537 research outputs found

    Dense image registration and deformable surface reconstruction in presence of occlusions and minimal texture

    Get PDF
    Deformable surface tracking from monocular images is well-known to be under-constrained. Occlusions often make the task even more challenging, and can result in failure if the surface is not sufficiently textured. In this work, we explicitly address the problem of 3D reconstruction of poorly textured, occluded surfaces, proposing a framework based on a template-matching approach that scales dense robust features by a relevancy score. Our approach is extensively compared to current methods employing both local feature matching and dense template alignment. We test on standard datasets as well as on a new dataset (that will be made publicly available) of a sparsely textured, occluded surface. Our framework achieves state-of-the-art results for both well and poorly textured, occluded surfaces

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Template-based Monocular 3-D Shape Reconstruction And Tracking Using Laplacian Meshes

    Get PDF
    This thesis addresses the problem of recovering the 3-D shape of a deformable object in single images, or image sequences acquired by a monocular video camera, given that a 3-D template shape and a template image of the object are available. While being a very challenging problem in computer vision, being able to reconstruct and track 3-D deformable objects in videos allows us to develop many potential applications ranging from sports and entertainments to engineering and medical imaging. This thesis extends the scope of deformable object modeling to real-world applications of fully 3-D modeling of deformable objects from video streams with a number of contributions. We show that by extending the Laplacian formalism, which was first introduced in the Graphics community to regularize 3-D meshes, we can turn the monocular 3-D shape reconstruction of a deformable object given correspondences with a reference image into a much better-posed problem with far fewer degrees of freedom than the original one. This has proved key to achieving real-time performance while preserving both sufficient flexibility and robustness. Our real-time 3-D reconstruction and tracking system of deformable objects can very quickly reject outlier correspondences and accurately reconstruct the object shape in 3D. Frame-to-frame tracking is exploited to track the object under difficult settings such as large deformations, occlusions, illumination changes, and motion blur. We present an approach to solving the problem of dense image registration and 3-D shape reconstruction of deformable objects in the presence of occlusions and minimal texture. A main ingredient is the pixel-wise relevancy score that we use to weigh the influence of the image information from a pixel in the image energy cost function. A careful design of the framework is essential for obtaining state-of-the-art results in recovering 3-D deformations of both well- and poorly-textured objects in the presence of occlusions. We study the problem of reconstructing 3-D deformable objects interacting with rigid ones. Imposing real physical constraints allows us to model the interactions of objects in the real world more accurately and more realistically. In particular, we study the problem of a ball colliding with a bat observed by high speed cameras. We provide quantitative measurements of the impact that are compared with simulation-based methods to evaluate which simulation predictions most accurately describe a physical quantity of interest and to improve the models. Based on the diffuse property of the tracked deformable object, we propose a method to estimate the environment irradiance map represented by a set of low frequency spherical harmonics. The obtained irradiance map can be used to realistically illuminate 2-D and 3-D virtual contents in the context of augmented reality on deformable objects. The results compare favorably with baseline methods. In collaboration with Disney Research, we develop an augmented reality coloring book application that runs in real-time on mobile devices. The app allows the children to see the coloring work by showing animated characters with texture lifted from their colors on the drawing. Deformations of the book page are explicitly modeled by our 3-D tracking and reconstruction method. As a result, accurate color information is extracted to synthesize the character's texture

    GASP : Geometric Association with Surface Patches

    Full text link
    A fundamental challenge to sensory processing tasks in perception and robotics is the problem of obtaining data associations across views. We present a robust solution for ascertaining potentially dense surface patch (superpixel) associations, requiring just range information. Our approach involves decomposition of a view into regularized surface patches. We represent them as sequences expressing geometry invariantly over their superpixel neighborhoods, as uniquely consistent partial orderings. We match these representations through an optimal sequence comparison metric based on the Damerau-Levenshtein distance - enabling robust association with quadratic complexity (in contrast to hitherto employed joint matching formulations which are NP-complete). The approach is able to perform under wide baselines, heavy rotations, partial overlaps, significant occlusions and sensor noise. The technique does not require any priors -- motion or otherwise, and does not make restrictive assumptions on scene structure and sensor movement. It does not require appearance -- is hence more widely applicable than appearance reliant methods, and invulnerable to related ambiguities such as textureless or aliased content. We present promising qualitative and quantitative results under diverse settings, along with comparatives with popular approaches based on range as well as RGB-D data.Comment: International Conference on 3D Vision, 201

    Deep Shape-from-Template: Single-image quasi-isometric deformable registration and reconstruction

    Get PDF
    Shape-from-Template (SfT) solves 3D vision from a single image and a deformable 3D object model, called a template. Concretely, SfT computes registration (the correspondence between the template and the image) and reconstruction (the depth in camera frame). It constrains the object deformation to quasi-isometry. Real-time and automatic SfT represents an open problem for complex objects and imaging conditions. We present four contributions to address core unmet challenges to realise SfT with a Deep Neural Network (DNN). First, we propose a novel DNN called DeepSfT, which encodes the template in its weights and hence copes with highly complex templates. Second, we propose a semi-supervised training procedure to exploit real data. This is a practical solution to overcome the render gap that occurs when training only with simulated data. Third, we propose a geometry adaptation module to deal with different cameras at training and inference. Fourth, we combine statistical learning with physics-based reasoning. DeepSfT runs automatically and in real-time and we show with numerous experiments and an ablation study that it consistently achieves a lower 3D error than previous work. It outperforms in generalisation and achieves great performance in terms of reconstruction and registration error with wide-baseline, occlusions, illumination changes, weak texture and blur.Agencia Estatal de InvestigaciĂłnMinisterio de EducaciĂł

    {IsMo-GAN}: {A}dversarial Learning for Monocular Non-Rigid {3D} Reconstruction

    Get PDF
    The majority of the existing methods for non-rigid 3D surface regression from monocular 2D images require an object template or point tracks over multiple frames as an input, and are still far from real-time processing rates. In this work, we present the Isometry-Aware Monocular Generative Adversarial Network (IsMo-GAN) - an approach for direct 3D reconstruction from a single image, trained for the deformation model in an adversarial manner on a light-weight synthetic dataset. IsMo-GAN reconstructs surfaces from real images under varying illumination, camera poses, textures and shading at over 250 Hz. In multiple experiments, it consistently outperforms several approaches in the reconstruction accuracy, runtime, generalisation to unknown surfaces and robustness to occlusions. In comparison to the state-of-the-art, we reduce the reconstruction error by 10-30% including the textureless case and our surfaces evince fewer artefacts qualitatively

    State of the Art in Dense Monocular Non-Rigid 3D Reconstruction

    Get PDF
    3D reconstruction of deformable (or non-rigid) scenes from a set of monocular2D image observations is a long-standing and actively researched area ofcomputer vision and graphics. It is an ill-posed inverse problem,since--without additional prior assumptions--it permits infinitely manysolutions leading to accurate projection to the input 2D images. Non-rigidreconstruction is a foundational building block for downstream applicationslike robotics, AR/VR, or visual content creation. The key advantage of usingmonocular cameras is their omnipresence and availability to the end users aswell as their ease of use compared to more sophisticated camera set-ups such asstereo or multi-view systems. This survey focuses on state-of-the-art methodsfor dense non-rigid 3D reconstruction of various deformable objects andcomposite scenes from monocular videos or sets of monocular views. It reviewsthe fundamentals of 3D reconstruction and deformation modeling from 2D imageobservations. We then start from general methods--that handle arbitrary scenesand make only a few prior assumptions--and proceed towards techniques makingstronger assumptions about the observed objects and types of deformations (e.g.human faces, bodies, hands, and animals). A significant part of this STAR isalso devoted to classification and a high-level comparison of the methods, aswell as an overview of the datasets for training and evaluation of thediscussed techniques. We conclude by discussing open challenges in the fieldand the social aspects associated with the usage of the reviewed methods.<br

    State of the Art in Dense Monocular Non-Rigid 3D Reconstruction

    Full text link
    3D reconstruction of deformable (or non-rigid) scenes from a set of monocular 2D image observations is a long-standing and actively researched area of computer vision and graphics. It is an ill-posed inverse problem, since--without additional prior assumptions--it permits infinitely many solutions leading to accurate projection to the input 2D images. Non-rigid reconstruction is a foundational building block for downstream applications like robotics, AR/VR, or visual content creation. The key advantage of using monocular cameras is their omnipresence and availability to the end users as well as their ease of use compared to more sophisticated camera set-ups such as stereo or multi-view systems. This survey focuses on state-of-the-art methods for dense non-rigid 3D reconstruction of various deformable objects and composite scenes from monocular videos or sets of monocular views. It reviews the fundamentals of 3D reconstruction and deformation modeling from 2D image observations. We then start from general methods--that handle arbitrary scenes and make only a few prior assumptions--and proceed towards techniques making stronger assumptions about the observed objects and types of deformations (e.g. human faces, bodies, hands, and animals). A significant part of this STAR is also devoted to classification and a high-level comparison of the methods, as well as an overview of the datasets for training and evaluation of the discussed techniques. We conclude by discussing open challenges in the field and the social aspects associated with the usage of the reviewed methods.Comment: 25 page
    • …
    corecore