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ABSTRACT

Wireless embedded sensing systems have revolutionized scientific, industrial, and consumer applica-

tions. Sensors have become a fixture in our daily lives, as well as the scientific and industrial communities

by allowing continuous monitoring of people, wildlife, plants, buildings, roads and highways, pipelines, and

countless other objects. Recently a new vision for sensing has emerged—known as the Internet-of-Things

(IoT)—where trillions of devices invisibly sense, coordinate, and communicate to support our life and well

being. However, the sheer scale of the IoT has presented serious problems for current sensing technologies—

mainly, the unsustainable maintenance, ecological, and economic costs of recycling or disposing of trillions of

batteries. This energy storage bottleneck has prevented massive deployments of tiny sensing devices at the

edge of the IoT.

This dissertation explores an alternative—leave the batteries behind, and harvest the energy required

for sensing tasks from the environment the device is embedded in. These sensors can be made cheaper,

smaller, and will last decades longer than their battery powered counterparts, making them a perfect fit for the

requirements of the IoT. These sensors can be deployed where battery powered sensors cannot—embedded in

concrete, shot into space, or even implanted in animals and people. However, these batteryless sensors may lose

power at any point, with no warning, for unpredictable lengths of time. Programming, profiling, debugging,

and building applications with these devices pose significant challenges. First, batteryless devices operate in

unpredictable environments, where voltages vary and power failures can occur at any time—often devices are

in failure for hours. Second, a device’s behavior effects the amount of energy they can harvest—meaning small

changes in tasks can drastically change harvester efficiency. Third, the programming interfaces of batteryless

devices are ill-defined and non- intuitive; most developers have trouble anticipating the problems inherent with

an intermittent power supply. Finally, the lack of community, and a standard usable hardware platform have

reduced the resources and prototyping ability of the developer. In this dissertation we present solutions to these

challenges in the form of a tool for repeatable and realistic experimentation called Ekho, a reconfigurable

hardware platform named Flicker, and a language and runtime for timely execution of intermittent programs

called Mayfly.
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CHAPTER 1

INTRODUCTION

The future of sensing lies in supporting the vision of the Internet of Things (IoT); where trillions

of heterogeneous devices collect, and share data across many contexts, and for many applications, from

infrastructure monitoring to wearable computing. This vision echoes the original formulation of “smart dust”

[65], which advocated for millimeter scale sensors, deployed in a dense volume, for the benefit of our everyday

lives. These “smart dust” devices are the fundamental unit of the IoT, enabling the dense deployments essential

for this vision. These devices are the “swarm at the edge of the cloud[73]”, the leaf nodes of a global sensor

network. These sensors must harvest energy from the environment to achieve the long lifetimes necessary

(often measured in decades), and to reduce the size, and cost, of a larger energy store. Currently, many sensors

combine energy harvesting with a battery or super capacitor, however, the inclusion of these expensive storage

mechanisms is fundamentally at odds with the IoT vision.

The sensors that make up the current iteration of the IoT, usually use batteries as the primary energy

source. This has hampered their ability to be deployed for long periods of time. Batteries only have a usable

lifetime of a few years if used carefully. Additionally batteries are expensive, large, and pose environmental

risks when disposed[72, 100, 124]. When batteries fail, their replacement requires human intervention;

something not possible at the scales of the future IoT. The problems with battery powered sensing have

inspired a range of smaller, cheaper computing devices, without batteries, that can be deployed maintenance-

free for decades. These devices are powered by the abundant supply of environmental energy which they store

in tiny capacitors that are much easier to recycle—and cheaper to produce—than batteries. This combination of

energy harvesting and batteryless computing promises to enable a wide range of new applications in the future

Internet of Things. This new generation of batteryless sensing devices can be used for passive RF-powered

interactions (re-imagining contactless smart cards, and RFID tags), active data gathering to monitor the health

of a structure, sensing to better understand the behaviors of wildlife populations, and many other applications

that require fire-and-forget sensing. Now very long term studies of infrastructure, wildlife, and human factors

becomes realistic. However, implementing complex applications on batteryless technology is currently very

difficult.
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Wireless sensing systems generally operate under the assumption that power is a limited, but stable,

resource. For batteryless devices, this assumption does not hold. Batteryless devices rely completely on

external energy sources, like energy harvested from an RFID Reader. The small capacitors that power these

batteryless devices can’t hold much energy—only enough for a few hundred milliseconds of work, losing

memory and their location in time, when the supply is not sufficient to stay alive. These devices operate blind,

forced to reconstruct progress from checkpoints left by a possibly long dead version of themselves. Long

running tasks must be executed piecemeal across reboots using checkpointing[107] and careful scheduling[16].

Fragments of execution must be pieced together to deliver meaningful results. Even with careful checkpointing

and scheduling, however, sensing outcomes are never guaranteed.

Building applications resilient to an unstable power supply is challenging because system designers

lack the debugging tools, language and runtime support, and batteryless hardware platforms. Because of this,

batteryless sensor deployments have been limited to simple programs at small scale, designed by experts. To

move batteryless sensors beyond computational RFID and into the mainstream of traditional sensing, the

developmental burden of batteryless applications must be eased.

1.1 Thesis Statement and Contributions

This dissertation seeks to firmly establish the following thesis: Tiny, energy harvesting, batteryless

devices can support long-running, sophisticated sensing applications.

To test this thesis we present (1) a full stack approach and sensing platform that transparently

manages the temporal, computational, and consistency difficulties caused by flaky power, (2) tools that

enable exhaustive testing and confident deployment, and (3) language and runtime techniques that mask the

complexity of intermittence from the programmer. The systems research done to support these applications

readily translates to other areas of computer science and computer engineering, as well as enables broad

impacts across many other fields of science and engineering.

1.1.1 Contributions

This work presents three broad contributions extending previous work; all with the goal of enabling

batteryless, energy harvesting sensing on tiny devices meeting the constraints and requirements of the future

Internet of Things.

• Tools which enable repeatable experimentation of batteryless devices (Chapter 3)
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• Hardware platforms for managing energy storage and timekeeping between power failures, while

providing a usable way to rapidly prototype batteryeless devices (Chapter 4)

• Language and runtime support for intermittent computing on batteryless devices (Chapter 5)

Innovating in these three areas enables application developers to quickly and confidently prototype,

test, debug, and deploy perpetual sensing systems in many far-reaching application areas.

1.2 Dissertation Overview

The rest of this dissertation is organized as follows.

Chapter 2 motivates and explains the need for batteryless, energy harvesting systems to support the

emerging concerns of the Internet-of-Things. This chapter discusses four main reasons from an economic and

systems perspective, that prevent battery powered sensors from being deployed at very large scales.

Chapter 3 presents a system, Ekho, that establishes the scientific foundation for realistic and repeat-

able testing and comparison of batteryless sensors pre-deployment. This section introduces a powerful energy

harvesting environment abstraction, I–V curves, that Ekho uses to establish this foundation.

Chapter 4 describes Flicker (and supporting technologies), a reconfigurable, modular, extensible,

hardware platform for the batteryless Internet-of-Things. Flicker depends on two key technologies introduced

and described in this chapter, Federated Energy, and Remanence Timekeepers.

Chapter 5 describes Mayfly, a language and runtime system for timely execution on batteryless

sensing devices. Mayfly uses a declarative, graph based programming language to mask intermittent execution

and improve usability and comprehension for developers of batteryless applications.

Finally, we conclude in Chapter 6.

3



CHAPTER 2

BATTERYLESS SENSING

Sensing platforms, from the very early days, have been powered by batteries. However, this must

change, to enable the new applications required by the Internet of Things. Batteries are already a detriment to

sensing devices, because of physical factors such as size, weight and cost, the human expense of maintenance,

and the severe environmental impact. Aggravating the problem, improvements in battery technology have

historically come slowly, never keeping pace with the rapid advances occurring in the sensing community. The

problems of batteries will only compound with the scale of the IoT, as the number of connected devices go

from millions, to billions, to trillions. Future ubiquitous sensing applications can not afford these costs. Below

we describe the four main factors that prevent battery usage in the modern, and future sensing applications in

the Internet of Things:

Size, Weight, Cost: Batteries are expensive, often one of the most expensive components of a sensor,

especially when optimizing for energy density. Batteries are also heavy, and large, usually taking up the most

area on a sensing device. These factors alone confine the usefulness of most sensing platforms by limiting the

applications, and the deployed sensor density. The cost of individual devices must be extremely low, and the

size footprint small, to make the IoT vision feasible.

Wear and Maintenance: Batteries wear out quickly in wireless sensor networks; even when carefully

managed. All batteries will eventually age and die, no matter the control circuitry. Often the battery is

severely damaged by overcharging and overdischarging, reducing the lifetime even further[13]. Replacement

and maintenance, particularly for a large number of sensing devices, becomes prohibitively costly as this

maintenance is generally done by humans. It will be not possible to change the batteries of the trillions of tiny

sensors that will make up the Internet of Things.

Slow Battery Improvement: Moore’s law does not apply to the chemical and manufacturing processes that

underly the production (and research) around battery technology. Battery improvements have been slow after

the most recent chemical substitution of lithium ion for nickel metal hydride, creating lighter and more dense

batteries. Lithium (with three protons) is the lightest possible substance available to create batteries with.
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Subsequently, battery technology improvements are on the order of 5% per year, impossible to keep up with

the fast advances in computing power.

Environmental Harm: The most important issues with batteries powering the Internet of Things are the

environmental concerns associated with processing and disposing of large numbers of dead batteries[72].

Fundamental technological obstacles must be overcome before large scale deployment of batteries is envi-

ronmentally sustainable. This problem is already manifested in the area of consumer electronics recycling;

the weight of dead, rechargeable lithium batteries in China is expected to surpass 500 thousand metric tons

by 2020[135]. Additionally, dead batteries leech harmful chemicals into the soil, including chromium, lead,

lithium, and thallium[66]. Before the Internet of Things can truly succeed, the environmental burden of

recycling trillions of batteries must be addressed, or subverted.

2.1 Batteryless Devices and Applications

The physical factors, maintenance costs, and environmental problems surrounding batteries, have

forced the creation of a new class of sensing device that is batteryless, operates purely on harvested energy, and

computes intermittently. Motivated by new mobile applications with strict size and cost constraints, lifetime

requirements measured in decades, as well as recent advances in low-power microcontrollers, developers

of sensor platforms have decided to leave their batteries behind and attempt to sense on transient power.

Batteryless devices usually have five major components; 1) an energy harvester (solar, kinetic, RF, microbial,

and others), 2) a small capacitor for energy storage, 3) a microcontroller, 4) a communication channel (usually

radio or backscatter) and 5) sensors and actuators.

Betteryless devices are perhaps most visible in the application realm that RFID occupies. Contactless

smart cards and computational RFID tags (CRFIDs) [106, 114, 136, 133]— typically have limited computa-

tional power, rely on wireless transmissions from a reader both for energy and for timing information, and lose

power frequently due to minimal energy storage.

These batteryless devices enable new sensing applications in wearable technology, especially

mHealth[105], water infrastructure monitoring through microbial energy harvesting[30], environmental

monitoring[89], greenhouse monitoring[53], and many other applications. Other applications can be imagined

where sensors are embedded in clothing, inside animals, or put in space. Each of the applications described,

were not possible with conventional sensing techniques; either because of extended lifetime requirements,

deployment and maintenance impossibilities, or just economics. These applications change the way we look at
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sensing, however, each of these applications can’t work with batteries.

Despite progress in batteryless platforms and technologies, the previously described applications

and hardware are all engineered for one problem space or application. Currently, there does not exist a

generalized platform for batteryless sensing. Fundamental challenges in energy management, timekeeping

through power failures, testing and verification, and other areas must be overcome before a general platform

can be engineered.

2.2 Challenges

Designing the software and hardware that composes batteryless devices is challenging. We detail the

main challenges in the rest of this section.

Volatile Energy Environments: Unlike traditional battery powered sensors (which duty cycle to prolong

lifetime), energy harvesting devices must work opportunistically. Having too much or too little energy is

equally inefficient and wasteful—energy leakage is high when the devices reach their full capacity. Greedily

using energy can restrict functionality, while under utilization of harvested energy is wasteful in terms of

computation that could have been performed. Power supply fluctuations affect a device’s runtime behavior in

ways that are often difficult to predict or reproduce in the lab during testing. Matters are complicated further

by the fact that the energy harvested by each device depends not only on environmental conditions, but also on

the device’s supply voltage at runtime. This means that the amount of energy harvested is partially determined

by the behavior of the device.

Fragmented Execution: Since the processor frequently reboots because of an unstable power supply, exe-

cution becomes fragmented. Maintaining forward progress is difficult to code for, and difficult to visualize.

Combining fragmented execution opportunities into cohesive programs is a difficult task for programmers.

Temporal Data: In traditional computing, a reliable sense of time can be provided using an internal clock.

Time measurement errors, due to clock drift or power failures, can be corrected by synchronizing with a

trusted peer or other networked time source. When the available energy of batteryless devices runs out, and

the capacitor depletes, the microcontroller, volatile RAM, and all clocks are reset. All of the sensor platforms

previous timestamps (and therefore sensor data) have no meaning, since the local clock will start back at zero.

This makes management of sensor data that is time sensitive, and logging of execution, difficult.

Constrained Resources: Batteryless sensing platforms, out of necessity, are extremely constrained. The
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small amounts of energy that are gathered can only support slow processors(1-8MHz) with small memory

space (8KB to 128KB). This makes it difficult to process data or perform complex algorithms even when one

has a stable power supply.

Usability: All of the previous challenges combine to make the developer experience when working with

batteryless devices abysmal. Determining what went wrong and where becomes very difficult when debugging

can only be done with an oscilloscope. Lack of a definitive toolchain exacerbates these problems even further;

potentially limiting the applications that are deployed, and making a high barrier to programming these devices.
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CHAPTER 3

EKHO: REALISTIC AND REPEATABLE EXPERIMENTATION

Figure 3.1: A solar IV surface generated from an IXYS solar cell exposed to a lightbox. An IV surface
captures all possible harvesting scenarios for a harvester. Each possible harvesting current (I) for the
supply voltage (V) over time are shown.

Ekho is a tool that records and emulates energy harvesting conditions for capacitor powered energy

harvesting devices, and is generally applicable to a wide range of harvesting technologies. Ekho uses a novel

method to explore and record an energy harvesting environment by modulating the load using a precisely

controlled digital potentiometer. This energy harvesting environment (solar, RF, kinetic) is processed and stored

to be later replayed through a custom analog front-end which serves as a current source. To evaluate Ekho, we

have developed two prototypes; a desktop version, and a mobile recording version. Using these prototypes,

we evaluate Ekho’s ability to replicate energy harvesting conditions both accurately and consistently. In our

evaluation we found Ekho provides a consistent environment for repeatable experimentation on batteryless

sensing devices.
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Energy is the greatest single limiting factor for many mobile sensing applications, and recent advances

in energy harvesting are making it possible to deploy smaller sensing devices for long periods of time without

the need for regular maintenance (to replace or recharge batteries). A wide range of environmental sources are

readily available, and whether a device harvests solar [77, 67], radio frequency (RF) [107, 16], kinetic [86] or

even energy from other devices [70], harvested energy sources are often highly variable, scarce, and difficult

to predict.

Battery technology has been able to store surplus energy harvested during the high energy periods

to be used during the low energy periods. However, rechargeable batteries wear out, charge slowly, require

special protection and charging circuitry, pose environmental risks, and fundamentally limit the lifetime and

deployability of today’s mobile computing devices. These have inspired a range of capacitor-based energy

storage solutions for sensor devices [114, 132, 133, 126, 47, 45] that harvest energy, charge quickly, and can

store only enough energy for short bursts of operation.

However, hardware and software solutions for energy harvesting sensing devices with limited

energy storage are difficult to design, debug, and especially to evaluate. Harvested energy varies and

energy storage constraints continue to tighten in order to accommodate smaller mobile form factors. The

consequence is that, in addition to the more traditional challenges faced by mobile devices (like uncertain

network connectivity), it is often difficult for system designers to predict how their devices will behave

at runtime. Reliably comparing different algorithms, approaches, or configurations is often impractical or

extremely labor-intensive. These challenges are primarily the result of two key characteristics of energy

harvesting systems: 1) energy harvesting is erratic and unpredictable, and 2) the amount of energy harvested

depends not only on environmental conditions, but also on the device’s behavior at runtime.

The combination of a behavior-dependent energy supply and a high degree of runtime volatility

makes repeatable experimentation impractical, using traditional testing strategies. Two test runs with the same

hardware and software may result in dramatically different results, due to differences in energy harvesting

conditions. Two runs with different software or hardware configurations may produce dramatically different

results under the same harvesting conditions, assuming that harvesting conditions can be replicated. Runtime

conditions are often vastly different from in-lab conditions, and may be difficult to replicate during testing. In

order to compare different algorithms or different hardware configurations, a system designer must currently

either run a large number (hundreds or thousands) of tests under realistic runtime conditions and compare

results stochastically (a labor-intensive and imprecise approach), or control energy harvesting conditions in

simulation.
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Simulators have been developed that predict the power consumption [35, 117, 107, 22, 97] and

even the energy harvesting [47, 107] behaviors of sensor devices. Unfortunately, most ignore the impact of

device behavior on energy harvesting. Indeed, simulators must depend entirely on an accurate model of the

test device’s hardware characteristics. As device hardware evolves, or when a designer wants to try out a

different hardware component (e.g., a new sensor, actuator, or processor), the simulation software must be

updated—often involving a significant amount of in-lab measurement and testing. Besides simulation, testing

by deployment, then re-deployment on real hardware gives us an accurate picture of performance. However,

with energy harvesting devices, this method of testing loses validity as energy environments constantly change.

This chapter explores another option, emulation. Instead of depending on software models of energy

harvesting and consumption, an energy harvesting emulator records energy harvesting conditions and then

accurately reproduces the recorded conditions (in the form of physical “harvested” power) to a real test

device running in the lab. This approach provides system designers with a realistic and repeatable evaluation

technique, without sacrificing flexibility—modifying the hardware and software on the test device does not

require any changes to the emulator.

In this chapter, we describe the design, implementation, and evaluation of Ekho, a tool that records

and emulates energy harvesting conditions for capacitor powered energy harvesting devices. Ekho is generally

applicable to a wide range of harvesting technologies. Ekho uses a novel method to explore and record an

energy harvesting environment by modulating the load using a precisely controlled digital potentiometer. This

energy harvesting environment (solar, RF, kinetic) is processed and stored to be later replayed through a custom

analog front-end which serves as a current source. To evaluate Ekho, we have developed two prototypes;

a desktop version, and a mobile recording version. Using these prototypes, we evaluate Ekho’s ability to

replicate energy harvesting conditions both accurately and consistently. In our evaluation we found Ekho

is consistent within 68.7 µA1 from test run to test run, emulating recorded solar harvesting environments to

mote-class devices running a variety of test programs. Ekho reproduces a recorded solar trace with a mean

error of less than 77.4 µA from the recorded surface. We also found that Ekho was able to record RF energy

harvesting environments and replay them with high fidelity, and low error rates for most transmit powers.

Finally, we found that Ekho can reproduce kinetic energy environments with a mean error of 15.0 µA from the

recorded surface. It should be noted that a faster processor was used for the kinetic results which significantly

contributed to the accuracy gains over solar. Parts of this work were presented at SenSys 2016 [51].
1depending on capacitance
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3.1 Harvesting Energy

Ambient energy, harvested from the environment, is key to the success of any sensing and pervasive

computing application that requires small devices to operate maintenance-free over long periods of time.

Energy in its many forms (solar, RF, mechanical, thermal, etc) can be converted into electrical energy that can

be stored in batteries or capacitors and used to power the device’s processor, sensors, and other components.

Rechargeable batteries usually wear out after a few years due to a limited number of charge cycles, charge

slowly and pose disposal and safety hazard. Capacitors, however, can last for decades of useful operation,

charge quickly and are more environmentally friendly. The work in this chapter focuses on battery-less

energy harvesting devices, however, the techniques are generally applicable to battery powered sensing

systems, just not as useful.

Unfortunately, designing devices that effectively use this never-ending supply of free energy is

challenging. Unlike traditional battery powered sensors (which duty cycle to prolong lifetime), energy

harvesting devices must work opportunistically. Having too much or too little energy is equally inefficient and

wasteful—energy leakage is high when the devices reach their full capacity. Greedily using energy can restrict

functionality, while under utilization of harvested energy is wasteful in terms of computation that could have

been performed.

Additionally, nearly all environmental energy sources vary widely and unpredictably at runtime,

and as new applications require smaller form factors and lower energy storage capacities [21], power supply

volatility increasingly influences and defines device behavior. Devices, like computational RFIDs (CRFID) [16,

113, 136], that replace batteries with small capacitors and store only enough energy for, at most, a few seconds

of operation are especially susceptible, and may see their supply voltage increase threefold or fall to zero in

seconds. Power supply fluctuations affect a device’s runtime behavior in ways that are often difficult to predict

or reproduce in the lab during testing.

Matters are complicated further by the fact that the energy harvested by each device depends not

only on environmental conditions, but also on the device’s supply voltage at runtime. The relationship

between supply voltage and charge current can be characterized by an I–V curve, a function that describes how

harvesting current (I) changes, with respect to the device’s supply voltage (V). Different programs (loads) will

occupy different areas of the I–V curve as shown by Figure 3.2.

Figure 3.3 shows six (6) example I–V curves, two produced by a solar panel under high and low

light conditions, two produced by a Peltier generator—which converts thermal differentials into electrical
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Figure 3.2: This figure shows how program behaviors influence energy harvesting performance. Four
(4) programs’ harvested currents, measured over a 20 s period of time, are shown with respect to their
supply voltage, while connected to a programmable solar environment (see Section 5.3) generating a
single I–V curve (shown in black). Points represent an average of many samples (many points are not
contained in shaded regions), and the histogram’s along the bottom show the sample density at each
point. Due to differences in behavior (power consumption), each example program occupies a different
section of the I–V curve. These differences result in significant variations in harvested power.

current—under 5 ◦C and 10 ◦C thermal differentials, and two produced by RF energy from a reader at +32.5

dBm and +27.75 dBm. In all three cases, environmental changes alter the harvester’s I–V curve. In addition,

each harvester produces its own distinct “family” of curves, with a common characteristic shape. These curves

change over time, resulting in I–V surfaces, sequences of I–V curves belonging to a certain family.

At runtime, an energy harvester’s I–V curves impact program behaviors and experimental outcomes.

For example, two algorithms that draw different amounts of current will deplete their capacitors at differing

rates, resulting in different supply voltages, and, consequently, different amounts of harvested power (P = IV ).

Figure 3.4 illustrates this scenario by showing the amount of power harvested by two TI EZ430-

RF2500 devices running two different programs under the same solar harvesting conditions. Both periodically

read data from an on-board temperature sensor, however the Adaptive program modulates its wait time

depending on the voltage so it can sense when energy is scarce, while the Static program senses and writes

whenever it is able. Under the test conditions, Adaptive stayed near the high energy knee of the I–V curve

(see Figure 3.2), maximizing on available energy by watching its supply voltage, while the Static program

harvested significantly less energy by being greedy. The maximum power point (MPP) is also shown to

demonstrate the amount of power that could potentially have been harvested by a device with the right supply

voltage.
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Figure 3.3: Six I–V curves are shown, produced by three different energy harvesters—a solar panel, a
Peltier generator, and an RF Reader—each under two (2) different energy harvesting conditions. Each
harvester produces its own “family” of curves, with a common characteristic shape. Each of the above
I–V curves were captured with the recording feature of Ekho. Note that the Peltier curve has been
scaled 17x for purposes of illustration.

This is illustrated further by Figure 3.5 and Figure 3.6. These I–V surfaces were recorded by Ekho

from solar and kinetic energy environments, respectively. Different execution, behavior, or energy consumption

causes different paths across the surface with different parts of the surface (those closest to the MPP) being

more efficient than others.

Consequently, any attempt to predict how a low-power energy harvesting device will behave in the

wild, must take into account the harvester’s I–V characteristics and the resulting program variation. There are

two common methods to predicting device behavior; (1) replaying a harvested power trace gathered from a

device, and (2) using a programmable energy environment such as a light-box.

Replaying Power: One approach to making energy harvesting reproducible is to measure the harvested power

as the device executes, and then replay the collected power trace. This approach has been used in other

harvester-powered mobile systems [119], and our early efforts focused on replaying power traces.

Replaying a power trace is an attractive technique to predict device behavior under certain energy

conditions since designing the hardware is simple and straightforward, and provides a reasonably accurate

solution for devices with a stable supply voltage—like those with large batteries, which typically vary by less

than half a volt when between 15% and 85% of a full charge. When the battery is nearly full or empty, simply

replaying a power trace to simulate this will over or underestimate the energy that would be harvested in an

actual deployment scenario.
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Figure 3.4: Harvested power is shown for two TI EZ430-RF2500 target boards running two different
programs that both write to flash in different ways—the Static program writes as fast as possible if
there is any power available, the Adaptive program adapts so it can write even when harvestable energy
is scarce—under the same solar energy harvesting conditions. Differences in power consumption result
in different amounts of harvested power.

While replaying power will work most of the time for devices with large batteries, devices that store

their energy primarily in small batteries or capacitors have much less stable supply voltages that explore much

more of the energy harvester’s I–V curve. Figure 3.7 illustrates the I–V characteristics that are produced by

recording the power harvested at a single point and replaying that power during experiments. Replaying

constant power results in an effective I–V curve, defined by I = P
V , where P is the power being replayed. The

figure shows three such I–V curves that could be inferred from the same solar I–V curve. In all cases, the

“constant power” curves approximate the real energy harvesting characteristics in only a small part of their

range. In a later section, we compare the results of emulating power with different training sets to Ekho, and

the light-box mentioned below.

Programmable Energy Environments:

Programmable energy environments offer a somewhat more comprehensive effort at reproducing

energy conditions than simple power replay. These environments make an effort to isolate an energy source,

such as solar, RF, or vibrations, and create a repeatable environment to provide energy to a system [10].

Unfortunately, these devices are often difficult to construct and require careful calibration in order to provide

accurate and reproducible results. For example, a reproducible vibrational energy environment requires special

care to reduce the effect of ambient vibrations and noise events; experiments can be interrupted or affected

by environmental events such as students walking down a hall, a chair moving, or even loud noises. These
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Figure 3.5: Shown is a solar I–V surface recorded by Ekho. A solar panel was attached to the harvester
input of Ekho and a light was shown on the panel from different distances. The large hills are when
the light was closest to the panel, with the valleys being when the light was farthest away.

devices also tend to possess many points of failure or errata introduction. However, these analog solutions to

programmable energy environments are much better than naive approaches that simplistically replay power.

In developing Ekho, we made extensive use of three such environments, dubbed the “light-box”, the

“RF-box”, and the “shake-table”. The light-box consists of a vehicle headlamp whose output is controlled via

microcontroller and offers the ability to provide a controlled amount of light directly to a solar panel with

minimal influence from outside sources. The energy produced by the light-box can then be used to power a low

energy system and produce reasonably repeatable results, however it is not perfect as Figure 3.8 shows. As the

light-box heats up, it changes the energy conditions inside the box, causing program behaviors to change from

one run to the next. The RF-box is lined with copper mesh, effectively creating a Faraday cage, that isolates

the interior from wireless interference, which can cause variation in harvesting current. Inside the RF-box

is a programmatically controlled antenna that can power small CRFID tags such as the UMich Moo [136].

By modulating the transmit power different harvesting conditions can be created. The shake-table uses a

signal generator connected to a surface transducer to excite a piezoelectric ceramic, which provides power.

The amplitude and frequency of vibration can be adjusted to create different energy harvesting conditions.

Constructing other programmable energy environments requires similar steps to isolate the energy source.

3.2 Ekho System Overview

The Ekho emulator is designed to capture the physical characteristics of an energy harvesting

environment and recreate those environmental conditions in order to enable repeatable and realistic in-lab
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Figure 3.6: Shown is a kinetic I–V surface recorded by Ekho. This surface was generated by attaching
a weighted MIDE V21BL piezo ceramic to a surface transducer generating a sine wave that ramped
from 160 Hz to 390 Hz, then back to 160 Hz. The large dips are the result of the surface transducer
generating the resonant frequency of the piezo, causing a burst of extra harvestable energy. Ekho
allows system designers to capture electrical characteristics dependent on the energy environment (like
resonant frequency) in a straightforward way.

testing. Ekho does not emulate program behaviors, but captures features of the energy environment that allow

testing of different program behaviors in a realistic way. Rather than focus on supporting a specific harvesting

technology, our design of Ekho is focused on providing a generally applicable tool that supports a wide range

of energy sources, while providing users with flexibility, mobility, accuracy, and consistency.

Generality: In Ekho, energy harvesting conditions are represented as I–V curves—an abstraction that, as

discussed in Section 5.1, can be used to characterize any common energy harvesting technology. Changes in

harvesting conditions over time are represented by combining multiple I–V curves into I–V surfaces. This

generality frees the experimenter from designing expensive custom hardware such as a light-box or Faraday

cage2 to test devices before deployment. Ekho uses a novel method to explore and record these I–V surfaces

by quickly modulating the load using a precisely controlled digital potentiometer. This allows Ekho to rapidly

explore any I–V surface, including RF, with minimal changes in experimental setup.

Flexibility: A key focus of our design is to allow application designers to effortlessly compare different

software and hardware options. Ekho achieves this by mimicking the physics of an energy-harvester, providing

realistic and repeatable power to real test devices. Using this approach, trying out a new sensor, energy

harvester, scheduling algorithm, or even a new processor, requires no changes to the emulator, no profiling or

modeling. The user makes the desired change to the experimental setup and continues using Ekho with no

Ekho-specific configurations or alterations.
2A Faraday cage is a container made of conducting material that prevents the entry or escape of an electromagnetic field.
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Figure 3.7: Shown is a single I–V curve, and the consequences of choosing constant power to represent
it. Depending on the load, the generated P-curves from the power trace can cause unrealistic changes
in the programs actual harvested energy. As shown, emulating constant power is a poor replacement
for emulating the actual I–V curve.

Mobility: Since Ekho is a supporting tool for tiny energy harvesting devices deployed in many different

conditions, a mobile form-factor is essential for the recording function. This feature allows Ekho to be

deployed with existing systems, or pre-deployed to characterize the energy environment beforehand. We have

designed a deployable version to demonstrate the mobility of Ekho.

Accuracy: An energy harvesting emulator is only as useful as it is able to accurately recreate energy harvesting

conditions. At runtime, devices often experience a wide range of rapidly-changing harvesting conditions.

Ekho is designed to accurately estimate I–V surfaces of varying shapes and magnitudes. This allows Ekho to

recreate recorded conditions with sufficient accuracy to mimic energy fluctuations and patterns that devices

confront in the myriad conditions of real-world deployment.

Consistency: Perhaps the most important goal for Ekho is consistency. No two recorded traces of energy

harvesting conditions will be identical, and test engineers may often be willing to tolerate emulations that

are similar, but not identical, to those recorded in the wild. In contrast, experiments that aim at comparing

different algorithms or hardware choices require that test runs be consistent. Inconsistent emulation yields

results that are not reproducible and difficult to interpret. Ekho offers favorable accuracy behaviorally and

physically compared to other controlled energy harvesting environments but excels in reproducing energy

conditions consistently.
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Figure 3.8: The light-box mean variation between runs increases with light intensity for static loads.
The light-box, unlike Ekho is susceptible to environmental changes and care must be taken to control
those. Temperature changes after long use are one such factor that affects repeatability.

3.2.1 System Architecture

In order to achieve these goals, we have designed a system architecture, shown in Figure 4.9, which

consists of three interdependent modules: a surface manager that stores I–V surfaces and manages the

high-level recording and emulation logic for the system; a low-latency I–V curve controller that sequentially

emulates the I–V curves that correspond to each single point in time during an emulated surface; and an analog

front-end module that facilitates controllable current emulation and provides signal conditioning that is needed

for taking accurate current and voltage measurements, especially during periods when harvested energy is

scarce.

Ekho’s surface manager controls both the recording and emulation of energy harvesting conditions.

This includes receiving current and voltage measurements from the I–V Controller during recording, estimating

I–V curves from the received measurements, storing I–V surfaces in a digital format, and sending I–V curves

one-by-one to the I–V curve controller during emulation. The storage and computational requirements for these

activities fit comfortably within the capabilities of the current generation of laptop and desktop computers.

The mobile version separates the recording surface management from the emulation, but otherwise performs

the same function.

In order to accurately emulate I–V curves received from the surface manager, the I–V curve con-

troller must be able to quickly gather current and voltage measurements and respond to those changes

appropriately (within a few µs). This requirement is most easily satisfied by a processor with integrated
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Figure 3.9: Ekho consists of three interdependent modules: a surface manager that stores I–V surfaces
and manages the high-level recording and emulation logic for the system; a low-latency controller that
sequentially emulates the I–V curves that correspond to each single point in time during an emulated
surface; and a front-end module that facilitates controllable current emulation and provides signal
conditioning that is needed for taking accurate current and voltage measurements.

analog-to-digital (ADC) and digital-to-analog (DAC) capabilities, a combination that is rarely found in today’s

high-speed processors, but which are provided by some higher-speed microcontrollers, like Atmel’s AVR

XMEGA line of controllers [26], and some ARM controllers, which we use in our prototypes, described in

Section 5.3.

The I–V curve controller relies on the third module, an analog front-end, to provide the amplification

and other signal conditioning needed for accurate I–V curve emulation and measurement. When capturing

energy harvesting conditions, this circuit is placed between the harvester and test load. During emulation,

the front-end takes on the role of energy harvester, providing the device under test with a current supply that

mimics the energy source being emulated.

The following sections describe how these modules work together, in two different operating modes,

to record and emulate harvesting conditions.

3.2.2 Recording I–V Surfaces

Ekho captures the energy harvesting conditions by measuring them directly. Electrical current is

measured by the front-end as it flows from the energy harvester into the test device’s storage capacitor. Current

is measured by observing the amplified voltage drop across a low-tolerance sense resistor. The test device’s

supply voltage is also measured. These current-voltage (I–V) measurements are converted from analog voltages

to digital values by the I–V curve controller as rapidly as possible and passed along to the surface manager for
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post-processing, where I–V curves are generated from the I–V pair point cloud.

This series of recorded I–V pairs represent a single path across the three-dimensional surface that

represents the harvesting conditions during the trace; the surface manager’s challenge is to estimate the entire

surface from this single path. Each recorded I–V pair captures one point on the I–V curve that represents

harvesting conditions at the time it was captured. When considered alone, each point could have been produced

by an infinite number of different I–V curves; however, a series of I–V measurements can be used to infer

the current I–V curve’s shape, assuming 1) that the measurements are gathered quickly before the state of

the I–V curve changes measurably, and 2) that the measurements adequately span the I–V curve’s voltage

range. Taking measurements rapidly (>1 million samples/second) is straightforward. Inducing enough supply

voltage volatility to quickly and fully characterize the I–V curve at each point in time requires more care. A

key contribution of Ekho is its novel method to induce supply voltage volatility.

3.2.2.1 Inducing Supply Voltage Volatility

At runtime, the power consumption of a typical test device (or test load), like a CRFID or mote-class

sensor, does not often change rapidly enough or significantly enough to explore the entire I–V curve. This

is illustrated in Figure 3.10, which shows two sets of 6,000 I–V pairs collected by Ekho over a period of

30 ms, under similar solar harvesting conditions, while using two different test loads: an off-the-shelf TI

EZ430-RF2500 mote [58], and a custom smart test load that we have designed specifically for inducing voltage

changes in order to assist with Ekho’s recording mode.

The custom “smart” load is a digital potentiometer controlled by a microcontroller which rapidly

alters its power consumption in order to induce large fluctuations in supply voltage for more accurate recording.

The Arduino controls the potentiometer and makes it cycle through a predetermined number of resistance

settings for a given time delay. These changes produce a wide range of load currents that explore different

parts of the I–V curve. As long as the cycle frequency is high enough, and the upper and lower bound of the

potentiometer’s resistance settings can exercise the extreme ends of the curve, the shape of any instantaneous

I–V curve can be gathered. In our experiments we have found that a 100 kΩ potentiometer provides a large

enough range. For custom “smart” load “cycle frequency” (the number of times a second the smart load cycles

through all its resistance settings), we found that 100 Hz can capture solar I–V curves, and 1000 Hz and above

is sufficient to approximate an RF I–V surface

As shown in Figure 3.10, when using the custom load, the measurements are spread evenly across the

I–V curve, the smart load effectively explores the entire I–V curve, while the mote measures only a small part
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Figure 3.10: This figure shows recorded I–V measurements, as produced by both the Ekho smart load
device and a typical mote-class sensor device. By intentionally increasing the power supply volatility,
the smart load provides much better coverage of the I–V curve being recorded, which improves Ekho’s
recording accuracy.

of the curve.

3.2.2.2 Surface Construction

Once these measurements have been captured, the surface manager uses a curve-fitting algorithm to

estimate the shape of the I–V curve that most closely fits each window of data, and the series of inferred I–V

curves make up the I–V surface that is stored for later use during testing. A variety of curve-fitting algorithms

exist, which could be used. For the sake of simplicity, we use the polynomial fitting algorithm provided by

the GNU Scientific Library (GSL) [40], and have found it to work well in practice, both in terms of accuracy

and efficiency. The size of each window is configurable (and is closely related to the custom load cycle

frequency), and represents a tradeoff between temporal accuracy and I–V curve accuracy. If the window is

too small, containing too few points with poor coverage, the estimated I–V curves may be inaccurate. If the

window is too large, then short-term changes in the I–V surface could be effectively filtered out of the captured

representation, decreasing the temporal accuracy of the surface; however this is harvester dependent. Trading

temporal accuracy for a larger window (and therefore I–V curve accuracy) will not influence the final behaviors

of most programs running on slow changing solar surfaces where curves switch at less than 100 Hz. However,

for RF surfaces this can pose a significant problem as curves can change upwards of one thousand times a

second.
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Figure 3.11: This figure shows the effect of capacitance while recording an RF I–V surface. As the
capacitance increases the output is averaged, and important features are lost. Each peak is the custom
“smart” load changing its resistance setting, these peaks are absorbed by the larger capacitance, which
means that voltage volatility is lost. Because of this the I–V surface is not as fully explored. For energy
environments, like solar, that evolve slowly, this may be acceptable, for volatile RF or kinetic harvesting
environments, important surface information will be lost.

3.2.2.3 Complicating Factors

Care must be taken when recording an energy environment. The sensitivity of the capacitor powered

energy harvesting device under consideration and the accuracy required for emulating will influence decisions

made when recording. Choosing the capacitance and cycle frequency of the custom “smart” load is critical to

an accurate I–V surface recording. Capacitance while recording has the effect of averaging out the surface

over some time period as shown in Figure 3.11. This smoothing effect is desirable for I–V surfaces that change

slowly (such as solar), as it reduces noise, and results in a cleaner representation of each individual I–V curve.

However, applying extra capacitance to fast changing surfaces (such as RF) will average out peaks and valleys

in the recorded surface. This averaging will change the final harvested power, and therefore the final program

behavior. This smoothing capacitance is only necessary if I–V surfaces that are being recorded with Ekho are

noisy, in most cases, a large smoothing capacitance is unnecessary.

The cycle frequency of the smart load also plays a factor in determining the accuracy of the final

constructed surface. If cycle frequency is set too low for a particular harvester type, the final surface will be

missing important features. Alternatively, if it is set too high, Ekho may not be able to emulate it fast enough.

Figure 3.12 shows differences in curve coverage and how they can affect the final surface. Ekho is configured

to support a wide range of harvester types. Each of these harvester could require different combinations of

cycle frequency and capacitance. In our experiments, we have found that a capacitance of 10 µF and a cycle

frequency of 100 Hz is adequate for recording solar surfaces, while capacitances less than 0.1 µF and cycle
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(a) Trace with a constant resistive
load. Using just this to generate
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(b) Trace with smart load cycling
at 1 kHz. The rapid voltage fluctu-
ations explore more of the the I–
V curve. However, the cycle fre-
quency is not quite high enough to
capture every part of the curve.
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(c) Trace with smart load cycling
at 10 kHz. The cycle frequency
is high enough to capture details
of the curve such that we can ap-
proximate the entire surface rea-
sonably well.

Figure 3.12: RF energy harvesting voltage trace over 10ms, with three different custom “smart” load
cycle frequencies.

frequencies of at least 1 kHz is required for recording RF and kinetic surfaces accurately.

3.2.3 Emulating I–V Surfaces

Ekho emulates stored I–V surfaces in three phases. First, the Surface Manager preprocesses each

I–V curve in the surface for efficient transmission and emulation. Second, the curves are communicated at the

appropriate time to the I–V Curve Controller. Third, the I–V curve is emulated by using the signal conditioning

capabilities provided by the front-end.

In order for Ekho to emulate energy harvesting efficiently, each I–V curve needs to be represented

compactly, in a form that reduces the computational workload of the I–V curve controller. To this end, each

curve is discretized down to 2n +1 points. A power of 2 is used for efficiency in looking up currents based

on ADC-provided voltage measurements. The choice of n represents a tradeoff between smaller I–V curves

which can be communicated more quickly, and larger curves which may represent the original curve most

accurately. By default, Ekho uses 65-point curves (n = 6), which provides good results for most types of

energy environments. Additionally, in order to reduce the computational load further, the surface manager

precomputes the DAC value that is required to produce the desired current.

After the surface is preprocessed, the surface manager begins emulation, sending each I–V curve

to the I–V curve controller at the time it is to be emulated. The new curve replaces the old curve in the

microcontrollers’ RAM, point-by-point, as it is received. The rate at which new curves need to be sent depends

on the harvester being emulated (some harvesters’ curves change faster than others). For especially fast

surfaces, like RF, the I–V curve controller can store the entire surface in RAM to facilitate greater than 1 kHz
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curve updates. For the current prototype, this limits RF surface length to under two seconds, this limitation

can be overcome using external memory to allow much longer RF traces to be emulated.

Throughout this process, the I–V curve controller emulates each curve by measuring the test device’s

supply voltage and playing the appropriate voltage to the front-end using its DAC, repeatedly. Finding the right

DAC value requires two I–V curve lookups to find the two closest points on the curve and a linear interpolation

between the two found DAC values. The voltages output by the DAC are amplified by the front-end (increasing

the range up to nearly 8 V), and the amplified output is connected, through a low-tolerance 400 Ω resistor

followed by the 10 Ω sense resistor (used for current sensing) to the test device’s capacitor. This produces a

predictable harvesting current (I = V
410Ω ).

Note that the feedback loop executed by the I–V curve controller must be extremely fast. The action

of emulating a current, in addition to the current draw of the test device, causes the supply voltage to increase

or decrease, which necessitates a change in current. If the feedback loop is too slow, then a larger storage

capacitor could be used on the device under test, if design constraints allow. Using a larger capacitor to store

the harvested energy will cause the supply to change more slowly, giving Ekho more time to respond. However,

in our evaluation with the most recent version of Ekho, we found that our emulation speed was more than

sufficient to emulate with high accuracy, without changing the size of the storage capacitor of the device under

test.

3.3 Implementation

In order to evaluate the efficacy and usefulness of our approach, we implemented four different

prototypes, and the software, tools, and programmable energy environments to evaluate them, . This section

gives implementation details of each.

3.3.1 Hardware

In order to evaluate the efficacy and usefulness of our approach, we have implemented four different

prototypes; an analog front-end (shown in Figure 3.13a), a deployable, MSP430 based I–V surface recorded

(sown in Figure 3.13b), a larger, more accurate ARM based I–V surface recorder (not shown), and an emulation

only Teensy ARM breakout board (shown in Figure 3.13c). We use the evaluation setup shown in Figure 3.14

to conduct all our experiments. This desktop evaluation unit consists of a surface manager, an I–V curve

controller, and a custom analog front-end. The mobile unit contains only the components necessary to record

24



(a) Analog Front-end (b) Micro Ekho (c) Emulator Only

Figure 3.13: Shown are our three reference Ekho implementations. Figure 3.13a shows the desktop
analog front-end; this can be used for emulation and recording, and with any MCU and smart load.
Figure 3.13b shows our mobile Ekho recording prototype. The mobile version is 9x smaller than the
desktop version, and does not need any supporting hardware (such as the dedicated PC for the desktop
version) to record I–V surfaces. With a small button battery, it can record for weeks. Figure 3.13c
shows an emulation only Ekho device as a Teensy 3.2 ARM daughter board.

I–V surfaces; the analog front-end, the smart load, and a micro-controller as hybrid I–V curve controller.

3.3.1.1 Desktop Evaluation Unit

The desktop system employs a variety of different hardware components. The surface manager is

implemented using a Windows 7 (64-bit) desktop. The analog front-end is implemented with a custom printed

circuit board (PCB) that provides filtering and amplification for accurately measuring low-amplitude current

and voltage signals. The analog front-end is powered by a 9V DC source. While Ekho is designed for low

current harvesting scenarios, our current implementation can accept harvester input voltages up to 8 V and

input current up to 0.5 A. This allows a broad range that can handle most low power devices. Our prototype

uses two different devices to implement the I–V curve controller functionality—an Atmel ATXmega256A3B

microcontroller [26] when in emulation mode, and an NI USB-6356 data acquisition device (DAQ) [56] when

in record mode. The DAQ provides the needed high-speed data collection capabilities needed for recording,

while the ATXmega provides a 32 MHz processor with integrated ADC and DAC for low-latency emulation.

Total cost of the system, including ATXmega, Arduino, custom circuit boards, and parts (excluding the DAQ)

is less than $700. The low-amplitude signals that Ekho must measure are highly susceptible to noise, induced

from ambient electromagnetic radiation (from AC power lines and RF transmitters). A shielded enclosure

and shielded cables are used throughout, in order to mitigate this problem. In later versions of desktop Ekho;

specifically the version used for gathering the kinetic results, the I–V curve controller was implemented on a
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Figure 3.14: Our prototype desktop Ekho evaluation setup, including two custom analog front-end
boards, the ATXmega256A3B-based I–V curve controller, and the “smart” load used to explore I–
V surfaces during recording. Note that while only a single front-end board is needed for Ekho to
function, we include two so that we can easily switch between experimental configurations. A shielded
enclosure and shielded cabling are used to reduce induced measurement noise. An external NI USB-
6356 data acquisition device (DAQ) (shown on the right) is used in our experiments to confirm Ekho’s
measurements. The DAQ can also be used to provide recording speeds that exceed the capabilities of
the I–V curve controller when needed. For kinetic evaluation, the ATXmega256A3B was replaced with
a ”Teensy” ARM Cortex-M4 breakout board.

”Teensy” Cortex-M4 breakout board. The ”Teensy” more memory and greater computational power when

compared with the original ATXmega I–V controller. We also use the NI USB-6356 to collect voltage and

current measurements during our experimental evaluation, as is described in the following section.

3.3.1.2 Smart Load

In order to support more accurate recording (as described in Section 3.2.2), we have developed a

custom “smart” test load for our evaluation unit, that rapidly modulates its power consumption. This induces

large fluctuations in supply voltage enabling more accurate recording. We have implemented this smart load

using an Arduino Uno to control a digital potentiometer. The potentiometer [88] acts as a resistive load, with

128 settings ranging from 134 Ω to 100 kΩ of resistance. During the record phase the Arduino cycles through

a predetermined number of these resistance settings randomly for a given time delay, producing a wide range

of different load currents that explore different parts of the current I–V curve. Both prototypes use the smart

load; however, the mobile version uses a 256 tap digital potentiometer with a wider resistance range of 120 Ω
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to 2 MΩ.

3.3.1.3 Desktop Emulation Unit

We anticipate that many designers will only be interested in the emulation function of Ekho, and will

use previously recorded I–V surfaces to test with. Additionally, many of those interested in using the recording

features, will do so with a separate unit, such as the Micro Ekho described in the next section. Therefore,

a dedicated emulation module could be needed. We implemented an emulation only version of Ekho that

functions as a Teensy 3.2 [99] daughter board, shown in Figure 3.13c. This unit can be powered over USB,

but supports emulating I–V curves of up to 11.5V using the Analog Devices ADP1613 and AD623. In batches

of 1000, including all components (except the Teensy 3.2), PCB fabrication, and assembly, we estimate the

cost of the emulation unit to be only $11.47.

3.3.1.4 Mobile Recording

A key requirement of Ekho is that of mobility; it must be deployable to energy environments where

sensors will be deployed. System designers can build in resiliency in their systems by recording I–V traces

in future deployment environments, and then emulating those environments in the lab with Ekho on systems

in development. To make the capture easier, we designed a mobile prototype that can be deployed and left

in a future deployment area, powered by batteries, collecting I–V information to a microSD card. Once

retrieved, the collected traces can be converted to I–V surfaces and emulated on hardware in development.

Like the desktop version, the mobile version was designed to have as large an input voltage range as possible

to accommodate the widest array of energy harvesters. We have developed two mobile recording prototypes

to satisfy a variety of deployment scenarios. Figure 3.13b shows the smallest version; which is centered

around an MSP430FR5728 as I–V curve controller. This mobile prototype, termed “Micro Ekho”, is meant

for wearable, and wildlife tracking applications. In addition to the MSP430 microcontroller, Micro Ekho

has a rectifier for AC signals, a CC1101 radio for communicating I–V information back to a basestation, and

simplified “smart load” circuitry. The simplified “smart load” uses four N-channel MOSFETs with different

resistance settings instead of a digital potentiometer. The MOSFETs are switched one at a time in rapid

succession, exercising the attached energy harvester in the same way as the digital potentiometer, albeit with

fewer stops. MOSFETs are a much cheaper and more power efficient solution, that allows recording higher

voltage energy harvesters with a low voltage reference, suitable for deployment. In batches of 1000, including

all components (except an enclosure and battery), PCB fabrication, and assembly, we estimate the cost of the
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Micro Ekho unit to be only $14.14.

Our second mobile prototype, termed “Mini Ekho” (not picture) records I-V characteristics in the

same way as the larger prototype. It is built around an off-the-shelf 96 MHz Cortex-M4 breakout board. The

Cortex-M4 functions as the I–V curve controller; using it’s built in ADCs to sense voltage and current off

the analog front-end. Mobile Ekho is mounted onto the processor breakout as a daughter board composed of

the amplifiers and sense resistor that make up the analog front-end, the smart load (a 2 MΩ AD5242 256-tap

digital potentiometer), the regulator, and a slot for a microSD card to store the raw surface data. Mobile

Ekho can sense voltages up to 16 V and currents up to 0.5 A The entire system is powered by a Li-Po battery,

regulated to 3.3V. The total cost of the mobile version of Ekho, including ”Teensy”, custom circuit boards, and

parts is less than $45.

3.3.2 Software

In addition to the Ekho apparatus itself, we have also implemented the software necessary for

recording, processing, and emulating energy environments for both the desktop, evaluation, and mobile

versions. For recording on the desktop evaluation unit, we interfaced with the NI USB-6536 to record a

physical energy environment. The NI USB-6536 is capable of sampling rates up to 1 MHz and we use usually

use sampling rates between 200 kHz and 500 kHz in our experiments. The code used for processing recorded

data, was implemented using a combination of python, C, and C++ to process and gather relevant data and

generate I–V curves. We use the GNU scientific library [40] for polynomial fitting of I–V curves and surfaces

from recorded I–V traces. We also used Numpy [3] and Scipy [62] to verify the quality of fit. We use R and

Gnuplot for I–V surface visualization and data verification.

For recording on the mobile version, we implemented software that manages recording and storing of

I–V point cloud data, that can then be converted into I–V surfaces using the above tools at a later time.

For emulating I–V environments, we used custom software, written in C, to handle timing on the PC

that is responsible for appropriately timing traces and relaying data to the I–V controller as necessary. The

microcontroller code is written in C and stores a curve in memory. It then constantly alternates polling an

ADC for new voltage readings and a USART for new curve data. As voltage readings and curve data become

available, it alters its DAC output and stored curve data appropriately. For emulating curves that change very

fast, but are short in duration, the entire surface is kept in the memory of the I–V controller.
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Figure 3.15: Our prototype light-box implementation provides a reproducible solar harvesting envi-
ronment. We use it in our experiments to provide reproducible “ground truth” harvesting conditions.
The implementation consists of an automotive headlight, a solar panel, an Arduino which serves as
programmable dimmer-switch, and necessary power supply.

3.3.3 Programmable Energy Environments

The light-box used for much of the energy recording and emulating experiments is shown in Fig-

ure 3.15. Our light-box consists of a light source (an automotive headlight), which can provide different

intensity settings depending on a PWM input. A solar panel is mounted inside the chassis which provides

shielding from outside light sources. An Arduino Duemilanove-328 uses pulse-width modulation to drive

a dimmer switch inside the light-box to control light intensity. This provides a relatively repeatable energy

environment for comparison with Ekho.

To facilitate a repeatable and noise-free RF energy environment, we built a small Faraday cage out of

brass screen and copper mesh seals, fully enclosed in a wooden box as shown in Figure 3.16. This RF-box

effectively isolates the interior of the box from external radio, Wifi and other types of wireless interference.

We mounted a programmable antenna connected to an Impinj Speedway Revolution UHF RFID Reader on

the bottom of the cage to act as an energy source for RFID scale motes. By changing the transmit power of

the antenna, many different I–V surfaces can be created. However, since each transmit power can generate

thousands of different I–V curves, this is not always necessary.

We designed a repeatable kinetic energy harvesting environment we termed the “shake-table”. It is
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Figure 3.16: Our prototype RF-box provides a reproducible RF harvesting environment used in our
experiments to provide “ground truth” harvesting conditions. The RF-box is composed of a wooden
shell layered with brass screen and copper mesh seals. The copper mesh creates a Faraday cage, iso-
lating the inside of the box from common RF interference. Inside the box is an antenna, driven by a
programmatically controlled reader.

composed of a programmable signal generator with amplifier, and surface transducer, which excites a MIDE

V21BL piezoelectric ceramic. As the ceramic is excited, it produces an AC voltage which is then rectified

by an LTC3588 into a DC voltage, suitable for powering low power devices. We used the MIDE V21BL

and LTC5388, but any combination of harvester and ceramic could be used. By modulating frequency and

amplitude of vibration, different I–V surfaces can be generated.

3.3.4 Tools

When first attempting to profile and record I–V surfaces with Ekho, it is often necessary to view

graphical representations of the I–V surface and I–V point clouds that inform the surface generation. We have

developed graphical tools with C/C++ and OpenGL that render I–V point cloud data in real time to aid the

designer in tuning Ekho to fully capture I–V surfaces. The ability to view the raw I–V point cloud, and the I–V

surface it generates in real time, allow the designer to quickly make decisions on fit, scale, and usefulness of

the surface under consideration. Besides providing 2D and 3D graphical representations of the I–V data, these

tools also output helpful metrics (such as curves per second) that allow the designer to estimate space I–V

curve controller memory requirements for recording and emulation.
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Table 3.1: Replaying power to emulate Solar energy environment

Replaying power with different training programs (flash writes)
Static training SemiAdaptive training Adaptive training

Program mean stddev mean stddev mean stddev

Static 330.0 3 558.0 10 566.0 2
SemiAdaptive 214.0 10 414.0 5 469.2 24
Adaptive 29.6 4 16.0 3 5.1 1

All software drivers, tools, rendering programs, and hardware designs have been made available via

our website3.

3.4 Evaluation

In this section, we evaluate Ekho’s ability to accurately capture energy harvesting conditions and

consistently reproduce them in order to provide energy harvesting system designers with tighter experimental

control, during testing. Specifically, we evaluate the consistency and accuracy of Ekho with respect to three

programmable physical environments; the light-box, the RF-box and the shake-table. As a comparison, we also

evaluate the previously discussed naive approach of replaying a recorded power trace (always replaying the

same power, regardless of voltage). This comparison is conducted for a variety of different harvesting traces and

loads (i.e. test programs). We also provide a more focused evaluation of Ekho’s individual components (record

and emulate) in order to explore the current limitations of Ekho and our prototype implementation.

In our experiments, Ekho was able to emulate solar I–V surfaces more consistently than our light-box,

in terms of reproducing program behavior; in physical terms, Ekho is able to consistently produce solar I–V

characteristics that vary by less than 68.7 µA (depending on capacitance) from test run to test run, emulating

recorded solar I–V surfaces to mote-class devices running a variety of test programs. Ekho reproduces the solar

I–V trace with a mean error of less than 77.4 µA from the recorded surface. Ekho reproduced kinetic surfaces

with a mean error of 15.0 µA for medium impedance static loads, and slightly higher error for low, and high

impedance static loads. Demonstrating the generality of Ekho; Ekho was able to emulate RF I–V surfaces

significantly more consistently than the RF-box, for three (3) different transmit powers. In our experiments

Ekho was able to reproduce RF energy harvesting conditions effectively such that program behaviors were

accurate in comparison to the RF-box. In contrast, we also show how the naive approach of emulating constant

power produces behavioral results that are inconsistent with the light-box, for battery-less, energy harvesting
3http://persist.cs.clemson.edu
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devices, and inadequate for predicting the performance of these small devices in deployment.

3.4.1 Methodology

Our evaluation involves emulating a total of 10,647 solar I–V curves, generated from 27 different ran-

domly generated light-box traces (ranging from 6 seconds to 5 minutes in length), for a total of 1,029,000 solar

I–V curves tested. We also record or emulate a total of 599 kinetic I–V curves, generated from four different

randomly generated shake-table traces (ranging from 500 milliseconds to 10 seconds in length), for a total of

2995 kinetic I–V curves tested. In our evaluation comparing the accuracy of emulating constant power versus

emulating I–V, we emulate a total of 3408 constant power curves, generated from three program’s harvested

power traces. We emulate a total of 320 RF I–V curves, generated from three different recorded transmit power

levels, for a total of 6400 RF I–V curves tested.

Emulation Platforms: Two computational platforms were used for emulating I–V surfaces during the

evaluation of Ekho. The first, an XMega microcontroller, was used to emulate Solar and RF surfaces; the

second, an off-the-shelf Teensy ARM Cortex-M4 breakout board, was used to emulate kinetic I–V surfaces.

The ARM Cortex-M4 was overclocked to 96 MHz and used native USB for curve updates, allowing for much

faster emulation (and better error results as shown in Table 3.6). The XMega microcontroller ran at 32 MHz

and was limited by the speed of the onboard UART for curve updates. The XMega microcontroller was used

for all solar and RF I–V surface emulation, while the Teensy ARM Cortex-M4 was used for all kinetic I–V

surface emulation.

Test Devices: For test devices in our solar and constant power experiments, we use the EZ430-RF2500, a mote-

class device produced by Texas Instruments, that consists of a MSP430F2274 ultra-low power microcontroller

and a low power, 2.4 Ghz CC2500 radio; a 10 µF capacitor is used to store energy. For our RF experiments, we

use the UMich Moo [136], an ultra-low power CRFID platform built around a MSP430F2618 microcontroller,

and RF harvesting hardware. No batteries were used as power sources in any experiment, each mote device is

powered exclusively from energy harvested and held in small capacitors. The static loads for kinetic testing

were implemented using a digital potentiometer.

Programs: For solar experimentation; the EZ430-RF2500 devices run three different programs—Static,

SemiAdaptive, and Adaptive—that provide different power consumption profiles and represent behaviors

commonly seen in sensing applications. All three periodically read from the MSP430’s internal temperature

sensor and store the value to the sensor’s internal flash memory. Between readings, all three programs put
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the the processor to sleep to conserve energy. They differ in how they manage energy. Static maintains a

steady sampling rate regardless of energy availability. SemiAdaptive reduces its sampling rate when its voltage

drops below a set threshold (2.3 V), in order to spend more time asleep and hopefully avoid a power failure.

In addition to reducing its sampling rate during low energy conditions, Adaptive also increases its sampling

rate when the its capacitor voltage exceeds a predetermined threshold (2.7 V), using its excess energy to

collect more data. For RF experimentation, the Umich Moo devices run one program—Sense-and-CRC—that

senses the internal temperature of the MSP430 using an on-board ADC five times, averages the readings, then

performs a cyclic redundancy check (CRC) on the resulting data.

Harvesting Traces: We use the light-box, described previously, to provide a reproducible physical envi-

ronment to serve as the ground truth for our solar experiments. We generate light-box traces, by randomly

choosing a small number of light intensity settings distributed over a short amount of time, and interpolating

those points using cubic splines, with exact boundary conditions. This is done multiple times to produce

sets of different light-box traces. To test responsiveness of Ekho each of the solar traces changes much more

rapidly than what would be seen in an outdoor deployment, with variations every 60ms. RF harvesting traces

are generated for us by the inherent volatility of an RF reader, for our evaluation, we only modulate the

transmit power. Despite this, RF traces are naturally more frantic and change more rapidly than any solar

traces generated. Kinetic harvesting traces were generated by the shake-table by modulating the frequency and

amplitude of the vibrations. Kinetic harvesting traces were especially sensitive to ambient vibrations and noise

and were very difficult to reproduce consistently.

I–V surfaces: From the randomly generated light-box traces, the transmit power traces gathered in the RF-box,

and the kinetic shake-table traces, I–V surfaces are generated using the previously mentioned smart-load.

Parameters such as cycle frequency (number of times a second the smart load goes through all its resistance

settings), and capacitance are chosen so as to give the best results for each surface type. Choosing different

capacitance or period values can have a significant effect on the final granular accuracy of the recorded surface,

as discussed in Section 3.2.2.3. Drawing on those observations, surfaces generated for RF emulation were

gathered with smoothing capacitance <0.1 µF and very high cycle frequency, while the solar surfaces had

smoothing capacitance 10 µF and much lower cycle frequency. When capturing kinetic surfaces, no smoothing

capacitance was added, as the computational platform used for emulating kinetic I–V surfaces was significantly

faster than the one used for solar and RF.

Constant power surfaces: Using the light-box traces mentioned above, we generate constant power surfaces
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from recorded power traces captured as different programs execute. Each power surface is generated from a

single recorded trace chosen arbitrarily from a set of device runs. We create constant power surfaces for each

of the three EZ430-RF2500 programs mentioned while running on a light-box trace.

Distance metrics: To evaluate the physical accuracy of Ekho, a metric was needed to compare two I–V curves.

This is difficult for two reasons. First, an I–V curve relates two incommensurable units (Volts and Amperes),

this renders as meaningless any euclidean distance from the curve. Second, there is not a one-to-one mapping

between an observed (I,V) pair and an emulated (I,V) pair. The observed point could correspond to any

number of points on the curve being emulated. In our development of Ekho, we have explored two metrics,

current error (assuming the observed voltage is correct and measuring the difference in current) and voltage

error (assuming the observed current is correct and measuring the difference in voltage). The current error is

amplified (even for points very near the surface, as shown in Figure 3.17) when the voltage is high and the I-V

curve is steep. Voltage errors are similarly amplified when the voltage is low, and current is high.

Using these emulation platforms, test devices, test programs, programmable environments, harvesting

traces, surfaces, and metrics, we evaluate Ekho’s ability to record and recreate energy harvesting traces

produced by the light-box, RF-box, and shake-table. We measure the accuracy and consistency of Ekho,

explore the the experimental characteristics that affect the system’s performance, and demonstrate the generality

of Ekho. We attempt to answer these questions:

1. How consistent and repeatable is Ekho?

2. How accurately, in terms of behavior and physical conditions, can Ekho emulate energy environments?

3. Is Ekho able to record and emulate multiple types of energy harvesting environments effectively?

Before we can explore these questions, we first need to understand exactly why simulating constant

power is not sufficient for accurate testing of small, capacitor powered energy harvesting devices, we show our

results in Section 3.4.2. We then explore solar harvesting consistency results of Ekho in Section 3.4.3, and

show solar recording and emulation accuracy of Ekho in Section 3.4.4. We show consistency and behavioral

accuracy results of Ekho with regards to RF energy harvesting in Section 3.4.5. We then study the accuracy

of recording and emulation of kinetic energy sources using Ekho in Section 3.4.6. Lastly, we compared the

recording performance of the desktop version of Ekho and the mobile version in Section 3.4.7.
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3.4.2 Emulating P vs. I–V

To evaluate our claim that emulating power is not sufficient to simulate an actual energy harvesting

environment in a deployment, we created constant power traces gathered from executing our three sample

programs (Static, SemiAdaptive, and Adaptive). Each power trace was generated from one run of a program.

We then compared the behavior (flash writes) by running each program on the light-box five (5) times, then on

the Ekho generated I–V surface five (5) times, then on all three of the generated constant power-surfaces five

(5) times each. We measure differences in program behavior by recording the number of successful writes

to flash memory that were performed by each test run. Table 3.1 shows the results of emulating constant

power using power traces recorded at program execution. By using constant power to emulate what is actually

an I–V curve, behavior (here shown as flash writes) is dramatically different than deployment behavior as

compared to the light-box behavioral results in Table 3.2. Table 3.1 shows that constant power-surfaces

generally underestimated or overestimated available energy for all programs except (as would be expected) the

program that the constant power-surface was generated from. In some cases the error was very apparent; when

using Static as a training set, running SemiAdaptive gave half the amount of expected flash writes; when using

SemiAdaptive as a training set for a constant power surface, and running Static on that surface, the flash writes

were severely overestimated.

The choice of which run to use to generate the power trace can have a large impact on the emulated

behavior. For example, if an outlier run (where lower or higher than average flash writes occurred) was

arbitrarily chosen as a training set to generate a constant power surface, programs ran on the generated surface

could significantly differ from the average run. This is apparent in the Adaptive column and row of Table 3.1,

where runs on the Adaptive Training surface produced significantly less flash writes than the average Adaptive

run on the light-box shown in Table 3.2. These results confirm what was previously shown in Figure 3.7,

emulating power is not effective for devices with a volatile supply voltage.

3.4.3 Reproducing Program Behavior

The primary objective of Ekho is to make device behaviors consistently repeatable in spite of

variations due to the energy harvesting. Our first experiment examines Ekho against this goal.

In this experiment, we recorded a randomly generated light-box trace using Ekho. We then use Ekho

to emulate the recorded surface fifteen (15) times, five (5) times using each of our three test programs as the

test device. As a point of comparison, we also run each of our three test programs five (5) times powered by the
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Table 3.2: Program behaviors are shown for three test programs, when harvesting energy from the
light-box and from the Ekho emulator.

Program behavior (flash writes)
Ekho Light-box

Program mean stddev mean stddev

Static 326.0 4 291.6 8
SemiAdaptive 441.2 14 418.0 35
Adaptive 11.6 9 11.2 11

Table 3.3: Physical consistency over multiple runs is shown with the three test programs. The same
light-box traces were recorded, and then emulated by Ekho with the same load to compare the phys-
ical consistency and repeatability of experimentation. Ekho performs with nearly the same physical
consistency as the light-box.

Physical error by program
Ekho Light-box

Trace mean mean

Static 66.3 µA 50.6 µA
SemiAdaptive 72.6 µA 56.2 µA
Adaptive 67.3 µA 53.1 µA

light-box directly, using the same randomly generated trace. We measure differences in program behavior by

recording the number of successful writes to flash memory that were performed by each test run. As we noted

in Figure 3.8, the lightbox variation would increase as temperature increased after long and consistent use. To

account for this, between each lightbox run, we waited one minutes to allow the lightbox to achieve thermal

equilibrium. Ekho does not suffer from this inconsistency problem, and is not susceptible to temperature

variations.

Table 3.2 shows the results of this experiment. For each program the average number of flash writes

per test run, and the standard deviations are shown for both the Ekho and the light-box test runs. This table

shows the result for a single light-box trace; however, we have found these results to be consistent across all of

the randomly generated traces, we have tested. For all three programs, the behavior of the devices under Ekho

emulation closely approximates the ground-truth behaviors. Behaviorally, Ekho was more consistent and had a

smaller standard deviation in flash writes for each test program. In each case, Ekho emulation was comparable

in physical consistency with the light-box output as shown in Table 3.3.
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Table 3.4: Emulation error—the distance of an emulated point from the intended I–V surface—is
shown for the three test programs, while emulating a Ekho-recorded randomly-generated light-box
trace. Ekho has a slightly higher error rate on the high voltage, low current area of the I–V curve, this
is because slight changes in voltage are accompanied by large changes in current; however, this area of
the curve is generally avoided as it denotes an inefficient use of harvested energy.

Emulation error
Program mean stddev

Static 87.2 µA 46.7 µA
SemiAdaptive 86.9 µA 46.2 µA
Adaptive 88.9 µA 72.5 µA

3.4.4 Emulating Solar Energy Sources

Ekho is designed to make program behaviors deterministic, by accurately and consistently reproducing

the physical energy harvesting environments that determine program behaviors. In order to determine how

well Ekho reproduces the physical energy harvesting environment, we also measure the characteristics of the

emulated energy harvesting conditions.

Table 3.4 shows the measured current error between the emulated surface and the intended I–V

surface. For each program the mean emulation error (the distance in µA from the emulated surface to the

intended surface for a voltage) is shown, as well as the standard deviation of this error. The choice of current

error is arbitrary, as voltage error could also be used to the same result; both values are derived through

the mechanisms discussed in Section 4.2.4.1. These results are for a single, representative light-box trace;

other traces tested produced comparable results. For all programs, Ekho was able to reproduce I–V surfaces

accurately enough that behavior remained consistent.

Emulation error is also influenced by the natural shape of the I–V curve as shown in Figure 3.17; on

the high voltage part of the curve, past the knee the error rate increases as the slope of the curve increases,

since minimal changes in voltage come with large current changes. While Ekho was not as consistent in

emulation error in this area of the curve, this is not as important, as energy harvesting sensors start wasting

energy (that could power useful computation) when they enter the steep high-voltage end of the curve that

denotes a full capacitor with minimal processing (therefore minimal current draw). For example, a deep sleep

program (refer to Figure 3.2). This is a departure from a traditional sensors application paradigm; which uses

duty cycling to prolong battery life, and therefore extend the lifetime of the sensor.
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Figure 3.17: Shown in the top part of this figure are the target curve Ekho is emulating, and the actual
range emulated for a number of test runs on a program. The bottom part of the figure shows the error
amount for different parts of the emulated curve. As the slope increases, the current error increases
past the knee of the I–V curve.

3.4.5 Emulating RF Energy Sources

In this experiment we profiled the program behavior of devices powered through the RF-box (detailed

in Section 5.3). We then compared those results to the same device powered by Ekho instead. To profile

RF-box behaviors, we placed the detached RF energy harvester from a Moo inside the RF-box over the reader

antenna. We then took another Moo and connected it to the output of the harvester, outside of the Faraday

cage so that the RF signals would not interfere with each other. This provided a repeatable, programmable

RF energy environment that served as a ground truth for all our RF experiments with Ekho. We ran similar

consistency experiments as were run on the light-box; the Moo under test was programmed to sense its internal

ADC for temperature five times, average that data, then perform CRC on the data. It did this as many times as

it could before brownout. In this experiment, we did not write to flash as in other programs due to the power

and voltage requirements, which are difficult to achieve in ultra-low power CRFID platforms. Using the DAQ

and Ekho, we monitored the number of CRC calculations performed and when they occurred, and the times

that the Moo lost power. We conducted these experiments multiple times and found that the RF-box was

reasonably consistent (as shown in Table 3.5) in regards to program behavior. However, we found that at low

transmit power, the consistency of the RF-box deteriorated dramatically. We attribute this to timing issues

38



Table 3.5: Program behaviors are shown for the Sense-and-CRC test program running on the UMich
Moo, when harvesting energy from the reader inside the Faraday cage and from the Ekho emulator
(emulating the recorded RF I–V surface). The number of successful Sense-and-CRC readings were
counted and compared. Additionally, the total harvested energy is shown for each transmit power. For
all transmit powers, the Ekho-powered devices closely approximate the ground truth behaviors. Ekho
reproduces these behaviors with significantly better consistency than the RF-box, especially for lower
transmit power. Note that since the entire surface is stored in RAM of the I–V curve controller, the
error rates are much lower than with solar emulation.

RF program behavior (CRC)
Ekho RF-box

Transmit power Harvested energy mean stddev error mean stddev error

+21.25 dBm 0.55 mJ 23.6 0.6 2.3% 21.0 8.3 39.4%
+27.75 dBm 2.57 mJ 208.7 0.7 0.3% 189.2 39.1 20.7%
+32.5 dBm 3.88 mJ 237.3 1.3 0.5% 266.2 12.5 4.7%

with synchronizing the RF-box, the DAQ, and the host computer. Using a dedicated (but expensive) signal

generator could provide a more repeatable RF energy environment at low transmit power.

To evaluate Ekho’s behavioral performance with volatile RF energy, we recorded and then constructed

an I–V surface generated from each of three different transmit power levels using Ekho. To vary the I–V

surface, we at first varied the transmit power over time; this proved unnecessary as an RF surface changes

upwards of 1000 times a second for an arbitrary transmit power. We then used Ekho to emulate each recorded

surface nine (9) times, for the Sense-and-CRC program running on the UMich Moo. We measure differences

in program behavior by recording the number of CRC calculations that were performed by each test run.

Table 3.5 shows the results of this experiment. For each program the average number of CRC

calculations per test run, the standard deviations, and the error rates are shown for both the Ekho and the

RF-box test runs. This table shows the results for RF traces that were 120 ms in length. While this may seem a

short timespan, because of the volatility of RF energy, eighty (80) different I–V curves were emulated in this

window. In all cases, the behavior of the devices under Ekho emulation closely approximates the ground-truth

behaviors of the RF-box. Behaviorally, Ekho was significantly more consistent and had a smaller standard

deviation and error rate for each transmit power, but especially for the lower transmit powers.

3.4.6 Emulating Kinetic Energy Sources

In this experiment we captured a kinetic I–V surface using the shake-table (detailed in Section 5.3)

and Ekho. Using the emulation feature of Ekho we ran three different constant loads over the surface, and

recorded the emulation error (difference between the expected and emulated current) for each, similar to the
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Table 3.6: Emulation accuracy for kinetic I–V surfaces.

Emulation error
Load energy mean stddev

Low Impedance Load 709.7 µJ 23.7 µA 3.5 µA
Medium Impedance Load 713.8 µJ 15.0 µA 1.8 µA
High Impedance Load 685.1 µJ 38.7 µA 2.3 µA

experiment in Section 3.4.4 and Table 3.4. The results of this experiment are shown in Table 3.6. The total

energy, mean distance from the expected curve, and standard deviation from the expected curve are shown.

As shown, Ekho is able to reproduce kinetic I–V surfaces on medium impedance loads to within 15.0 µA.

For high and low impedance loads for this kinetic I–V surface, emulation error is slightly higher. Physical

emulation results for kinetic I–V surfaces are notably better in terms of accuracy than solar. This is not because

of some inherent difference in the harvesters, but is owed to the updated, faster hardware used in emulating

kinetic surfaces using the ARM Cortex M-4 as opposed to the XMega. If previous solar experimentation were

replicated using the newer hardware, we expect emulation error would be reduced.

3.4.7 Mobile Ekho

For our evaluation, we compare the recording performance of the desktop version and the two mobile

versions in terms of size, applicability, and energy requirements. Both mobile versions of Ekho were designed

with three goals in mind, namely: 1) to be small enough to be deployable, 2) to be an all-in-one solution for

recording different I–V surfaces, and 3) to have a low enough power budget to be deployed for a week or more.

Mini Ekho: Mini Ekho is nearly ten times smaller than the desktop version; the desktop version is 97.79 mm

x 75.87 mm, while Mini Ekho is 21.92 mm x 36.32 mm. This small form factor enables easy deployment and

testing.

The mini version satisfies the all-in-one requirement by replacing the PC and DAQ with a dedicated

ARM microcontroller. The desktop unit requires extra hardware support (a DAQ for I–V measurement and a

PC for surface management) that is built in to the ARM microcontroller. While some accuracy is sacrificed per

sample as the DAQ uses a 16-bit ADC and the mini version has a 12-bit ADC, this is overcome by averaging

multiple samples to approximate an I–V surface. While recording speed on the mini version is lower than the

desktop version by a factor of two, this is a non-issue, as recording speed of the mini version is still over 1000

curves per second (depending on the smart load duty cycle); well beyond the maximum emulation speed of

Ekho. Mobile Ekho also has a greater I–V surface range because of better component choice for the digital
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potentiometer; while desktop Ekho can sense currents as low as 10 A, mini Ekho can sense as low as 0.05 A,

allowing a wider evaluation of potential energy environments.

The mini and desktop units are very different in terms of energy usage. Desktop Ekho must be

plugged in and draws a minimum of 100 mA at 9 V. Mobile Ekho can be powered by a Li-Po battery, and

typically draws 38 mA when recording and 138mA when writing a page to the SD card. Mobile Ekho can last

for over two weeks in deployment in a solar environment powered by a 1750 mAh battery at 3.6 V, recording

a single I–V curve a minute during the daylight hours.

Micro Ekho: Micro Ekho, is 34 mm x 34 mm, not including the coin cell battery and enclosure. Just as with

Mini Ekho, Micro Ekho is an all-in-one solution, but tuned for ultra low power operation, allowing longer,

connected deployments. Micro Ekho has reduced accuracy and precision, as it only has a 10-bit ADC, and can

only acquire five different points on the I–V curve at a time. However, the long lifetime and long range radio

allow it to be placed semi-permanently.

3.4.8 Complicating Factors

Different decisions when recording, and emulating I–V surfaces influence the final accuracy and

consistency of Ekho. Because of the hardware limitations of the I–V controller (specifically the serial

communication speed), Ekho using the XMega microcontroller emulation platform is only able to emulate I–V

surfaces that switch curves at a maximum rate of 135 Hz. That speed can be increased by using the ARM as

the emulation platform. Since RF surfaces can switch curves upwards of 1000 times a second, when emulating

RF, those surfaces must be held entirely in RAM on the XMega microcontroller or ARM I–V controller. This

allows a curve switching speed beyond 1 kHz (for 65 point I–V curve representations), but limits surface length

to sub-second levels on the XMega microcontroller, and 1-2 seconds on the ARM Cortex M4. To simulate

longer surfaces, either a larger RAM must be used, or other types of fast access external memory be made

available (FRAM, or an SD card), or a faster BUS implemented in hardware. Another factor is response

time—the I–V curve controller on the XMega microcontroller is able to respond to current fluctuations in 4 µs.

Added capacitance in the circuit increases accuracy as it allows more time for the controller to respond to

changes in current, but this also decreases the maximum effective curve switching rate. This can cause Ekho

to skip curves when emulating, and thereby reduce accuracy of the whole surface. In emulation, the speed at

which the controller can deliver curves limit the range of surfaces that can be emulated. Also, the number of

points used to represent a curve in memory influences this. Choosing fewer points (for example 33 instead
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of the current 65) can increase emulation speed. Tradeoffs between emulation speed, and accuracy can be

made in multiple places throughout the recording/emulation chain. Many of the same tradeoffs detailed in

Section 3.2.2.3 apply to emulation as well.

3.5 Related Work

We proposed the conceptual framework for Ekho at HotPower 2011 [137] and introduced the idea

of I–V curve-based emulation of energy harvesting conditions, but presented only a cursory evaluation of a

prototype that lacked the ability to record and estimate I–V curves and could only emulate single static I–V

curves with error rates as high as 170µA. Our work builds on the ideas proposed in HotPower 2011 [137], and

demonstrates that I–V surfaces can be accurately recorded and emulated, in order to provide both realistic and

repeatable experimentation.

Emulation Techniques: Another closely related project, SunaPlayer [10] provided an analog hardware

solution, specifically designed for larger solar harvesting applications, which used a high gain Darlington

transistor to approximate the shape of a solar I–V curve. They also used a model of solar output based on

temperature, humidity, and ambient light conditions to capture solar harvesting conditions. While this approach

does allow for capture and replay of energy harvesting conditions, this approach is limited to a single energy

harvesting technology (solar), while Ekho can record and emulate Solar and RF. Additionally, the latency

of converging to a specific point on the I–V curve for emulation can reach as high as ten seconds, which is

prohibitive for some applications. Ekho converges on an emulation point in a matter of microseconds.

Analog battery simulator B# [22, 97] is tangentially related to Ekho, in that it measures a current

load, then computes a voltage from a battery simulator and mimics that voltage on a regulator. However, B#

is only applicable to specific battery chemistries, and does not support recording of an actual I–V surface (it

uses a battery simulator as a voltage lookup), nor does it have the ability to emulate volatile energy sources

like RF and kinetic, or even solar. Ekho provides a more generalized approach that works with surface mount

capacitor powered devices and does not rely on computationally expensive simulation models or profiling

specific battery chemistries. Ekho is not a battery simulator, nor is it meant for devices that use batteries.

S# extends B# by emulating large wattage solar panels[76], with the intention of saving designers time

by testing in the lab, before deployment, much like Ekho. As opposed to Ekho, S# ignores I–V characteristics

and instead uses a simplified approach to emulation, by taking the input current and the amount of sunlight

to determine the final power generated at the load. This approach works well because the devices S# is

42



meant for have stable supply voltages. Ekho is specifically engineered to work with unstable supply voltages.

Additionally, like B#, S# only works for solar cells, and a very specific range of solar cells (1-24V). Ekho

can work with input currents and voltages much lower, fitting in the vision of enabling extremely power

constrained, capacitor based, energy harvesting sensors. This also allows Ekho to emulate all the energy

harvesting sources we highlighted in this dissertation.

EmPro [96] is an wireless sensor emulator that takes into account environmental variations, as well

as sensor inputs. EmPro emulates power sources (only batteries, and solar panels), radio attenuation, and

plays back sensor inputs. EmPro does not however, take into account how the load of a sensor can change

the voltage, and therefor the amount of energy harvested. While EmPro provides a more holistic approach by

attempting to emulate most of the concern of a wireless sensor node, EmPro is constrained to only two power

sources, high wattage solar panels, and batteries. Ekho generalizes the energy harvesting problem that EmPro

ignores, allowing for different hardware and software sensing solutions to be tested against multiple energy

sources without changing designs.

Model Driven Simulation: Other related work include simulation tools for low-power sensors [117, 87,

35, 36, 8], some of which support RFID-scale sensing by considering I–V relationships when simulating

harvesting conditions [47]. As described previously, these techniques are able to provide many of the same

benefits as Ekho, but at a higher maintenance cost (models need to be updated to support new hardware).

Recently, some systems has attempted to simulate intermittence and energy harvesting[2, 27]. When emulating

using a model, a user must record every feature of the physical world that is relevant to the model. This often

makes models very specialized, making them useless when new harvesting paradigms are developed. Ekho

records the electrical properties of the harvester in question. It doesn’t need different sensor readings for each

harvester. Harvester models are complementary to Ekho, as the I–V surfaces Ekho (since they are in a digital

format) could be used as input to other simulators like the ones mentioned. Even instruction level simulators

like [35] could benefit from using Ekho I–V surfaces to inform their energy model, we discuss this further

in Section 5.6.

Profiling and Efficiency Tools: Finally, a number of tools make it possible to measure and characterize the

energy consumption of embedded devices and harvesters [60, 120, 127], simulate a battery under charge

conditions[22, 97], and step debug in intermittent programs[24]. In addition to enabling energy aware software

systems, we envision these technologies being extended in order to allow sensor devices to profile their own

harvesting conditions in order to better predict their future energy budgets and operate more closely to their
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power harvesting potential.

3.6 Discussion

Ekho is designed to be the multipurpose tool for recording and emulating a wide range of energy

harvesting environments, provided in a single integrated package. Based on the results described in the previous

section, Ekho promises to make it possible to experiment with a wide range of low-power, energy harvesting

devices, to an extent that has, to date, been infeasible. In spite of this promise, our current implementation is

limited in a number of important ways. This section discusses these limitations and our efforts in the coming

months on future work.

Ease of Use: Ekho is meant to simplify design, testing, and experimentation with tiny, batteryless sensors.

This is achieved with a simple recording and emulation interface, and a suite of software tools. To record

with Ekho, the developer only has to plug in the leads of the energy harvester of interest, into the receiving

inputs of Ekho, and then either deploy the Ekho (most common for solar), or actuate the harvester in the lab

(for example with an RFID reader). The generated I–V surfaces are then recorded and digitized to a desktop

computer, or microSD card for later use. To emulate with Ekho, all the designer has to do is replace the energy

harvester on the device that will be tested with Ekho. After connection, the developer can use the developer

tools (detailed in Section 5.3) that allow visualization of recorded I–V surfaces as well as the ability to watch

emulation in progress.

Hardware Constraints: Many of the limitations of our Ekho prototype stem from current hardware restric-

tions that can be overcome by readily available parts. The 7.4 ms curve update limitation when emulating

energy environments is the result of speed constraints imposed by the USB-serial port on the XMega micro-

controller. We have shown that we can overcome this limit using on-board RAM to store surfaces, which was

necessary for RF emulation. We have also shown that managing the emulation loop with the Teensy ARM

Cortex-M4 microcontroller, improves the error results, as curve updates happen sub-milli-second. Moving our

emulation platform to be exclusively on the ARM Cortex-M4 will allow Ekho to emulate I–V surfaces that

require more frequent I–V curve updates, and will also allow longer RF I–V surfaces. Replacing our current

12-bit ADC and DAC with faster 16-bit models will also improve accuracy and measurement ability.

Smart Load: The synthetic “smart load” used to explore the I–V surface could potentially be invasive or

detrimental to the harvester under test. Some harvester sources (such as solar) can generate a significant
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amount of energy that if they have an excess of energy not used by the load. If this energy is not discharged

after some amount of time, it will burn off in the form of heat, potentially damaging the harvester or changing

the I–V surface4. The “smart load” may have the potential to cause this type of situation. In our experiments,

we have not characterized or observed this effect for the small, low energy harvesters that Ekho is designed for,

possibly because the “smart load” explores the surface very quickly, not allowing excess energy to be stored for

long in the harvester. We expect this could become a problem when using Ekho to record much larger wattage

systems (specifically solar panels). To address this for larger energy harvesting systems, designers could tune

the load range of the “smart load” using information about the harvester under test. By constraining the range

and avoiding the edges of the harvester’s I–V curve, this heat effect could be avoided, using information that

would already be in hand. However, we consider this an open question, and are interested in exploring, and

characterizing this effect in small harvesters that are used in batteryless sensors.

Environmental Factors: Ekho does not necessarily take into account source-centric concerns that affect the

performance of the energy harvester. For example, with solar energy, the irradiance and the temperature are

not taken into account. For kinetic energy the accelerations (and possibly angular velocity) are ignored. For

RF harvesting, the source attenuation and humidity of the air are not considered. Ekho records the electrical

properties of the harvester in question. It doesn’t need different sensor readings for each harvester. This makes

Ekho more general than other approaches. However, since Ekho generates a digital representation of an energy

harvesting surface, it is not far fetched to imagine that these other environmental conditions can be tagged as

meta-data to any surface that is recorded. For example: an solar I–V surface could be recorded alongside a

temperature and luminance sensor. This serves the purpose of mapping the environmental conditions to the

I–V surface of a particular harvester. This metadata could be kept together along with location, time of day,

and other information, gibing designers more information on how different energy harvesters work in different

conditions. We envision creating a globally available repository of I–V surfaces tagged with this metadata, that

will allow researchers to coordinate and share environments and results in a common format.

Automation: We also plan to explore ways to automatically tune some of Ekho’s system parameters, like the

window size used to infer I–V curves, the smoothing capacitance, and the custom “smart” load cycle frequency

during record. Automatically detecting the window size by actively detecting the level of movement across

an I–V curve and adjusting the window size to use the smallest possible complete data set, will make Ekho

easier to use and improve recording precision. Automatically adjusting the period and capacitance of the smart
4However, this would likely not change the device behavior as this would only happen when the device has more than enough energy

to perform its tasks.
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load will also make the recording process more straightforward. We anticipate that simple switching circuitry

could change the capacitance, per test run, however, as demonstrated with our newest version of Ekho, often

this smoothing capacitance is unnecessary if the recording speed is fast enough. We anticipate not using any

smoothing capacitance in future versions of Ekho.

Integration: Simulation approaches are often preferred when developing new protocols and applications for

sensor networks. This allows testing, debugging, analysis, and system scalability investigations when time

is limited and cost is a factor. Well-known sensor network simulators such as Cooja [37] for Contiki [31]

and TOSSIM [74] for TinyOS [75] only have a power consumption model, i.e. Energest [32] and Power-

TOSSIM [116], respectively, for better understanding the energy consumption of sensor network applications.

The lack of support for emulating energy harvesting conditions limits the development of energy harvesting-

based applications in these simulators. A tool that utilizes environmental data to compute the harvested power

in Contiki is available [28]. However, unlike Ekho, this tool estimates the amount of energy harvested using

traces of light values with some strong assumptions for harvesting efficiency, charging efficiency and no battery

leakage. With Ekho, it is possible to feed the simulators with traces from gathered I–V surfaces to simulate

sensor networks with more realistic energy harvesting setting.

We find this integration most interesting for instruction level device simulators, especially MSP-

Sim [35]. One of the main limitations with Ekho (and emulation in general) is that the emulation can not

be sped up, so it becomes difficult to exhaustively test many different harvesting conditions. By combining

the speed of simulation with the accuracy of Ekho I–V traces, hundreds or thousands of energy harvesting

conditions could be explored for a particular device or application, without spending a significant amount of

time. This has been implemented in the MSP430 based SIREN simulator, which builds on Ekho [39].

3.7 Conclusions

In this chapter, we have described the design and evaluation of Ekho, an emulator that makes

reproducible experimentation with capacitor powered energy harvesting devices possible, without the need for

hardware and harvester models (required by simulators). Ekho is able to record energy harvesting conditions

and accurately recreate those conditions in a laboratory setting consistently. We have also described the design

and use of a mobile version of Ekho; allowing profiling of energy environments at locations where sensors are

already in place, or will be in place.

Ekho is a general-purpose tool that supports a wide range of harvesting technologies. We have
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demonstrated, using a working prototype, that Ekho is capable of reproducing harvesting-dependent program

behaviors by emulating solar energy harvesting conditions accurately to within 77.4 µA, and more consistently

than our light-box, a programmable solar harvesting environment. We also found that Ekho can reproduce

kinetic energy environments with a mean error of 15.0 µA from the recorded surface. Demonstrating the

generality of Ekho; we have shown that Ekho is able to emulate RF I–V surfaces significantly more consistently

than our RF-box, for a variety of loads and I–V surfaces. Ekho was able to reproduce RF energy harvesting

conditions effectively such that program behaviors were accurate in comparison to the RF-box.

As embedded sensing devices continue to become smaller, with tighter energy constraints, energy

harvesting will continue to become more important, and tools like Ekho will make possible the realistic and

thorough testing that will be needed to deploy those devices with confidence.
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CHAPTER 4

FLICKER: HARDWARE PLATFORM FOR THE

INTERNET-OF-THINGS
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Figure 4.1: Flicker enables rapid prototyping of batteryless, intermittently powered sensing systems.
This figure shows a Flicker device equipped to harvest RFID and solar energy, sense acceleration and
rotational velocity, and communicate via a CC1101 Radio and backscatter.

Batteryless, energy-harvesting sensing systems are critical to the Internet-of-Things (IoT) vision

and sustainable, long-lived, untethered systems. Unfortunately, developing new batteryless applications is

challenging. Energy resources are scarce and highly variable, power failures are frequent, and successful

applications typically require custom hardware and special expertise. In this paper, we present Flicker (shown

in Figure 4.1, a platform for quickly prototyping batteryless embedded sensors. Flicker is an extensible,

modular, plug and play architecture that supports RFID, solar, and kinetic energy harvesting; passive and

active wireless communication; and a wide range of sensors through common peripheral and harvester

interconnects. Flicker’s software tools automatically detect new hardware configurations, and simplify

software changes. We have evaluated the overhead and performance of our Flicker prototype and conducted a

case study. We also evaluated the usability of Flicker in a user study with 19 participants, and found it had

above average or excellent usability according to the well known System Usability Survey.
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Software solutions for managing energy and keeping time on transient power fall short of enabling

sophisticated applications on batteryless energy harvesting sensing devices. Developing a new batteryless

application still requires specialized expertise, custom hardware development, and considerable hardware

tuning. THe following key challenges must be addressed before most developers can create batteryless sensing

applications.

Limited Hardware Options: The Intel WISP [115] and its descendants [136], have long been the platform

of choice for computational RFID (CRFID) research, but the wide range of energy harvesters, sensors and

other peripherals, and exciting new applications that are available to today’s batteryless system designers is

not well-supported by the WISP’s RF-centric design. Application designers that need solar, kinetic, or thermal

energy or can’t depend on a close-range RFID reader are left to either hack the WISP [48] to suit their needs

or create new hardware from scratch.

Limited Flexibility: The success of a batteryless sensing application often hinges on a variety of hardware

adjustments that affect how energy is harvested and managed, how tasks are configured, and how data is

gathered. Unfortunately, existing batteryless platforms are monolithic, tightly integrating energy harvesting,

energy management, sensing, data processing and communication onto a single circuit board that is difficult

to modify. Consequently, development is typically slow and developers may not consider promising design

alternatives in fear of long delays.

Lacking Modern Amenities: Current platforms also lack recently-developed features, like hardware-assisted

zero-power timekeeping [54] that allows devices to measure time across power failures. Timekeeping is

incredibly important for sensing, security, data provenance, and data utility. Without a sense of time, batteryless

active RFID cards could be brute force attacked for passwords, or endlessly tasked with authentication

requests in a DoS attack. Data provenance and utility is usually tied to the time a data point was gathered.

Federating energy storage for individual peripherals [53] not only simplifies software development and

improves system availability, but improves energy harvesting efficiency. Timekeeping and federated energy

storage are particularly important for batteryless applications that rely on ambient energy sources and can’t

rely on an RF reader to provide time.

Poor Usability or Community: Each of the previous factors contribute to the lack of usability in current

hardware platforms, from the programming tools to the hardware inflexibility. Novice developers find it

difficult to construct useful devices or verify that they work. The emergence of the maker movement has

shown that hobbyists, as well as researchers and industry, are interested in building for the Internet-of-Things.
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Without a usable platform, no community will emerge.

We have an answer to these deficiencies: Flicker, a flexible, modular hardware platform for energy

harvesting, intermittently powered, batteryless sensing devices. With the help of common interconnects,

Flicker developers assemble batteryless sensors from a set of interchangable modules — computational cores,

energy harvesters, sensors, communication peripherals. We present twelve different modules, and describe

how others can extend this set by developing their own compatible peripherals and harvesters. Flicker supports

federated energy storage [53] and features a novel extension of the state of the art, allowing developers to

programmatically set wakeup and task trigger points and change the relative priorities of individual sensors

and other peripherals. Flicker also supports failure-resistant timing with an onboard capacitive timekeeper[54].

Flicker’s software tools automatically detect new hardware configurations, and simplify software changes.

In this chapter, we first describe and evaluate the two foundational technologies of Flicker, zero

power timekeeping (with TARDIS[103] and it’s extension, CusTARD[54]) and Federated Energy[53]. Then

we introduce the Flicker Hardware Platform with its novel extensions to Federated Energy, and its focus on

rapid prototyping of batteryless Internet-of-Things devices. Finally, we close the chapter with a review of

related work to hardware platforms.

4.1 Batteryless Timekeeping

One of the greatest challenges to batteryless computing is keeping track of time across power failures.

When energy runs out, the microcontroller, volatile RAM, and all clocks are reset. This means that any

previous timestamps have no meaning, since the local clock will start back at zero. Current embedded systems

address the timekeeping issue in one of the following ways, none are sufficient:

Real Time Clock: A system can power a real-time clock (RTC). This is not practical on intermittently

powered devices due to tight energy budgets and inconsistent power. Even a low-power RTC (e.g., NXP

PCF2123 [93] or Abracon AB08X5 [1] RTC chip) increases devices size, by using a battery, and violates

the fundamental principles of batteryless sensing. This option increases the device’s weight and cost, while

reducing its usable lifetime—even rechargeable batteries wear out over time[100]. While in theory these

devices could last decades on a small coin cell, in practice this is rarely the case. Constant recharging in

deployment, hostile environmental conditions, poor charging circuitry design, and mismatched loads, have

reduced the lifetime of batteries below expectations in many sensor deployments[124].

External Time: A system can keep time by accessing an external device (e.g.,an RFID tag reader) or by secure
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time synchronization [41, 122]. An external timekeeper can work well for some types of applications that are

not time sensitive, or are deployed in easily accessible locations. However, relying an external timekeeper

introduces security concerns and may either require significant infrastructure or severely limit range and

mobility.

Approximation: A system can approximate or guess time by checkpointing state and integrating known

constraints from the duty cycle or environment. However, this provides unreliable or inaccurate time and

will not work for applications where constraints are fluid and the environment is unpredictable. Moreover,

approximations are application dependent, and heavily rely on contextual information known before hand by

the developer.

Remanence Based Timekeeping

None of the timekeeping techniques described can provide precise timekeeping that is applicable to

general applications.

TARDIS[103] used the data remanence properties of SRAM to measure the time since a power loss

on the UMich Moo. This method initializes a portion of SRAM (common in microcontrollers) to all ones on

startup. After a power failure, and subsequent reboot after enough energy has been gathered, the TARDIS

method counts the number of bits that have flipped in the pre-initialized portion of memory. Since SRAM

decays at a consistent rate, elapsed time can be estimated by checking the ratio of flipped bits. This method

can support measuring power failures up to a few seconds depending on capacitance.

We extended and generalized the TARDIS approach using dedicated capacitors and an ADC (or RTC)

for precise timekeeping in[54]. By measuring the amount of voltage decay on a dedicated capacitor using

an analog-to-digital-converter after a power failure, we can estimate time elapsed. We named this approach

CusTARD, and call the collection of techniques Remanence based timekeepers. The execution model for using

these timekeepers is shown in Figure 4.2. This hardware extension gives us greater control and measurement

precision, and does not require large portions of volatile memory. This approach allows timestamps to have

meaning across power failures, even when the microcontroller does not have enough energy to function. In

contrast to the RTC method, keeping external time, or approximation techniques, remanence based timekeeping

moves batteryless sensing towards a general solution to the problem of time in intermittently powered systems.

We detail this approach in a journal article currently in revision[54].
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Figure 4.2: Remanence timekeepers estimate time from the amount of remanence decay. CusTARD
measures how much the voltage on the capacitor has decayed, using an on-board ADC (compute time
from decay). The lower the voltage, the longer the microcontroller has been off. Initially, the CusTARD
capacitor is charged to a specific voltage (init timekeeper). This figure shows the voltage on the high
side of the diode charging the MCU.

4.1.1 Timekeeping Initial Results

We found that using CusTARD dramatically improved our ability to keep time through power failures.

Since the timekeeping accuracy and precision of the CusTARD techniques depended on capacitive decay, in

our evaluation we examined the decay behavior of CusTARD and three factors that have major effects on

this behavior, and therefore its timekeeping ability. We found that with a small capacitor (one micro-farad)

we could keep accurate time for up to a minute when the sensor was off because of power failure. We also

evaluated the overhead (in terms of software, and hardware) for implementing the CuSTARD approach.

Overhead: The overhead of using CusTARD comes from (1) energy required to charge the capacitor to the

regulated supply voltage, (2) the time required to charge the capacitor to the supply voltage, and (3) the energy

cost of using the ADC to read the voltage on the capacitor. Table 4.1 shows the cost in time and energy for

charging the CusTARD capacitor. The charge time is the amount of time it takes to charge the CusTARD

capacitor to 99% of the supply voltage after the diode, or t =− ln V−0.99V
V RC, where V is the supply voltage

minus the forward voltage drop of the diode, R is the charge resistor, and C is the capacitance. It should be

noted that the charging of the capacitor is non-blocking; a single instruction sets the GPIO pin to high, starting

the charging of the capacitor, immediately following this instruction, the processor can continue with regular

function. The energy cost is determined by the amount of capacitance, the voltage on the capacitor, and the

heat dissipation of the resistor: E =CV 2. With the MSP430FR5739 used in CusTARD experimentation, the

maximum energy required for the ADC read with default ADC settings was 11.52 nJ.

We note that the TARDIS approach costs tens of microjoules and takes tens of milliseconds to operate.

The calculated overheads of each approach show that CusTARD uses an order of magnitude less energy, and
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Table 4.1: CusTARD energy and charge time costs.

Size Energy Cost Charge Time
0.01 µF 0.0013 µJ 0.0461 ms
0.1 µF 0.0128 µJ 0.4605 ms
1.0 µF 0.1276 µJ 4.6052 ms
10.0 µF 1.2755 µJ 46.0517 ms

takes less time than TARDIS for computation.

4.2 Federated Energy Storage

Energy is the greatest single limiting factor in the design and effective operation of mobile sensors and

other untethered computing devices. A range of capacitor-based sensor devices [114, 132, 133, 126, 49, 45]

that harvest energy, charge quickly, and can store only enough energy for short bursts of operation (a few

seconds or even a few hundred milliseconds long). This new generation of tiny batteryless sensing devices

will be cheaper, more durable, and more environmentally friendly than their battery powered predecessors.

They will also have much tighter energy budgets and much more frequent power failures, two conditions that

are poorly-supported by today’s mobile hardware platforms, especially when it comes to storing and managing

energy.

Traditional mobile devices store energy in a single common energy store (battery or capacitor) that

is used to power all system components (e.g., processors, sensors, radios and other peripherals) an approach

that is simple to design and works well for devices with large batteries; however, when energy budgets are

tight and failures frequent, each component’s energy usage can significantly impact the availability of other

components. For example, reading from a sensor may impact the device’s ability to do computation. Power

hungry operations, like transmitting a radio message, may cause the device to lose power entirely, becoming

unavailable until the device can be recharged. Reasoning correctly about peripherals, consequent power

consumption, and application priorities requires computational resources (for modeling and prediction) that

transiently-powered devices cannot afford.

In this section, we propose a new federated approach to storing harvested energy that relaxes the

coupling between a tiny, intermittently powered device’s individual components (or subsystems). Our approach,

called UFoP (United Federation of Peripherals), uses individual per-peripheral energy stores and low-power

control circuitry to isolate and prioritize individual peripherals. Federating energy storage allows power-hungry

53



LIST OF LISTINGS 4.1: A conservative example program

when timer fires do { // Once every 1ms
if can_sense_store_and_send? {

while (!sample_buffer_full?) {
collect_sample()
sleep(1ms)

}
compute_and_store_mean()
transmit_recent_means()

}
sleep()

}

operations to proceed without sacrificing the device’s immediate ability to use other peripherals, gather new

data, process incoming data, and respond to incoming stimuli. This approach also simplifies the task of

programming energy-aware logic—effectively replacing complex modeling of analog circuit behaviors with

simple binary decisions based on whether or not a peripheral is available.

Our initial implementation of the UFoP approach uses ultra-low-power comparators to control and

prioritize the charging of individual energy stores, where the microcontroller gets the first priority. The main

capacitor charges until it reaches 2.7 V, then the microcontroller turns on. When the input voltage reaches

3.1 V, the peripheral capacitors charge. In our experiments, we found that programs that use UFoP as the

energy backbone had as much as 10% more computational availability, and as much as four times more radio

availability than the centralized approach. Using UFoP, programs become more resilient, reducing low voltage

events dramatically. Additionally, programs that use UFoP harvested more energy for all energy environments

evaluated than programs using the traditional centralized energy storage approach.

While distributed energy storage has been employed in large-scale power systems [20], and hybrid

storage systems have been used to improve the efficiency of battery charging [61, 101, 95], UFoP is, to the

best of our knowledge, the first embedded system to employ federated energy storage, in a general way, to

simplify management of individual system components.

4.2.1 Centralized Energy Storage

For half of a century, computing devices have used a centralized approach to power system com-

ponents (processors, sensors, radios and other peripherals)—an approach that has reduced both device size

and cost, and that, until now, has had no significant drawbacks. Whether power is supplied by a dedicated

connection to wired infrastructure or by a battery that is regularly recharged, processors, memories, and

peripherals all use a shared power supply and the nearly-universal assumption that power is unlimited and
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LIST OF LISTINGS 4.2: A more optimistic program

when timer fires do { // Once every 1ms
if can_sense? {

collect_sample()
}
if sample_buffer_full? {

compute_and_store_mean()
}
if can_send? && has_stored_means? {

transmit_recent_means()
}
sleep()

}

stable. System designers have, at times, made efforts to reduce power consumption and extend battery life, but

they rarely consider whether the program’s next action may impair the device’s ability to perform additional

functions.

However, when designing applications for batteryless and other transiently-powered mobile devices,

supplying power to all components using a single centralized capacitor or battery reduces the system’s flexibility

and complicates programmer decision-making. The following challenges must be carefully considered by a

system designer before developing an application using centralized energy storage:

Capacitor tuning: Capacitor size is a critical factor that defines how an energy-harvesting batteryless device

will operate. Smaller capacitors charge quickly, but may not be able to store enough energy for more power-

hungry tasks. Larger capacitors can store more energy, supporting longer bursts of computation and more

power-intensive operations. Larger capacitors also charge more slowly, incur longer power outages, and

waste more energy (leakage). A system designer can maximize device availability and up-time by selecting a

capacitor that is just large enough to support the operations that the application needs to perform. When an

application performs both energy-efficient tasks (i.e., sampling lightweight sensors or performing simple data

processing) and energy-intensive tasks (i.e., wireless data transmissions), a centralized energy store must be

large enough to support all operations—both heavy- and light-weight operations.

Task coupling: A common storage capacitor also produces a tight coupling between program tasks and system

peripherals. Sampling a sensor, for example, will consume energy and may either leave insufficient energy for

subsequent tasks or may cause the supply voltage to drop low enough that the device loses power altogether,

and subsequent tasks must wait until more energy becomes available.

In order to illustrate these challenges, let’s consider two simple programs described in Listings 4.1

and 4.2. Both programs gather sensor readings until a buffer is full, compute the mean of the readings, and
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Figure 4.3: During task execution, capacitor discharge is sufficiently predictable to determine the volt-
age at which it is safe to begin executing it, in order to ensure that it will complete before a power
failure.

wirelessly transmit a fixed number of recently computed means1. The first program (Listing 4.1) conservatively

sleeps until it has harvested enough energy to an entire application cycle (collect, process, and transmit

samples). The second (Listing 4.2) waits only until it has enough energy to complete the next task and then

proceeds optimistically, assuming that enough energy will be harvested in the future to complete subsequent

tasks.

Power failures are a constant concern for batteryless devices. When power failures do occur, computa-

tional state can be saved efficiently to nonvolatile memory (like FRAM) in case a power failure occurs between

tasks or before a task completes. These checkpoints can be included explicitly by application developers or

inserted automatically, using a system like Mementos [108]. Checkpoints allow some tasks to be resumed

after a power failure; however, other tasks, like sampling a sensor or transmitting a radio packet, cannot be

easily resumed due to timing and hardware constraints.

Consequently, the batteryless device that implements these example programs will need to determine,

at runtime, when enough energy is stored on its capacitor to perform each desired task safely. A capacitor’s

stored energy can be estimated by measuring its voltage, and tasks can be safely run when that voltage

exceeds a predetermined threshold (Vsafe), which can be determined empirically or analytically based on

the capacitance used, the time the task requires to complete (ttask), and the power needed while the task is

executing. Figure 4.3 illustrates how this threshold is determined. If Vsafe is chosen correctly, starting the task

when the capacitor’s voltage is higher than Vsafe ensures that the task will always complete before the capacitor

1A small number of previous means are transmitted to provide some redundancy in case a packet is lost.
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Figure 4.4: This figure shows a “sense-and-send” application using traditional centralized and our pro-
posed federated energy storage approaches. Energy federation allows lightweight functionality (sens-
ing and data processing in this example) to be available sooner.

discharges to Vfail—the point at which essential hardware components—MCU, memory, sensors, radios, or

other peripherals—turn off or become unusable.

Some tasks within a single application may take longer or consume more power than others, so a

separate threshold, Vsafe, will be needed for each individual task. System designers may optimistically try to

execute a task before the safe threshold is reached, in the hope that future harvested energy will be sufficient to

finish the task successfully. When energy is abundant, this gamble may allow the device to produce results

more quickly. When harvested energy is insufficient, sub-threshold task execution will result in wasted effort

and may result in avoidable power failures.

Software federation of the energy supply as described above can lead to close coupling of components.

The top plot in Figure 4.4 shows the capacitor and microcontroller voltages over time for a solar-powered

batteryless sensor node that gathers sensor data and transmits it wirelessly to a base station (see Listing 4.1).

In this scenario, a control circuit waits to turn on the microcontroller until the capacitor charges to a volt-

age (i.e., around 2.7 V) sufficient to initialize the processor and accomplish some computation, the control

circuit then turns off the microcontroller when the voltage drops below 2 V2 (when processing becomes

unreliable for most microcontrollers). The chosen capacitor is large enough (195 µF) to power both data

collection and radio transmission on a single charge, and the application waits until the voltage charges up
2The control circuit’s hysteresis is adjustable. The thresholds used are those we have empirically found to work well, in practice.
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high enough to ensure that the transmission completes most of the time.

In this scenario, each radio transmission causes the MCU voltage to drop dangerously close to (and

occasionally cross) the 2 V point where the MCU becomes unstable. The larger capacitor also charges slowly,

and leaks, meaning that time and energy is lost.

4.2.2 Federating Energy

In light of the shortcomings of centralized energy storage, this work argues for a different approach

which stores harvested energy in multiple independent small capacitors, one for core processing functionality,

and another for each peripheral. We call this federated approach UFoP (United Federation of Peripherals).

By allowing the microcontroller, sensors, and radio to function independently, UFoP provides the

following key benefits:

Useful work starts sooner: While some approaches have tried to mask volatility of the energy supply in

software [19], the reality of capacitor based devices is that a smaller capacitor charges to an arbitrary voltage,

faster than a larger one. A centralized approach may use software to mask volatility of the energy supply in

order to simplify task management, but the energy store will still be unusable until it meets the necessary

voltage for components to be turned on. By federating the energy storage, smaller capacitors charge more

quickly, allowing lightweight tasks (some sensors and microcontroller operations) to be available while larger

capacitors for radios and other power-hungry peripherals charge up. This can be seen in Figure 4.4 where the

MCU becomes available hundreds of milliseconds before the centralized version.

Fewer power failures: Isolating each per-component capacitor prevents a power-hungry component from

jeopardizing the whole system. For example, when the radio drains its dedicated capacitor’s power to transmit

messages, the device retains the ability (at least in the short term) to gather and process new data. UFoP

prioritizes the charging of individual energy stores. In our current implementation, the microcontroller gets the

first priority, while the priorities of sensors, radios, and other peripherals can be configured to suit individual

applications. For example, the tight coupling present in the centralized approach shown in Figure 4.4 causes

the supply voltage to dip below the reset threshold, endangering the device duty cycle. With UFoP, this

problem occurs much less frequently.

Simpler application decisions: Each peripheral is available for use as soon as its capacitor is charged, and can

be used independently of the charge state of other peripherals. When a peripheral is used and depletes its own

energy, it becomes unavailable until it is recharged. This allows UFoP to “save up” energy for power-hungry
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tasks, like short bursts of radio communication, while allowing data collection and processing to continue.

When using centralized storage, application decisions can be complicated—requiring designers to reason

about the aggregate impact of multiple peripherals and tasks on a single capacitor. In contrast, a UFoP device

can determine whether it can afford to use two peripherals (e.g., a sensor and a radio), by simply checking

their individual voltages.

Increased flexibility: UFoP devices provide more flexibility when combining peripherals with different

energy requirements. For example, consider a sensor node that combines an MSP430 MCU as its computing

core, a low-power sensor, and a more power-hungry radio. A larger capacitor will be needed in order to support

the radio, which will charge much more slowly than a smaller capacitor that might be sufficient to support

the other components for short bursts of operation. In a centralized energy architecture, radio transmissions

would deplete the large common capacitor and may render the entire node unavailable while it recharges. In a

UFoP device, the small capacitors dedicated to the core and sensor would charge more quickly, allowing the

application to continue gathering and processing data, while waiting for the larger radio capacitor to charge.

In both cases, data would be sent at roughly the same rate, but using UFoP the application would have more

flexibility in deciding what to send.

Lower energy consumption: Not all system components require the same voltages to operate. UFoP allows

individual component capacitors to be charged to the voltage required by that component, which often results

in lower operating voltages and reduced per-component energy consumption.

Harvest more energy: When using UFoP, the energy harvester’s voltage rises quickly (as the small microcon-

troller capacitor charges), but increases in harvester voltage is slow as power is diverted to charge peripherals.

When UFoP’s thresholds are set appropriately, the device spends more time in its most efficient voltage range

and harvests more energy than the centralized equivalent.

4.2.2.1 UFoP Reference Design

Figure 4.5 shows a UFoP system that is integrated with two commonly used peripherals in sensing

applications (i.e., a sensor and a radio). The system consists of four main components: an energy harvester,

charging controller, peripheral controller, and peripherals. The energy harvesting device harvests ambient

energy and stores it in the first-stage capacitor. The charge controller is responsible for turning on and off

the microcontroller and charging an array of peripheral capacitors. The peripheral controller turns on and off

peripherals (sensor and radio), which are only available when their capacitors are charged.
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Figure 4.5: Overview of UFoP when integrated with a set of commonly used peripherals; a sensor,
and a radio. A UFoP system is made up of four components: an energy harvester, charging controller,
peripheral controller, and peripherals. The charge controller manages the charging of an array of ca-
pacitors (drawing from the first-stage capacitor) as well as turning on and off the MCU. The peripheral
controller (an MSP430FR5739 in the current prototype) gates power to the peripherals, allowing pe-
ripherals to be completely off when not in use. Peripherals and the MCU communicate independently
of the charging controller.

Energy Harvesting: The UFoP system is powered by ambient sources. The energy harvester converts free

energy from the environment (e.g., solar, thermal, radio frequency (RF), and kinetic energy) into electrical

energy (DC), which the harvester supplies to the rest of the system. From the harvester, the current flows to

charge the first-stage capacitor that powers the microcontroller.

Charging Control: UFoP uses low-power control circuitry as charge controller to control and prioritize the

charging of an array of capacitors as well as turning on and off the microcontroller. UFoP is designed with

the microcontroller as a non-negotiable first power priority. A sensor without a microcontroller could not

process data, and a radio without a microcontroller would have no signal to transmit. From an implementation

perspective, this is ideal since the microcontroller can then be used to control the power flow to the peripherals.

As sensors and radios can provide functionality regardless of the operation of other peripherals, subsequent

priority values can be assigned based on system requirements. In our reference design, the first-stage capacitor

charges until it reaches 2.7 V, then the microcontroller turns on. When the input voltage reaches 3.1 V, the

current starts to flow into the peripheral capacitors.

Peripheral Control: The peripheral controller in the UFoP system can be any ultra-low-power microcontroller,

like the FRAM based MSP430 processors. In our reference design, we use the MSP430FR5739 as peripheral

controller; which only draws 81.4 µA/MHz in active mode. When the first-stage capacitor capacitor charges up
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to 2.7 V, the microcontroller turns on. The microcontroller gates power to the peripherals, allowing peripherals

to be completely off when not in use. This control communication is independent from the charging control

scheme. The switches in the peripheral controller are designed to open (disconnect) when the microcontroller

loses its power and turns off, i.e., when the main capacitor’s voltage falls below 1.8 V. This design satisfies the

MSP430FR5739 supply voltage requirements, i.e., 1.8 V to 3.6 V. We built a thin software layer to manage the

ADC polling, timers, and interrupt wake ups, for the MSP430 line of microcontrollers. This layer can easily be

ported to other platforms, as the components and software practices are common among embedded systems.

Peripherals: Two of the most commonly used peripherals in sensing applications are sensor and radio.

The type of the peripherals and the tasks they perform determine the size of the capacitors used. When an

application uses a lightweight sensor and a radio, the size of the capacitor for the sensor should be a lot smaller

than that for the radio. If the application requires intensive data transmission, the radio’s capacitor size must be

large enough to support the tasks. In the UFoP system, the peripherals are only available when their dedicated

capacitors are charged.

4.2.2.2 Application Development Simplification

Federating energy storage changes how sensing applications are built. From the hardware point of

view, sizing several capacitors appropriately to peripherals is much easier than sizing one capacitor to multiple

peripherals and a microcontroller that could have different supply voltage requirements. For example, the

MSP430 microcontroller works within the 1.8 – 3.6 V range, the CC2500 radio (a very common 2.4 GHz

radio) works from 2.0 V to 3.9 V, and a humidity sensor used in our greenhouse monitoring application works

from 3 V to 5 V. This combination makes it difficult for application developers to size a single capacitor and

determine duty cycle. In this example, the radio and microcontroller could potentially never come online while

waiting for the voltage to be sufficient for the humidity sensor to function. UFoP allows application developers

to simplify this by sizing and dedicating each capacitor at a specific voltage to each peripheral.

From the software development point of view, UFoP allows a duty cycle when energy is scarce, and

when it is abundant. That means UFoP lets the duty cycle scale up or down without hurting the average duty

cycle performance. For example, in a classic “sense-and-send” application, the device can use a more powerful

sensor when there is an abundance of energy, but performs only computations if there is very little energy.

With UFoP, programmers have a more deterministic view of energy and task scheduling, allowing them to

make better informed decisions during application development. In addition, UFoP simplifies applications by

61



eliminating the need for complicated algorithms to predict when the peripherals become available.

4.2.3 Implementation

We have implemented a UFoP reference design on a custom printed circuit board. The prototype

employs a variety of different hardware components. Two nano-power comparators are used per peripheral,

that control the charging, and discharging of the peripheral capacitor. The current prototype supports two

peripherals. An ICL7665 or MIC841 voltage monitor is used to monitor the first-stage capacitor, this monitor

has a built in reference, and resistor defined hysteresis. The settable hysteresis allows a broad operating range

for the microcontroller. Each of the comparators has a resistor divider defined trip point; the trip points and

hysteresis are set in such a way that the microcontroller will always be on if the peripherals are charging.

Because UFoP is a hardware addition, some note must be taken of its size and cost. The current UFoP

prototype measures 37.0 mm by 15.2 mm, with a low profile. The total cost of the prototype bill of materials,

including all components, and PCB from a batch PCB supplier like OSH Park, amounts to less than $20 per

device, further development could easily lower this cost. If the current prototype was produced at scales of a

1000, the price drops to less than $2 per device. Most of this cost would disappear in a custom silicon solution,

which would also reduce the size and component count for a deployed sensor.

In addition to building the UFoP prototype, multiple systems were built or used in the evaluation. We

used the energy environment emulator Ekho[52] to record and replay solar energy harvesting environments,

as well as RF energy environments. Solar environments were generated by a programmatically controlled

headlight focused on a solar panel. RF environments were generated from the harvester of a UMich Moo[136],

which harvested RFID energy from the UHF band created by an Impinj Speedway RFID Reader. IV-surfaces

were created by moving the reader back and forth across the front of the UMich Moo. The recorded IV-surfaces

were later replayed in the lab using Ekho; which provided a realistic energy harvesting environment to test

UFoP with. We plan to make all IV-surfaces we recorded freely available online at publication time. We also

used an NI USB-6356[56] and Measurement Computing USB-201[25] data acquisition device (DAQ) for

voltage and current measurements, as well as event counting. For all applications, we used MSP430FR5739

Launchpads as the main processing device.

We translated the programs described in Listings 4.1 and 4.2 into embedded C, running on the

MSP430FR5739. Each program has two variants, one that is meant to run with UFoP functioning as the energy

backbone, and one that runs with the traditional centralized energy approach. The federated and centralized

variants are intentionally similar for both programs; the federated versions differ in that they dedicate an ADC
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per peripheral to monitor the energy storage levels of the radio and accelerometer supply voltages, in addition

to the MCU energy storage levels. Both of these programs attempt to federate energy storage, one using UFoP,

and one in software. We used these programs to evaluate the effectiveness of the federated energy approach in

terms of availability, resiliency, and energy harvesting efficiency. We also developed federated and centralized

versions of a greenhouse monitoring application, which is described in Section 4.2.5. These are similar in

function to the above, but use a different set of peripherals. A basestation program was also created to listen

for and log sensor readings during the greenhouse monitoring deployment.

All hardware designs, I–V surfaces, and software will be made freely available online at publication

time.

4.2.4 Evaluation

In this section, we evaluate the performance of sensing applications that use our UFoP reference

design as an energy backbone. Specifically, we examine how federated and centralized variants of sense-and-

send behave in solar and RF energy environments. We compare these two approaches and measure them in

terms of availability, resiliency, and energy harvesting performance.

In our experiments, we found that programs that use UFoP as the energy backbone had as much as

10% more MCU availability, and as much as four times more radio availability than the centralized competitor.

Using UFoP, programs become more resilient, reducing failures by 4.5x in some cases. Additionally, programs

that use UFoP harvested 0.7-10.2% more energy, for all energy environments evaluated, than programs using a

centralized energy storage approach; meaning UFoP adds zero energy overhead.

4.2.4.1 Methodology

To evaluate UFoP, we consider multiple programs, in a variety of energy environments, with the same

hardware and peripherals, but interchanging the centralized and federated approach to energy storage. We use

the following experimental setup to evaluate how UFoP contributes to the performance, in terms of availability,

resilience, and energy efficiency of a tiny, capacitor-powered sensing system.

Programs: We use the sense-and-send program variants described in Section 5.1 to provide points of com-

parison between UFoP and the centralized approach. The program described in Listing 4.2 we refer to as

“optimistic” sense-and-send, the program described in Listing 4.1 we refer to as “conservative” sense-and-send.

The program using UFoP monitors capacitor voltages, and gates energy flow to peripherals as needed. The
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Figure 4.6: For our evaluation, two sets of thresholds were determined for each program variant. The
first threshold, Vsafe (the blue discharge curve), is set such that if no new energy is harvested, tasks
started at this threshold are guaranteed to complete. The second threshold, Voptimistic (represented by
the red discharge curve), optimistically assumes new energy will be harvested to replenish the task
capacitor during task execution.

centralized program attempts to federate energy storage in software, allocating from its single energy store

when it becomes available at the required voltage.

Thresholds: Each program has certain voltage thresholds (Vsafe) where the radio, sensor, and MCU turns on,

as described previously in Figure 4.3. This threshold is the voltage on the capacitor that signifies there is

enough energy to complete a task or set of tasks, such as sending a data packet over the radio. These thresholds

are set in software for the radio and sensor, and hardware for the MCU. Thresholds are set differently for

centralized, since the single capacitor must store enough energy to accomplish all tasks. We have two sets of

voltage thresholds for each program, as shown in Figure 4.6. The first threshold, termed Vsafe is the level that

guarantees task completion. Setting the threshold above Vsafe means a program will not get as many tasks done

(but will never fail), while setting the threshold below Vsafe will mean tasks are not guaranteed to complete.

The second set of voltage thresholds is termed Voptimistic; the assumption is that new energy will be harvested

to replace energy being used during the task, therefore these thresholds are set lower. Using the Voptimistic

set of thresholds does not guarantee task completion or zero power failures. These thresholds were gathered

by manually executing programs with high and low thresholds over a solar I–V surface, effectively binary

searching through all possible thresholds. Vsafe and Voptimistic thresholds were only gathered for the “optimistic”

sense-and-send program. Voptimistic thresholds were gathered for the “conservative” sense-and-send program.
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Figure 4.7: This figure compares the availability of the MCU, sensor, and radio when an
MSP430FR5739 running the program described in Listing 4.2 executes across the I–V surface recorded
from the RFID reader. The program was run multiple times using either the UFoP reference design or
the centralized reference design, and the Vsafe thresholds. Applications that use UFoP have significantly
more MCU on-time, allowing more valuable computation, as well as significantly more sends over the
radio. Because the radio can work with a lower supply voltage than the MCU, UFoP allows for more
transmissions since the energy store is decoupled from the MCU. Sensor readings, while not as frequent
as with centralized, are dispersed more evenly in time.

Test Devices: Each of the applications were run on Texas Instruments MSP430FR5739 processors. These

devices have low sleep currents (i.e., 5.9 µA), multiple ADCs, and FRAM memory for checkpointing and data

storage.

Peripherals: Each test device manages its own set of peripherals. Peripherals used are an MMA7361 triple-

axis accelerometer, and a 315 MHz RF Transmitter (CDT-88). These peripheral types were chosen because

they are ubiquitous in sensing applications.

Voltage Monitor Reference Designs: To compare the federated and centralized approach, we designed a

supply voltage monitor, based on the ICL7665 and MIC841 (also used by our UFoP reference design) to act

as the energy storage backbone for all centralized program executions. The ICL7665 or MIC841 charges a

large capacitor bank, and turns on and off the MCU with hysteresis. The centralized supply voltage monitor

and the UFoP reference design have the same amount of capacitance (energy storage) and many of the same

components, however, the UFoP reference design federates its energy storage in hardware, while the centralized

reference design federates energy sotrage in software. In the evaluation, we refer to the centralized voltage

monitor device as the “centralized reference design.”
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Availability

UFoP Centralized
Program I–V Surface MCU (%) Radio (%) Accel (%) MCU (%) Radio (%) Accel (%)

Optimistic Solar 57.08 7.61 18.22 46.97 6.36 17.67
RF High 81.85 4.55 10.45 76.89 1.18 25.29
RF Low 86.58 1.23 9.43 75.69 0.64 20.93

Cautious Solar 54.75 8.14 13.67 46.64 8.10 13.40
RF High 68.11 7.99 9.59 80.69 3.77 12.00
RF Low 74.23 4.67 5.70 74.97 2.66 8.09

Table 4.2: This table shows the percentage of time over the entire I–V surface that the peripherals
and MCU were available, for both UFoP and centralized. For these results, the program described
in Listing 4.2 (optimistic) and the program described in Listing 4.1 (conservative) were used, with the
Vsafe thresholds (as in, no radio transmission or power failures). For all three surfaces, using UFoP
increases the availability of both the MCU (for computation) and the radio (for communication and
data sending). UFoP does especially well on RF surfaces, where energy is scarce, since it does not have
to wait to charge a much larger capacitor before it begins computation.

I–V surfaces: To control the energy environment, we use an Ekho[52] device to record and emulate I–V

surfaces. Ekho provides a repeatable energy environment which replaces the energy harvester as input to

the energy storage approach. Without Ekho, it is very difficult to control for the energy environment in

experiments. We recorded three eight-second I–V surfaces for our evaluation. The first surface was recorded

from a solar panel harvesting energy from a car headlamp that turns on and off four times, creating a sinusoidal

solar surface. This means the device under test goes through the entire life cycle; charge, deplete, recharge.

The second and third I–V surfaces were recorded from the RF energy harvester on the Umich Moo, while

it harvested from an Impinj Speedway RFID reader. The reader antenna was waved across the Moo at two

distances to produce two surfaces, referred to as “RF High Energy” and “RF Low Energy” in the rest of the

evaluation.

Taking these programs, thresholds, test devices, peripherals, supply voltage monitors, and I–V

surfaces, we can assemble an experimental setup that will allow us to make fair comparisons between federated

and centralized energy storage. By running each program variant (federated or centralized) in each recorded

energy environment, we can attempt to answer these questions about UFoP:

• Does federating energy storage provide more sensing and computational availability? (4.2.4.2)

• Does federating energy storage make applications more resilient? (4.2.4.3)

• What is the effect of federating energy on energy harvesting efficiency as compared to the centralized

approach? (4.2.4.4)
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• What is the overhead of the federated energy approach? (4.2.4.5)

4.2.4.2 Availability

The percentage of availability of the MCU for computation, and peripherals for sensing or sending

over an entire duty cycle, is a critical metric of evaluating performance of tiny energy harvesting systems. In

this section, we evaluate the availability of both our test programs, when running on our UFoP reference design

and the centralized reference design. We execute each of these programs, with both energy storage reference

designs, ten times each, on all three of our recorded I–V surfaces. All of the optimistic sense-and-send

programs use the Vsafe thresholds, while the conservative sense-and-send programs use slightly “optimistic”

thresholds. Using the Measurement Computing USB-201[25] data acquisition device (DAQ), we recorded the

voltage levels of all capacitors, the supply voltage of the MSP430FR5739 (the MCU), and the on and off times

of the radio and accelerometer peripherals.

One set of program executions is shown in Figure 4.7. This figure shows the optimistic sense-and-

send program executing across a surface generated by an RFID reader swiping over a UMich Moo. The

three activity bars below each plot show when the MCU, the radio, and the accelerometer were in use. For

this RF surface, UFoP provides more MCU on-time, and more radio transmissions. Because UFoP allows

the application to use peripherals that do not have to exist at the MCU supply voltage, the UFoP program

makes use of the lower voltage threshold of the radio to get extra work done in a low energy environment.

Additionally, UFoP charges its capacitors faster, meaning that the MCU turns on sooner than the centralized

version, this is shown in the bottom portion of Figure 4.7.

The results of all availability experiments are shown in Table 4.2. The percentage of time each

component was being used is listed for both the centralized and federated approaches. For all cases, using

UFoP shows improvement in availability. The most dramatic increase comes when using UFoP with low

energy environments and peripherals that don’t match the MCU supply voltage.

4.2.4.3 Resiliency

In this section, we evaluate the resiliency of our programs when using the UFoP reference design

and the centralized reference design. Resiliency is the measure of how tolerant an application is to voltage

threshold miscalculation, task incompletion, and power failures (of the MCU or peripherals). While most

application programmers try to get the equivalent of the Vsafe threshold described in Section 4.2.4.1 to ensure

no failures, it is very easy to miscalculate the required energy budget for a specific task, especially when it
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Resiliency

UFoP Centralized
Program -Threshold Low Voltage Tx Fails -Threshold Low Voltage Tx Fails

Optimistic -151 mV 6.2 3.5% -130 mV 28.0 9.8%
Conservative -93 mV 5.1 5.2% -115 mV 34.6 16.3%

Table 4.3: This table shows the effect of over-estimating the harvestable energy. In the table, -Threshold
is the voltage below the the Vsafe threshold that was set when running programs for resiliency exper-
iments. This threshold is used to determine when to turn on peripherals for the respective program
listed on the left. These results are from execution over the solar I–V surface. The number of times the
voltage on the microcontroller went below the minimum supply voltage and the percentage of radio
transmission failures (because of MCU reset or peripheral reset) are shown. Poorly choosing voltage
thresholds does not have as severe an effect when using UFoP, as with the traditional centralized ap-
proach.

comes from a single supply. Being overly optimistic about potential energy to be harvested can result in failed

radio transmission, corrupted memory, and low voltage events. A low voltage event, where the MCU voltage

drops below the minimum supply voltage, does not necessarily mean the microcontroller is reset, but once it

happens, the MCU begins to draw more current, memory usually becomes unwritable, and at worst the Supply

Voltage Supervisor will trigger a brown out. Therefore it is a state best to avoid if possible.

To evaluate resiliency we executed both of our programs, using either of our energy storage reference

designs, ten times each, on our recorded solar I–V surface. We lowered the turn-on voltage of the radio

from the Vsafe threshold by a percentage, to see what effect this optimism over energy harvesting would have.

Since we did not have Vsafe thresholds for the conservative sense-and-send program, we chose thresholds

that ensured zero radio transmission failures or resets over the solar surface. Since these thresholds were not

matched like the Vsafe thresholds, the conservative results are illustrative of the effect of over estimating your

energy harvesting. Using the DAQ, we recorded the voltage levels of all capacitors, the supply voltage of the

MSP430FR5739 (the MCU), and the on and off times of the radio, and accelerometer peripherals. Using this

data, we gathered for each execution, the number of times a low voltage event occurred and the percentage of

radio transmission that failed.

Table 4.3 shows the results of this experiment. For the optimistic sense-and-send program, the

lowered thresholds result in a dramatic increase in low voltage events, as well as a nearly 10% increase in

transmission failures for centralized programs. The optimistic sense-and-send program that ran on the UFoP

reference design had a much smaller failure rate. Power failures and low voltage events are inevitable for

capacitor based sensing. UFoP reduces the number of low voltage events and failures by prioritizing the MCU

and separating the peripherals energy storage. Using UFoP, the consequences of miscalculation of the energy

68



Energy Harvesting Comparison

UFoP Centralized
I–V surface mean (mJ) stddev (mJ) mean (mJ) stddev (mJ)

Solar 11.49 0.05 11.41 0.06
RF High Energy 11.00 0.10 9.98 0.11
RF Low Energy 9.15 0.12 8.66 0.10

Table 4.4: This table shows the amount of energy harvested by the optimistic sense-and-send program
on each of the I–V surfaces, for centralized and UFoP energy storage. The peripheral turn-on voltage
was set to the Vsafe threshold, such that no transmissions would fail, and no resets would occur. When
using UFoP, the application harvests more energy for all I–V surfaces tested.

harvesting potential of a future deployment environment becomes much less catastrophic.

4.2.4.4 Energy Harvesting Efficiency

Energy harvesters such as solar panels, piezoelectric ceramics, and thermal generators, do not supply

a stable voltage to a sensor. The voltage on the harvester changes in response to the current draw of the sensor

or vice-versa. This relationship between harvesting current and supply voltage can be described by an I–V

curve. Energy harvesting over time can be described by a sequence of I–V curves; an I–V surface. Every I–V

curve has a maximum power point (MPP) where the most energy can be harvested. Many systems attempt

to track this point to increase energy harvesting efficiency. UFoP does not try to track the MPP, but because

UFoP charges faster and keeps a more stable supply voltage, for some I–V surfaces, UFoP may harvest more

energy by being closer to the MPP. This set of experiments seeks to compare the energy harvesting efficiency

of the centralized and federated approach to energy storage, by observing the path that each approach traces

across the same I–V surface. By keeping the same sensor combination, energy harvesting environment (I–V

surface), and program, we can see the effect of the energy storage technique on efficiency.

The results of this experiment are shown in Table 4.4. For the energy harvesters used, the programs

using the UFoP reference design generally harvested more energy than the centralized equivalent. UFoP will

not always cause more energy to be harvested, however, if the voltage at the MPP of the particular I–V surface

is close to the hardware set threshold voltage of UFoP, the stability of UFoP should provide more energy.

4.2.4.5 Overhead

Switching to a federated energy storage approach does come with overhead. This overhead comes

from three places: 1) the addition of voltage monitoring hardware, which slightly increases the size, cost, and

energy requirements, 2) the energy cost from polling voltage levels with the built-in ADC, and 3) software
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rewriting. We have not attempted to quantify the cost of software rewriting.

The biggest potential cost is the energy overhead; as UFoP is meant for energy harvesting systems,

any energy spent on monitoring must be kept low. The active components that make up our reference design

have a typical quiescent current draw of 2.7 µA. As a comparison, the centralized reference design has a

quiescent draw of 1.5 µA. Despite the increase in overhead, the energy harvesting gains shown in Table 4.4

should offset the losses, and often give a net surplus of energy. Additionally, the larger capacitor used for the

centralized approach has a larger leakage than the collection of smaller capacitors used in UFoP, causing some

of the energy gains seen from using UFoP.

Most traditional centralized applications have some form of supply voltage monitoring through a

dedicated ADC, interrupts on an input pin, or special hardware. UFoP has this same overhead, but multiplied

by the number of peripheral capacitor voltages it has to monitor. The centralized reference design, over a

one second period, expends 13.6 µJ polling, while the UFoP reference design expends 23.3 µJ over the same

period. This extra energy cost can be reduced by polling fewer times, or using a low power or faster ADC. To

reduce the polling overhead completely, an interrupt driven method can be used. With this approach, UFoP can

trigger a wakeup pin on the microcontroller when a peripheral capacitor has reached a logic level threshold.

This form of voltage monitoring requires no extra energy beyond the sleep current of the microcontroller. If

greater accuracy is required, the program can do an ADC check immediately after the interrupt wakes the

microcontroller.

4.2.5 Deployment

To evaluate UFoP in a real application scenario, we deployed a UFoP enabled greenhouse monitoring

program for eighteen hours over two days, in a local greenhouse in late summer. We also deployed a centralized

version on the same bed, as a comparison. Greenhouses waste a significant amount of water by overwatering

plants. This happens because in large greenhouses, managers do not know the status of individual plant beds,

and overwater to ensure plants do not die. This waste is significant for economic and sustainability reasons, as

water is a finite and costly resource especially at large scales. Current commercial plant monitoring systems

are little more than weather stations, these have dedicated power supplies, are too large or too expensive to

be deployed densely, and can’t move with the plants they monitor. Because of this, sensor data is usually

very coarse, not localized, and often wrong (in the case of plants that were moved from bay to bay). Dense

deployment of tiny, unobtrusive, energy harvesting, sensors has been suggested as one way to monitor large

volumes of plants in a greenhouse. Equipping sensors with leaf wetness, temperature, and humidity sensors
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Figure 4.8: This figure shows the availability of the radio, and microcontroller, for both energy storage
solutions, for the deployment. Three different time periods are shown; the afternoon, when the sun
was brightest, the evening, when the sensors energy harvesting began to decrease dramatically, and the
morning of the next day, when the energy harvesting begin to increase. Even though the centralized
system and the UFoP system had the same amount of energy storage, the same harvester, and the same
duty cycle, the UFoP sensor had more radio, and computational availability.

would provide all the information necessary for managers to make local decisions on water volume and plant

health.

We developed an initial implementation of this greenhouse monitoring application with UFoP as an

energy backbone. Two sensors derived from those discussed in Section 4.2.4.1 were built; one using our UFoP

reference design, and one using the centralized reference design. Each sensor had two peripherals: a CC1101

transceiver for communication, and a resistive load that emulated a Decagon Devices LWS leaf wetness sensor,

a standard sensor used in plant studies. The MSP430FR5739 was used as computational platform. Each sensor

used a small solar panel (of the same model) for energy harvesting. To allow for data comparisons between the

sensors, the panels were located as close as possible. Both sensors had the same amount of total energy storage

in the form of SMD capacitors, and the same duty cycle. Both sensors periodically wakeup from a low power

sleep mode, check the energy level(s) of the supply capacitor(s), and if high enough, sense and send a leaf

wetness reading. A basestation was positioned inside the greenhouse to receive, and log, all sensor readings.

4.2.5.1 Choosing Capacitor Sizes

Choosing capacitors for both sensors required consideration of the duty cycle. Capacitors had to be

large enough to support the peripherals, but not too large that they never charged to a high enough voltage.

Before deployment, we profiled the distinct stages of the greenhouse monitoring duty cycle in terms of energy

consumption, using an oscilloscope and current sensor. Each of these stages we matched to an adequately
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sized capacitor. The greenhouse monitoring program has three stages: “sense”, “send”, and “sleep”. For

each stage, we determined the minimum size of the capacitor, by looking at how much energy was used over

time, for what voltage thresholds (we looked up voltage thresholds in device and peripheral datasheets). For

example, the CC1101 transceiver when used during the “send” stage required 40ms at an average draw of

3mA to send a message, all with a supply voltage above 1.9V. A capacitor sized at 100 µF and charged to 3.2V

stored enough energy at a high enough voltage to power the stage to completion.

The centralized version was equipped with the same amount of total energy storage as the UFoP

enabled system, to keep the comparisons fair. Centralized thresholds were calculated in a similar fashion to

UFoP. By summing the total energy required for all three stages, at the highest minimum voltage of all the

components, the threshold voltage can be determined for the centralized variant.

While these capacitor size and voltage threshold calculations were done manually for this deployment,

it is not hard to see how an automated system could size UFoP capacitors using simple peak detection

techniques, developer or datasheet specified information about peripheral voltages, and energy harvesting

information generated or gathered by an Ekho device.

4.2.5.2 Deployment Results and Discussion

An ARM microcontroller and light sensor was deployed with the sensors to unobtrusively record

availability of the MCU, radio, and sensor over time. The amount of light on the solar panels was also

recorded. Data was gathered for each sensor from 4pm, to 10am the following day. The UFoP equipped

sensor outperformed the sensor with the centralized reference design in terms of MCU availability and radio

availability as Figure 4.8 shows. The UFoP enabled sensor was able to harvest significantly more energy

than the centralized version, especially during times when energy was scarce (evening and morning). In the

morning, from 7-10am, the UFoP equipped sensors microcontroller was on for 79% of the time, while the

centralized sensor’s microcontroller was on for only 12% of the time. The amount of solar energy that was

available to harvest, was not enough to charge the much larger capacitor on the centralized version, meaning

that data was lost. In the evening, as the sun began to drop, the UFoP equipped system harvested enough energy

for the radio to be broadcasting 9.6% of the time, while the centralized version was only able to broadcast

1.7% of the time. UFoP dramatically extended the amount of time the sensor was available compared to using

a centralized energy approach.

This first implementation could be improved; in full sun both sensors were able to broadcast readings

continuously, meaning that the solar panel used was too large. Greenhouse managers only need leaf wetness

72



reports a few times an hour. By decreasing the size of the solar panel, sensors can be more densely deployed.

Computational time was underutilized as well. UFoP allowed the sensor’s MCU to be available even when

there was very low sun, however, this computational time was not used. Future programs will use this time to

calculate average leaf wetness readings, and calculate local statistics on plant status, freeing up computation

on the basestation.

4.2.6 Discussion

In our experiments, UFoP was able to improve the availability, resiliency, and energy harvesting

efficiency of tiny sensor devices with capacitor-based energy storage. Based on our experimental results, we

believe that UFoP is a step forward for perpetual sensing, potentially making long-term deployments for mobile

and other untethered computing devices possible. However, ambient energy is still scarce in deployment and

energy storage capacity is terminally limited. Therefore, even though UFoP is able to relax the short-term

coupling between peripherals, power management is always an important issue to consider. In this section,

we discuss software approaches to federating energy, UFoP’s design limitations, design alternatives, and

applications.

Software Energy Federation: An alternative approach to using UFoP is to attempt to federate energy in

software, by balancing the peripherals voltage and energy requirements with the volatile energy supply. This

approach is used by all centralized programs in Section 4.2.5 and Section 5.4. Federating (or virtualizing, as

in Virtual Battery [19]) energy in software has the advantage of being reconfigurable; the duty cycle (and

energy partitions) can be changed dynamically. Additionally, no new hardware is required. However, the cost

of software complexity in adding a virtual layer must be considered, especially in resource constrained systems

that harvests energy. Additionally, a software approach suffers from all the shortcomings (task coupling, slow

charging, reduced MCU availability,) associated with a single energy store. Hardware federation, for the same

energy supply, will always provide more availability, and resiliency, than a software federated approach.

Limitations: The current UFoP reference design has some limitations. Peripherals are susceptible to starvation

since the peripheral capacitors start charging when the input voltage in the main capacitor reaches 3.1 V. This

can happen when an application requires the microcontroller to run too much computation in a very low energy

environment and thus the peripheral capacitors never have the chance to charge. The centralized system has the

same starvation problem. Another cause of peripheral starvation is if the microcontroller has a higher active

current draw than the one we currently use (81.4 µA). To overcome this limitation, an application developer
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can program, through software, the microcontroller to sleep for a brief period immediately after turning on.

The current UFoP reference design trades off speed for low quiescent energy consumption in the

choice of its active components. Some of the comparators switch very slowly, meaning that high current

peripherals may be able to draw too much from the first stage capacitor if no new energy is being harvested.

This can be solved by limiting capacitor charging with a resistor or op-amp, or trading off low quiescent

current for a faster switching peripheral gate comparator.

Another limitation of the current prototype is we cannot use the peripherals in the order we need if

we change the behavior of an application during runtime. This issue can be handled with dynamic priority,

allowing capacitors to be charged and used by different peripherals according to the application. We leave this

for future work.

Applications: UFoP enables low power sensing applications that use a variety of peripherals, with different

energy needs and voltage requirements. UFoP is most useful for perpetual, energy harvesting systems

that aggregate multiple types of sensor data. We envisage UFoP being used in applications ranging from

greenhouse monitoring, low power wearable devices (humans and animals), and any computational RFID

application including but not limited to, inventory management, building monitoring, activity monitoring, and

infrastructure monitoring.

4.2.7 UFoP Conclusions

This section presents UFoP, the first system for capacitor-based sensors that employs a federated

approach to the storage and management of harvested energy. UFoP stores harvested energy in multiple

independent small capacitors, one dedicated to each peripheral. It employs a charge controller that charges the

capacitors while maintaining the supply voltage of the microcontroller. With UFoP, power-hungry tasks from

a radio or a heavyweight sensor will not cause low voltage events that can potentially reset the microcontroller.

In our experiments, we found that programs that use UFoP as the energy backbone had as much as 10% more

computational availability, and as much as four times more radio availability than the centralized approach.

Using UFoP, programs become dramatically more resilient, reducing low voltage events and radio transmission

failure. Additionally, programs that use UFoP harvested more energy for all energy environments evaluated

than programs using the traditional centralized energy storage approach; meaning that UFoP functions with

zero overhead in many cases.
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4.3 Flicker Platform

The future of sensing likely depends on tiny, batteryless, energy harvesting devices because of the

poor economics, sustainability, and scaling of batteries. Today, building and deploying untethered, batteryless

sensors is challenging because 1) design-time decisions make prototyping slow and expensive, 2) flexibility of

tasks and hardware is lacking, 3) few people have the expertise to build and deploy these sensors, and 4) few

readily available hardware options exist, short of building custom hardware.

Modules from Sparkfun3, or Arduino4 shields can’t just be wired to a batteryless sensor, deployed,

and then expected to work. Arduino developers cannot replace the battery with a postage stamp sized solar

panel and expect it to function just the same. The architectural, operating systems, and language support for

intermittent sensors is not widely available or explored, except in custom configurations of hardware and

software. The ultra low operating power requirements, variable energy environments, and difficult to use tools,

discourage most developers from ever trying to work with batteryless sensors unless they can afford to design

and assemble their own hardware from scratch.

4.3.1 Limitations of Static Federated Energy

Federating a batteryless sensor’s energy storage improves the reliability, efficiency, and energy use of

the whole sensor; however, the federated approach as implemented in UFoP [53] and descrobed in the previous

section, is difficult to use, especially by non-experts, for three reasons described below.

Program-specific hardware designs are brittle. In order to use federated energy effectively, a developer

needs to determine the right size for peripheral capacitors, the voltage at which each peripheral should start

charging, and the voltage at which a peripheral should be deemed charged and ready to use. In UFoP, capacitor

sizes and charging thresholds are static and set at design time, and software changes often require hardware

changes—soldering or even circuit board revisions—to ensure good performance. Task priorities cannot be

changed once deployed. The result is brittle systems with tight hardware and software dependencies and long,

expensive development and debugging cycles. Even for those with hardware expertise, these systems are

difficult to maintain and modify.

Static UFoP is inflexible at runtime. When using static UFoP, programmers cannot turn off peripherals

when they are no longer in use or assigned to a task. These peripherals continue to charge, storing energy that
3Sparkfun is a popular company for DIY and maker electronics.
4Arduino is the definitive microcontroller ecosystem for embedded electronics makers.
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may never be used and delaying more important tasks. Programmers cannot change the relative priorities of

different peripherals adapting tasks at runtime—limitations that fundamentally bound application complexity

and the ability to retask deployed sensors in the field.

Significant hardware complexity remains. Hardware complexities and unintended interactions can interfere

with the operation of the sensor; in static UFoP this is seen in the approach to voltage regulation, logic levels,

and the energy management interface. In order to maximize efficiency and availability, most batteryless

sensors do not regulate supply voltages. For some peripherals (especially with RF components), voltage

fluctuations will affect accuracy. Other components (like an MSP430 MCU), draw more power at higher

voltages. Static UFoP does not propose a standard way to deal with these conflicting peripheral requirements. In

its current form, UFoP does not manage logic levels for communication between the MCU and peripherals, and

designers must carefully tune capacitors and harvesters to keep voltage level within logic bounds, concurrently.

Additionally, UFoP’s energy management interface uses a polling-based approach to manage energy levels,

which wastes energy in frequent threshold checking.

Today, prototyping batteryless sensing devices is challenging enough to discourage all but the most

determined developers. This paper addresses this problem by 1) improving the flexibility and efficiency of

federated energy storage and 2) integrating these improvements into a novel and general platform, called

Flicker, for flexible and rapid prototyping of the batteryless Internet of Things.

We have developed Flicker for IoT application designers who want to develop batteryless energy

harvesting devices. Flicker’s goals are (1) to provide multiple hardware options in terms of peripherals

and harvesting technologies, (2) realize runtime and design time flexibility, (3) enable recent advances in

timekeeping and energy management on a general purpose platform, and (4) provide a platform focused on

entire stack (software and hardware) usability. Instead of a single, monolithic hardware platform, we present a

system of hardware modules that can be used interchangeably and software tools that can automatically analyze

hardware configurations, detect incompatibilities, and help developers more easily create new applications.

Flicker rethinks Federated Energy to meet the requirements of a reconfigurable platform, adds failure tolerant

timekeeping, and exposes multiple standard interfaces to peripherals. An overview of Flicker’s design is shown

in Figure 4.9.
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Figure 4.9: Flicker harware architecture. A multi source energy harvesting interface feeds into the
first stage capacitor that powers the Compute Board. Peripherals are connected through a standard
interface that maps power, and control signals.

4.3.2 Flicker Modules

Flicker modules come in three distinct varieties — compute cores, peripherals, and harvesters. A

viable device configuration consists of a single compute core, one or more harvesters, and one or more

peripherals.

Compute core modules include a microcontroller (MCU) (the device’s main controller, programmed by the

application developer and responsible for peripheral control and application logic), time-keeping functionality,

ports for attaching harvesters and peripherals, and hardware support for managing federated energy stores.

Any MCU can be used to create a core module, but we recommend low-power processors with on-chip FRAM,

like the MSP430 FRAM series [57], that work well with a wide range of small harvesters and support efficient

checkpointing. Core modules also control how peripherals are used and charged, and serve as the central hub,

around which harvesters and peripherals are connected.

Peripherals connect to the core modules’ peripheral interface ports, which provide power, control, and

signaling for peripheral charging, in addition to analog signal lines, digital signal lines, and digital bus lines

(SPI, I2C, and UART) for peripherals that communicate digitally. Peripherals can be radios, sensors, and
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actuators — in this paper, we focus primarily on radios and sensors, since most actuators are too power hungry

for batteryless operation, but this is not a fundamental limitation. While peripheral behaviors and needs will

vary significantly, each peripheral stores its own energy and contains circuitry that controls how that energy is

stored and used.

Harvester modules harvest energy from a variety of environmental sources. A variety of energy sources — so-

lar, kinetic, vibration, radio frequency (RF), and thermal — are available to application designers, but available

harvesters provide the energy they harvest differently, as direct current (DC) or alternating current (AC) and at

a variety of different voltages. In Flicker, harvesters are designed to provide energy in a form that can be used

directly by the system. Specifically, harvester modules provide DC electricity at voltages that are high enough

to support common modules and protect against reverse current flow, using a blocking diode or other similar

mechanism. Reverse current protection is common in energy harvesting devices, and critical when multiple

harvesters are used simultaneously (preventing one harvester from draining the energy harvested by another).

Some harvesters (namely RF energy harvested from a reader, and NFC) also combine data and energy.

Flicker’s harvester interface includes optional data lines, specifically to support these harvesters.

4.3.3 Reconfigurable Federated Energy

Reconfigurable Federated Energy is the crucial innovation allowing quick prototyping with a mod-

ularized platform. Converting what is usually a rigid hardware platform to one able to support a multitude

of peripherals and energy harvesters. “Reconfigurable” means that programmers (or compilers) can assign

(at runtime or compile time) the amount of energy to be harvested for each peripherals capacitor, the priority

of charging of each peripheral, and the trip point where enough energy is stored to execute a task. This

allows applications to tailor charging behaviors for different configurations of peripherals and harvesters at

the prototyping stage, at compile time, or even at runtime. This makes it easy to efficiently support longer

tasks that require more energy, without incurring long charging delays for shorter tasks that need less energy.

This makes it easy to mix and match different tasks, and peripherals, and removes the hard coupling between

peripherals and their code. Reconfiguring previously was a tedious, time-consuming chore that, using static

Federated Energy [53], required hardware modifications. Many of these adjustments can now be performed

easily in software.

The key challenge is in implementation — developing a Reconfigurable Federated Energy mechanism

while keeping overhead (in terms of energy, processing requirements, and cost) low. We discussed the flaws in
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implementation in Section 5.1. To implement Reconfigurable Federated Energy we depart philosophically

from the original in three ways: (1) we move from a polling to interrupt based “peripheral ready” signal

generated by custom hardware, (2) we enable changing voltage thresholds (a direct proxy for energy stored in

a capacitor) using digitally programmable resistor dividers, (3) we use dedicated voltage regulation depending

on the peripheral. Flicker’s support for reconfigurable federated energy is split between core and peripheral

modules. Core modules include the first stage storage capacitor and the hysteresis control that support the

microcontroller, as well as power and control lines for the Flicker peripheral interface.

Peripherals each have an individual storage capacitor, which stores the harvested energy that will be

used for that peripheral and a programmable charge controller, which charges the capacitor only when its

input voltage reaches a particular threshold set by the MCU (allowing assignment of priority, peripherals with

higher priority start charging at lower voltage thresholds). In contrast to earlier federated energy systems that

use static thresholds set in hardware [53], Flicker thresholds can be changed by an application over time as

priorities and energy availability change, or baked in at compile time depending on the hardware modules used.

Flicker also uses a programmable interrupt controller, that signals the MCU with an interrupt whenever the

charge level exceeds a set threshold, which is also set in software at runtime. This approach replaces the more

energy expensive technique used in [53] that polled the charge level on the ADC continuously.

4.3.4 Peripheral Ports

Flicker peripherals are designed to be flexible with little energy and computational overhead. As such,

the peripheral interface requires common functionality to support energy harvesting, but does not constrain

how peripheral-specific functions interact with the core. Instead, each peripheral port provides a wide range of

connectivity options to each peripheral (such as GPIO, SPI, I2C, and reference voltages), with most peripherals

only using a subset of the available pins. Ideally, enough pins would be provided to support any peripheral

on any port. In reality, pins and other hardware resources are often limited. Some Flicker implementations

may provide some limited hardware resources on a subset of its peripheral ports, and may not support some

complicated peripherals that require an excessive number of control signals. Section 4.3.8 describes how we

addressed this challenge in our implementation and how, in practice, we are able to support many common

radios and sensors.
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4.3.5 Failure-Tolerant Timing

Timekeeping is incredibly important for sensing, security, data provenance, and data utility, especially

in the face of intermittent power with undefined (to the runtime) lengths of time between power failures.

Failure-tolerant timing also allows for continuous user interface and response, and is a functional enabler for

strengthening user privacy. Each core module (the compute core with the MCU) is responsible for providing a

timekeeping mechanism that is robust even in the face of power failures. A variety of timing techniques can be

used with Flicker, including remanence-based SRAM timing [103] which uses the decay characteristics of

SRAM memory cells to determine the duration of power loss events. Timing failures with custom circuitry

using capacitors with stable thermal properties [54] is more reliable and allows timing longer outages, but

with precision reduced the longer the outage. Powering an ultra-low power real-time clock (RTC) off a small

independent capacitor provides even more fine grained timing information, but at increased cost and space.

The Flicker framework is compatible with any of these approaches. Our current implementation provides

hardware support for all three to give broad application.

4.3.6 Auto-Detecting Configurations

Hardware changes often require software changes. In order to make batteryless prototyping fast and

easy, Flicker harvesters and peripherals contain circuitry that allows the Flicker toolchain to automatically

detect which modules are attached to which ports. For simplicity, Flicker uses resistor dividers to identify

modules. Each module is identified by a single resistor value, which is measured by a special calibration

firmware that also tests a variety of hardware functions. The autodetection process is not particularly energy

efficient, and is designed to be done during calibration and testing, and not at runtime. We favor this approach

over more sophisticated techniques (like using serial ID chips), to minimize cost and board size.

By autodetecting hardware configurations, many software updates can be made automatically, or by

updating a simple port mapping.

4.3.7 Flicker Workflow

Flicker’s modular design lends itself to the workflow shown in Figure 4.10. A developer initially

selects a particular configuration she wants to try out from available peripherals and harvesters, based on her

application goals and intuition. With the core module attached to a programmer, the discovery process detects

which peripherals and harvesters are attached, produces a file that describes the configuration, and detects any
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Figure 4.10: Flicker Workflow.

incompatible connections (for example, a peripheral requiring I2C attached to a port that doesn’t support I2C).

The configuration file contains a mapping between peripherals and ports, as well as the default

threshold voltages for each peripheral’s charge controller and interrupt controller. During calibration, thresholds

are adjusted based on application priorities, developer intuition, and prior testing. The user’s code is then

combined with library code and threshold initialization code, compiled, linked, and installed on the device for

testing and deployment.

Flicker’s harvester interface is compatible with existing debugging tools like the Ekho [52] energy

harvesting emulator and the EDB [24] debugger, for in-lab testing with I–V surfaces that are appropriate for

the attached harvesters.

This process is usually iterative. Testing and deployment often indicate needed changes in the voltage
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Figure 4.11: Flicker hardware modules, including a single compute core board, three harvesters, and
eight peripherals for sensing and communication. Peripherals and harvesters attach to the core module,
and support federated energy storage with charge and interrupt thresholds that can be dynamically
adjusted in software.

thresholds or even the modules that are used. The developer makes adjustments to their configuration and

application code as many times as it takes to produce a configuration that works well. With Flicker, these

design iterations, which have traditionally taken days or weeks per iteration, can often be done in minutes.

When testing is complete, the developer may want to take the final step and generate her own custom

hardware version of her configuration. Flicker’s strength is flexibility and rapid prototyping, but many of its

signal traces, connectors, and discovery hardware components increase device size and cost and are often not

needed in a finalized device. In order to allow developers to further miniaturize their designs and adapt them

to other form factors, the Flicker toolchain also generates a schematic and board layout for a configuration

(without unneeded components) that the developer can modify as needed to fit her form-factor of choice.

4.3.8 Implementation

We implemented Flicker hardware (shown in Figure 4.11) and software, in order to 1) evaluate the

efficacy of the Flicker approach and 2) provide a set of reference designs to the research community. We

developed one core module board with connectors for three peripherals modules and two harvester modules.

We also developed tools to ease the prototyping and design process, as well as created runtime libraries

allowing for developer controlled adaptation for different energy harvesting scenarios in deployment. In

this section, we describe the specifics of our Flicker hardware and software implementation. All hardware,

software, and tools, as well as documentation and tutorials on using and extending Flicker are free and open

source.
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4.3.8.1 Hardware

The hardware modules, shown in Figure 4.11 enable a wide range of energy harvesting options,

sensing activities and communication channels in order to support a broad range of applications. We plan

to expand on this initial set of modules, and anticipate additional hardware contributions from the research

community.

Compute Core: The compute core module is centered on a Texas Instruments ultra low power FRAM-enabled

MSP430FR5989 microcontroller with 128K of FRAM, 2K of SRAM, and multiple communication and analog

ports. This iteration of the core has three peripheral slots, each peripheral slot has an SPI and analog connection,

while two have UART connections, and one has an I2C connection. Due to limited MCU resources, not every

peripheral slot has I2C or UART. Any peripheral can be attached to any port, but some peripherals will not

function correctly on all ports. Our prototype supports only a single I2C peripheral at a time — an artifact that

is handled by the calibration stage; if a peripheral is attached to an incompatible port, the compilation process

is stopped and the developer informed. The compute core also has a voltage reference, an Abracon AB0805

RTC supplied by a small 10 µF capacitor, and a remanence timekeeper. The latter able to time power outages

upto 19 minutes, providing the developer a sense of time. A low profile Tag-Connect programming interface

on the PCB allows firmware upload by the developer and calibration routines to be executed.

Universal Peripheral Interface: Each peripheral has a charge and priority controller, an interrupt controller,

a storage capacitor, identification circuitry, and a power gating switch. The controllers are implemented with a

dual digital potentiometer and network of comparators which gate harvested energy, based against a stable

reference voltage supplied by the Compute Board. These potentiometers set the voltage on the capacitor that

triggers an interrupt to the MCU, and the voltage on the first stage capacitor that triggers charging of the

peripheral capacitor. Additional circuitry gates the power to the actual peripheral (radio or sensor), controlled

by a pin from the MCU, and handles the identification voltage divider.

Each peripheral and harvester has an identification voltage divider (and therefore a set voltage out of

the voltage divider) that can be read in discovery mode. The mapping of voltages to individual modules is

given as input to the discover stage from a static file. Because of ADC voltage constraints, reference accuracy,

and voltage divider noise, the maximum number of peripherals possible (without risk of mis-identification) in

the Flicker ecosystem is 128.

Finally, the peripheral interface breaks out control pins, analog pins for direct sensing, and digital

pins for communication with peripheral components. This common interface enables a broad array of sensing
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and communication peripherals as detailed below.

Environmental Sensing: Gathering information about a sensors outdoor environment is a common need

for many sensing deployments, including greenhouse sensing, geo-spatial deployments, and others. Our

current Flicker prototype has three peripherals for sensing information about the environment. A low power

NXP MPL115A digital Barometer is used for pressure sensing, it communicates over SPI to the MCU. The

barometer operates up to 5.5 V. The dynamic federated energy circuitry can take advantage of this voltage

range, independent of the MCU. A Silicon Labs Si7021 Humidity and Temperature sensor provides relative

humidity readings over an I2C interface. Finally an analog peripheral is connected to a Decagon Leaf Wetness

sensor for gathering coarse information about the moisture and water needs of plants in a greenhouse. This

peripheral can be used with any analog sensor by soldering power and signal lines to the headers.

Motion Sensing: Motion sensing has broad application for mobile sensor networks, wearables, infrastructure

monitoring, and even manufacturing. We developed three peripherals for motion sensing using components

commonly seen in the sensor networks and batteryless sensing communities. The Analog Devices ADXL362

is used for acceleration measurement, connected via the SPI bus. This IC only draws a few nanoamperes when

sensing at low speeds, meaning that the size of the Accelerometers peripheral capacitor can be set to less than

1 µF for quick charging and increased availability. The Gyro peripheral is equipped with an STElectronics

L3GD20H which enables gathering of angular velocity, which can be used in multiple applications in wearables

that monitor the motion of the wrist (example: bite counting). The magnetometer peripheral uses the Honeywell

HMC5883L, enabling a 3-axis compass functionality over a I2C interface.

Communication: Communication is a necessary part of nearly every sensing device, therefore it is essential

for Flicker to support a broad range of communication modalities. We built a low frequency (433MHz) radio

transceiver peripheral using the CC1101, a common radio in the WSN community. The Texas Instruments

CC1101 uses a small chip antenna, and communicates via SPI to the microcontroller. Bluetooth Low Energy

is a popular communication interface between phones, wearables, and sensors. We built a BLE peripheral

that supports peripheral and central modes, using the the Nordic nRF51822 System-on-Chip and a small chip

antenna. The nRF51822 SoC is programmable, and the BLE peripheral includes a low profile programming

port for changing BLE behaviors. Both active radios voltage is regulated to minimize odd RF behaviors from

an unstable supply. In addition to the active communication peripherals described, we have also implemented

a passive communication scheme, using RFID backscatter based on the UMich Moo[136], allowing ultra low

power two way communication with an RFID reader.
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User Interface: We implemented user facing peripherals to allow testing and experimentation in the design

fiction of intermittent computing. These peripherals make it simpler to implement wearable or embedded

devices that interact with a user. We developed two peripherals, a 1.28 x 1.28 inch low power SHARP

display, which draws 5 µW to hold a static image, and a capacitive touch sensor with eight buttons in a slider

configuration. These two peripherals will enable a rich set of interactions and allow experimentation inside the

new design space of intermittent displays, interaction, and computing.

Energy Harvesting: Our current Flicker Compute Core provides two slots for energy harvesting modules for

multi source harvesting. Only one of the slot allows for energy sources that also are used as a communication

medium, like RFID backscatter described in the previous section. Currently Flicker supports three energy

harvesting modalities.

The solar harvester module is equipped with a 22 mm by 7 mm Ixys solar cell that supplies up to

4.5 V. Charging is accomplished through a Schottky diode on the positive solar output to prevent reverse

leakage from the first stage capacitor. The kinetic harvester uses a Linear Technology LTC3588 to harvest

energy from piezoelectric materials. The IC is used as a low quiescent current rectifier and settable buck

boost regulator. The regulated voltage output of the LTC3588 can be set by the developer before deployment

using pin headers, as this voltage will depend on the piezoelectric used. The RFID harvester is based on the

UMich Moo[136]. The module harvests energy from an ultra high frequency RFID reader such as the Impinj

Speedway. It uses a charge pump built with off the shelf components, and allows for tuning pre-deployment

using a variable capacitor accessible to the developer. Additionally, the harvester is equipped with circuitry

that enables backscatter communication with the reader, which can be initiated by the MCU.

Mechanical Design: The mechanical design of the hardware factors into both the flexibility (in terms of

deployment ability) and usability (in terms of ruggedness and comfort) of a platform. We chose to tradeoff

size of the platform for ruggedness, by using larger pin connectors for modules instead of smaller but much

more frail, board-to-board connectors. We also put cutouts on the compute board (increasing the size) that

allow a watchband to be connected to the platform, enabling a quick wearable.

Cost and Size: The final cost and size of a fully assembled prototype varies with the peripherals chosen. An

assembled prototype will have a maximum size of 61 mm by 36 mm if equipped to harvest RFID and solar

energy, sense acceleration and pitch, and send sensor data with the CC1101 as shown in Figure 5.7. For the

described prototype, we estimate the cost of components and printed circuit boards to be near $200 a piece in

a small batch of ten. At scale, we anticipate the cost of prototyping with Flicker to be significantly reduced.
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This cost in term of time and finance even at small batches is an order of magnitude lower than designing

and assembling custom hardware when an application changes, or components are found to be defective.

4.3.8.2 Software

Flicker includes supporting software and firmware for managing each stage of the prototyping

pipeline. These tools are meant to streamline developer effort and save time from design, to runtime, to

deployment. We describe the implementation details of each piece below.

Discovery and Calibration: A combination of python scripts on the desktop and custom firmware on the

Compute Core MSP430 handle the discovery and calibration phase of the firmware upload process. When

discovery starts, firmware is uploaded to the MSP430 on the Compute Core. The discovery firmware sets the

discovery pin of each peripheral and harvester high to power the identification voltage divider. The voltage of

each connected module (harvester and peripheral) is read and then stored in a predetermined memory location

on the MSP430. The MSP430 then goes into a wait mode. On the desktop side, once the wait mode starts, the

python script interfaces with the MSP Debug Stack and programmer to download the memory locations on the

MSP430 where the peripheral voltages are stored. These voltages are mapped to IDs, and then the python

program outputs configuration information to the developer, and alerts on any incompatibility of peripherals.

After discovery and peripheral match error checking by the toolchain, the configuration file generated

by the developer is used to set the voltage thresholds for the interrupts and charging. In this calibration phase

the custom MSP430 writes the non-volatile registers on the digital potentiometers with the values defined in

the configuration file (converted from voltage to digital).

Runtime Libraries: We developed runtime libraries for use with peripheral modules, many were adapted from

open source code libraries (such as the Accelerometer). These libraries encompass minimum functionality

of the components, allowing basic sensing and communication tasks. For the BLE peripheral we have

implemented a simple forwarding mechanism over the SPI bus, allowing the MCU to treat the BLE as a radio

modem. Currently backscatter is supported in hardware, however runtime libraries have not been ported from

the UMich Moo MSP430 code base to the new FRAM MSP430 processor used by Flicker.

In addition to peripheral and harvester runtime libraries, we also have developed control and adaptation

libraries for the timekeeper, peripheral energy and priority management function. Programmers can set voltage

thresholds for both the interrupt level and the charging threshold using a simple API. They can also write these

to non-volatile memory for long term application changes. We envision further runtime library development
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Table 4.5: Flicker overhead

Parameter Value

Timekeeper Charge Energy 39 µJ
Timekeeper Startup Time 1.1 s

Volatile Threshold Write Time 197.7 µs
Volatile Threshold Write Energy 69.3 nJ

Peripheral Voltage Range 1.7 to 5.5 V
Peripheral Current Range 0.0 to 40 mA

Compute Board Quiescent Current 5.77 µA
Peripheral Quiescent Current 4.47 µA

by ourselves and the community as more applications, peripherals, and harvesting modalities are created for

the Flicker ecosystem.

Design Automation: Developers who have prototyped, tested, and even deployed their batteryless sensors

using Flicker and need a more permanent, smaller, or easily scalable deployable solution, use the design

automation tool to combine peripherals, harvesters, and the MCU to generate the final device. This is

implemented with a combination of python and EAGLE CAD scripts that put all peripherals together in a

single schematic at the peripheral interface points. We developed a python script that interfaces with EAGLE

CAD (a very popular and free PCB design tool), takes the peripherals and harvesters listed by the developer,

and the configuration file the developer generated for the calibration phase that defines the voltage thresholds,

and creates a single schematic, with proper resistance settings baked in.

4.3.9 Evaluation

In this section we evaluate the overhead and performance of Flicker, and qualitatively evaluate how

Flicker simplifies the process of prototyping batteryless, intermittent, energy harvesting sensing devices.

Specifically, we quantify the usefulness of dynamically adjusted federated energy, evaluate the overhead

of Flicker in terms of energy and user time, illustrate how Flicker simplifies prototyping with a real world

use case, and finally discuss the usability perspectives of prototyping with Flicker. In our experiments and

experience, we have found that using Flicker dramatically shortens the time to deploying a usable prototype,

and enables use cases not possible with current hardware. All with low overhead.
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4.3.10 Overhead

Because of Flicker’s reliance on harvesting energy to power all operations, energy efficiency must be

high. Table 4.5 shows the overhead of specific parts of Flicker. This table shows that Flicker trades off some

energy-efficiency for flexibility. For example, the steady state quiescent current costs of the peripheral stems

from the charge management and interrupt circuitry of dynamic UFoP. In a static UFoP implementation most of

this cost would disappear. However, the overhead is manageable with the current set of energy harvesters. One

source of overhead comes from managing the timekeeper, specifically the first time charging the small reservoir

capacitor that maintains timekeeper state when the Compute Board is off. Longer off-timekeeping requires

larger capacitors, and therefore more charge time and energy. We chose a 10 µF ceramic as a reasonable

tradeoff between charge time, and energy cost. Another source of overhead comes from setting the voltage

thresholds for charging, interrupts of peripherals. Writing the volatile thresholds must be done every time the

MCU returns from a power failure, or if runtime adaptation happens in deployment. The quiescent current in

steady-state of the processor, and control components like the timekeeper, and peripheral controllers, is also

quite low as shown in the table.

4.3.11 Performance

In this section we evaluate and discuss different performance metrics pertaining to Flicker.

RF Harvester: The performance of the RF Harvester is comparable to the UMich Moo harvesting performance

that it is based on. We connected the Flicker RF harvester to an Ekho device, and recorded the energy harvesting

conditions for twenty seconds when placed within one centimeter of a small antenna, connected to an Impinj

Speedway Revolution RFID reader outputting at high transmit power. We then captured the maximum power

point (MPP), the maximum voltage, and the maximum current, of the energy harvesting environment. The

Flicker RF Harvester’s MPP was recorded at 1.4 mW, with a maximum voltage of 6.3 V, and maximum current

of 1.0 mA

This power level is comparable to the Moo and WISP platforms, enabling a broad range of RFID

powered applications. One major difference between the current harvester and the Moo, is that our harvester

only has a two layer PCB instead of four, hurting overall RF performance. In additions, antenna tuning and

careful design could increase harvesting ability. We expect future revisions to continue to improve performance,

however, as is, the RF harvester is comparable to the Moo and useful for RFID powered applications.
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Table 4.6: System Usability Survey (SUS) scores vs. Flicker

Interface Type SUS Score

Cell Phone 66.55
Customer Premise Equipment 71.60
Graphical User Interface 75.24
Interactive Voice Response Systems 73.84
Web Pages and Applications 68.05

Flicker Platform 84.9

Timekeeping: Timekeeping using the ultra low power RTC is one of the critical parts of Flicker. Without

an accurate clock, sensor data could be forwarded that is not relevant, and tasks may be executed that are

superfluous. We chose a 10 µF ceramic capacitor as the reservoir capacitor, as this size takes 19 minutes and 40

seconds to discharge enough that the RTC fails, it’s memory resets, and time is lost. If the capacitor discharges

and the RTC resets, on the next power up, the RTC takes 1.1 seconds to wakeup and recharge. If the energy

harvesting environment has very little available energy and cannot support the energy requirements of the

clock, then Flicker could potentially not get past the initialization stage. However, this is easily overcome in

software; once the Compute Board turns on, programs can sleep until the RTC sends the ready signal on it’s

I/O line, at which point the program can resume operation.

4.3.12 User Study

We evaluated the usability of Flicker on 19 participant drawn from a junior-level, university Computer

Operating Systems course5. We had the 19 students each participate in a half hour session building

multiple devices with Flicker. In all, students built 76 devices and spent 9.5 hours working with the

platform. The participants rated the platform as having excellent usability according to results from the

industry standard System Usability Survey [12] participants completed. The results of this survey are shown

in Table 4.6.

4.3.12.1 Methodology:

Participants were recruited from an undergraduate, junior-level university Computer Operating

Systems course consisting of Computer Science and Computer Engineering students. Each participant was

asked to fill out an entry survey where students self rated their competency in computer engineering, computer

science, and embedded systems, then described their previous experience with platforms like Arduino.
5This study was approved by our Institutional Review Board.
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They were then given two pieces of documentation 1) a four page instructions handout on the Internet-

of-Things and the promise of batteryless operation, including a brief overview of the motivation, applications,

and difficulties in deploying and prototyping these devices, 2) a three page platform handout describing and

displaying the Flicker platform, including the individual modules and their usage, as well as basic instructions

on how to construct a device. Participants were then given Flicker hardware including the computation board,

the Kinetic, RFID, and Solar harvesters, BLE and CC1101 radio, the motion sensors, and the leaf wetness

sensor. Participants then built each of four devices (two greenhouse monitoring devices, a fitness wearable,

and a earth science enabling micro satellite) described in the instruction handout by assembling devices using

the Flicker modules and Flicker main compute board, described their justified their selection decisions to the

study supervisor.

Finally the participants took an exit survey capturing their experience. The exit survey contained the

System Usability Survey (SUS)[12], a Likert scale ten question survey administered to users for measuring

the perceived ease of use (usability and learnability) of software, hardware, phones, wearables, and websites

SUS is a well tested, standard method in industry and academia for evaluating systems, which provides a

quantitative way to demonstrate the usability of Flicker. The exit survey also asked questions about prior

knowledge, future interest with the platform, and enjoyment or distaste of the experience.

4.3.12.2 Sample:

Our 19 participants were either juniors (60%) or seniors, with 2 to 5 years of formal computing

education, and 2 to 10 years of total programming experience. Participants self-rated programming abilities,

and knowledge of systems and computer hardware as average or above average when compared to other

students at their university. Participants nearly uniformly rated their knowledge of embedded platforms as

slightly below average compared to other students and developers in industry. We note that our sample size of

19 was well above the stable size of five participants, and represents a core community (mid level computer

engineering and computer science students) we would like to engage with the Flicker platform.

4.3.12.3 Results:

Tabulating and scoring the Flicker prototyping SUS surveys for each participant gave the mean SUS

score of 84.9, with the median score at 87.5. SUS literature [7] states that a score of 70 is considered average,

with higher scores meaning higher usability. Each participant scored Flicker above average, with most in the

“excellent” usability category. Flicker SUS scores are shown in relation to other interface types in Table 4.6.
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This table shows the interface types along with their average SUS scores, the average is derived from years

of surveys, and a category had to have at least fifty surveys to be put in the table [7]. The SUS results show

that the Flicker hardware platform has usability demonstrably well above average for prototyping batteryless

Internet-of-Things devices.

In addition to the the SUS, participants were asked in the entry survey to discuss if they would use

the Flicker platform in the future and in what contexts. Nearly 95% of participants agreed or strongly agreed

that Flicker could be used to to create devices for many different applications. Nearly 90% or participants

agreed or strongly agreed they would use Flicker on a new IoT project if it was available. The same percentage

was interested in learning more about the platform and the context in the future. Every participant agreed or

strongly agreed that Flicker devices could be deployed in a real environment for short-term use. A majority

(58%) said the same about long-term use in real environments. A plurality (32%) agreed that Flicker devices

could be deployed in a safety-critical application.

4.3.12.4 Caveats and Discussion:

Our user study investigated the usability of the core part of the Flicker platform, rapidly prototyping

batteryless IoT devices by hand with one of the major expected user groups of these devices. However,

the study did not look at the usability of different parts of the Flicker workflow and toolchain, including

configuring the hardware peripherals, and writing software that runs on the device. We anticipate future work

will attempt to fill this gap. While this study is not comprehensive, it demonstrates that the hardware devices

themselves are usable, and enable a broad range of applications.

4.4 Related Work

This section outlines the related work conerning hardware and platform issues for sensors and the

Internet-of-Things.

4.4.0.1 Timekeeping

The related work for remanence based timekeeping comes from both security applications, and

advancements in low power technology.

RFID Security and Privacy: There are many applications for transiently-powered devices that require a

method to throttle the responses from a tag. The inability of intermittently powered devices to control their
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response rates has made them susceptible to various attacks. For example, an RFID tag could be easily “killed”

by exhausting all possible 32-bit “kill” keys. Such unsafe “kill” commands could be replaced with a “sleep”

command [64]; however, lack of a persistent clock that enables wake up of the tag in time has made the use

of the “sleep” command inconvenient. E-passports have been subject to brute-force attacks [4], where the

key can be discovered in real time. The attack could be slowed down if the e-passport had a trustworthy

notion of time. The minimalist model [63] offered for RFID tags assumes a scheme that enforces a low

query-response rate. This model could be implemented using our approaches. Some RFID credit cards have

used monotonically-increasing transaction counters as a proxy for time, with some cards ceasing to function

after the counter rolls over [55].

Secure Timers: To acquire a trustworthy notion of time, multiple sources of time can be used to increase

the confidence level an application has in a timer [111]. This method is not practical for RFID tags that use

passive radio communication. The same issues prevent us from using the Lamport clock and other similar

mechanisms that provide order in distributed systems [71]. This inability to acquire secure time precludes the

use of many cryptographic protocols, including timed-release cryptography [84] [110].

Ultra-low Power Clocks and Timers: With the rise of pervasive computing come a need for low-power

clocks and counters. Two example applications for low-power clocks are timestamping secure transactions and

controlling when a device should wake from a sleep state. The lack of a rechargeable power source in some

pervasive platforms requires ultra-low-power consumption. Low voltage and sub-threshold designs have been

used to minimize power consumption of digital circuits since the 1970s [123]. Circuits in wristwatches combine

analog components and small digital designs to operate at hundreds of nW [128]. A counter designed for smart

cards uses adiabatic logic to operate at 14 kHz while consuming 11 nW of power [125]. A gate-leakage-based

oscillator implements a temperature-invariant clock that operates at sub-Hz frequencies while consuming 1 pW

at 300 mV [78]. These solutions, while very low-power, still require a constant supply voltage and hence a

power source in the form of a battery or a persistently charged storage capacitor. However, embedded systems

without reliable power and exotic low-power timers may still benefit from the ability to estimate time elapsed

since power-down. Most closely related to CusTARD, is a TI-recommended technique [104] for the MSP430,

that gives a hardware only, wakeup RC-timer. The technique charges a dedicated external capacitor from

the microcontroller, then goes into a low-power sleep mode with clocks deactivated; the microcontroller is

triggered to wake up when the capacitor voltage surpasses a threshold. CusTARD generalizes this technique

to application clocks and intermittently powered, systems with unstable supply voltages. The addition of an
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ADC allows for precise measurement and fine grained time. Additionally, this work quantifies the factors

that impact measurement accuracy, and details the software and hardware methods for profiling CusTARD to

reduce the effect of these factors, and improve overall accuracy. Moreover, we motivate this method as an

enabling technology of the future Internet of Things.

4.4.0.2 Federating Energy

Currently in the literature there does not exist a federated approach that stores and manages harvested

energy in hardware. However, in this section, we review state-of-the-art designs and implementations in energy

harvesting and management for perpetual sensing systems.

Virtual battery [19] attempts to “virtualize” the available energy, allocating energy towards tasks.

Virtual battery assumes a consistent voltage, power supply, and a known battery size. It does not consider

how energy harvesting can change energy budgets. UFoP is designed to work with a volatile supply voltage,

frequent power failures, unknown energy harvesting, and therefore unknown energy budget. The essential

difference between these two systems is that virtual battery partitions available energy, while UFoP acts as a

disruption tolerant energy manager, storing incoming harvested energy and notifying the application about

changes in availability. To make a system like virtual battery work on intermittently powered devices, UFoP

must first exist to hide the energy volatility. UFoP does simplify application development for intermittently

powered devices in a similar way to virtual battery, in the sense that both systems inform the application

what energy is available, however, UFoP manages this energy in real time and handles energy replacement.

eShare [139] is another energy sharing system to balance energy supply and demand. The system’s energy

router consists of an array of ultra-capacitor with different levels of capacitances. Even though eShare can

extend the network lifetime, this system can only be useful where power wiring is feasible.

Prometheus[61] uses two storage devices, i.e., super-capacitor and lithium rechargeable battery. A

solar panel charges the super-capacitor and when its voltage is higher than a threshold, it charges the battery.

When the super-capacitor is exhausted, the battery is used. Heliomote [101] uses a solar panel and two AA

type NiMH batteries. Energy harvesting occurs when the solar panel’s output voltage is 0.7 V higher than

that of the battery. When battery’s voltage is higher than the solar panels, even though enough power may be

available on the solar panel, a node can still draw current from the battery. Everlast [118] uses a solar panel

and a super-capacitor. It charges a huge-sized super-capacitor (100 F) while tracking the Maximum Power

Point (MPP) of its solar panel. AmbiMax [95] harvests energy from multiple ambient power sources (solar and

wind) while performing Maximum Power Point Tracking (MPPT) on each of them. Each energy harvesting
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subsystem harvests energy and charges its own reservoir super-capacitors. The system is powered solely by

the ambient sources when the reservoir capacitor array has a higher voltage at its terminal than a threshold. It

draws power from the battery when the reservoir capacitor array’s terminal voltage drops below the threshold.

Other related energy harvesting systems including TwinStar [142, 144, 143], EnHANTs [43, 44],

SolarWISP [49] and the work of Yerva et al. [134]. TwinStar [142, 144, 143] is an add-on energy harvesting

and management device, which uses ultra-capacitor as the only energy storage unit. It has a dual solar panel

solution (a small boot solar panel and a big main panel to charge the ultra-capacitor). On top of the hardware,

the controller maintains a high duty cycle when the voltage is high and a low duty cycle when the voltage

is low. Energy-Harvesting Active Networked Tags (EnHANTs) [43, 44] can be attached to objects that are

traditionally not networked, such as books. The prototypes harvest indoor light energy using custom organic

solar cells, communicate and form multihop networks using ultra-low-power Ultra-Wideband Impulse Radio

(UWB-IR) transceivers. In [49], the authors add solar panel (SolarWISP) to WISP (RF-powered tag) for hybrid

energy harvesting. SolarWISP increases effective communication range threefold and quadruples read rate.

In [134], the authors propose to add a new tier in the sensor network architecture by using energy-harvesting

leaf nodes, which can communicate with battery-powered branch nodes and wall-powered trunk nodes.

Software strategies for adaptive scheduling based on the dynamic energy supply are studied in [140,

14, 68]. DEOS [140] is a dynamic energy-oriented scheduling method that dynamically adjusts the execution

of tasks based on the tasks’ energy consumption and the system’s real-time available energy. Dewdrop [14]

is a CRFID runtime that makes effective use of harvested energy. It adapts a tag’s duty cycle to match the

harvested power to the sensing and computation cost of tasks. In [68], the authors propose mathematical

models to predict the ideal battery size and the rate of availability of harvestable energy with an assumption

that the energy consumed by a node is always less than or equal to the harvested energy. Mementos [108] is a

software system that transforms general-purpose programs into interruptible computations that are protected

from frequent power losses by automatic, energy-aware state checkpointing. At compile time, Mementos

inserts function calls that estimate available energy. At run time, Mementos predicts power losses and saves

program state to nonvolatile memory.

4.4.0.3 Platforms

Flicker is the first reconfigurable hardware platform designed from the ground up for tiny, batteryless,

energy harvesting, intermittently powered sensors. While many platforms have allowed some measure of

reconfigurability, none support the constraints imposed by an intermittent power supply requiring careful
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and direct management of multiple small energy stores and timekeeping. In the sensing community there

have been a wide range of platforms, reconfigurable or not, that Flicker builds on. We describe platforms,

energy management techniques, and related work from the intermittent computing field and place Flicker in

the literature.

Reconfigurable Platforms: In both the commercial and research communities, there are many reconfigurable

platforms for sensing, and support of the Internet-of-Things. Epic[33] was one of the first sensing platforms

that enabled a degree of freedom in assembling application specific sensor node. Epic required hardware

expertise, and CAD tools to generate the final node, however, the core computation, wireless, storage, and

programming interface were all standard. TandemStack[121] and other platforms[69] provide either a common

interconnect, modular plug and play hardware, or FPGA based modules for faster prototyping and development

of application specific sensing devices Recent platform advances have focused on reconfiguring part of the

analog sensing component[112] instead of the full device, or focus on ultra low power interconnects for

millimeter scale sensing[94]. Commercial platforms like Arduino support the concept of daughter boards,

allowing for easy prototyping for the purpose of learning. Other platforms such as the Bosch IoT XDK[11],

and EnOcean[34] claim to support Internet-of-Things applications, sometimes without batteries.

Each of these platforms falls short of providing a comprehensive, intentionally designed platform for

batteryless, intermittently powered sensor prototyping in key ways. First, none of the platforms allow using

different energy harvester, or multiple energy harvesters at the same time. This is critical because of the broad

range of applications. Secondly, no platform enables reconfiguration of energy management, charging, and

interrupt priority per peripheral. Without this, platform performance suffers from lower energy harvesting

efficiency, decreased availability, higher failure rates[53]. Finally, each of these platforms ignores the critical

need for timekeeping through power failures. Each of these shortcomings is addressed by Flicker.

Batteryless Platforms: Flicker is inspired by the United Federation of Peripherals (UFoP)[53]. Flicker

generalizes the approach in UFoP by allowing changes to charge points and interrupt points, enabling retasking,

and dynamic priority, as well as reconfigurability of the hardware platform.

Batteryless platforms have been built that harvest energy from an RFID reader[115, 136], indoor

solar[85], thermoelectric energy[18], airflow[131], and power outlets[29]. These single application, single

harvester platforms are not extensible or reconfigurable, do not consider timekeeping as a first class priority, and

do not separate energy concerns to reduce failures. Energy-Harvesting Active Networked Tags (EnHANTs)[85]

can be attached to objects that are traditionally not networked, such as books. The prototypes harvest indoor
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light energy using custom organic solar cells. Campbell et al.[17] proposed an architecture for energy

harvesting in buildings based on event detection, but only allowed for a single energy harvester (indoor solar)

and did not develop a prototyping platform.

Unlike previous approaches and platforms mentioned, Flicker provides an all in one plug and play

solution to batteryless prototyping that includes energy management, timekeeping, and hardware design, in a

modular, quickly reconfigurable, extensible platform. Flicker can be applied to a huge range of future and

present applications, energy harvesting modalities, and sensing tasks.

Energy Harvesting: Previous work has characterized kinetic energy harvesting[46], developed techniques

for harvesting RFID and Solar energy[48], and even harvesting solar, thermal, and vibration energy[6]. Flicker

can harvest from multiple sources, but does so in a naive manner, giving priority to the harvester with most

voltage potential. We view these related works as complementary to Flicker, and hope to integrate these novel

multi source energy harvesting approaches into future versions of the platform.

Intermittent Computing: Other related work comes from efforts to simplify the programming, testing, and

evaluation of batteryless, intermittently powered devices . Recently, tools for debugging (EDB)[24] batteryless

programs, and emulating energy harvesting environments have been created (Ekho)[52]. These simplify

development and allow rigorous in-lab testing. Other work has tried to simplify the programming and task

management for intermittent computing[109, 81, 15]. We view this work as complementary to our own, in

fact, each of these techniques could be immediately used with Flicker.

4.5 Discussion & Future Work

Flicker enables many use cases and new applications that were previously impossible without deep

hardware knowledge, and large investments of time and money. However, the current implementation of

Flicker has some limitations, as well as tradeoffs worth discussion. We detail these in this section.

Tuning Thresholds: Just as in previous work on Federating Energy storage for tiny batteryless sensors

(FedEnergy)[53], figuring out the best voltage thresholds is difficult and imprecise. Energy environments

change, and application requirements vary; for Flicker this can become more complex, as designers now have

a choice of harvesters and peripherals. This ability to choose and set voltage thresholds for charging and

peripheral wake up interrupts without a hardware revision gives maximum flexibility to the user, but choosing

the best set of thresholds still requires careful consideration.
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The added flexibility comes at a energy and space cost. Peripherals on Flicker are larger in size

than peripherals using FedEnergy, because of the lower component costs of using static, hardware defined

thresholds. This also means that static, FedEnergy will always be lower energy overhead than Flicker. However,

the flexibility offered by Flicker is worth it, especially for developers not capable of redesigning hardware.

Additionally, Flicker software tools can generate a static FedEnergy version from the Flicker version, for long

term deployments and sensor building at scale.

Hardware Limitations: The current off the shelf non-volatile digital potentiometers have serious limitations

when used with batteryless devices like Flicker. The high current draw of non-volatile EEPROM writes, the

high start supply voltage requirement (2.7 V), the low resistance values, force some sensors and peripherals

and energy harvesters out of reach. We envision that these high voltage requirements and write costs will be

relaxed once non-volatile digital potentiometers start using FRAM instead of EEPROM.

Runtime Adaptation: Dynamic Federated Energy allows changing task charging and interrupt thresholds

at runtime, enabling adaptation of tasks to the energy environment in-situ. However, as discussed, tuning is

hard when not much is known about future energy harvesting conditions or even task schedules. Additionally,

the high momentary cost of non-volatile EEPROM writes make runtime adaptation expensive unless done

infrequently. If a simple metric could be developed for deciding when to adapt, and adaptation cost could be

lowered by advances in low power memory, runtime adaptation could become incredibly useful.

Toolchain Integration: Flicker can be used with the two main tools for working with intermittently powered

devices, Ekho, and the Energy Interference Free Debugger (EDB), without any hardware changes. Ekho

emulates energy harvesting conditions, so an Ekho device can be plugged directly into one of the harvesting

ports of the Compute Board, just as with any other device. Two Ekho devices are required to emulate multi

source harvesting. With EDB, there are some constraints. Since EDB needs access to a few I/O pins, as well as

the capacitor voltage for full functionality (breakpoints, watchpoints, and energy guards), an entire peripheral

slot must be dedicated to using EDB. In the future, we hope to create a dedicated port for using EDB so that

all three peripheral ports can be used when debugging.

4.5.1 Future Work

Flicker gives developers a powerful prototyping and design tool for batteryless, energy harvesting,

intermittently powered sensors. While powerful and complete, there are many areas we envision where Flicker

could be improved and augmented. We describe some potential avenues for future research in this section.
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Hardware improvements: Now that the baseline hardware, software, and firmware are implemented in the

Flicker ecosystem, other harvesting modalities, sensors, and application can be imagined. In the short-term,

we plan to support user interface components like buttons, vibration motors, and ultra low power displays. We

are currently implementing NFC and thermal energy harvesters to support more environments and applications.

In order to support long-term deployments with Flicker hardware, we plan to support mass storage peripherals

using microSD cards or large FRAM memory ICs. Flicker support for multi source harvesting wastes energy

opportunities as it prioritizes the energy harvester with the highest voltage potential. A more sophisticated

charge circuit to more efficiently support any configuration of harvesters is needed.

An interesting area of research would be investigating changing energy storage capacity on a pe-

ripheral level. This would allow more dynamic tasks if a single peripheral supports a large dynamic range of

tasks, from a total energy perspective. For example a radio that has a low power listen mode, and a high power

transmission mode. Supporting both these modes could be made easier with variable energy storage.

Software: The discovery, calibration, and firmware toolchain could also be streamlined to reduce the time

and configuration cost the developer must pay to get started. Certain harvesters or peripherals may only work

at certain voltage levels. If the compiler has knowledge of these levels, it can review the configuration file

supplied by the developer, as well as the peripherals on the Compute Core, and detect potential errors before

any code development or deployment is done. Treating hardware configuration errors as compiler warnings or

errors. We also imagine that certain configurations could be baked into the Flicker software for getting new

users started with the platform, decreasing the barrier to entry and increasing user comfort.

Community Building: Flicker is an open source, open hardware initiative that seeks to empower sensing

experts and non experts alike to build comprehensive batteryless sensing applications for the vision of the

Internet-of-Things. Important to our effort is developing materials that help our community, and generate

We anticipate immediate future work centered around designing documentation, writing tutorials and new

libraries, formalizing the batteryless sensing toolchain, and engaging in community building and outreach.

4.6 Conclusions

Batteryless, energy harvesting, intermittently powered sensors are an emerging class of device that

defines and enables the vision of the Internet-of-Things. Despite the importance of these devices, current

sensing platforms are application specific, lack recent advances in energy management and timekeeping, and

are limited in flexibility.

98



In this chapter we have presented Flicker, an open-source, open-hardware prototyping platform

intentionally built for batteryless, energy harvesting, intermittently powered sensing. Flicker depends on

Federated Energy and Remanence Timekeepers, two solutions presented in this chapter. With Flicker,

developers and system designers can quickly prototype devices for new applications in many fields, with

many energy harvesting modalities. Flicker is comprised of a reconfigurable hardware platform that lets

designers replace sensor, harvester, and communication peripherals at will, without hardware experience or

design abilities. Flicker hardware manages harvested energy in a novel, and dynamic way, allowing for easy

adjustment of charging thresholds and interrupt routines depending on application, energy harvester, peripheral,

or any other developer constraint. Flicker also includes software tools to streamline the prototyping process,

all the way through to deployment.

Flicker is extensible by platform and software developers who want to add new sensors, new runtime

techniques, or even new operating systems. We implemented Flicker in a small form factor for multi source

harvesting from RFID, Solar, and Kinetic energy sources. Our Flicker implementation supports a broad range

of environmental and motion sensors, and communicates through Bluetooth LE, low frequency radios, or

RFID backscatter. We believe Flicker will support the emerging batteryless sensing community and bring

about exciting new applications, and research directions.
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CHAPTER 5

MAYFLY: LANGUAGE SUPPORT FOR BATTERYLESS SENSING

Task 2Task 1

Task 3 Task 4

misd(1s)

expires(10s)

expires(1s)

collect(10)

Dataflow

collect(num)
Collect a buffer of data

expires(time)
Age of data to discard

misd(time)
Time before more data is useful.

Figure 5.1: Mayfly programs are made up of a graph of connected tasks with clearly specified timing
constraints on the data generated by each task.

Tiny intermittently powered computers can monitor objects in hard to reach places maintenance free

for decades by leaving batteries behind and surviving off energy harvested from the environment—avoiding

the cost of replacing and disposing of billions or trillions of dead batteries. However, creating programs for

these sensors is difficult. Energy harvesting is inconsistent, energy storage is scarce, and batteryless sensors

can lose power at any point in time—causing volatile memory, execution progress, and time to reset. In

response to these disruptions, developers must write unwieldy programs attempting to protect against failures,

instead of focusing on sensing goals, defining tasks, and generating useful data in a timely manner. To address

these shortcomings, we have designed Mayfly, a language and runtime for timely execution of sensing tasks

on tiny, intermittently-powered, energy harvesting sensing devices. Mayfly is a coordination language and

runtime built on top of Embedded-C that combines intermittent execution fragments to form coherent sensing

schedules—maintaining forward progress, data consistency, data freshness, and data utility across multiple

power failures. Mayfly makes the passing of time explicit, binding data to the time it was gathered, and

keeping track of data and time through power failures. We evaluated Mayfly against state-of-the art systems,

conducted a user study, and implemented multiple real world applications across application domains in

inventory tracking, and wearables.
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An intermittently-powered sensor may fail at any time, between any two lines of code, with little

warning, for unpredictable lengths of time. Time can be difficult to measure, and execution times can be

difficult to predict. Programs may lose data, corrupt data, or fail to make forward progress on long-running

computations. Forward progress can be preserved, if applications checkpoint their state to nonvolatile memory

(e.g.,Flash or FRAM) before a failure [107]. With programmer defined memory fences [82] programmers can

keep non-volatile data structures consistent. Breaking programs into tasks and putting global data in channels,

can help lighten the developer’s cognitive load [23]. Developers can even use physical hardware properties to

estimate how long a device spends without power [102]; however, responding to dramatically unpredictable

execution delays remains a daunting challenge for developer, in spite of these advances.

As a sensor executes over time, data age, priorities change, and opportunities come and go. Sensor

data, once urgent, may only be useful for a few minutes or even seconds. When data expire after long outages,

partial computations may need to be discarded and possibly restarted. After short outages, an application may

pick-up where it left off. On power-up, an application’s priorities may have changed. A time sensitive task

may take precedence over a work-in-progress. A task that has repeatedly failed to complete (due to expired

data), might be swapped out for a low-power alternative.

Each of these cases are easy to understand, and easy to handle with traditional battery-powered

sensors, however, each of these cases are difficult to implement with today’s languages and runtime tools on

intermittently powered, batteryless sensors. Common imperative programming languages, like C, ignore time

and how it relates to data. Traditionally, this has not mattered as programmers expect tasks to run quickly and

sequential instructions to execute close together in time. An intermittent C program that discards expired data,

schedules tasks appropriately in spite of power failures, or adapts to changing energy conditions will invariably

be full of explicit time checks and cluttered with extensive branching logic.

This chapter argues that 1) those who use existing languages to program intermittently-powered

devices are doomed to frustration and complication, 2) those complications prevent capable programmers from

creating compelling, sophisticated intermittent applications, and 3) programming for intermittent power can

(and should) be simple. We call on the research community to rethink how we write programs for intermittent

devices, and we specifically address the issue of time as a key to enabling sophisticated applications to

intermittent batteryless sensors.

In the following sections, we describe why it is difficult to program intermittent sensors and introduce

the Mayfly1 Language and Runtime. The Mayfly language is a declarative, graph based programming language
1Mayfly is named after the short-lived aquatic insect.
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that enables developers to focus on application policy, and sensing goals, and timing of sensing tasks while

reducing the cognitive burden of intermittent programming (shown in Figure 5.1. The Mayfly runtime is a task

scheduler that maintains temporal aspects of data automatically across power failures. We evaluate Mayfly

against state-of-the-art systems and explore the language in the context of real-world applications in active

RFID based inventory tracking, and activity recognition on wearables. Additionally, we present the results

of a user study comparing the utility of our approach and the standard approach to programming batteryless

sensors.

5.1 Time and Data for Batteryless Sensing

Despite the promise, batteryless sensors are difficult to program, debug, and deploy, because they

lose power frequently and often unpredictably. Each power failure resets the device’s volatile memory, stack

pointer, registers, and sense of time. Once enough energy is harvested to turn back on, the sensor returns

control to the start of the program (main). This is shown in Figure 5.2. This style of execution is shown (from

programmers perspective) in Figure 5.3, where a source program is executed using both a continuous power

supply and an intermittent power supply. With frequent failures and unreliable power, programming becomes

a best-effort probabilistic game. As energy becomes available, developers piece together execution fragments

hoping to satisfy developer constraints. This intermittent computing model causes developers to struggle

with what are generally simple tasks—like timestamping data, ensuring that data structures remain consistent,

and maintaining forward progress on long-running computations.

When a power failure is approaching, developers can preserve forward progress with checkpointing —

saving some [107, 130] or all [5] of the program’s state to nonvolatile memory (like Flash or FRAM).

Checkpointing, as shown in Figure 5.3, allows programs to correctly continue where they left off after the

last power failure. However, checkpointing is costly in energy and memory, as demonstrated in Chain [23].

Chain proposes that developers divide programs into discrete tasks that share data (kept consistent by Chain)

through channels, eliminating checkpointing cost. Each of these methods work well in stringing together

execution fragments into cohesive programs, enabling long running computation. However, each of these

methods ignores the fact that an application’s success or failure often depends on when tasks are executed

and when data are collected, processed, and communicated. Application designers often understand these

constraints (albeit imperfectly), but lack effective tools for communicating them in code.
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Figure 5.2: Voltage supply of a WISP, powered by RFID reader gathering acceleration readings across
power failures for activity recognition. Data is gathered at a variable sample rate depending on the
available energy. This volatility may negatively influence quality of applications and reduce accurate
recognition.

main()
  while(1)
    t = temp()
    l = light()
    m = moist()
    w=wet(t,l,m)
    send(w)
    sleep(1)
  

<continued>

···

NV int t, l, m, w
main() {
  while(1)
    t = temp()
    l = light()
    m = moist()
    w=wet(t,l,m)
    send(w)
    sleep(1)
}

(a)

Source

(b)

Continuous 
main()
  while(1)
    t = temp()
    l = light()

    
    m = moist()
    w=wet(t,l,m)

(c)

Intermittent

···
elapsed 
time=?

Figure 5.3: Execution of a greenhouse monitoring program (a). The expected continuous execution
(b) is shown versus the intermittent execution (c) caused by volatile energy harvesting environments.
Forward progress is preserved—however if enough time has elapsed between lines of code, it may not
be worth continuing with execution as intermediate results may not be relevant.

5.1.1 Complexity of Timekeeping

With remanence-based timing techniques [102, 54], batteryless devices can measure time across

power outages; however, reasoning about the impact of unexpected delays in intermittent software is a

complicated and error-prone process. Nearly all sensing applications have temporal requirements, and whether

we are monitoring a user’s heart rate or a plant’s water needs, the data we gather is often only useful when

those requirements are met. A batteryless program’s progress is difficult to predict, and current programming
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models ignore the relationship between data and time, forcing programmers to deal with the added complexity.

As developers add explicit checks that consider data expirations, sensing rates, and temporal signal properties,

their programs become difficult to maintain, debug, and understand. We discuss the specific issues below:

Real data often ages. If a sensor gathers data, dies, then turns back on, the time before that data is deliv-

ered (and can be used) might be seconds, minutes, or even hours. If data is used to control a process (plant

watering in a greenhouse) or report in-the-moment information (like the user’s current heartrate), data gathered

may not be useful if they are too old. After a power outage, applications may continue processing fresh data

but save energy and time by discarding incomplete results derived from old data. One task may, of course,

depend on another, and preserving data freshness requires time stamp checks throughout an application’s code.

This is shown in Figure 5.4—an accelerometer based wearable activity recognition program that collects data,

processes that data to identify an activity, then sends its results over the radio. Because of long power failures,

that data has aged significantly and may or may not not be useful to the application. Either way, it is not

specified explicitly in the program. Compounding the problem, the data gathered in collect is mixed sampling

rate with an untrustworthy clock—untrustworthy because the device may lose power before recording the time

and assigning that time to the data point, mixed sampling rate because power outages may affect the sampling

rate. Using timing information to inform sensing allows batteryless sensors to use energy more effectively,

sense only when they need to, and not transmit or process old data. However, how this timing information

is used is currently application- and developer-dependent because timing information is implicit in current

programming models.

Real applications often tolerate temporal variation. A pedometer’s step-counting algorithm may call for

30 accelerometer samples collected at 10 Hz. Depending on how it detects steps, that same algorithm may give

accurate results as long as the 30 readings fall within a 4 s window and as long as no two readings are taken

within 80 ms of each other. These relaxed requirements will be much easier to satisfy with frequently-failing

hardware, but more complicated for application designers to implement. Meeting stringent timing requirements

is difficult in batteryless sensors that exist in unpredictable energy situations.

Intermittent data complicates programs. When devices are tethered or battery-powered and power supplies

are stable, data collection and management is difficult, but straightforward. When devices operate intermittently,

programmers must add code to track when data are generated, when data have expired, and when it’s

advantageous to gather more data. Writing code that knows when to discard the whole, or part of a buffer of

data, that properly timestamps data and checkpoints execution is tedious. Tedious programming tasks lead to
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NV accel[N];
NV res,ndx=0;
main() {
 while(ndx < N) {
   accel[ndx++] = 
      sample_adc();
 }
 
 transform(accel);
 featurize(accel);
 classify(accel);
 res=stats(accel);
 
 bcast(res);
}

  while(ndx < N) {
   accel[ndx++]= 
   sample_adc();

  transform(accel);
  featurize(accel);
  classify(accel);
  res=stats(accel);

REBOOT
time elapsed = 14s

Source Code Intermittent Execution

  bcast(res);
t = age of  oldest sample 
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nd

REBOOT
time elapsed = 10s

t=5s

t=19s

t=29s

t=19s

Figure 5.4: On left, source code of wearable activity recognition program, labeled into tasks collect,
compute, send. On the right, a possible execution of the activity recognition shows how data ages
through power failures. If the system that uses this data makes data-driven decisions every 10s, the 29
second old data may not be worth transmitting. Sensing data becomes mixed sample rate, and clocks
become unreliable because of intermittent execution and variable length outages.

sloppy implementations, which leads to bugs in deployment.

Languages assume continuity. When using current programming models, programmers assume that sequen-

tial instructions will execute one after another with effectively zero time between them. With intermittent

execution, the actual time between two instructions (or tasks, for languages like Chain) could be microseconds,

seconds, minutes, hours, or even days because of unpredictable placement of power failures. If the time

between failure, and resuming execution (the time between the device losing power, checkpointing, and then

resuming once power is restored) is almost zero, then most likely continuing from where execution left off

is best. However, when longer delays occur, intermediate execution and results might not be useful going

forward. The programmer’s intent is not explicit—as regards time—with current programming models, so

the runtime has to make assumptions. Current languages ignore the timeliness property of data caused by

intermittent execution, leaving the developer with few ways to strongly and safely express time constraints of

data.

Tedium leads to errors. With existing languages, developers can use remanence timekeeping methods [102,

54] to timestamp data. While this considers the problem of time with intermittently powered devices, it

still causes a cognitive and tedious burden on the developer. Short sensing programs that perform simple

sensing tasks quickly explode with timing and consistency checks, recovery methods, data collection, and
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age management heuristics. These heuristics are the same every time: the developer is going to re-implement

specific time checks for similar situations in every program they write. Worse, this is a painful implementation

process that is difficult to debug, maintain, and verify.

A New Approach: Due to the limitations mentioned in this section, we and others have struggled to build

interesting batteryless applications. In answer, the next section describes Mayfly, a task based language that

does away with checkpointing and integrates time management as a first order concern, designed specifically

to help designers create sophisticated batteryless sensing applications. With Mayfly, developers can coordinate

time-sensitive data and tasks without getting lost in checkpoints, memory fences, and timekeeping. Mayfly

automatically takes care of common issues like data expiration and time sensitive data collection. Additionally,

Mayfly handles computational dependencies and ensures they are co-located in time despite interruption by

power failures.

5.2 Mayfly Language & Runtime

We developed the Mayfly language and runtime to enable developers to easily reason about the

relationship between time and sensor data in intermittently-powered, batteryless sensing applications. Mayfly

is designed to simplify or eliminate the time management and intermittent programming challenges described

in Section 5.1 in three key ways:

1. Simplify Time Management: Developers should not concern themselves with recording and managing

timestamps and dealing with timing uncertainty at a low level. In Mayfly programs, the developer can

focus on the high level application sensing goals instead of low level, error prone, timekeeping drivers.

2. Enable Dataflow Control: Gathering, computing, and transmitting accurate and timely data is a core

function of all sensors. Despite intermittent execution, Mayfly must provide the ability to coordinate

dataflow in spite of power failures and unpredictable energy environments.

3. Provide a Usable Programming Model: Language and tools are useless if no one can use them. Mayfly

focuses on (and evaluates) providing a high level of usability, reducing distractions and enhancing

developer understanding of program execution and purpose.

The Mayfly language simplifies the development of batteryless sensing applications—enabling pro-

grammers to confidently write intermittent programs. The Mayfly runtime efficiently schedules programmer

defined tasks in an unstable energy environment, carefully timekeeping, managing relevant data and check-
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LIST OF LISTINGS 5.1: A Mayfly program for greenhouse monitoring

1 // Optional global policies
2 {: scheduling_policy(FINISH_FLOW); :}
3

4 // Task definitions
5 temp() -> (int temperature)
6 light() -> (int light)
7 moist() -> (int moisture)
8 wet (int tmp, int light, int mstr) -> (int wet)
9 send (int[] leaf_wetness) -> ()

10

11 // Data flows
12 temp -> wet -> send
13 light -> wet
14 moist -> wet
15

16 // Edge constraints
17 light -> wet {expires(10s)}
18 temp -> wet {expires(1m)}
19 moist -> wet {expires(2m)}
20 wet -> send {expires(4m), collect(10)}

TempLight

Wet Send
expires(20m)

expires(10s)

expires(1m)

Moist

collect(10)

expires(2m)

Figure 5.5: This figure shows the three constructs Mayfly needs in a program; task definitions, flow
definitions, and constraints. Also shown are optional policy information.

pointing progress. Together, the Mayfly language and runtime support emerging batteryless applications for

the Internet-of-Things and beyond.

5.2.1 Language Overview

A Mayfly program is a directed data-flow graph; where nodes are tasks and edges define the flow of

data and their associated temporal constraints. Tasks are connected by Flows, with data flowing through the

graph as tasks execute. Edges are annotated with Constraints that describe how to treat data as it flows through

the task graph. Each set of connected tasks is a Task Graph. The Task Graph is executed by the runtime

opportunistically, one task at a time, from the top-most tasks (the tasks with no inputs) to the bottom-most

tasks (the tasks with no outputs). Representing a program as a task graph allows developers to quickly and
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clearly see the structure and purpose of an intermittent program without having to worry about the effects of

intermittent execution. From these logical constructs each program is composed of three mandatory syntactic

constructs, 1) task definitions, 2) flows, and 3) constraints, and optional policy information, all detailed below

and shown in Figure 5.5 and Listing 5.1.

5.2.2 Tasks and Flows

Tasks encapsulate a single purpose; they are a logical grouping of Embedded-C code that accomplishes

a single objective—for example, collecting temperature readings, processing a buffer of data, or interfacing

with a radio to send a packet. These tasks correspond to C functions written by the programmer (possibly

taken from an existing code base), and can involve computation, use of external sensors, or communication. A

task’s inputs are defined by its incoming edges, and a task’s outputs are defined by its outgoing edges.

Tasks are treated as atomic units of computation, and must be executed without being interrupted

by a power failure. If a tasks execution is interrupted, the runtime will rollback any intermediate results,

and try to execute the task again at the next available opportunity. After a task completes, its results are

stored in nonvolatile memory, where they become available as inputs to other tasks. In this way, Mayfly

guarantees that forward progress will be preserved, with the caveat that forward progress is only useful as

long as timing requirements on data (specified by the programmer) are met. Figure 5.4 shows how a wearable

activity recognition program (in C) could be divided into the tasks collect, compute and send. These

tasks could be further subdivided if developers expect low energy availability in deployment causing many

interruptions. For instance collect, could be broken into transform, featurize, classify, and

stats. Tasks are specified using the following syntax in a Mayfly program. These task definitions precisely

define the data types and sizes each task expects as input, and the data the task generates.

1 // Task definition

2 task_name (TYPE input, ...) -> (TYPE output, ...)

Flows give structure to the task graph, defining the relationship between tasks. Developers connect the tasks

to each other, giving explicit dependency information to the runtime. This also has the effect of making

program execution explicit, despite the frequent power failures batteryless devices go through. This is shown

in the first example, in the code listing below. Flows enable conditional execution between tasks, through

the use of predicates between tasks. With predicates, a programmer can adjust program behavior in response

to intermediate results, environmental input, or even user actions. The second example below shows how a
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predicate flow can be used to divert information to either of two actions in a wearable activity recognition

program. The compute task has two outputs, a measure of the classification error, and the identifier of

the activity recognized (in this example, WALK or RUN). The predicate states that if the compute task

generates a RUN output, then route data to the send task for broadcasting the information to a basestation or

the users phone. Otherwise route to the log task, to record the data locally.

1 // (1) Flow for activity recognition

2 collect -> compute -> send

3

4 // (2) Predicate

5 // compute -> (int error, int activity)

6 collect -> compute[_,RUN] -> send

7 compute[_,WALK] -> log

Policy information for the program is optionally given at the top of the program. Policy settings allow

developers to specify global attributes of the program itself, select runtime heuristics, and pass on hints to the

runtime about what the developer expects of the environment and the application. This policy could define the

scheduling method to use, choosing between a scheduler that prioritizes moving new data through a graph, or

one that focuses on finishing the processing of older data through the graph. Policy can also change which

metric to use for determining priority, or which flow to prioritize.

1 // Program policies

2 {: scheduling_policy(FINISH_FLOW); :}

Tasks, and Flows (with some help from policy) guarantee that developers will make forward progress in a

program (assuming energy is available to complete individual tasks). Additionally this structure lets developers

quickly and easily understand the logical execution and purpose of a Mayfly program, while providing

a structure which can be annotated to explicitly define timing related constraints for data generation and

processing.

5.2.3 Timely Data Constraints

Constraints describe how data is treated as it flows through program tasks (the Task Graph). Con-

straints acknowledge that not all data is equal, and in fact the value often depends on the time the data

was gathered, or how much repetitive data is available in the same timespan. Constraints are provided by

annotating the edges between tasks with three possible constraints: expires, minimum-inter-sample-delay
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expires

misd

time
data sample

Figure 5.6: This shows how the constraints expires and minimum-inter-sample-delay (or
misd) work together, letting the runtime know exactly which data is most valuable to gather and
when.

(MISD), and collect. By using these three constraints, developers can specify what valued data means to their

final application.

Expires tells the runtime how long data can sit on an edge before it loses value to the application. In

programs with a stable power, processing is usually predictable, and developers take appropriate design-time

measures to ensure that data is delivered while it is fresh, instead of explicitly checking timestamps.

In intermittent devices, as start-to-end processing times vary more dramatically, timestamp checking

becomes both essential to efficient operation and tedious, requiring time checks at least after every reboot. In

checkpointing systems, this timestamp gathering is also prone to failure as it is easily interrupted, meaning

that data may appear to be timely, but in fact has an errant timestamp.

MISD, or minimum-inter-sample-delay throttles the data rate so that the runtime does not generate more data

than needed by the application. When power is reliable, developers use timers to regulate sampling rates—an

approach ill suited to intermittent operation (reboots reset timers). Instead, Mayfly developers explicitly tell

the runtime how long after generation before more data is useful. MISD is a runtime hint from the developer

that makes data collection more efficient. MISD acknowledges that gathering new data that has been specified

by the developer as useless, is counterproductive and wastes energy. The best thing to do is wait (put the

processor in sleep mode) till new data is useful again (according to the developer), or enough energy has been

gathered to execute a different task. This mechanism is shown alongside expires in Figure 5.6.

Collect takes the tediousness of gathering a set of data off the developer, and onto the runtime. Rather than

look at a single data point, many sensing applications collect multiple data and perform operations on them.

With reliably-powered sensors, getting a buffer of data for processing, that is all fresh, and was gathered at a

consistent sample rate is trivial. When execution becomes fragmented creating these buffers gets difficult, as

now the programmer must replace expired samples in addition to all other sensing tasks. Memory is limited.

So, buffers should not contain redundant data (data that violates a MISD constraint) or data points gathered
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too frequently or too sparsely. Both scenarios provide data of little value to the application. The collect

constraint allows developers to simply gather useful windows of data, coming out of a task.

These three constrains provide the core ways developers interact with sensing data inside their

programs. These constraints provide a way for developers to declare what data is most valuable in a structured

way, that masks the intermittent operation of batteryless sensors. We anticipate there will be more constraints

added (or current constraints extended) as the language develops and new needs arise.

5.2.4 Ancillary Language Details

5.2.4.1 Multiple Task Graphs

Mayfly programs can be made up of multiple task graphs, each of which comprises multiple dependent

tasks. These can all be defined in the same program. With multiple task graphs, developers can describe

different sequences of actions to take during operation, under differing parameters. Each task graph has an

implicit priority assigned to it, based on the ordering of the task graphs flows in the input file containing the

source code. This means that the highest priority task graph will be checked first for any possible tasks to

execute, if non are found, the next highest priority task graph is checked. To ensure that low priority task

graphs are executed, developers need to apply misd constraints to the highest priority task graph, to leave

time and energy for the other tasks graphs.

5.2.4.2 Memory Model

Mayfly prescribes a task-local memory model (similar to Chain[23]) Mayfly programs have no global

memory that is accessible, or writable, from individual tasks. Tasks are only allowed to use volatile memory

(local variables) internal to the task itself, as well as the read only inputs, which are explicitly defined by the

program. Tasks generate output, which is accessible on the edges only once the task has completed. Since tasks

cannot alter system or non-volatile memory, tasks will avoid consistency issues associated with mixed memory

volatility systems. This task-local memory model also simplifies the programmer interface, as programmers

only need concern themselves with the input and outputs of the task.

5.2.4.3 Hardware Interactions

The task-local memory model removes the possibility of memory inconsistency for the computational

device (usually a microcontroller). However the memory and initialization state of the connected hardware
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peripherals such as sensors, radios, and storage devices, can cause problems. For example, any interactions

a task has with external components will change those components in a non-deterministic way from the

perspective of the next task to execute. To mitigate this issue, Mayfly developers must write tasks that build up,

and break down hardware state, or simply reset hardware peripherals before use to reduce consistency errors.

5.3 Implementation

This section describes the Mayfly Runtime and implementation. We also describe the software and

hardware used to evaluate, and deploy Mayfly, as well as applications developed with Mayfly. All software

and hardware designs are freely available at our website.

5.3.1 Code Generation

Writing a new language from scratch is unnecessary, and potentially hurts adoption by the community.

The Mayfly language is instead a coordination language built on Embedded-C, meaning developers can reuse

common libraries and functions.

The Mayfly compiler goes through multiple phases to create a device specific firmware from a Mayfly

program and user libraries. The architecture of the compiler is shown in Figure 5.7. The compiler is written

in Java, the Java CUP library is used as a parser generator, with JFlex as scanner generator. A templating

system based on Mustache templates is used to construct the Mayfly runtime instance for each program. Using

templates makes porting to other processors and platforms easier. The compilation phases are described below.

Parse and Validate Task Graph: The Mayfly program code is parsed, and checked for syntax errors. The

compiler checks that inputs of tasks match edge data, and that constraints, tasks, and policies are all defined.

After validation, graphs of tasks are constructed.

Graph Annotation and Analysis: In this stage, task graphs are annotated with the constraints and policies

given by the developer, and graph structure is checked that no cycles exist. These constraints are analyzed for

logic errors or potential problems: for example, if the expiration of a source node is too short, or if an edge is

trying to gather a prohibitive amount of data for the time period..

Runtime Generation: Once task graphs are validated, annotated, and analyzed, code generation can begin.

Task and edge data structures are created from the Task Graph(s), and written to the runtime templates. This

approach allows for flexibility in scheduling algorithms. At the end of this stage, a complete Embedded-C
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Figure 5.7: Architecture of the Mayfly compiler, showing the steps in producing the firmware image
for a given Mayfly enabled, batteryless sensing device.

program is generated.

Compile, Link, Install: The Embedded-C runtime is compiled, along with user code, hardware headers, and

runtime libraries. This is all linked into a binary, and installed onto the batteryless sensing device.

5.3.2 Mayfly Runtime

The Mayfly Runtime is generated from the developers program and the language specification by the

Mayfly compiler. The generated Embedded-C runtime is a statically defined schedule of tasks, with energy

management, timekeeping, and checkpointing built-in. The schedule has to be static because of the extremely

constrained resources of these devices. Energy is limited, so any energy used to execute runtime functions is

taking away from potential user and sensing tasks. The Mayfly Runtime keeps track of three things through

power failures: 1 ) local time, 2 ) the execution states in the progress thought the task graph(s), and 3 ) the data

in each edge of each task graph. Using these three things, Mayfly’s Runtime can execute tasks across power
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LIST OF LISTINGS 5.2: Mayfly runtime operation pseudocode

1 main() {
2 time = get_time() // from RTC
3 if(timekeeper_reset())
4 rollback_full() // Rollback all data
5

6 if(!state.atomic_lock)
7 rollback_one() // Rollback last task
8

9 while(1)
10 t = next_task()
11 if(constraints_satisfied(t))
12 state.atomic_lock = FALSE
13 execute(t, input, output)
14 state.atomic_lock = TRUE
15 // User task ran
16 // Changes committed to task graph
17

18 if(t==NULL)
19 reset(t)
20 sleep() // Nothing todo
21 }

failures, while respecting temporal properties of sensor data. The runtime relies on architectural support in

hardware for timekeeping and checkpointing to NVRAM, coupled with software techniques to persist tasks

through failures.

Runtime Operation: Pseudo-code for the runtime operation is shown in Listing 5.2. After rebooting from a

power failure (Line 1), the Mayfly runtime does three things (Lines 2-7), get the time, check if the external

remanence timekeeper was reset, and check if the last task was completed. First, the Mayfly runtime updates

the local system time using the external Remanence Timekeeper[54]. This timekeeper is an external capacitor

or real-time-clock (RTC) with its own dedicated energy store—a small 1 µF capacitor. The timekeeper draws

orders of magnitude less current than the microcontroller (MCU) while maintaining the clock, drawing less

than 20 nA. This timekeeper might have reset if the time between a power outage and reboot was too long,

in which case the runtime will rollback all time sensitive data as now it has no guarantees on the age of any

previous data collected. This is preferable to continuing to process on useless (according to the developer

constraints) data. The final check the runtime performs before executing tasks is determining if the last task

executed was able to complete, and set the lock. If the lock is not set, then the tasks outgoing edges are rolled

back, and the tasks is available to re-execute.

After successful recovery from a power failure, Mayfly begins looking for something to do. Tasks are

checked in priority order, held in a static list defined at compile time. Task constraints are checked and if the

constraints are satisfied, the task is executed. These constraints include all those listed in Section 5.3.2. Before
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the task is executed, the lock is released, and the output values from the incoming edges are placed into the

task. Pointers to a temporary output buffer are also put into the task to receive any generated data. After a

successful task execution, data is moved to the edges, the lock is set, and the program state is updated. This

continues until either a power failure or a low voltage scenario, where nothing can be done, at which point the

runtime puts the device to sleep until more energy becomes available (or the device dies), or a task becomes

ready to be executed.

Data Management: Mayfly keeps all edge data in FRAM. FRAM is a low power non-volatile memory

(NVRAM) with write speeds that allow it to be treated as RAM, enabling very fast checkpoints. Edge data is

double buffered, so that old data is not overwritten by new data until the lock is set. This ensures that at any

point, the execution can rollback to the previous task safely. Each edge also stores timestamps for each piece

of data, array information for the collect constraint, and the last time the tasks was used to generate data

for servicing the misd constraint.

Timekeeping: The runtime keeps track of time across power failures by using Remanence Timekeepers[54].

When energy runs out, the microcontroller, volatile RAM, and all clocks are reset. This means that any

previous timestamps must be updated when power is regained. On each power-up, the runtime reads the

timekeeper using either an ADC or the SPI bus (depending on the platform). After a read, the runtime charges

a dedicated external small capacitor that maintains the Remanence Timekeeper. The key insight is that the

remanence timekeeper will draw an order of magnitude less power than the the main sensing platform, and the

draw is not dependent on sensor behavior. This means that it can maintain a granular sense of time throughout

power failures.

5.3.3 Portability and Extensibility

The Mayfly runtime is intentionally made to be portable to other platforms, and easily extended.

This will be crucial as platforms change often, and new technology renders hardware obsolete. The language

parsing steps of the compiler are separate from the output step, and can be changed simply by editing template

files, which are in the common Mustache format [79]. Mayfly programs can be compiled to another language

besides C using the templating framework. These same templates can be modified to update, or change the

scheduling mechanism. In this way emerging platform developers for batteryless-IoT devices can make use of

the Mayfly language and runtime with only minor changes.
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5.3.4 Applications

We implemented two complete applications with Mayfly. These applications demonstrate real prob-

lems that batteryless, energy harvesting systems can solve. Each application has time sensitive data generated

or transformed by tasks that vary in their time and energy requirements. Each application encompasses multiple

task nodes, and uses multiple Mayfly constraints to specify the program. These applications are variants of

those presented in Chain [23], developed for the WISP [114] Computational RFID platform. We rewrite these

applications using Mayfly, using with timing information gathered from domain insights that allow Mayfly to

optimize data collection. We also cast these applications in the broader scope of energy harvesting platforms,

beyond just RFID powered, in-place sensing, to extend to wearable computing and other domains.

Cold-Chain Equipment Monitoring (CEM): CEM systems continuously monitor temperature controlled

environments, such as vaccine and biological sample storage. Temperature logging also has application in

smart home technology and HVAC monitoring for commercial and industrial buildings. These logs could be

read off the device at a later time using an RFID reader, physical access, or by broadcasting to a basestation.

The CEM system implemented in Mayfly can safely assume that temperature will not change rapidly, meaning

that the data generation rate can be throttled using the MISD constraint. Since the temperature is being logged,

each data value has no expiration, but is tagged with a timestamp that persists through reboots.

Exercise Recognition: The health and wellness of a large aging population is a major concern in the USA.

Exercises for elderly people, especially overweight elderly people, are often prescribed by doctors. Hip

exercises are especially important, often including the sit to stand exercise, which helps prevent disability.

Doctors do not have any data or confirmation that elderly patients are performing these exercises however, and

if they did, better outcomes and decisions could be made to benefit the patient. Using a wrist-worn, batteryless

wearable device equipped with an accelerometer is one way that these exercises could be tracked. By discarding

the batteries, the wearable smaller, easier to wear, and does not have to be taken off to charge, which presents

opportunities for losing the device. Activity Recognition (AR) can use the on-board accelerometer to determine

sitting and standing states to tally exercise completion based on prior training. AR samples a sliding window,

filters out noisy values, then extracts features and classifies as standing up or sitting down. Mayfly can take

advantage of programmer timing knowledge to discern when old accelerometer data has expired, and is

therefore not worth processing, or if it is too early after a standing or sitting action to gather new data (since it

is physically impossible to sit or stand in a few milliseconds).
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5.4 Evaluation

We evaluate Mayfly by examining the benefits of timekeeping when faced with intermittent power,

in comparison to untimely languages. We make comparisons to other intermittent languages in terms of

memory overhead, data utility, and usability, for a variety of real world applications outlined in Section 5.3.

We introduce our experimental setup and metrics in Section 5.4.1, then outline the results of our experiments.

We present execution overheads of the scheduler, as well as initialization costs of the runtime in Section 5.4.5.

Finally, we investigate the usability of Mayfly and traditional Embedded-C for programming intermittent

devices in a user study in Section 5.4.6.

5.4.1 Experimental Setup

Designing experiments for runtime systems for intermittent devices must be done with consideration

of energy harvesting environment, leakage, measurement overhead, and available platforms. Because of low

energy storage, measurement techniques must be non-invasive and energy free. In this section we describe the

experimental design we use to compare each state-of-the-art runtime system with Mayfly.

Test Devices: The WISP [114] and Moo [136] are, to our knowledge, the only hardware platforms available

for batteryless sensing. For evaluating Mayfly, we use a WISP augmented with a custom printed circuit board

(PCB) that attaches to the connector, providing an RTC as remanence timekeeper for keeping time across

power failures.

Runtime Systems: We compare implementations programs in Mayfly to implementations of the same or

similar applications for DINO[81], and Chain[23]. The Chain artifact provided implementations of the CEM

and activity recognition (exercise recognition) application in DINO, and Chain. In our experiments, we

compare results for each application on every runtime system.

Measurement Setup: We used a number of tools to gather application success metrics, sensor data, and

execution statistics without interfering with the execution of the devices under test. A Saleae logic analyzer

and an Energy-Interference-Free-Debugger (EDB) [24] were used to record application success metrics by

snooping a communication bus on the test platforms. Python scripts were used to coordinate the data collection,

and start or stop test runs. An Impinj RF2500 Speedway RFID Reader was used as the energy source.
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Figure 5.9: Mayfly discards, and replaces data (as specified by the developer) in its activity recognition.
This shows the acceleration sample gathered in an actual execution of the Mayfly Exercise Recognition
app.

5.4.2 Data Utility

Mayfly takes advantage of developer application knowledge and insights to deliver the same or better

quality of service and data utility while doing less work. The exercise recognition application described

in Section 5.3 was run multiple times on the RFID reader, with the Chain and Mayfly intermittent runtime

systems. The WISP that the exercise recognition program was running on was placed 25 cm away from the

mini guardrail antenna connected to the Impinj RFID reader. At that distance, harvestable energy is scarce

and longer outages on the order of seconds are frequent. Figure 5.8 shows a representative trace of the Chain

Exercise recognition app running through this experiment. Figure 5.9 shows a representative trace of the

Mayfly Exercise recognition app running through this experiment.

Not all data are equal in determining the Quality of Service (QoS) of an application. These figures

show that preserving forward progress without regard for elapsed time of power failures can hurt the quality of
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Table 5.1: Non-volatile memory usage (KB) of each app and system.

App. Mayfly Chain DINO

ER 2.9KB 2.5KB 4.2KB
CEM 3.1KB 4.1KB 5.8KB

service. Throughput does not linearly relate to QoS, which means that throughput can be traded off for energy

without reducing quality of service for applications that have temporal data constraints. Figure 5.8 shows that

Chain (and any other untimely runtime) will process old, often useless data, wasting cycles and energy. As

shown in Figure 5.9, Mayfly discards old data using its external timekeeper, and only processes fresh data.

5.4.3 Memory Usage

Memory usage is important in embedded device in general, and batteryless sensors especially. These

ultra constrained devices can’t hold much data (the MSP430FR5969 on the WISP has 64KB of FRAM, 2KB

of SRAM) so must be intelligent in their data management. We characterized the amount of memory used

by each application implemented on each runtime. The memory usage of each application and its runtime

implementation is shown in Table 5.1. Mayfly benefits from the absence of checkpointing, since developers

specify which data is important, Mayfly only needs to store those data, not the entire stack. A mirrored

memory space is not required, meaning that Mayfly will always have comparable or better memory usage to

the Mementos and DINO approach. None of the approaches use a significant amount of memory in relation to

the total memory on the WISP device. Mayfly benefits beyond other approaches in some cases since timing

constraints controls the amount of data gathered and stored. Mayfly can get rid of excess data (that may have

expired, or not be worth gathering) based on user defined constraints like expires and MISD.

A significant portion of the memory footprint of the Mayfly runtime is from libraries and platform

initialization routines. Table 5.2 shows the breakdown of Mayfly runtime memory. Most of the memory

footprint comes from the generated scheduler. Constraints, and task data are directly created from user

specified constructs. The scheduler tradeoff a higher memory footprint in order to be more efficient and easier

for the compiler to optimize. We anticipate that further improvements to the scheduler will reduce the memory

footprint.
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Table 5.2: Mayfly memory breakdown per application.

App. Task data Scheduler Constraints

ER 406b 884b 476b
CEM 270b 1128b 636b

5.4.4 Developer Effort and Usability

For many applications, Mayfly is easier to program with than other systems, because of the (1)

reduced number of language constructs that must be hand coded, and (2) the top-down, simple to visualize

development approach. Table 5.3 shows the difference in lines of code required to develope an app in

Chain and Mayfly. Mayfly was specifically designed to make the job of writing time aware applications for

intermittently powered sensors easier. As we demonstrate in our user study (Section 5.4.6), developers have

a hard time with understanding intermittent programming when using Embedded-C, even with a reliable,

external timekeeper. Mayfly programs are designed top-down. Developers define the input and outputs of

tasks, then make connections between tasks, then finally assign constraints to the tasks or edges. This is

assisted by a visualization tool that shows a graphical representation of the Mayfly program on compilation

that looks similar to Figure 5.5. Once the Mayfly program has been successfully created, developers only

need to include a separate source file with the task definitions implemented. These function definitions can

be ported from existing code, use existing libraries, and are written in Embedded-C like every other runtime

system we evaluated.

Mayfly has the advantage over other runtime systems by separating the global goals (the Mayfly

program defining task graphs) from the actual implementation of tasks in Embedded-C. Other systems join

the two; Chain for example, requires programmers to explicitly specify memory channels and then specify

control flow inside the task definitions themselves, using new C language constructs. While this approach can

greatly reduce the memory footprint, it obscures control flow, requiring users to search through a program to

find where tasks lead to. This is mainly because of the approach; Chain is designed as a C library, Mayfly

is a compiler, allowing for much greater freedom and flexibility in the input language, and compiled output.

Compiling gives greater control, allowing Mayfly to generate intelligible error messages, and capture the most

common errors in the validation stages.
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Table 5.3: LOC for language constructs in Mayfly and Chain.

Mayfly Chain

App tasks flow constraints tasks ch flow decl

ER 5 1 13 11 49 19 61
CEM 9 3 17 12 63 19 82

Harvest Power-on

RTC Hard Reboot

RTC Soft Start Task Rollback

All Rollback

Get Time

Mayfly Runtime Initialization

Execution Time

Figure 5.10: Runtime initialization flowchart. Each function has specific timing overhead. If a hard
reboot happens where the Real-Time-Clock (RTC) is reset because of a long power failure, initialization
cost increases.

5.4.5 Overhead

Certain implementation details are pertinent to the overall evaluation. We detail their effect on

performance, note potential areas of improvement, and provide practical implementation costs in this section.

Specifically we look at the runtime initialization costs (above the execution costs of user defined tasks), and

the scheduling costs for determining which user defined task to run. The platform initialization scheme is

shown in Figure 5.10, along with execution costs in Table 5.4.

In Figure 5.10, two paths are shown for initialization, the hard reset path, and the soft reset path. The

soft reset path (“RTC Soft Start” in figure) simply polls the RTC, rolls back the last task if it was not completed

and then gets the time. This happens fairly quickly. However, when the external timekeeper loses power

completely (in addition to the MCU), the timekeeper resets its clock back to zero on next boot. This reboot

(“RTC Hard Reboot” in figure) takes longer to initialize the timekeeper properly, than if it had not expired.

Additionally, all timestamps (“All Rollback” in figure) must be set back to zero for each task output. In our

current implementation for the MSP430FR5969 this hard reboot can take up to one second. This length of

time is significant, and difficult to overcome with current RTC components available off-the-shelf, however, in

our experiments the timer rarely loses power completely, as we used a conservatively sized storage capacitor

of 10 µF for the timekeeper, which can time more than 17 minutes of of failure. This 17 minute timing ability

is more than adequate for our applications, however, for applications with longer timing requirements, new
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Table 5.4: Initialization and scheduler runtime costs.

Init function Time

Power-on from brown-out 1000 µs

RTC hard reboot 708.5 µs
RTC soft start 144.6 µs

Rollback all Data 23.6 µs
Single task rollback 4.6 µs

Get time (seconds, minutes, hours) 246.4 µs
Get time (seconds) 80.6 µs

Scheduler function
Process constraints for single task 4.5 µs
Scheduler cant find task to execute 56.3 µs
Task finished, commit results 7.0 µs

advances in zero power timekeeping are required.

Table 5.4 shows the costs of the scheduler functions. Before a task can be executed, its constraints

must be satisfied, this check happens many times during the scheduling cycle and must be very fast. On

average, this check happens in 4.5 µs, quick enough to not be a burden, and making the cost of not finding

anything to do low. The other important function is committing data from a task to non-volatile memory so it

can be preserved through a power failure. This function only takes 7.0 µs.

Energy and Cost: To use Mayfly with the WISP, it must be augmented with the custom PCB. The energy cost

of maintaining the timekeeper, the price increase per unit, and the firmware are all overhead items for Mayfly.

The initial charging of the timekeeper requires 28.8 µJ, then a constant trickle current of 54 nA. Adding the

custom PCB, or designing a new PCB with required hardware only increases the price point by $1.05 per unit.

Additionally, the memory overhead of supporting the hardware timekeeper is constrained to a small library

that requires 1364 bytes.

5.4.6 User Study

We evaluated the usability of Mayfly on 11 participant drawn from a junior-level, university Computer

Operating Systems course2 Our findings show 1) Mayfly reduces the time needed to write intermittent programs,

2) Mayfly helps developers reason about intermittent behavior, and 3) the benefit of using Mayfly is high

enough for encourage C developers to migrate.

Methodology: Participants were provided documentation describing methods for writing intermittent pro-
2This study was approved by our Institutional Review Board.
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grams in embedded-C, relevant syntax, and function definitions provided by the research team for sensing

and timekeeping. They were given 20 minutes to familiarize themselves, prior to the experiment. Participants

were then provided 3 unique programming challenges, with 20 minutes to complete each. The research team

manually compiled participants’ code, and reported errors in syntax and timing related bugs. Participants

repeated the above process for the same challenges, but this time using the Mayfly language. Participants

received documentation describing methods for writing intermittent programs in Mayfly, relevant syntax, and

function definitions, as above. Participants used Mayfly to complete the same 3 programming challenges, under

the same conditions. The programming challenges were modeled after the three Mayfly timing constraints,

expires, misd, and collect. After each set of 3 challenges, participants completed a survey rating the

ease of the language used.

Sample: Our 11 participants ranged in class standing from junior to senior, with 3 to 7 years of formal

computing education, and 3 to 8 years of total programming experience. Participants self-rated their overall

programming abilities, comfort using C, and knowledge of computer architecture, as compared to other

students, and average application developers. Overall, our participants’ abilities were typical, with reported

skills’ means ranging from 2.55 to 3.64, where 3 indicated average ability.

Results: Mayfly reduces time needed to write intermittent programs. Participants using Mayfly unsuccessfully

compiled an average of 0.64 fewer times per task, than users of C. On average, participants successfully

completed 1.54 more challenges in Mayfly than in C. Mayfly makes overcoming the complexity of intermittent

programs easier. None of our participants successfully completed our expires coding challenge in C, while

all 11 completed the challenge in Mayfly. Five participants completed our misd challenge in C, while 7 did so

in Mayfly. Four participants successfully completed our collect challenge in C, while 8 did so in Mayfly.

We believe our results show the benefit of using Mayfly is high enough to encourage developers using

C to migrate. Using a series of 5-point Likert scales, participants rated the usability of each language. The

items in this survey were developed using confirmatory factor analysis, to ensure validity. We summed and

divided these ratings by the total possible, to create a percent language usability score for both C and Mayfly.

Nine of our 11 participants reported C was their preferred programming language, prior to this study, and 7

participants indicated their C programming abilities are above average compared to other students at their

university. However, working with Mayfly, 10 of 11 users rated its usability higher than C, for completing the

assigned challenges. Additionally, Mayfly received a 23% higher mean score than C, on our usability survey.
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5.5 Related Work

In this section we place the Mayfly language and runtime in the literature, and demonstrate the

novelty of our approach.

Preserving Forward Progress: Checkpointing systems like Mementos [107], Hibernus [5], QuickRecall [59],

and others[90, 9] have emerged to keep forward progress on intermittently-powered systems. Other solutions,

like DINO [82], show that even with checkpointing, memory consistency is not maintained. Chain [23]

provides a new model that eliminates the cost of checkpointing large parts of volatile memory, and appears to

provide better programmability (although this was not evaluated with a user study). None of these solutions

consider how the loss of timekeeping affects the duty cycle, and how the utility of sensed and computed data

changes over time. The proposed Mayfly Runtime builds off DINO an previous checkpointing and scheduling

libraries to preserve forward progress and manage the temporal aspect of sensing tasks.

Operating Systems & Runtimes Most operating systems for wireless sensor networks have assumed a stable

power supply, and were not built for intermittent programs. However, recent advances with computational RFID

have pushed for batteryless task management. Dewdrop[16] is an energy-aware runtime for Computational

RFID tags like the WISP. It schedules tasks based on available energy, and attempts to get as many tasks done

as possible. DEOS[141] is similar to Dewdrop as a lightweight energy aware scheduler. QuarkOS[138] is a

low overhead operating system that divides every communication, sensing, and computation task into tiny

fragments. It then sleeps between execution of these fragments to recharge. BY doing this, QuarkOS allows

tasks to be executed on extremely small energy budgets. EnOS[129] is a kernel for energy-neutral systems.

Energy-neutral systems rely on battery backups but function almost exclusively off harvested energy. EnOS

allows for tasks to be organized into different criticality levels, helping manage blackouts. However, EnOS

assumes a mostly stable supply, and does not consider the effects of time. In fact, all of the operating systems

and runtimes mentioned do not consider the temporal aspects of sensor data.

Languages Mayfly is the first language designed for batteryless sensors that captures the temporal constraints

associated with sensor data. NesC [42] was the first widely adopted language for wireless embedded sensors.

Using an event driven model, NesC is an extension of C, and is the language overlaying TinyOS. Flask[83] is

a domain specific language that is a subset of Haskell. Flask provides the power of functional programming to

sensor networks. Numerous other languages have been created[92, 38, 80], most are closely related to or built

on top of TinyOS and NesC, which assumes a stable power supply.
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Eon[119] was the first programming language for sensors that was built to be energy-aware. Eon

programmers used a declarative coordination graph to sequence and categorize tasks in terms of energy states.

These tasks were then executed based on the energy available and dependencies of the task. Mayfly is closely

related to Eon, using declarative coordination graphs as well as Eon, but with the intent of defining timing

constraints and task atomicity.

Hardware Approaches: Other related approaches come from the hardware languages design field. Idetic[91]

is a set of synthesis mechanisms for enabling long term computations on ASICs powered completely by energy

harvesting. Idetic determines optimum checkpoint placement by parsing an intermediate graph language using

synthesis techniques. Chlorophyll[98] similarly used syntax guided synthesis techniques, but for the purpose

of programming ultra low power FPGAs. This approach increased both usability and confidence in solution.

Both of these techniques show promise for synthesis with low power and intermittent systems. However, they

are not directly translatable to current off-the-shelf sensor technologies, nor do they provide common sensing

interfaces. Potentially, a Mayfly like programming model could take advantage of the native checkpoints

provided by these systems, creating an even more robust batteryless sensor.

5.6 Discussion and Future Work

In this section we discuss the limitations of the Mayfly language, and runtime, and outline potential

thrusts for future work.

5.6.1 Limitations and Challenges

The Mayfly language and runtime has some key limitations. Most importantly, the scheduling will

rarely be optimal, as the energy constraints of the environment determine what is possible—which can often

be nothing. This is made more difficult because the runtime only has access to a one-dimensional view of

the current energy, and harvesting efficiency of the sensor platform (the voltage on the storage capacitors).

Another limitation stems from user code organization. If user task are not made small enough, or overestimate

the energy availability of the environment, tasks will fail much more often. This is difficult for Mayfly to

anticipate in it’s current form. Another difficulty comes from the lack of a general hardware platform for

batteryless devices. Current platforms are generally application specific, or energy harvester specific. This

makes it difficult for the runtime to make assumptions that could improve the scheduling efficiency.
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5.6.2 Future Work

Mayfly is just the beginning step towards making batteryless sensing a mainstream sensor medium.

We envision future work investigating more intelligent, and dynamic task scheduling with time sensitive

data stream, generalized hardware platforms for many applications, and more sophisticated tooling to aid the

amateur and expert developers of batteryless applications.

Dynamic Scheduling: Currently the runtime schedule of tasks is generated at compile time. While this

achieves a low overhead and quick runtime functions, it is imagined that the scheduling could integrate

contextual information about the energy state of the sensor, the previous energy costs of the current task, and

other information to make better scheduling decisions on the fly.

Hardware Platforms: As mentioned, the lack of a general hardware platform makes decision making more

difficult at runtime. Batteryless sensing needs a general platform, that is harvester independent, and provides

the energy management and persistent timekeeping faculties outlined in this paper.

Tooling: Without more sophisticated debugging, simulation, and evaluatory tools, batteryless sensing will

never make it to the mainstream of computing. We envision the Mayfly language and runtime integrating

with current tools like EDB and Ekho. We also see vast potential for future work in automated unit testing of

Mayfly programs using these tool.

5.7 Conclusions

The Mayfly language and runtime was created in response to the lack of batteryless platforms that

1 ) considered the effect of time on sensor data value and 2 ) the lack of intuitive programming models.

The Mayfly language is a graph based, declarative programming model that allows developers to focus on

application goals, outline timing requirements for data collection, and list task dependencies. The Mayfly

runtime takes these tasks and constraints, and creates a schedule at compile time that can be executed on

the sensor node. This scheduler manages timekeeping across power failures, and uses Federated Energy

to handle tasks energy requirements. Devices programmed with Mayfly were deployed on RFID powered

WISPs for activity monitoring, and for temperature logging. Additionally, a user study was run that revealed

that participants had trouble visualizing program execution and keeping sensor data from expiring when

programming in traditional Embedded-C, and were able to reason about tasks better with the Mayfly language,

accomplishing more in the same amount of time, and having a more enjoyable experience.
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Batteryless sensors are an indispensable part of the future of the Internet-of-Things. These devices

promise to revolutionize sensing, and even computing. We view Mayfly as a positive step towards the

manifestation of this vision.

127



CHAPTER 6

CONCLUSIONS AND DISCUSSION

Batteryless sensing is fundamentally different from conventional computing. These devices challenge

one of the most basic assumptions of computing–a stable power supply. Energy harvesting is inconsistent

and energy storage is scarce, so batteryless sensors will lose power intermittently. Programmers must figure

out how to tie together fragmented execution opportunities to get useful work done each time a sensor is

resurrected.

Batteryless, energy harvesting sensing presents critical challenges not encountered by tethered or

battery- powered sensing. First, batteryless devices operate in unpredictable environments, where voltages

vary and power failures can occur at any time—often devices are in failure for hours. Second, a devices

behavior effects the amount of energy they can harvest—meaning small changes in tasks can drastically change

harvester efficiency. Third, the programming interfaces of batteryless device are ill-defined and non- intuitive;

most developers have trouble anticipating the problems inherent with an intermittent power supply. Finally,

the platform and community support does not exist in a coherent standard, reducing usability and adoption.

This dissertation on batteryless sensing has touched on multiple layers of the system stack to address

these problems. Specifically this work has 1 ) developed tools for repeatable experimentation with batteryless

computers, 2 ) designed a hardware platform to simplify task scheduling, protect against failures, and support

rapid device prototyping in a usable manner and 3 ) created a language and runtime that captures the temporal

attributes of sensor data on intermittently executing sensing platforms. Each of these pieces has simplified the

development process; enabling more robust, long lived computation, on sustainable, energy harvesting sensors.

6.1 Themes

This dissertation has focused on fundamental questions of sustainable computing, and energy effi-

ciency. This work, the methods, the systems, and the results, will enable sustainable, responsible computing,

laying the groundwork for the future of sensing. In this future devices are small, cheap, and are useful for

the entire lifetime of the things they monitor. These devices will be easy to program, straightforward to test,
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and will be deployed confidently. This future will push forward the boundaries of sensing, with a focus on

relieving the cognitive burden on programmers to the point where even amateurs can confidently program, test,

and deploy, batteryless sensors.

6.2 Future Work

This dissertation work has laid the groundwork for what is a rich and exciting new field of study.

Long term future directions can seek to develop the ideas around sustainable computing and sensing, advancing

the vision of the Internet-of-Things for the benefit of science and society. In each of the following future

directions, building and deploying real systems for emerging applications will be the focusand the main

form of establishing scientific validity. The following research questions are core to the future of sustainable,

batteryless sensing and computing, each has significant and exciting unsolved problems.

Intermittent Toolchain: The batteryless sensing toolchain has matured to the point that developers have

simulation, emulation, and some debugging tools. However, the cognitive burden of designing and testing

applications that effectively handle intermittent power is still high. The toolchain lacks definitive tools such as

testbeds, network simulators, and general hardware platforms. Execution on batteryless devices depends on

random environmental factors, causing operation to be probabilistic. In spite of this, developers need to better

understand how the code they write will execute in deployment. There are two potential tools that can facilitate

user understanding and confidence in deployment. First, the idea of energy aware code coverage–meaning

developers can automate the generation of energy environments that will exercise the full program functionality.

Second, the idea of a hardware debugging tool that completely reproduces the energy environment, data traces,

and allows non-invasive step debugging and tracing of batteryless sensors. Additionally the development of

generalized hardware platforms with built in Ekho support is fundamental to continuing success. Backing

this, would be a web based infrastructure that brings together thousands of energy harvesting environments

recorded by researchers in the field using Ekho, shared across institutions and research labs.

Intermittent Networks: With the Flicker platform now available, the potential for networking research

has dramatically increased. Multi-hop batteryless networks do not currently exist because of the incredible

difficulties of coordinating and syncing multiple intermittently powered devices. These networks would be

of significant value to the Internet-of-Things. Much future work lies in developing a dedicated batteryless

sensing testbed that integrates Flicker and Ekho. This testbed would be open to the scientific community,

where researchers could try out different approaches and protocols geared towards multi-hop intermittent
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networks.

Applications: Deploying new and exciting applications for batteryless computing keeps this research relevant

and grounded. Expanding the realms of battery-free sensing past RFID applications, to include wearables,

occupancy sensing, wildlife tracking, greenhouse monitoring, and infrastructure support are necessary. These

new applications necessitate collaboration with domain scientists in other fields such as health and biology.

This will create a positive dialog about the future of sensing, and further inform this work work. In the short

term, plans to adapt this work for use on mobile health wearable platforms such as the Amulet [50] are ongoing.

These devices could support battery free operation for health and fitness applications like sleep monitoring,

and step counting.

6.3 Final Thoughts

In summary, battery-free sensing promises to revolutionize science and society. This dissertation

has only scratched the surface of this deeply challenging, deeply interesting new field. Future research

will continue to push the boundaries of sensing, and attempt to tackle some of the most pressing problems

of the Internet-of-Things. Work on responsible, sustainable sensing has the potential for positive impacts

and collaborations with many areas, including health services and patient care, commercial and consumer

applications, wildlife conservation, industrial and infrastructure management and monitoring, and many other

fields. No longer will the Internet-of-Things be a concept of the future, with this dissertation, now the Internet-

of-Things will be more than just hype.
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