ethernetA), and upon identifying the transition

that was added in the previous step, modifying the reachable state, from ipv4B to ipv4A.

4.5 Optimizing Transitions

In order to reduce the amount of resources required to store the merged program, our system iden-

tifies in, and removes duplicate transitions from, the merged parse graph. As explained in Chapter

3, we consider a set of transitions in a state S to be redundant if (a) the number of transitions with

the same transition value is equal to the number of programs sharing the state, and if (b) these

transitions have the same destination state.

As a first step towards this optimization, we determine how many input P4 programs are shar-

ing a state, achieved with the function reported in Listing 4.14. The function, named get shared -

program count, determines the total number of programs sharing a certain state by counting the

number of unique program IDs present in the select entries dictionary. To achieve this goal, the

function begins by translating the select entries to binary format (line 5). This is necessary as the

program’s ID must be extracted from the value being used as key (line 15). Once the ID has been

separated from the original entry value, it is added to a list of unique IDs (line 17), that is then

returned. The number of programs sharing this state is equal to the size of the returned list.

Listing 4.14: Function used to get the total number of programs sharing a certain state.
1 def g e t s h a r e d p r o g r a m c o u n t ( s t a t e ) :
2 t e m p l i s t = [ ]
3 f o r key , n e x t S t a t e in s t a t e . b r a n c h t o . i t e m s ( ) :
4 # o r i g i n a l key ( i . e . , p v i d + f i e l d i n b i n a r y f o r m a t )
5 o r i g i n a l B i n = format ( key [ 0 ] , ’ b ’ )
6 wid th = 0
7 f o r f i e l d in s t a t e . b r a n c h o n :
8 i f i s i n s t a n c e ( f i e l d , t u p l e ) :
9 wid th = wid th + f i e l d [ 1 ] − f i e l d [ 0 ]

10 e l s e :
11 wid th = wid th + f i e l d . wid th
12 # o r i g i n a l key w i t h l e f t m o s t b i t s added i f needed
13 o r i g i n a l B i n = o r i g i n a l B i n . z f i l l ( w id th )
14 # program id , p r e s e n t i n t h e f i r s t 4 b i t s
15 p r o g r a m i d = o r i g i n a l B i n [ : 4 ]
16 i f p r o g r a m i d not in t e m p l i s t :
17 t e m p l i s t . append ( p r o g r a m i d )
18 re turn l e n ( t e m p l i s t )

Once the programs count is computed, we iterate through the select entries of the state, as

shown in Listing 4.15. We add the transitions that are equivalent to a list, named temp remove,

in case both the value and the mask of the two entries are the same (line 30). Those added tran-
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sitions cannot yet be removed, since we must first ensure that every program sharing this state

contains this transition.

Listing 4.15: Finding candidate transitions for deletion
1 # l i s t o f r e d u n d a n t c a s e s t o be removed
2 temp remove = [ ]
3 # f o r e v e r y t r a n s i t i o n o f t h e s t a t e
4 f o r key , n e x t s t a t e in s t a t e . b r a n c h t o . i t e m s ( ) :
5 i f key not in t empDic t :
6 c o n t in u e
7 keyBin = format ( key [ 0 ] , ’ b ’ )
8 keyBin = keyBin . z f i l l ( w id th )
9 # v a l u e o f t h e s e l e c t e n t r y w i t h o u t t h e program ID

10 r e a l V a l u e = keyBin [ 4 : ]
11 mask = format ( key [ 1 ] , ’ b ’ )
12 mask = mask . z f i l l ( w id th )
13 #mask o f t h e s e l e c t e n t r y w i t h o u t t h e program ID
14 rea lMask = mask [ 4 : ]
15 # l o o k f o r e q u i v a l e n t t r a n s i t i o n s
16 f o r key2 , n e x t s t a t e 2 in s t a t e . b r a n c h t o . i t e m s ( ) :
17 i f key == key2 :
18 c o n t in u e
19 keyBin2 = format ( key2 [ 0 ] , ’ b ’ )
20 keyBin2 = keyBin2 . z f i l l ( w id th )
21 r e a l V a l u e 2 = keyBin2 [ 4 : ]
22 mask2 = format ( key2 [ 1 ] , ’ b ’ )
23 mask2 = mask2 . z f i l l ( w id th )
24 rea lMask2 = mask2 [ 4 : ]
25 # i f t h e two t r a n s i t i o n s have t h e same t r a n s i t i o n c o n d i t i o n
26 #and f o l l o w i n g s t a t e t h e n t h e y are t e m p o r a r i l y added t o
27 # t h e remove l i s t
28 i f r e a l V a l u e == r e a l V a l u e 2 and r ea lMask == rea lMask2
29 and n e x t s t a t e == n e x t s t a t e 2 :
30 temp remove . append ( key2 )

Listing 4.16: Deleting all transitions that are equivalent to the current transition
1 # i f e v e r y program s h a r i n g t h i s s t a t e has t h e same t r a n s i t i o n as
2 # t h e c u r r e n t ( key , n e x t s t a t e ) p a i r remove a l l r e d u n d a n t t r a n s i t i o n
3 i f l e n ( temp remove ) == p r o g c o u n t − 1 :
4 f o r c a s e in temp remove :
5 tempDic t . pop ( c a s e )
6 # change t h e r e m a i n i n g t r a n s i t i o n , from i d+ f i e l d mask f+ f
7 # t o 0+ f i e l d mask 0+ f
8 i f r e a l V a l u e == ’ ’ :
9 r e a l V a l u e = ’ 0 ’

10 i f r ea lMask == ’ ’ :
11 rea lMask = ’ 0 ’
12
13 # i f t h e s e l e c t e n t r y i s empty , t h e n i t was o r i g i n a l l y a d e f a u l t
14 i f ( i n t ( r e a l V a l u e , 2 ) , i n t ( rea lMask , 2 ) ) == ( 0 , 0 ) :
15 d e f a u l t = p 4 h l i r . h l i r . p 4 p a r s e r . P4 DEFAULT
16 tempDic t [ d e f a u l t ] = tempDic t . pop ( key )
17 e l s e :
18 tempDic t [ ( i n t ( r e a l V a l u e , 2 ) , i n t ( rea lMask , 2 ) ) ] =
19 tempDic t . pop ( key )

As shown in Listing 4.16, if all the other programs sharing the state contain an equivalent transition

(line 3), those transitions can be deleted from the merged program. This is achieved by removing
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the transitions placed in the temporary list from the select entries dictionary (line 5). Finally, the

corresponding remaining transition is replaced by a transition with the same value, but without the

program ID (lines 14 through 19).

4.6 Summary

In this chapter, we presented the implementation of P4Visor++, our system to merge parser graphs

from multiple P4 programs. We presented the system’s structure in Section 4.1. We described the

integration of our custom program elements in the merge process in Section 4.2. In Section 4.3

and in Section 4.4, we explained respectively how equivalent headers and equivalent parse states

are merged. To conclude, in Section 4.5, we described how we eliminate redundant transitions in

the parse graph of the merged program so to reduce the resources required for storing it.
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Chapter 5

Evaluation

To evaluate the ability of our solution to efficiently and correctly merge parse graphs from different

P4 programs, we performed two different types of experiments. The first set, described in detail in

Section 5.2, aims to demonstrate that our merging algorithm preserves correctness, i.e., the paths

in the parse graph of any input program are preserved in the merged program, and guarantees iso-

lation, that is, only states present in the parse graph of a certain input program will be reached by

packets destined for that input program in the merged program. The second set of tests, described

in detail in Section 5.3, aims to evaluate the efficiency of our solution, by comparing the size and

the complexity of a merged program generated by our merging algorithm with the results achieved

by the state-of-the-art system P4Visor. By comparing the total number of states and transitions in

the parse graphs of the input programs and of the merged program, we aim to showcase the re-

duction of memory space required to physically store a parse graph on a P4-programmable target

enabled by our merging algorithm.

The rest of the chapter is organized as follows. In Section 5.1 we describe the environment

used for our tests and the set of P4 programs selected for our experiments. Section 5.2 and Section

5.3 describe, respectively, the two different sets of experiments we have performed, and discuss

the main results.

5.1 Testing environment

In this section, we present all the components used for testing and evaluating our algorithm for

merging parse graphs, namely the P4 programs and the software tools. Similarly to the implemen-

tation, all the evaluation was performed on a COTS computer, equipped with a 3.4 GHz AMD

Ryzen 5 2600 CPU and 8GB of memory, running Ubuntu 18.04.

5.1.1 P4 programs for testing

We selected ten different programs, independently written by different parties and available on

the web, to create a testing set for our evaluation. We have chosen a balanced combination of

realistic programs whose parse graphs show different degrees of similarity between themselves.

53



Chapter 5. Evaluation 54

Through this set we aim to highlight the main challenges of the merge process and the benefits of

our merging solution. In Table 5.1, we provide a short description of each of the ten programs in

our set.

ID Names # of
States Protocols # of

Edges
Description of

the Parse Graph

P1 Simple
Router [17] 3

Standard: 2
(Eth, IPv4)
Custom: 0

4
Basic parser extracting standard protocols through two
states.

P2 Flowlet [18] 4

Standard: 3
(Eth, IPv4,

TCP)
Custom: 0

6
Extends the previous graph by extracting one more stan-
dard protocol.

P3 Heavy
Hitter [19] 4

Standard: 3
(Eth, IPv4,

TCP)
Custom: 0

6
This parse graph is an exact copy of P2’s one, used to
demonstrate perfect merge with different programs that
share the same parse graph.

P4 Port
Knock [20] 4

Standard: 3
(Eth, IPv4,

TCP)
Custom: 0

6
Same parse graph as in P2, but the field organization of the
TCP header is different, to illustrate the merge of weakly
equivalent headers.

P5 MC nat [21] 4

Standard: 3
(Eth, IPv4,

UDP)
Custom: 0

6
Simple IPv4 to UDP parse graph, used to highlight cases
where only portions of the graph can be shared.

P6 Timestamp [22] 5

Standard: 4
(Eth, IPv4,
UDP, RTP)
Custom: 0

7
Slightly more complex version of P5’s parse graph, with an
RTP state at the end.

P7 ECMP [23] 5

Standard: 4
(Eth, IPv4,

TCP , UDP)
Custom: 0

8
Parse graph that can transition to both TCP and UDP states,
with the particularity that its “parse ipv4” state selects on
an extra field.

P8 mTag
edge [24] 5

Standard: 3
(Eth, Vlan,

IPv4)
Custom: 1

10
The parse graph includes VLAN and mTag headers be-
tween ethernet and IPv4.

P9 Source
Routing [25] 3

Standard: 0
Custom: 2

5

Parse graph expects two custom headers in the beginning
of the packet. So, there is a select statement in the “start”
state which is empty in all the graphs above, since those
rather transition directly to a state to extract the ethernet
header.

P10
Simple
Router
with ARP [26]

5

Standard: 3
(Eth, ARP,

IPv4)
Custom: 1

8

Similarly to Source Routing, there is a select statement in
the “start” state, that transitions to either “parse ethernet”
or “parse CPU”. The latter then transitions to “parse eth-
ernet”, followed by either an IPv4 or ARP header.

Table 5.1: Our testing set is built from ten programs retrieved from independent on-line sources.
For the sake of easy reference later in this chapter, we summarize here in this table some of the
characteristics of their parse graphs. The complete parse graphs of these programs are illustrated
in Appendix A.

Because our solution merges only the parse graphs of the programs, all of the other program’s

logic is replaced by a simple custom input-to-output port forwarding mechanism, for every pro-

gram in our set. Additionally, parsers have been modified to parse, set and extract our custom

header, whose fields are also used for testing (this will be explained in detail in Section 5.2).
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5.1.2 Software Tools

For testing the execution of the P4 programs used in our experiments, we have used the reference

P4 software switch [15], also called bmv2 (which stands for behavioral model 2). The bmv2 soft-

ware switch is a tool for developing, testing and debugging data planes written in P4, developed

and maintained as an open-source project by the P4.org community. Bmv2 can load an intermedi-

ate representation of a P4 program, generated by a compiler, and implement the packet-processing

behavior specified in that program. We have used the p4c reference P4 compiler [14] to compile

our testing programs. The p4c compiler can produce intermediate representations of P4 programs

for bmv2 through a target-specific back-end compiler. We have also used another back-end avail-

able with p4c, namely p4-graphs, to produce most of the graphs reported in this manuscript.

To run our tests, both the original and the merged programs were compiled and deployed on the

bmv2 virtual switch. At start-up time, the bmv2 switch’s ports can be connected to virtual inter-

faces on the host machine. The interfaces connected to the switch can be used to inject traffic into

the switch and to sniff the traffic produced in output to verify that the packet processing behavior

has been executed accordingly to the loaded P4 program.

To create custom packets to be sent through the switch, as well as to sniff and analyze the for-

warded packets, we developed three applications based on the python-based Scapy library [27].

Scapy allows a developer to specify the protocol stack (including custom-made protocols) and pay-

load in network packets, inject the crafted packets in the network, as well as receive and inspect

packets.

The experimental setup consists of one sender and two different receivers connected by the

virtual switch, as shown in Figure 5.1. The sender sends custom traffic to the virtual switch

bmv2. This traffic is generated according to an auxiliary file which we have compiled describing

the protocol headers expected in packets for a certain program. The two receivers are named

receiver shadow.py and receiver.py. The former is used for tracking the parser states

visited in the original programs, while the latter is used for comparing the parsing results produced

by the standalone execution of the original programs against the results produced by the merged

program. This latter step is performed to assess whether the correctness and isolation properties

have been preserved.

5.2 Verifying Isolation and Correctness

To achieve our goal of verifying the correctness and isolation of merged P4 programs, we have

deployed a mechanism that allows us to precisely track the parser states visited by each packet as

it is processed by our program in the switch. This mechanism consists in:

1. having a custom header (upvn) to carry the program ID (pvid) and a bitmap (p map) of the

traversed parser states within packets;

2. attributing an ID (0-15) to each parser state;
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3. in each parser state, setting the state ID into the bitmap and storing the updated bitmap into

a metadata variable;

4. in the ingress pipeline, copying the metadata field written during the parsing stage into the

custom header p map field before forwarding the packet to an output port.

We first apply the above mechanism to both the original programs and the merged ones. Af-

terwards, by comparing the p map values obtained with the original programs against the p map

value obtained with the merged program, we can assess whether or not a certain packet has tra-

versed only the correct states in the original program. As it can be seen in Figure 5.1, a receiver,

e.g., host2, of the packets processed by our modified programs can inspect the custom upvn header

to know the states visited by the packets through the parser stage.

Figure 5.1: Illustration of the mechanism used to test isolation and correctness. In the example,
packets processed by the virtualized progA.p4 must visit the states with IDs {1,2,4,16}. After
being processed by progA.p4, the packet has a p map field value of 10111, meaning it visited
all states except the one with an ID of 8 (fourth position from the right, or 23), demonstrating it is
correct and isolated.

Leveraging the above mechanism, this test consists of the following steps:
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Figure 5.2: Translation file for the flowlet program (P2) produced at point 1: The first line of the
program contains the ID of the program, then the next lines list parser states where original and
modified state IDs are noted.

1. We merge any combination of programs using our P4Visor++: This step generates i) a

translation file for each input program, which matches by IDs the parse states in the origi-

nal program to the states in the merged program (see Figure 5.2 for an example) and ii) a

compiled version of the merged program.

2. Using the original IDs in the translation file created in step (1), we manually create a copy of

the program to be tested (this process needs to be done only once for each program), which:

• parses and extracts our custom upvn header, updates the p map bitmap (see Figure 5.3

for an example),

• replaces the original processing logic with our custom simple input-to-output port for-

warding logic.

3. We compile the program created in step (2) with the p4c compiler and we run it on the bmv2

switch.

4. We create an auxiliary text file <program name> packets.txt that contains the defi-

nition of the testing packets.

5. We run simultaneously receiver shadow.py and sender.py providing them with

the program’s name as an argument. This step will generate a file (named <program -

name> original result.txt) with the result of sending the testing packets specified

in the auxiliary file produced at step (4) through the program created in step (2) and executed

in step (3).

6. We shut down the switch and restart it with the merged program produced at step (1).

7. We run receiver.py and sender.py, specifying the name of the program to be tested.
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8. We compare the visited states in the merged program with the visited states in the original

program, using the translation file generated in step (1).

9. We output a positive result if and only if the states visited in the merged program are exactly

the ones visited in the original program.

We better illustrate the test and its steps through an example with the flowlet (P2) program

by merging all the programs of Table 5.1 with our P4Visor++. The translation file for P2 in our

example is reported in Figure 5.2.

Figure 5.3: Copy of the original flowlet program with the modified parse states. In red, the set -
metadata statements updating the p map field with the corresponding value for each state.

By using the states’ information contained in the translation file, we instrument a copy of the

flowlet program with our custom parser operations as described in step (2), which is shown in

Figure 5.3. Once the program copy is compiled and loaded on the bmv2 switch (3), we run our

sender.py and receiver shadow.py scripts (5), which send and receive, respectively, the

testing packets defined in the flowlet packets.txt file, which has been previously manually

prepared (4). In this example, that file only contains one testing packet in the format :

Upvn(pvid = x, p map = y)/Ether()/IP()/TCP()

The result is the flowlet original.txt file listing on a single line the IDs sequence of the

parser states visited by the testing packet.

Afterwards, we load the bmv2 switch with the merged program (6) and start the sender.py
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Figure 5.4: Output of receiver.py for the flowlet program example: The line ’Merged
states : 2 5 8’ corresponds to the states visited by by the testing packet in the merged
program, whereas the line ’Original states : 0 1 2’ is read from flowlet orig-
inal.txt.

and receiver.py scripts (7). By specifying the program name to be tested as an argument to the

sender script, the sender injects the custom packet into the switch and the receiver stores its content

on arrival. The receiver.py script determines whether the parse graph in the merged program

preserves correctness and isolation for the original program tested. It does so by comparing the

content of the custom header in the received packet (this packet is defined in flowlet pack-

ets.txt) and the values stored in both the translation file and the flowlet original.txt

file. The result of this for the flowlet (P2) example is illustrated in Figure 5.4.

The above test was performed individually for every input program over several combinations

of the testing programs we have merged with P4Visor++. These combinations included simple

merge cases (that is, program pairs) as well as the more complex cases presented in Section 5.3.

In all our tests, our mechanism confirmed that only the expected states were visited by the pack-

ets for the input programs, regardless of the number and combination of the merged programs,

demonstrating that the correctness and isolation properties are guaranteed by our merging algo-

rithm.

5.3 Evaluating Parse Graph Complexity

To measure the complexity of the merged programs produced by P4Visor++, we consider three

different metrics in the parse graph of the merged program - number of headers, number of states,

and number of transitions - and compare those metrics against the results obtained with the state-

of-the-art P4Visor system. The choice of these metrics has been driven by real physical limitations



Chapter 5. Evaluation 60

on target switching hardware. More precisely, target hardware features limited amount of memory

to store headers, metadata structures and parser graphs. As the number of programs being merged

increases, it is important that a virtualization solution considers these possible target hardware

limitations. Since data regarding the usage of such resources is not made available in the P4Visor

work, and the implemented version does not support multiple programs, we obtain the values

corresponding to P4Visor by simulating its parsing mechanism: performing a naive merge of the

parse graphs, that is, assuming states are not shared and simply added to the merged graph.

5.3.1 Comparing Merge Efficiency Against P4Visor

We have performed several experiments using the programs in our set (please refer to Section

5.1.1), gradually decreasing the degree of similarity between the parse graphs to merge. Test A

consists in merging programs {P2, P3, P4}. All these programs feature a simple parse graph

extracting the headers Ethernet, IPv4 and TCP. The goal of this experiment was to compare the

results of merging programs with a high degree of similarity (as the parse states are identical). Test

B consists in merging programs {P1, P5, P6, P7}. With this experiment, we aim to showcase

how our solution performs when merging programs that display different parse graphs, where

only part of the resources can be shared (all these programs extract Ethernet and IPv4, only some

extract UDP). The last experiment, Test C, is composed of programs {P8, P9, P10}. This set

contains programs with a low degree of similarity, as the parse graphs are very distinctive. With

this experiment, we intend to compare the results achieved by our solution when merging graphs

that have few resources that can be shared. Overall, as illustrated in Table 5.2, our merging solution

Transitions Headers States
P4Visor P4Visor++ Gain P4Visor P4Visor++ Gain P4Visor P4Visor++ Gain

Test A 19 6 68% 17 10 41% 11 4 64%
Test B 26 13 50% 21 11 48% 15 6 60%
Test C 24 21 13% 16 11 31% 12 9 25%

Table 5.2: Results with Merging Multiple Programs

always reduces the amount of resources used to represent the parse graph when compared with

P4Visor, showing savings of up to 68% in transitions, 48% in headers and 64% in states.

In Test A, our solution achieves perfect merging results with regards to transitions and states,

meaning the merged parse graph is identical to the original graphs. This is better illustrated by Fig-

ure 5.5a, showing the original graphs alongside the merged graph. Our solution finds equivalences

between all the extracted headers and corresponding parse states among the three programs. Since

the values used to transition between states are also the same, the three graphs can be represented

using only the resources of a single graph. Additionally, our custom parse state is removed (as

every program transitions to the same state from start) and our custom header is extracted in

the first parse state (i.e. parse ethernet).

In Test B, we achieve similar results comparatively with Test A with regards to headers and

states, but suffer a considerable reduction in the efficiency gain obtained over P4Visor regarding
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(a) (b)

Figure 5.5: Resulting graphs of the first two tests. Respectively, Test A is represented by (a), Test
B is represented by (b). The input graphs for each test can be seen in Appendix A.1 and A.2,
respectively.

transitions. As can be seen in Figure 5.5b, this decrease in efficiency is justified by the presence

of replicated transitions from states parse ipv4 to parse udp, and from parse udp to the

Ingress stage (here represented by the table shadow traffic control). These transitions

must be replicated since a set of equivalent transitions (that is, transitions that originate from the

same state, contain the same original select entry and transition to the same state) can only be

reduced to one if every program sharing the state contains such transition. In this case, only three

of the four input graphs contain a transition from parse ipv4 to parse udp (program P1

does not contain a UDP parse state), forcing the corresponding transitions in the merged graph to

include the program ID. A similar condition occurs in the state parse udp, where program P6

does not contain a default transition to the Ingress stage.

Finally, in Test C, our solution shows only a minor decrease with resources used compared

with P4Visor. This occurs because the three graphs are very different, and they do not have many

equivalences which can be leveraged to share resources in the merged parse graph. In fact, our

solution only manages to share three states among the three parse graphs, namely ethernet,

ipv4 and parse head, as it can be seen in Figure 5.6. Besides, the last state in the merged
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Figure 5.6: Resulting graph for Test C. The input graphs can be seen in Appendix A.3.

graph, parse head, belonging to program P9, is shared with state parse cpu from program

P10, due to the fact that the headers extracted by these states are weakly equivalent. This special

case highlights P4Visor++’s ability to improve the efficiency of the merging process by leveraging

weakly equivalent headers, which may sometimes correspond to different protocols in the original

input parse graphs.

5.3.2 Limitations

Despite the reduction in resource usage showcased in the previous section, there are specific con-

ditions which may prevent our algorithm to produce optimal merge results. Throughout our study,

we have found two specific conditions across the input graphs which can severely affect the results
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of our merging algorithm. In this section, we document those conditions alongside with simple

strategies which can be used to overcome them.

Figure 5.7: Parse graph generated by merging P9 with the programs in Test B

The first kind of condition refers to transitions in a shared state can only be shared if every

program sharing that state contains the same transition. In our set of programs, an occurrence of

this condition causes an increase in the number of transitions proportional to the number of input

programs. We illustrate this with an example where P9 is merged with the programs from Test

B {P1, P5, P6, P7}, shown in Figure 5.7. Every program in our set contains a default transition

to parse ethernet from start, except for P9, that does not extract Ethernet headers, and

consequently, does not have that transition. Instead, P9 transitions to either another state or to

the Ingress stage based on the first 64 bits in the current packet. For this reason, the default

transition from start to parse ethernet present in all the other programs cannot be shared.

In Figure 5.7, we can see such transitions to the Ethernet parse state, one for each of the programs

from Test B, originating from the state parse upvn, in the merged graph.

The second kind of condition refers to detecting weak equivalences between states that do not

extract the same protocols. This condition may also lead to an increase in the number of transitions



Chapter 5. Evaluation 64

for our algorithm. This problem can occur in our program set when we merge, for example,

program P10 with program P6, due to the fact that our algorithm detects a weak equivalence

between the cpu header in P10 with the RTP header in P6. This equivalence is established

because, despite the two headers representing different network layers, they have the same total

width. When P10 is merged after P6, an equivalence is established between those two headers

and the respective parse states are consequently shared. Afterwards, an equivalence is established

between the states parsing Ethernet and IPv4, which are present in both P10 and the merged

program. However, those states cannot be shared since Ethernet and IPv4 are now at a higher

topological level than parse cpu in P10, and at a lower level than RTP in P6. For this reason,

our merging algorithm adds the Ethernet and IPv4 states from P10 to the merged program without

sharing those. As a consequence, an extra transition from the parse upvn state is added to reach

the new Ethernet state, followed by a transition to the new IPv4 state. The resulting graph can be

seen in Figure 5.8, where we can see parse rtp replacing P10’s parse cpu header, and

the new states being included.

If, however, we merge the programs in a different order, merging P6 after P10, then the

resulting merged graph will contain fewer transitions (12 instead of 16) than the ones achieved

with the previous programs sequence, as shown in Figure 5.9. This time, as we add program P6

first, our algorithm finds an equivalence between the states parsing Ethernet and IPv4 headers in

the program being added and the respective states in P10, thus sharing those states. After such

merge has been performed, our algorithm can no longer share the RTP state with the cpu header

state, despite the weak equivalence between the two still being detected.

It is important to notice that the merging result is also correct in the first case, as the cpu -

header header is renamed across the whole program, and P10 uses the extracted header in

parse rtp, as it contains the same number of bits. Yet, this example highlights that the order

in which programs are merged may have an impact on the efficiency achieved by our merging

algorithm.

5.3.3 Optimizations

As showcased in Subsection 5.3.2, the order in which input programs are processed by P4Visor++

may lead to non-optimal merged graphs because of the detection and merge of weakly equiva-

lent headers. Hence, we have devised an additional mechanism for P4Visor++ to identify input

programs sequences which lead to better merging results in average.

This mechanisms consists of a pre-processing stage where we look for program sequences in

the input set that produces smaller graphs. We do so by merging the different permutations of

the programs and by returning the sequence that produces the lowest amount of resources used.

This is, however, a task that can not be quickly performed, as, for example, with ten programs,

there exist 10! (3,628,800) different permutations. To reduce the computation complexity of this

pre-processing stage, we build upon the observation that some input programs in the same set

often have similar graphs. By considering that, we can often reduce the total number of programs
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Figure 5.8: Parse graph resulting from the merge of P6 followed by P10

being used by the pre-processing stage by aggregating programs with the same parse graphs (e.g.,

programs P2, P3 and P4 have very similar graphs), and then only re-introduce them back in the

input sequence once the optimal merge sequence has been determined, by placing them adjacent

to the program that has the similar graph.

With the above aggregation heuristic that we have devised, we can compute the best sequence

we observed for our programs set in a few minutes, instead of several days. The resulting parse

graph is the one reported in Figure 5.10, containing 40 transitions. This does not, however, guar-

antee that the optimal solution is found, as that would require testing all permutations.

In order to further reduce the number of iterations required to optimize the merging result,

we have leveraged an additional heuristic that allows us to get very good results by only testing a

smaller computationally tractable number of the possible permutations. This “random” heuristic

consists in picking a fixed number of random permutations and merging them, returning the se-

quence from the set that contains the lowest number of transitions in the merged graph. For our
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Figure 5.9: Parse graph resulting from the merge of P10 followed by P6.

testing set, we merged 200 random sequences (20 tests with ten sequences each), and arranged the

results into a plot, shown in Figure 5.11. This test produced an output in less than ten minutes,

halving the time required by only using the other heuristic. As it can be seen in the plot, merged

sequences that produce a number of transitions equal to 40 are common, and thus this heuristic

can easily find the best sequence produced by our aggregation heuristic. This heuristic does not,

however, guarantee that the optimal sequence is found, and becomes less effective as the number

of input programs increases, but it allows us to quickly get interesting improvements.

5.4 Summary

In this chapter, we first described the testing environment for our solution, in Section 5.1. Then,

we illustrated the mechanism used to verify P4Visor++’s ability to guarantee correctness and

isolation, in Section 5.2. To conclude, in Section 5.3, we presented the results achieved by our
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Figure 5.10: Optimal merge result achieved by merging our entire program set.

system, and compared them with the state-of-the-art in PDP virtualization.



Figure 5.11: Boxplot showcasing the result of merging a fixed number of random, different se-
quences from our testing set. This plot shows that, for our set, the optimal merging result (i.e.,
a merged graph containing 40 transitions) can be achieved through multiple different sequences,
and can therefore be found by testing only a small subset of the permutations.
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Conclusion & Future Work

As PDPs become increasingly popular, the development of virtualization techniques that enable

flexibility in the deployment of custom network functionalities onto these targets and the possi-

bility to share these hardware resources to increase their utilization, for instance in cloud envi-

ronments, becomes a necessity. We have analyzed the two mainstream approaches for the virtu-

alization of PDPs, namely Emulation-Based and Code Merging. We concluded that the former

approach requires large resource overheads, making it impractical to deploy, as such resources are

usually scarce in the current state-of-the-art PDP switch targets. The state-of-the-art code merging

approach, P4Visor, significantly improves the efficiency of PDP virtualization over emulation-

based systems. However, it has several limitations that may also preclude its deployment in prac-

tice, namely, its inability to merge more than two programs, the requirement of a high degree of

similarity between the merged programs and the inefficiency in total amount of resources used.

In this thesis, we have improved over the state-of-the-art with P4Visor++: a system that en-

ables a more flexible and efficient merging of P4 programs, while guaranteeing isolation and

correctness. As the main contributions we introduced the ability to merge a potentially unre-

stricted number of input P4 programs, and an innovative mechanism to reduce resource usage in

the merged program, by efficiently and correctly sharing equivalent code portions across multiple

programs. Our solution focuses on the parse graph stage of the P4 programs, establishing equiva-

lences between headers and parser states from different input programs and combining them into

a larger merged graph, where some nodes are shared by multiple programs. This task is challeng-

ing due to the restrictions imposed by the P4 language specification and by physical constraints

of some target architectures. Our solution shows significant efficiency improvements in terms of

resources used for the parser stage in the merged program.

In future work, we plan to integrate code merging techniques to achieve better resource sharing

across the other blocks of a PDP target, namely the MAT stages of PISA switches, and to port this

solution to the P416 version of the language. We also intend to investigate the possibility to

share stateful memory in PDP targets across the different merged programs. Finally, we plan to

investigate the possibility of performing seamless reconfiguration, that is, removing and adding

programs to the PDP target without the need to restart it. This may be achieved by exploring

the way resources are represented in the switch’s hardware, allowing for specific segments to be
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“turned on and off”, and consequently removing and adding programs without disrupting the other

programs’ ability to process the incoming traffic.
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Appendix A

Parse graphs of all the programs

(a) (b) (c)

Figure A.1: Programs merged in Test A - (a) P2; (b) P3; (c) P4
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(a)

(b)

(c)

(d)

Figure A.2: Programs merged in Test B - (a) P1; (b) P5; (c) P6; (d) P7



Appendix A. Parse graphs of all the programs 79

(a)

(b)
(c)

Figure A.3: Programs merged in Test C - (a) P8; (b) P9; (c) P10
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Appendix B

P4visor++ Documentation

P4Visor++ is a tool used to efficiently merge the parsing stage of multiple P4 programs. The

merging process results in the generation of a compiled JSON file, which contains the merged

parse graph, where the graphs from each input program are correctly represented and isolated.

The compiled JSON file can then be installed on the Bmv2 P4-capable software switch.

All of the software developed for this work is available at:

https://github.com/netx-ulx/P4Visor/tree/dsequeira.

B.1 Requirements

In order to merge P4 programs and to test the result with the following instructions, the user must

first install the following dependencies:

• - [p4c-bm] (https://github.com/p4lang/p4c-bm)

• - [bmv2] (https://github.com/p4lang/behavioral-model)

B.2 Merging P4 Programs

B.2.1 Interface

To merge multiple programs, we leverage the Python script created by P4Visor (https://github.com

/Brown-NSG/P4Visor), ShadowP4c-bmv2.py, with some modifications.

The script must be used with the following input arguments:

• The first program to be added to the merged program:

– --shadow source *path to p4 program*

• The second program to be added to the merged program:

– --real source *path to p4 program*

• The path of any additional program to be merged (separated by spaces, if more than one):
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– --l *path to p4 program* ... *path to p4 program*

• The name of the output JSON file:

– --json mg *path to dir with name.json*

• The option to generate a visual representation of the graphs:

– --gen-fig

• The directory to where the output files will be stored:

– --gen dir *path to dir*

• The mode of operation (must always be Diff-Testing):

– --Diff-testing

The execution of this script will generate the merged JSON file and the visual representation

of the graphs and store them into the directory specified with --gen dir. Additionally, a file

named evalFinal.txt will be created and stored at the project’s root directory, containing

useful information regarding the amount of resources used by the parser graph in the merged

program.

B.2.2 Merge Example

To illustrate how the merging of multiple programs is achieved, we provide the following example

which merges three P4 programs (flowlet.p4, portKnockFirewall.p4, heavy hitter.p4, which are

available under the folder ’tests/testAll/’). We first create a directory on the project’s root, called

example, wherein we copy our three programs. Afterwards, to merge the programs, we use the

following command in a terminal opened at the level of the project’s root directory:

• python ShadowP4c-bmv2.py --real source example/portKnock-

Firewall.p4 --shadow source example/flowlet.p4 --json mg

example/merged.json --l example/heavy hitter.p4 --gen-fig

--gen dir example --Diff-testing

The merged JSON file will be placed in the example folder, under the name merged.json.

B.3 Reproducing the results of ’Code Merging for Programmable
Data Plane Virtualization’.

P4Visor++ has been developed within the framework of an MSc. thesis carried out by Duarte

Sequeira at the Faculty of Sciences of the University of Lisbon in 2020. In order to evaluate that

work, three different sets of P4 programs, showing different degrees of similarity, were merged.

The programs in those sets are all available under the folder ’tests/testAll/’.

To recreate those tests, the following commands must be executed:
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• Test A:

– python ShadowP4c-bmv2.py --real source tests/testAl-

l/portKnockFirewall.p4 --shadow source tests/testAl-

l/flowlet.p4 --json mg tests/testAll/merged.json --l

tests/testAll/heavy hitter.p4 --gen-fig --gen dir test-

s/testAll --Diff-testing

• Test B:

– python ShadowP4c-bmv2.py --real source tests/testAll/mc -

nat.p4 --shadow source tests/testAll/ecmp.p4 --json -

mg tests/testAll/merged.json --l tests/testAll/simple -

router.p4 tests/testAll/timestamp.p4 --gen-fig --gen dir

tests/testAll --Diff-testing

• Test C:

– python ShadowP4c-bmv2.py --real source tests/testAll/mtag-

edge.p4 --shadow source tests/testAll/source routing.p4 -

-json mg tests/testAll/merged.json --l tests/testAll/sim-

ple router with arp.p4 --gen-fig --gen dir tests/testAll

--Diff-testing

• Additionally, the merge sequence for all the programs in our test-set is the following:

– python ShadowP4c-bmv2.py --real source tests/testAll/sim-

ple router with arp.p4 --shadow source tests/testAll/-

source routing.p4 --json mg tests/testAll/merged.json --l

tests/testAll/timestamp.p4 tests/testAll/mtag-edge.p4

tests/testAll/portKnockFirewall.p4 tests/testAll/heavy -

hitter.p4 tests/testAll/simple router.p4 tests/testAl-

l/ecmp.p4 tests/testAll/mc nat.p4 tests/testAll/flowlet.p4

--gen-fig --gen dir tests/testAll --Diff-testing

B.4 Contacts

If you have any questions, you can reach me (Duarte Sequeira) at dudaxsek97@gmail.com
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