
Pirate plunder: game-based computational thinking using
scratch blocks

ROSE, Simon <http://orcid.org/0000-0002-8165-3016>, HABGOOD, Jacob
<http://orcid.org/0000-0003-4531-0507> and JAY, Tim <http://orcid.org/0000-
0003-4759-9543>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/21715/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

ROSE, Simon, HABGOOD, Jacob and JAY, Tim (2018). Pirate plunder: game-based
computational thinking using scratch blocks. In: Proceedings of the 12th European
Conference on Games Based Learning. Academic Conferences and Publishing
International Limited, 556-564.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/160276026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Pirate Plunder: Game-Based Computational Thinking Using Scratch
Blocks

Simon Rose, Jacob Habgood and Tim Jay
Sheffield Hallam University, UK
simon.rose@shu.ac.uk
j.habgood@shu.ac.uk
t.jay@shu.ac.uk

Abstract: Policy makers worldwide argue that children should be taught how technology works, and that the ‘computational
thinking’ skills developed through programming are useful in a wider context. This is causing an increased focus on computer
science in primary and secondary education. Block-based programming tools, like Scratch, have become ubiquitous in
primary education (5 to 11-years-old) throughout the UK. However, Scratch users often struggle to detect and correct ‘code
smells’ (bad programming practices) such as duplicated blocks and large scripts, which can lead to programs that are difficult
to understand. These ‘smells’ are caused by a lack of abstraction and decomposition in programs; skills that play a key role
in computational thinking. In Scratch, repeats (loops), custom blocks (procedures) and clones (instances) can be used to
correct these smells. Yet, custom blocks and clones are rarely taught to children under 11-years-old. We describe the design
of a novel educational block-based programming game, Pirate Plunder, which aims to teach these skills to children aged 9-
11. Players use Scratch blocks to navigate around a grid, collect items and interact with obstacles. Blocks are explained in
‘tutorials’; the player then completes a series of ‘challenges’ before attempting the next tutorial. A set of Scratch blocks,
including repeats, custom blocks and clones, are introduced in a linear difficulty progression. There are two versions of Pirate
Plunder; one that uses a debugging-first approach, where the player is given a program that is incomplete or incorrect, and
one where each level begins with an empty program. The game design has been developed through iterative playtesting.
The observations made during this process have influenced key design decisions such as Scratch integration, difficulty
progression and reward system. In future, we will evaluate Pirate Plunder against a traditional Scratch curriculum and
compare the debugging-first and non-debugging versions in a series of studies.

Keywords: computational thinking, Scratch, game-based learning, visual programming, computer science education

1. Introduction
Today’s children will go on to live a life greatly influenced by computing, both in the home and at work (Barr and
Stephenson, 2011). Policy makers, supported by the technology industry, are arguing that children should be
taught how this technology works, to produce ‘digital citizens’ for an increasingly IT-based global economy
(Wilson et al., 2010; Furber, 2012). This has led several countries to introduce computer science to children
across primary and secondary education (age 5 to 16) (Heintz, Mannila and Farnqvist, 2016).

One of the central arguments behind this is that the ‘computational thinking’ skills developed through
programming are useful in a wider context. Current definitions of computational thinking involve working at
multiple levels of abstraction, writing algorithms, understanding flow control, recognising patterns and
decomposing problems (e.g. Seiter and Foreman, 2013; Kalelioğlu, Gülbahar and Kukul, 2016). These ideas have
played a role in defining current computer science learning content for children, particularly in England
(Manches and Plowman, 2015).

A variety of block-based programming tools have been created for novice programmers. The most widely-used
of these tools is Scratch, a block-based visual programming environment used to create games, stories and
animations (Maloney, Resnick and Rusk, 2010). Scratch is used to teach computer science from early-years to
higher education. However, Scratch users can struggle to detect and correct bad programming practices (known
as ‘code smells’) such as duplicated blocks and large scripts (Aivaloglou and Hermans, 2016), which make
programs difficult to understand, debug and maintain. These ‘smells’ can be corrected by using repeats (loops),
custom blocks (procedures) and clones (instances). However, the concept of code reuse, including custom blocks
and clones, is rarely taught to children under 11-years-old.

This paper explains the design of a novel educational block-based programming game, Pirate Plunder, which
aims to teach players to identify and correct code smells by using Scratch’s repeats, custom blocks and clones.
We start with the background and rationale for the game, covering block-based programming tools,

556

Simon Rose, Jacob Habgood and Tim Jay

computational thinking and code smells. We then give an overview of the game and explain important game
design decisions. This covers Scratch integration, difficulty progression, reward system, debugging and analytics.

2. Background

2.1 Block-based programming

Block-based programming is used in creative visual environments (e.g. Scratch), games, such as Code.org
(Code.org, 2018), Kodetu (Learning Lab, 2017) and Lightbot (Lightbot Inc., 2016) and for programming physical
devices. It allows novices to program without learning syntax or memorising commands.

2.1.1 Scratch

Scratch is the most popular block-based visual programming environment, with over 30 million projects shared
on its online platform since its public release in 2007 (Scratch Team, 2018). Designed for children aged 8 and
above, it has been used from early-years to higher education to teach computer science and as a stepping stone
to text-based programming languages (Franklin et al., 2016). Research indicates that Scratch can be used to
improve wider skills of mathematics (Calao et al., 2015) and problem-solving (Giordano and Maiorana, 2014).

The teaching curriculum used with Scratch is important because of its constructionist (Papert, 1980) nature. In
Scratch, all blocks are available from the start and there is little-inbuilt guidance. Scratch encourages a
constructionist bottom-up (sometimes called ‘bricolage’) approach to problem-solving, where solutions are
unplanned and created largely through exploration (Rose, 2016). However, this conflicts with the top-down
programming approach traditionally taught in computer science and can result in bad programming practices.
For example, decomposing programs into many small scripts (sometimes hundreds) that lack logical coherence
(Meerbaum-Salant, Armoni and Ben-Ari, 2011) and writing programs with duplicated blocks and long scripts that
can be difficult to understand and maintain (Aivaloglou and Hermans, 2016).

2.1.2 Programming games

The benefits of game-based learning in educational contexts are well researched (Boyle et al., 2016).
Programming games usually involve navigating an object through a grid, either using block-based or text-based
instructions. Harms, et al. (2015) suggest that puzzle-like approaches are more effective than tutorials for
teaching programming to novices. There are also indications that computational thinking can be taught using
these games (e.g. Gouws, Bradshaw and Wentworth, 2013; Rowe et al., 2018).

Some programming games such as Gidget (Lee and Ko, 2014) and Robot ON! (Miljanovic and Bradbury, 2016)
use a debugging-first approach, where the player is given an incomplete or incorrect program instead of starting
with an empty program. Liu et al. (2017) found that in their programming game, BOTS, debugging required a
deeper understanding than writing new code, which supports the theory that novices learn better when
completing existing programs than by generating new ones (Van Merriënboer and De Croock, 1992). This is
known as the completion strategy (Paas, 1992), which reduces cognitive load because part of the solution is
visible and does not have to be held in working memory.

2.2 Computational thinking

The idea that computing’s unique methods of thinking can be used as general purpose ‘mental tools’ has been
around since the conception of computing and computer science (Denning, 2017). Papert (1980) first described
these skills as computational thinking (CT) while researching how children can develop procedural thinking
through computer programming. Wing (2006) sparked a renewed interest in the topic, suggesting that “to
reading, writing, and arithmetic, we should add CT to every child’s analytical ability” (p. 33). CT was recently
defined as “the conceptual foundation required to solve problems effectively and efficiently (i.e., algorithmically,
with or without the assistance of computers) with solutions that are reusable in different contexts” (Shute, Sun
and Asbell-Clarke, 2017, p. 142). Yet, there is still no unanimous agreement on a definition (Durak and Saritepeci,
2018). Rose, Habgood and Jay (2017) analysed several widely-cited CT definitions and came up with a list of
common concepts:

� Abstraction and generalisation (removing detail from a problem and formulating solutions in generic terms)

� Pattern recognition (finding similarities in problems)

557

Simon Rose, Jacob Habgood and Tim Jay

� Algorithms and procedures (using sequences of steps and rules to solve a problem)

� Data collection, analysis and representation (using and analysing data to help solve a problem)

� Decomposition (breaking a problem down into parts)

� Parallelism (having more than one thing happening at once)

� Debugging, testing and analysis (identifying, removing and fixing errors)

� Control structures (using conditional statements and loops)

2.2.1 Dr. Scratch

Dr. Scratch (Moreno-León and Robles, 2015) assesses Scratch projects for CT skills. Projects are given a score out
of 21 across seven CT concepts, based on the blocks used (Table 1). These scores have been correlated with both
software complexity metrics and human expert judgements (Moreno-León, Robles and Román-González, 2016;
Moreno-León et al., 2017). Dr. Scratch has been used in recent studies as a measure of CT (e.g. Foerster, Foerster
and Loewe, 2018).

Table 1: Dr. Scratch scoring system

CT Concept Basic (1 point) Developing (2) Proficiency (3)
Logical thinking If If else Logic operations

Data
representation

Modifiers of sprites
properties

Variables Lists

User Interactivity Green flag Keyboard, mouse, ask
and wait

Webcam, input sound

Control flow Sequence of blocks Repeat, forever Repeat until
Abstraction and

problem
decomposition

More than one script and
more than one sprite

Use of custom blocks Use of 'clones' (instances
of sprites)

Parallelism Two scripts on green flag Two scripts on key
pressed or sprite clicked

Two scripts on receive
message, video/audio

input, backdrop change
Synchronisation Wait Message broadcast,

stop all, stop program
Wait until, when backdrop
changes to, broadcast and

wait

2.3 Code smells

Bad programming practices are also known as ‘code smells’. A code smell is a surface indication in a program
that usually corresponds to a deeper problem (Fowler et al., 1999), for example, duplicated code, long methods
and long parameter lists. In Scratch, duplicated blocks, long scripts and dead blocks (not connected to an event
block) are all code smells. Code smells make Scratch programs difficult to understand and debug, which can
impact project quality and the ease with which learners can alter projects. This is particularly important because
‘remixing’ other people’s projects is a large part of the Scratch online platform (Dasgupta et al., 2016).

Interestingly, novice programmers “prone to introducing some smells do so even as they gain experience”
(Techapalokul and Tilevich, 2017, p. 10), suggesting that at least some formal educational intervention is
required. However, it is difficult to know when to introduce the concept of code reuse to novices. In a recent
work, Hermans and Aivaloglou (2017) created a Scratch-based MOOC online course that integrates software
engineering concepts into a Scratch programming curriculum. Their results were promising, reporting that
novices can avoid code smells and discern between good and bad programming practice. However, an analysis
of 230,000 Scratch projects indicates that learners who potentially know how to avoid code duplication will still
duplicate blocks frequently (Robles et al., 2017).

2.3.1 Abstraction

Abstraction is used to remove duplicated code and reduce the size of long methods, usually taking place through
refactoring (or restructuring) existing code (Fowler et al., 1999). The goal is that programs are arranged using
reusable components that minimise code duplication. Abstraction is the process of removing detail from a
problem to generate patterns and find similarities in problems. It is a key concept in computer science (Dijkstra,

558

Simon Rose, Jacob Habgood and Tim Jay

1972) and the main tenant of CT (Wing, 2006), linking closely with other skills of generalisation, pattern
recognition and decomposition. Teaching abstraction to novices is a difficult task (Armoni, 2013), which explains
difficulties in knowing when to introduce the concept of code reuse.

Dr. Scratch (section 2.2.1) measures abstraction and decomposition skills through the use of multiple scripts in
multiple sprites, custom blocks and clones (Table 1). Custom blocks are procedures that can be used to abstract
away repeating functionality. Inputs can be used as parameters to pass information to these procedures. Clones
are instances of sprites that allow for repetition of sprite behaviours. These blocks enable the Scratch user to
write programs using reusable components. Repeats can also be used to reduce duplication, but do not
contribute to the Dr. Scratch score for abstraction and decomposition.

3. Game overview
Pirate Plunder is a novel educational programming game that introduces repeats, custom blocks and clones in a
game-based Scratch-like setting. The aim is to teach players to use these blocks to reduce block duplication.
There are two versions of Pirate Plunder: one where the player is given a program that is incomplete or incorrect,
and another where they begin each level with an empty program. We will compare these versions in a series of
studies (section 5).

The player uses Scratch blocks to program a pirate ship to navigate around a grid, collect items and interact with
obstacles. Levels are divided into ‘tutorials’ and ‘challenges’ (Figure 1). Tutorial levels introduce blocks, with a
parrot character demonstrating how and when to use each block. Players then use these blocks to complete a
set of challenges before attempting the next tutorial. Most levels require the player to navigate to the ‘X marks
the spot’ position on the grid and use ‘get treasure!’ block to collect a treasure chest. Levels contain coins that
can be collected as the player moves around the level. Finally, there is a shop where the player can use coins to
purchase items and customise their avatar.

Figure 1: Level select (left) and a challenge level that uses custom blocks (right)

4. Game design
Pirate Plunder has followed an iterative development and testing process, with regular playtesting influencing
key design decisions. This section describes these decisions and the main components of the game design.

4.1 Scratch integration

The Pirate Plunder layout and functionality is similar to that of Scratch 2.0 (the version widely-used in schools at
the time of development.)

4.1.1 Blocks

The Scratch 2.0 toolbox contains 116 blocks divided into 10 categories. This large number of blocks gives the
user freedom, in line with Scratch’s constructionist principles, but can be both daunting and difficult for novice
users. Pirate Plunder uses a selected set of blocks relevant to gameplay (Table 2).

Table 2: Pirate Plunder blocks

Category Block Use in Pirate Plunder
Motion Move Move sprite n steps (grid spaces)

Turn right Turn sprite clockwise n degrees

559

Simon Rose, Jacob Habgood and Tim Jay

Category Block Use in Pirate Plunder

Turn left Turn sprite anticlockwise n degrees
Point in direction Point sprite in a compass direction

Go to position Move sprite to a grid position (x, y)
Looks Show Show sprite

Hide Hide sprite
Events When green flag clicked Trigger a script when the green flag is clicked
Control Repeat Repeat the nested blocks n times

When I start as a clone Trigger a script when the sprite is cloned
Create clone of Create a clone of a sprite

Delete this clone Delete the clone of a sprite
Sensing Property of Get the x position, y position or direction of a sprite

More blocks Create and use custom blocks
Pirate* Get treasure Collect treasure

*not a Scratch category

4.1.2 User interface

The Pirate Plunder user interface is similar to Scratch 2.0 in that the scene is on the left and the program
workspace is on the right (Figure 2). The green flag and stop buttons work in the same way. However, block
execution is slowed down to make it easier for the player to debug their program.

Figure 2: Pirate Plunder (left) and Scratch 2.0 (right) user interfaces

4.1.3 Sprites

Scratch uses event-driven programming with multiple active objects called sprites. Each sprite can be
programmed separately. In Pirate Plunder, the available sprites are selectable above the program workspace.
However, unlike Scratch, players cannot add, edit or remove sprites. Players can use the ship sprite in each level
and an additional cannonball sprite in later levels. Sprites face right and are visible by default.

4.2 Difficulty progression

Levels in Pirate Plunder are split into four difficulty stages: statements, loops, procedures and instances (Table
3). The latter three stages introduce a different technique for block reuse, to help the player recognise and
correct code smells in previous levels. Motion and event blocks are introduced first, forcing the player to
duplicate blocks to collect level coins. The stage finishes with a level that requires 14 separate move blocks to
achieve the maximum score (Figure 3), demonstrating the motivation behind using loops. The repeat block is
then introduced, and the player must eventually use duplicated sets of repeats, demonstrating the motivation
for using procedures. The player is then taught to move duplicated sets of blocks into their own custom blocks
(procedures). Parameters are introduced through custom block inputs, which let the player pass numerical
values into their custom blocks (see Figure 1 for an example). Finally, the player is taught how to clone a
cannonball sprite, which can be used to simulate shooting and lets them destroy floating debris that block off
certain areas of later levels.

Table 3: Difficulty progression

Stage Tutorial Challenges
Statements When green flag

clicked
Move to a grid position and collect treasure

560

Simon Rose, Jacob Habgood and Tim Jay

Stage Tutorial Challenges
Go to position
Get treasure

Move Move in a single direction and collect treasure
Turn Change direction to avoid rocks

Loops Repeat Use loops to reuse blocks
Show/hide Hide and show the ship to avoid being attacked by enemies

Procedures Custom blocks Create and use custom blocks to reuse sets of blocks
Inputs Create and use custom blocks with number inputs for further reuse

Instances Cloning (myself) Clone a cannonball sprite to destroy floating debris and access other parts of
the map Cloning (other sprites)

Figure 3: The last level before repeats are introduced (left) and the ‘go to position’ tutorial (right)

The player is motivated to use required blocks through block limits, collectable items, required block validation
and obstacles. Each challenge limits the number of total blocks that can be used in the program, forcing the
player to address block duplication and produce a nearly ideal solution. Players must stop on each coin to collect
it and have to collect every coin to achieve a maximum score for that level (section 4.3). Solutions are validated
for containing the block related to that challenge. Some levels contain obstacles, such as enemy ghost ships,
that will shoot at the player if they are within range. These can be avoided by hiding the ship using the ‘hide’
block. There are also sets of floating boxes that must be destroyed by cloning the cannonball sprite. The player
receives feedback during levels from the green parrot avatar in the top right corner.

4.3 Reward system

Pirate Plunder uses several strategies to motivate the player. When collecting treasure, the player receives a
random number of coins between 1 and 15 (Figure 4). Uncertain rewards such as this have been shown to
enhance learning (Ozcelik, Cagiltay and Ozcelik, 2013). Players are given performance feedback (Malone and
Lepper, 1987) through a star rating upon completion of each challenge (Figure 4). This is based on how many
available coins they collected: 3 stars for all, 2 stars for some and 1 star for none. For example, a player could
complete Figure 3 (left) using fewer blocks but would only achieve 2 stars for missing most of the level coins.

Figure 4: Collecting treasure (left) and star ratings (right)

561

Simon Rose, Jacob Habgood and Tim Jay

4.4 Debugging-first

The debugging-first blocks have either an incorrect or locked input, are there for assistance (and maybe
undeletable) or aren’t needed at all. The player must either use, change or remove these blocks to complete the
level using a completion strategy (Paas, 1992). Undeletable blocks have a white padlock and cannot be removed
from the program. Locked inputs have the same background colour as the block they are in. The number and
type of debugging blocks on each level are linked closely with the difficulty progression.

Figure 5: Debugging-first program (left) and a correct solution (right) for a level

4.5 Analytics

Pirate Plunder produces analytics for several player actions: changing game section (e.g. level select, shop, level)
(to calculate time spent on each section), level attempt, level completion, shop item purchase and when working
on their solution (block creation, move and deletion). We aim to use this data to investigate player approaches
and performance in each version of the game.

5. Future
The next step is to perform a series of randomised controlled trials to investigate if Pirate Plunder is effective in
teaching children aged 10-11 to use abstraction techniques to identify and correct code smells in Scratch. The
first experiment will compare two versions of the game, debugging-first and non-debugging, over several weeks
compared to a traditional Scratch curriculum. Participants will be assessed at pre-and post-test on their ability
to design a Scratch solution with reusable components, as well as taking the Computational Thinking test
(Román-González, Moreno-León and Robles, 2017). Artefact-based interviews (Brennan and Resnick, 2012) will
be done at post-test to establish if participants have understood the rationale behind using repeats, custom
blocks and clones.

We expect that the children playing Pirate Plunder will improve their scores on the Scratch assessment from
pre-to post-test compared to the control. Furthermore, that the debugging-first version will have a positive
impact on game progress and post-test scores. The results of this research, along with game analytics, will
influence future game development and subsequent studies.

6. Summary
In summary, Pirate Plunder is designed to teach children to identify and correct code smells using repeats,
custom blocks and clones. Using these blocks correctly shows abstraction and decomposition skills. Pirate
Plunder uses a simplified Scratch environment and introduces a select set of blocks in a linear difficulty
progression. This progression is designed to demonstrate the advantages of loops, functions and instances.
Players are motivated to use these blocks through block limits, collectable items and obstacles. We will conduct
several studies to establish whether Pirate Plunder is effective in teaching code reuse in Scratch compared to a
traditional curriculum, whilst also comparing different versions of the game.

There is still debate around the transfer of computational thinking to non-computational domains (Denning,
2017), and whether it can be applied outside of computer science. The studies described will not directly
investigate this line of enquiry. Yet, we hope that the results, particularly of the artefact-based interviews, will
give an indication as to whether the participants have understood why the programming skills (loops, procedures
and instances) they have been taught can be used to formulate ‘better’ solutions. If they can, it suggests that

562

Simon Rose, Jacob Habgood and Tim Jay

they will have made some progress in understanding the underlying computational thinking concepts of
abstraction and decomposition.

References
Aivaloglou, E. and Hermans, F. (2016) “How Kids Code and How We Know : An Exploratory Study on the Scratch

Repository”, in Proceedings of the 2016 ACM Conference on International Computing Education Research, pp 53–61.
Armoni, M. (2013) “On Teaching Abstraction in Computer Science to Novices”, Journal of Computers in Mathematics and

Science Teaching, 32(3), pp 265–284.
Barr, V. and Stephenson, C. (2011) “Bringing Computational Thinking to K-12: What is Involved and What is the Role of the

Computer Science Education Community?”, ACM Inroads, 2(1), pp 48–54.
Boyle, E. A. et al. (2016) “An update to the systematic literature review of empirical evidence of the impacts and outcomes

of computer games and serious games”, Computers and Education, 94, pp 178–192.
Brennan, K. and Resnick, M. (2012) “New frameworks for studying and assessing the development of computational

thinking”, in Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver,
Canada, pp 1–25.

Calao, L. A. et al. (2015) “Developing Mathematical Thinking with Scratch”, in Design for Teaching and Learning in a
Networked World, pp 17–27.

Code.org (2018) Code.org. https://code.org/ (Accessed: 3 May 2018).
Dasgupta, S. et al. (2016) “Remixing as a Pathway to Computational Thinking”, in Proceedings of the 19th ACM Conference

on Computer-Supported Cooperative Work & Social Computing, pp 1438–1449.
Denning, P. J. (2017) “Remaining trouble spots with computational thinking”, Communications of the ACM, 60(6), pp 33–

39.
Dijkstra, E. W. (1972) “The Humble Programmer”, Communications of the ACM, 15(10), pp 859–866.
Durak, H. Y. and Saritepeci, M. (2018) “Analysis of the relation between computational thinking skills and various variables

with the structural equation model”, Computers and Education, 116, pp 191–202.
Foerster, E.-C., Foerster, K.-T. and Loewe, T. (2018) “Teaching Programming Skills in Primary School Mathematics Classes:

An Evaluation using Game Programming”, in 9th IEEE Global Engineering Education Conference (EDUCON 2018).
Fowler, M. et al. (1999) Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional.
Franklin, D. et al. (2016) “Initialization in Scratch : Seeking Knowledge Transfer”, in Proceedings of the 47th ACM Technical

Symposium on Computing Science Education, pp 217–222.
Furber, S. (2012) Shut down or restart? The way forward for computing in UK schools, The Royal Society. London.
Giordano, D. and Maiorana, F. (2014) “Use of cutting edge educational tools for an initial programming course”, in

Proceedings of the 2014 IEEE Global Engineering Education Conference (EDUCON), pp 556–563.
Gouws, L., Bradshaw, K. and Wentworth, P. (2013) “Computational Thinking in Educational Activities An evaluation of the

educational game Light-Bot”, in Proceedings of the 18th ACM conference on Innovation and technology in computer
science education, pp 10–15.

Harms, K. J., Rowlett, N. and Kelleher, C. (2015) “Enabling independent learning of programming concepts through
programming completion puzzles”, in Proceedings of the 2015 IEEE Symposium on Visual Languages and Human-
Centric Computing, pp 271–279.

Heintz, F., Mannila, L. and Farnqvist, T. (2016) “A Review of Models for Introducing Computational Thinking, Computer
Science and Computing in K–12 Education”, in Proceedings of the 2016 IEEE Frontiers in Education Conference (FIE),
pp 1–9.

Hermans, F. and Aivaloglou, E. (2017) “Teaching software engineering principles to K-12 students: A MOOC on scratch”, in
Proceedings of the 39th International Conference on Software Engineering: Software Engineering and Education
Track, pp 13–22.

Kalelioğlu, F., Gülbahar, Y. and Kukul, V. (2016) “A Framework for Computational Thinking Based on a Systematic Research
Review”, Baltic Journal of Modern Computing, 4(3), pp 583–596.

Learning Lab (2017) Kodetu. http://kodetu.org/ (Accessed: 3 May 2018).
Lee, M. J. and Ko, A. J. (2014) “A demonstration of gidget, a debugging game for computing education”, in Proceedings of

the 2014 IEEE Symposium on Visual Languages and Human-Centric Computing, pp 211–212.
Lightbot Inc. (2016) Lightbot. https://lightbot.com/ (Accessed: 3 May 2018).
Liu, Z. et al. (2017) “Understanding problem solving behavior of 6–8 graders in a debugging game”, Computer Science

Education. Routledge, 27(1), pp 1–29.
Malone, T. W. and Lepper, M. R. (1987) “Making learning fun: A taxonomy of intrinsic motivations for learning”, Aptitude,

learning, and instruction, pp 223–253.
Maloney, J., Resnick, M. and Rusk, N. (2010) “The Scratch programming language and environment”, ACM Transactions on

Computing Education, 10(4), pp 1–15.
Manches, A. and Plowman, L. (2015) “Computing education in children’s early years: A call for debate”, British Journal of

Educational Technology, 48(1), pp 191–201.
Meerbaum-Salant, O., Armoni, M. and Ben-Ari, M. (2011) “Habits of Programming in Scratch”, in Proceedings of the 16th

annual joint conference on Innovation and technology in computer science education, pp 168–172.

563

Simon Rose, Jacob Habgood and Tim Jay

Van Merriënboer, J. J. G. and De Croock, M. B. M. (1992) “Strategies for Computer-Based Programming Instruction:

Program Completion vs. Program Generation”, Journal of Educational Computing Research, 8(3), pp 365–394.
Miljanovic, M. A. and Bradbury, J. S. (2016) “Robot ON!: A Serious Game for Improving Programming Comprehension”, in

Proceedings of the 2016 5th International Workshop on Games and Software Engineering (GAS), pp 33–36.
Moreno-León, J. et al. (2017) “On the Automatic Assessment of Computational Thinking Skills: A Comparison with Human

Experts”, in Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp
2788–2795.

Moreno-León, J. and Robles, G. (2015) “Analyze your Scratch projects with Dr. Scratch and assess your Computational
Thinking skills”, in Scratch Conference 2015, pp 1–7.

Moreno-León, J., Robles, G. and Román-González, M. (2016) “Comparing computational thinking development assessment
scores with software complexity metrics”, in Proceedings of 2016 IEEE Global Engineering Education Conference
(EDUCON), pp 1040–1045.

Ozcelik, E., Cagiltay, N. E. and Ozcelik, N. S. (2013) “The effect of uncertainty on learning in game-like environments”,
Computers and Education, 67, pp 12–20.

Paas, F. (1992) “Training Strategies for Attaining Transfer of Problem-Solving Skill in Statistics: A Cognitive-Load Approach”,
Journal of Educational Psychology, 84(4), pp 429–434.

Papert, S. (1980) Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.
Robles, G. et al. (2017) “Software clones in scratch projects: On the presence of copy-and-paste in computational thinking

learning”, in Proceedings of the 2017 IEEE 11th International Workshop on Software Clones (IWSC), pp 31–37.
Román-González, M., Moreno-León, J. and Robles, G. (2017) “Complementary Tools for Computational Thinking

Assessment”, in Proceedings of International Conference on Computational Thinking Education (CTE 2017), pp 154–
159.

Rose, S. P. (2016) “Bricolage Programming and Problem Solving Ability in Young Children: An Exploratory Study”, in
Proceedings of 10th European Conference for Game Based Learning, pp 914–921.

Rose, S. P., Habgood, M. P. J. and Jay, T. (2017) “An Exploration of the Role of Visual Programming Tools in the
Development of Young Children’s Computational Thinking”, Electronic Journal of e-Learning, 15(4), pp 297–309.

Rowe, E. et al. (2018) “Labeling Implicit Computational Thinking in Pizza Pass Gameplay”, in Extended Abstracts of the 2018
CHI Conference on Human Factors in Computing Systems, pp 1–6.

Scratch Team (2018) Scratch statistics. https://scratch.mit.edu/statistics/ (Accessed: 8 April 2018).
Seiter, L. and Foreman, B. (2013) “Modeling the learning progressions of computational thinking of primary grade

students”, in Proceedings of the ninth annual international ACM conference on International computing education
research, pp 59–66.

Shute, V. J., Sun, C. and Asbell-Clarke, J. (2017) “Demystifying computational thinking”, Educational Research Review, 22,
pp 142–158.

Techapalokul, P. and Tilevich, E. (2017) “Understanding Recurring Software Quality Problems of Novice Programmers”, in
Proceedings of the 2017 IEEE Symposium on Visual Languages and Human-Centric Computing, pp 43–51.

Wilson, C. et al. (2010) Running on empty: The Failure to Teach K-12 Computer Science in the Digital Age, Association for
Computing Machinery.

Wing, J. M. (2006) “Computational thinking”, Communications of the ACM, p 33.

564

