515 research outputs found

    Small Modular Reactors (SMR) Probabilistic Risk As

    Get PDF
    A key area of the Small Modular Reactor (SMR) Pro

    Efficient runtime management for enabling sustainable performance in real-world mobile applications

    Full text link
    Mobile devices have become integral parts of our society. They handle our diverse computing needs from simple daily tasks (i.e., text messaging, e-mail) to complex graphics and media processing under a limited battery budget. Mobile system-on-chip (SoC) designs have become increasingly sophisticated to handle performance needs of diverse workloads and to improve user experience. Unfortunately, power and thermal constraints have also emerged as major concerns. Increased power densities and temperatures substantially impair user experience due to frequent throttling as well as diminishing device reliability and battery life. Addressing these concerns becomes increasingly challenging due to increased complexities at both hardware (e.g., heterogeneous CPUs, accelerators) and software (e.g., vast number of applications, multi-threading). Enabling sustained user experience in face of these challenges requires (1) practical runtime management solutions that can reason about the performance needs of users and applications while optimizing power and temperature; (2) tools for analyzing real-world mobile application behavior and performance. This thesis aims at improving sustained user experience under thermal limitations by incorporating insights from real-world mobile applications into runtime management. This thesis first proposes thermally-efficient and Quality-of-Service (QoS) aware runtime management techniques to enable sustained performance. Our work leverages inherent QoS tolerance of users in real-world applications and introduces QoS-temperature tradeoff as a viable control knob to improve user experience under thermal constraints. We present a runtime control framework, QScale, which manages CPU power and scheduling decisions to optimize temperature while strictly adhering to given QoS targets. We also design a framework, Maestro, which provides autonomous and application-aware management of QoS-temperature tradeoffs. Maestro uses our thermally-efficient QoS control framework, QScale, as its foundation. This thesis also presents tools to facilitate studies of real-world mobile applications. We design a practical record and replay system, RandR, to generate repeatable executions of mobile applications. RandR provides this capability by automatically reproducing non-deterministic input sources in mobile applications such as user inputs and network events. Finally, we focus on the non-deterministic executions in Android malware which seek to evade analysis environments. We propose the Proteus system to identify the instruction-level inputs that reveal analysis environments

    Sophisticated Batteryless Sensing

    Get PDF
    Wireless embedded sensing systems have revolutionized scientific, industrial, and consumer applications. Sensors have become a fixture in our daily lives, as well as the scientific and industrial communities by allowing continuous monitoring of people, wildlife, plants, buildings, roads and highways, pipelines, and countless other objects. Recently a new vision for sensing has emerged---known as the Internet-of-Things (IoT)---where trillions of devices invisibly sense, coordinate, and communicate to support our life and well being. However, the sheer scale of the IoT has presented serious problems for current sensing technologies---mainly, the unsustainable maintenance, ecological, and economic costs of recycling or disposing of trillions of batteries. This energy storage bottleneck has prevented massive deployments of tiny sensing devices at the edge of the IoT. This dissertation explores an alternative---leave the batteries behind, and harvest the energy required for sensing tasks from the environment the device is embedded in. These sensors can be made cheaper, smaller, and will last decades longer than their battery powered counterparts, making them a perfect fit for the requirements of the IoT. These sensors can be deployed where battery powered sensors cannot---embedded in concrete, shot into space, or even implanted in animals and people. However, these batteryless sensors may lose power at any point, with no warning, for unpredictable lengths of time. Programming, profiling, debugging, and building applications with these devices pose significant challenges. First, batteryless devices operate in unpredictable environments, where voltages vary and power failures can occur at any time---often devices are in failure for hours. Second, a device\u27s behavior effects the amount of energy they can harvest---meaning small changes in tasks can drastically change harvester efficiency. Third, the programming interfaces of batteryless devices are ill-defined and non- intuitive; most developers have trouble anticipating the problems inherent with an intermittent power supply. Finally, the lack of community, and a standard usable hardware platform have reduced the resources and prototyping ability of the developer. In this dissertation we present solutions to these challenges in the form of a tool for repeatable and realistic experimentation called Ekho, a reconfigurable hardware platform named Flicker, and a language and runtime for timely execution of intermittent programs called Mayfly

    Caracterización y optimización térmica de sistemas en chip mediante emulación con FPGAs

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 15/06/2012Tablets and smartphones are some of the many intelligent devices that dominate the consumer electronics market. These systems are complex to design as they must execute multiple applications (e.g.: real-time video processing, 3D games, or wireless communications), while meeting additional design constraints, such as low energy consumption, reduced implementation size and, of course, a short time-to-market. Internally, they rely on Multi-processor Systems on Chip (MPSoCs) as their main processing cores, to meet the tight design constraints: performance, size, power consumption, etc. In a bad design, the high logic density may generate hotspots that compromise the chip reliability. This thesis introduces a FPGA-based emulation framework for easy exploration of SoC design alternatives. It provides fast and accurate estimations of performance, power, temperature, and reliability in one unified flow, to help designers tune their system architecture before going to silicon.El estado del arte, en lo que a diseño de chips para empotrados se refiere, se encuentra dominado por los multi-procesadores en chip, o MPSoCs. Son complejos de diseñar y presentan problemas de disipación de potencia, de temperatura, y de fiabilidad. En este contexto, esta tesis propone una nueva plataforma de emulación para facilitar la exploración del enorme espacio de diseño. La plataforma utiliza una FPGA de propósito general para acelerar la emulación, lo cual le da una ventaja competitiva frente a los simuladores arquitectónicos software, que son mucho más lentos. Los datos obtenidos de la ejecución en la FPGA son enviados a un PC que contiene bibliotecas (modelos) SW para calcular el comportamiento (e.g.: la temperatura, el rendimiento, etc...) que tendría el chip final. La parte experimental está enfocada a dos puntos: por un lado, a verificar que el sistema funciona correctamente y, por otro, a demostrar la utilidad del entorno para realizar exploraciones que muestren los efectos a largo plazo que suceden dentro del chip, como puede ser la evolución de la temperatura, que es un fenómeno lento que normalmente requiere de costosas simulaciones software.Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu

    Emulation of Circuits under Test Using Low-Cost Embedded Platforms

    Get PDF
    Electrical engineering education requires the development of the specific ability and skills to address the design and assembly of practical electronic circuits, as well as the use of advanced electronic instrumentation. However, for electronic instrumentation courses or any other related specialty that pursues to gain expertise testing a physical system, the circuit assembly process itself can represent a bottleneck in a practical session. The time dedicated to the circuit assembly is subtracted both to the measurements and the final decision-making time. Therefore, the student's practical experience is limited. This article presents a reconfigurable physical system based on the Arduino (TM) shield pin-out, which (after specific programming) can virtually behave as a device under test to carry out measurement procedures on it, emulating any system or process. Although it has been mainly oriented to the Arduino boards, it is possible to add different control devices with a connector compatible. The user does not need to assemble any circuit. Our approach does not only pursue the correct instrument handling as a goal, but it also immerses the student in the context of the functional theory of the proposed circuit under test. Consequently, the same emulation platform can be utilized for other techno-scientific specialties, such as electrical engineering, automatic control systems or physics courses. Besides that, it is a compact product that can be adapted to the needs of any teaching institution.This work was performed as an innovation and teaching improvement project and supported by grant SOL-201700083174-TRA from Vicerrectorado de Recursos Docentes y de la Comunicacion, University of Cadiz

    Pem fuel cell modeling and converters design for a 48 v dc power bus

    Get PDF
    Fuel cells (FC) are electrochemical devices that directly convert the chemical energy of a fuel into electricity. Power systems based on proton exchange membrane fuel cell (PEMFC) technology have been the object of increasing attention in recent years as they appear very promising in both stationary and mobile applications due to their high efficiency, low operating temperature allowing fast startup, high power density, solid electrolyte, long cell and stack life, low corrosion, excellent dynamic response with respect to the other FCs, and nonpolluting emissions to the environment if the hydrogen is obtained from renewable sources. The output-voltage characteristic in a PEMFC is limited by the mechanical devices which are used for regulating the air flow in its cathode, the hydrogen flow in its anode, its inner temperature, and the humidity of the air supplied to it. Usually, the FC time constants are dominated by the fuel delivery system, in particular by the slow dynamics of the compressor responsible for supplying the oxygen. As a consequence, a fast load transient demand could cause a high voltage drop in a short time known as oxygen starvation phenomenon that is harmful for the FC. Thus, FCs are considered as a slow dynamic response equipment with respect to the load transient requirements. Therefore, batteries, ultracapacitors or other auxiliary power sources are needed to support the operation of the FC in order to ensure a fast response to any load power transient. The resulting systems, known as FC hybrid systems, can limit the slope of the current or the power generated by the FC with the use of current-controlled dc-dc converters. In this way, the reactant gas starvation phenomena can be avoided and the system can operate with higher efficiency. The purpose of this thesis is the design of a DC-DC converter suitable to interconnect all the different elements in a PEMFC-hybrid 48-V DC bus. Since the converter could be placed between elements with very different voltage levels, a buck-boost structure has been selected. Especially to fulfill the low ripple requirements of the PEMFCs, but also those of the auxiliary storage elements and loads, our structure has inductors in series at both its input and its output. Magnetically coupling these inductors and adding a damping network to its intermediate capacitor we have designed an easily controllable converter with second-order-buck-like dominant dynamics. This new proposed topology has high efficiency and wide bandwidth acting either as a voltage or as a current regulator. The magnetic coupling allows to control with similar performances the input or the output inductor currents. This characteristic is very useful because the designed current-controlled converter is able to withstand shortcircuits at its output and, when connected to the FC, it facilitates to regulate the current extracted from the FC to avoid the oxygen starvation phenomenon. Testing in a safe way the converter connected to the FC required to build an FC simulator that was subsequently improved by developing an emulator that offered real-time processing and oxygen-starvation indication. To study the developed converters and emulators with different brands of PEMFCs it was necessary to reactivate long-time inactive Palcan FCs. Since the results provided by the manual reactivation procedure were unsatisfactory, an automatic reactivation system has been developed as a complementary study of the thesis.En esta tesis se avanzo en el diseño de un bus DC de 48 V que utiliza como elemento principal de generación de energía eléctrica una pila de combustible. Debido a que la dinámica de las pilas de combustible están limitadas por sus elementos mecánicos auxiliares de control una variación rápida de una carga conectada a ella puede ocasionar daños. Es por esto que es necesario utilizar elementos almacenadores de energía que puedan suministrar estas rápidas variaciones de carga y convertidores para que gestionen de una forma controlada la potencia del bus DC. Durante la realización de pruebas de los convertidores es de gran importancia utilizar emuladores o simuladores de pilas de combustibles, esto nos permite de una forma económica y segura realizar pruebas criticas antes de conectar los convertidores a la pila. Adicionalmente una nueva topologia de convertidor fue presentada y ésta gestionará la potencia en el bu

    A framework to experiment optimizations for real-time and embedded software

    Get PDF
    Typical constraints on embedded systems include code size limits, upper bounds on energy consumption and hard or soft deadlines. To meet these requirements, it may be necessary to improve the software by applying various kinds of transformations like compiler optimizations, specific mapping of code and data in the available memories, code compression, etc. However, a transformation that aims at improving the software with respect to a given criterion might engender side effects on other criteria and these effects must be carefully analyzed. For this purpose, we have developed a common framework that makes it possible to experiment various code transfor-mations and to evaluate their impact of various criteria. This work has been carried out within the French ANR MORE project.Comment: International Conference on Embedded Real Time Software and Systems (ERTS2), Toulouse : France (2010

    Design and Testing of Electronic Devices for Harsh Environments

    Get PDF
    In this thesis an overview of the research activity focused on development, design and testing of electronic devices and systems for harsh environments has been reported. The scope of the work has been the design and validation flow of Integrated Circuits operating in two harsh applications: Automotive and High Energy Physics experiments. In order to fulfill the severe operating electrical and environmental conditions of automotive applications, a systematic methodology has been followed in the design of an innovative Intelligent Power Switch: several design solutions have been developed at architectural and circuital level, integrating on-chip selfdiagnostic capabilities and full protection against high voltage and reverse polarity, effects of wiring parasitics, over-current and over-temperature phenomena. Moreover current slope and soft start integrated techniques has ensured low EMI, making the Intelligent Power Switch also configurable to drive different interchangeable loads efficiently. The innovative device proposed has been implemented in a 0.35 μm HV-CMOS technology and embedded in mechatronic 3rd generation brush-holder regulator System-on-Chip for an automotive alternator. Electrical simulations and experimental characterization and testing at componentlevel and on-board system-level has proven that the proposed design allows for a compact and smart power switch realization, facing the harshest automotive conditions. The smart driver has been able to supply up to 1.5 A to various types of loads (e.g.: incadescent lamp bulbs, LED), in operating temperatures in the wide range -40 °C to 150 °C, with robustness against high voltage up to 55 V and reverse polarity up to -15 V. The second branch of research activity has been framed within the High Energy Physics area, leading to the development of a general purpose and flexible protocol for the data acquisition and the distribution of Timing, Trigger and Control signals and its implementation in radiation tolerant interfaces in CMOS 130 nm technology. The several features integrated in the protocol has made it suitable for different High Energy Physics experiments: flexibility w.r.t. bandwidth and latency requirements, robustness of critical information against radiation-induced errors, compatibility with different data types, flexibility w.r.t the architecture of the control and readout systems, are the key features of this novel protocol. Innovative radiation hardening techniques have been studied and implemented in the test-chip to ensure the proper functioning in operating environments with a high level of radiation, such as the Large Hadron Collider at CERN in Geneva. An FPGA-based emulator has been developed and, in a first phase, employed for functional validation of the protocol. In a second step, the emulator has been modified as test-bed to assess the Transmitter and Receiver interfaces embedded on the test-chip. An extensive phase of tests has proven the functioning of the interfaces at the three speed options, 4xF, 8xF and 16xF (F = reference clock frequency) in different configurations. Finally, irradiation tests has been performed at CERN X-rays irradiation facility, bearing out the proper behaviour of the interfaces up to 40 Mrad(SiO2)

    Middeck Active Control Experiment (MACE), phase A

    Get PDF
    A rationale to determine which structural experiments are sufficient to verify the design of structures employing Controlled Structures Technology was derived. A survey of proposed NASA missions was undertaken to identify candidate test articles for use in the Middeck Active Control Experiment (MACE). The survey revealed that potential test articles could be classified into one of three roles: development, demonstration, and qualification, depending on the maturity of the technology and the mission the structure must fulfill. A set of criteria was derived that allowed determination of which role a potential test article must fulfill. A review of the capabilities and limitations of the STS middeck was conducted. A reference design for the MACE test article was presented. Computing requirements for running typical closed-loop controllers was determined, and various computer configurations were studied. The various components required to manufacture the structure were identified. A management plan was established for the remainder of the program experiment development, flight and ground systems development, and integration to the carrier. Procedures for configuration control, fiscal control, and safety, reliabilty, and quality assurance were developed
    corecore