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Abstract: Policy makers worldwide argue that children should be taught how technology works, and that the ‘computational 
thinking’ skills developed through programming are useful in a wider context. This is causing an increased focus on computer 
science in primary and secondary education. Block-based programming tools, like Scratch, have become ubiquitous in 
primary education (5 to 11-years-old) throughout the UK. However, Scratch users often struggle to detect and correct ‘code 
smells’ (bad programming practices) such as duplicated blocks and large scripts, which can lead to programs that are difficult 
to understand. These ‘smells’ are caused by a lack of abstraction and decomposition in programs; skills that play a key role 
in computational thinking. In Scratch, repeats (loops), custom blocks (procedures) and clones (instances) can be used to 
correct these smells. Yet, custom blocks and clones are rarely taught to children under 11-years-old. We describe the design 
of a novel educational block-based programming game, Pirate Plunder, which aims to teach these skills to children aged 9-
11. Players use Scratch blocks to navigate around a grid, collect items and interact with obstacles. Blocks are explained in 
‘tutorials’; the player then completes a series of ‘challenges’ before attempting the next tutorial. A set of Scratch blocks, 
including repeats, custom blocks and clones, are introduced in a linear difficulty progression. There are two versions of Pirate 
Plunder; one that uses a debugging-first approach, where the player is given a program that is incomplete or incorrect, and 
one where each level begins with an empty program. The game design has been developed through iterative playtesting. 
The observations made during this process have influenced key design decisions such as Scratch integration, difficulty 
progression and reward system. In future, we will evaluate Pirate Plunder against a traditional Scratch curriculum and 
compare the debugging-first and non-debugging versions in a series of studies. 
 
Keywords: computational thinking, Scratch, game-based learning, visual programming, computer science education 

1. Introduction 
Today’s children will go on to live a life greatly influenced by computing, both in the home and at work (Barr and 
Stephenson, 2011). Policy makers, supported by the technology industry, are arguing that children should be 
taught how this technology works, to produce ‘digital citizens’ for an increasingly IT-based global economy 
(Wilson et al., 2010; Furber, 2012). This has led several countries to introduce computer science to children 
across primary and secondary education (age 5 to 16) (Heintz, Mannila and Farnqvist, 2016). 
 
One of the central arguments behind this is that the ‘computational thinking’ skills developed through 
programming are useful in a wider context. Current definitions of computational thinking involve working at 
multiple levels of abstraction, writing algorithms, understanding flow control, recognising patterns and 
decomposing problems (e.g. Seiter and Foreman, 2013; Kalelioğlu, Gülbahar and Kukul, 2016). These ideas have 
played a role in defining current computer science learning content for children, particularly in England 
(Manches and Plowman, 2015). 
 
A variety of block-based programming tools have been created for novice programmers. The most widely-used 
of these tools is Scratch, a block-based visual programming environment used to create games, stories and 
animations (Maloney, Resnick and Rusk, 2010). Scratch is used to teach computer science from early-years to 
higher education. However, Scratch users can struggle to detect and correct bad programming practices (known 
as ‘code smells’) such as duplicated blocks and large scripts (Aivaloglou and Hermans, 2016), which make 
programs difficult to understand, debug and maintain. These ‘smells’ can be corrected by using repeats (loops), 
custom blocks (procedures) and clones (instances). However, the concept of code reuse, including custom blocks 
and clones, is rarely taught to children under 11-years-old. 
 
This paper explains the design of a novel educational block-based programming game, Pirate Plunder, which 
aims to teach players to identify and correct code smells by using Scratch’s repeats, custom blocks and clones. 
We start with the background and rationale for the game, covering block-based programming tools, 
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computational thinking and code smells. We then give an overview of the game and explain important game 
design decisions. This covers Scratch integration, difficulty progression, reward system, debugging and analytics. 

2. Background 

2.1 Block-based programming 

Block-based programming is used in creative visual environments (e.g. Scratch), games, such as Code.org 
(Code.org, 2018), Kodetu (Learning Lab, 2017) and Lightbot (Lightbot Inc., 2016) and for programming physical 
devices. It allows novices to program without learning syntax or memorising commands. 

2.1.1 Scratch 

Scratch is the most popular block-based visual programming environment, with over 30 million projects shared 
on its online platform since its public release in 2007 (Scratch Team, 2018). Designed for children aged 8 and 
above, it has been used from early-years to higher education to teach computer science and as a stepping stone 
to text-based programming languages (Franklin et al., 2016). Research indicates that Scratch can be used to 
improve wider skills of mathematics (Calao et al., 2015) and problem-solving (Giordano and Maiorana, 2014). 
 
The teaching curriculum used with Scratch is important because of its constructionist (Papert, 1980) nature. In 
Scratch, all blocks are available from the start and there is little-inbuilt guidance. Scratch encourages a 
constructionist bottom-up (sometimes called ‘bricolage’) approach to problem-solving, where solutions are 
unplanned and created largely through exploration (Rose, 2016). However, this conflicts with the top-down 
programming approach traditionally taught in computer science and can result in bad programming practices. 
For example, decomposing programs into many small scripts (sometimes hundreds) that lack logical coherence 
(Meerbaum-Salant, Armoni and Ben-Ari, 2011) and writing programs with duplicated blocks and long scripts that 
can be difficult to understand and maintain (Aivaloglou and Hermans, 2016). 

2.1.2 Programming games 

The benefits of game-based learning in educational contexts are well researched (Boyle et al., 2016). 
Programming games usually involve navigating an object through a grid, either using block-based or text-based 
instructions. Harms, et al. (2015) suggest that puzzle-like approaches are more effective than tutorials for 
teaching programming to novices. There are also indications that computational thinking can be taught using 
these games (e.g. Gouws, Bradshaw and Wentworth, 2013; Rowe et al., 2018). 
 
Some programming games such as Gidget (Lee and Ko, 2014) and Robot ON! (Miljanovic and Bradbury, 2016) 
use a debugging-first approach, where the player is given an incomplete or incorrect program instead of starting 
with an empty program. Liu et al. (2017) found that in their programming game, BOTS, debugging required a 
deeper understanding than writing new code, which supports the theory that novices learn better when 
completing existing programs than by generating new ones (Van Merriënboer and De Croock, 1992). This is 
known as the completion strategy (Paas, 1992), which reduces cognitive load because part of the solution is 
visible and does not have to be held in working memory. 

2.2 Computational thinking 

The idea that computing’s unique methods of thinking can be used as general purpose ‘mental tools’ has been 
around since the conception of computing and computer science (Denning, 2017). Papert (1980) first described 
these skills as computational thinking (CT) while researching how children can develop procedural thinking 
through computer programming. Wing (2006) sparked a renewed interest in the topic, suggesting that “to 
reading, writing, and arithmetic, we should add CT to every child’s analytical ability” (p. 33). CT was recently 
defined as “the conceptual foundation required to solve problems effectively and efficiently (i.e., algorithmically, 
with or without the assistance of computers) with solutions that are reusable in different contexts” (Shute, Sun 
and Asbell-Clarke, 2017, p. 142). Yet, there is still no unanimous agreement on a definition (Durak and Saritepeci, 
2018). Rose, Habgood and Jay (2017) analysed several widely-cited CT definitions and came up with a list of 
common concepts: 

� Abstraction and generalisation (removing detail from a problem and formulating solutions in generic terms) 

� Pattern recognition (finding similarities in problems) 
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� Algorithms and procedures (using sequences of steps and rules to solve a problem) 

� Data collection, analysis and representation (using and analysing data to help solve a problem) 

� Decomposition (breaking a problem down into parts) 

� Parallelism (having more than one thing happening at once) 

� Debugging, testing and analysis (identifying, removing and fixing errors) 

� Control structures (using conditional statements and loops) 

2.2.1 Dr. Scratch 

Dr. Scratch (Moreno-León and Robles, 2015) assesses Scratch projects for CT skills. Projects are given a score out 
of 21 across seven CT concepts, based on the blocks used (Table 1). These scores have been correlated with both 
software complexity metrics and human expert judgements (Moreno-León, Robles and Román-González, 2016; 
Moreno-León et al., 2017). Dr. Scratch has been used in recent studies as a measure of CT (e.g. Foerster, Foerster 
and Loewe, 2018). 

Table 1: Dr. Scratch scoring system 

CT Concept Basic (1 point) Developing (2) Proficiency (3) 
Logical thinking If If else Logic operations 

Data 
representation 

Modifiers of sprites 
properties 

Variables Lists 

User Interactivity Green flag Keyboard, mouse, ask 
and wait 

Webcam, input sound 

Control flow Sequence of blocks Repeat, forever Repeat until 
Abstraction and 

problem 
decomposition 

More than one script and 
more than one sprite 

Use of custom blocks Use of 'clones' (instances 
of sprites) 

Parallelism Two scripts on green flag Two scripts on key 
pressed or sprite clicked 

Two scripts on receive 
message, video/audio 

input, backdrop change 
Synchronisation Wait Message broadcast, 

stop all, stop program 
Wait until, when backdrop 
changes to, broadcast and 

wait 

2.3 Code smells 

Bad programming practices are also known as ‘code smells’. A code smell is a surface indication in a program 
that usually corresponds to a deeper problem (Fowler et al., 1999), for example, duplicated code, long methods 
and long parameter lists. In Scratch, duplicated blocks, long scripts and dead blocks (not connected to an event 
block) are all code smells. Code smells make Scratch programs difficult to understand and debug, which can 
impact project quality and the ease with which learners can alter projects. This is particularly important because 
‘remixing’ other people’s projects is a large part of the Scratch online platform (Dasgupta et al., 2016). 
 
Interestingly, novice programmers “prone to introducing some smells do so even as they gain experience” 
(Techapalokul and Tilevich, 2017, p. 10), suggesting that at least some formal educational intervention is 
required. However, it is difficult to know when to introduce the concept of code reuse to novices. In a recent 
work, Hermans and Aivaloglou (2017) created a Scratch-based MOOC online course that integrates software 
engineering concepts into a Scratch programming curriculum. Their results were promising, reporting that 
novices can avoid code smells and discern between good and bad programming practice. However, an analysis 
of 230,000 Scratch projects indicates that learners who potentially know how to avoid code duplication will still 
duplicate blocks frequently (Robles et al., 2017). 

2.3.1 Abstraction 

Abstraction is used to remove duplicated code and reduce the size of long methods, usually taking place through 
refactoring (or restructuring) existing code (Fowler et al., 1999). The goal is that programs are arranged using 
reusable components that minimise code duplication. Abstraction is the process of removing detail from a 
problem to generate patterns and find similarities in problems. It is a key concept in computer science (Dijkstra, 
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1972) and the main tenant of CT (Wing, 2006), linking closely with other skills of generalisation, pattern 
recognition and decomposition. Teaching abstraction to novices is a difficult task (Armoni, 2013), which explains 
difficulties in knowing when to introduce the concept of code reuse. 
 
Dr. Scratch (section 2.2.1) measures abstraction and decomposition skills through the use of multiple scripts in 
multiple sprites, custom blocks and clones (Table 1). Custom blocks are procedures that can be used to abstract 
away repeating functionality. Inputs can be used as parameters to pass information to these procedures. Clones 
are instances of sprites that allow for repetition of sprite behaviours. These blocks enable the Scratch user to 
write programs using reusable components. Repeats can also be used to reduce duplication, but do not 
contribute to the Dr. Scratch score for abstraction and decomposition. 

3. Game overview 
Pirate Plunder is a novel educational programming game that introduces repeats, custom blocks and clones in a 
game-based Scratch-like setting. The aim is to teach players to use these blocks to reduce block duplication. 
There are two versions of Pirate Plunder: one where the player is given a program that is incomplete or incorrect, 
and another where they begin each level with an empty program. We will compare these versions in a series of 
studies (section 5). 
 
The player uses Scratch blocks to program a pirate ship to navigate around a grid, collect items and interact with 
obstacles. Levels are divided into ‘tutorials’ and ‘challenges’ (Figure 1). Tutorial levels introduce blocks, with a 
parrot character demonstrating how and when to use each block. Players then use these blocks to complete a 
set of challenges before attempting the next tutorial. Most levels require the player to navigate to the ‘X marks 
the spot’ position on the grid and use ‘get treasure!’ block to collect a treasure chest. Levels contain coins that 
can be collected as the player moves around the level. Finally, there is a shop where the player can use coins to 
purchase items and customise their avatar. 

 
Figure 1: Level select (left) and a challenge level that uses custom blocks (right) 

4. Game design 
Pirate Plunder has followed an iterative development and testing process, with regular playtesting influencing 
key design decisions. This section describes these decisions and the main components of the game design. 

4.1 Scratch integration 

The Pirate Plunder layout and functionality is similar to that of Scratch 2.0 (the version widely-used in schools at 
the time of development.) 

4.1.1 Blocks 

The Scratch 2.0 toolbox contains 116 blocks divided into 10 categories. This large number of blocks gives the 
user freedom, in line with Scratch’s constructionist principles, but can be both daunting and difficult for novice 
users. Pirate Plunder uses a selected set of blocks relevant to gameplay (Table 2). 

Table 2: Pirate Plunder blocks 

Category Block Use in Pirate Plunder 
Motion Move Move sprite n steps (grid spaces) 

Turn right Turn sprite clockwise n degrees 
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Category Block Use in Pirate Plunder 

Turn left Turn sprite anticlockwise n degrees 
Point in direction Point sprite in a compass direction 

Go to position Move sprite to a grid position (x, y) 
Looks Show Show sprite 

Hide Hide sprite 
Events When green flag clicked Trigger a script when the green flag is clicked 
Control Repeat Repeat the nested blocks n times 

When I start as a clone Trigger a script when the sprite is cloned 
Create clone of Create a clone of a sprite 

Delete this clone Delete the clone of a sprite 
Sensing Property of Get the x position, y position or direction of a sprite 

More blocks  Create and use custom blocks 
Pirate* Get treasure Collect treasure 

*not a Scratch category 

4.1.2 User interface 

The Pirate Plunder user interface is similar to Scratch 2.0 in that the scene is on the left and the program 
workspace is on the right (Figure 2). The green flag and stop buttons work in the same way. However, block 
execution is slowed down to make it easier for the player to debug their program. 

 
Figure 2: Pirate Plunder (left) and Scratch 2.0 (right) user interfaces 

4.1.3 Sprites 

Scratch uses event-driven programming with multiple active objects called sprites. Each sprite can be 
programmed separately. In Pirate Plunder, the available sprites are selectable above the program workspace. 
However, unlike Scratch, players cannot add, edit or remove sprites. Players can use the ship sprite in each level 
and an additional cannonball sprite in later levels. Sprites face right and are visible by default. 

4.2 Difficulty progression 

Levels in Pirate Plunder are split into four difficulty stages: statements, loops, procedures and instances (Table 
3). The latter three stages introduce a different technique for block reuse, to help the player recognise and 
correct code smells in previous levels. Motion and event blocks are introduced first, forcing the player to 
duplicate blocks to collect level coins. The stage finishes with a level that requires 14 separate move blocks to 
achieve the maximum score (Figure 3), demonstrating the motivation behind using loops. The repeat block is 
then introduced, and the player must eventually use duplicated sets of repeats, demonstrating the motivation 
for using procedures. The player is then taught to move duplicated sets of blocks into their own custom blocks 
(procedures). Parameters are introduced through custom block inputs, which let the player pass numerical 
values into their custom blocks (see Figure 1 for an example). Finally, the player is taught how to clone a 
cannonball sprite, which can be used to simulate shooting and lets them destroy floating debris that block off 
certain areas of later levels. 

Table 3: Difficulty progression 

Stage Tutorial Challenges 
Statements When green flag 

clicked 
Move to a grid position and collect treasure 
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Stage Tutorial Challenges 
Go to position 
Get treasure 

Move Move in a single direction and collect treasure 
Turn Change direction to avoid rocks 

Loops Repeat Use loops to reuse blocks 
Show/hide Hide and show the ship to avoid being attacked by enemies 

Procedures Custom blocks Create and use custom blocks to reuse sets of blocks 
Inputs Create and use custom blocks with number inputs for further reuse 

Instances Cloning (myself) Clone a cannonball sprite to destroy floating debris and access other parts of 
the map Cloning (other sprites) 

 

 
Figure 3: The last level before repeats are introduced (left) and the ‘go to position’ tutorial (right) 

The player is motivated to use required blocks through block limits, collectable items, required block validation 
and obstacles. Each challenge limits the number of total blocks that can be used in the program, forcing the 
player to address block duplication and produce a nearly ideal solution. Players must stop on each coin to collect 
it and have to collect every coin to achieve a maximum score for that level (section 4.3). Solutions are validated 
for containing the block related to that challenge. Some levels contain obstacles, such as enemy ghost ships, 
that will shoot at the player if they are within range. These can be avoided by hiding the ship using the ‘hide’ 
block. There are also sets of floating boxes that must be destroyed by cloning the cannonball sprite. The player 
receives feedback during levels from the green parrot avatar in the top right corner. 

4.3 Reward system 

Pirate Plunder uses several strategies to motivate the player. When collecting treasure, the player receives a 
random number of coins between 1 and 15 (Figure 4). Uncertain rewards such as this have been shown to 
enhance learning (Ozcelik, Cagiltay and Ozcelik, 2013). Players are given performance feedback (Malone and 
Lepper, 1987) through a star rating upon completion of each challenge (Figure 4). This is based on how many 
available coins they collected: 3 stars for all, 2 stars for some and 1 star for none. For example, a player could 
complete Figure 3 (left) using fewer blocks but would only achieve 2 stars for missing most of the level coins. 

 
Figure 4: Collecting treasure (left) and star ratings (right) 
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4.4 Debugging-first 

The debugging-first blocks have either an incorrect or locked input, are there for assistance (and maybe 
undeletable) or aren’t needed at all. The player must either use, change or remove these blocks to complete the 
level using a completion strategy (Paas, 1992). Undeletable blocks have a white padlock and cannot be removed 
from the program. Locked inputs have the same background colour as the block they are in. The number and 
type of debugging blocks on each level are linked closely with the difficulty progression. 

 
Figure 5: Debugging-first program (left) and a correct solution (right) for a level 

4.5 Analytics 

Pirate Plunder produces analytics for several player actions: changing game section (e.g. level select, shop, level) 
(to calculate time spent on each section), level attempt, level completion, shop item purchase and when working 
on their solution (block creation, move and deletion). We aim to use this data to investigate player approaches 
and performance in each version of the game. 

5. Future 
The next step is to perform a series of randomised controlled trials to investigate if Pirate Plunder is effective in 
teaching children aged 10-11 to use abstraction techniques to identify and correct code smells in Scratch. The 
first experiment will compare two versions of the game, debugging-first and non-debugging, over several weeks 
compared to a traditional Scratch curriculum. Participants will be assessed at pre-and post-test on their ability 
to design a Scratch solution with reusable components, as well as taking the Computational Thinking test 
(Román-González, Moreno-León and Robles, 2017). Artefact-based interviews (Brennan and Resnick, 2012) will 
be done at post-test to establish if participants have understood the rationale behind using repeats, custom 
blocks and clones. 
 
We expect that the children playing Pirate Plunder will improve their scores on the Scratch assessment from 
pre-to post-test compared to the control. Furthermore, that the debugging-first version will have a positive 
impact on game progress and post-test scores. The results of this research, along with game analytics, will 
influence future game development and subsequent studies. 

6. Summary 
In summary, Pirate Plunder is designed to teach children to identify and correct code smells using repeats, 
custom blocks and clones. Using these blocks correctly shows abstraction and decomposition skills. Pirate 
Plunder uses a simplified Scratch environment and introduces a select set of blocks in a linear difficulty 
progression. This progression is designed to demonstrate the advantages of loops, functions and instances. 
Players are motivated to use these blocks through block limits, collectable items and obstacles. We will conduct 
several studies to establish whether Pirate Plunder is effective in teaching code reuse in Scratch compared to a 
traditional curriculum, whilst also comparing different versions of the game. 
 
There is still debate around the transfer of computational thinking to non-computational domains (Denning, 
2017), and whether it can be applied outside of computer science. The studies described will not directly 
investigate this line of enquiry. Yet, we hope that the results, particularly of the artefact-based interviews, will 
give an indication as to whether the participants have understood why the programming skills (loops, procedures 
and instances) they have been taught can be used to formulate ‘better’ solutions. If they can, it suggests that 
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they will have made some progress in understanding the underlying computational thinking concepts of 
abstraction and decomposition. 
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