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Abstract

Dispersion interactions are commonly included in density functional theory (DFT)

calculations through the addition of an empirical correction. In this study, a modifica-

tion is made to the damping function in DFT-D2 calculations, to describe repulsion at

small internuclear distances. The resulting Atomic Interactions Represented By Em-

pirical Dispersion (AIRBED) approach is used to model the physisorption of molecules

on surfaces such as graphene and hexagonal boron nitride, where the constituent atoms

of the surface are no longer required to be included explicitly in the density functional

theory calculation but are represented by a point charge to capture electrostatic effects.

It is shown that this model can reproduce the structures predicted by full DFT-D2 cal-

culations to a high degree of accuracy. The significant reduction in computational cost

allows much larger systems to be studied, including molecular arrays on surfaces and

sandwich complexes involving organic molecules between two surface layers.
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Introduction

The study of 2-dimensional (2D) arrays of organic molecules on surfaces is an increasingly

important area of research owing to their potential applications in a range of fields including

electronic and optoelectronic devices.1–4 Understanding the interactions that underpin the

organisation of these arrays is key to realising their potential. These interactions can in-

clude hydrogen bonding, covalent bonding, dispersion forces and metal coordination, which

may all have a significant role in the structure of the array.5–8 One area of particular focus

is the study of organic arrays on surfaces such as graphene and hexagonal boron nitride

(hBN). These arrays can be imaged using scanning tunnelling microscopy and atomic force

microscopy, which can provide high-resolution images of 2D molecular and supramolecular

organization under ultra-high-vacuum conditions and at atmospheric pressure.9–13 When ad-

sorbed on insulating surfaces, the fluorescence of the adsorbed molecular layers can also be

measured providing a direct link to the optoelectronic properties of the arrays.14–20

Recent experimental work has shown shifts in the fluorescence emission bands arising

from adsorption on hBN can be measured, and it has also been demonstrated that these

shifts can arise from changes in the molecular structure that occur on absorption, and other

factors such as screening effects that depend on the refractive index of the substrate.14–20

Quantum chemical calculations, for example density functional theory (DFT), can make

a significant contribution to characterising the structure of adsorbed molecular arrays and

also their optoelectronic properties. An inherent limitation of molecular quantum chemical

calculations for these systems is the computational cost of treating a large organic molecule

and the model of the surface so that only a single molecule may be typically considered.18

Clearly it is desirable that many adsorbed organic molecules are included in the calculation

to capture the effects of the larger molecular array, and this motivates the search for com-

putationally less expensive approaches that include the important interactions that can be

used to model the structure of these systems.
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Quantum chemical methods, including coupled cluster theory, have been used to deter-

mine the absorption energies of small molecules on molecular models of the graphene and

fluorographene surfaces.21–23 A symmetry adapted perturbation theory analysis showed that

the dominant contribution to the adsorption energy arises from dispersion21 which is con-

sistent with other work which also found that dispersion is the most significant interaction

between the insulating surface and adsorbed array for systems where the molecular arrays

are physisorbed on the surface.18 The next largest contribution to the adsorption energy

came from the electrostatic interactions. In this work we focus on DFT since this can be

most readily applied to larger systems. Incorporating dispersion forces within DFT is an

active area of research.24–33 However, the most computationally efficient approaches are em-

pirical dispersion models. An example of this approach is the DFT-D2 dispersion correction

of Grimme,28 in this approach the total energy is expressed as

EDFT−D2 = EKS−DFT + EDISP (1)

where EKS−DFT is the usual DFT energy according to the chosen functional, and EDISP is

the dispersion energy that is typically given by

EDISP = −s6
N∑
A

N∑
B<A

CAB
6

R6
AB

fdmp(RAB) (2)

CAB
6 = (CA

6 C
B
6 )1/2 (3)

fdmp(RAB) = [1 + e−d(RAB/R
0
AB−1)]−1. (4)

Here RAB and R0
AB are the internuclear separation and sum of the van der Waals radii of

atoms A and B respectively, CAB
6 is the dispersion coefficient for atom pair AB, s6 is a scaling

factor and there are N atoms in the system. The role of the damping function, fdmp(RAB) is

to avoid double counting of electron correlation effects and the near-singularites as RAB → 0.

In this paper, we describe a modification to the damping function so that it also describes the
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Pauli repulsion between the atom pairs, with the contribution from electrostatic interactions

included by assigning a partial charge to the atomic sites of the surface. The resulting model

is then used to study the structure of molecular arrays on the graphene and hBN surfaces,

and organic molecules trapped between two layers of graphene of hBN.34

Computational Methods

In the approach used here, the atoms of the molecular environment, in this case the surface

atoms, are not included in the DFT calculation but are represented by points in space that

can be assigned a charge q. The interaction between the surface and the molecule is described

by a modification of the dispersion correction to include repulsion. This is achieved through

a modification of the damping function; specifically the surface-molecule interaction EDISP

is replaced by EvdW , where

EvdW = −s6
Ns∑
A

Nm∑
B

CAB
6

R6
AB

f r+ddmp(RAB) (5)

f r+ddmp(RAB) = 1− e[−d(RAB/R
0
AB−1)+α] (6)

for the Ns surface “atoms” and Nm molecule atoms. In this model the repulsion at short

range is described by an exponential function. This functional form for the repulsion is

consistent with the work of Wheatley and Price that that recognised the proportionality

between the exchange-repulsion energy and the charge density overlap.35 The R0
AB values

used for this contribution to the energy are derived from the experimental van der Waals

radii,36 which tend to be greater than the values used in the standard DFT-D2 correction.

The difference in atomic radii used for the two methods reflects the fact that in the con-

ventional approach, the DFT calculation includes interactions with substrate atoms, which

will contribute to the intermolecular interaction, and this interaction is no longer present.

This has also been observed in other approaches that combine empirical potentials with
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the Grimme-type dispersion correction.37 A value of d=20.0 is used, which is unchanged

from the original damping function and s6 and the CAB
6 coefficients are also unchanged. An

additional parameter α is introduced which allows some additional flexibility to tune the

surface-molecule interaction. This parameter has values of 0 and 1.2 for graphene and hBN,

respectively.

We emphasise that for the interaction between the atoms of the adsorbed molecule(s),

the original, unmodified dispersion correction is used. A comparison between the original

dispersion contribution, EDISP , and the modified function, EvdW , is shown in Figure 1 for

the interaction between a carbon atom and a nitrogen atom. The modified interaction poten-

tial replicates the behaviour of the original dispersion correction at internuclear separations

greater than or equal to RAB. However, as RAB → R0
AB the interaction becomes repulsive

reflecting the interatomic repulsion at small distances. For graphene there is no charge as-

signed to the surface atoms, while for hBN the boron atoms have a charge of +0.85 a.u. and

the nitrogen atoms a charge of -0.85 a.u, these charges were determined from a Mulliken

population analysis from a calculation of the surface with no adsorbate present, although we

find that the results are relatively insensitive to the value of the charge. The resulting model

is termed Atomic Interactions Represented By Empirical Dispersion (AIRBED). The treat-

ment of molecules on surfaces using a quantum mechanics/molecular mechanics (QM/MM)

approach where the interaction with the surface is treated by an empirical potential has

been used previously,38 however the approach presented here can be viewed as a QM/MM

approach that is integrated within the DFT calculation. This feature provides the approach

with the potential to be applied to a wide range of systems that would normally be studied

with DFT with dispersion.

The AIRBED model is assessed through a comparison with the structure of a sin-

gle molecule adsorbed on the graphene and hBN surfaces. A set of four molecules; 4,4-
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Figure 1: A comparison of the unmodified dispersion correction, EDISP , (black) and modified
correction, EvdW , (red) for the interaction between a carbon atom and a nitrogen atom.

diiodobiphenyl (4,4-DIB), 1,3,5-tris(4-iodophenyl)benzene (TIPB), 3,4,9,10-perylenetetracarboxylic

diimide (PTCDI) and free-base phthalocyanine (H2Pc) are considered. The structure of these

molecules are shown in Figure 2. These molecules include examples of planar (PTCDI and

H2Pc) and non-planar (4,4-DIB and TIPB) molecules, and are representative of molecules

that have been studied on the hBN surface experimentally. Unmodified DFT-D2 calcula-

tions were performed using the B3LYP functional39,40 and 6-31G basis set. A modest basis

set was used to reduce the cost of these calculations to allow larger molecules to be studied.

However, for the smaller 4,4-DIB molecule it was confirmed that there is not a large depen-

dence on the structure with respect to the larger 6-311G* basis set and also the different

PBE41,42 functional. The structure of molecules adsorbed on the surface were performed us-

ing a finite single layer model of the surface where the edge atoms are capped with hydrogen

atoms derived from a B3LYP/6-31G geometry optimisation. In subsequent optimisations of

surface adsorbed species, the coordinates of the surface atoms are kept fixed in position. All

calculations were performed using a development version of QChem43 and visualised using
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IQmol.

4,4-DIB PTCDI

TIPB H2Pc

TCPP

Figure 2: Set of molecules used in study

Results and Discussion

Table 1 details a comparison between the optimised structures obtained from the full DFT-

D2 calculation and using the AIRBED approach. Comparison is made with the full DFT-D2

calculations because this represents the upper limit for the accuracy of the AIRBED cal-

culations since no improvement in the underlying DFT-D2 model is made. Furthermore,

determination of the structure through experiment is challenging, and for example, mea-

surement of the height of the molecules has uncertainties that are larger than the variation

between the computational values. We focus on two aspects of the structures, firstly, the

height of the molecule above the surface (defined as the average height of atoms above the

surface) and the root mean square deviation (RMSD) between the structures of the adsorbed

molecules. The RMSD is calculated by first rotating the optimised structures using the al-

gorithm proposed by Kabsch,44 the minimum RMSD between the structure from the full
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DFT (rDFT ) and AIRBED (rAB) calculations is evaluated according to

RMSD(rDFT , rAB) =

√√√√ 1

N

N∑
i=1

[
(rDFTix − rABix )2 + (rDFTiy − rABiy )2 + (rDFTiz − rABiz )2

]
(7)

The DFT-D2 calculations predict that the molecules are further from the surface of

graphene compared with hBN, and this trend is replicated by the AIRBED calculations.

The average error in the predicted heights from AIRBED is less than 0.1 Å compared with

the DFT-D2 calculations, with the largest discrepancy of 0.18 Å occurring for PTCDI on

graphene. As expected, the RMSD for the rigid planar molecules PTCDI and H2Pc are very

small and the resulting structures are indistinguishable. For the more, flexible molecules

4,4-DIB and TIPB there is an increase in the RMSD. However, an RMSD of 0.48 Å still

represents a close match between the structures. This is illustrated in Figure 3 which shows

the DFT-D2 and AIRBED optimised structures overlaid for the two systems with largest

RMSD. There are no striking visual differences but a closer inspection shows some misalign-

ment of the phenyl rings.

Table 1: Comparison of full DFT-D2 and AIRBED calculated structures for molecules ad-
sorbed on graphene and hBN with the B3LYP functional and 6-31G basis set.aRoot mean
squared deviation between the structure of the DFT-D2 and AIRBED molecular structures.

Molecule Height DFT-D2 / Å Height AIRBED / Å RMSDa / Å
4,4-DIB on graphene 3.37 3.40 0.22
4,4-DIB on hBN 3.21 3.20 0.12
PTCDI on graphene 3.16 3.34 0.05
PTCDI on hBN 3.08 3.20 0.03
TIPB on graphene 3.42 3.50 0.19
TIPB on hBN 3.25 3.25 0.48
H2Pc on graphene 3.22 3.35 0.04
H2Pc on hBN 3.11 3.21 0.03

Overall, the results show that the AIRBED approach provides a method for optimising

the structure of molecules physisorbed on surfaces within DFT at essentially no additional

computational cost to the optimisation of the structure in without the surface present. This
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4,4-DIB on graphene

TIPB on hBN

Figure 3: A comparison between the DFT-D2 and AIRBED optimised structures for the two
systems with largest RMSD.
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opens a number of potential systems and improvements to the calculations to be consid-

ered. For example, an improved description of the molecule in terms of the basis set used

or much larger systems can be studied. A key interest is the structure and properties of

multi-absorbate systems and molecular networks on these surfaces.12,18,19 Figure 4 shows a

comparison between the relative energies of four different arrays of four CO2 molecules on the

hBN surface determined by DFT-D2 and AIRBED calculations. The results show that the

AIRBED model is able to predict the correct relative order of the stabilities of the different

arrangements, and also the predicted relative energies are in good quantitative agreement

with the full DFT-D2 calculations.

DFT-D2: 0.0  kJ/mol
AIRBED: 0.0 kJ/mol

DFT-D2: 110.3  kJ/mol
AIRBED: 99.8 kJ/mol

DFT-D2: 249.4  kJ/mol
AIRBED: 246.8 kJ/mol

DFT-D2: 567.1  kJ/mol
AIRBED: 559.2 kJ/mol

Figure 4: Comparison between the relative energies from DFT-D2 and AIRBED for arrays of
four CO2 molecules on hBN. The CO2 molecules have a height of 3.02 Å above the surface.
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One network that has been studied experimentally is an array of PTCDI molecules. Fig-

ure 5 illustrates the results of optimising various arrays of five PTCDI molecules. The first

image shows the optimised geometry without a surface present, after starting from the exper-

imentally observed planar structure on hBN. The resulting structure is no longer planar and

has little resemblance to the observed structure of the array on the hBN surface. While for

this particular molecule it is possible to retain a planar structure by imposing Cs symmetry,

in general, this will not be the case. Consequently, the surface plays a vital role in the struc-

ture and organisation of the array. Figure 5 also shows the optimised structures and relative

energies for five different configurations of a PTCDI array on an AIRBED hBN surface. The

calculations considered a network of five PTCDI molecules which requires an AIRBED sur-

face of over 1000 atoms. Even with relatively modest basis sets, such a calculation would be

very challenging in terms of its computational cost if all of these atoms were included fully

within the DFT-D2 calculation. The most stable arrangement of the array predicted by the

calculations is in agreement with the array observed in experiment, with calculations pre-

dicting an average molecular spacing of 14.38 Å, and experiment showing spacing of 14.1 ±

0.2 Å.19,45,46 The calculations also predict that the height of the molecules of the array from

the surface to be 3.15 Å, which is less than the corresponding distance of 3.20 Å for a single

molecule. The stability of this structure arises from maximising the number and strength of

the hydrogen bonds and also it can be effectively extended in two-dimensions. The alterna-

tive arrays studied have fewer hydrogen bonds, and as a consequence the relative energy rises.

A further interesting system that has been studied is the 2-dimensional array of porphyrin

molecules on hBN.18 Here we study four 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin

(TCPP) molecules adsorbed on hBN (Figure 6). This molecule can form arrays through

hydrogen bonding between the carboxylic acid groups. However, there is some conforma-

tional freedom of rotation of the phenyl groups. On adsorption on the surface there is a

flattening of these rings relative to the gas-phase structure. The orientation of these rings
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no surface

+0.0 kJ/mol

+110.0 kJ/mol +185.0 kJ/mol

+206.0 kJ/mol +210.0 kJ/mol

Figure 5: The structure of an array of five PTCDI molecules optimised in gas phase and on
an AIRBED surface. The relative energies and structures for five different configurations of
the array on the surface are shown.
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is found to be 63◦ for the gas-phase monomer, and 46◦ for both the single TCPP molecule

on an AIRBED surface and for the TCPP array on the AIRBED surface. For the array, the

angle is evaluated from an average of the groups that are hydrogen bonded to another TCPP

molecule. These calculations show a significant flattening of these groups which arises as a

direct result of the surface. This flattening is also observed in full DFT-D2 calculations,18

where an angle of 50◦ was found for a single TCPP molecule on a model hBN surface. This

demonstrates that the AIRBED model of the surface is able to capture some of the subtle

effects on molecular geometry caused by the surface. This is useful when considering op-

toelectronic properties, which can be impacted by small changes in molecular packing and

conformation.47,48

TCPP

Figure 6: The structure of an array of four TCPP molecules optimised on an AIRBED hBN
surface.

An extension of these systems which may be invisaged are so-called “sandwich” complexes
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where the organic layer is positioned between two layers. Within a full DFT-D2 treatment,

the number of atoms required to model both layers would make the calculation very com-

putationally demanding. However, within the AIRBED approach the inclusion of the layer

does not add any practical increase in the cost of the calculation. Figure 7 shows the energy

of the PTCDI molecule within two layers of graphene as the interlayer separation is varied.

The lowest energy configuration occurs at a layer separation of 6.80 Å, where the PTCDI

molecule lies in the center of the two layers. This layer spacing corresponds to about 0.1

Å larger than twice the height for a PTCDI molecule on a single layer of 3.34 Å. For smaller

interlayer spacing the energy rises steeply. For larger separations, the PTCDI molecule does

not lie at the mid point of the two layers. This is illustrated in Figure 7 for a separation

of 7.25 Å. For this configuration there is also a noticable curvature of the PTCDI molecule

which arises from the molecule maximising the dispersion interaction from both layers. As

the separation increases beyond 7.25 Å, the molecule tends toward the configuration of a

single layer and is not affected by the presence of the second layer. It is also possible to

extend the model of the surface beyond a single layer. For PTCDI adsorbed on graphene,

expanding the surface to include three layers showed only a small effect on the height of

PTCDI molecule. For the three layer surface the height is found to be 3.33 Å compared with

3.34 Å for a single layer surface.

The properties of the adsorbed molecular arrays can be probed using fluorescence spec-

troscopy,18–20 where distinct shifts in the fluorescence bands resulting from the interaction

with the surface can be measured. Simulation of fluorescence spectra requires optimisation

of the structure of electronically excited states. This can be achieved within the framework

of Kohn-Sham DFT by exploiting the maximum overlap method (MOM)49 which enables

the treatment of excited states through constraining the orbital occupancy such that it cor-

responds to a desired excited state. Using this approach the structure of the S1 state of

PTCDI has been optimised on the full and AIRBED surfaces. The calculated energy dif-
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Figure 7: The energy of PTCDI between two layers of graphene with varying interlayer
separation and the geometry for interlayer separations of 6.80 Å and 7.25 Å.

ference between the S0 and S1 states for the two surface models agree to within 0.01 eV.

This indicates that the findings for the validity of the model for ground state structures also

applies for excited states.

Conclusions

A modification of the damping function used in the standard DFT-D2 method to capture

repulsion in addition to dispersion interaction has been introduced. This provides a QM/MM

approach integrated within the DFT calculation. The resulting AIRBED model is shown

to reproduce closely the structures of molecules physisorbed on graphene and hBN surfaces

predicted by full DFT-D2 calculations at a vastly reduced computational cost. The model

has been used to study molecular arrays adsorbed on hBN and sandwich complexes. These

systems are of interest owing to their potential uses in optoelectronic devices, however, the

AIRBED approach can be applied to a much wider array of systems including the study of

the molecular dynamics of the adsorbed molecules, and these are the subject on on-going
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investigations.
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