2,592 research outputs found

    Pirate plunder: game-based computational thinking using scratch blocks

    Get PDF
    Policy makers worldwide argue that children should be taught how technology works, and that the ‘computational thinking’ skills developed through programming are useful in a wider context. This is causing an increased focus on computer science in primary and secondary education. Block-based programming tools, like Scratch, have become ubiquitous in primary education (5 to 11-years-old) throughout the UK. However, Scratch users often struggle to detect and correct ‘code smells’ (bad programming practices) such as duplicated blocks and large scripts, which can lead to programs that are difficult to understand. These ‘smells’ are caused by a lack of abstraction and decomposition in programs; skills that play a key role in computational thinking. In Scratch, repeats (loops), custom blocks (procedures) and clones (instances) can be used to correct these smells. Yet, custom blocks and clones are rarely taught to children under 11-years-old. We describe the design of a novel educational block-based programming game, Pirate Plunder, which aims to teach these skills to children aged 9-11. Players use Scratch blocks to navigate around a grid, collect items and interact with obstacles. Blocks are explained in ‘tutorials’; the player then completes a series of ‘challenges’ before attempting the next tutorial. A set of Scratch blocks, including repeats, custom blocks and clones, are introduced in a linear difficulty progression. There are two versions of Pirate Plunder; one that uses a debugging-first approach, where the player is given a program that is incomplete or incorrect, and one where each level begins with an empty program. The game design has been developed through iterative playtesting. The observations made during this process have influenced key design decisions such as Scratch integration, difficulty progression and reward system. In future, we will evaluate Pirate Plunder against a traditional Scratch curriculum and compare the debugging-first and non-debugging versions in a series of studies

    The Case for Visual Analytics of Arsenic Concentrations in Foods

    Get PDF
    Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i) metabolism of arsenic in the human body; (ii) arsenic concentrations in various foods; (ii) factors affecting arsenic uptake in plants; (ii) introduction to visual analytics; and (iv) benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species

    Guide to using Evidence in Higher Education

    Get PDF
    This Guide to Using Evidence has been designed to, to support and encourage students and students’ association and union staff to actively engage with data and evidence. It offers an accessible introduction to a range of key ideas and concepts and a range of activities which allow readers to develop their own thinking and confidence in key areas. The ambition of its authors, QAA Scotland and the students who reviewed early drafts, is that students and students’ association and union staff will reach for this resource as they prepare for committees, devise new campaigns, deliver services, and do all of the other things they do to enhance students’ experiences and outcomes. Underpinning all of this is a belief that students themselves, the institutions they are working with, and the sector as a whole, are better served when students are, and are seen to be, agents in the ‘data landscape’, not just subjects of it. Engaging with this Guide will help students and students’ association and union staff to develop that sense of agency in themselves and foster it in others. This Guide is a product of a student-led project coordinated by QAA Scotland as part of the Evidence for Enhancement Theme (2017-20)

    McNair Scholars SmartNews, April 2012

    Get PDF
    • …
    corecore