55 research outputs found

    Multifingered robot hand robot operates using teleoperation

    Get PDF
    The purpose of research on anthropomorphic dextrous manipulation is to develop anthropomorphic dextrous robot hand which approximates the versatility and sensitivity of the human hand by teleoperation methods that will communicate in master– slave manners. Glove operates as master part and multi-fingered hand as slave. The communication medium between operator and multi-fingered hand is via KC-21 Bluetooth wireless modules. Multi-fingered hand developed using 5 volt, 298:1 gear ratio micro metal dc motors which controlled using L293D motor drivers and actuator controlled the movement of robot hand combined with dextrous human ability by PIC18F4520 microcontroller. The slave components of 5 fingers designed with 15 Degree of Freedom (DOF) by 3 DOF for each finger. Fingers design, by modified IGUS 07-16-038-0 enclosed zipper lead E-Chain® Cable Carrier System, used in order to shape mimic as human size. FLEX sensor, bend sensing resistance used for both master and slave part and attached as feedback to the system, in order to control position configuration. Finally, the intelligence, learning and experience aspects of the human can be combined with the strength, endurance and speed of the robot in order to generate proper output of this project

    Fast Geometric T2-Fuzzy Based Improved Lower Extremities Stimulation Response

    Get PDF
    This study emphasizes the use of type-2 fuzzy (T2-Fuzzy) to improve the adaptive proportional-integrative-derivative (PID) control in the lower extremities. Several problems were identified from previous studies and those were the slow achievement of the target angle and the presence of oscillation in the achievement of the target blade. The oscillation occurred as the consequence of deploying the early adaptive PID which was not sufficient to overcome the lower extremities nonlinearity. The difference between proposed method of T2-Fuzzy and the others lies in the defuzzification. This research adopts a fast geometric defuzzification that maintains the level of uncertainty T2-Fuzzy in real-time. A functional electrical stimulation (FES) stimulator is proposed to design and to be connected to the computer for processing the T2-Fuzzy. This stimulator stimulates lower extremities of normal subjects each cycle, and the computer record the point of measured achievement of using a goniometer sensors mounted on a knee joint. The results show that the target point of lower extremities is achieved within three initial cycles without oscillations in the achievement of the angle. It is also found that T2-Fuzzy is able to immediately restore the point of achievement when the external parameters of control occur

    Studi Functional Electrical Stimulation Terkontrol Fuzzy Logic Controller sebagai Solusi pada Foot Drop Correction

    Get PDF
    Stroke merupakan permasalahan serius dalam dunia kesehatan. Salah satu penyakit yang diakibatkan oleh stroke maupun pasca stroke adalah foot drop. Untuk mengatasi hal tersebut, dirancang suatu sistem Functional Electrical Stimulation (FES) yang dikontrol Fuzzy Logic Controller (FLC) berjumlah 3 berbasis cycle-to-cycle control untuk menstimulasi otot yang mempengaruhi gerakan ankle dorsiflexion pada otot Tibialis Anterior (TA), ankle plantarflexion pada otot Gastrocnemius (GC), dan knee extension pada otot Vastus (VA), yang semuanya distimulasi saat swing phase pada siklus berjalan. FLC menghasilkan output berupa stimulation burst duration, mengatur seberapa lama 3 channel FES aktif menstimulasi otot. Terdapat stimulation schedule yang mengatur kapan stimulasi pada setiap FLC akan aktif pada 1 cyclenya. Hasil yang didapatkan pada FES, penggunaan PWM1 duty cycle 15% dan frekuensi 20 KHz, serta PWM2 duty cycle 98% dan frekuensi 20 Hz merupakan spesifikasi paling efektif, dikarenakan menghasilkan sudut ankle joint -40.8⁰ (otot TA), -12.1⁰ (otot GC), dan knee joint -11⁰ (otot VA), dengan pemakaian duty cycle PWM1 yang minimal. Hasil pada Subjek normal berjalan foot drop dan distimulasi didapatkan FLC1 (ankle dorsiflexion) mulai berosilasi pada cycle ke-8, FLC2 (ankle plantarflexion) cycle ke-22, dan FLC3 (knee extension) cycle ke-8. Hal ini terjadi dikarenakan sudut telah mencapai target angle dan kontroler terus beradaptasi

    Fast Geometric T2-Fuzzy Based Improved Lower Extremities Stimulation Response

    Full text link

    Nonlinear robust control of functional electrical stimulation system for paraplegia

    Get PDF
    The study was directed towards enhancing Functional Electrical Stimulation (FES) for sit-to-stand movement restoration in paraplegia subjects. The scarcity of FES assistive devices was due to the inability of the developed equipment to attain clinical acceptance. Applications of control systems have shown fruitful results. And based on the literature, further improvements in model, trajectory and control systems are needed. Model with a higher level of accuracy and continuous as well as bump-free trajectories are essential ingredients for better control systems. The control systems can be enhanced by giving considering to changes in mass of the subject, disturbance rejection and stability. Hence, the comprehensive control scheme is necessary for this application as well as a better model and trajectory. In modelling an additional joint has been considered to improve the accuracy. In trajectory planning, the six-order polynomial has been used to refine the desired trajectory. The comprehensive control systems have been designed with consideration of robustness, disturbance rejection, and stability. Three nonlinear control approaches have been investigated; the Sliding Mode Control (SMC), Feedback Linearisation Control (FLC), and Back-Stepping Control (BSC). Results reveal improvements in the accuracy of the kinematic model by 24%, and the dynamic model by 47%. The trajectory planning parameters are continuous, and not susceptible to jerks or spikes. Execution time enhanced by 11%, the upper and lower terminal velocities improved by 16.9% and 20.9% respectively. The system response without disturbance shows good results with the SMC, FLC, and BSC. Revelations by robustness examination also maintain remarkable enhancements in the parameters with both 53% and 126% mass. The results for disturbance rejection examinations with fatigue, spasm, tremor, and combined disturbance effects showed sustenance of refinement in the response parameters. Therefore, indicating improvements despite the changes to the system. The BSC showed the best performance, followed by the FLC, and the SMC. Hence, the BSC is recommended for such systems

    Wireless FES untuk Multi-Joint Movement pada Gaya Berjalan Penderita Hemiplegia

    Get PDF
    Stroke merupakan salah satu penyakit berbahaya di dunia. Kelumpuhan sendiri paling banyak disebabkan oleh stroke. Salah satu akibat dari kelumpuhan yaitu berkurangnya kemampuan berjalan secara signifikan utamanya bagi seorang hemiplegia . Functional Electrical Stimulation (FES) adalah salah satu treatment alternatif yang telah banyak digunakan dalam strategi rehabilitasi untuk individu dengan gangguan neurologis. Tujuan intervensi FES adalah untuk memungkinkan gerakan fungsional dengan mengganti atau membantu dengan aktivasi otot tidak sadar pada seseorang. FES dapat meningkatkan pembelajaran motorik dan meningkatkan plastisitas Central Nerveous System (CNS). Namun FES saat ini umumnya masih menggunakan sistem kabel yang penggunaannya sedikit rumit, sehingga dapat mengurangi kenyamanan dan fleksibilitas dari pengguna. Dari masalah ini, dilakukan penelitian berupa usulan untuk membuat FES dengan sistem wireless yang dimana perangkat ini terdiri dari dua hardware wireless FES yang dipasangkan pada segmen thigh, segmen shank dan juga penambahan sensor pada heel, toe pada telapak kaki. Untuk komunikasi antara kedua perangkat wireless FES tersebut akan dihubungkan dengan modul bluetooth (HC05) sehingga dapat mengurangi penggunaan kabel seperti pada FES umumnya. FES yang dirancang dikontrol menggunakan Fuzzy Logic Controller (FLC) berbasis cycle-to-cycle control yang menargetkan 3 otot pada bagian lower limb yaitu otot Tibialis Anterior (TA), Gastrocnemius (GC), dan Vastus (VA). Berdasarkan joint angle parameter yang didapat, FLC efektif berperan untuk mengatur stimulasi otot yang ditargetkan. Pada FLC1 yang mengatur otot Tibialis Anterior (TA) untuk gerakan ankle dorsiflexion dapat dilihat dari parameter Maximum Ankle Dorsiflexion at Swing Phase (MADsw), dimana didapatkan sudut setelah stimulasi sebesar (108.53±2.08⁰), mendekati sudut target 98⁰. Pada FLC2 yang mengatur otot Gastrocnemius (GC) untuk gerakan ankle plantarflexion dapat dilihat dari parameter Maximum Ankle Plantarflexion at Swing Phase (MAPsw), dimana didapatkan sudut setelah stimulasi sebesar (82.85±5.14⁰), mendekati sudut target 82⁰. Pada FLC3 yang mengatur otot Vastus (VA) untuk gerakan knee extension dapat dilihat dari parameter Maximum Knee Extension at Swing Phase (MKEsw), dimana didapatkan sudut setelah stimulasi sebesar (12.69±1.8⁰), mendekati sudut target 14⁰. =========================================================== Stroke is one of the dangerous diseases in the world. The paralysis itself is most often caused by a stroke. One result of paralysis is a significantly reduced ability to walk for a sufferer, especially a person with hemiplegia. Functional Electrical Stimulation (FES) is an alternative treatment that has been widely used in rehabilitation strategies for individuals with neurological disorders. The purpose of FES interventions is to enable functional movements by replacing or helping with the activation of an unconscious muscle in someone. FES can improve motor learning and increase the plasticity of the Central Nerveous System (CNS). However, FES currently still uses a cable system which is a bit complicated, so it can reduce the convenience and flexibility of the user. From this problem, a research was carried out in the form of a proposal to make FES with a wireless system in which this device consisted of 2 FES wireless hardware that were attached to the thigh segment, shank segment and also the addition of sensors on the heel, toe on the sole of the foot. For communication between the two FES wireless devices will be connected to the bluetooth module (HC05) so as to reduce the use of cable as in FES in general. The designed FES is controlled using a cycle-to-cycle control based on Fuzzy Logic Controller (FLC) which targets 3 muscles in the lower limb, namely the Tibialis Anterior (TA), Gastrocnemius (GC), and Vastus (VA) muscles. Based on the joint angle parameters obtained, FLC effectively plays a role in regulating targeted muscle stimulation. The FLC1 that regulates the Anterior Tibialis muscle (TA) for ankle dorsiflexion movement can be seen from the Maximum Ankle Dorsiflexion at Swing Phase (MADsw) parameter, where an angle after stimulation is obtained (108.53±2.08⁰), approaching the target angle of 98⁰. The FLC2 that regulates the Gastrocnemius (GC) muscle for ankle plantarflexion movement can be seen from the Maximum Ankle Plantarflexion at Swing Phase (MAPsw) parameter, where the angle after stimulation is obtained (82.85±5.14⁰), approaching the target angle of 82⁰. In FLC3 regulating Vastus (VA) muscles for knee extension movements can be seen from the Maximum Knee Extension at Swing Phase (MKEsw) parameter, where the angle after stimulation is obtained (12.69±1.8⁰), approaching the target angle of 14⁰
    corecore