1,235 research outputs found

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    A surface registration approach for video-based analysis of intraoperative brain surface deformations.

    Get PDF
    Anatomical intra operative deformation is a major limitation of accuracy in image guided neurosurgery. Approaches to quantify these deforamations based on 3D reconstruction of surfaces have been introduced. For accurate quantification of surface deformation, a robust surface registration method is required. In this paper, we propose a new surface registration for video-based analysis of intraoperative brain deformations. This registration method includes three terms: the first term is related to image intensities, the second to Euclidean distance and the third to anatomical landmarks continuously tracked in 2D video. This new surface registration method can be used with any cortical surface textured point cloud computed by stereoscopic or laser range approaches. We have shown the global method, including textured point cloud reconstruction, had a precision within 2 millimeters, which is within the usual rigid registration error of the neuronavigation system before deformations

    A Feature-Driven Active Framework for Ultrasound-Based Brain Shift Compensation

    Full text link
    A reliable Ultrasound (US)-to-US registration method to compensate for brain shift would substantially improve Image-Guided Neurological Surgery. Developing such a registration method is very challenging, due to factors such as missing correspondence in images, the complexity of brain pathology and the demand for fast computation. We propose a novel feature-driven active framework. Here, landmarks and their displacement are first estimated from a pair of US images using corresponding local image features. Subsequently, a Gaussian Process (GP) model is used to interpolate a dense deformation field from the sparse landmarks. Kernels of the GP are estimated by using variograms and a discrete grid search method. If necessary, the user can actively add new landmarks based on the image context and visualization of the uncertainty measure provided by the GP to further improve the result. We retrospectively demonstrate our registration framework as a robust and accurate brain shift compensation solution on clinical data acquired during neurosurgery

    Computational ultrasound tissue characterisation for brain tumour resection

    Get PDF
    In brain tumour resection, it is vital to know where critical neurovascular structuresand tumours are located to minimise surgical injuries and cancer recurrence. Theaim of this thesis was to improve intraoperative guidance during brain tumourresection by integrating both ultrasound standard imaging and elastography in thesurgical workflow. Brain tumour resection requires surgeons to identify the tumourboundaries to preserve healthy brain tissue and prevent cancer recurrence. Thisthesis proposes to use ultrasound elastography in combination with conventionalultrasound B-mode imaging to better characterise tumour tissue during surgery.Ultrasound elastography comprises a set of techniques that measure tissue stiffness,which is a known biomarker of brain tumours. The objectives of the researchreported in this thesis are to implement novel learning-based methods for ultrasoundelastography and to integrate them in an image-guided intervention framework.Accurate and real-time intraoperative estimation of tissue elasticity can guide towardsbetter delineation of brain tumours and improve the outcome of neurosurgery. We firstinvestigated current challenges in quasi-static elastography, which evaluates tissuedeformation (strain) by estimating the displacement between successive ultrasoundframes, acquired before and after applying manual compression. Recent approachesin ultrasound elastography have demonstrated that convolutional neural networkscan capture ultrasound high-frequency content and produce accurate strain estimates.We proposed a new unsupervised deep learning method for strain prediction, wherethe training of the network is driven by a regularised cost function, composed of asimilarity metric and a regularisation term that preserves displacement continuityby directly optimising the strain smoothness. We further improved the accuracy of our method by proposing a recurrent network architecture with convolutional long-short-term memory decoder blocks to improve displacement estimation and spatio-temporal continuity between time series ultrasound frames. We then demonstrateinitial results towards extending our ultrasound displacement estimation method toshear wave elastography, which provides a quantitative estimation of tissue stiffness.Furthermore, this thesis describes the development of an open-source image-guidedintervention platform, specifically designed to combine intra-operative ultrasoundimaging with a neuronavigation system and perform real-time ultrasound tissuecharacterisation. The integration was conducted using commercial hardware andvalidated on an anatomical phantom. Finally, preliminary results on the feasibilityand safety of the use of a novel intraoperative ultrasound probe designed for pituitarysurgery are presented. Prior to the clinical assessment of our image-guided platform,the ability of the ultrasound probe to be used alongside standard surgical equipmentwas demonstrated in 5 pituitary cases

    Enhancing Registration for Image-Guided Neurosurgery

    Get PDF
    Pharmacologically refractive temporal lobe epilepsy and malignant glioma brain tumours are examples of pathologies that are clinically managed through neurosurgical intervention. The aims of neurosurgery are, where possible, to perform a resection of the surgical target while minimising morbidity to critical structures in the vicinity of the resected brain area. Image-guidance technology aims to assist this task by displaying a model of brain anatomy to the surgical team, which may include an overlay of surgical planning information derived from preoperative scanning such as the segmented resection target and nearby critical brain structures. Accurate neuronavigation is hindered by brain shift, the complex and non-rigid deformation of the brain that arises during surgery, which invalidates assumed rigid geometric correspondence between the neuronavigation model and the true shifted positions of relevant brain areas. Imaging using an interventional MRI (iMRI) scanner in a next-generation operating room can serve as a reference for intraoperative updates of the neuronavigation. An established clinical image processing workflow for iMRI-based guidance involves the correction of relevant imaging artefacts and the estimation of deformation due to brain shift based on non-rigid registration. The present thesis introduces two refinements aimed at enhancing the accuracy and reliability of iMRI-based guidance. A method is presented for the correction of magnetic susceptibility artefacts, which affect diffusion and functional MRI datasets, based on simulating magnetic field variation in the head from structural iMRI scans. Next, a method is presented for estimating brain shift using discrete non-rigid registration and a novel local similarity measure equipped with an edge-preserving property which is shown to improve the accuracy of the estimated deformation in the vicinity of the resected area for a number of cases of surgery performed for the management of temporal lobe epilepsy and glioma
    corecore