1,110,709 research outputs found

    Combining Density Functional Theory and Density Matrix Functional Theory

    Full text link
    We combine density-functional theory with density-matrix functional theory to get the best of both worlds. This is achieved by range separation of the electronic interaction which permits to rigorously combine a short-range density functional with a long-range density-matrix functional. The short-range density functional is approximated by the short-range version of the Perdew-Burke-Ernzerhof functional (srPBE). The long-range density-matrix functional is approximated by the long-range version of the Buijse-Baerends functional (lrBB). The obtained srPBE+lrBB method accurately describes both static and dynamic electron correlation at a computational cost similar to that of standard density-functional approximations. This is shown for the dissociation curves of the H2_{2}, LiH, BH and HF molecules.Comment: 4 pages, 5 figure

    Stochastic density functional theory

    Get PDF
    Linear-scaling implementations of density functional theory (DFT) reach their intended efficiency regime only when applied to systems having a physical size larger than the range of their Kohn-Sham density matrix (DM). This causes a problem since many types of large systems of interest have a rather broad DM range and are therefore not amenable to analysis using DFT methods. For this reason, the recently proposed stochastic DFT (sDFT), avoiding exhaustive DM evaluations, is emerging as an attractive alternative linear-scaling approach. This review develops a general formulation of sDFT in terms of a (non)orthogonal basis representation and offers an analysis of the statistical errors (SEs) involved in the calculation. Using a new Gaussian-type basis-set implementation of sDFT, applied to water clusters and silicon nanocrystals, it demonstrates and explains how the standard deviation and the bias depend on the sampling rate and the system size in various types of calculations. We also develop basis-set embedded-fragments theory, demonstrating its utility for reducing the SEs for energy, density of states and nuclear force calculations. Finally, we discuss the algorithmic complexity of sDFT, showing it has CPU wall-time linear-scaling. The method parallelizes well over distributed processors with good scalability and therefore may find use in the upcoming exascale computing architectures

    Implicit Density Functional Theory

    Full text link
    A fermion ground state energy functional is set up in terms of particle density, relative pair density, and kinetic energy tensor density. It satisfies a minimum principle if constrained by a complete set of compatibility conditions. A partial set, which thereby results in a lower bound energy under minimization, is obtained from the solution of model systems, as well as a small number of exact sum rules. Prototypical application is made to several one-dimensional spinless non-interacting models. The effectiveness of "atomic" constraints on model "molecules" is observed, as well as the structure of systems with only finitely many bound states.Comment: 9 pages, 4 figure

    Local-spin-density functional for multideterminant density functional theory

    Full text link
    Based on exact limits and quantum Monte Carlo simulations, we obtain, at any density and spin polarization, an accurate estimate for the energy of a modified homogeneous electron gas where electrons repel each other only with a long-range coulombic tail. This allows us to construct an analytic local-spin-density exchange-correlation functional appropriate to new, multideterminantal versions of the density functional theory, where quantum chemistry and approximate exchange-correlation functionals are combined to optimally describe both long- and short-range electron correlations.Comment: revised version, ti appear in PR

    Density functional theory of electrowetting

    Full text link
    The phenomenon of electrowetting, i.e., the dependence of the macroscopic contact angle of a fluid on the electrostatic potential of the substrate, is analyzed in terms of the density functional theory of wetting. It is shown that electrowetting is not an electrocapillarity effect, i.e., it cannot be consistently understood in terms of the variation of the substrate-fluid interfacial tension with the electrostatic substrate potential, but it is related to the depth of the effective interface potential. The key feature, which has been overlooked so far and which occurs naturally in the density functional approach is the structural change of a fluid if it is brought into contact with another fluid. These structural changes occur in the present context as the formation of finite films of one fluid phase in between the substrate and the bulk of the other fluid phase. The non-vanishing Donnan potentials (Galvani potential differences) across such film-bulk fluid interfaces, which generically occur due to an unequal partitioning of ions as a result of differences of solubility contrasts, lead to correction terms in the electrowetting equation, which become relevant for sufficiently small substrate potentials. Whereas the present density functional approach confirms the commonly used electrocapillarity-based electrowetting equation as a good approximation for the cases of metallic electrodes or electrodes coated with a hydrophobic dielectric in contact with an electrolyte solution and an ion-free oil, a significantly reduced tendency for electrowetting is predicted for electrodes coated with a dielectric which is hydrophilic or which is in contact with two immiscible electrolyte solutions.Comment: Submitte

    Density Functional Theory -- an introduction

    Get PDF
    Density Functional Theory (DFT) is one of the most widely used methods for "ab initio" calculations of the structure of atoms, molecules, crystals, surfaces, and their interactions. Unfortunately, the customary introduction to DFT is often considered too lengthy to be included in various curricula. An alternative introduction to DFT is presented here, drawing on ideas which are well-known from thermodynamics, especially the idea of switching between different independent variables. The central theme of DFT, i.e. the notion that it is possible and beneficial to replace the dependence on the external potential v(r) by a dependence on the density distribution n(r), is presented as a straightforward generalization of the familiar Legendre transform from the chemical potential (\mu) to the number of particles (N). This approach is used here to introduce the Hohenberg-Kohn energy functional and to obtain the corresponding theorems, using classical nonuniform fluids as simple examples. The energy functional for electronic systems is considered next, and the Kohn-Sham equations are derived. The exchange-correlation part of this functional is discussed, including both the local density approximation to it, and its formally exact expression in terms of the exchange-correlation hole. A very brief survey of various applications and extensions is included.Comment: Substantially revised to improve pedagogical value; explicit examples added. 14 twocolumn pages, 4 figures, American Journal of Physics (in press

    Spin in Density-Functional Theory

    Full text link
    The accurate description of open-shell molecules, in particular of transition metal complexes and clusters, is still an important challenge for quantum chemistry. While density-functional theory (DFT) is widely applied in this area, the sometimes severe limitations of its currently available approximate realizations often preclude its application as a predictive theory. Here, we review the foundations of DFT applied to open-shell systems, both within the nonrelativistic and the relativistic framework. In particular, we provide an in-depth discussion of the exact theory, with a focus on the role of the spin density and possibilities for targeting specific spin states. It turns out that different options exist for setting up Kohn-Sham DFT schemes for open-shell systems, which imply different definitions of the exchange-correlation energy functional and lead to different exact conditions on this functional. Finally, we suggest some possible directions for future developments

    Warming Up Density Functional Theory

    Full text link
    Density functional theory (DFT) has become the most popular approach to electronic structure across disciplines, especially in material and chemical sciences. Last year, at least 30,000 papers used DFT to make useful predictions or give insight into an enormous diversity of scientific problems, ranging from battery development to solar cell efficiency and far beyond. The success of this field has been driven by usefully accurate approximations based on known exact conditions and careful testing and validation. In the last decade, applications of DFT in a new area, warm dense matter, have exploded. DFT is revolutionizing simulations of warm dense matter including applications in controlled fusion, planetary interiors, and other areas of high energy density physics. Over the past decade or so, molecular dynamics calculations driven by modern density functional theory have played a crucial role in bringing chemical realism to these applications, often (but not always) with excellent agreement with experiment. This chapter summarizes recent work from our group on density functional theory at non-zero temperatures, which we call thermal DFT. We explain the relevance of this work in the context of warm dense matter, and the importance of quantum chemistry to this regime. We illustrate many basic concepts on a simple model system, the asymmetric Hubbard dimer
    corecore