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Chapter 1

Introduction

Nowadays, the consumer electronics market is dominated by state-of-the-
art handhelds like tablets, GPS navigation systems, smartphones, or digital
cameras. These systems are complex to design as they must execute multiple
applications, most of them related to the boom in the multimedia sector
(e.g.: real-time video processing, 3D games, or wireless communications),
while meeting additional design constraints, such as low energy consumption,
reduced implementation size and, of course, a short time-to-market.

From the point of view of the architecture designers, in addition to the
challenge of selecting the right system components to meet all these design
constraints, new problems, mainly technology-related, have appeared, that
complicate even more the design process of state-of-the-art chips.

As technology scales down the sizes of transistors, the system integration
complexity also increages: Current gadgets that offer the computing power of
personal computers designed 5 years ago, but now shrinked into portable de-
vices, burn a substantial amount of power in a very small area, which results
into a high on-chip power density. The logic density of this kind of designs,
coupled with very demanding SW applications can lead to the generation of
hotspots [SSST04] that compromise the chip reliability. In fact, temperature
and reliability issues, are already a major concern in latest technology nodes
[SABRO5S; RS99]. In the past, thermal problems were solved by improving
the packaging solution, but now, designing a chip for the worst-case scenario
often makes the final product prohibitibely expensive, and sometimes not
even possible to manufacture (due to space constraints in the embedded sys-
tem, for example). In this context, new design constraints need to be taken
into account during the design phase of the embedded system.

In order to discover new methodologies and techniques to tackle the ther-
mal issues, mechanisms to efficiently evaluate complete designs in terms of
energy consumption, temperature, performance and other key metrics, are
needed. Specially, tools able to accurately model these parameters, before
the manufacturing of the chip, while running real-life applications are pri-



2 CHAPTER 1. Introduction

mordial for designers; not only to design and optimize the HW system, but
also to test and elaborate complex, hibrid (hardware and software) run-time
power/thermal /reliability management strategies.

With this purpose in mind, in this thesis, I introduce a new framework
that offers an integrated flow for the fast exploration of multiple HW and
SW implementation alternatives, with accurate estimations of performan-
ce, power, temperature, and reliability, to help designers tune the system
architecture at an early stage of the design process.

1.1. Embedded Systems

When we mention the word processors, many people think intuitively of
general purpose processors (GPPs). Those acting as servers, workstations, or
personal computers, manufactured by named brands like Intel and that are
spread worldwide solving a wide range of problems. However, there are other
types of processors much more present in our daily lifes: embedded processors
and microcontrollers. They are found in dedicated embedded systems, with a
more or less specific function, and with clear limitations and requisites.

Attending to their characteristics, we can divide the microprocessor mar-
ket into GPPs, embedded processors, and microcontrollers (MicroController
Units, or MCUs). Table summarizes their main characteristics.

Table 1.1: Microprocessor types and characteristics.

] TYPE H EXAMPLES \ CHARACTERISTICS \ USE
General Pentium, Complex OOSS: UNIX, NT. | Workstations,
purpose Alpha, General purpose SW. PC’s.
processors SPARC. Volume production.

Optimized for versatility.
Embedded ARM, Real-time (minimal) OOSS. Cell phones,
processors Hitachi SH7000, | Executing light applications. | consumer
Microblaze, Large volume production. electronics.
NEC V800, Optimized for size, power
PowerPC 405. consumption, reliability, etc.
uControllers || Motorola No OOSS. Automotive,
68HCxx family, | Tiny tasks (data adquisition). | household
Microchip PICs. | Huge volume production. electrical
Optimized for cost. appliances.

As Figure shows, the niche market that each of these microprocessor-
based solutions offers, comes determined by the cost-performance trade-offs.
Although the MCUs have the lowest cost, their volume production is large
and, thus, they generate important revenues. Figure depicts the sales, in
millions of dollars, of the MCU market. A big share belongs to the under-
32 bit microcontrollers (these simple microcontrollers are still extremelly



1.1. Embedded Systems 3

Microprocessors

Embedded

Processors

Performance
15 everything &
The SW dommates

Performance

Microcontrollers

Cost 13 evervthing

4

Cost

Figure 1.1: Cost-performance trade-offs of microprocessor-based solutions.

useful for tasks where we need very little performance at the lowest cost).
Similarly, the market volume of embedded processors greatly surpasses that
of the GPPs.

An estimation says that each household contains between 40 and 50 em-
bedded microprocessors, on average. There are microcontrollers in the mi-
crowave, in the washing machine, in the hair drier, in the dishwasher... and
not only that, but also inside audio and video devices, such as the DVD and
CD players. They are also present in vehicules in really high quantities: a
car has, on average, a dozen of embedded microprocessors and, to give preci-
se examples, the BMW series 7 has 63 embedded microprocessors [BDT03].
Most of the electronic devices that surround us have one or more embedded
processors dedicated to acomplish the different tasks.

After this brief introduction, I can now more formally define an embed-
ded system, and enumerate its main characteristics: An embedded system is
that whose control is based on a general purpose microprocessor/microcon-
troller, and dedicated to perform a task, or set of specific tasks. In the last
years, this field has experienced a spectacular rise. The systems have evolved,
from simple control devices, designed specifically to perform one task or a
small set of specific tasks, into more complex systems, running applications
similar to those found on desktop computers, but with strong requirements,
mainly power related, to satisfy. In fact, nowadays, the most important fea-
tures required from embedded systems are similar to those present in high
performance systems:

= Reliability and security: These requirements are, generally, much more
restrictive in embedded systems than for any other of computer-based
systems. When, for example, a scientific computing program fails, it is
enough aborting the execution, solving the error, and relaunching the
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Figure 1.2: Microcontroller market.

program. However, the control system of a nuclear plant must never
permit the reactor to go out of control, since this situation would cause
terrible consequences. We find another example in the ejection seats
inside fighter aircrafts.

» Interaction with physical devices: Embedded systems must interact
with the environment using different kinds of devices that are normally
not conventional: data adquisition boards, A/D and D/A converters,
PWM, serial and parallel inputs and outputs, sensors, etc...

= Reactivity and real-time: Some components of the embedded systems
must react continuously and simultaneously to the environment chan-
ges, and they must compute results in real-time. It is of notorious
importance the high degree of concurrency, determinism and predicta-
bility requested from this kind of systems.

= Robustness: It is frequent the case where these systems are placed in
movable parts, or can be transported, exposed to vibrations, and even
impacts. The correct behaviour must be garanteed, even under bad
temperature, humidity, and /or dirtiness conditions. Error handling can
be done through HW, if the device supports it, or via SW, but, in this
case, the system is not so robust.

s Low power: The need to operate with batteries, or in poorly ventilated
environments, mandates the reduction in the power consumption, in
order to mitigate the power dissipation that generates the overheating
of the electronic components.
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= Reduced price: Specially important if our product is intended for mass
production, or we try to release a commercial version of the system.

= Small dimensions: Do not only depend on the size of the device it-
self, but also on the available space around the controlled /monitorized
system. It is directly related to the power consumption.

= Special design flow: Designing this kind of systems implies developing
together a set of HW and SW components. HW offers performance,
while SW offers flexibility.

» Flexibility: Extremely sensitive to the market and technology factors,
the systems must be able to evolve with the market in a flexible way
and in a limited time.

The aforementioned metrics and characteristics are tipically inter-related
or, even worse, compete one against each other; improving one of them
usually implies the degradation of the others. For this reason, the desig-
ner must be familiar with a variety of technologies and HW/SW techniques,
with the goal to find the best implementation for a given application and
constraints. The validation of the final system through the appropriate selec-
tion of different case studies is mandatory. Performance is always important,
but it normally comes as a secondary feature.

Apart from the microprocessor, an embedded system is made of addi-
tional components. The most significant ones are the memory (with optio-
nal Memory Management Unit), storage elements, the input/output devices
(sensors, actuators), and the debugging ports. All of them can be observed
in Figure (1.3

1.1.1. High performance embedded systems: SoCs and MP-
SoCs

In the recent years, new application demands have popped up in the em-
bedded market, specially in the consumer electronics field, that cannot be
satisfied with the classic HW or SW systems. The new High Performance
Embedded Systems must provide services such as videoconference, recording
and reproduction of music and video, 3D games and so on, that imply sa-
tisfying a common set of design /implementation constraints that distinguish
them from the other, more general, computing systerms.

On their way towards competitiveness, designers increased chip integra-
tion to reduce manufacturing costs and to enable smaller systems. New tech-
niques, together with the improvements in technology, led to the construction
of devices comprising a number of chips in a single package; the systems in
package (SiPs) [DYIMO7|. This miniaturizing trend continued in the embed-
ded market, until all the elements fit inside a single ship, greatly reducing the
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communication delays and, thus, the execution times. The systems-on-chip
concept was born.

System-on-a-chip or system-on-chip (SoC) [Cla06]| refers to integrating all
components of a computer or other electronic system into a single integrated
circuit (chip); It may contain digital, analog, mixed-signal, and often radio-
frequency functions, all in a single chip substrate.

Both SoCs and SiPs coexist today. In large volumes, SoC is more cost
effective than SiP since it increases the yield of the fabrication and because
its packaging is simpler. However, for some applications, it is still not possible
or too expensive to integrate all the functionality into one integrated circuit
(IC), resulting in a SiP implementation.

The previously mentioned microcontrollers typically have just a few KBy-
tes of RAM, and very often are single-chip-systems; whereas the term SoC
is typically used with more powerful processors, capable of running full fea-
tured operating systems (Windows or Linux), which need external memory
chips (flash, RAM) to be useful, and which are connected to various external
peripherals; e.g.: the ARM from ARM Holdings, the SH RISC from Hita-
chi, the PowerPC from IBM and Motorola, the Am29K from AMD, and the
MIPS from Silicon Graphics. A natural extension to SoCs are the MPSoCs:

A Multi-Processor System-on-Chip (MPSoC) [JTWO05 is a system-on-a-
chip (SoC) that contains multiple processors (i.e.: multi-core), usually tar-
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geted for embedded applications. In addition, they typically contain several,
usually heterogeneous, processing elements with specific functionalities, re-
flecting the need of the expected application domain. MPSoC architectures
are really efficient in meeting the performance needs of multimedia appli-
cations, telecommunication architectures, network security and other appli-
cation domains, while limiting the power consumption through the use of
specialised processing elements and architecture.

1.1.2. The HW-SW codesign

In a high performance embedded system, we distinguish two fundamental
components that must work together to satisfy the system specifications:

1. HW component: Designing a state-of-the-art dedicated system starting
from scratch, and trying to redesign and optimize globally all the ne-
cessary modules, is an extremely complex task; Thus, the only valid
alternative is to create the global system by using composition and
reuse of existing components designed independently.

2. SW component: In new embedded systems, the SW component is essen-
tial, for it will determine the success in the market of the final product,
as well as the final cost of the new system. The SW must be capable
of using efficiently the optimizations that the HW offers, to enhance
the performance of the embedded applications and reduce the power
consumption.

The traditional design techniques (i.e., independent HW and SW design)
for classical embedded systems are now being challenged when heterogeneous
models and applications are getting integrated to create complex MPSoCs.
In HW-SW codesign [dMG97], designers decide the location of the HW and
SW components, and how to intercommunicate them efficiently to reach the
specified funtionality, satisfying the development time constraints, cost, and
power consumption for a given set of performance goals and technology.

When they are developed independently, there is little opportunity to
optimize both HW and SW together. Moreover, it is also difficult to reason
about a complete system (i.e. simulation, verification). As observed in Fi-
gure [[.4] the HW and SW design methodologies are now merged into one
single design flow so that the partition into HW/SW elements is not fixed,
and can be adjusted to trade-off features. One basic approach is to identify
and implement SW parts which consume high computing resources (usually
time) in HW [EH92|. The dual approach seeks to identify complex system
parts which are good candidates to be implemented in SW [GD92].
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1.1.3. Intellectual Property Cores

In electronic design, a semiconductor intellectual property core, IP core
|[dOFALM™03| or IP block, is a reusable unit of logic, cell, or chip layout
design that is the intellectual property of one party. IP cores may be licensed
to another party or can be owned and used by a single party alone. The
licensing and use of IP cores in chip design came into common practice in
the 1990s. The microprocessor cores of ARM Holdings are recognized as some
of the first widely licensed IP cores.

Figure [L.5|shows a subsystem entirely made of IP cores: from the UART
to the bus arbiter, they are all independent elements, already verified by
third parties, and interconnected through standard interfaces.

Although I did not mention the name, I introduced before the IP cores
as the building blocks in SoCs designs. An IP core can be described as being
for chip design what a library is for computer programming, or a discrete
integrated circuit component is for printed circuit board design. Attending
to the way they are deployed, we can differentiate two types of IP cores:

1. Soft cores: 1P cores are typically offered as synthesizable RTL, in a HW
description language such as Verilog or VHDL, or as generic gate-level
netlists (to avoid modifications). Both allow a synthesis, placement and
route design flow.
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2. Hard cores: Such cores are also called “hard macros”, because the co-
re’s application function cannot be meaningfully modified by chip de-
signers. Transistor layouts must obey the process design rules of the
target foundry and, hence, hard cores delivered for one foundry process
cannot be easily ported to a different process or foundry.

As I will show in the following section, Xilinx, for example, is shipping
chips with a fixed hard core PowerPC 440 block, to handle the most complex
and memory-intensive computing applications, to which soft cores can be
added at will (from a components list), to perform specific tasks.

1.1.4. Field-Programmable Gate Arrays

The Field-Programmable Gate Arrays (FPGA) are integrated circuits
designed to be configured by the customer or designer after manufacturing;
hence, "field-programmable". In fact, they can be reprogrammed multiple
times: they feature a reconfigurable architecture, consisting of an array of
logic blocks and an interconnection network. The functionality and the in-
terconnection of the logic blocks can be modified by means of programmable
configuration bits. The FPGA configuration is generally specified using a HW
description language (HDL), similar to that used for an application-specific
integrated circuit (ASIC).

In the last years, we are witnessing a large growth in the amount of
research being addressed worldwide into field-programmable logic and its re-
lated technologies. As the electronic world shifts to mobile devices [KPPRO0E
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Rab00; [PGO03], reconfigurable systems emerge as a new paradigm for satisf-
ying the simultaneous demand for application performance and flexibility
[WVC02]. Reconfigurable computing systems [GK89| represent an interme-
diate approach between general-purpose and application-specific systems.

For GPPs, the same HW can be used for executing a large class of applica-
tions; however, it is this broad application domain which limits the efficiency
that can be achieved. ASICs, on the other hand, are optimally designed to
execute a specific application and, hence, each ASIC has superior perfor-
mance when it executes its task but, since it has a fixed functionality, any
post-design optimizations and upgrades in features and algorithms are not
permitted. Reconfigurable systems potentially achieve a similar performance
to that of customized HW, while maintaining a similar flexibility to that of
general purpose machines.

Figure [1.6] shows a graphic comparison of different computing platform
types in terms of efficiency (performance, area and power consumption) ver-
sus flexibility. Reconfigurable computing represents an important implemen-
tation alternative since it fills the gap between ASICs and microprocessors.

In modern FPGAs, the availability of an increasingly large number of
transistors [bibal, provides the silicon capacity to implement full MPSoCs
containing several host processors (hard and soft cores), complex memory
systems, and custom IP peripherals, combining a wide range of complex
functions in a single die [PG03].

New design methodologies, like IP-cores-based design [RSV97], allow sim-
ple system creation. Users can create complex MPSoCs in a matter of minu-
tes by simply instantiating different IP components included in preexisting
libraries. Thanks to the standarization of system interconnects, the designer
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can select the components, and interconnect them in a plug-and-play fashion.
If needed, new components can be easily created, thanks to the existence of
tools to validate and debug custom-made cores. For microprocessor-based
designs, FPGA manufacturers provide tools supporting the codesign, where
system SW can be developped and debugged at the same time as the HW.

1.2. State-of-the-art in MPSoC design

The fast evolution of process technology is reducing more and more the
time-to-market and price [JTWO05|, which does not permit anymore complete
redesigns of complex multi-core systems on a per-product basis. We all know
how fast a product can become “the coolest device of the moment” like, for
example, videoconference phones or pocket PCs. If a company does not have
the product ready for “that moment” but after a delay of several months,
when the product finally reaches the market it will surely present important
losses with respect to the initial expectations. Surveys have demonstrated
that the losses in the total gain of a product are more affected by a late
appearance in the market, rather than by an increase in the final cost. In this
scenario, Multi-Processor Systems-on-Chip (MPSoC's) have been proposed as
a promising solution, since they integrate in one single-chip different complex
components (IP-Cores) that have been already verified in previous designs
(normally by third parties).

In this context, there is a need for design methodologies and implementa-
tion tools that permit the development of new high performance multimedia
embedded systems in a very short time while ensuring design correctness.
They must support the fast and flexible creation of prototypes, incorpora-
ting the last trends appeared; specially, the implementation under new cons-
traints like the power minimization. Currently, there is a big effort aimed at
automating the whole design flow for embedded systems.

Overall, designing MPSoCs is a complex task. Even if we fix the IP cores
to be used, the exploration space is still huge. Designers must decide multiple
HW details, from high level aspects (the frequency of the system, the location
of the cores, or the interconnect), to low-level physical ones (the routing of
the clock network, the technology used at the foundry, and so on). On top
of this, comes the SW: whether the system will run bare-C applications, or
a full featured OS, are decisions that must be accounted for at design time.

1.2.1. Power, temperature and reliability problems

One of the main design challenges in MPSoC design is the fast explo-
ration of multiple HW and SW implementation alternatives with accurate
estimations of performance, energy and power to tune the architecture at
an early stage of the design process, because the aforementioned decisions
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Figure 1.7: Different alternatives for MPSoC design space exploration.

(cf. previous section) will not only affect the final performance of the sys-
tem; there are also other implications, such as the physical size of the chip,
the power consumption, or the temperature and reliability of the compo-
nents [Cla06]. Several tools and frameworks have been developed aimed at
guiding designers in the exploration of the MPSoC design space.

Regarding thermal modeling, [SSS™04] presents a thermal/power model
for super-scalar architectures that predicts the temperature variations in the
different components of a processor. It shows the subsequent increased lea-
kage power and reduced performance. [SLDT03] has investigated the impact
of temperature and voltage variations across the die of an embedded core.
Their results show that the temperature varies around 13.6 degrees across
the die. Also, in [LBGB00], the temperature of FPGAs used as reconfigu-
rable computers is measured using ring-oscillators, which can dynamically
be inserted, moved or eliminated. This empirical measurement method is
interesting, yet it is only applicable to FPGAs as target devices.

Overall, these works clearly prove the importance of the hotspots in
high-performance and reconfigurable embedded systems, and the need for
temperature-aware design and tools to support it. Moreover, it is clear that
performance, power, temperature, reliability, etc. issues have to be addressed
at design-time to reach the market on time.

In the next two sections, I describe the most important tools and frame-
works available to designers for MPSoC exploration. I have categorized them
into SW simulators and HW emulators. HW prototyping, despite being also
a valid and useful approach, is not considered in my study, since is too close
to the final implementation, and I am only concerned about methodologies
that can be applied early in the MPSoC design cycle. Figure compares
the three alternatives.

1.2.1.1. Design space exploration through SW simulators

From the SW viewpoint, solutions have been suggested at different abs-
traction levels, enabling trade-offs between simulation speed and accuracy:
First, fast analytical models have been proposed to prune very distinct
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design options using high level languages (e.g., C or C++) [BWST03]. Al-
so, full-system simulators, like Symics [MCE™02|, have been developed for
embedded SW debugging and can reach megahertz speeds, but they are not
able to capture accurately performance and power effects, that depend on
the cycle-accurate behaviour of the HW.

Second, transaction-level modeling in SystemC, both at the academia
[PPB02] and industry [CoWO04; [ARMO2|, has enabled more accuracy in
system-level simulation at the cost of sacrificing simulation speed (circa 100-
200 KHz). Such speeds render unfeasible the testing of large systems due to
the too long simulation times. Moreover, in most cases, these simulators are
only limited to a number of proprietary interfaces (e.g., AMBA [ARMO04a]
or Lisatek [CoW04]).

Finally, important research has been done to obtain cycle-accurate frame-
works in SystemC or Hardware Description Languages (HDL). For instance,
companies have developed cycle-accurate simulators using post-synthesis li-
braries from HW vendors [Gra03; [Syn03]. However, their simulation speeds
(10 to 50 KHz) are unsuitable for complex MPSoC exploration. In the aca-
demic context, the MPARM SystemC framework [BBBT05| is a complete
simulator for system-exploration since it includes cycle-accurate cores, com-
plex memory hierarchies (e.g., caches, scratch-pads) and interconnects, like
AMBA or Networks-on-Chip (NoC). It can extract reliable energy and per-
formance figures, but its major shortcoming is again its simulation speed
(120 KHz in a P-IV at 2.8 GHz).

Coming from either academic or industrial partners, a great variety of
MPSoC simulators populate the market. Advanced SW tools can be added
to them to evaluate in detail thermal pressure in on-chip components ba-
sed on run-time power consumption and floorplanning information of the
final MPSoCs [SSS™04]. Nevertheless, although these combined SW envi-
ronments achieve accurate estimations of the studied system with thermal
analysis, they are very limited in performance (circa 10-100 KHz) due to
signal management overhead. Thus, such environments cannot be used to
analyze MPSoC solutions with complex embedded applications and realistic
inputs to cover the variations in data loads at run-time. On the other hand,
higher abstraction level simulators attain faster simulation speeds, but at
the cost of a significant loss of accuracy. Hence, they are not suitable for
fine-grained architectural tuning or thermal modeling.

1.2.1.2. Design space exploration through HW emulators

One of the main disadvantages of using cycle-accurate SW simulators to
study MPSoCs is the big performance drop that appears as we increase the
number of processors in the system, due to the huge number of signals that
need to be handled and kept synchronized during the simulation. Higher abs-
traction level simulators provide faster simulations, but the accuracy during
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the evaluation of thermal effects is limited. An alternative to architectural
simulators is HW emulation. The nature of the HW is parallel; thus, it allows
the study of complex multi-processor environments without significant speed
loss with respect to the mono-processor case. As the counterpart, HW is not
so flexible as SW.

In industry, one of the most complete sets of statistics is provided by Pa-
ladium II [Cad05], which can accommodate very complex systems (i.e., up to
256 Mgate). However, its main disadvantages are its operation frequency (cir-
ca 1.6 MHz) and cost (around $1 million). Then, ASIC Integrator [ARMO04a
is much faster for MPSoC architectural exploration. Nevertheless, its major
drawback is the limitation to up to five ARM-based cores and only AMBA
interconnects. The same limitation of proprietary cores for exploration occurs
with the Heron SoC Emulator [Eng04]. Other relevant industrial emulation
approaches are System Explore [Apt03| and Zebu-XL [EE05], both based on
multi-FPGA emulation in the order of MHz. They can be used to valida-
te intellectual property blocks, but are not flexible enough for fast MPSoC
design exploration or detailed statistics extraction.

In the academic world, a relatively complete emulation platform for ex-
ploring MPSoC alternatives is TC4SOC [NBTT05|. It uses a proprietary 32-
bit VLIW core and enables exploration of interconnects by using an FPGA to
reconfigure the Network Interfaces (Nls). However, it does not enable detai-
led extraction of statistics and performing thermal modeling at the other two
architectural levels, namely memory hierarchy and processing cores. Anot-
her interesting approach that uses FPGAs to speed up a SW simulation
(co-verification) is described in [NHK'04]. In this case, the FPGA part is
synchronized, in a cycle-by-cycle basis, with the SW part (implemented in
C/C++ and running in a PC) by using an array of shared registers located in
the FPGA that can be accessed from the PC. This work shows a final emu-
lation speed of 1 MHz, outlining the potential benefits of combined HW-SW
frameworks. Finally, the RAMP (Research Accelerator for Multi-Processors)
[AACT05] project is another example that also exploits a hybrid HW-SW
infrastructure.

1.2.2. Power, thermal, and reliability management techni-
ques

Using the existing frameworks and tools to study the behaviour of MP-
SoCs, many design solutions have been proposed to tackle the problems of
high on-chip power consumption and temperatures, and lack of reliability,
using both architectural adaptation and profiling-based techniques:

In [SSST04], it is proposed the use of formal feedback control theory as
a way to implement adaptive techniques in the processor architecture. In
[ZADMO09; [ZADMBI10], a predictive frame-based Dynamic Thermal Mana-
gement (DTM) algorithm, targeted at multimedia applications, is presen-
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ted; it uses profiling to predict the theoretical highest performance within
a thermally-safe HW configuration for the remaining frames of a certain
type. Also, [BMOI] performs extensive studies on empirical DTM techni-
ques (i.e., clock frequency scaling, DVS, DFS, fetch-toggling, throttling, and
speculation control) when the power consumption of a processor crosses a
predetermined threshold (24W). Its results show that frequency scaling and
DFS can be very inefficient if their invocation time is not set appropriately.
At the OS level, [RS99] stops scheduling hot tasks when the temperature
reaches a critical value. In this way, the CPU spends more time in low-power
states, and the temperature can be either locally or globally decreased.

Recent studies have demonstrated that an intelligent placement of cores
can reduce the thermal gradients inside the chip. This leads to interesting re-
search lines for future MPSoCs, like power-aware synthesis and temperature-
aware placement [CWOT; [CS03; [GS05]. In this case, the temperature issues
are addressed at design-time to ensure that circuit blocks are placed in such
a way that they even out the thermal profile; therefore, improving the system
robustness and reliability. Alternatively, by adding run-time techniques (SW
or HW based) for limiting the maximum allowable power or temperature
dynamically, we can reduce the packaging cost as well as extend the chip
lifespan. A significant bottleneck of all the run-time dynamic methods is the
performance impact associated with stalling or slowing down the processor
[SSST04]. Multi-processor chips bring new opportunities for system optimi-
zations. For example, advanced temperature-aware job allocation and task
migration techniques have been proposed (e.g. [DMO06], [CRW07]) to reduce
thermal hot spots and temperature variations dynamically at low cost.

Overall, in any MPSoC, designers need from exhaustive system profi-
ling to discover the best tradeoff: performance vs peak temperature or cost.
Moreover, since each design is different, the goals are not always the same;
sometimes, there is a need for performance at no matter what cost while,
in another situation, the designer may be looking for the cheapest chip, the
higest power-efficiency or the most reliable design.

1.3. Motivation and goals of this thesis

After this introduction, it is clear that MPSoC designers are in great need
of tools that help them ease the design process. One of their main design
challenges is the fast exploration of multiple HW and SW implementation
alternatives with accurate estimations of performance, energy, power, tem-
perature, and reliability to tune the MPSoC architecture at an early stage
of the design process.

In the previous sections, I cited many frameworks that are already availa-
ble for designers, and I classified them into SW simulators and W emulation
frameworks:
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SW simulators are very accurate, but typically inappropriate to perform
long thermal simulations due to their limited performance. Thus, such en-
vironments cannot be used to analyze complex MPSoC solutions. Higher
abstraction level simulators (e.g., at the transactional level) provide faster
simulations, but the accuracy during the evaluation of thermal effects is limi-
ted, so they are not suitable for fine-grained architectural tuning or thermal
modeling.

On the other hand, we have MPSoC HW emulation frameworks. The
available ones are usually very expensive for embedded design, not flexible
enough for MPSoC architecture exploration and, typically, offer proprietary
baseline architectures, not permitting internal changes. Therefore, thermal
effects can only be verified in the last phases of the design process, when the
final components have been already developed.

The main idea behind this research work is to create a new design flow
that will reduce the complexity of the MPSoC development cycle. To this
end, it will be introduced my new HW-SW FPGA-based emulation fra-
mework, abreviated as the Emulation Platform (EP) from now on, which
allows designers to explore a wide range of design alternatives of comple-
te MPSoC systems at cycle-accurate level, while characterizing their be-
haviour/power/temperature/reliability at a very fast speed with respect to
MPSoC architectural simulators.

The EP is a hybrid framework that consists of two elements: On one
side there is a FPGA, where the MPSoC under development is mapped,
instrumented, and profiled; On the other side, there is a PC, that receives
the statistics coming from the emulation, and uses them to estimate the
power/thermal /reliability profile of the final chip.

One of the most important features of the EP is that the framework will
be conceived from the beginning to be versatile and flexible, so that it could
be adapted to the new market demands by adding new state-of-the-art fea-
tures. In fact, in Chapter [3| I will exemplify this important characteristic
by incorporating a posteriori to the platform a novel approach for fast tran-
sient thermal modeling, and the support to analyse 3D MPSoCs with active
(liquid) cooling solutions.

1.3.1. Thesis structure

The rest of this thesis is organized as follows:

In Chapter [2] I describe in detail the HW part of the EP, that runs onto
the FPGA. First, I explain the type of MPSoCs that can be instantiated,
and the different components that can be used. Next, I show the mechanism
added around the system under study in order to perform detailed profiling of
the execution. Basically, additional HW components are included to monitor
the MPSoC and extract information that is then sent from the FPGA to a
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host PC for ulterior analysis.

Chapter [3| describes how this information is processed in the PC. From
the simplest option, that consists on logging down all the statistics, and
present a report once the emulation is finished, to more advanced mechanisms
like, for example, estimating the reliability of the system, and returning this
information to the FPGA so that the emulated MPSoC can elaborate a
balancing policy to extend the lifespan of its components. The SW developed
for the PC estimates power, temperatures, and reliability numbers of the final
MPSoC based on the data received from the FPGA. Through the different
sections, I detail the process of how this input is converted into output using
advanced mathematical models.

The HW running on the FPGA, explained in Chapter P| and the SW
models that run on the host PC, explained in Chapter [3] are put together in
Chapter [l that describes the platform integration: how to instantiate and
interconnect all the components and perform an emulation. It describes the
emulation flow that allows designers to speed-up the design cycle of MPSo0Cs,
the design considerations that arise when putting the different parts together,
and the HW and SW elements necessary to setup an EP instance.

After describing the platform in detail, I illustrate the benefits of my
EP through examples and experiments. Chapter 5| presents three case stu-
dies aimed at showing the practical use of the EP to evaluate the impact
that different HW-SW design alternatives have into the performance, power,
thermal, and reliability profile of the final chip. I show how the tool can be
used to choose the right floorplan, the best package, or decide if it is worh
implementing DFS support in a new MPSoC (Experiment 1). In cases when
the chip is already manufactured, designers can use the EP, for instance,
to develop a reliability enhancement policy aimed at extending the lifespan
of a processor by simply changing the way the compiler allocates the HW
registers (Experiment 2), or to ellaborate system-level thermal management
policies like, for example, a Multi-Processor Operating System that performs
task migration and task scheduling to effectively regulate the temperature
(Experiment 3).

Finally, in Chapter [6] I synthesize the conclusions derived from this re-
search, and the contributions to the state-of-the-art in MPSoC development.
For completeness, I also propose some enhancements to the EP, and present
several application fields (open research lines) that will benefit from this
work.

Appendix A includes a Spanish summary of this dissertation, in com-
pliance with the regulations of the Universidad Complutense de Madrid.






Chapter 2

The HW Emulation Platform

In the introduction, I described one of the main design challenges of MP-
SoC designers: the fast exploration of multiple hardware (HW) and software
(SW) implementation alternatives with accurate estimations of performance,
energy and power to tune the MPSoC architecture at an early stage of the
design process. It was introduced, as well, my HW /SW Field-Programmable
Gate Array (FPGA) -based emulation framework: the Emulation Platform
(EP), whose structure is depicted in Figure and comprises the following
three components:

1. The Emulated System: This is the MPSoC being optimized; the
system under observation. Typically, this design is tuned to meet the
design constrains.

2. The Emulation Engine: It is the HW architecture that hosts the
Emulated System. It is in charge of stimulating it, and extracting run-
time statistics from three key architectural levels: processing cores,
memory subsystem and interconnection elements, while real-life appli-
cations are executed on the MPSoC. It is also connected to the host
computer for data interchange. The idea is similar to that of the SW
architecture simulators, where we have the simulator itself (e.g.: the
Simplescalar [ALE02|) and, then, we have to fit inside the SoC archi-
tecture to simulate.

3. The SW Libraries for Estimation: Running in a general purpose
desktop computer, they calculate power, temperature, reliability figu-
res, etc. based on the statistics received at run-time from the Emulation
Engine.

In the normal operation flow with the EP, the user downloads the com-
plete framework (both the Emulated System and the Emulation Engine) to

the FPGA. Then, a start command is issued, and the emulation starts. The
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Figure 2.1: High-level view of the Emulation Platform.

statistics generated are sent through a communications port to a host com-
puter, that logs them down, and uses them as the input to the SW Libraries
for Estimation, that calculate power, temperatures, reliability numbers, etc.
of the final MPSoC. The emulation process is autonomous; i.e.: the FPGA
is automatically synchronized with the SW in the PC, so that they inter-
change data continously in a bidirectional way. In addition to this, the user
can interact with the system at any point: a set of control commands can
be issued to the EP from the host computer, through a separate channel.
At the other side, the Emulation Engine processes the orders, and proceeds
accordingly.

Regarding the synchronization FPGA-computer, the emulation is divided
into Emulation Steps: it runs for a fixed amount of cycles; then, it pauses and
performs the information exchange (upload/download); once finished, it re-
sumes for the next Emulation Step. Full details are provided in Section 2.2.1]
During the whole process, the host computer provides visual feedback of the
emulation evolution in real-time.

This chapter describes the HW components of the EP; that is, the ele-
ments of the tool that reside inside the FPGA, while the SW components,
i.e., the SW Libraries for Estimation, are explained later on, in Chapter

In the following sections, I describe first the Emulated System, explai-
ning the different types of cores that can be instantiated. Next, T detail the
Emulation Engine, namely, the architecture of my emulator.

2.1. The Emulated System

The baseline architecture of an MPSoC typically contains these three
elements:

1. Processing cores like, for example: PowerPC, Microblaze, ARM, or
VLIW cores.
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2. A memory architecture: instruction and data memories, L1 and L2
caches, scratchpads, and main memories (private or shared between
processors).

3. Interconnect mechanisms to communicate the system elements: multi-
level buses, crossbars, or NoCs.

Figure shows an example of such architecture. It is a gaming platform
designed at ARM. In the block diagram we can observe a couple of Cortex-
A9, as the main processors, both containing the NEON coprocessor, designed
to accelerate the signal processing operations. Through an AMBA AXI bus,
they also have access to two Mali multimedia accelerators, several on-chip
memories (flash, ROM...), and input/output interfaces (USB, memory cards,
audio, debug, camera, the SDRAM external memory...). There are additional
ARM processors (Cortex M0, ARM968...) to handle special operations, like
the touchscreen input, the high definition audio, and the bluetooth and wifi
communications.

In the EP, any element of the Emulated System is finally translated to
a netlist, and mapped onto the underlying FPGA; therefore, the accepted
input formats to specify them range from netlists, directly, to other HDL
languages offering higher levels of abstraction, like Verilog, VHDL or Synt-
hesizable SystemC. Attending to the decription of the components, I classify
them into fully specified or modeled, and proprietary or public. However,
before explaining this concepts, I must emphasize the difference between
prototyping and emulation.

2.1.1. Prototyping vs. Emulation

In integrated circuit design, hardware emulation is the process of imi-
tating the behaviour of one or more pieces of hardware (typically a system
under design) with another piece of hardware, typically a special purpose
emulation system. On the other hand, hardware prototyping is the process of
obtaining an actual circuit with a design very close to the final one. While
HW emulation may include modeled components, at an early stage of the
design cycle, HW prototyping, however, requires the final components to be
available, and it is typically made at the last stages of the design cycle.

Let us suppose that we use in our MPSoC a module available in a com-
ponents library provided by a second party. This module is a mature product
(already debugged, verified, etc.) that has been implemented in several chips.
It has been designed in VHDL, and the license agreement specifies that the
whole source code is available to us. Then, we can directly instantiate it into
the Emulated System so that it will be mapped into the FPGA. This is a case
of prototyping. It must be noted that, although the behaviour of the module
will be identical to the silicon version, some parameters, like the maximum
working frequency, will most likely differ.
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Figure 2.2: The typical ARM gaming platform, which is an example of he-
terogeneous MPSoC architecture.

In a different situation, maybe the final component is not yet implemen-
ted. We can think, for example, of an square root calculator. While another
party is implementing it, we can create a model that will behave in the same
way but, instead of actually performing the calculations, will fetch the re-
sults from a pre-created lookup table. The internals of the module will differ
from the final one. However, from the point of view of the interaction with
the rest of the Emulated System, it will be the same. Notice that, although
the result is inmediatly available in the table, we can model the desired la-
tency by using idle wait states. This is a case of emulation. As opposed to
prototyping, the components do not have to be fully specified; we can work
with models. By using models of the missing components, we can debug the
whole system with live data.

To summarize, HW prototyping deals with designs, and HW emulation
with models. In my platform, both designs and models can be instantiated;
i.e., when the prototype of a memory, core, bus, etc. is not ready, I can use its
model instead. The key to achieve this is the use in the EP of a module called
the Virtual Platform Clock Manager, that helps us in the task of hiding extra
latencies, allowing designers to model memories and other modules that are
not yet available. The mechanism is explained with the example of a memory
controller in Section 2.2.1]
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2.1.2. MPSoC Components

The previous dissertation showed the differences between prototyping
and emulating a system. This definition naturally creates a way to classify
the components of an emulated MPSoC, attending to how they are specified:

1. Fully Specified Components: These are the final components that
will be included in the manufactured chip. When used in the emulation,
they provide the highest accuracy for the statistics. They are normally
taken from IP cores libraries, or designed ad-hoc for a specific MPSoC.

2. Modeled Components: Also named Virtual Components, are mo-
dules that only live inside the emulation. I use them when the real
component is not yet implemented, or in situations when it cannot be
included in the platform. Eventually, in the final implementation, they
will be replaced by a final component, that can be a synthesizable ele-
ment, a hard core already implemented in silicon, or even another chip
containing the functionality that was previously modeled during the
emulation.

A mix of the two flavours is possible: we can have a partially specified
component, where part of it is fully specified, and the other part is still mo-
deled. Also, we can start by modeling a component that is not yet available
and, later on, in advanced stages of the verification cycle, replace its model
by the real component in the EP. Finally, we can also use models if we do not
have interest in accurately studying the module, since a model is, normally,
faster to synthesize, and occupies less resources in the FPGA.

2.1.2.1. An example of Modeled Components

A sensor is a device that measures a physical quantity and converts it
into a signal which can be read by an observer or by an instrument. If an
MPSoC needs to know the temperature conditions, for example, in HW
prototyping we would attach a temperature sensor to our system so that we
can directly access the data. With emulation, everything is more flexible: we
do not need the sensor, neither we are restricted to the real measurements
from the ambient. We can recreate (emulate) our own conditions.

With this idea in mind, I have implemented sensors as modeled compo-
nents. The final MPSoC, implemented in silicon, will contain real sensors to
adquire external data from the real world. For instance, it can get the light
conditions, temperature, or fabric degradation, provided it has access to the
appropriate sensor. Since we are emulating the MPSoC, my sensors can be
read from the MPSoC in they same way as the real ones. However, the infor-
mation they return is injected by the Emulation Engine, so we can recreate
a context for the emulation. If we have a temperature sensor, for example,
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we can send to the FPGA a data trace containing the thermal conditions we
want to model. Whenever the sensor is accessed from the Emulated System,
it will return the next value of the trace. In this way, the content of the
sensors is another input parameter that we can set in our emulation.
Another example of a modeled component is a new memory that has not
been manufactured yet. Imagine that this new memory is to be twice as fast
as the fastest memory that we have on the market now. We can still model it
in the EP using a standard memory. Two different approaches are possible:

1. Scaling down the frequency of the whole system to be the half, so that
the speed ratio would be the same as the system running full speed
with the new memory.

2. We can still clock the system at its original frequency, and hide the
extra cycles whenever there is a memory access, by keeping track of
the elapsed cycles.

As T explain in Section[2.2.1] the solution adopted in the EP is the second
one. It has the benefit of only stopping the system when it is strictly required
(when this special memory is accessed); thus, it does not cut to half the
emulation speed. In the worst case, if the memory is accessed every cycle, the
second solution still has benefits: Imagine the case when this special memory
needs a frequency 2 times slower than the standard one, and another module
needs a frequency 3 times slower. We can wait 3 cycles until both elements
are ready. Had we taken solution one, it would have required to slow down
the frequency to the least common multiple: 6.

2.2. The Emulation Engine

The Emulation Engine (cf. Figure is made of the following elements:

1. The Virtual Platform Clock Manager (VPCM): Generates and
keeps synchronized the different clock domains of the Emulated Sys-
tem.

2. The Statistics Extraction Subsystem: Extracts the information
from the Emulated System in a non-intrusive way (i.e., transparently
connected).

3. The Communications Manager: Handles the bidirectional packet-
based communication FPGA - computer.

4. The Emulation Engine Director: Controls the whole system, or-
chestrating the emulation: controlling the Emulated System, directing
the statistics extraction, and synchronizing the FPGA and the host
computer.
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2.2.1. The Virtual Platform Clock Manager

Cycle-accurate simulators are normally implemented as event-triggered
engines, where a clock event triggers a cascade of signal updates that goes
on until all the signals become stable. The simulator then awaits ready to
simulate the next clock cycle. A similar idea is the basis of the EP, where
the emulation only advances every time the rising edge of a special clock
signal reaches a component of the Emulated System. It, then, generates some
signal transitions that, as opposed to the simulator, occur in parallel. I have
denominated this special clock The Virtual Clock (VC); as opposed to the
regular clock, also known as the system clock, real clock or just “the clock”.

An Emulated System is composed of one or several VC domains (see
Figure [2.4), each of them clocked by a different VC. A VC domain is, then,
a set of components that share a common clock; It can contain just one
element (a memory, a processor, a core...), or a complete system (processors
+ buses + cores). The VPCM is the element used to generate the multiple
VCs. Each VC is controlled according to the needs. More exactly, a VC can
be stopped, resumed, and scaled at any moment, controlling the evolution
of the emulation. To simplify the concept, a VC can be seen as a normal
clock that can be inhibited during some cycles, so that the Emulated System
“receives clock cycles under demand”.

From the previous section, we know that the modeled components are key
in the EP. Some of them try to model the behaviour of components that are
not yet available. In the case of a HW multiplier, for example, we could use
iterative additions to achieve the same result. The difference with respect to
the final module is that it may need extra cycles to complete the operations.
In this situation, the modeled HW multiplier sends a signal to the VPCM,
so that the VC of the rest of the components is inhibited until the result
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Figure 2.4: Detail of the clock management system.

is ready. Without the VCs, we should be talking about HW prototyping,
instead of emulation.

The VPCM generates as output the Virtual Clk signals shown in Figu-
re [2.4] Observe that it also has the capacity to reset the Emulated System
rising the Reset line. The VPCM receives two different types of input signals:
First, the physical clock generated by an oscillator. Second, one signal from
each VC domain ( Virtual Clk Suppression 1..n) used to request a VC inhibi-
tion period if any module is not able to return the requested value on time.
This Virtual Clk Suppression 1..n signal may not exist in the case when a
domain contains only fully specified components. However, that domain will
still be clocked by a VC, because the VPCM must be able to stop it, to wait
for other domains.

Thanks to the use of multiple VC domains, the emulation of MPSoCs
can be done for different physical features than those of available HW com-
ponents. Once the respective Virtual Clk Suppression 1..n signal is high, the
corresponding Virtual Clk signal of the affected domain/s is frozen. Then, the
stopped domains preserve their current internal state until they are resumed
by the VPCM, when the module that caused the clock inhibition is ready;
for example, a memory controller informs that the information requested is
available in the accessed memory.

Following with the example of the memory, this mechanism allows us to
implement the corresponding memory resources either in internal FPGA me-
mory (optimal performance) or with external memories (bigger size), while
balancing emulation performance and use of resources. For instance, if the
desired latency of main memories are 10 cycles, but the available type of me-
mory modules in the FPGA are slower (e.g., use of DDR instead of SRAMs),
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the VPCM can stop the clock of the processors involved at run-time; thus,
it can hide the additional clock cycles required by the memory. The modeled
components contain some extra logic to generate the VC suppression sig-
nal. Internally, they keep track of the elapsed time and compare it with the
user-defined latencies.

Regarding the timing of the emulation, it is discretized into what I have
called “Emulation Steps” the Emulated System runs for a fixed amount of
cycles, then, it is paused so that the information interchange (both upload
and download) FPGA-computer takes place. When ready, the emulation is
resumed, and the next Emulation Step starts. The number of cycles per
Emulation Step can be configured by the user. It depends on the amount
of information we can store in the FPGA (the size of the buffers), and the
required update frequency of the estimation models that run on the host
computer:

The VPCM keeps track of the number of cycles elapsed and, once it
reaches the predefined number, it freezes the generation of the VCs, and sig-
nals the Emulation Engine Director. This module, then, empties the FPGA
buffers, sending the data to the host computer. After that, it signals back the
VPCM so that it resumes the VC generation. When using the closed-loop
SW estimation models, there is an additional intermediate step, that involves
receiving data in the FPGA from the computer (e.g.: estimated temperatures
for the sensors).

2.2.2. The Statistics Extraction Subsystem

The Statistics Extraction Subsystem extracts information from the Emu-
lated System. The main feature pursued in its design is its transparent inclu-
sion in the basic MPSoC architecture to be evaluated, and with negligible
performance penalty in the overall emulation process. With this purpose, 1
have implemented HW Sniffers that monitor internal signals of the system
cores and the external pinout of each device included in the emulated MP-
SoC. In Figure[2.5] we can see many of these devices (marked as Sniffer 1..4)
attached to the corresponding monitored cores (in a stripped pattern).

All the sniffers are attached to a bus, The Statistics Bus, designed with a
simple arbitration policy that maximizes the bandwidth to collect the data
from the buffers (i.e.: logged data in the internal memory of the sniffers)
without incurring into extra delays or penalties. It also enables to access the
sniffers for control purposes; for example, they accept commands (either from
the user or from the Emulation Engine Director) like enabling/disabling the
collection, resetting the statistics, or changing internal parameters. For a
complete list of commands and actions, refer to Section [2.2.4]

In Figure we can appreciate both the HW Sniffers and the Statistics
Bus, and how they are connected. We can also see the third element that
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Figure 2.7: Details of the structure and connection of a template sniffer.

completes the Statistics Extraction Subsystem: The Statistics Extractor, a
microcontroller in charge of interfacing the sniffers (through the Statistics
Bus) for information (data and control) interchange. The Statistics Extractor
has also a direct connection to the Communications Manager (see link in the
left part of Figure so that it can access the outside world (i.e.: outside
the FPGA). This enables the extraction of statistics to the host PC, and the
reception of information (data and control) from it.

2.2.2.1. HW Sniffers

The HW Shniffers are elements that transparently extract the statistics
from each component of the Emulated System; that is, without interfering,
neither modifying, the normal behaviour of the core under study. From a
design point of view, all the sniffers in the platform share a common struc-
ture (cf. Figure : They have a dedicated interface to capture internal
signals from the module they are monitoring, logic that converts this signal
activity into meaningful statistics, a small local memory (buffer) to store
the statistics, and a connection to my custom Statistics Bus, that allows the
extraction of the logged data.

To create a new sniffer, the designer first needs to define what to monitor
in the component under observation. Templates of sniffers are provided that
cover the most common situations. The templates are VHDL files containing
the interface to the Statistics Bus; i.e., the arbitration and communication
logic is already there so they understand the custom protocol, and, on the
other side (cf. Figure , the interface with the monitored module; i.e.,
sample of code that monitors a signal, and carries out some processing on
it. The designer should put his signals there, instead. Depending on the
type of sniffer we want to instantiate, the referred processing will be just
storing the value of the signal, counting the number of transitions, checking
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for protocol violations, etc. Later, in this section, I provide more detailed
examples. Thus, these templates should be used as a skeleton that has to be
customized depending on the nature of the monitored module.

According to how much information is available from a module, we can
face the following situations:

1. Full VHDL description: The complete code of the core is available.
This is the case, for example, of user-created cores, or when we use
licensable cores with source code access. Being the most favourable
case, we can dig as much as we want into the module internals and
monitor every present signal.

2. Partial access to the core: When using modules developed by third
parties, normally, we only have access to part of the code, or not even
that, if the core ships as a netlist. However, the core designer often
provides an interface to access the internal state, or monitor the events
that occur inside. This characteristic, intended for debugging, profiling,
or synchronization, can be reused for sniffing purposes.

3. Black box model: In some cases, there is no possibility to access the
module (e.g.: the whole core may be encrypted, or provided as a silicon
block). Thus, very little information can be extrated by snooping the
external ports or connections.

Currently, I provide five different templates of sniffers that cover the most
common situations:

1. Event-logging Sniffer: Exhaustively logs all the events, selected by
the designer, that occur in the platform. Logging detailed events means
storing a message such as: “In cycle 24, there was a byte read request
to address 0x8000, of bank 2 of the memory controller”.

2. Event-counting Sniffer: Counting events is creating a summary that
specifies, for example: “this core was accessed 750 times”, or “the me-
mory controller registered 320 reads and 470 writes during this emu-
lation”. They can also account for cache misses, bus transactions, etc.
They generate more concise results than event-logging sniffers, and
what typically designers demand from cycle-accurate simulators to test
their systems.

3. Protocol-checker Sniffer: More intended for debugging, they are
normally used to verify that the operations occur according to the
specification. A bus deadlock detector, for example, will sit on the bus
sniffing all the transactions and emitting error messages whenever a
module enters a deadlock situation.
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4. Resource-utilization Sniffer: Monitors the state of a link, module,
etc. and reports an estimation of how saturated it is. For example,
instantiated inside a network-on-chip, can monitor a router, and report
whenever a channel utilization goes beyond 80 %.

5. Post-processor Sniffer: It is a special type of sniffer, that is always
attached to an event-logging sniffer. It processes the stored data and
converts them into different information. Using the example presented
above, the one with the event-logging sniffer that logs down detailed
memory accesses, a post-processor sniffer could attach to it, and infer
the pattern of how the memory banks are accessed.

The most relevant sniffers in the EP are the event-logging and the event-
counting sniffers. They store the necessary information to enable the power
consumption, temperature, and reliability estimations of the emulated MP-
SoCs. Figure2-8|shows examples of the kind of information that these sniffers
can store.

The experimental results carried out with real-life MPSoC designs (cf.
Chapter |5)) indicate that, practically, an unlimited number of event-counting
and event-logging sniffers can be added to the design without deteriorating at
all the emulation speed. This is one of the advantages of using HW emulation,
where the HW modules work in parallel, in contrast to HW cycle-accurate
simulation systems, that sequentially simulate each of the modules and have
the overhead of synchronizing them all.

The overhead in FPGA area is also quite small. For example, the amount
of resources used by one event-logging sniffer is 14 slices in a Virtex II pro
FPGA, which represents only the 0.1%. For an event-counting sniffer is
about 0.2 % (31 slices). However, in this case, the limiting factor will be the
available onboard BRAM used for the buffers. The average size of the buffers
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is 1IKB, and there are 2MB of BRAM in this FPGA model.

Sniffer Examples

As an example to the reader, in this section I introduce the most signifi-
cant sniffers implemented during the development of the platform.

= Example of event-counting sniffer with partial access to the
core: For temperature monitoring, for example, HW Sniffers can mea-
sure the time that each processor spends in active/stalled/idle mode
at run-time. When studying the PowerPC processors embedded in the
Xilinx FPGAs, we have to take into account that they are physically
implemented in silicon. Following the scheme in Figure 2.7, we see that
many signals from the PowerPC core are sent to the sniffer.

The PowerPC documentation [Xill0c|, describes two sets of signals
intended for execution trace and debugging (enumerated in Figures
and , respectively). By inspecting the debug signal ¢405dbgstopack
and the two trace signals c405trcevenezecutionstatus and c405trcodd-
executionstatus, it is possible to determine the state of the processor
at any cycle; thus, this case falls into the category partial access to the
core. Since it is an event-counting sniffer; I include some logic to do
the precise calculations, and store into the log memory a report with
the number of cycles the processor spent in each state. To simplify
things, for the particular case when the number of activity states is
three: active/stalled /idle, the log memory will be reduced to just three
registers. The first one will contain the number of cycles the processor
spent in the active mode, and the numbers for the stalled and idle
states will be stored in the second and third registers.

In another scenario, the cores instantiated can be protected or encryp-
ted, what means that we should get the information by sniffing from
outside the core. On the other hand, when the full VHDL code of the
module is available to us, we can exhaustively monitor every signal
transition. As an example, in a complex core like the Leon3 [Gaibl,
we can precisely know which floating point units are active, and what
registers are being accessed at every cycle.

= Example of event-logging and event-counting sniffers with full
VHDL description of the core: When dealing with memories, we
normally monitor the memory controller, so that we can observe the
number and type of accesses (read/write, line/word...). In some cases,
by sniffing the local bus interface, where the memory controller is con-
nected, we can get most of the data. Figure 2.11] for example, shows



2.2. The Emulation Engine

/0

Signal If Unused Function
Type

DBGC405EXTBUSHOLDACK 1 0 Indicates the bus controller has given control of
the bus to an external master.

DBGC405DEBUGHALT 1 0 Indicates the external debug logic is placing the
processor in debug halt mode.

DBGC405UNCONDDEBUGEVENT I 0 Indicates the external debug logic is causing an
unconditional debug event.

C405DBGWBFULL O | No Connect | Indicates the PowerPC 405 writeback pipeline
stage is full.

C405DBGWBIAR[0:29] O | No Connect | The address of the current instruction in the
PowerPC 405 writeback pipeline stage.

C405DBGWBCOMPLETE O | No Connect | Indicates the current instruction in the
PowerPC 405 writeback pipeline stage is
completing.

C405DBGMSRWE O | No Connect | Indicates the value of MSR[WE].

C405DBGSTOPACK O | No Connect | Indicates the PowerPC 405 is in debug halt mode.

C405DBGLOADDATAONAPUDBUS O | No Connect | Virtex-4 FX only. Valid load data transferred
between the APU controller and PowerPC 405
core.

Figure 2.9: List of the PowerPC debug signals.

Signal vo If Unused Function
Type
C405TRCTRIGGEREVENTOUT O Wrap to | Indicates a trigger event occurred.
Trigger
Event In
C405TRCTRIGGEREVENTTYPE[0:10] O No Specifies which debug event caused the
Connect | trigger event.
C405TRCCYCLE O No Specifies the trace cycle.
Connect
C405TRCEVENEXECUTIONSTATUS[0:1] O No Specifies the exfecution status collected during
Connect | the first of two processor cycles.
C405TRCODDEXECUTIONSTATUS[0:1] O No Specifies the execution status collected during
Connect | the second of two processor cycles.
C405TRCTRACESTATUS[0:3] (0] No Specifies the trace status.
Connect
TRCC405TRIGGEREVENTIN 1 Wrap to | Indicates a trigger event occurred and that
Trigger | trace status is to be generated.
Event Out
TRCC405TRACEDISABLE 1 0 Disables trace collection and broadcast.

Figure 2.10: List of the PowerPC trace signals.
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Figure 2.11: The OPB BRAM controller.
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Figure 2.12: Temporization of an OPB read data transfer.

the schema of an OPB BRAM memory controller [Xil05], where we
can appreciate the modules it contains, as well as the interface signals.
The controller works as a slave on the OPB side, and a master on the
BRAM side. We are interested on the OPB side. OPB stands for On-
chip Peripheral Bus, and is one of the standard buses (created by IBM)
available in Xilinx tools [Xill0a]. OPB IPIF is the interface adaptor
between the IP and the OPB. The available signals are depicted in the
figure; from them, we can infer if the access was a read or a write (sig-
nal OPB_RNW), the accessed address (signal OPB_ABus[0 : 31]),
etc. Figure shows a read data transfer. The controller is accessed
whenever signal OPB_Select goes high and there is a valid address
in OPB_ABus (i.e., it falls within the module address range). In the
example, signal OPB__RNW is high, indicating that it is a read ac-
cess. One cycle later, signal SIn_xferAck goes high to indicate that
the data is already available in the SIn_ D Bus signal.

While bus-sniffing is enough in the case of a scratchpad memory, for
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complex memory hierarchies more information is needed; specially when
we want to use an event-logging sniffer. In this case, we must monitor
inside the memory controller to snoop the hits, misses, line replace-
ments, or initialization states... In the simplest case, our sniffer will
tell us the number of read and write accesses to the memory, and
two registers will suffice (event-counting). If we want a complete re-
port (event-logging), we will include extra elements to monitor detailed
events, like the cycle number in which a cache line was replaced, or the
data cache was flushed, etc.

= Example of sniffers for interconnects: At the interconnect level
(buses or NoCs), the monitored values can vary from the number of
bus transactions to the number of signals transitions. For packet-based
interconnects, we typically calculate the number of packets interchan-
ged, the average latency, or the packet sizes. The log memory inside
the sniffer will vary according to the decisions taken.

= Example of post-processing sniffer: The sniffers included in the
EP to estimate the power burnt in the cores. Chip manufacturers have
estimations of how much power their cores dissipate in their different
states. Roughly, the idea used to estimate the power dissipated in the
Emulated System is to accurately monitor the states the cores are in,
and add the equivalent power they would be burning in such state
according to the manufacturer specifications. This technique is exten-
sively used in SW cycle-accurate simulators that provide power and
energy numbers. We find many examples in the literature. In Chap-
ter B] I explain in detail the basis, and how this technique was utilized
to create the power model that is included in the SW Libraries for
FEstimation. My first implementation approach did all the calculations
on the computer, post-processing the data received from the FPGA.
Later on, once verified, and due to the simplicity of the process, I de-
cided to integrate the power calculation into the HW. I did this by
creating a post-processing sniffer (I will call it Lookup Sniffer), see Fi-
gure [2.13] that works together with an event-counting sniffer. In this
case, the power consumption of the monitored module is directly cal-
culated inside the sniffer itself. Since it is a function of the switching
activity, the running frequency, and the technology used to build the
component, a lookup table (that depends on the specified technology)
is instantiated into each post-procesing sniffer at synthesis time. The
running frequency and the switching activity are obtained in the asso-
ciated event-counting sniffer and, from that information, every cycle,
the post-processing sniffer will index the power table, and will add the
resulting value to the accumulated power budget, stored into the log
memory.
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Figure 2.13: The Lookup Sniffer, an example of post-processing sniffer.
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The main disadvantage of using this extra sniffer is the need for avai-
lable BRAM to build the lookup tables. Thus, it is up to the designer
choosing to do this task in SW (host PC) or HW (post-processing snif-
fer). If enough BRAM is available, it is recommended to instantiate
the sniffer, since it will benefit the performance (as explained, the po-
wer numbers will be calculated inside the FPGA, relieving the host
computer from this task). Nevertheless, only a small increase in per-
formance was observed, since the FPGA is running at 100 MHz, but
the computer runs at 3.0 GHz, compensating somehow the advantages
of performing the operation in HW.

Another approach is that the sniffer just stores the number of cycles
that the core was active, and at what frequency it was running. The
final power budget is then calculated by multiplying the corresponding
number of cycles by the power consumption constants. Multiplying by
the emulated time we get energy values. While this alternative may save
some memory space, it requires the instantiation of a HW multiplier,
an expensive resource that cannot be included in every sniffer.

2.2.2.2. The Statistics Bus

In Figure [2.14 we can see, all the components of the Statistics Extraction
Subsystem, whose main purpose is to extract statistics from the Emulated
System. To this end, as I explained in Section 2.2.2.1] I created the HW
Sniffers, that can monitor the inspected modules, and log down statistics.
This information, however, needs to be sent to the host computer; otherwise,
the limited buffers of the sniffers would saturate. Here, it comes into the
picture the Statistics Fxtractor, a module in charge of periodically emptying
the buffers, sending these data outside the FPGA. As depicted in Figure[2.14]
the Statistics Frtractor has access to the Communications Manager through
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a dedicated link (arrow on its bottom), and to all the system sniffers thanks
to the Statistics Bus (on its right).

The Statistics Bus connects together all the elements of the Statistics
Extraction Subsystem, allowing the Statistics Extractor to access the system
sniffers for data (statistics) retrieval; information that is then preprocessed by
the Communications Manager, to form packets, and sent outside the FPGA
to the external computer. The host computer processes this information and,
in some cases, it generates new data to be sent back to the FPGA (e.g.:
temperatures, commands). It follows the reverse path and, once inside the
FPGA, it is delivered to its destination (sniffers or sensors) through the
Statistics Bus.

The Statistics Bus is a 32-bit bus designed with a simple arbitration po-
licy: the bus slaves are ordered by priority, with round robin between the
elements with the same priority; In this way, there are no dynamic calcula-
tions that may require extra cycles. It was designed starting from the OPB
specification [Xil10a], part of IBM’s Coreconnect solutions. Borrowing ideas
from the Wishbone, and the AMBA APB buses, the signaling mechanism
was greatly simplified, ripping off the support for advanced error detection,
split transactions (bus parking), and complex arbitration policies.

2.2.2.3. The Statistics Extractor

With all the sniffers connected to the Statistics Bus, a control modu-
le is in charge of accessing them, extracting the statistics, and forwarding
them to the Communications Manager: the Statistics Extractor. It works as
a DMA controller, moving information (both data and control commands)
from the different elements attached to the bus (see Figure 2.14), to the
Communications Manager, and viceversa.

Figure depicts a special type of modules (a couple of them, on the
bottom-right corner, painted in dark grey): the sensors. Although they are
part of the Emulated System, as I explained in Section being mode-
led components implies that we need to provide them the data traces that
they present as “sensor reads”. The Statistics Bus is the perfect medium for
this task, since the data, that enter the FPGA through the Communications
Manager, can be forwarded by the Statistics Fxtractor into the sensors, follo-
wing the opposite path to that of the statistics; Thus, in the EP, the modeled
sensors have an interface to the Statistics Bus and the Statistics Extractor
has extended functionality to handle the data addressed to them.

2.2.3. The Communications Manager

This element enables a bidirectional link between the FPGA and the host
computer. A schematic view of the connection can be observed in Figure[2.15
This link serves two purposes: First, it enables the data interchange between
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Figure 2.14: The complete Statistics Extraction Subsystem (with sensors).

the Emulation Engine and the SW Libraries for Estimation; second, it makes
possible to control the EP from the computer. The only implementation
requirement is the existence of a medium that physically communicates the
FPGA and the computer. It can be a serial port, a JTAG connection, a PCI
slot, an Ethernet connection, or a dedicated slot, to cite some examples; in
fact, it can be a combination of connections. The bandwidth and lag of the
communication will vary according to the type of connection used.

Regarding the different control actions that we can issue to the EP, 1
have divided them into four main categories:

1. Download a new Emulated System to the platform.

2. Control the evolution of the emulation: start, stop, pause, resume, reset
and set the Emulation Step.

3. Manage the Statistics Extraction Subsystem: enable/disable the collec-
tion of data, initialize, reset, retrieve the statistics and feed data into
the sensors.

4. Debug the processors (on-chip debugging): change the code, start, stop,
trace execution and inspect internal registers.
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Figure 2.15: Bidirectional communication FPGA-computer.

My preferred method to implement the Communications Manager (for
data and control) was a JTAG + Ethernet solution. To perform tasks 1 and
4, T used the JTAG connection, through the API provided by Xilinx. To this
end, T developped some scripts to automate the processes and ease the user
interaction. Tasks 2 and 3 were first implemented with a serial port. A simple
and cheap solution, fast enough for this kind of flow control, since the volume
of information interchanged is very little. Later on, since I added an Ethernet
connection for the data interchange with the SW Libraries for Estimation, 1
decided to embed this control commands into the Ethernet frames to simplify
the connections and reduce the number of cables. In order to deal with
the particular characteristics of this packet-based communication system,
I implemented a dedicated module called the Network Dispatcher, that is
described in the next section.

2.2.3.1. The Network Dispatcher

As explained, my preferred implementation of the Communications Ma-
nager uses a standard Ethernet connection. The main advantage of this so-
lution is that a crossed Ethernet cable (with rj45 connectors) is enough to
connect both elements (FPGA and computer), being cheap and easy to inter-
face with any standard PC host computer. The Network Dispatcher handles
the low level details of the communication. Thus, from the point of view of a
module that wants to exchange information, it only has to place it in an in-
termediate buffer, and signal the Network Dispatcher; similarly, the module
will be signaled when new data arrive, so it can directly retrieve them from
the reception buffer.

The implementation of the Network Dispatcher relies on the Ethernet-
Lite component, provided by Xilinx. Its operation is controlled from a Micro-
blaze, an embedded microcontroller that also has access to a BRAM block
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Figure 2.17: Format of an Ethernet data frame.

for buffering data. All the elements are interconnected through a PLB bus
[Xil10B]. A schematic view can be observed in Figure

Regarding the transit of packets, since the Ethernet standard limits the
maximum size of a datagram, when data is sent from the FPGA to the host
computer, they are transparently processed by my Network Dispatcher that
automatically splits the data into packets. In the same way, when packets are
received from the host PC, the Network Dispatcher transparently reassembles
them in an intermediate buffer so that the control processor can deliver
it to the final destination. Figure shows the structure of an Ethernet
frame, where Destination Address and Source Address is filled with the host
computer and the FPGA MAC addresses, respectively, for the packets sent
from the FPGA (outgoing packets), while the incoming packets swap these
values. Observe that the data field may vary from 0 to 1,500 bytes in length.

The structure of the packets inside the data field of the Ethernet frame
follows my own custom format. I call these packets EP packets, to differen-
tiate them from the Ethernet frames. Figure shows this encapsulation.

Inside an EP packet, the meaning of the data is implicit, and given by
their position inside the packet. Figure details the structure of the two
types of EP packets, data and control: As shown, they do not have header;
instead, the data to be transmitted directly start in the first place, followed
by a termination tail, that contains flow control bits, error detection informa-
tion, and the control commands. More in detail: A simple Ack-based control
flow is embedded into the packets (Sequence Number field) that checks the
sequence number of the last packet received. The Conitrol field contains com-
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Figure 2.19: The two types of EP packets: data and control.

mands to be executed, or information of the state of the emulation. The last
byte of the packets contains a flag (Flag Finished field) to indicate when a
packet is the last of a fragmented datagram, and also to signal the end of
the emulation.

As depicted in Figure the lenght of the tail is always fixed (9 bytes)
and present for the two possible types of EP packets (data and control).
Note that a control packet is a particular case of data packet with no data
fields. Control information (the tail) is always transmitted. Together with
the data, all the information can not surpass the 1,500 bytes limit of the
Ethernet container; bigger packets will be fragmented. Figure shows
two practical examples:

The first example, the outgoing packet, contains 1,491 bytes of statistics,
the maximum that fits into one EP packet: 1,491 data bytes + 9 control bytes
= 1,500 bytes. The second example represents the case for bigger packets.
In particular, it is an incoming packet received in the FPGA containing
temperatures. The size of the payload is bigger than 1,491 bytes; thus, it has
been split into two EP packets (that will be, later on, encapsulated into two
Ethernet frames).

Regarding the data packaging, as shown in both the statistics and tem-
perature EP packets of Figure[2.20] the first data field is concatenated to the
second one, the second one to the third one, and so on... This is possible since
both the sender and the receiver of the packet, i.e., the Emulation Engine
and the host computer, have the required information to decode it; that is,
the packet structures are defined by the system designer before starting the
emulation. They depend, of course, on the number of cells the floorplan has
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Figure 2.21: Example of EP packet containing the statistics from two sniffers:
the first one with three 16-bit registers and the second one with two 32-bit
registers.

been divided into (see Chapter , the number of sniffers instantiated, the
type of the information extracted, etc. For a statistics packet, we can decide,
for example, to send the statistic data from the processor X (Sniffer0) in the
first place, followed by the statistic data from the memory Y (Snifferl). If
the first one contains three 16-bit registers, and the second one two 32-bit
registers, the resulting packet would be like the one in Figure 2.21] Similarly,
the structure of the incoming (temperatures) packet should be defined.
Additionally, I have implemented the possibility to wrap the EP packets
into standard TCP/IP frames, with the whole IPv4 header. It allows for the
broadcasting, inside a network, of the data collected. However, as explained,
since I am using a point-to-point connection, I can directly send Medium Ac-
cess Control (MAC) packets. This option is normally prefered, for it removes
the extra overhead introduced by the IP layer. Figure shows this new
encapsulation scheme including the IP header, whose fields are detailed in

Figure
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Figure 2.22: Frame encapsulation with the IP layer included.
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Figure 2.23: IP datagram header structure.
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Figure 2.24: The Emulation Engine Director, coordinator of the Emulation
Engine.

2.2.4. The Emulation Engine Director

Through the previous sections, I have explained the function of the Sta-
tistics Extraction Subsystem, the Communications Manager and the VPCM.
In the normal operation flow, the VPCM clocks the Emulated System while,
at the same time, statistics are being extracted by the Statistics Extraction
Subsystem, and processed by the Communications Manager to generate pac-
kets and send them to the host computer. From the PC, I can also receive
information that needs to be fed back into the Emulated System.

In this scenario, with multiple modules exchanging information, it is ne-
cessary the inclusion of a new element, that I have called the Emulation En-
gine Director, that links together the Statistics Extraction Subsystem, the
Communications Manager and the VPCM. These three elements appear in a
striped pattern in Figure[2.24] connected to the Emulation Engine Director,
that sits in the middle of the picture.

At run-time, the Emulation Engine Director continously receives events,
and must generate a response that requires to coordinate one or more of
the Emulation Engine components. Table shows the control commands
that can be issued to the EP: Some of them allow us to control the general
evolution of the emulation, like start, stop, reset, resume and set emula-
tion step, while some others are specific to manage the Statistics Extraction
Subsystem, like enable/disable/reset the collection of data. This last three
commands can be issued either globally, or on a per-sniffer basis; i.e., we can
enable, disable or reset the statistics of one specific sniffer, or all of them.

We classify the events that the Emulation Engine Director receives ac-
cording to the source that originates them:
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Table 2.1: Emulation control commands.

] COMMAND \ DESCRIPTION
Start Starts the emulation
Stop Pauses the emulation
Reset Restarts the emulation from the beginning
Resume Continues with the emulation
Set emulation step <n> | Specifies the number of cycles as <n>
Enable <i> The sniffer <i> will log down all the statistics
Disable <i> The sniffer <i> stops gathering statistics
Retrieve <i> The statistics from the sniffer <i> are sent to the
host computer
Initialize <i> Resets the buffer of sniffer <i>
Feed sensor <i> Puts the given data into a sensor

1. External events: At any point of the emulation, from the host compu-
ter, the EP user can issue any of the control commands in Table
with the purpose to experiment with the platform, debug it, or verify
a specific part of the system.

2. Internal events: The members of the Emulation Engine signal events
that require the intervention of the Emulation Engine Director, like the
saturation of the FPGA-PC connection, or when a bottleneck appears
in the Statistics Extraction Subsystem during the download /upload of
data (e.g.: the extracted statistics or the estimated temperatures). The
expiration of the Emulation Step, for example, is also considered an
internal event, since no user interaction occurs.

Whenever an event arrives, the Emulation Engine Director must react
accordingly. For example, it must stop the emulation in case of congestion of
the Communications Manager; this operacion implies instructing the VPCM
to stop the Virtual Clock of all or part of the components in the emula-
ted MPSoC, and report the pause to the host computer, wich requires the
Communications Manager. Table [2.2] describes all the actions and responses,
along with the components involved.

At this point, the specification of the different components of the Emu-
lation Engine (cf. Figure 2.3|for a high level view of the system) is complete.
In the next section, I describe the implementation details.

2.2.5. The Complete Emulation Engine implementation

This section describes my particular implementation of the Emulation
Engine, including some refinements aimed at optimizing the mapping into
an FPGA. For example, conceptually, both the Network Dispatcher (Figu-
re and the Statistics Extraction Subsystem (Figure are indepen-
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Figure 2.25: Implementation details of the Emulation Engine.
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dent entities. However, from the implementation point of view, they both
consist of a uController that coordinates the operation of some modules;
therefore, we can merge both subsystems into one, saving one uController.
This is possible because the utilization of the processor is very low: As sta-
ted in the previous sections, the uControllers used, typically perform syn-
chronization tasks (exchange of simple commands/signals) or data-moving
operations, that can be offloaded to a DMA controller.

After a thorough refinement of the system, the final implementation (Fi-
gure contains only one uController, that directs the statistics extrac-
tion, controls the VPCM, and manages the communications with the host
PC. T have, on the other hand, split the system bus into two different buses
(shown in the figure as “LOCAL BUS” and “ETH BUS”), to separate the
Ethernet traffic so that the packets can be processed concurrently, while I
am, for example, retrieving statistics.

Algorithm [1] shows the pseudocode of the application that runs on the
uController. The Main Program initializes the emulation parameters with
the call to startEmulation() and, then, enters the main loop (while not
flag _emulation_ completed do) that performs the periodic extraction of sta-
tistics: it waits until the Emulation Step is completed, retrieves the statistics
from all the sniffers with collectStatistics(), and sends them to the host com-
puter with sendEthernetPacket(stat). After that, the emulation iterates for
another Emulation Step, and the same set of operations occur.

Asynchronous events like the reception of information from the computer
(commands for the sniffers, data for the sensors, or general commands to
control the emulation) are handled by the associated interrupt handlers.
Internal events, like the saturation of the Ethernet buffer, also trigger an
interrupt, so that the uController sends the appropriate commands (to the
VPCM) to freeze and resume the emulation, or (to the Communications
Manager) to report the situation to the host computer. Table lists the
possible events together with the action they trigger.

Algorithm 1: Main Program

start Emulation()
while not flag emulation completed do
wait _until(emulation _step completed)
fori=1to NUM_ SNIFFERS do
stat = collectStatistics(7)
sendEthernetPacket(stat)
end for
end while
stopEmulation()
exit()
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Table 2.2: Emulation events and corresponding actious.

7 EVENT TARGET COMPONENT 7 ACTION

start _emulation VPCM Generate the VC

statistics Activate sniffers log
stop__emulation VPCM Stop the VC generation
reset _emulation VPCM Stop the VC generation

VPCM Reset the Emulated System
resume__emulation VPCM Resume the VC generation
set _emulation __step VPCM Set the number of cycles for the Emulation Step
enable _statistics statistics Activates the logging of statistics
disable _statistics statistics Stops the logging of statistics
retrieve_statistics statistics Extract statistics from target sniffers

communications Send statistics to host computer
reset_statistics statistics Initialize sniffer buffers containing the statistics
feed sensor statistics Put received data into the target sensors
emulation _step _expired VPCM Stop the VC

communications Signal the computer
ethernet _buf fer full VPCM Stop the VC

communications Signal the computer
ethernet _buffer emptied | VPCM Resume the VC generation
error_incorrect _data communications Signal the computer
error__communication_lost | communications Signal the computer

For short, T use “VPCM” for the Virtual Platform Clock Manager, “statistics” for the Statistics Extraction Subsystem, and
“communication” for the Communications Manager.
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2.3. Conclusions

This chapter has been dedicated to describe in detail the HW part of
the EP, namely, the part that is mapped onto the FPGA, composed by the
Emulated System and the Emulation Engine.

Regarding the Emulated System, 1 have described the type of systems
that can be instantiated, the different components that can be used (eit-
her fully specified or virtual ones), and I have emphasized the difference
between HW prototyping and HW emulation. Next, I have explained in de-
tail the internals of the Emulation Engine, with the different elements that
form its architecture: the VPCM, the Statistics Extraction Subsystem, the
Communications Manager, and the Emulation Engine Director; dedicating
special attention to the HW Sniffers, the key component of the emulation.
To conclude, I have shown an overview of the final system implementation.

In the next chapter, I describe the SW Libraries for Estimation that run
on the host PC, and interact with the FPGA, calculating different values of
interest.






Chapter 3

The SW Estimation Models

In the previous chapter, I described in detail the HW components of the
platform; mapped into the FPGA, the Emulated System runs normally whi-
le, at the same time, the Emulation Engine controls the emulation, extracts
statistics, and sends them to the host computer (see Figure. This chapter
focuses on how this information is processed in the PC: From the simplest
option, that consists on logging down all the information and present a re-
port once the emulation is finished, to more advanced mechanisms like, for
example, estimating the reliability of the system, and returning this infor-
mation to the FPGA so that the Emulated System can elaborate a balancing
policy to extend the life span of its components.

A set of configurable SW libraries, implemented in C++, runs on a ge-
neral purpose computer and is in charge of the data manipulation. As input,
they receive the run-time statistics from the Emulated System. As output,
they calculate power, temperatures, reliability numbers, etc. of the final MP-
SoC. Through the following sections, I detail the process of how this input
is converted into output using advanced mathematical models.

Regarding the way that these libraries interact with the FPGA, in the
flow, the emulation runs for a predefined number of cycles (Emulation Step)
and, then, the gathered statistics are retrieved from the FPGA buffers, and
sent to the host computer. After that, the emulation is resumed for the next
Emulation Step. The buffers, thus, must be dimensioned according to the size
of the Emulation Step, since the Emulation Engine has to regularly empty
them to avoid overflows. If we are, for example, logging down the number of
read accesses to a memory, and we decide to use a 32-bit register to store
them, a quick calculation tells us the maximum number of accesses (one per
cycle, in a single-ported memory) per Emulation Step that we can store (232)
and, therefore, the maximum size (in number of cycles) of the Emulation
Step. Both values (the size of the buffers and the size of the Emulation Step)
are user-configurable, and the designer is responsible for assigning correct
values.

51



52 CHAPTER 3. The SW Estimation Models

At this point, I should emphasize the fact that we are emulating a system
(see Section ; that is, the system whose behaviour we are evaluating
(Emulated System) is mapped into the FPGA so that we can get statistics
from it much faster than using a SW architectural simulator. However, the
FPGA is not the target device. Therefore, the different values we estima-
te (power, temperature, reliability...) belong to the final implementation of
the system: a silicon chip manufactured with a specific process technology,
following the VLSI fabrication flow.

3.1. System statistics

The starting point for all the subsequent calculations made in this chap-
ter are the System Statistics. I have given this name to all the information
collected from the Emulated System at run-time, that is identical to that of
the final chip, whose behaviour is being emulated. In the case of the SW
simulators, it is clear: if we simulate the behaviour of an MPSoC architec-
ture, the voltage of the Simulated System is not the voltage of the Pentium
Core that is running the simulation. Similarly, when emulating the system
in an FPGA, the voltage measured by the sniffer will be read from the vol-
tage regulator present in the Emulated System, that is not the real voltage
at wich the FPGA is operating, because the voltage regulators are modeled
components, see Section [2.1.2]

The System Statistics comprise the current frequency and voltages of the
system, as well as the Activity Statistics: an exhaustive log of all interesting
events that occur in the platform, collected at run-time by the HW Sniffers
that monitor the signals of the system cores every cycle (see Chapter
Section for details). Examples of such Activity Statistics are provided
in the next section (Section [3.2).

These System Statistics are extracted to a host computer through a com-
munications port. The raw data that arrive from the FPGA uses a custom
format that has the form of a series of numbers concatenated together, wit-
hout separators. The meaning is implicit, and given by the position of the
number inside the statistics packet. In this way, we minimize the amount of
data interchanged. We may receive, for example, a string of numbers where
the first one (the first 64 bits) represents the number of accesses to memory
X, the second one the transactions in bus Y, and so on. All the numbers will
come concatenated into one single string that contains all the detailed infor-
mation. The data format is configured, before starting the emulation, at both
ends of the communication (the FPGA and the SW Libraries for Estima-
tion), and depends on the characteristics of the Emulated System (number
of cores, number of sniffers, size and shape of the floorplan, etc.). In Sec-
tion I provided details and examples of the format of these packets.

By using the adecuate scripts, we can process the data that arrive to the
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PC and generate accurate reports to track the different events that occurred
during the emulation: cache misses, bus transactions, memory accesses, core
states, resource-utilization reports, etc. This is the kind of information used
as input by the SW Libraries for Estimation. In the following sections, I
show how to use this information to calculate different system figures.

3.2. Power estimation

Chip manufacturers characterize the power consumption of the different
elements of an MPSoC. Depending on the characteristics of the IP core,
they may provide average power consumption, min/max values (based on
the core activity), or detailed power states (sleep/active modes). These va-
lues depend on parameters, such as the implementation technology, the run-
ning frequency, the voltage, or the current temperature, so they normally
come indicated in tables that we can index with the actual parameters. If
we put this together with the fact that, in the Emulation Platform (EP),
thanks to the sniffers, we can exhaustively log all the events that occur,
from switching activity to high-level events (e.g. cache misses, bus transac-
tions, memory accesses), generating power numbers from these data is pretty
straight forward. Thus, I developed a C++ library that estimates the power
burnt in the Emaulated System performing the aforementioned calculations;
it is called the Power Estimation Model.

Figure describes the interface of the Power Fstimation Model: As
inputs, it receives the System Statistics (from either a predefined trace or
from the FPGA), along with the temperature of each element under obser-
vation (coming from a predefined trace, or from the Thermal Model output;
see Section ; As output, the model calculates the power consumption of
each system element. In order to do all the calculations, first, the user needs
to configure the Power Estimation Model, providing some information about
the Emulated System. 1 distinguish, then, two types of input parameters; Fi-
gure depicts, on the left side of the Power Estimation Model (the square
box), the parameters specified at compile time, whereas the ones specified at
run-time come from the upper part. I use this format throughout the series
of figures that describe the interfaces of the SW models.

The Power Estimation Model needs then the following information:

1. At compile time: The definition of all the components of the sys-
tem; expressed as the power and leakage tables characterizing them
(technology-dependent).

2. At run-time: The current temperatures of the different system ele-
ments, as well as the System Statistics: frequency and voltage of the
elements of the system, plus the Activity Statistics, indicating the sta-
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Figure 3.1: Interface of the Power Estimation Model.

tes of the cores (number of accesses to the resources, bus congestion,
etc.).

I next present the details of the library and, for clarification, I illustrate
with a design example the whole process to estimate the power of an Emu-
lated System. For each aspect, first I describe the general case and, then,
proceed to focus on the particular example.

First of all, I define what I have called the components of the system. I
use this word to refer to the multiple pieces in which I divide the Emulated
System. Each of the components is an independent entity defined by a set of
properties: temperature, frequency, voltage, and Activity Statistics, as well as
its power consumption. Figure depicts the floorplan of a multi-processor
system with four ARMI11 processing cores and NoC-based interconnect. We
differentiate twenty-nine components, grouped into five types of components:
the ARM11 cores, the caches (data or instructions), the memories (private
or shared), the network interfaces, and the switches. Note that the ARM11
core is quite a big element on itself, so we could have increased the resolution
of the system, dividing each ARM11 core into smaller components, such
as the integer register file, ALU unit, and so on. In such a situation, we
could calculate the power consumption of the different parts of the ARMI1
cores; as the counterpart, we would also need to provide more information
(statistics), since the ARMI11 components would be now divided into many
different components.

The size of the components used during an emulation is fixed by the user
and, sometimes, limited by the amount of information that the manufacturer
provides about the current components used in the design. Something that
helps to soften this inconvenience is the fact that the EP does not specify
any fixed size for the components employed, nor does it set a global cons-
train on the size ratios among components; they can have any size. This is
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Figure 3.2: MPSoC floorplan with 4 ARM11 cores, several memories, and a
NoC-based interconnect containing switches and NoC interfaces (NIs).

specially advantageous, for instance, in the case where we only want to study
a part of the chip, for we do not need to model all the components with the
highest level of accuracy. In order to keep the example simple, I stick to the
components represented in the Figure [3.2

Before starting the emulation, we must characterize all the different ty-
pes of monitored components in the system, using the information obtained
from the manufacturer (datasheet), third parties, or profiling tools. Follo-
wing with the example of the ARM11-bagsed system, Table outlines the
power consumption of the components present in the evaluated MPSoC; It
indicates the maximum power numbers (peak power) for each component
as worst, case, but the effective power can normally be lower, depending on
the workload (activities of processors and memories), and can be given as
an input by the designer for his particular design. The values have been de-
rived from industrial power models for a 0.13 pm technology, assuming the
temperature remains stable around 333 Kelvin.

For the sake of simplicity, two assumptions have been made in this par-
ticular example: First, a stable temperature during the emulation process is
assumed, which takes out one dimension of the table. The power consump-
tion depends on the system temperature; thus, in the general case, when the
thermal variance is bigger, the temperature is an extra parameter that af-
fects the calculations and, therefore, the corresponding table would have one
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Table 3.1: Power consumption of the components of the MPSoC example
from Figure implemented with a 0.13 pm bulk CMOS technology, and
working at 333 Kelvin.

Max. Power Max. Power
MPSoC Component (at 100 MHz) (at 500 MHz)

ON \ OFF ON \ OFF
RISC 32-ARM11 300mW | 80mW 1.5W 140mW
Cache 8kB (ARM11) 142mW 0 710mW 0
Memory 32kB 55mW 0 275mW 0
NoC switch (6x6-32b) 56mW 0 257TmW 0
NoC network interface | 23mW 0 128mW 0

more dimension, to account for different temperature conditions. Second, the
voltage scales with the frequency, which removes another dimension of the
table. Thus, although I do not show it explicitly, the voltage effects are taken
into account, since the power reduction obtained with the frequency scaling
is thanks to voltage scaling. When the voltage does not scale jointly with
the frequency, another dimension is required in the table. Together, these
two simplifications allow us to greatly reduce the complexity of the example:
Instead of having a table with five dimensions (the type of component, and
its state, temperature, frequency, and voltage), we reduced it to have only
three (the type of component, its state, and its frequency-voltage).

Additionally, in the power calculations we must take into account lea-
kage. The leakage current contributes with a percentage to the total power
consumption of a system, according to the characteristics of the emulated cir-
cuit. It can be specified at run-time, for this parameter may vary depending
on the type of component, its temperature, voltage, frequency, and/or acti-
vity, or may be assumed constant through the entire emulation. In any case,
for generalization, I calculate it using a Leakage Table that, indexed with
the type of component and its run-time parameters, returns the percentage
of leakage to use in the current context.

In this particular example, I set the leakage to be 5% of the total po-
wer consumption, for each component and working conditions. This figure
actually corresponds to the indications of the International Technology Road-
mayp for Semiconductors (ITRS) [biba] for low-standby power systems in 0.13
p with supply voltage of 1.2-1.3V. Therefore, the Leakage Table contains the
same value (5%) in all entries.

In order to apply the values from the Power Table (Table and the
Leakage Table to obtain the power consumption of our system, we abstract
the elements of the Emulated System as state machines that, at a given cycle,
are in a determined “power state”. I next present some practical cases to help
understand the procedure:



3.2. Power estimation 57

= The core can be either active or idle: In the simplest case, the core
only consumes power in the cycles when it is ON. In a more general
case, we are given two values: the power consumption when it is ON
(active), and the power consumption when it is OFF (idling).

» The core performs accesses/operations: The memories, for ins-
tance, burn a different amount of power if accessed for reading or for
writting. The buses also consume different if they perform a single
operation, or a burst transaction. Therefore, we differentiate power
states such as: initiating-transaction, performing-transaction, finishing-
transaction... in the case of the buses, and tag-read, line-read, line-
written, word-written... in the case of the memories.

= The core executes instructions: A processor power profile, for
example, may depend on the type of instruction it is executing at
a given cycle. The core could, thus, be in the state: executing-add-
intruction, executing-nop-instruction, and so on.

The accuracy of the power estimations depends on how we model our
system elements; For a given processor, for instance, we could use two models:
one that sees the processor as a two-state machine that is either in the
WORKING or IDLE state, or another one that sees up to thirty two different
states, depending on the instruction being executed. Generally, the second
one will offer more accuracy. In the same fashion, the smaller the elements
(more granularity), the greater the accuracy: Intuitively, at certain instant,
saying “my processor is ON” is less detailed than saying: “the register file of
my processor is ON, while the ALU unit is OFF”; Note that, in both cases,
the more accuracy we want, the more data we need to provide to the power
model as inputs (either we gather more statistics for the same component,
or we gather statistics for more components).

In our example of Figure I decide, for instance, to monitor only
the ARMI11 cores and the local cache memories (instructions and data).
The processors can run at 100 or 500 Mhz and be into two possible states:
WORKING or IDLE. The memories always run at a fixed frequency (100
Mhz) and only consume power when being active.

At this point, the components to be monitored are fully specified; which
means that we know the power states they can be in, and the power they
consume in each of them. Putting this information together with the statis-
tics we get from the EP at run-time (our Emulated System knows, thanks
to the sniffers, the running frequency of each of the cores, and if they are
active or not), we calculate the power consumed in the emulated circuit. In
order to do these calculations, at compile time, several lookup tables must
be generated, one per type of component, characterizing their power con-
sumption. Such tables, are multidimensional arrays with four dimensions:
state, temperature, frequency, and voltage; even though, in simple cases, one
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Table 3.2: Power table for the ARM]11 core.

100 MHz | 500 MHz
WORKING 300mW 1.5W
IDLE 80mW 140mW

Table 3.3: Power table for the cache memory.

ON 142mW
OFF OmW

or more dimensions could be missing. In our example, for instance, before
starting the emulation, we create two power tables: Table 3.2] associated to
the processors, that can be indexed with the current frequency, and state of
the core, and Table indexed only with the memory state.

At run-time, the actual parameters index these tables, thus they are
translated into a power number.

Inside the EP, the sniffer associated to the ARMI11 core will be able to
determine when it is active or idle and, will know, as well, its current fre-
quency (fixed during each Emulation Step). This information is logged down
and sent to the host computer, where it is fed into the Power Estimation
Model that contains a simple power table with two values: the ARM11 power
consumption per cycle at 100MHz, and at 500MHz. From that information,
every cycle, the program indexes the power table, and adds the resulting
value to the accumulated power burnt. In the case of the cache memories,
the addition is only performed in the cycles they were ON.

Algorithm [2] represents, in pseudocode, the operation of estimating the
power consumption for a component of the MPSoC in one Emulation Step.
In this implementation of my model, the power consumption is calculated
incrementally, in small Emulation Steps. During each Emulation Step, the
temperature is assumed constant (as well as the frequency and voltage).
This is specially useful when using together the power and thermal models,
since the power consumed and the temperature of the system depend one
on another. Performing the calculations in small steps, we can generate a
discrete function that represents the evolution of the power consumption
along time; i.e., time in the x axis, and power in the y axis.

The inputs of the algorithm specified at compile time (i.e., the Power and
Leakage Tables) depend on the Emulated System. Thus, the notation TA-
BLE componentTypel... Table[temperature, frequency, voltage, state] denotes
a static table with all the required information, that returns the Power/-
Leakage of an element when indexed with the four parameters. As run-time
inputs; i.e., the parameters of the function, in addition to a component refe-
rence, the algorithm receives two vectors, containing the gathered statistics
(systemstatistics) and the temperatures (systemtemperatures) of the system,
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Algorithm 2: estimateComponentPower(component, systemstatistics,
systemtemperatures)

Constants:
TABLE compTypelPowerTable[temperature, frequency, voltage, state]
TABLE compTypelLeakageTable[temperature, frequency, voltage, state]
TABLE compType2PowerTable[temperature, frequency, voltage, state]
TABLE compType2LeakageTable[temperature, frequency, voltage, state]

TABLE compTypeiPowerTable[temperature, frequency, voltage, state]

TABLE compTypeiLeakageTable[temperature, frequency, voltage, state]
Program:

temp < systemtemperatures[component.id]

freq < systemstatistics[component.id|.frequency

volt < systemstatistics|component.id].voltage

activitystat <— systemstatistics|component.id].activity

power < O

switch component.type do

case ComponentTypel
for each state in activitystat do

partialpower < componentTypelPowerTable[temp, freq, volt, state| *
activitystat|state].numcycles

partialleakage <— compTypelLeakageTable[temp, freq, volt, state]
power «— power + partialpower * (1 + partialleakage)

end for
ase ComponentType2
for each state in activitystat do

partialpower <— compType2PowerTable|[temp, freq, volt, state| *
activitystat|state|.numcycles

partialleakage <— compType2LeakageTable|[temp, freq, volt, state]
power <— power + partialpower * (1 4 partialleakage)

end for
case ComponentType3

<]

endsw
return power
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for the current Emulation Step.

Regarding the algorithm itself, first, for clarification, we put the tem-
perature, frequency, voltage, and Activity Statistics of the component into
temporary variables. Then, we differentiate cases depending on the type of
the evaluated component, in order to use its particular power and leakage
tables.

The power consumption of the component is calculated as a linear com-
bination of the contribution of each of the states it was through; i.e., time
spent in each state, multiplied by the power consumption in such state. The
calculation is simple (switch block inside Algorithm): for each state the com-
ponent was in, the power table is indexed with the component’s temperature,
frequency, voltage, and its state, to get a value that is then multiplied by the
time (in number of cycles) spent in that particular state. This partial sum
will be corrected to account for the leakage (a percentage obtained using
the corresponding componentTypeiLeakage Table table), and accumulated to
yield the total power consumption of that component during the current
Emulation Step.

In order to profile the complete power consumption of the whole Emulated
System during an emulation, for each Emulation Step we must obtain the
System Statistics and temperatures and call Algorithm ] as many times as
the number of components the system is divided in. Algorithm [3] shows the
aspect of the main program, where we assume the existence of a function
called getEmulationData that updates the variables that contain the System
Statistics and temperatures to reflect those of the latest Emulation Step.
Such values may come directly from the emulation, or from a pre-recorded
trace.

Algorithm 3: obtainSystemPowerProfile()
for each Emulation Step do
getEmulationData(systemstatistics, systemtemperatures)
for each component in the Emulated System do
estimateComponentPower(component, systemstatistics,
systemtemperatures)
end for
end for

Algorithm 4] is the particularization of Algorithm [2] for the ARM11 MP-
SoC, where we only model two types of elements: the ARMI11 core and the
cache memories. The statistics (activitystatistics) contain, for each processor,
the number of cycles it was ON and IDLE, and the frequency of operation.
The memories always run at a fixed frequency and only consume power when
being active; thus, we just need to know the power per cycle consumption
when they are ON. The resulting tables, ARM11PowerTable and CacheMe-
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Algorithm 4: estimateComponentPowerExample(component, sys-
temstatistics, systemtemperatures)

Constants:
TABLE ARM11PowerTable|frequency, state]
TABLE ARM11LeakageTable|]
TABLE CacheMemoryPowerTable|state|
TABLE CacheMemoryLeakageTable|]
Program:
freq < systemstatistics[component.id|.frequency
activitystat <— systemstatistics|component.id|.activity
power < 0
switch component.type do
case ARM11
for each state in activitystat do
partialpower <~ ARM11PowerTable[freq, state] *
activitystat|state|.numcycles
partialleakage <~ ARM11LeakageTable]]
power < power + partialpower * (1 + partialleakage)
end for
case CacheMemory
for each state in activitystat do
partialpower <— CacheMemoryPowerTable[state] *
activitystat|state].numcycles
partialleakage <— CacheMemoryLeakageTable]|
power «— power + partialpower * (1 + partialleakage)
end for

endsw
return power
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Figure 3.3: Thermal map generated with the thermal library.

moryPowerTable, are depicted in Tables and respectively.

As T mentioned in Section 2:2.:271] since this particular estimation is
really simple for the case when the temperature is stable, we can embed
this functionality into a post-processing sniffer. The lookup table (PowerTa-
ble -+ LeakageTable) is then instantiated into the post-procesing sniffers at
synthesis time (depending on the specified technology). As in the previous
case, the event-counting sniffers that monitor the cores log down when their
associated cores are active or not, and their current frequencies. However,
the post-processing sniffers are now who receive this information, and index
the power and leakage tables, storing power values into their internal log
memory, so that the computer directly receives power numbers.

3.3. 2D thermal modeling

In the previous section, the procedure of translating statistics into power
numbers was shown. Now, from the power numbers I will calculate tempe-
ratures. The idea is to characterize the thermal behaviour of the system so
that, for any particular moment, we can provide a detailed thermal map,
like the one depicted in Figure|3.3] where we can clearly appreciate the hots-
pots of the Emulated System under observation. Calculating temperatures is
slightly more complicated than calculating power, for it depends on spatial
characteristics; e.g., the location of a particular element in the floorplan.

In order to perform all the temperature calculations, the thermal library
needs to know:

1. At compile time: The size and placement of all the components of the
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Figure 3.4: Interface of the Thermal Model.

system (i.e., floorplan layout), technology and packaging information.

2. At run-time: The power consumption of the system elements, that
depends on the frequency, voltage, temperature, and activity.

Figure [3.4] shows the inputs and outputs of the Thermal Model. 1t esti-
mates temperatures based on the power consumption but, at the same time,
the power consumption depends on the current temperature (mainly due to
the leakage current); observe the feedback loop depicted in the figure as a
dashed arrow.

In order to accurately model thermal on-chip effects, a closed-loop system
like the one described is mandatory, where both the power and thermal mo-
dels work together, and depend one on another. For this reason, similarly to
the power model, the temperatures are calculated in small Emulation Steps;
i.e., the emulation time is discretized, so that a call to the Thermal Model
returns the temperature at moment i. Since the temperature at moment i+1
depends on the temperature at moment i, the calculated temperature is fed
back again as input, for the next iteration.

The main implication of this closed loop is that, opposed to the power
model, where the Emulation Step is only constrained by the size of the buffers
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of the sniffers (we have to regularly empty them to avoid overflows), in the
Thermal Model, if the Emulation Step is too big, the temperatures will not
converge. Since the calculated temperatures are assumed constant during
each Emulation Step, the Emulation Step size determines the accuracy of
the estimations.

Regarging the library structure, like the rest of the EP, it has been im-
plemented in a modular way, so that the different elements are independent
and can be plugged /unplugged as required. This feature makes possible to
use third-party thermal libraries (instead of this Thermal Model) to estimate
the on-chip temperatures, as long as the interface (see Figure remains
unchanged. As an example, I performed a set of emulation experiments repla-
cing my library with the well-known Hotspot v3.0 thermal library [SSST04].

I dedicate the following sections to describe in detail the Thermal Model.

3.3.1. The SW thermal library

The second component of the SW Libraries for Estimation is the Thermal
Model. Tt is a SW library written from scratch, to be able to evaluate the
thermal behaviour in devices modeled at different levels of abstraction (i.e.,
gate level, RTL level and architectural level). It enables thermal exploration
of silicon bulk chip systems.

I use the chip depicted in Figure|3.5| as an example through this section.
It is composed by a silicon die wrapped into a package, and placed on a Prin-
ted Circuit Board (PCB). On top of the IC die there is the heat spreader.
The heat flow starts from the bottom surface of the die and goes up through
the silicon, passes through the heat spreader and ends at the environment
interface, where the heat is spread by natural convection with the ambient.
There is no heat transfer from the IC package to the PCB, since it is consi-
dered an adiabatic material. New elements can be added to the model, like a
heat sink, or removed, like the heat spreader, for instance, that does not exist
in some mobile devices. The building materials are part of the configuration
of the Thermal Model, so they can be easily changed; e.g., the IC package
may vary, ranging from a low-cost to high-cost packaging solution.

The phenomena of heat conductance is modeled in physics using par-
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Figure 3.6: Simplified 2D view of a chip divided in regular cells of two sizes.

tial differential equations (PDE) [Dawl(]. In particular, the heat diffusion
inside a material is calculated based on the density, the specific heat, the
thermal conductivity, and the heat transfer coefficient of the material, and
it is governed by a PDE that depends on the instantaneous power density
of the heat sources and the temperature T of each of the particles, specified
by their location in the 3D space. Although the resulting equation descri-
bes very accurately the temperature of every point of the chip at a given
time, it is too expensive, in terms of computation, to be used in the EP that
aims at calculating its temperature evolution in real-time; for this reason,
I use a simpler, equivalent model, to analyze the heat flow, instead. Simi-
lar to [SSST04; SLD™03; HBAO3], T exploit the well-known analogy between
electrical circuits and thermal models, by which, the way heat propagates
through materials is similar to the way current propagates through an RC
electric circuit. Thus, with electrical currents playing the role of heat, I de-
compose the silicon die and heat spreader into elementary cells (or cubes)
which have a cubic shape, and use an equivalent RC model for computing the
temperature of each cell, and calculate how it propagates to the sorrounding
neighbouring cells.

These cells, in which the system is divided, are different from the system
components, elements, or components previously mentioned in the Power
Model. For this reason, I first explain the Thermal Model without mentioning
the system components, that are at a higher level (functional, instead of
physical).

Figure shows a 2D view of an IC die made of silicon (dark grey) at-
tached to a heat spreader made of copper (light grey); no interface materials
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Figure 3.7: 3D view of a chip divided in regular cells of different sizes.
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Figure 3.8: Equivalent RC circuit for a passive cell.

are modeled between die and spreader. The system contains cells of two dif-
ferent sizes: the small ones (8 for the IC die, and 12 for the spreader), that
we take as the reference, of 1x1 units, and the big ones (2 for the IC die,
and 3 for the heat spreader), of 2x2. In real life, a chip has three dimen-
sions, what means that the small cells, for instance, should measure 1x1x1
units; similarly, the other cells would extend through this third dimension.
Figure illustrates this, showing a 3D view of a chip divided into many
different sized cells.

In order to create an equivalent RC thermal model, I associate with each
cell a thermal capacitance and six thermal resistances (see Figure [3.8)). The
capacitance (C') represents the heat storage inside the cell, four resistances
are used for modeling the horizontal thermal spreading (Ryorth, Rsouth, Reast
and Ryest), and the other two (Reop and Rpottom) are used for the vertical
heat diffusion.

The generation of heat is due to the activity of the functional units in-
side the chip; this is the point where the power and thermal models meet:
In my thermal model, some cells of the IC die (those with a dotted pat-
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Figure 3.9: Equivalent RC circuit for an active cell.

tern in the example of Figure are considered to contain funtional units
(components). The power density of these funtional units is calculated by
the Power Model, and input to the Thermal Model by adding an equivalent
current source to these active cells, as opposed to the passive cells, that only
spread the heat. Figures and depict the equivalent electrical circuits
used, for the passive and active cells, respectively. There are no restrictions
on the location of the active cells; it is the user, during the floorplan design
stage, who decides the role of each cell. For the type of chips modeled in
this thesis, the heat is always generated in the lower layers, those ones co-
rresponding to the IC die cells. They are mostly made of silicon (containing
the logic), and some metal (for the interconnection). If part of the silicon is
unused, the cells in that region will be passive cells.

Inside a thermal cell, the conductance of each resistor (g) and the capa-
citance (c) are calculated as follows:

Gtop/bottom = Kth - l(h;u (3.1)
Inorth/south = Kth - l(h]; (3.2)
Geast jwest = Kth - uzh)h (3.3)

c=scyp - (I-w-h) (3.4)

where w, h and [ are the width, height and length that indicate the
dimensions of the cell. The subscripts top, east, south, etc., indicate the
direction of conduction, and k;, and scg, are the thermal conductivity and
the specific heat capacity per volume unit of the material, respectively. These
equations are directly inserted into the code of the Thermal Model. As an
example, Algorithm [5 illustrates the calculation of the capacitance of the
cells: The parameters that define a cell are selfcontained into a variable called
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cell, of type record. The type of cell (the material), for instance, is stored
into the field type; thus, we use cell.type to index the array capPerUnit,
that contains the thermal capacitance per unit volume of all the materials
present in the system (cf. comments shown in Algorithm , and multipy the
obtained value by the dimensions of the cell.

Algorithm 5: calculateCellsCapacitance()
for all the cells do
cell.cap < capPerUnit|cell.type] * cell.l * cell.h * cell.w
{populates cell.cap with the thermal capacitance of the cell.}
{1, h and w are the length, height and width of the cell.}
end for

For the active cells, the “heat” injected by the current source corresponds
to the power density of the architectural component covering the cell (e.g.,
a memory decoder, a processor, etc.) multiplied by the surface area of the
cell. This calculation yields Watts, the same units output from my power
model. However, unless we are in the cases where the size of the thermal
cells corresponds 1 to 1 to the size of the architectural components, we must
convert the outputs from the power model from power to power density
(using the size of the components), and back to power (using the size of the
cells).

Figure represents the complete RC circuit that models the chip
shown in Figure Since this is a 2D simplification, each cell shows only
four resistors (top, bottom, west and east); the complete version would be
similar to Figure [3.7] were each cell would contain also the north and south
resistances to model the heat propagation along the third dimension, exactly
like the cells shown in Figures [3.8 and

Then, in Figure I model the removal through air convection of the
heat from the cells on the top surface by connecting an extra resistance
(dotted, in the figure) in series with all the resistances Rrop of the cells of
the top layer of the heat spreader. Regarding the heat difussion from the cells
to the package materials, initially, the first implementation of the Thermal
Model assumed a simplistic behaviour of the package: It was considered “an
entity that helped reducing the power density of the active cells”; thus, it
was modeled substracting a fixed amount of Watts from the border cells of
the IC in contact with it. Currently, the package is modeled as a material,
characterized with its own thermal conductivity and capacitance; thus, heat
diffussion occurs from the IC to the package, both laterally (outwards), and
vertically (downwards). I model this by increasing the value of the border
resistances to account for the difference of conductance from the IC to the
package materials. Figure [3.10] shows the weighted resistances in bold.

The temperature of a cell depends on two factors: First, the power burnt
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Figure 3.10: Simplified 2D view of the equivalent RC circuit for the whole
chip.
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Table 3.4: Thermal properties of materials.

Silicon thermal conductivity | 295-0.491 TW/mK

Silicon specific heat 1.659 x 105J/m3K
Si02 thermal conductivity 1.38 W/mK
Si02 specific heat 4.180 x 10°J/m3K

Copper electrical resistivity | 1.68 x 107% (1+0.0039AT)Qm,
AT = T-293.15K

inside it, determined by its activity (thus, null in the case of the passive
cells) and, second, the heat diffusion that occurs towards/from the sorroun-
ding cells (the neighbours). Section explained how to calculate the power
burnt inside a cell. In order to calculate the heat diffusion, we must analyze
the behaviour of the resulting RC circuit shown in Figure [3.10; it can be
described, using a set of first-order differential equations via nodal analysis
[VS83], as follows:

G-Xt)+C-X(t)=B-U(t), (3.5)

where X(t) is the vector of cell temperatures of the circuit at time t, G
and C are the conductance and capacitance matrices of the circuit, U(t) is
the vector of input heat (current) sources, and B is a selection matrix. G and
C present a sparse block-tridiagonal and diagonal structure, respectively, due
to the characteristics and definition of the thermal problem (see [ASCI10] for
details).

In Equation G and U(t) are functions of the cell temperatures, X(t),
making the behaviour of the circuit non-linear; this is because of the tempe-
rature-dependent thermal conductivity of the silicon and the temperature-
dependent electrical resistance of the copper (used in the interconnections)
[HLZWO05]. In this work, a first-order dependence of these parameters on
temperatures around 300 K is assumed. Some of these parameters are pre-
sented in Table 3.4

The temperatures in the Thermal Model are updated in small Emulation
Steps, which corresponds to calculating the steady state (its properties are
unchanging in time) response of the circuit described by Equation , where
the input currents are DC sources. Equation shows this particular case:

G-X=B-U (3.6)

The above set of equations is normally solved by inversion of the matrix
G, using the sparse LU decomposition method [DD97|. However, in this case,
the resulting equations, Eq. are non-linear; thus, I use the Forward Euler
1st order method instead, that works directly with Equation [3.6] I refer to
publication [ASCI0] for the low level details of the algorithm. Basically, it
makes a guess on the initial value of the matrix X, solves the equations (i.e.,
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Algorithm 6: calculateSteadyStateTemperatures()
Define:
X" + vector of cell temperatures during the rth iteration,
G" + conductance matrix during the rth iteration,
U" < input vector during the rth iteration.
Program:
r+0
// Generate an initial-guess for X0:
X0 « initialguess
Calculate G° and U° using the generated guess X°
loop
Xr+1 — (Gr)fl .B.U"
if ||X" — X"|| > maxErrorAllowed then
exit with error
else
r<r+1
Calculate G™! and U"*! using the updated temperatures X"+!
end if
end loop

propagates the heat) for the next “time instant”, and calculates the error. If it
is less than a predetermined error criterion, it means that the temperatures
converged, and the process can be iterated.

X=G'-B-U (3.7)

The detailed description of this iterative algorithm is presented in Al-
gorithm [6} At the beginning, the model estimates the initial temperature
conditions, X" (that equals X°, when r = 0), determining the values of ma-
trices G and U. Then, it enters the main loop where, in each iteration, it
calculates a small temperature evolution (X”*!), and updates the values of
matrices G and U. If the new temperatures (X"*!) are not close enough to
the old ones (X"), i.e., the temperatures do not converge, the algorithm ter-
minates and must be executed again with a different initial guess. In most of
the test cases, 5-6 iterations were found to be sufficient to reach convergence
within an error of 1075.

The thermal library can be configured in multiple ways to evaluate the
thermal behaviour of different alternatives for each final MPSoC chip. For
instance, its space resolution for thermal accuracy is configurable (i.e., num-
ber of temperature cells in a fixed area) as well as many other packaging
parameters (e.g., quality of heat sink, thermal capacitance of the different
materials that compose the chip, etc.). Together, they all define the final
values of the resistances and capacitances inside the cells.
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By varying the cell size and number of cells, we can trade-off simulation
speed of the thermal library with its accuracy; the coarser the cells become,
the less cells we need to simulate, but the less accurate the temperature
estimates become. Figure shows a floorplan thermal map generated with
the thermal library, where we can appreciate some of the implications of
what I have called “the cell-resolution of the model”: Observe the division of
the floorplan into a set of cells, and that the temperature is constant within
a cell.

The emulation process is divided into Emulation Steps or slots, as a
way to discretize the time; for each Emulation Step, we retrieve the System
Statistics, calculate the power consumed, and the increment in the tempera-
tures. Therefore, in order to analyze the heat diffusion phenomena, that is
continous in time and space, the EP works with discrete time (it has been
divided into Emulation Steps) and discrete space (it has been divided into
cubic cells).

Algorithm [7| describes the structure of the Thermal Model, as it is imple-
mented in the EP:

First, the different parameters of the emulation are initialized: The sys-
tem floorplan is loaded (Load Floorplan), including the dimensions, charac-
teristics (type) and placement (neighbours) of the different cells. With this
information, additional properties of each cell are computed: its resistan-
ces (cell.rporth, cell.rsoutn, -..) and capacitance (cell.cap), derived from the
technology used and the physical dimensions of the cell by directly applying
the ecuations [3.1] and (calculateCellsResistances() and calcula-
teCellsCapacitance()).

Next, the initial temperatures (cell.temp) are loaded from a file, so we
can start the emulation from neutral conditions (the system is switched off,
at ambient temperature), from a recreated thermal-stressing situation, or
even from the final conditions of a previous emulation.

The emulation time is initialized to zero, and the flag emulationfinished
is set to false. To conclude the initialization, the program signals the FPGA
to start the emulation (Initialize Emulation). At this point, the preparation
is finished, and the emulation begins.

Once inside the main loop, the function runEmulationStep() lets the emu-
lation run for the number of cycles specified as “Emulation Step” and, then,
with a call to retrieveStatistics(), the System Statistics are retrieved, along
with the flag that indicates if the end of the emulation arrived (emulationfi-
nished). Next, the power consumed is estimated (updatePower()) in each cell
during the current emulation slot (refer to Algorithm [2| from Section [3.2)).
With that information, the new temperatures (updateTemperatures()) are
calculated, and the emulation can resume with the next Emulation Step.

Algorithm [§] details the process of calculating the temperatures of the
cells after a given emulation step: First, we discriminate if it is an active



3.3. 2D thermal modeling 73

Algorithm 7: Thermal Model

Load Floorplan

calculateCellsResistances()

calculateCellsCapacitance()

loadInitial Temp()

time <— 0

emulationfinished « false

Initialize Emulation

while NOT emulationfinished do
runEmulationStep()
retrieveStatistics(systemstatistics, emulationfinished)
updatePower() {starts the power model.}
updateTemperatures() {starts the thermal model.}

end while

Algorithm 8: updateTemperatures()
for all the cells do
if cell.isActive then
cell.partialtemp <« cell.temp + cell.cap * cell.power
else
cell.partialtemp < cell.temp
end if
end for
calculateSteadyStateTemperatures()
for all the cells do
cell.temp < cell.newtemp
end for

cell. Due to its own contribution, the cell temperature can only remain the
same, or increase; it is thanks to the contribution of the neighbours that the
temperature can decrease (some heat may be transfered to them). The next
step of the algorithm is to correct the partial temperatures calculated by
adding the effect of the heat diffusion among neighbours. It is represented
as the function call: calculateSteadyState Temperatures() and, internally, con-
sists on solving the system of equations presented in equation (applying
algorithm [6]).

The updated temperatures are stored in a temporary field (newtemp)
until the calculations are completed for all the cells. At that point, we commit
the changes (temp=newtemp), and continue to the next Emulation Step,
where these calculated values will be the new input of the power and thermal
models. Once the emulation finishes, we have a detailed log of the evolution
of the system temperature along time, that could be used, for example, to
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Figure 3.11: Electromigration: when atomic flux into a region is greater
than the flux leaving it, the matter accumulates in the form of a hillock or a
whisker. If the flux leaving the region is greater than the flux entering, the
depletion of matter ultimately leads to a void.

estimate the reliability of the system (see Section [3.4)).

3.4. Reliability modeling

In the previous section, I detailed the development of the thermal estima-
tion library that allows us to explore on-chip temperatures. In this section, I
explain how, with some additions, I enhanced the framework with the ability
to perform reliability analysis of MPSoCs. In this case, however, I borrowed
an existing model for calculating reliability figures; thus, my job was to port
the code and do some minor modifications to adapt it to the platform. For
this reason, I will not give the low level details of the implementation, since
the model itself can not be considered as my contribution. Instead, I briefly
mention the fundamentals.

Chip manufacturers provide the estimated MTTF of their chips. This
estimation is calculated statically, without taking into account any chip ac-
tivity. However, the dynamic behaviour experienced by highly stressed chips
may eventually modify the estimated MTTF, and must be taken into ac-
count. The analysis of the influence of the temperature changes on the relia-
bility of CMOS systems is investigated through the use of several mathema-
tical models that include this dependency [SABRO5S]. The effects included in
my experimental work have been selected by their strong impact on the Mean
Time To Failure (MTTF), namely, Electromigration (EM), Time-Dependent
Dielectric Breakdown (TDDB), Stress Migration (SM), and Thermal Cycling
(TC).

» EM: Appears due to the momenta exchange between the electrons and
the aluminium ions in long metal lines. The induced mechanical stress
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Figure 3.12: Dielectric breakdown: A 1.5mm long parallel Cu line struc-
ture stressed at 3mA and 200°C: the phenomenon of EM starts to appear
followed by a sudden dielectric breakdown.

may eventually cause fractures and shorts (see Figure [3.11]).

= TDDB: The influence of electric fields over the gate oxide film origina-
tes a conductive path in the dielectric, shorting the anode and cathode

(see Figure 3.12)).

s SM: Materials differ in their thermal expansion rate; this difference,
under conditions of mechanical stress, leads to the migration of metal
atoms from the interconnect. The resistance rise associated with the
void formation may cause electrical failures.

= TC Each time a device undergoes a normal power-up and power-down
cycle, a permanent damage is accumulated that will eventually lead to
a circuit failure.

Figure|3.13| shows the interface of the Reliability Model, connected to the
thermal and power models. As external input, it only receives the system
temperatures. The dashed arrow on the right represents a feedback loop for
the reliability; this is to reflect the fact that, at any point of the emulation,
the reliability of the system depends on the past history (i.e., the aging
effects are accumulative). Initially, we load the nominal value of the MTTF
(expressed as the 100 % of the MTTF provided by the manufacturer) and,
in each iteration of the model, we substract the contribution (a percentage)
from the EM, TDDB, SM and TC effects. These calculations are made for
each thermal cell. Eventually, the cell with the worst MTTF will determine
the reliability of the whole system.

The input parameters of the Reliability Model can also be classified ac-
cording to the moment when they are required:
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1. At compile time: The floorplan description, indicating the components
that are present in the system, and the technology parameters used for
the implementation.

2. At run-time: The temperatures of the system elements.

Reliability wearout of CMOS chips occurs after years of utilization. If a
chip is to fail in 20 years, for instance, ideally, we would need to simulate,
at least, 20 years of the chip behaviour. While this holds true when we want
to calculate strict MTTF figures, we can simplify the calculations if we only
need an estimation of the worst case, which is tipically the case for CMOS
chip manufacturers, where a study of the expected lifetime of a chip under
the worst operational conditions is the simplest (and cheapest) option for
them. In this situation, we do not need to run the reliability simulation for
20 years; instead, we run it for the time required to profile the operation of
the chip, observe the trend of the MTTF degradation, and extend it along
the years by applying simple mathematical extrapolation.

3.4.1. The implementation of the reliability model

Regarding the implementation of the Reliability Model, it follows the
same structure as the thermal library: the reliability is updated in small
increments ( Emulation Steps).

Algorithm [9] shows the new function calls (in bold) added to the original
Thermal Model in order to calculate also reliability numbers. There are two
modifications with respect to Algorithm [7}

First, after the call to loadInitial Temp(), that loads the initial tempera-
ture (cell.temp) into the model, we must add a call to loadInitial Reliability()
that, in a similar way, loads the initial reliability numbers from a file. The-
se values are stored in the fields cell.reliability/ MTTF], cell.reliability/EM],
cell.reliability/TDDB], cell.reliability/SM], and cell.reliability[TC].

The second modification includes modifying the main loop: Upon fina-
lization of an emulation slot, the statistics, power and temperatures of the
system are updated. Once the new temperatures are available (i.e., just after
the call to update Temperatures()), we place a call to updateReliability() in
order to update the reliability values.

The new values depend on the past history (the former values of the
reliability), the current temperature of the circuit, and a set of (technology-
cal) constants fixed at design time. The detailed formulas can be found in
[CSM™06; [SABRO5, [Sem00)].
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Algorithm 9: Thermal model with reliability

Load Floorplan

calculateCellsResistances()

calculateCellsCapacitance()

loadInitial Temp()

// Populates the fields (MTTF, EM, TDDB, SM, and TC) of

// the record cell.reliability.

loadInitialReliability()

time < 0

emulationfinished < false

Initialize Emulation

while NOT emulationfinished do
runEmulationStep()
retrieveStatistics(systemstatistics, emulationfinished)
updatePower() {starts the power model.}
updateTemperatures() {starts the thermal model.}
updateReliability() {starts the reliability model.}

end while

3.5. 3D thermal modeling

Figure shows a chip designed using the 3D stacking technology. A
key component of 3D technology are the through-silicon vias (T'SVs) [Mot09].
They are vertical electrical connections (vias) passing completely through a
silicon wafer or die. Their function is to enable communication between two
dies as well as with the global package. TSVs are a high performance tech-
nique to create 3D packages and 3D integrated circuits, compared to former
alternatives such as package-on-package [DYIMOQT|, because the density of
the vias is substantially higher.

This solution increases the integration capabilities and frequency of forth-
coming MPSoCs [DWMT05; [HVET07| but, on the other hand, it substan-
tially increases power density due to the placement of computational units on
top of each other; therefore, temperature-induced problems exacerbate in 3D
systems, offering a huge space for design improvements: By carefully choo-
sing their locations on the floorplan, for example, the TSVs can be used to
control the SoC temperature. Another method used in state-of-the-art solu-
tions, to tackle the heat-removal challenges of 3D architectures, is to employ
microchannels, carrying liquid coolants (water has the ability to capture heat
about 4,000 times more efficiently than air), to remove the heat generated
[BMR.T08].

With the purpose to study this kind of systems and the multiple possibi-
lities they offer for optimizations, I have integrated into the EP a model to
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Courtesy: Matrix Semiconductor, Inc.

Figure 3.14: The Matrix’s 3D memory chip, an example of the 3D stacking
technology.

characterize the thermal behaviour of 3D MPSoCs manufactured with stac-
king technology. It takes into account the effect of the TSVs, and contains
a model for active liquid cooling microchannels. In the following sections,
I describe the implementation details, that correspond to these two steps:
First, defining a thermal resistor-capacitor (RC) network of the 3D chip stack
and, second, adding models for the interlayer material (which includes the
liquid flow and T'SVs distribution).

The validation of the 3D Thermal Model was done experimentally, manu-
facturing a 3D chip with the multilayer structure of Figure [3.15] containing
aluminium heaters and temperature sensors. The heaters allow us to warm-
up specific parts of the chip and, reading the sensors, we study how the heat
propagates through its structure. The details of the validation process are
out of the scope of this thesis, but can be consulted in [RLSCI0].

3.5.1. RC network for 2D /3D stacks

As we can observe in Figure [3.15] a 3D chip is made of several silicon
layers (tiers) stacked together, and interleaved with inter-tier material, that
contains the TSVs and the microchannels [RLSCI0]. Based on my Thermal
Model for 2D chips (Section , that uses an equivalent electrical circuit
(RC grid) to model the heat flow, I have extended it to include 3D modeling
capabilities, by adding new elements to model the inter-tier material.

Similar to the work done for the 2D case, the chip structure is divided
into small cubical thermal cells. Figure [3.16] shows an example of 3D layout
divided in cells; it represents two tiers of silicon plus the inter-tier material.
As explained in Section [3.3.1] the cell resolution of the Thermal Model can be
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Figure 3.15: Structure of a 3D stacked chip.
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Figure 3.16: Horizontal slice of a 3D chip divided in thermal cells, showing
two tiers of silicon plus the inter-tier material.

freely adjusted but, for simplicity, in this case I have considered all the cells
as having the same size, including a new type of cells, marked as SPECIAL
CELLS in the figure, used to model the interface material.

Each cell is then modeled as a node containing six resistances that re-
present the conduction of heat in all the six directions (top, bottom, north,
south, east and west), and a capacitance that represents the heat storage
inside the cell, exactly like in the 2D case (Figure [3.8). However, due to the
special characteristics of the inter-tier material, see Section for details,
the registivity value of some of these SPECIAL CELLS can vary at run-time.

Finally, current sources are connected to the active cells (Figure ,
in the regions representing the sources of heat, where the functional units
are present. The entire circuit is grounded to the ambient temperature at
the top and the side boundaries of the 3D stack through resistances, which
represent the thermal resistance from the chip to the air ambient.

At this point, the circuit is completely specified as an RC network, si-
milar to the ones used for single-tier chips (see Figure [B.10). Although we
have included new types of cells, internally, they all contain resistances, ca-
pacitances and, in some cases, current sources. Therefore, the equation that
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Figure 3.17: Detail of the microchannels and TSVs in the 3D stacked chip.

describes the circuit is, again, Equation [3.5] solved applying the methodology
explained in Section [3.3.1]

3.5.2. Modeling the interface material and the TSVs

Figure shows the 3D stacked chip internals. In this figure, we appre-
ciate different tiers containing the processing cores and memories, interleaved
with interlayer material, where the microchannels and TSVs are.

In order to model the heterogeneous characteristics of this interlayer ma-
terial, I introduce two major differences to other works: (1) as opposed to
having a uniform thermal resistivity value for the layer, my infrastructure
enables having various resistivity values for each grid, (2) the resistivity value
of the cell can vary at run-time.

As depicted in Figure the interlayer material is divided into a grid,
where each grid cell, except for the cells of the microchannels, has a fixed
thermal resistance value depending on the characteristics of the interface ma-
terial and TSVs. For my considered TSV density (less than 1% of total chip
area, as proposed in [SAACII]), I assume a homogeneous via distribution
on the die, and calculate the combined resistivity of the interface material
based on the TSV density (details in Section[3.5.2.1)). On the other hand, the
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Figure 3.18: Discretization of one layer of interface material into thermal
cells.

thermal resistivity of the microchannel cells is computed based on the liquid
flow rate through the cell, and the characteristics of the liquid at run-time

(details in Section [3.5.2.2]).

3.5.2.1. TSVs thermal interference

The TSVs are a key component of the 3D stacking technology that can
not be neglected in the thermal studies. They are vertical metallic vias that
communicate adjacent layers; thus, affecting the heat propagation [GS05].
Next, It follows a brief study of the impact of the TSVs on the chip tem-
perature, to determine which modeling granularity is required to accurately
model the effects of TSVs on the thermal behaviour of 3D MPSoCs.

Figure [3.19] shows the joint resistivity, of the interface material plus the
TSVs, as a function of the density of vias (drgy; the ratio of the total area
overhead introduced by the TSVs to the total layer area). It can be observed
that, even when the TSV density reaches 1-2 %, the effect on the resistivity
is limited to a variation of less than 0.4 mK /W, which represents only a few
degrees, and justifies using a homogeneous TSV density in the model.

Therefore, through the rest of this thesis, I can safely assume that the
effect of the TSV insertion to the heat capacity of the interface material is
negligible, since I keep the area overhead of TSVs below 1%, a very small
percentage of the interface material area. In cases with high thermal inter-
ference of the TSVs, however, this effect can be used as an advantage to
control on-chip temperatures, through thermal via planning [CZ05].

In my model, I assign a TSV density to each unit (floorplan component)
based on its functionality and system design choices (a crossbar structure
requires a high TSV density, while a processing core does not require any
modeling of TSV interference). In the experiments, each via has a diameter
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Figure 3.19: Relationship between the TSV density and the resistivity of the
interface material.

of 10pm, and the spacing required around the TSVs is assumed as 10um,
according to the current TSV technology |[ZGST08; ICAAT09]. T used a joint
interlayer resistivity value of 0,23mK /W, assuming an abundant number of
vias (total number of vias is 1024) while keeping the area overhead below 1 %.
Note that, while the exact location of TSVs might demonstrate a further re-
duction in temperature in comparison to the homogeneous TSV distribution
model, this assumption places over 8 TSVs per mm?. Assuming a relati-
vely high TSV density in the model reduces the temperature difference in
comparison to modeling the exact location of TSVs.

3.5.2.2. Active cooling modeling

A 3D stacked architecture with liquid cooling requires advanced thermal
packaging structures. A basic schema is depicted in Figure Such a chip
uses nano-surfaces (microchannels) that pipe coolants, including water and
environmentally-friendly refrigerants, within a few millimeters of the chip to
absorb the heat, like a sponge, and draw it away. Once the liquid leaves the
circuit in the form of steam, a condenser returns it to a liquid state, where
it is then pumped back to the circuit, completing the cycle.

In such a 3D system, the local junction temperature in the microchannels
can be accurately computed with conjugate heat and mass transfer modeling.
The complexity of the resulting model (for the fluid, only) is in the range
of billion nodes to be simulated and, thus, unsuitable for my real-time EP.
Instead of using this expensive, in terms of computation, method, I worked
with some partners from the Embedded Systems Laboratory (ESL) and the
Laboratory of Integrated Systems (LSI) at EPFL, Switzerland, to develop
an alternative model based on resistive networks; it runs at a fraction of the
computation requirements, while keeping the loss in accuracy negligible.

Inside the 3D grid structure described in Section I model active
cooling properties (i.e., liquid cooling) using a special type of thermal cells
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Algorithm 10: Thermal Model With Liquid Cooling

Load Floorplan

calculateCellsResistances()

calculateCellsCapacitance()

loadInitial Temp()

time <— 0

emulationfinished « false

Initialize Emulation

while NOT emulationfinished do
runEmulationStep()
retrieveStatistics(systemstatistics, emulationfinished)
updateParametersOfMicrochannelCells()
updatePower() {starts the power model.}
updateTemperatures() {starts the Thermal Model.}

end while

with different cooling thermal conductance and resistance properties than
silicon and metal layers. These new cells, that model the microchannels, are
a special type of passive cells (see the Thermal Model, in Section ,
that have a variable thermal resistance and capacity, whose value directly
depends on the velocity of the refrigerating fluid being injected through the
channel. Figure shows the grid structure of an inter-tier layer, where
we can appreciate the three types of thermal cells: microchannels, interface
material, and TSVs.

When running the thermal model, the actual values of the microchan-
nel cells (resistances and capacitance) must be updated before estimating
the system temperatures for each emulation step. Algorithm shows the
original thermal model modified to include these calculations (call to upda-
te ParametersOfMicrochannelCells()).

Therefore, in order to fully specify a cell that models a microchannel, I
only need to calculate the equivalent thermal resistances and capacitance.
This process requires characterizing the chip stack using a porosity model,
i.e. the cavities are seen as 2D-porous media, to study the fluid-solid thermal
field-coupling (the heat transfer from the silicon to the liquid).

Figure 3.22h, depicts a single heat transfer unit cell of the resistor net-
work representing the thermal field-coupling of the 2D-porous media (Tflm-d)
with the adjacent 3D-solid walls (Ti,qu). The convective thermal resistance;
i.e., the solid-fluid heat transfer, is represented with two grey resistors, labe-
led as Rconw, that connect the walls with the liquid. The conductive thermal
resistance; i.e., the solid-solid heat transfer, corresponds to the white resistor,
labeled as Rcongd, that connects both walls. « represents the cavity permea-
bility. The whole channel is modeled by replicating this discrete element; see
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Figure 3.22: Microchannel modeling.

Figure[3.22b: As fluid advances through the channel, it removes the excess of
heat from the adjacent walls. In this new context, the parameters to calculate
depend on the permeability of the channel, that depends on the laminar flux
being injected through it. The details of the process that obtains, from this

system, the equivalent (six) resistances and capacitance of the cells, required
by my Thermal Model (see Section [3.3.1]), are published in [PN06].

3.6. Conclusions

This chapter has been dedicated to describe the SW part of the EP, a
set of estimation libraries, written in C++, that run on a desktop computer.
They receive the statistics from the FPGA as input and, depending on the
model, as output, they generate an estimation of the power consumption,
the working temperature, or the system reliability.

The components (libraries) have been described in an incremental way,
starting with the power modeling, followed by the thermal library for 2D
MPSoCs, and the reliability library. In the last section, I have introduced a
generalization to support state-of-the-art 3D thermal modeling, that includes
a model for active cooling solutions.

Figure describes the interfaces of the three libraries. Although they
are depicted chained together, they can also be configured to work indivi-
dually, receiving the input data from pre-recorded traces, or plugged into
external (third-party) simulators. In this figure, the static inputs (i.e., the
data that are known at compile time, before starting the emulation), like
the floorplan description and the technology parameters, are on the left si-
de of the boxes representing the models; from the upper part, they receive
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the run-time parameters, like the System Statistics or the temperatures, for
example. The box representing the FPGA also follows the same format; e.g.,
at compile time, it needs to know the chip layout, contained in the floorplan
description, in order to format the statistics packets accordingly.

This capability to estimate MPSoCs power, temperature and reliability,
completes my EP, converting it into a powerful tool for system designers. In
the next chapter, [ show how to combine the HW and SW parts explained
in the previous and current chapters, respectively, and describe the whole
emulation flow.



Chapter 4

The Emulation Flow

This chapter describes the EP considered as a whole. On one side, there
is the HW running on the FPGA, explained in Chapter [2] On the other, the
SW models that run on the host PC, explained in Chapter [3] Both parts work
together inside the EP, constituting one integrated framework for MPSoC
development.

I describe the platform integration (how to instantiate all the compo-
nents, configure the system, and perform an emulation), detailing the emu-
lation flow that allows designers to speed-up the design cycle of MPSoCs, the
design considerations that arise when putting the different parts together,
and the HW and SW elements necessary to setup an EP.

4.1. The HW/SW MPSoC emulation flow

The key advantage of this framework for a realistic exploration of MP-
SoC designs is that it uses FPGA emulation to model the HW components
of the system at megahertz speeds and extract detailed system statistics
while, in parallel, these statistics are fed into a SW model that runs in a
computer, and calculates the power, temperature, reliability... profile of all
MPSoC architectural blocks. Everything is integrated into one overall flow;
the one depicted in Figure At design time, we first need to configure the
FPGA and the host computer. These steps have been labeled, respectively,
as Phase 1 and Phase 2 in the figure. Next, at Phase 3, the system initia-
tes the emulation. It follows a detailed description, including numbers that
reference the steps in the Figure 4.1

1. First of all, in Phase 1, the HW and SW components of the
Emulated System are defined (note that this is the SW that will
run on the cores inside the FPGA, not the estimation libraries).

Regarding HW, the user specifies in this phase one concrete architec-
ture (number and type of cores, bus topologies, etc.) (1), configures

89
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the parameters, such as the memory sizes, replacement policies, laten-
cies, etc. (2), and defines the elements that will be monitored (3). HW
Sniffers are included in the system to extract statistics from each of
the three main architectural components that constitute the final MP-
SoC: processing cores, memory subsystem, and interconnection. This
is done by instantiating, in a plug-and-play fashion (cf. Chapter [2)),
the predefined HDL modules available in the repository for each of the
previous three components and the respective sniffers. Next, the HW
is synthesized (4).

Related to the SW part, in this phase, the application /s to be executed
in the emulated MPSoC (5) is compiled. Using a cross compiler, the
binary code is generated for the target processors (6).

At this point, both the HW and the SW are ready, and we can generate
the platform binaries (7).

2. In the next phase, Phase 2, the SW Libraries for Estimation are
configured: As the minimum information, we need to indicate the
components present in the system, and their types, so that the re-
ceived statistics can be interpreted correctly (cf. Section [2.2.3.1)). If
additional analysis, like temperature or reliability are performed, then,
we also need to input the characteristics of the thermal cells, the aging
parameters, etc. (cf. Chapter [3)).

For thermal studies, for example, the floorplan/s to be evaluated ac-
cording to the previous (Phase 1) HW definition is defined. Note that,
for one architecture, we may have different floorplan solutions. The
floorplan description comprises the dimensions, location, and power
consumption for each HW component in the emulated MPSoC.

During this configuration phase, by varying the cell size and number of
cells, for example, we can trade-off simulation speed of the SW libraries
with its accuracy. The coarser the cells become, the less cells we need
to simulate, but the less accurate the temperature estimates become.
Figure [3.3] shows a floorplan thermal map generated with the thermal
library, where we can appreciate the practical significance of the cell-
resolution of the model: The temperature evolution in the system is
calculated per cell. In the figure, observe the division of the floorplan
into a set of cells, and that the temperature is constant within a cell.

The size of the cells minimally affects the time taken by the initializa-
tion of the Thermal Model (calculation of resistances, etc.). It is the
number of cells what determines the time taken by each iteration of
the thermal calculations. This dependence is linear.

Finally, the configurable granularity of the statistics updates and com-
munication between the FPGA and the SW libraries is specified at
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this moment (Emulation Step). As it can be appreciated in the figu-
re, the maximum duration of the emulation (Emulation Time) is also
input as a parameter but, normally, the process finishes before, when
the Emulated System notifies that the SW application under execution
completed.

3. At this point, the EP is fully specified. The last step, Phase 3, is the
emulation itself. It requires connecting the FPGA to the PC: The
HW of the EP (Emulated System + Statistics Extraction Subsystem)
is downloaded to the FPGA; next, a graphical interface (GUI, in the
figure) is launched in the host computer that provides visual feedback
during the process of the emulation, and allows the user to issue a start
command. After this point, the framework runs autonomously.

While the Emulated System is running, the statistics for each cell defi-
ned in the layout are concurrently extracted, and sent to the SW libra-
ries running onto the host computer. They will generate output values
(power, temperature, reliability) that may be just logged down, or sent
back to the FPGA (see the ‘Run-time Feedback” arrow in Figure |4.1J).
In this later case, the Emulated System can use this information to mo-
dify its own behaviour in real-time. As an example, since the thermal
simulator calculates in real-time the new temperatures, we can feed
the updated values back into the FPGA, and store them in registers
that emulate the presence of thermal sensors in the target MPSoC in
certain positions of the floorplan. If these registers are mapped in the
memory hierarchy of the Emulated System, so that they are accessible
from the running multi-processor OS, providing real-time temperature
information, we make up a closed-loop thermal monitoring system.

4.1.1. Emulation of a 3D chip with an FPGA

To understand how we model a 3D architecture using a 2D FPGA, take
a look at the 3D system depicted in Figure [f.2h. It consists of two layers: In
the upper layer there is a core that can access two local memories: A (in the
same layer), and B (located in the lower layer). An access to memory A will
take less time and will consume less power than accessing B.

When emulating this system in an FPGA, we have to map everything in
a 2D layout (Figure[d.2b). If we abstract the floorplanning information, what
is different in the behaviour of systems a and b is the latency. Assume, for
example, that accessing memory A takes 1 cycle, whereas accessing memory
B takes 6 cycles. We instantiate in the FPGA a processor connected to
two memories symmetrically and, then, we simply add a new element that
simulates this extra latency (DELAY oval in the figure). The behaviour of
the system, then, will be the same as the one in the 3D case.
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Figure 4.2: Emulation of a 3D chip with an FPGA.

From the point of view of the Thermal Model, the data interface re-
mains the same: we only receive activity numbers associated to the different
elements of the floorplan (number of accesses to memory X, number of tran-
sactions in bus Y...), so there is no difference. Nevertheless, when calculating
temperatures, the Thermal Model knows that the bus of memory A is dif-
ferent from the bus of memory B: different materials, capacitances, etc... It
should be noted that, inside the FPGA, it is completely irrelevant where
we place memory B, as far as the behaviour is the same (number of cycles
per access, type of the bus...); the actual floorplan of the final chip is in
the Thermal Model, that runs on the PC. Any of the positions suggested in
Figure 4.2b as Mem i would be valid: no matter at what side of the pro-
cessor we place the memory in the FPGA, since it will be modeled as being
underneath it, in a different layer, as it appears in Figure f.2h.

4.1.2. Emulating virtual frequencies

The EP makes possible to emulate HW configurations that run at a diffe-
rent speed than the allowed clocked speed of the available HW components.
In fact, it is similar to the mechanism used in SW simulations, but at a
higher frequency. For instance, it is possible to explore the effects in thermal
modeling of a final system clocked at 500 MHz, even if the present cores of
the FPGA can only work at 100 MHz. To this end, instead of using a 10 ms
statistics sampling frequency with a clock running at 500 MHz, we must use
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Figure 4.3: Instantaneous thermal map generated with the Emulation Plat-
form for a four-layered 3D MPSoC.

a Virtual Clock of 100 MHz (maximum clock allowed in the FPGA emula-
tion after synthesis), and collect the statistics every 50 ms. The switching
activity in each MPSoC component monitored at this interval is equivalent
to the target system for 10 ms. Therefore, the HW inside the FPGA samples
every 50 ms of real execution, but it is analyzed by the SW estimation library
(running in the PC) as representing 10 ms of the target MPSoC emulated
execution. The major requirement, in this case, is the definition of the sam-
pling/emulating frequency and the target MPSoC frequency to configure the
SW estimation model accordingly.

4.1.3. Benefits of one unified flow

The proposed emulation framework integrates in one single tool the be-
nefits of HW emulation and fast SW simulators to estimate power, tempe-
ratures, and reliability of 2D /3D MPSoCs. Overall, it is a powerful tool that
allows system designers to easily characterize the system under development,
speeding-up the development cycle. Figure [L.3] represents an example of such
characterization.

It shows a detailed transient thermal map of a 4-tier chip containing 10
cores per layer. Each of them with different activity profiles. The system is
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Figure 4.4: Speed-ups of the proposed HW /SW thermal emulation framework
for transient thermal analysis with respect to state-of-the-art 2D /3D thermal
simulators.

modeled dividing each layer of the floorplan in a regular grid of 50x50 thermal
cells. The graphical representation of the system temperatures propitiates to
easily appreciate the non-uniform propagation of the heat inside the stack.
The EP can obtain a transient thermal map of the Emulated System,
like the one in Figure for any particular moment of the emulation. With
this information, the system designer can issue a command to adapt the
system, e.g.: reducing the working frequency of a particular core, and see its
effects inmediatly. Using independent flows, like obtaining the application
execution traces and, afterwards, feeding them into a thermal simulator does
not provide realistic results. The integrated flow of the EP allows system
designers to test the real applications on the final HW before going to silicon.
Regarding performance, the next chapter details several experiments con-
ducted in order to compare the EP with a SW simulator. For a quick esti-
mation, I have synthesized those results in Figure The numbers show
significant speed-ups with respect to state-of-the-art temperature estimation
frameworks [MPBT08| [ADVPT06] [CAAT09]. In particular, these results
outline that the proposed modeling approach for MPSoC HW/SW thermal
emulation scales significantly better than state-of-the-art SW simulators for
transient thermal analysis. In fact, the results of the exploration of 2D ther-
mal behaviour on a commercial 8-core MPSoC [KAOOQ5| have shown that
the proposed thermal emulation can achieve speed-ups of more than to 800x
with respect to state-of-the-art SW-based thermal simulators [BBBT05].
Moreover, the thermal exploration of 3D MPSoCs with active cooling
(liquid) modeling shows even larger speed-ups (more than 1000x) due to po-
wer extraction and thermal synchronization overhead in thermal simulators
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[SSS*04t PMPBO6: [CAAT09].

4.2. Requirements: FPGAs, PCs, and tools

In this section, T describe the necessary elements (FPGA, PC and tools)
required by the EP. Everything has been intentionally designed in a very
generic way, to avoid dependences on a specific manufacturer, board, PC, or
tool.

For the sake of standarization, both the Emulation Engine and the Emu-
lated System are specified in standard and parameterizable VHDL, because
all the existing FPGAs support this hardware description language. Howe-
ver, they can be specified in any other language: from Verilog or SystemC,
to high level synthesis languages. The decision is left at the designer’s choi-
ce. He can even use a mixture of different languages, as long as it can all
be translated into a final netlist and mapped into the target FPGA. The
only additional requirements are the availability of a communications port
onboard, to interact with the SW libraries running on the host computer;
a compiler for the included cores; and a method to upload both the FPGA
synthesis of the framework and the compiled code of the application under
study.

In this research, I have been working with Xilinx FPGAs. This manufac-
turer provides all the basic tools (to synthesize the VHDL, compile the SW
for the embedded cores, and download both binaries to the target board)
in its Embedded Development Kit (EDK) framework for FPGAs. Xilinx’s
EDK tool is an integrated environment, intended for the creation of mixed
HW/SW systems. It includes an HDL code editor and synthesis engine, ca-
lled Integrated System Environment (ISE). Any developed module with this
tool can be added to a repository, and instantiated in EDK by dragging-and-
dropping it with the mouse. Included, as well, are GNU C (GCC) and C++
(G++) compilers/linkers for the PowerPC and Microblaze cores available in
the repository. Also, EDK enables loading different binaries on each proces-
sor of the system. Thus, if the application to be run is already written in
any of these languages, no effort is required for the designer.

Regarding area requirements, the size of the FPGA depends on the di-
mensions of the Emulated System. It may vary from tiny FPGAs, when only
a module or core is being characterized /optimized/debugged, to the biggest
FPGAs available on the market. However, for typical MPSoCs, an off-the-
shelf mid-range FPGA suffices. My main development platform, for example,
was a Xilinx Virtex 2 Pro vp30 board (or V2VP30) with 3M gates, which
costs $2000 approximately in the market, and that includes two embedded
PowerPCs, various types of memories (SRAM, DDR, flash...) and an Ether-
net port. Table[d.T|shows some of the target boards used during this research,
including the capacity of the FPGAs (in Slices) and the internal RAM me-
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Table 4.1: FPGA boards used during this thesis.

’ Board \ FPGA \ Slices \ Block RAM ‘
XUP Virtex IT Pro Devel. System XC2VP30 30,816 2,448 KB
XUP Virtex 5 Devel. System XC5VLX110T | 17,280 5,328 KB
AVNET Virtex-II Pro Devel. Kit XC2VP30 30,816 2,448 KB
ML505 Eval. Platform XC5VLX50T 7,200 2,160 KB
Spartan-3 Starter Kit X(C35200 4,320 216 KB
Platform Baseboard for the XC4VLX40 18,432 1,728 KB
ARM11 MPCore

Table 4.2: Contents of one slice in different FPGA families.

| Family | FPGA | Contents of one slice \
Spartan-3, X(C35200, One 4-input Look-Up Table (LUT), and
Virtex-2 Pro XC2VP30 one D flip-flop.
Virtex-4 XC4VLX40 Two 4-input LUTs, and two flip-flops.
Virtex-5 XC5VLX50T, Four LUTs that can be configured as

XC5VLX110T 6-input LUTs with 1-bit output or 5-
input LUTs with 2-bit output, and four
flip-flops.

mory available. Since the size of a slice depends on the FPGA family, I have
included, in Table [£.2] the contents of the different families of Slices. The
column “Block RAM” in Table indicates the amount of RAM embedded
inside the FPGA chip (the on-chip RAM), that receives this denomination
in the particular case of Xilinx FPGAs.

The complete development flow can be observed in Figure [4.5] Initially,
the HW and the SW are developed independently. When they are both
mature, boths flows are merged to generate the system bitstream. Observe,
in the figure, the rhombuses. They represent the processes of simulating,
debugging and verifying the design. At any of these points, if a design error
is detected, the system designer must roll back to a previous development
stage in order to solve the problem.

In addition to the aforementioned SW, required to synthesize the HW
platform, the user needs to compile the SW libraries that run on the host PC
and interact with the FPGA to estimate power, temperature and reliability.
Asg stated in Chapter 2] they have been written in the C++ language. Thus,
any standard C++ compiler (like G++) can be employed to generate the
executables. In my particular case, I have used the Visual Studio Suite [Mic],
from Microsoft, to write, compile, and debug this code. In one single IDE it
integrates the editor, compiler and debugger.

The communication FPGA-PC is resolved in the C++4 source code with
the help of a custom API that I have developed to make the code more
portable and versatile. Table[.3|summarizes the API interface. In my current
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Table 4.3: Functions of the communications library.

initializeConnection | Sets the values that configure the communications chan-
nel, and performs the necessary initialization.

receiveData Receives the statistics of one emulation slot from the
FPGA.

sendData Sends the data calculated by the SW models in one emu-
lation step (temperatures, reliability...) from the PC to
the FPGA.

dumpDataToFile Stores the information generated (by the FPGA or by
the SW models) in one emulation step, into a file.

implementation, I used an Ethernet connection; thus, the communications
library, internally, makes use of functions like “send /receive Ethernet packet”
to implement the interface functions “send/receive data”. These low-level
functions to handle the Ethernet packets come from the libpcap library, a
portable (multi-platform) C/C++ library for network traffic capture that is
available as an open source project, in [bibe].

I conclude this section with a brief reference to the characteristics of the
computer used as the host PC: Although I can not indicate the exact mini-
mum system requirements, during the development process of the platform,
I have used off-the-shelf desktop computers, starting from a Pentium 4 with
256 MB of RAM, and it was enough to run the platform at full speed (with
the FPGA at 100MHz). In fact, as I explain in Chapter @ the only observed
stalls were due to the bandwidth limitations of the communications port.

4.3. Synthesis results

For completeness, I present, in this section, some practical use-cases of
the platform, including a summary of the synthesis reports, showing the
amount of resources occupied.

The FPGA fabric is made of Flip flops (FFs), LookUp tables (LUTs), and
some memory elements, that are typically grouped into Slices. The resources
utilization of the FPGA is given as the percentage of the total number of Flip-
Flops and LUTs used (Slice Logic Utilization). However, the mapper packs
the individual LUTs and FFs into Slices, and often they are only partially
used. For this reason, I include another number in the synthesis reports: the
Slice Logic Distribution, that indicates the percentage of the board Slices
being used (either totally or partially). The details of the FPGA boards can
be consulted in Tablesd.Tand [£.2] In addition to these numbers, the reports
also include the percentage of internal RAM used (BlockRAM).
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Emulation Engine:

The Emulation Engine is common to all the modeled MPSOC cases, and
it is composed of the following elements:

A microcontroller: either a Microblaze (cases 1 and 2) or a PowerPC
(case 3). Both are simple 32-bit RISC processors. The numbers indi-
cated correspond to the case of the Microblaze. Using the PowerPC
reduces the logic utilization by 1%, since the processor is already im-
plemented in the silicon, requiring only a few slices to interface the
peripherals.

128KB local memory with local memory bus and memory controller.
Peripherals bus with timer and interrupt controller.
Clock and Reset generator.

Debug Module: enables the HW on-chip debugging of the platform via
the JTAG connector.

Ethernet controller.

CompactFlash controller (to load configurations).

The synthesis results for the described system:

Board : Xilinx Virtex 5 University Program Board
Target Device : xcbvlx110t
FPGA Family : Virtex 5

Design Summary :

Slice Logic Utilization: Flip-flops 10 % and LUTs 11 %
Slice Logic Distribution: 27 %

Total BlockRAM Memory used: 39 %

Emulated Systems:

The first two examples give us a hint of how the framework scales. Case
1 shows a simple Emulated System containing 1 32-bit RISC processor, while
case 2 is the generalization to 5 processors. The Emulation Engine takes 10 %
of Slices, and 39 % of BRAM, while each Emulated Subsystem (made of one
emulated processor with its corresponding peripherals) takes, approximately,
the 6 % of the FPGA (and 5% of the BRAM).
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CASE 1: One simple 32-bit RISC processor subsystem, containing:

= Two local memories, of 8KB each, connected to independent local me-
mory buses: one for instructions, and one for data.

= Peripherals bus with timer, interrupt controller and UART.

= Main memory controller (with 512 MB of DDR RAM).

Sniffers: In the core and the memory controller.
The synthesis results for this emulated system:

Board : Xilinx Virtex 5 University Program Board
Target Device : xc5vIx110t
FPGA Family : Virtex 5

Design Summary :

Slice Logic Utilization: Flip-flops 16 % and LUTs 18 %
Slice Logic Distribution: 37 %

Total BlockRAM Memory used: 44 %

CASE 2: Five 32-bit RISC processor subsystems.

Each of them connected to the components described in CASE 1, and
with access to a shared bus, containing the following elements:

» Shared UART.
= Main memory controller (with 512 MB of DDR RAM).

» Inter-processor synchronization modules.

Sniffers: In each core and memory controller, as well as in the shared
modules.

The synthesis results for this emulated system:

Board : Xilinx Virtex 5 University Program Board
Target Device : xcbvlx110t
FPGA Family : Virtex 5

Design Summary :
Slice Logic Utilization: Flip-flops 41 % and LUTs 47 %
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Slice Logic Distribution: 80 %
Total BlockRAM Memory used: 64 %

Case 3 presents a different scenario. It contains the Leon 3 core, a com-
plex processor from Gaisler research with SPARC V8 architecture |[Gaibl,
used for microarchitectural study.

CASE 3: One Leon 3 processor (Sparc architecture), configured with:
» SPARC V8 instruction set with V8e extensions and 7-stage pipeline
» Hardware multiply, divide and MAC units
» Separate instruction and data cache (Harvard architecture)
s Caches: 2 ways, 32 KB. LRU replacement
» Local instruction and data scratch pad RAM, 32 KB
» SPARC Reference MMU (SRMMU) with TLB

» AMBA-2.0 AHB (Advanced High-performance Bus) bus interface. AHB
peripherals: timer, interrupt controller and UART.

» Advanced on-chip debug support with instruction and data trace buf-
fer

Sniffers: Connected to the register file of the Leon.

The synthesis results for this emulated system:

Board : Xilinx Virtex-II Pro XUP Evaluation Platform Rev C
Target Device : xc2vp30
FPGA Family : Virtex-1I Pro

Design Summary :
Slice Logic Utilization: Flip-flops 15% and LUTs 40 %
Slice Logic Distribution: 51 %

In this case, the Emulated System (the Leon) occupies 36.4 % of the board
Slices (4,911 out of 13,696), while 2,000 Slices are dedicated to the Emulation
Engine, that represents 14.6 % of the FPGA occupation. The area occupancy
of the Emulation Engine differs from that shown for cases 1 and 2. The reason
is that we use different FPGAs: A Virtex II Pro in case 3, and a Virtex 5
for cases 1 and 2, so a word of caution when comparing the number of Slices
with different FPGA models.
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The results shown in this section prove that within a standard FPGA we
can emulate complex systems made of several microprocessors (Case 2 shows
an MPSoC with 5 cores) or include really complex cores (like the Leon3 of
Case 3) and, still, there is plenty of free space to include more elements.

Regarding the time required to set up an emulation, it highly depends
on the skills of the designer but, as a reference, for a person who is familiar
with the development tools, for a complex MPSoC with 8 processors and
20 additional HW modules (all of them already verified), the set-up phase
requires 10 to 12 hours overall, including the complete synthesis phase. Mo-
reover, modifications in the current configurations of the cores take less than
1 hour to be re-synthesized, while the compilation of additional SW only
takes minutes.

4.4. Conclusions

While the previous chapters were dedicated to describe in detail the diffe-
rent parts of the EP, this one, however, presents the FPGA-based emulation
framework as a whole, as the integrated tool developed to aid state-of-the-art
chip designers.

First, I have detailed the complete emulation flow, explaining, step by
step, the procedure to setup an emulation. For completeness, T have included
in this section information about how to emulate a 3D chip with an FPGA,
and how to manage virtual frequencies. I have also explored the benefits
of using a unified design flow for the MPSoC design cycle. Next, I have
enumerated all the necessary elements required to build an EP: both on the
HW side (FPGAs and PCs) and on the SW side (tools).

Finally, I have concluded the chapter giving some examples of synthe-
sized platforms, so that system designers can get a rough idea of the area
requirements.






Chapter 5

Experiments

This chapter presents three case studies aimed at showing the practical
use of the EP to evaluate the impact of design decitions (ranging from the
floorplan layout to the compiler selection) into the performance, temperature
or reliability of the target MPSoC. The results are compared against other
exploration frameworks, for a reference.

In the first part, I use the EP to evaluate the impact that different HW
design alternatives have into the thermal profile of the final chip. Having this
information at design time, allows the designer to choose the right floorplan,
the best package, or decide if it is worth implementing Dynamic Frequency
Scaling (DFS) support.

In the second set of experiments, I introduce a reliability enhancement
policy aimed at extending the lifespan of a processor by reducing the stress
induced in its register file. The policy is validated empirically using the EP
onto a Leon3d Sparc V8 processor core, showing its benefits at the microar-
chitectural level.

The last experiment shows the application of the EP to the elaboration
of system-level thermal management policies, implemented at the opera-
ting system (OS) level: When several microprocessors come into play, multi-
processor operating systems (MPOSes) require a middleware able to offer
advanced mechanisms, such as task migration and task scheduling, to effec-
tively regulate the temperature.

5.1. Thermal characteristics exploration

In the following sections, I apply the presented framework to different
stages of the design cycle of a complex MPSoC case study based on ARM7
cores [Holl. First, in Section[5.1.1] I describe the experimental setup. Then, I
assess the performance and flexibility of the proposed emulation framework
in comparison with the MPARM framework [BBB™05|, by running several
examples of multimedia benchmarks (Section [5.1.2)). Next, I perform a detai-
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Figure 5.1: Two interconnect solutions for the baseline architecture of the
case study.

led thermal analysis of the system, using the EP as a tool to test a run-time
DFS mechanism (Section [5.1.3), evaluate different thermal-aware floorplan
solutions (Section [5.1.4), and compare various packaging techniques (Sec-

tion [5.1.5).

5.1.1. Experimental setup

In the first place, I describe the basic experimental setup: I detail the base
architecture (HW and SW) of the MPSoC structure chosen as case study,
the configuration of the Thermal Model, and some details of the MPARM
framework, that will be used as a reference for comparisons.

5.1.1.1. Emulated Hardware

From the HW viewpoint, I have defined a system that can be genera-
lized to n RISC-32 processing cores. Fach core is attached to two local,
8KB, direct-mapped, instruction and data caches, using a write-through re-
placement policy and to a 32KB cacheable private memory. A 32KB shared
memory is included in the system.

The memories and processors are connected using either an AMBA bus,
or a simple NoC created using XPipes [JMBDMOS]|. Figure depicts the
two alternative floorplans resulting with n=4: Figure contains the bus-
based solution, while Figure uses the NoC interconnect instead, with 4
6x6 switches and 9 Network Interface (NI) modules.

Both floorplans have been designed in 0.13 pum technology. The 4 ARM7
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can be clocked at, up to, 500 MHz, and the interconnect is clocked at the
same frequency than the cores. Each of the components present in the picture
contains one associated sniffer that monitors the activity of that particular
module.

I evaluated various configurations of interconnections and processors (1 to
8). As an example, the MPSoC design with bus interconnect and 4 processors
(the one in Figure p.1p), contains 30 HW MPSoC components in total (and
the 30 HW Sniffers associated), consumes 66 % of the V2VP30 FPGA and
runs at 100 MHz. Next, I have explored the use of NoCs [JMBDMO0S]| instead
of buses. The tested NoC (see Figure |5.1p) has 4 32-bit switches with 6
inputs/outputs and 3-package buffers. This NoC-based MPSoC required 80 %
of the FPGA.

5.1.1.2. Emulated Software

As SW applications, first, I created a kernel, called MATRIX, that per-
forms independent matrix multiplications at each processor private memory
and combines the results in shared memory at the end. Second, I implemen-
ted a dithering filter, named as DITHERING, that uses the Floyd algorithm
[F'S85] over two 128x128 grey images, divided in 4 segments and stored in sha-
red memories; this application is highly parallel and imposes almost the same
workload in each processor. Finally, I defined the MATRIX-TM benchmark,
that keeps the workload of the processors close to 100 % all the time, pushing
the MPSoC to its processing power limits to observe effects in temperatu-
re. This benchmark implements a pipeline of 100K matrix multiplications
kernels based on the MATRIX benchmark: each processor executes a matrix
multiplication between an input matrix and a private operand matrix, then
feeds its output to the logically following processor. The platform receives a
continuous flow of input matrices and produces a continuous flow of output
matrices. Every core follows a fixed execution pattern: (i) copy of an input
matrix from the shared memory to its private memory; (ii) multiplication of
the new matrix by a matrix already stored in the private memory; (iii) copy
of the resulting matrix back to the shared memory. During the whole exe-
cution, interrupt and semaphore slaves are queried to keep synchronization,
creating an important amount of traffic to the memories.

5.1.1.3. Thermal Model Setup

The considered floorplans, shown in Figure have been divided into
128 thermal cells. The cell sizes used are 150um x 150um. I consider that the
power is uniformly burnt in this region, which represents 1/8th of the size
of an ARMY processor in 0.13 um. For technologies with a worse thermal
conductance, such as fully depleted silicon-on-insulator [bibal, it is possible
to use smaller thermal cells (down to the level of standard cells).
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Table 5.1: Thermal properties used in the experimental setup.

silicon thermal conductivity 150 - (%)4 “W/mK
silicon specific heat 1.628¢ — 12J /um®K
silicon thickness 350um
copper thermal conductivity 400W/mK
copper specific heat 3.55¢ — 12J /um3 K
copper thickness 1,000um
package-to-air conductivity (low-cost) 0K /W

Table[5.T]enumerates the thermal properties used during the experiments.
Regarding package-to-air resistance, I consider the case of very low-cost pac-
kaging, where a good average value is 40W/K [BEAEOL], because of the
uncertainty of final MPSoC working conditions. However, since this value is
higher than the actual figures published by some package vendors, in Sec-
tion [5.1.5]T also study the effect of different packaging solutions for MPSoCs;
in the case of embedded systems, the amount of heat that can be removed by
natural convection strongly depends on the environment and the placement
of the chip on the PCB.

5.1.1.4. MPARM

Throughout this chapter, the MPARM framework [BBBT05] is used as
the reference MPSOC SW simulator. Initially developed at the Department
of Electronics, Computer sciences and Systems (DEIS) of the University of
Bologna, MPARM is a complete environment for MPSoC architectural design
and exploration. Its structure can be observed in Figure It integrates
in one platform the simulation of both the HW and the SW components.
Internally, it is an event-based simulator, written in SystemC.

The main features of MPARM are:

= Supports full modeling of HW and SW architectures for heterogeneous
platforms, including a wide range of CPUs, memories, and communi-
cation architectures (Buses, NoCs...).

= Several OSes have been ported, offering inter-processor communication
libraries.

s [t can be connected to third-party models; e.g: cycle-accurate power
models and thermal libraries, to provide temperature estimations.

» Higly integrated with third-party tools, that can be incorporated to
the design flow. E.g.: XpipesCompiler [JMBDMO08| (NoC design) and
Sunfloor [SMBDM{09] (floorplanning tool).
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Figure 5.2: The MPARM SystemC virtual platform.

In all the experiments, MPARM is executed on a Pentium 4 at 3.0GHz
with 1GB SDRAM and running GNU /Linux 2.6.

5.1.2. Cycle-accurate simulation vs HW/SW emulation

After completing the implementation of the bare MPSoC emulation fra-
mework for system architecture exploration, I performed the first set of ex-
periments, aimed at testing the functionality of the integrated framework
and to assess the performance of the tool in comparison to cycle-accurate
simulators.

5.1.2.1. MPSoC architecture exploration

In the experiment, I have compared the time taken by the EP and the
MPARM to complete the execution of the selected SW applications on the
different HW architectures (see Table . As SW kernels, I used the Ma-
TRIX application, and the dithering filter (DITHERING), both explained in
Section [5.1.1.2] particularized for the actual number of cores in the system.

The obtained timing results are depicted in Table These results show
that the HW/SW emulation framework scales better than SW simulation. In
fact, the exploration of MPSoC solutions with 8 cores for the MATRIX driver
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Table 5.2: Timing comparisons between my MPSoC emulation framework
and MPARM.

’ Benchmark \ MPARM \ HW Emulator \ Speed-Up ‘
Matrix (1 core) 106 sec 1.2 sec 88
Matrix (4 cores) 5 min 23 sec 1.2 sec 269 %
Matrix (8 cores) 13 min 17 sec 1.2 sec 664 x
Dithering (4 cores-bus) 2 min 35 sec 0.18 sec 861 x
Dithering (4 cores-NoC) 3 min 15 sec 0.17 sec 1,147x
Matrix-TM (4 cores-NoC) 2 days 5’02 sec 1,612

took 1.2 seconds per run in the EP, but more than 13 minutes in MPARM (at
125 KHz), resulting in a speed-up of 664 x. Moreover, the exploration of NoCs
with complex SW drivers (DITHERING) shows larger speed-ups (1,147x) due
to signal management overhead in cycle-accurate simulators. As a result, the
HW/SW emulation framework achieved an overall speed-up of more than
three orders of magnitude (1,147x), illustrating its clear benefits for the
exploration of the design space of complex MPSoC architectures compared
to cycle-accurate simulators.

5.1.2.2. Thermal modeling

Using the experimental setup described in the previous section for the
MPSoC with four cores and a NoC (Figure [5.1b), I have verified the ca-
pabilities of real-time interaction between the HW FPGA-based emulation
and the SW thermal library, and compared them to pure cycle-accurate SW
simulation.

In order to model the system temperature, I have divided the conside-
red floorplan in 128 thermal cells, and used the thermal properties from
Section . As SW application, I use the Matriz-TM benchmark. The
obtained timing results (last row of Table show that the HW/SW emu-
lation framework takes 5 minutes approximately for the whole execution of
the benchmark, including thermal monitoring, versus 2 days in MPARM for
just 0.18 sec of real execution (left corner on Figure [5.3)); Thus, my frame-
work achieves a speed-up of 1,612x, more than three orders of magnitude
compared to SW-based thermal simulation, making feasible to study in a
reasonable time long thermal effects.

5.1.3. Testing dynamic thermal strategies

In order to observe thermal effects on the MPSoC, I have performed a
long emulation in the EP framework, running at 500 MHz, with real-life
embedded applications. I ran the MATRIX-TM workload for 100K itera-
tions. The results, shown in Figure [5.3] indicate the need to perform long
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Figure 5.3: System temperature evolution with and without DFS.

emulations to estimate thermal effects (note in Figure that the previous
simulation in MPARM only represents a very limited part of the overall
MPSoC thermal behaviour). Due to the high rise in temperature observed in
the MPSoC design, I used the HW/SW emulation framework to explore the
possible benefits of DTM techniques. To this end, I implemented a simple
threshold monitoring policy using the available HW temperature sensors in
my framework.

I modified the VPCM module, implemented with several Digital Clock
Managers (DCMs) available in the FPGA fabric, and able to generate mul-
tiple clock frequencies (see Section . Inside it, I included a simple pure-
HW controller with the ability to dynamically change the output frequencies
of the VPCM based on the information it receives. The policy consists on
a simple dual-state machine that monitors at run-time if the temperature
of each MPSoC component increases/decreases above/below two certain th-
resholds previously defined (350 or 340 Kelvin in this example) and, then,
selects the system frequency (500 or 100 MHz) accordingly. Whenever any of
the monitored modules (the thermal controller reads the current temperature
from the temperature sensors) exceeds the 350 Kelvin, the frequency of the
system is set to 100 MHz; once all the modules return to a safe temperature
(below 340 Kelvin), the frequency is restored to 500 MHz.

The results obtained employing the VPCM module with DFS are in-
cluded in Figure (trace Emulation with DFS), and indicate that this
simple thermal management policy could be highly beneficial in MPSoC de-
signs using low-cost packaging solutions (i.e., with values of package-to-air
resistance of more than 40K/W). Furthermore, these results outline the po-
tential benefits of this HW /SW emulation tool to explore the design space of
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Figure 5.4: Alternative MPSoC floorplans with the cores in different posi-
tions.

complex thermal management policies in MPSoCs, compared to SW cycle-
accurate simulators that suffer from important speed limits.

5.1.4. Exploring different floorplan solutions

After deciding which MPSoC components to use, and how to interconnect
them, there are still many design decisions to take that affect the system per-
formance. One of them is the placement of the different elements; a technique
called thermal-aware floorplanning [HVET07], for example, aims at reducing
the system hotspots by placing strategically the system components. In this
section, I use the EP to evaluate three different floorplans for the initial case
study, with four processing cores and NoC-based interconnect working at
500 MHz.

The original floorplan is depicted in Figure [5.Ip. The first alternative
floorplan scatters the processing cores in the corners of the chip (Figure )
while, in the second one, all the cores are clustered together in the center of
the chip (Figure[5.4b). I assumed the use of a low-cost packaging solution in
all the cases (see parameter package-to-air conductance in Table .

Regarding the configuration of the Thermal Model, I used the same ther-
mal cells (dimensions and size), but changed their location on the floorplan.

The results are shown in Figure In this case, we can observe that the
best floorplan to minimize temperature (15 % less heating speed on average
than the initial floorplan of Figure [5.1p) was achieved with the placement



5.1. Thermal characteristics exploration 113

technique that tries to assign the processing cores to the corners of the la-
yout (labelled as Scattered in Figure . Hence, this solution is the best
out of the three placement options because it delays the most the need to
apply the available DFS mechanism, although its interconnects experience
more heating effects due to the longer and more conflicting connection paths
between components, that originate more NoC congestion effects. Then, the
solution that tries to place all the processing cores in the center of the chip
(labelled as Clustered in Figure shows the worst thermal behaviour, but
just slightly worst in temperature (5% on average) than the original manual
placement of cores used for this MPSoC design, while the delays in the in-
terconnections between cores are minimal for the former due to their closest
locations in the floorplan (see Figure [5.4p).

The main conclusion from this study is that a more aggresive temperature-
aware placement must be applied (e.g., placement of cores scattered in the
corners of the chip) to justify the placement of cores apart, as tried in the
original manual design, to compensate for the heating effects due to longer
interconnects. Otherwise, the possible penalty for long interconnects may
not be justified in the end since a uniform distribution of power sources does
not need to lead to a uniform temperature in the die. Moreover, these results
clearly outline the importance for designers of tools to explore the concrete
thermal behaviour of each design, and to select the most appropriate place-
ment at an early stage of the integration flow, in order to facilitate a better
diffusion of heat and minimize the risk of hotspots.

5.1.5. Exploring different packaging technologies

The EP can also be used to test the thermal behaviour of different pac-
kaging solutions for a given MPSoC, so that designers can quickly get the
different thermal profiles, and decide which solution to adopt. Using the sa-
me MPSoC with four RISC-32 processing cores working at 500 MHz and
NoC interconnect (see floorplan at Figure ), and the same setup as in
the previous sections (sniffers, thermal cells, etc...), I simulated and com-
pared the thermal behaviour of three packaging technologies; the low-cost
value of 45K /W, higher than the initial value considered (Table [5.1]), and
two additional smalller values, namely, 12K/W in the case of standard pac-
kaging [ARMO04b] and 5K/W in the case of high-cost and high-performance
embedded processors [AMDO04] (see Table [5.3).

The results of this experiment are synthesized in Figure that shows
the thermal behaviour of the MPSoC along time:

In the case of the standard packaging solution, the MPSoC design requi-
red more time to heat up and it reached a maximum value of 360 Kelvin
when the DFS mechanism was not applied, which is lower than the case of
low-cost packaging (45K/W) that reached a temperature of more than 500
Kelvin. However, when the presented threshold-based DTM strategy of Sec-
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Table 5.3: Three packaging alternatives for embedded MPSoCs.

Package solution (;;iﬁ:gec—?g—lgr)
Low-cost 45K /W
Standard 12K/W
High performance 5K/W

tion [5.1.3] fixed at 350 and 340 Kelvin, was applied, the thermal behaviour
of the standard packaging system was similar to the low-cost solution (only
its starting point was slightly shifted to the right due to the less steep tem-
perature rise curve). Therefore, in this case, with this threshold value, no
significant improvements were obtained with the standard package, and the
low-cost solution would be preferably selected for this design using DTM.
However, in the case of the high-cost packaging solution (for 5K/W), the
system showed a completely different temperature behaviour, where the chip
never went beyond 325 Kelvin; Therefore, this packaging solution creates a
much lower thermal stress in the overall MPSoC implementation, and it
does not require the application of DFS because the design never reaches a
temperature above the 350-Kelvin threshold. As a result, this solution could
significantly increase the expected mean-time-to-failure of the components
and be interesting in highly reliable versions of the chip. Nevertheless, note
that this type of package has the important drawback of the high cost for the
manufacturer of the final embedded system, typically 5 to 12x more than
standard package solutions and more than 20x the low-cost package solution
[IBMO06]; Thus, it can seriously increase the price of the final product and
developers would like to avoid it, if possible.

The final conclusion is that this type of experiments and the presented
framework can be a very powerful tool for designers to decide which type
of packaging technique would be enough for a specific set of constraints in
forthcoming generations of MPSoC designs.

5.2. Reliability exploration framework

In this section, I introduce a reliability enhancement policy aimed at
extending the lifespan of a processor by reducing the stress induced in the
register file. It is SW-based, and only implies modifying the compiler; thus,
it can be applied to a broad range of processors. In this particular case,
it has been implemented on the IEEE-1754 Leon3 Sparc v8 processor core
[Gaibl, and validated using the EP. To this end, I have added my HW/SW
thermal-reliability infrastructure around a Leon3 system.

In the first place, I describe the Leon3 and its microarchitecture, putting
special emphagis in the register file. Next, I describe the setup of the EP
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to perform reliability analysis of the Leond system. The following step is to
obtain and study an initial reliability profile. Finally, a new register allocation
policy is proposed, implemented, and tested in the Leon3, through emulation,
to prove that it efectively reduces the MTTF of the register file.

5.2.1. The Leon3 processor

The Leon3 processing core is a 32-bit CPU based on the Sparc-V8 RISC
architecture and instruction set, conceived as a fully customizable micropro-
cessor, and designed primarily for embedded systems applications. A synthe-
sizable version of the Leon3 has been developed by Aeroflex Gaisler Research
[Gaibl; it includes the core, the peripherals, and the toolchain to generate,
download and debug both the SW and the HW. The complete source code
is publicly available under the GNU GPL license (directly from Gaisler’s
website [Gaial), allowing free and unlimited use for research and education.
This fact converts the Leon into a perfect candidate for microarquitectural
studies.

The version of the Leon3 available from Gaisler contains multiple featu-
res common to those found commercially. Moreover, it is highly configurable,
and particularly suitable for SoC designs. The main features include separate
instruction and data caches, a HW multiplier and divider, a memory manage-
ment unit (MMU), separate (or combined) instruction and data translation
lookaside buffers (TLBs), and the system has the potential to be exten-
ded to a multicore configuration (Figure shows an example architecture
featuring four Leon3 cores). Each Leon3 core supports a large range of cus-
tomizations (e.g., size or replacement policy of the register file, caches, and
TLBs), which allows the designer to specify the concrete system architecture
to test.

5.2.1.1. The register file

The Sparc microarchitecture uses a special type of register file, based
on register windows, that facilitates the sharing of data between procedure
calls. This mechanism makes 32 general purpose integer registers visible to
the program at any given time but, internally, it keeps several sets of registers
for the different parts of the program, reducing the need to load/save them
from/to memory. Of these, 8 registers are global registers, and 24 registers
belong to the current register window. The structure of the register windows
is specified by the Sparc v8 standards [Inc| and contains 8 local registers, 8
in registers, and 8 out registers. A Sparc implementation can have from 2 to
32 windows; thus, the number of registers varies from 40 to 520.

To provide communication between the register windows, the in and
out registers are shared between the previous and next register windows,
respectively, with the local registers being exclusive to the currently selected
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Figure 5.7: Multicore Leond architecture.

register window. Figure represents graphically this overlapping of the
register windows: Every time a new procedure is called, the register window
is shifted upwards; once the procedure finishes, it comes back to the previous
state (i.e., it is shifted downwards).

5.2.2. The Leon3 emulation platform

Figure[5.9shows the block diagram of the reliability emulation framework
created to study the Leon3 register file.

The emulated architecture (left side of Figure contains one Leon3
core with a 3-port register file of 256 registers (with 8 register windows),
has a SDRAM memory controller, 16Kb 4-way set associative instruction
and data caches, and separate instruction and data TLB’s, each containing
32 entries. The replacement policy is set to LRU. Furthermore, the Leon3
system includes 64KB of on-chip ROM and RAM (not shown), 512MB DDR
Memory, AMBA buses, timers, and interrupt controllers. Finally, the com-
munication interface to load applications is provided through a serial UART
(RS232) port.

Physically, the specific layout of the register file considered in this case
study is depicted in Figure It contains 256 registers arranged into 32
rows and 8 columns; and each register features two read ports and one write
port, with each port having separate address and data buses.

The Statistics Extraction Subsystem from Section has been ins-
tantiated and particularized with the necessary components to control and
monitor the emulated Leond system. Its main component is the HW Sniffer
used to snoop signals within the Leon. In this case, I have included sepa-
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rate monitors (sniffers) for each register of the register file, as shown in the
top-right side of Figure [5.9

5.2.3. Case study

The register file reliability emulation platform described in the previous
sections has been used to perform a complete reliability analysis of the re-
gister file of the Leon3 core. In this analysis, I have explored the effects of
the application domain, as well as the code transformations regulated by the
compiler. Then, as an example of the potential benefits of reliability-aware
design for nanoscale MPSoCs, using the outcome from this analysis, I ha-
ve redefined the register assignment policy in the compiler to enhance the
MTTEF of the register file.

Regarding the setup of the SW Libraries for Estimation, the register file
is modeled as implemented with the 90 nm process technology, with 256
cells, one per register (thus, arranged in the same 32 x 8 grid layout). The
dimensions of each cell (register) are 300pum x 300 pm, and the thermal
characteristics of the materials are those depicted in Table 3.4l In order to
analyze the worst case scenario, the RF is sorrounded by cells with a constant
temperature close to the hotspot (considered to be at 328 Kelvin); this is
318 Kelvin. Outside these cells it is the ambient environment.

With respect to the SW running on the Leon3 processor, a set of embed-
ded applications from MiBench [GRET01] and CommBench [WEQQ] suites
has been selected to analyze the effects that the application domain has
on the reliability. Among these applications, data-processing (FFT, reed),
mathematical and graph theory (basicmath, dijkstra) and ordering/searching
(bitcount, gsort, stringsearch, etc.) algorithms can be found. These applica-



120 CHAPTER 5. Experiments

S 100 a a
=
= 99
=
o
2 98
0]
Q.
6]
o 97
e
+—
u—
(e}
96
fout
[}
% |D basicmath e gsort v stringsearch a bitcount » FFT el reed‘
E 95 D T T T T T 1
o 1 3
3 2
O

lifetime (years)

Figure 5.11: Evolution of the MTTF degradation along 3 years for various
benchmarks.

tions have been compiled with a cross-generated version of GCC 3.2.3 for
the Sparc architecture. Also, four versions of each benchmark have been
generated using the four optimization levels of GCC (-O0 to -O3).

5.2.3.1. Reliability emulation

The first set of experiments studies the effect of the target application
on the MTTF of the register file. The results are synthesized, in Figure [5.11
as the evolution of the degradation of the expected MTTF (see Section
along 3 years of operation. The main conclusion is that, independently from
the application domain, the key differentiator used to identify the worst
benchmarks, from the reliability viewpoint, is the analysis of which ones make
intensive use of a reduced number of registers, namely FFT and bitcount;
those are the benchmarks that experience the most severe MTTF reduction
(up to 2.9% in 3 years, following the normalized pattern of Figure [5.11)),
due to the hotspots that appear in the highly-accessed registers. On the
other hand, those data-processing benchmarks with an extended number of
assigned registers (i.e., gsort and reed) experience a lower impact on the
MTTF prediction.

The second set of experiments evaluates the effect of the different com-
piler optimizations, from -O0 to -O3:

As Figure shows, the less optimized policy (-O0 option) is the one
that provides a lower impact on the MTTF reduction (1.5 %), while the re-
gister reuse conducted by the most extensive compiler optimization options
impacts the MTTF negatively (2.5% and 3% for the -O2 and -O3 options,
respectively, in the sampled interval). The last trace of the figure, MODI-
FIED, is explained in the next section.

Another graph, Figure [5.13] gives us an insight into the four main relia-
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Figure 5.13: Contribution of the four main reliability factors to the degrada-
tion of the expected MTTF for the FFT benchmark compiled with -O3.

bility factors that contribute to the degradation of the MTTF of the FFT
benchmark under the -O3 optimization; as predicted by the different ther-
mal models for sub-micron technologies [ADVPT08; [CSM ™06} [SSST04], SM
is the dominant factor in the reduction of the MTTF due to the fast thermal
dynamism of the system in different execution phases (i.e., 12°C difference
can occur in few seconds).

Finally, I have estimated the number of damaged registers as a way to
quantify the degree of device failure: A register is considered to be damaged
if its MTTF is below 2% of the nominal value. This information is very
useful, for the microarchitecture designer, to understand the consequences of
the optimization policies applied by the compiler in the register file lifetime.
The number of damaged registers, at the end of a sample interval of 2 years,
for the bitcount benchmark, one case study with high pressure in the register



122 CHAPTER 5. Experiments

(a) Traditional (b) Modified

Figure 5.14: Thermal distribution of the register file of the Leon3 core using
different register allocation policies.

file, is depicted in Figure [5.I5] On average, it varies between 1 and 4 for the
studied interval, depending on the optimization level used by the compiler.
In the worst case, code compiled with the (-O3) option, the probability of
having at least 4 registers damaged in the first 2 years reaches 99.5 %, making
critical the development of reliability-aware register assignment policies. The
last trace of the figure, MODIFIED, is explained in the next section.

5.2.3.2. Reliability enhancement policy

Using the register file information obtained from the reliability emulation
framework in the previous section, I have modified the register assignment
policy made by the GCC compiler with the goal to reduce the hotspots:

The algorithms included in the current versions of GCC [bib03] assign
registers from a pool of free registers. My proposed register allocation tech-
nique, called MODIFIED, selects the target register after checking that the
neighbours have not been previously assigned, if possible. In order to im-
plement it, I modified the graph coloring algorithm found in [JYCQ0]. This
pattern of assigning registers results in a thermal map that resembles a chess
board, as we can observe in Figure [5.14p. Compared to the original register
allocation policy (Figure|5.14p), MODIFIED facilitates a better diffusion of
heat within the different register windows and a broader selection of regis-
ters that, eventually, reduce the hotspots and improve the reliability of the
register file.

As depicted in Figure my new register assignment policy (MODI-
FIED) reduces the number of damaged registers. In fact, the spreading of the
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Figure 5.15: Number of damaged registers, after 2 years, for the bitcount
benchmark, under different compiler optimizations, and using my reliability-
aware algorithm (MODIFIED).

register assignment per window performed by this policy eliminates any da-
maged register in the sampled interval (2 years) for the bitcount benchmark.
Moreover, Figure [5.12]indicates that this policy is very effective to minimize
the MTTF degradation: it is only reduced by 0.2 % in the sampled interval,
much smaller figures than any other policy. In fact, in comparison with -O3
(Figure , these results indicate that my policy reduces significantly (by
20 % on average) the impact of all factors related to MTTF degradation.

5.3. System-level HW /SW thermal management po-
licies

Multi-Processor Systems-On-Chip (MPSoCs) are a design solution that
succesfully provides the performance levels required by high-end embedded
applications, while respecting the demanding design constraints (power con-
sumption, reliability, etc.) of the embedded HW. The conception of a new
MPSoC involves not only the design of a HW architecture, but also the
development of the SW architecture that exploits it. Section [5.2] already
introduced the importance of the SW in the thermal behaviour of a mono-
processor SoC, experimenting with compiler modifications on a Leon3-based
system running C applications. When several microprocessors come into play,
multi-processor operating systems (MPOSes) and middleware are required to
efficiently exploit the interaction of the various components of the underly-
ing HW, while ensuring flexibility and providing a standard HW-abstraction
layer for heterogenous application development.

While this layered approach eases the programmer’s job, SW and HW de-
signers have the responsibility of efficiently managing non-functional system
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constraints, such as power and temperature. The high HW and SW comple-
xity provides high degree of freedom at the price of increased design effort at
SW (0OS) and middleware level. Hence, mechanisms to efficiently evaluate the
effectiveness of advanced thermal-aware OS strategies (e.g. task migration,
task scheduling policies) onto the available MPSoC HW are needed.

In this context, I have enhanced the flexible HW/SW FPGA-based emu-
lation infrastructure presented in Chapter 2| with the necessary HW and
SW extensions (only the Emulated System is affected) to support MPOSes
and middleware emulation, and enable the exploration of OS-level thermal
management policies.

The following sections are organized as follows: In Section I pre-
sent the architectural extensions to MPSoC designs to provide an efficient
implementation of MPOSes: First, describing the changes at the HW le-
vel and, then, introducing the foundations of the ported MPOS to enable
a complete framework to explore thermal-aware OS-level strategies. Next,
in Section [5.3.2] I detail the complete MPOS MPSoC emulation flow, that
has incorporated minor changes. Finally, in Section I present a real-
life example, aimed at developing a system thermal balancing policy. The
results prove the benefits of advanced temperature management using task
migration.

5.3.1. The multi-processor operating system MPSoC archi-
tecture

Figure depicts the HW architecture of the multi-processor operating
system emulation framework with thermal feedback. The Emulated System is
composed of a variable number of soft-cores (MB0..MB3, in the figure). Each
core runs its own instance of the uClinux OS [url06] on a private memory,
physically mapped into the available off-chip DDR memory on the board,
for space reasons (the included on-chip BRAM memories of the FPGA are
too small for containing the OS image). A shared memory, also mapped into
the external DDR memory, is used by a middleware layer running on top
of each OS to add communication and sychronization capabilities (such as
process synchronization, resource management, and tasks scheduling) among
the OSes.

The Emulation Engine presents no modifications with respect to the
standard one, presented in Chapter 2] However, it is worth mentioning that
the thermal sensors, described in Section [2.1.2.1] are now mapped into the
memory range of the processors.

The fact that we are now emulating a MPOS is completely transparent
for the SW Libraries for Estimation, that interact only with the HW: they
receive the system statistics from the activity of the HW cores, and write the
output temperatures in the HW sensors. At the SW level, the middleware
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Figure 5.16: Overview of the HW architecture of the multi-processor opera-
ting system emulation framework with thermal feedback.

has access to these sensors, so that it can use the computed temperature
values to implement a thermal-aware task migration strategy. An example
policy that exploits temperature feedback is described in the experimental
results section (Section [5.3.3)).

5.3.1.1. MPOS HW: Architectural extensions

Any MPOS requires some basic HW support (not included in the basic
blocks of the baseline architecture described in Chapter to enable the
inter-processor communications and, at the same time, garantee the exclusive
access to the shared elements. I solved these two issues implementing a special
inter-processor interrupt controller and a semaphore memory. In addition to
these two modules, I created a HW address translator to facilitate the porting
of the OS, and a UART multiplexer to simplify the control of the processors.
Finally, [ added a frequency scaler that can be SW-controlled. I next describe
each of these elements, implemented in VHDL; three of them were designed
from scratch while, the other two, the interrupt controller and the address
translator, were implemented modifying the source code of the opb interrupt
controller, and opb v20 bus, respectively, two modules included in the EDK
pcores library (from Xilinx):

1. Inter-processor interrupt controller: This component is needed
to enable interrupt-based wake up of tasks sleeping while waiting for
a shared resource to be freed. Without interrupt support, a task is
forced to perform busy waiting on shared variables for accessing shared
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data, such as messages from tasks in other processors. With the inter-
processor interrupt controller, any processor can generate an interrupt
in the selected target processor by writing a word in a memory-mapped
control register.

Semaphore memory (MUTEX): Mutual exclusive access to the
common resources (e.g., shared memory) is provided through a HW
module, the mutex, that implements the test-and-set-lock (TSL) primi-
tive [HP07], an atomic operation used, for instance, in the construction
of semaphores.

The mutex is mapped on a shared memory area, and contains a variable
number (configurable from 1 to 1,024) of special memory positions,
known as “locks”, or semaphores. A lock can be acquired by any of
the processors included in the emulated MPSoC. When the lock is free
and a processor reads it, a “zero” value is read and, atomically, that
memory position becomes a “one”. The behaviour of the rest of read
and write operations is as in a normal memory afterwards.

A user-defined number of semaphores can be defined as variables into
the shared memory region. Every processor should then periodically
check its shared area for new incoming messages, which would result
in extra bus traffic. However, in order to avoid this polling overhead,
the mutex is able to monitor all accesses to the shared memory, and
fire an interrupt for the corresponding processor only when new data
are available.

Semaphores are an effective mechanism to avoid the simultaneous use
of a common resource, such as a global variable or a shared peripheral,
where all the processors can deliver their messages.

Address translator: All the private memories of the processors are
mapped into the same SDRAM. They lie in non-overlapping address
ranges. Due to the absence of a Memory Management Unit, to avoid
static linking of OS and program code at different locations, it is nee-
ded to provide to each core the same view of the private memory.
This is obtained by translating the addresses generated by the cores to
the appropriate memory range, so that all the processes can execute
independently from the processor where they run. This operation is
transparently performed by this HW module.

. Multiplexed UART: A Terminal is a simple way for users to establish

a bidirectional communication with Linux-based systems. It is a text
window where, basically, the system prints messages with information,
and the user inputs the commands. In embedded processors, without
human IO devices, this interchange of information is normally perfor-
med through the serial port [Stalll. Following this idea, the EP uses a
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serial connection to communicate the host PC with the FPGA. In the
PC, we receive the information coming from the emulated processors
in independent instances of the Minicom [bibc| application that, at the
same time, allow the user to input interactive commands. Figure [5.17]
depicts this EP-user interface. There is one Terminal per processor
in the Emulated System, plus two additional ones for debugging. For
the sake of simplification, I implemented a module that multiplexes
all the Terminal communications into one single serial connection that
can, then, be mapped into one serial port. Thus, removing the need to
add one extra port (and cable) per processor present in the Emulated
System.

5. Frequency scaling: This module allows the SW to individually set the
frequency of the different processors of the Emulated System. Program-
mable dividers have been combined with the platform clock generators
to obtain SW-configurable frequency scaling support. Each core can set
its own frequency, as well as the frequency of other cores, by accessing
the memory locations where the described dividers are mapped.

5.3.1.2. MPOS SW: Inter-processor communication libraries

Each processor in the Emulated System runs its own instance of the
uClinux OS. UClinux is a collection of Linux 2.x kernel releases intended
for single microcontrollers without Memory Management Units (MMUs),
as well as a collection of user applications and libraries. In this work, the
standard uClinux distribution has been extended with a SW abstraction layer
aimed to support inter-processor task migration. This layer also includes the
SW drivers to access the HW modules described in the previous section:
the interrupt controller, the semaphores, the multiplexed UART, and the
frequency scaler. The address translator is a transparent element for the
SW.

In the programming model I adopted, each task is represented as a pro-
cess. This means (as opposed to multi-threaded programming) that each task
has its own private address space, and that task communication has to be
explicit, because shared variables between tasks are not allowed.

The SW abstraction layer is depicted in Fig. as OS/middleware. It
is based on three main components: (i) standalone OS (uClinux) for each
processor, running in private memory; (ii) lightweight middleware layer pro-
viding synchronization and communication services; (iii) task migration sup-
port and dynamic resource management layer. Together, the base OS image
plus the libraries and the basic filesystem take 1.44 MB.

Each task runs on a single OS at a time, and can transparently migrate
from one OS to another. Data can be shared between tasks using explicit
services given by the underlying middleware/OS, using one or both of the
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Execution Finished, Exiting

/7 fm_vorker_fp.ng caricato: menoria OX30f50000, size B
fau_producer_dem caricato: memoria OW30F30000, size G553
dvfs policy enabled; simple vertigo

0

2 minicom

enable_irq{Z) unbalanced from 00000000
===——————= >> NICROBLAZE 1 (TOT 3) $33HHz <K ———

memoria OM30FT0000, size B5538 register_dvfs_policy: null

policy null registered at O
register_dvfs_policy: vertigo

memoria OMI0F50000, size B5538 palicy wertigo registered at 1

register_dufs_policy: simple vertigo
policy simple vertigo registered at 2

RAMDISK driver initialized: 16 RAM disks of 403K size
MicroBlaze auto—config ran probe(0x30108c88,1430944,4)
Creating 1 HTD partitions on "RAM":
(x00000000-0x0016c000 3 "Romfs”

YFS: Hounted root (romfs filesuystem) readonly,
Freeing init memorys: 44K

Mmmr»wﬂim_.ﬁ_ shell (version fm_consumer_fp, caricato:
Command: mount -t proc none /proc

Execution Finished, Exiting

/2 fm_worker_fp,mg caricato: memoria OX30F50000, size
fm_producer_den caricato; memoria OX30F30000, size 655
dvfs policy enabled: simple vertigo

1]
minicom

0= 40
Load 1 = 78
load 2= 29
Tenp CPU O
Load 0 = 39
Load 1 = 79
Load 2 = 29

RAM disks of 409K size 1 Tenp CPU O = 343,2578,

Load 0 = 40
Load 1 = 79
Load 2 = 30
Tenp CPU O = 343,8471,
Load 0 = 41
Load 1 = 79
Load 2 = 30
Temp CPU 0 = 348,4711,
Load ¢ = 33
Load 1 = 79
_momn_ 2=30

= minicom
fri 3> h 344 - n 0
queyes: 50 50 50 50 50 1360249028 -053672458 -998552311

fri 33>h37B -n0
queues: 50 50 50 50 50 1360249028 -853672458 -098052311

fre 35> h 406 - n O
queues: 50 50 50 50 50 1360243028 -B53672455 -993552311

fre 35> h 437 - n O
queues: 50 50 50 50 50 1360249028 -8536724%98 -998552311

fri 35> hd468 - n 0 ’
queues: B0 50 50 50 50 1360249028 -853672458 -998552311

fri35>h453 - n 0
queues: 50 50 50 50 50 1360249028 -B53672458 -993552311

frt 35> h530 -n0
queues: 50 50 50 50 50 1360249028 -853672458 -998552311

fri 35> h 861 - n 0
mcmcmm” 50 50 50 50 50 1360249028 -053672458 -998552311

= 343,7068, Temp CPU 1 = 348,1015, Temp CPU 2 = 334,9383

Temp CPU 1 = 3476695, Temp CPU 2 = 334,5092

Temp CPU 1 = 347.,2706, Temp CPU 2 = 334,1160

Temp CPU 1 = 346.9029, Temp CPU 2 = 333,7556

queues, Minicom Core 3, Minicom miscellaneous information (temperatures, frequencies, and loads).
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Figure 5.18: The software abstraction layers.

available communication models: message passing and shared memory. In
addition to all this infrastructure, dedicated services run in the background
to enable tasks synchronization: the Communication and Synchronization
Support, the Task migration Support and the Decision Engine.

Communication and synchronization support

Using message passing paradigm [Stall|, when a process requests a ser-
vice from another process (which is in a different address space), it creates
a message describing its requirements, and sends it to the target address
space. A process in the target address space receives the message, processes
it, and services the request. I implemented a lightweight message passing
scheme able to exploit both scratch-pad memories and shared memory to
implement independent mailboxes for each processor core. It consists of a
library of mixed user-level functions and system calls that each process can
use to perform blocking write/read of messages in the data buffers. I defined
a mailbox for each core and not for each task to avoid allocation/deallocation
of mailboxes depending on process lifetime.

The second inter-processor communication method is the shared memory
paradigm [Stall], where two or more tasks are enabled to access the same
memory segment. The call to “malloc” is replaced by a call to “shared malloc”,
that returns pointers to the same actual memory. When one task changes a
shared memory location, all the other tasks see the modification. Allocation
in shared memory is implemented using a parallel version of the Kingsley
allocator [Stall], commonly used in linux kernels.
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Task and OS synchronization is supported providing basic primitives
like binary or general semaphores [HP07|. Both spinlock and blocking ver-
sions of semaphores are provided. The spinlock semaphores are based on the
HW test-and-set-lock memory-mapped peripherals, while the non-blocking
semaphores also exploit HW inter-processor interrupts.

Task migration support

I define task migration as the ability of the MPOS to suspend the exe-
cution of a task running in one processor, and resume its execution in a
different processor, preserving the state. Inside the MPOS, I consider two
types of tasks: those that can and can not be migrated.

In order to enable task migration among processors, the data structure
used by the OS to manage an application that can be migrated is replicated
in each private OS. When an application is launched, a Fork System Call
[Stalll is performed for each task of the application on the local OS. However,
only one processor at a time can run an instance of the task; in this processor,
the task is executed normally while, in the other processors, the replicas are
in a suspended tasks queue. In this way, tasks which can be migrated and
task which are not enabled for migration can coexist transparently for the
private OS. Not all the data structures of a task are replicated, just the
Process Control Block (PCB) [Stalll], which is an array of pointers to the
resources of the task and the local resources.

To simplify the process of migrating a task, I introduced an additional
SW layer (the Task Migration layer, in Figure, that handles the data re-
plication and keeps everything synchronized. It uses kernel daemons that run
on the background, transparently to the user. With these helper daemons, a
task migration can be triggered with the high-level command “migrate task
T to processor P”, that can be issued directly by the user (using a Terminal),
from a script, or from an application.

Two kinds of kernel daemons, master and slave, exist. There is only one
instance of the master daemon, that runs in the processor where the user
launches or terminates the tasks. For simplification, there is only one master
processor. Thus, when we launch a task in a slave processor, internally, it is
created in the master processor and, then, migrated to the slave processor.
It is an implementation decision transparent to the user, who only issues a
“Create task T in processor P” command. On the other hand, there is one sla-
ve daemon running in each processor of the system (including the processor
where the master daemon runs). The master daemon is directly interfaced
to the Decision Engine, a mechanism (an autonomous application, or the
user himself) that determines when and where the tasks are to be migrated.
All the communications between master and slave daemons are implemented
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using dedicated, interrupt-triggered mailboxes in shared memory.

The master daemon performs four operations:

1.

The master periodically reads a data structure in shared memory, whe-
re each slave daemon writes the statistics related to its local processor,
and provides it to the Decision Engine that, at run-time, processes
these data and decides the task allocation, eventually issuing task mi-
grations; i.e., implements the dynamic task allocation policy.

. When a new task or an application (i.e., a set of tasks), is launched

by the user, the master daemon communicates this information to the
Decision Engine and sends a message to each slave communicating
that the application should be initialized.

. When the Decision Engine decides a task migration, it triggers the

master daemon, which signals to the slave daemon of the processor
source of the migration that the task X has to be migrated to the
processor Y.

When the master receives the notification that an application finished,
it forwards this information to the slave daemons, that deallocate the
task; and to the Decision Engine, that updates its data structures.

The slave daemon performs four operations:

1.

When a new migratable application is launched, each slave daemon
forks an instance task for each task of the application. Each task is
stopped at its initial checkpoint and it is put in the suspended tasks
kernel queue. The memory for the process is not allocated yet.

. It writes periodically in the dedicated data structure (in shared me-

mory), the statistics related to its processor. They are the base for the
actions of the Decision Engine.

. When the master signals that a task has to be migrated from a source

processor to a destination processor, it performs the following actions:
i) it waits until the task to be migrated reaches a checkpoint, and puts
it in the queue of the suspended tasks; ii) it copies the block of data
of the task to the scratch-pad memory of the destination process (if it
is available and if there is enough space) or to the shared memory; iii)
it communicates to the slave daemon of the processor where the task
must be moved that the data of the task are available in the scratch-
pad or in the shared (a dedicated interrupt-based mailbox is used);
iv) it deallocates the memory dedicated to the block of the migrated
task, making it available for new tasks or for the kernel; v) it puts the
migrated task PCB in the suspended tasks queue.
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4. When the slave daemon of the processor source of the migration com-
municates an incoming task, the receiver (i.e., the slave daemon of the
processor destination of the migration) allocates the memory for the
data of the incoming task, and copies the data from the scratch-pad
or from the shared memory to its private memory. Finally, it puts the
PCB of the incoming task in the ready queue.

Decision Engine

The middleware provides real-time thermal information to the running
uClinux. At any moment, an application can read the current temperatures
of any of the system modules by simply calling the function getTemperatu-
re(1dOfTheModule). Internally, this function accesses the memory locations
where the sensors are mapped, and returns the value that was previously
introduced by the Thermal Model. This function is used by the Decision En-
gine that continuously monitors the die temperature to dynamically adjust
system operation. Therefore, the Decision Engine can be defined as a dy-
namic workload allocator that decides when a task must be migrated, and
to which processor. It is a task implemented in the kernel of the compiled
uClinux image, that runs on the processor where the master daemon runs.

Modifying the Decision Engine, the user can program his own migra-
tion policies, algorithms that will depend on the actual temperatures of the
system, the workload of the processors, the past history, or even random
heuristics.

5.3.2. MPOS MPSoC thermal emulation flow

Figure represents the flow to emulate a custom MPOS MPSoC de-
sign. The only difference with respect to the baseline EP flow, described
before in Chapter {4} is that the SW side (stripped parts in the figure) has
been extended to include the MPOS support. The SW binaries are now gene-
rated using the uClinux toolchain [url06] that enables to include OS support
in the same image that contains the application binaries to be executed; In
fact, the binary file generated contains the OS kernel plus the filesystem with
the application.

When the designer describes a MPSoC architecture, all the information
related to the HW resources present in the system (included processing co-
res, additional I/O blocks, memory addresses, custom parameters, interrupt
numbers...) is embedded into a configuration file (in my case, automatically
generated by EDK) that, once fed into the uClinux toolchain, it allows to
build a custom uClinux OS image, tailored to the current particular HW.

The OS setup is an interactive process where the user can customize the
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kernel (e.g., choose the number of semaphores to use, enable/disable debug-
ging support and thermal monitoring services, etc.) based on the available
HW services (indicated in the configuration file). Provided this information,
together with the available drivers for the included HW resources and the
applications to run in the final MPSoC, a self-contained binary file is ge-
nerated. It is not merged with the HW binaries; due to its size, the HW is
first downloaded to the FPGA and, then, the SW is directly copied to the
memories of the processors through the JTAG connection. After the uClinux
images have been downloaded, the emulation starts.

During the emulation, the Thermal Model uses the statistics, collected by
the sniffers, to compute the temperature of various chip components. It is,
then, fed back into the thermal sensors inside the Emulated System, where it
can be read by the OS and used to elaborate thermal management policies.

Overall, designers can use this framework to assess the impact of task mi-
gration and scheduling on system temperature, as well as to design thermal-
aware policies at the OS level. The next section presents a practical example.

5.3.3. Case study

In order to assess the effectiveness of the enhanced MPOS MPSoC emu-
lation framework, in this section I include a set of experiments to study the
evolution of the temperature of an MPSoC architecture including 4 cores,
when frequency scaling and task migration are available at the OS level to
perform thermal management of the final chip.

5.3.3.1. Experimental setup

The considered floorplan is shown in Figure It includes 4 ARM7
cores. Each one has a 64KB cacheable private memory, and there is a shared
memory of 32KB. There are two independent caches (instruction and data)
per processor, of 8KB each. The memories and processors are connected
using an AMBA bus interconnect. The dimensions of the AMBA circuits
were obtained by synthesizing and building a layout. The dimensions of the
memories and processors are based on numbers provided by an industrial
partner.

From the emulation point of view, the floorplan is divided into 128 regular
thermal cells, and there is one sniffer per element present in Figure [5.20
The running frequencies and the workload of the processor are the activity
monitored from the cores.

In the Emulated System, the clocks of the cores are generated by the
frequency scaling module (see Section , that generates 10 frequencies
equally distributed in the range of 10-51.2MHz. Analogously, in the final chip,
the core frequencies will range between 100 and 512MIHz. Since the emulation
is ten times slower and, in the Thermal Model, I define the emulation slot as
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Figure 5.20: MPSoC floorplan with uneven distribution of cores on the die
and shared bus interconnect.

10ns of emulated time, it means that we will effectively gather statistics every
100ns of real-life execution. The MPOS can dynamically set the frequency
of the cores, at run-time, to effectively reduce power consumption as the
workload of the MPSoC changes over time.

Regarding the SW side, I have defined a benchmark that stresses the
processing power of the MPSoC design to observe effects in temperature.
This benchmark implements a synthetic task that imposes a load near 100 %,
and can be migrated from one core to another.

In the current example, we can include up to four cores, due to the size
of the underlying Virtex-II Pro v2vp30 FPGA. However, the system can
be scaled to any number of cores by using available larger FPGAs. Four
processors are mapped into the system: MB0O, MB1, MB2 and MB3, but the
experiments are run only using the first three processors, for it results in
more clear images.

In the first image (see Figure where MBO is the processor 1 of
the floorplan, MBI is the processor 2, and so on), it can be observed the
thermal behaviour of the processors when a task is being executed only in
one of them. The other two are idle. The OS in each processor automatically
adjusts the frequency of the core using a policy based on the processor load
observed over time intervals [FM02]. As expected, the frequencies of the idle
processors are lowered to the minimum (100 MHz) and, after a brief delay,
their temperature stops increasing (it even drops a bit) and remains stable,
while temperature in MB0 keeps on going up until the limit imposed by
the physical properties of the chip (around 360 Kelvin). In the figure, we
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Figure 5.21: Temperature-frequency waveform with one task running on
MBO.

appreciate how the temperatures of the idle processors are affected by MBO;
however, being all the processors unloaded, they stay below 340K.

The second depicted image (see Figure , is more interesting from a
practical point of view. It shows a more reasonable approach for a real situa-
tion where noone wants only one processor running at the highest frequency
all the time; instead, the synthetic task running on the MB1 can now be
migrated among the available cores. A simple rotational policy is applied:
the owner of the task is periodically shifted, from MB1 to MBO0, to MB2,
and again to MB1, whenever the temperature surpasses a given threshold.

The middleware system is periodically monitoring the processor tempe-
ratures and comparing them with the predefined threshold, that I set to be
365 Kelvin in this experiment.

The curves in Figure show temperature and frequency waveforms of
each core over time: When the temperature of MB1 reaches the threshold, the
middleware system triggers the task migration to the colder processor MB2;
as a consequence, the temperature of MBI starts decreasing and, in parallel,
the temperature of MB2 starts increasing; when the later one reaches the
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threshold, it triggers another task migration to MB3.

From this simple experiment, we can draw out several interesting conse-
quences of MPSoC temperature management:

5.4.

The temperature of each core is affected by the others but strongly
depends on the load, which can be efficiently monitored by the OS since
this layer has full knowledge of the task being executed and, even more
importantly, which are the following tasks that need to be executed.
Hence, the OS can define a proper task migration policy according to
possible prior (design) knowledge of the location of the cores in the
floorplan and the thermal conductivity between their cells.

Thermal time constants are larger with respect to task migration de-
lays; this is the necessary condition for task migration to be effective in
controlling the temperature of the cores. However, task migration im-
poses an overhead due to data exchange between processors and to task
shut-off and resume delays (a technique to reduce this overhead could
be, for instance, to limite the number of migrations per time unit).
As the results indicate, since temperature variations are slow with res-
pect to the implemented migration overhead, moving tasks between
processors is a viable technique to keep the temperature of this chip
controlled.

Regarding exploration efficiency, the duration of both experiments was
90 seconds for 6 seconds of real-time, which indicates more than 1000 x
speed-up with respect to cycle-accurate MPSoC simulators including
OS [PMPB06]. Emulation time depends on two contributions: i) the
Emulated System is ten times slower than the final system; ii) there
is an additional time overhead to synchronize the FPGA and the PC.
Overall, the performance of the emulation is efficient enough for very
fast system prototyping and MPOS thermal policies validation.

Conclusions

In the first set of experiments, [ have shown the benefits of the EP to
perform detailed exploration of the thermal characteristics of a chip under
design:

I have demonstrated that the proposed HW/SW framework obtains de-
tailed cycle-accurate reports of the thermal features of final MPSoC floor-
plans, with speed-ups of three orders of magnitude compared to cycle-accurate
MPSoC simulators. Also, the addition of more processing cores and more
complex memory architectures in the emulation framework suitably scales;

Thus,

almost no loss in emulation speed occurs (conversely to cycle-accurate

simulators), which enables long simulations of complex MPSoCs as thermal
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modeling requires. Next, I have introduced a simple DFS mechanism in order
to illustrate the flexibility of the proposed HW /SW FPGA-based framework
to explore, in real-time, temperature-management policies.

In the next experiment, I have used the EP to evaluate a thermal-aware
placement technique that tries to compensate the heating effects on MPSoCs
by changing the location of the hot cores [HVET07|. This study indicates
that, in addition to the a priori benefits of separating the hot cores, signi-
ficant overheads of power dissipated in long interconnects can clearly affect
the overall thermal behaviour of the final MPSoC, and that a uniform dis-
tribution of power sources in the die does not need to produce a uniform
temperature in the final chip. Hence, MPSoCs designed in latest techno-
logy nodes require the use of tools to study their suitable placement at an
early stage of system integration, according to the applications that will be
executed in the final system.

Finally, I have illustrated the effectiveness of the EP to rapidly study the
effects of different packaging options for concrete MPSoC solutions. The re-
sults indicate that the selection of the final packaging solution clearly depends
on the thermal management techniques included in the target MPSoCs, and
that more costly packagings may show from the same heating effects as low-
cost ones; Thus, the need of expensive packaging solutions cannot be justified
without prior extensive thermal exploration.

In the second set of experiments (Section , I have illustrated the
feasibility and benefits of reliability-aware design by performing a complete
reliability analysis of the register file architecture of a Leon3 processor. Since
this type of analysis is very time-consuming for pure-SW simulators, T ha-
ve applied my HW/SW emulation framework, which enables an exhaustive
exploration of the various reliability factors for a complete range of different
benchmarks.

The obtained results outline that, on the one hand, the target application
domain can have a very negative impact on the reliability of the register
file, as well as the use of aggressive compiler optimizations. However, on
the other hand, effective reliability-aware register assignment algorithms can
significantly enhance the MTTF of the register file (up to 20 %, on average)
for different kinds of applications.

Additionally, the complexity of this system serves as an example of the
scalability of the EP. If we compare this experiment with the one in Sec-
tion the target processor is a Leond instead of a simple 32-bit RISC
core, and the thermal analysis is performed at a greater level of granularity
(microarchitectural).

Finally, in the third set of experiments (Section, I have presented an
extension to the original emulation framework: Inside the Emulated System,
I have included the necessary architectural support, at the HW level, to im-
plement a MPOS based on the uCLinux distribution; on top of which, I have
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added inter-processor communication and task migration capabilities. The
resulting framework enables long thermal emulations of MPSoC architectu-
res running a MPOS with task migration support. This enhanced version of
the EP is used to explore the benefits of thermal-aware management at the
OS level in MPSoC designs, that allows from simple control of the rise of
temperature in the die, to the definition of advanced thermal-aware MPOS
strategies.

Overall, in this chapter I have presented several case studies that de-
monstrate the flexibility and usefulness of the EP at different stages of the
MPSoC development cycle. Designers can use it to evaluate both the HW
and SW modifications: from the impact of changing the register file layout
at the microarchitectural level, to the importance of the tasks scheduling
policies implemented in the MPOS kernel.

Before going to fabrication, with the EP, we get realistic statistics of
the final chip running the real (i.e.: final) SW applications, as well as an
early estimation of the power, temperature and reliability values, that help
designers to choose the right packaging solution, floorplan layout, thermal
management techniques, etc. that will be implemented on the final system
in order to meet the design constrains. Once the chip is manufactured, the
EP is still a valuable instrospection technique to refine the SW of the system
that, as I have demonstrated through the examples, seriously affects not only
the performance, but also the power consumption, the temperatures, and the
reliability of the system.
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Conclusions

Traditional SoCs are not able to meet the tight design constrains (e.g. si-
ze, cost, energy consumption) of high performance embedded systems; their
increasing complexity, coupled with a reduced time-to-market window, has
revolutionized the design process. Nowadays, designing a state-of-the-art de-
dicated system starting from scratch and trying to optimize globally all the
necessary modules is an extremely complex task; thus, the only valid alterna-
tive, at least at short- and mid-term, is the application of the new paradigm
of MPSoCs, that consists on designing a system by using composition and
reuse of existing components designed independently. Nevertheless, the high
density of logic inside these MPSoCs brings new problems, like extreme on-
chip temperatures and reliability issues, to the system designers.

One of the main design challenges, for example, is the fact that the SW
must be capable of efficiently using the optimizations that the HW offers
to enhance the performance of the embedded applications and reduce the
power consumption, that has become a critical issue with the last techno-
logies. When they are developed independently, there is little opportunity
to optimize the HW-SW interaction; they must be evaluated together, task
that results in a huge design space.

In this situation, intensive testing of the system at early stages of the
design process is mandatory in order to correctly tune the final architectu-
re and efficiently reach the specified funtionality satisfying the given set of
constraints (e.g., development time, cost, power consumption, performance,
technology, etc.).

In general, the exploration techniques must be able to investigate a large
part of the design and manufacturing spectrum of MPSoC implementations
(e.g., various floorplan layouts or packaging technologies, multiple frequencies
and supply voltages, etc). Hence, I believe that a promising solution to ef-
fectively provide performance, power, temperature and reliability studies are
the hybrid HW /SW exploration frameworks [ADVPT08]. These frameworks
can merge cycle-accurate HW emulation (to obtain the switching activity of

141
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internal components at fast speed, with respect to pure MPSoC architectural
simulators [BBBT05]), with flexible SW estimation models.

In this context, the goal of this thesis has been to introduce a new
HW/SW emulation framework, the EP, that allows designers to speed up
the design cycle of MPSoCs. The HW part of the EP (Chapter [2)) is based
on an FPGA, that hosts the emulation and extracts the run-time information
from the Emulated System, while a desktop computer receives these data and
uses them as the input to SW models (Chapter |3)) that predict the power
consumption, the temperature, and the reliability of the final system. Both
parts are integrated in one single flow (Chapter , that simplifies the task
of the system designer.

The experimental results, in Chapter b show that the proposed frame-
work obtains detailed reports of the power, thermal and reliability features
of the final MPSoCs, with speed-ups of three orders of magnitude compared
to cycle-accurate MPSoC simulators. Also, the addition of more processing
cores and more complex memory architectures to the emulation framework,
suitably scales, enabling long simulations of complex systems (as required
by thermal and reliability modeling, for example).

First, the framework has been used to study the thermal profile of diffe-
rent packaging solutions and floorplan alternatives (where I proposed an, a
priori, intelligent placement of the on-chip components).

Second, since the real-time interaction between HW emulation and SW
thermal modeling enables the application of Dynamic Thermal Management
(DTM) policies to the emulated MPSoC at run-time, the EP has been used
to validate several of these techniques, from pure-HW solutions to elabora-
ted Operating-System-level policies, suitable for a wide range of MPSoCs,
depending on the needs of each design.

Regarding reliability, a deep study at the microarchitectural level has
been performed, with the help of the EP, in order to extend the lifespan of
a Leon3 core by modifying the compiler.

Finally, the versatility of the EP has been extended by adding a Multi-
Processor Operating System (MPOS) with task migration support to the
Emulated System. It is a simple but complete MPOS that opens the door
to the experimentation with advanced thermal-aware MPOS strategies. The
initial results show the usefulness of this framework to explore the benefits
of thermal-aware management at the OS level in MPSoC designs.

In the next section, I synthesize the main contributions of this thesis.
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6.1. Main Contributions

As the main contribution of this thesis, I have developed a HW/SW
FPGA-based emulation framework, the EP, that allows designers to explore
a wide range of design alternatives of complete MPSoC systems, characte-
rizing them (in terms of behaviour, performance, power, temperature and
reliability) at a very fast speed with respect to MPSoC architectural simu-
lators, while retaining cycle-accuracy.

The EP offers one integrated design flow that reduces the complexity of
the MPSoC development cycle. Through examples and experiments I ha-
ve shown how this HW/SW framework allows designers to test run-time
thermal management strategies with real-life inputs, observe their long-term
effects on chip reliability, and analyze different MPSoC design alternatives,
for example. More exactly, the EP has been effectively used to:

= Reduce the hotspots of a system by using thermal-aware placement
techniques, that assign a suitable placement to the diferent MPSoC
components at an early stage of system integration.

= Study the effects of using D'TM techniques or different packaging alter-
natives for specific MPSoC solutions; some of the improvements will
come for free, and some others at very little cost (economical, per-
formance). The results indicate that the selection of final packaging
solutions clearly depends on the thermal management techniques in-
cluded in the target MPSoCs, and that significant overheads of power
dissipated in long interconnects can clearly affect the overall thermal
behaviour of the final MPSoC. On the other hand, other non-evident
conclusions are also found out with this framework, like the fact that
costly packagings may show from the same heating effects as low-cost
ones, or that a uniform distribution of power sources in the die does not
need to produce a uniform temperature in the final chip. Overall, this
kind of design decisions are not trivial, and require extensive thermal
exploration to justify, for instance, the need of expensive packaging
solutions.

= Modify the register assignment policy of the compiler to reduce the
hotspots and improve reliability at the microarchitectural level. This
experiment showed the importance of studying the HW interaction
while running the final SW application, instead of using synthetic
benchmarks.

» Create a thermal-aware OS, by modifying the task scheduling policy (at
the kernel level) of a uCLinux distribution, to balance the temperature
in a multi-processor environment by migrating tasks at run-time. As
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part of the results, it has been quantified the penalty (in time) of the
migrations with respect to the temperature evolution.

6.2. Legacy

The Emulation Platform is an ambitious project whose seed was planted,
back in 2005, at the University Complutense of Madrid. More exactly, inside
my Computer Systems Engineering Master’s Project. Nevertheless,; the pro-
ject fully flourished thanks to the collaboration with other research groups
from around the Globe:

» The group of Architecture and Technology of Computing Systems (Ar-
TeCS) of the Complutense University of Madrid, Spain.

» The Embedded Systems Laboratory (ESL), and the Integrated Systems
Laboratory (LSI), at the Institute of Electrical Engineering within the
School of Engineering (STI) of EPFL, Switzerland.

» The Department of Mathematics and Computer Science of the Univer-
sity of Cagliari, Italy.

» Department of Electronic Engineering and Information Science (DEIS),
University of Bologna, Italy.

» The Department of Computer Science and Engineering at the Pennsyl-
vania State University, EEUU.

Next, I present the list of publications, related to the Emulation Platform,
that I have produced during my PhD:

1. “A Fast HW/SW FPGA-Based Thermal Emulation Framework for
Multi-Processor System-on-Chip”, David Atienza, Pablo G. Del Va-
lle, Giacomo Paci, Francesco Poletti, Luca Benini, Giovanni De Mi-
cheli, Jose M. Mendias, 43rd Design Automation Conference (DAC),
ACM Press, San Francisco, California, USA, ISSN:0738-100X, ISBN:
1-59593-381-6, pp. 618-623, July 24-28, 2006.

2. “A Complete Multi-Processor System-on-Chip FPGA-Based Emula-
tion Framework”, Pablo G. Del Valle, David Atienza, Ivan Magan,
Javier G. Flores, Esther A. Perez, Jose M. Mendias, Luca Benini,
Giovanni De Micheli, Proc. of 14th Annual IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), Nice, Fran-
ce, ISBN: 3-901882-19-7 2006 IFIP, IEEE Catalog: 06 EX1450, pp. 140
-145, October 2006.



6.2. Legacy 145

3. “Architectural Exploration of MPSoC Designs Based on an FPGA
Emulation Framework”, Pablo G. del Valle, David Atienza, Ivan Ma-
gan, Javier G. Flores, Esther A. Perez, Jose M. Mendias, Luca Benini,
Giovanni De Micheli, XXI Conference on Design of Circuits and In-
tegrated Systems (DCIS), Barcelona, Spain. Publisher Departament
dElectrénica-Universitat de Barcelona, pp. 1-6, November 2006.

4. “HW-SW Emulation Framework for Temperature-Aware Design in MP-
SoCs”, David Atienza, Pablo G. Del Valle, Giacomo Paci, Francesco
Poletti, Luca Benini, Giovanni De Micheli, Jose M. Mendias, Roman
Hermida, ACM Transactions on Design Automation for Embedded
Systems (TODAES), ISSN: 1084-4309, Association for Computing Ma-
chinery, Vol. 12, Nr. 3, pp. 1 - 26, August 2007.

5. “Application of FPGA Emulation to SoC Floorplan and Packaging Ex-
ploration”, Pablo G. Del Valle, David Atienza, Giacomo Paci, Francesco
Poletti, Luca Benini, Giovanni De Micheli, Jose M. Mendias, Roman
Hermida. Proc. of XXII Conference on Design of Circuits and Integra-
ted Systems (DCIS), Sevilla, Spain. Publisher Departament dElectrénica-
Universitat de Barcelona, November 2007.

6. “Reliability-Aware Design for Nanometer-Scale Devices”, David Atien-
za, Giovanni De Micheli, Luca Benini, José L. Ayala, Pablo G. Del
Valle, Michael DeBole, Vijay Narayanan. Proceedings of the 13th Asia
South Pacific Design Automation Conference, ASP-DAC 2008, Seoul,
Korea, January 21-24, 2008. TEEE 2008.

7. “Emulation-Based Transient Thermal Modeling of 2D /3D Systems-on-
Chip with Active Cooling”, Pablo G. Del Valle, David Atienza. Micro-
electronics Journal, Elsevier Science Publishers B. V., Vol. 42, Nr. 4,
pp- 564 - 571, April 2011.

8. “Performance and Energy Trade-offs Analysis of L2 on-Chip Cache
Architectures for Embedded MPSoCs”, Aly, Mohamed M. Sabry, Rug-
giero Martino, Garcia del Valle, Pablo. Proceedings of the 20th sym-
posium on Great lakes symposium on VLSI, 2010, p. 305-310. ISBN:
978-1-4503-0012-4.

In addition to the aforementioned publications, this framework has been
used by third parties to validate their research ideas. Amongst the most
relevant publications derived from this work, where I did not participate
directly, we can find:

= “Adaptive task migration policies for thermal control in MPSoCs”, D.
Cuesta, J.L. Ayala, J.I. Hidalgo, D. Atienza, A. Acquaviva, E. Macii.
ISVLSI, IEEE Computer Society Annual Symposium on VLSI, 2010.
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» “Thermal-aware floorplanning exploration for 3D multi-core architectu-
res”, D. Cuesta, J.L. Ayala, J.I. Hidalgo, M. Poncino, A. Acquaviva, E.
Macii. Proceedings of the 20th symposium on Great lakes symposium
on VLSI, GLSVLSI 2010.

s “Thermal balancing policy for multiprocessor stream computing plat-
forms”, F. Mulas, D. Atienza, A. Acquaviva, S. Carta, L. Benini, and
G. De Micheli. Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2009.

s “Thermal-aware compilation for register window-based embedded pro-
cessors”, Mohamed M. Sabry, J.L.. Ayala, and D. Atienza. Embedded

Systems Letters, 2010.

s “Thermal-aware compilation for system-on-chip processing architectu-
res.”, Mohamed M. Sabry, J.L. Ayala, and D. Atienza. Proceedings of
the 20th symposium on Great lakes symposium on VLSI, GLSVLSI
2010).

s “Impact of task migration on streaming multimedia for embedded mul-
tiprocessors: A quantitative evaluation.”, M. Pittau, A. Alimonda, S.
Carta and A. Acquaviva. Proceedings of the 2007 5th Workshop on
Embedded Systems for Real-Time Multimedia, ESTImedia 2007.

= “Assessing task migration impact on embedded soft real-time streaming
multimedia applications.”, A. Acquaviva, A. Alimonda, S. Carta and
M. Pittau. EURASIP Journal on Embedded Systems, 2008.

= “Energy and reliability challenges in next generation devices: Integrated
software solutions”, Fabrizio Mulas. PhD. Thesis at the Mathematics
and Computer Science Department of the University of Cagliari, 2010.

6.3. EP enhancements

In this section, I propose several improvements that could be introduced
in the EP. They possibilitate new uses of the platform, or facilitate the
existing ones. However, they all require a strong implementation effort. Some
of them are interesting extensions, while others will be a necessity as the
System grows:

Multi-FPGA environment

As observed in the experiments, with five simple RISC processing cores
mapped in the platform, we are close to the limits of a Virtex II Pro VP30
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FPGA, in terms of resource usage. In order to model bigger environments,
two alternatives are valid: (i) migrate to bigger FPGAs, or (ii) expand the
framework by adding support for multiple FPGAs. The first option is a
straight forward solution that does not require any modifications. However,
the second option is more interesting from the economical point of view,
since it keeps the price of the platform low: despite the advancements in FP-
GA technology, the biggest models are orders of magnitude more expensive.
Therefore, the importance of investigating multi-FPGA extensions.

Regarding the implementation, the main challenge is the synchronization
of the different emulation islands, that should run together at megahertz
speeds. In addition to the data interchange that takes place inside the Emu-
lated System, the Emulation Engine and the SW Libraries for Estimation
must also be synchronized, in order to pause, resume, etc... the emulation at
the same moment, and process simultaneously the collected data correspon-
ding to the last Emulation Step.

FPGA-PC communication

As the volume of exchanged information (FPGA-PC and PC-FPGA)
grows, mainly due to the increasing size of FPGAs capacity, or a possible
extension of the EP to a multi-FPGA environment, the Ethernet connection
will become insuficient. More efficient methods should be explored in order
to avoid this bottleneck. Upgrading the Ethernet connection to a Gigabit
link would be the next reasonable step. However, more advanced solutions
should also be explored, like using the PCI bus, or the high-speed Serial 10
implemented in Xilinx FPGAs.

Porting new processors

It is always interesting to port new cores to the emulation framework.
The source code (Verilog) of the OpenRisc1200 Processor [bibd], for example,
is available on the internet, and free of charge, which converts it in a good
candidate for architecture exploration.

Third party tools

Incorporating third party tools into the flow of the EP would simplify the
task of system designers and, at the same time, would extend the versatility
of the framework. For those tools that are already compatible with the input,
output, or intermediate file formats used in the EP (see Section, it would
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be very nice to include scripts that allow the complete automation of the
design flow.

Sunfloor [SMBDMU0Q9], for instance, is a tool that guides designers in the
task of creating a floorplan, generating automatically system layouts given a
set of constrains. Integrating it into the design flow would possibilitate that
several design alternatives could be automatically explored without requiring
user interaction.

6.4. Open research lines

In this section, I present some possible application fields that I have
identified as the most promising ways to use my framework.

Complex dynamic thermal management policies

With the increasing power density of current MPSoC designs, thermal
control has become a priority in the design cycle. In the experiments chapter,
I introduced some simple thermal management policies (HW and SW based)
in order to demonstrate the usefulness of the EP to conduct this type of
experiments.

Therefore, we can use the EP to test advanced DTM techniques: Simi-
larly to DFS, we can implement cache throttling, fetch-toggling, speculation
control... the only requirement, in addition to implementing the HW support
for the selected techniques, is the modification of the Decision Engine (see
Section ; i.e.: the algorithm that autonomously triggers the thermal
countermeasures. It can be modified to take decitions based on classic con-
trol theory, for instance, or employ complex neural networks that self-learn
from the past thermal history of the system. The perfect policy always de-
pends on the particular case, and the goals of the optimization: maximize
the performance of the system, reduce the power consumption, extend the
lifespan of the chip, ensure a minimum QoS...

In the future, I would like to study more in detail the relationship between
complex OS-based thermal management techniques and the reliability of the
MPSoCs.

Fault injection
New proposals and studies are being developed around the idea that

computation can or cannot be correct at a certain moment. Using fault in-
jection techniques [HTI97|, designers can analyze the behaviour of a system
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under unexpected circumstances. The architecture can then be modified, in
order to improve the error handling, and reduce the vulnerabilities of the
system. One way to enhance robustness, for instance, is to introduce redun-
dancy in the operations (HW or SW). In any case, the emulation framework
offers the possibility to test fault injection theory. Since the Emulation En-
gine has total control, at any moment, of the Emulated System, we would
only need to add a mechanism to inject faults at the specified points. The
mechanism is similar to introducing the temperature of the system from the
thermal library output, back into the Emulated System sensors (see Section
2.1.2.1).

This field is specially interesting for the aerospatial market, for instance,
where a high reliable version of a chip is normally preferred over a similar one
offering higher performance, even orders of magnitude, that cannot provide
a certain level of determinism.

Side channel attacks

Side channel attacks [BE] are attacks to electronic cyptosystems that are
based on the “side” information that can be retrieved during the operation
of the encryption device (such as timing information, power consumption,
electromagnetic leaks or even sound), which can be exploited to break the
System.

The idea is to use the EP to rapidly evaluate the robustness of different
implementation alternatives against side channel attacks.

Currently, in the EP, we already have models to estimate the power and
the temperature of the final MPSoC. However we would need to increase the
precission of the calculations, and calculate the variations in power consump-
tion or temperature every cycle, as side channel attacks require, instead of
after the last E'mulation Step. We could add, as well, models for the noise or
electromagnetism generated, for example.

High-level synthesis

High-level synthesis [ANRDO04], is an automated design process that in-
terprets an algorithmic description of a desired behaviour and creates HW
that implements that behaviour.

Solutions given by high-level synthesis algorithms must be examined ca-
refully [dBG11]; one algorithm aiming at the minimization of cycle time can
increase the overall area at an unafordable price or, the opposite effect, per-
formance can be degraded while trying to minimize power consumption, as
this is quite influenced by the frequency, i.e. the cycle time inverse. All these
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aspects can be rapidly evaluated using the EP. In fact, we could create an
automated flow to evaluate the multiple implementation choices generated
by a parametrizable high-level synthesis engine without user interaction at
all.



Appendix A

Resumen en Espanol

En cumplimiento del Articulo 4 de la normativa de la Universidad Com-
plutense de Madrid que regula los estudios universitarios oficiales de postgra-
do, se presenta a continuacién un resumen en espanol de la presente tesis que
incluye la introduccién, objetivos, principales aportaciones y conclusiones del
trabajo realizado.

A.1. Introduccién

Cuando mencionamos la palabra procesador, generalmente y de mane-
ra intuitiva, pensamos en los procesadores de proposito general (GPP’s);
aquellos que funcionan como servidores, estaciones de trabajo, u ordenado-
res personales, fabricados por marcas de renombre, como Intel, que estan
ampliamente extendidos por el mundo, y que sirven para solucionar un am-
plio abanico de problemas. Sin embargo, existen otros tipos de procesadores
mucho mas presentes en nuestra vida diaria: los procesadores empotrados y
los microcontroladores. Son procesadores sencillos que se encuentran en sis-
temas dedicados como, por ejemplo, dentro del microondas, de la lavadora,
del secador, de los reproductores de DVD, o en el automévil.

FEn los dltimos anos, los avances en tecnologia han propiciado una signi-
ficativa evolucién de los sistemas empotrados. Muchos de ellos han pasado
de ser simples sistemas de control designados especificamente para realizar
una tarea o un conjunto reducido de tareas, a convertirse en sistemas maés
complejos, que ejecutan aplicaciones similares a las que encontramos en orde-
nadores de sobremesa, pero con fuertes requisitos que satisfacer. Este nuevo
tipo de sistemas se denominan sistemas empotrados de altas prestaciones.

FEl mercado de la electrénica de consumo, por ejemplo, estd dominado
por dispositivos como tablets, teléfonos inteligentes, camaras digitales, o sis-
temas de navegaciéon GPS. Estos sistemas son complejos de disenar, puesto
que deben ejecutar multiples aplicaciones a la vez que respetar restricciones
adicionales de disefio, como un consumo reducido de energia, o un tamano

151
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pequeno. Por si fuera poco, la rapida evolucion de la tecnologia esté reducien-
do cada vez mas el tiempo de salida al mercado y el precio de estos sistemas
[JTWO5], lo que no permite el rediseno de un chip para cada producto. En
este escenario, los Sistemas-en-Chip (SoCs) son una solucion efectiva de di-
seno, puesto que integran en un so6lo chip diferentes IP cores que ya han sido
verificados en disenos anteriores. Cuando tenemos varios procesadores dentro
de un mismo chip, pasan a denominarse Sistemas-en-Chip Multi-Procesador,
o MPSoCs.

Diseniar un MPSoC es una tarea muy compleja; incluso si fijamos los 1P
cores a utilizar, el espacio de exploracién ain es gigantesco. Los disefiadores
deben decidir multiples detalles HW, desde los aspectos de alto nivel (e.g.,
la frecuencia del sistema, la ubicacion de los cores, o la interconexion), a
los de méas bajo nivel, como el rutado de la red de distribucién del reloj,
la tecnologia a emplear, etc. Por si fuera poco, encima de todo esto viene el
SW: si un procesador ejecuta aplicaciones en C, o tiene un Sistema Operativo
completo, son decisiones que se han de tener en cuenta en tiempo de diseno.

Un cambio en cualquiera en los pardmetros HW o SW de un MPSoC no
solo afectard al rendimiento del sistema final, sino que también puede reper-
cutir en el tamaro fisico del chip, el consumo de potencia, o la temperatura
y fiabilidad de los componentes (e.g., dando lugar a la aparicién de puntos
calientes que comprometan la fiabilidad del chip [SSST04]). Asi pues, uno de
los principales retos en el diseno de MPSoCs es conseguir herramientas que
permitan explorar, en tiempo de disefio, las miltiples opciones HW y SW de
implementacion con estimaciones fieles del rendimiento del sistema final (en
cuanto a energia, potencia, temperatura, etc...).

A.1.1. Trabajo relacionado

En lo que respecta al modelado térmico de MPSoCs, varios trabajos es-
tudian la aparicién de puntos calientes en los sistemas empotrados de alto
rendimiento: [SSST04] presenta un modelo de potencia y térmico para ar-
quitecturas superescalares que predice las variaciones de temperatura de los
diferentes componentes de un procesador. En [SLDT03| se ha investigado el
impacto de las variaciones de temperatura y voltaje de un core empotra-
doj; sus resultados muestran variaciones de hasta 13.6 grados a lo largo del
chip. En [LBGBO00] se mide la temperatura de trabajo de FPGAs, usadas
como procesadores reconfigurables; usando osciladores de anillo que pueden
ser dinamicamente insertados, reubicados, o eliminados. A pesar de que este
método es interesante, sélo es aplicable a disenos donde las FPGAs son el
dispositivo final.

En conjunto, estos trabajos resaltan la importancia y necesidad de es-
tudiar el comportamiento (en cuanto a rendimiento, potencia, temperatura,
y fiabilidad) de los MPSoCs en las etapas tempranas del ciclo de disefio.
Para ello, los disenadores se valen de una serie de herramientas, que pode-
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mos clasificar, principalmente, en simuladores SW y emuladores HW (existe
también el prototipado HW, pero no seré incluido en mi estudio debido a
que se aplica en las etapas finales de diseno).

En cuanto a los simuladores SW, se han propuesto soluciones a diferentes
niveles de abstraccion, con el objeto de ofrecer un compromiso entre fidelidad
de las estimaciones y tiempo de simulacién. Por ejemplo, modelos analiticos
con lenguajes de alto nivel (C/C++) [BWS™03|, o simuladores como Symics
IMCE™02], que son muy répidos y ttiles para la depuracion del SW, pero que
no capturan con exactitud las medidas de potencia y rendimiento del HW.
A mas alto nivel, describiendo el sistema a nivel transaccional en SystemC
[PPB02| y [BBBT05] en el ambito académico, asi como [CoW04] y [ARMO02]
en el industrial, ofrecen més detalle, pero a costa de perder velocidad (100-
200 KHz). Por ultimo, simuladores como [Gra03|] y [Syn03] usan bibliotecas
post-sintesis, y ofrecen gran nivel de detalle; sin embargo, la velocidad de
simulacién se ve reducida a 10-50 KHz.

La mayor desventaja de usar simuladores SW a nivel de RTL para es-
tudiar los MPSoCs es la gran pérdida de rendimiento asociada al aumento
del niamero de elementos en el sistema a simular (que trae consigo un mayor
nimero de senales que hay que modelar y mantener sincronizadas).

La emulaciéon HW solventa este problema pero, como contrapartida, ofre-
ce una menor flexibilidad. Asi, en la industria, tenemos Palladium IT [Cad05],
que opera en torno a los 1.6 MHz, y cuesta alrededor de 1 millén de délares.
ASIC Integrator [ARM04a] es mucho més rapido, pero esta limitado a 5 cores
ARM, e interconexiones AMBA. Heron SoC emulation [Eng04] tiene simi-
lares limitaciones. System Explore [Apt03] y Zebu-XL [EEQ5]| usan FPGAs
para emular a velocidades del orden de los MHz, pero no son lo suficiente-
mente flexibles a la hora de extraer las estadisticas. En el mundo académico,
tenemos TC4SOC [NBT™05|, que permite estudiar cores VLIW y Redes-en-
Chip. Sin embargo, tampoco permite extraer estadisticas detalladas. Una so-
lucién interesante se describe en [NHK 04|, donde utilizan un entorno mixto
FPGA-PC para la emulacion, realizando una sincronizacion ciclo-a-ciclo del
SW que corre en el PC con un array de registros compartidos mapeados en la
FPGA, y llegando al Megahercio de velocidad. Recientemente, ha aparecido
el proyecto RAMP (Research Accelerator for Multi-Processors) |[AACT05],
que también explota una infraestructura mixta HW/SW.

Utilizando estas herramientas, tanto simuladores como emuladores, para
estudiar el comportamiento de los MPSoCs, se han empezado a proponer
soluciones para los problemas de consumo, temperatura y fiabilidad dentro
del chip. De hecho, técnicas para reducir el consumo méaximo de potencia,
la temperatura media, o mantenerlas por debajo de un limite, por ejemplo,
estan siendo implementadas en los chips actuales.

Estudios recientes [CWIT; I(CS03; IGS05] han demostrado que un empla-
zamiento inteligente de los cores puede reducir el gradiente térmico dentro
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del chip. Esto lleva a nuevas lineas de investigacién para futuros MPSoCs,
como pueden ser la sintesis consciente de la potencia, y el emplazamiento
consciente de la temperatura.

En [SSST04] se usa teorfa formal de control como método para imple-
mentar técnicas adaptativas. [SA03| propone un algoritmo de control de tem-
peratura predictivo para aplicaciones multimedia. También [BMO1] ha rea-
lizado extensos estudios sobre técnicas a aplicar (DVS, DFS, fetch-toggling,
throttling, control de especulacion), cuando el consumo de un procesador
cruza un determinado limite. A mas alto nivel, en [RS99], el procesador deja
de planificar tareas calientes cuando la temperatura supera un cierto valor,
de manera que la CPU pasa mas tiempo en estados de bajo consumo, lo que
permite reducir la temperatura local o globalmente.

Anadiendo mecanismos SW o HW al sistema fabricado para limitar di-
namicamente la maxima potencia o temperatura permitida en tiempo de
ejecucién, podemos reducir el coste del empaquetado y extender la vida ttil
del chip, por ejemplo. La desventaja fundamental de los métodos dindmicos
es el impacto en el rendimiento, asociado al hecho de detener o ralentizar el
procesador [SSST04]. Es en esta linea donde los MPSoCs abren nuevas posi-
bilidades, como la asignacién de trabajos, o migracién de tareas en funcion
de las temperaturas [CRWOQ7]|, [DMO06]. Sin embargo, en estos casos tambien
necesitamos de detallados estudios y potentes herramientas para determinar
el mejor método a implementar, que dependera de las restricciones de cada
diseno particular (rendimiento, temperatura méaxima, coste, ... ).

A.1.2. Objetivos de esta tesis

Como ya he explicado durante la introducciéon, uno de los principales
retos a los que se enfrentan los disenadores de MPSoCs es a poder explo-
rar rapidamente multiples alternativas de implementacion (HW y SW), con
estimaciones certeras de rendimiento, energia, potencia, temperatura y fia-
bilidad, para poder ajustar la arquitectura del sistema en etapas tempranas
del proceso de diseno.

En este trabajo de investigacién, presento un nuevo entorno de emula-
cion HW/SW, basado en FPGA, que permite a los disenadores de MPSoCs
explorar una amplia variedad de alternativas de disenio, analizando su com-
portamiento a nivel de ciclo de reloj més rapidamente que con simuladores
SW. Mediante ejemplos y experimentos, demuestro que este entorno permite
no sélo evaluar el sistema, sino probar estrategias de control (de potencia,
temperatura y fiabilidad) en tiempo real, y observar sus efectos a largo plazo
en el chip, que variardn dependiendo de las distintas alternativas de disefio
seleccionadas.

Como veremos, una caracteristica primordial del entorno es que ha sido
concebido desde el principio para ser versatil y flexible de manera que, en el
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Figura A.1: Esquema de alto nivel de la Plataforma de Emulacion.
futuro, pueda ser facil incorporar nuevas caracteristicas a la plataforma.

A.2. La plataforma HW de emulaciéon

La Plataforma de Emulacion (PE) estd compuesta por tres partes, tal y
como aparecen en la Figura

1. El Sistema Emulado: Es el MPSoC que esta siendo optimizado, el
sistema, en observacion, que serd refinado hasta que cumpla con las
restricciones de disefio.

2. El Motor de Emulacion: Es toda la arquitectura HW que hay alre-
dedor del Sistema Emulado, y que se encarga de controlarlo, monitori-
zarlo, y extraer estadisticas en tiempo de ejecucién para enviarlas a un
PC. El Motor de Emulacién funciona de manera similar a un simula-
dor arquitectonico SW, al que le tenemos que introducir la arquitectura
MPSoC a simular.

3. Las Bibliotecas SW de Estimacién: Se ejecutan en un PC, y cal-
culan la potencia consumida, la temperatura, la fiabilidad, etc. del
Sistema Emulado, en base a los datos recibidos en tiempo de ejecucion
desde el Motor de Emulacién.

En el flujo de trabajo con la PE, el usuario descarga, desde el PC, el
entorno HW completo (tanto el Sistema Emulado como el Motor de Emula-
cion) a la FPGA. A continuacion, se lanza una interfaz gréfica que permitira
al usuario monitorizar el proceso de emulacién, e interactuar con el sistema
introduciendo comandos de control. La emulacién comienza tras ejecutar un
comando de “start”, y se desarrolla de forma auténoma: las estadisticas gene-
radas son periédicamente enviadas a través de un puerto de comunicaciones
al PC, que las registra, y las usa como entrada a las Bibliotecas SW de Es-
timacién que calculan potencia, temperatura, fiabilidad, etc... del MPSoC
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Figura A.2: Plataforma de videojuegos ARM: un ejemplo de arquitectura
MPSoC heterogénea.

final; asi pues, el proceso de emulacién estd dividido en pasos de emula-
cidn: corre durante un nimero prefijado de ciclos, se detiene, intercambia
informacion (hacia y desde el PC), y contintia con el siguiente paso.

A continuacion, se describe la parte HW de la PE; i.e., la que reside en
la FPGA, formada por el Sistema Emulado y el Motor de Emulacién.

A.2.1. Fl Sistema Emulado

A grandes rasgos, un MPSoC consta de cores de procesamiento (ARM,
VLIW, etc...), una arquitectura de memoria, y un sistema de interconexion.

La Figura muestra un ejemplo de arquitectura MPSoC. Se trata de
una plataforma de videojuegos disefiada por ARM. En el diagrama de blo-
ques podemos observar una pareja de Cortex-A9, que son los procesadores
principales. Ambos contienen el coprocesador NEON, disenado para acele-
rar las operaciones de procesado de senial. A través de un bus AMBA AXI,
también tienen acceso a dos aceleradores multimedia Mali, varias memorias
en chip (flash, ROM), y a interfaces de entrada/salida (USB, tarjetas de me-
moria, etc.). Hay procesadores ARM adicionales para gestionar operaciones
especiales, como la entrada de pantalla tactil, el audio de alta definicién, y
las comunicaciones WIFI y Bluetooth.

La PE permite instanciar sistemas heterogéneos, como el de este ejemplo.
Tras el proceso de sintesis, todo elemento del Sistema Emulado es convertido
a una netlist, y mapeado en la FPGA correspondiente. Por tanto, como
formatos de entrada, se pueden utilizar desde netlists directamente, hasta
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otros lenguajes HDL que ofrezcan niveles méas altos de abstraccién, como
Verilog, VHDL, o SystemC sintetizable.

A.2.1.1. Emulaciéon y elementos modelados

En el disetio de circuitos integrados, emulacién HW es el proceso de imitar
el comportamiento de uno o més elementos de HW, con otro elemento HW;
tipicamente, un sistema de emulaciéon de propdésito especial. Por otro lado,
el prototipado HW es el proceso de obtener un circuito con un disefio muy
cercano al final. Mientras que la emulacion HW puede incluir elementos
modelados, el prototipado HW, sin embargo, requiere que los componentes
finales estén disponibles, y se aplica tipicamente en las etapas finales del ciclo
de diseno.

A la hora de disenar Sistemas Emulados, la PE permite utilizar tanto
elementos completamente especificados, como elementos modelados. Estos
dltimos, también llamados componentes virtuales, sélo existen dentro de la
emulacién. Se usan cuando el componente real no estd ain implementado, o
en situaciones donde no puede ser incluido en la plataforma o, sencillamente,
no interesa trabajar con él (e.g., porque ocupa muchos recursos). En la im-
plementacion final, seran reemplazados por un componente final, o incluso
por otro chip conteniendo la funcionalidad que fue previamente modelada en
la emulacion.

Los sensores de temperatura introducidos en el Sistema Emulado cons-
tituyen un ejemplo de componentes modelados: dado que no tiene sentido
poner un sensor real en la FPGA (recordemos que no es el target device), usa-
mos sensores falsos, que devuelven temperaturas previamente introducidas
por el Motor de Emulacién.

A.2.2. El Motor de Emulacion

El Motor de Emulacion consta de los siguientes elementos (ver Figu-
ra [A.3):

1. El Gestor del Reloj Virtual de la Plataforma (VPCM): Se en-
carga de sincronizar los diferentes dominios de reloj del Sistema Emu-
lado.

2. El Subsistema de Extraccién de Estadisticas: Extrae, de forma
transparente, la informacion del Sistema Emulado.

3. El Gestor de las Comunicaciones: Se encarga de controlar la co-
municacion bidireccional entre la FPGA y el PC.

4. El Director del Motor de Emulaciéon: controla y sincroniza el sis-
tema entero, dirigiendo la extraccion de estadisticas, y la sincronizacion

FPGA-PC.
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Figura A.3: Partes del Motor de Emulacién.

A.2.2.1. El Gestor del Reloj Virtual de la Plataforma (VPCM)

El funcionamiento de la PE es andlogo a los simuladores SW disparados
por eventos: cada vez que sucede un evento de reloj, se desencadenan una
serie de actualizaciones de senales, hasta que todas las senales quedan esta-
bles. El emulador espera entonces preparado para emular el siguiente ciclo
de reloj.

Internamente, la PE utiliza multiples dominios de reloj, denominados
“relojes virtuales”. El VPCM es el modulo que se encarga de generarlos y
gestionarlos, permitiendo inhibirlos temporalmente, con objeto de sincro-
nizar el sistema, u ocultar latencias de médulos modelados. Cada paso de
emulacién consta de un nimero prefijado de ciclos de reloj virtual.

A.2.2.2. El Subsistema de Extraccion de Estadisticas

El Subsistema de Extraccion de Estadisticas tiene como objetivo extraer
la informacion del Sistema Emulado de manera transparente. A tal efecto,
se han disenado e implementado los sniffers HW; unos médulos que moni-
torizan las sefiales internas de los cores y el pinout externo de los elementos
incluidos en el MPSoC emulado. La Figura[A .4 muestra varios de estos dispo-
sitivos (nombrados como Sniffer 1...4) conectados a los cores monitorizados
correspondientes (con patron de rayas en el dibujo).

En la Figura se muestra el esquema completo del Subsistema de
Extraccién de Estadisticas; en ella se aprecian sus tres componentes: los
sniffers, el Bus de Estadisticas, y el Extractor de Estadisticas.

El Bus de Estadisticas ha sido disenado para permitir una eficiente re-
coleccion de las mismas (almacenadas en los sniffers), y permite, ademaés,
acceder a los sniffers para tareas de control (activar/desactivar la recoleccion,
etc...).
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El tercer elemento, que completa el Subsistema de Extraccién de Es-
tadisticas, es el Extractor de Estadisticas; un microcontrolador encargado
de acceder a los sniffers (a través del Bus de Estadisticas), e intercambiar
informacién con el PC, a través del Gestor de Comunicaciones.

La siguiente seccion estd dedicada a describir en datalle el funcionamiento
de los sniffers, que constituyen el elemento fundamental de la PE.

Los sniffers HW

Los sniffers HW son elementos que, de forma transparente, extraen las
estadisticas de cada componente del Sistema Emulado (i.e., no interfieren
ni modifican el comportamiento normal de los cores estudiados). Todos los
sniffers tienen una interfaz dedicada para capturar las senales internas del
modulo que estdn monitorizando, légica que convierte esta actividad de setna-
les en estadisticas, una pequefia memoria para almacenarlas, y una conexién
al Bus de Estadisticas, que permite la extraccién de las mismas.

Dependiendo de cémo esté especificado un modulo, el disefiador podré
acceder a méas o menos informacién del mismo. En algunas ocasiones se
dispone de la totalidad del codigo fuente mientras que, en otras, s6lamente
tenemos acceso parcial (a través de puertos de depuracion, de andlisis, o
de sincronizaciéon) para conocer el estado en que se encuentra el core. A
veces, incluso, el componente es una caja negra (encriptada, o hard-coded en
silicio), cuyo comportamiento hemos de averigiiar estudiando las senales de
entrada/salida del mismo.

Para crear un nuevo sniffer, en primer lugar, el diseniador ha de definir
qué quiere monitorizar del componente en cuestién. El procedimiento ge-
neral consiste en observar una serie de senales y procesarlas para obtener
informaci6n atil. Para facilitar esta tarea, he disenado plantillas de los tipos
mas comunes de sniffers. En ellas, la conexiéon al Bus de Estadisticas esta
ya implementada, de manera que sélo se necesita implementar la interfaz
con el médulo monitorizado. Enumero a continuaciéon las cinco plantillas,
junto con una breve descripcién de cada una, que nos ayudard a entender el
funcionamiento de los sniffers:

1. Sniffer guarda eventos: Guarda detalladamente todos los eventos
que suceden, al estilo: “en el ciclo 24 hubo un acceso de lectura de 1
byte a la direccion xFFAA del banco de memoria 2”.

2. Sniffer de conteo de eventos: Cuenta los eventos de un cierto tipo
que sucedieron; e.g., “el controlador de memoria realiz6 320 lecturas y
470 escrituras”. Es lo que tipicamente demandan los disefiadores de los
simuladores SW a nivel de ciclo.

3. Sniffer de chequeo de protocolo: Chequea si todas las transacciones
ocurridas siguen la especificacion. Util para tareas de depuracion.
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4. Sniffer de utilizacién de recursos: Provee informacién acerca del
grado de saturacion de un elemento, como puede ser la utilizaciéon de
un bus; e.g.: “trabaja al 80 %”.

5. Sniffer de postprocesado: Procesa la informaciéon de un sniffer de
conteo de eventos para convertirla en otro tipo de datos (e.g.: consumo),
extraer patrones, etc...

Los sniffers mas relevantes en la PE son los guarda eventos y los de conteo
de eventos, pues guardan la informacién necesaria para realizar andlisis de
potencia, temperatura y fiabilidad.

A.2.2.3. El Gestor de Comunicaciones

En el lado izquierdo de la Figura se aprecia la interfaz (flecha “Ha-
cia/Desde el PC”) que permite la conexion entre la FPGA y el PC. Se trata
de un link bidireccional, puesto que, ademés de permitir hacer llegar las es-
tadisticas desde la FPGA al PC, hace posible controlar la emulacion desde
éste altimo. Dicho mecanismo de control nos permite descargar un nuevo
Sistema Emulado a la placa, controlar la evolucion de la emulaciéon (parar,
continuar, resetear), gestionar el sistema de extraccion de estadisticas (acti-
var, desactivar, resetear) e, incluso, realizar tareas de depuracion.

El tinico requerimiento para poder implementar el Gestor de Comunica-
ciones es la existencia de un medio que, fisicamente, comunique la FPGA
con el PC. Puede ser un puerto serie, un JTAG, un slot PCI, una conexion
Ethernet, o una combinacién de conexiones.

En el caso particular de mi implementacion, para el sistema de comunica-
cion FPGA-PC, he utilizado una conexion de Ethernet estandar. El Gestor
de Comunicaciones, por tanto, contiene un moédulo encargado de gestionar
los paquetes de red, al que he denominado Gestor de Red, y que explico a
continuacion.

El Gestor de Red

El Gestor de Red es el elemento que maneja los detalles de bajo nivel de
la comunicacion FPGA-PC. A més alto nivel, se trabaja directamente con
un buffer en donde se colocan los datos, y se da una sefial de envio. Anélo-
gamente, cuando se reciben datos, estos son procesados autométicamente
y colocados en un buffer. A continuacién, se genera una interrupcion para
notificar al médulo superior.

En mi implementacion (ver Figura [A.€]), he usado el médulo Ethernet-
lite de Xilinx, junto con un Microblaze para realizar el control, una memoria
BRAM para los buffers, y un bus PLB para interconectar todo.
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Figura A.6: Detalle de implementacion del Gestor de Red.

El Gestor de Red se encarga, automéaticamente, de encapsular la infor-
maciéon intercambiada en paquetes Ethernet o MAC, dividiéndola, en caso
necesario, en multiples paquetes. Internamente, los datos van en un formato
propio (ver Seccion . Las estadisticas viajan en un sentido, mientras
que en el otro van las temperaturas, la fiabilidad, etc... Los comandos de
control viajan en ambos sentidos.

A.2.2.4. El Director del Motor de Emulacion

En la Figura se aprecia (en el centro) el Director del Motor de Emu-
lacion, conectado al Subsistema de Extraccion de Estadisticas, al Gestor
de Comunicaciones, y al VPCM. Todos estos modulos intercambian infor-
macion, entre ellos, y con el PC. En este escenario, con multiples mo6dulos
intercambiando datos en tiempo real, es necesario un mecanismo de sincro-
nizacién; esta es la tarea del Director del Motor de Emulacién. Durante la
emulacién, continuamente recibe eventos, y genera respuestas, que requieren
coordinar uno o varios componentes del Motor de Emulacion.

Los diferentes eventos que suceden en la plataforma se pueden clasificar
atendiendo a la fuente que los originéd. Asi pues, distingo entre eventos ex-
ternos, comandos introducidos por el usuario, o eventos internos (como la
saturacion de la conexion FPGA-PC, o la expiracion de un paso de emula-
cion), originados en los propios elementos del Motor de Emulacion.

La Tabla[2.T]ofrece la lista detallada de todos los comandos de control que
acepta la plataforma. Entre ellos estan las 6rdenes para iniciar, pausar, parar,
resetear la emulacién, o aquellas que gestionan el sistema de estadisticas
(activar, desactivar, resetear...).

A.3. Los modelos SW de estimacion

Tal y como se indicé al principio del capitulo, la PE tiene dos componen-
tes: la plataforma HW de emulacion (el HW que se instancia en la FPGA),
descrita en la anterior seccion, y las Bibliotecas SW de Estimacion (el SW
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que corre en un PC), que se tratan a continuacion.

Los modelos SW de estimacién son unas bibliotecas, implementadas en
C—++, que se ejecutan en un PC y reciben, en tiempo real, las estadisticas
provenientes del Sistema Emulado. Como salida, calculan la potencia, tem-
peratura, y fiabilidad del sistema final. Asi pues, el funcionamiento de la PE
consiste en emular durante un numero predefinido de ciclos (paso de emu-
lacion), y detener el sistema para recoger las estadisticas de los buffers de
la FPGA y enviarlas al PC; tras esto, la emulacién contintia en un nuevo
paso de emulacion. En ocasiones, cuando se emplea lazo de realimentacion,
los niimeros calculados por las bibliotecas SW son introducidos de nuevo en
la plataforma antes de continuar con el siguiente paso de emulacion (e.g.,
la temperatura calculada se introduce en los sensores de temperatura del
Sistema Emulado).

La Figura muestra los interfaces de los distintos modelos de estima-
cion (de potencia, temperatura y fiabilidad) y su conexién con la FPGA.

A.3.1. Estadisticas del Sistema

En la PE, el término Estadisticas del Sistema hace referencia a toda la
informacién recolectada del Sistema Emulado en tiempo de ejecucion. Esto
comprende las frecuencias y voltajes del sistema, asi como las Estadisticas
de Actividad; un log exhaustivo de todos los eventos de interés que ocurren
en la plataforma, recogidos en tiempo real por los sniffers que monitorizan
las senales de los cores cada ciclo (la siguiente seccion muestra ejemplos de
Estadisticas de Actividad).

La informacién extraida de la FPGA es enviada al PC, donde puede
ser simplemente almacenada para posteriores anilisis, o procesada mediante
scripts para obtener la informacién deseada, un resumen de la misma, etc...

A.3.2. Estimacion de potencia

El consumo de potencia de los diferentes elementos que forman un MP-
SoC es a menudo caracterizado por los propios fabricantes de chips. Depen-
diendo de las caracteristicas del IP core en particular, se nos facilitara la
media de consumo, valores minimos y maximos (dependientes de la activi-
dad del core), o estados de consumo (e.g., durmiendo/activo). Estos valores
dependen de la tecnologia de fabricacién, de la frecuencia, el voltaje, y la
temperatura actual del circuito, de manera que vienen indicados en tablas
que podemos acceder con los parametros actuales. Por otro lado, tenemos
que en la PE, gracias a los sniffers, podemos hacer un registro exhaustivo
de todos los eventos que ocurren, desde la actividad de las senales, hasta
los eventos de alto nivel (e.g. fallos de caché). Por tanto, generar el consu-
mo estimado de un componente a partir de estos datos es bastante directo.
Con tal objetivo, he desarrollado una biblioteca en C++ que estima la po-
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tencia consumida en el Sistema Emulado realizando los célculos indicados
anteriormente. La he denominado Modelo de Estimacion de Potencia.

Tal y como se indica en [SSST04], la contribucién al consumo debida a
la corriente de leakage es de vital relevancia en las nuevas generaciones de
chips. Por este motivo, en mi Modelo de Estimacion de Potencia, los cilculos
de consumo lo tienen en cuenta; en concreto, la corriente de leakage se ha
modelado como un incremento de un tanto por ciento del total de la potencia
consumida. Dicho porcentaje también viene dado en tablas, que dependen
de los mismos parametros que las tablas de potencia.

La interfaz del modelo se puede observar en la Figura[A.7] Previamente a
la ejecucion, en tiempo de compilacion (etapa de configuracion), el usuario ha
de introducir informacion acerca del Sistema Emulado (definicion de todos
los componentes del sistema, con sus tablas de consumo y de leakage, que
dependeran de la tecnologia usada). En tiempo de ejecucion, como entrada
recibe las Estadisticas del Sistema (ya sea desde una traza predefinida, o
desde la FPGA), junto con la temperatura de cada elemento que esta siendo
observado (que puede venir de una traza predefinida, o de la salida del modelo
térmico, ver Seccién ; como salida, el modelo calcula el consumo de
potencia de cada elemento del sistema.

A.3.3. Modelado térmico en 2D

El Modelo de Temperatura es otra biblioteca SW, que se encarga de es-
timar temperaturas a partir de los ntiimeros de potencia. Este procedimiento
es un poco mas complejo que el célculo de potencia; por ello, necesitamos
algo mas de informacién que en el caso anterior: En tiempo de compilacion,
configuramos el modelo con el tamafio y la ubicacién de todos los compo-
nentes del sistema (el layout), la tecnologia, y el empaquetado. En tiempo de
ejecucion, es necesario el consumo de potencia de los elementos del sistema,
que depende de la frecuencia, el voltaje, la temperatura, y la actividad.

Como podemos ver en la Figura [A.7] la temperatura depende del con-
sumo de potencia y, la potencia, a su vez, de la temperatura del sistema.
Por esta razoén, los modelos de potencia y temperatura han de trabajar con-
juntamente, para mantener la exactitud en los célculos. Tanto el calculo de
la potencia, como el de la temperatura, se realizan en pequefios pasos de
emulacién; esto es, el tiempo de emulacién se discretiza, de manera que una
llamada al modelo térmico devuelve la temperatura en el momento i. Da-
do que la temperatura en el momento i+1 depende de la temperatura en el
momento i, la temperatura calculada se introduce de nuevo como entrada al
modelo para la préxima iteracion.

A continuacién, paso a detallar el modelo matemaético que, internamente,
utiliza la biblioteca térmica para calcular cémo se va propagando el calor
desde las capas inferiores del chip hasta que se elimina por conveccion en el
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Figura A.8: Esquema de un chip dividido en celdas regulares de diferentes
tamanos.

aire.

En primer lugar, el chip (considerado como un bloque de silicio envuelto
en su empaquetado, colocado sobre un PCB, y con un disipador en su parte
superior) se discretiza, dividiéndolo en pequenas celdas (cubos). La division
en celdas nada tiene que ver con la anterior divisién en componentes que
hicimos con el floorplan. Una celda puede equivaler a un componente (e.g.:
core, una subunidad funcional, etc...), o un componente puede estar formado
por muchas celdas, de la misma manera que una celda puede comprender
muchos componentes. Como veremos mas adelante, el tamano de las celdas
dependera de la exactitud que queramos tener en el modelado.

La Figura muestra el esquema de un chip dividido en celdas. Apro-
vechando que la forma en que se propaga el calor en un medio fisico se puede
equiparar a como se propaga la corriente en un circuito eléctrico de tipo RC,
he elaborado un modelo equivalente que es mucho mas eficiente en términos
de tiempo de cémputo.

De esta manera, he modelado cada una de las celdas en que he dividido
el sistema mediante seis resistencias y un condensador (ver Figura[A.9)). El
condensador representa el calor (corriente) almacenado en esa celda, mientras
que las resistencias representan la facilidad (o resistencia) de esa celda a
perder calor (corriente) por cada una de sus seis caras.

La generacién de calor se debe a la actividad de las celdas; esto es, de las
unidades funcionales que ocupan el lugar de las celdas. Por tanto, las celdas
activas (en oposicion a las que son solo pasivas) contienen también una fuente
de corriente para “inyectar calor” (representada entre las resistencias top y
west de la Figura . A partir del valor de dicha fuente, y de los valores
del condensador y de las resistencias asociadas, se determina la propagacién
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Figura A.9: Circuito RC equivalente para una celda activa.

de, y hacia, los vecinos.

Durante la etapa de configuracion del modelo, el disenador especifica
el tamano de las diferentes celdas que componen el sistema (la resolucion
espacial), y la tecnologia con la que se fabricard el chip; i.e., la capacitancia
térmica de los materiales que lo componen, incluyendo los parametros de
empaquetado (e.g.: calidad del disipador). Estos datos se traduciran en unos
valores de R y C para las diferentes celdas. El valor de las fuentes de corriente
de las celdas activas, en cambio, varia en tiempo de ejecucién, y dependerd
del consumo de potencia de la unidad funcional modelada por cada celda.

La disipacién con el aire ambiental se modela mediante una resistencia
conectada en serie con las que ocupan la capa superior del chip. De mane-
ra similar, la difusion que ocurre desde el IC hasta el empaquetado (tanto
lateralmente, como hacia abajo), se modela incrementando el valor de las
resistencias limitrofes.

El comportamiento del circuito RC resultante se puede expresar con el
siguiente sistema de ecuaciones:

G-X(t)+C-X(t)=B-U(t), (A.1)

Donde X(t) es el vector de temperaturas de las celdas del circuito en
el instante t, G y C son las matrices de conductancia y capacitancia del
circuito, U(t) es el vector de corriente (calor) entrante al circuito, y B es una
matriz de seleccién.

El sistema de ecuaciones se puede simplificar en nuestro caso parti-
cular pues, en el modelo térmico, las temperaturas se actualizan en pequenos
pasos de emulacion, dentro de los cuales consideramos que las propiedades
del circuito no varian. La nueva ecuacién resultante, que describe la respuesta
del circuito en estado estable, es la Ecuacion

G-X=B-U (A.2)

que, al no ser lineal, resuelvo aplicando el método de Euler. El proce-
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dimiento consiste, basicamente, en realizar una estimacién del valor inicial
de la matriz X, resolver las ecuaciones para el actual paso de emulacién, y
calcular el error cometido. Si es menor que un limite preestablecido, signi-
fica que las temperaturas convergen. En otro caso, debo iterar el proceso,
corrigiendo el valor estimado. En la mayoria de los casos estudiados, 5 o 6
iteraciones fueron suficientes para alcanzar la convergencia con un error de
1076,

De la descripcién del modelo se desprende que, variando el tamafio y el
numero de celdas, podemos ajustar la exactitud de los calculos. Cuanto mas
pequenias sean las celdas, mas exactos seran los cédlculos, a costa de invertir
mas tiempo en los mismos.

A.3.4. Modelado de fiabilidad

Se trata de una biblioteca SW que analiza la influencia de la temperatura
en la fiabilidad del sistema mediante el uso de varios modelos matematicos
que permiten estimar el tiempo medio de fallo de cada uno de los componen-
tes. Los efectos incluidos son la electromigracion, la ruptura del dieléctrico,
la migracién por estrés, y los ciclos térmicos. Algunos de ellos son reversibles,
mientras que otros son de caricter permanente.

Desde el punto de vista de la implementacién, el modelo de fiabilidad
sigue la misma estructura que la biblioteca térmica: la fiabilidad se actualiza
en pequenos incrementos (pasos de emulacion). De esta manera (ver interfaz
del modelo en la Figura, las temperaturas calculadas por el modelo tér-
mico se pasan, como entrada, al modelo de fiabilidad, que predice el tiempo
medio de fallo de los componentes del sistema en funcién de la historia del
chip (fiabilidad “acumulada”), de las temperaturas actuales, y de un conjun-
to de constantes (tecnologicas) fijadas en tiempo de disefio. Las formulas
detalladas se pueden consultar en [CSM™06; [SABRO5: [Sem00].

A la hora de estimar la fiabilidad de un sistema, debemos de tener en
cuenta que los fallos en el funcionamiento de un chip aparecen al cabo de
los anios. Si procediéramos estrictamente, deberiamos emular ese tiempo pa-
ra poder dar nimeros exactos de fiabilidad; sin embargo, normalmente los
fabricantes necesitan una estimacion del tiempo esperado de vida (funciona-
miento correcto) del chip en el escenario peor. En este caso, lo que hacemos
es simular durante un tiempo mucho maés reducido, y extrapolar la tendencia
observada al nimero deseado de atios vista.

A.3.5. Modelado térmico en 3D

La tecnologia de apilado 3D es una innovadora técnica de fabricacion
que permite disefiar un chip en tres dimensiones mediante el apilamiento de
varias obleas de silicio, una encima de otra, intercomunicadas mediante una
serie de vias-a-través-del-silicio (TSVs, por sus siglas en inglés).
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Por un lado, esta solucién incrementa las posibilidades de integracién
en-chip pero, por otro, también aumenta sustancialmente la densidad de po-
tencia y, con ello, los problemas derivados de la aparicién de puntos calientes.
Sin embargo, la existencia de esta tercera dimensién nos ofrece un espacio
de exploracién mas grande, que propicia la aparicién de nuevas metodologias
para solventar los problemas de temperatura, como el emplazado inteligente
de los componentes en el mapa 3D, o el uso de refrigeracion liquida (por
microcanales) entre las capas del chip.

Con el objetivo de estudiar este tipo de sistemas, asi como las miltiples
posibilidades que ofrecen para optimizaciones, he integrado en la PE un mo-
delo para caracterizar el comportamiento térmico de MPSoCs 3D fabricados
con la tecnologfa de apilamiento. Internamente, se trata de extender el mo-
delo RC desarrollado para el caso 2D, explicado en la Seccion [A3.3] para
tener en cuenta el efecto de las TSVs y de los microcanales de la refrigera-
cion liquida activa. Esto se ha conseguido mediante dos modificaciones: (i) se
ha anadido un nuevo material, el material entre-capas, cuyas caracterfsticas
térmicas (resistencias y condensadores equivalentes) se calculan teniendo en
cuenta no sélo la tecnologia usada, sino también la densidad de TSVs y los
microcanales presentes en el material entre-capas; y (ii) el modelo térmico
ha sido modificado para que los valores de las resistencias puedan variar en
tiempo de ejecucién, y reflejar asi la accién del liquido refrigerante, cuyo flujo
puede ser regulado bajo demanda.

A.4. El flujo de emulacion

Las ventajas fundamentales del entorno de emulacién presentado, fren-
te a otros que también permiten realizar exploraciones de disenios MPSoC,
son dos: (i) se trata de un entorno combinado, que usa una FPGA para
modelar los componentes a velocidades de megahercios y extraer detalladas
estadisticas en tiempo real, mientras que, en paralelo, estas estadisticas son
introducidas en un modelo SW, que se ejecuta en un PC, y calcula la poten-
cia, temperatura y fiabilidad del sistema emulado; y (ii) todo esta integrado
en un tnico flujo de trabajo, lo que simplifica en gran medida la tarea del
disenador.

La Figura muestra el flujo de trabajo con la PE. En primer lugar,
configuramos la FPGA y el PC (fases 1 y 2 de la figura). A continuacion, en
la fase 3, comienza la emulacién. Detallo a continuacién los pasos:

1. Se definen los elementos que seran alojados en la FPGA. Esto incluye
los componentes HW (arquitectura) y SW (aplicaciones a ejecutar) del
Sistema Emulado; asi como la infraestructura del Sistema de Emulacién
(indicando los elementos a monitorizar, niumero y tipo de sniffers, etc.).
Tras los procesos de sintesis (HW) y compilacion (SW), obtenemos los
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Figura A.10: Flujo de diseno HW/SW con la Plataforma de Emulacion.
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binarios que contienen la plataforma.

2. Se configuran las Bibliotecas SW de Estimacion que correran en el PC.
Para ello necesitamos introducir los datos necesarios (ver Seccion [A.3)),
como la tecnologia usada, el floorplan del sistema, las tablas de con-
sumo de potencia, de leakage, etc... En esta fase se definen también la
resolucion a la que trabajara el modelo térmico (tamafio de las celdas),
y la duracién del paso de emulacién.

3. El sistema estd completamente especificado. Descargamos los binarios
generados (en la fase 1) a la FPGA vy, en el PC, damos la orden de co-
mienzo (el PC ofrece una interfaz grafica que permite controlar, en todo
momento, el proceso de emulacion). La emulacion comenzara a funcio-
nar de manera sincronizada y auténoma: Las estadisticas del MPSoC
emulado llegan al PC, en donde se usan como entrada a los mode-
los de estimacién, que calculan la potencia, temperatura y/o fiabilidad
del sistema final. En caso de que asi se desee, estos valores se pueden
devolver a la FPGA, de manera que sean accesibles desde el propio
Sistema Emulado (ya sea desde el HW| o desde el Sistema Operativo),
que podra utilizarlos para elaborar politicas de gestién de recursos.

A.4.1. Requisitos: FPGAs, PCs, y herramientas

La PE ha sido disenada del modo més genérico posible, evitando depen-
der de una herramienta, placa, o PC de un determinado fabricante. Tanto el
Motor de Emulacién como el Sistema Emulado estan especificados en VHDL
estandar y parametrizable, de manera que pueden ser utilizados en cualquier
FPGA. Normalmente, el fabricante de la misma provee una herramienta pa-
ra generar los binarios a partir del VHDL (y de los archivos fuente del SW
que se ejecutaréd en los cores). El tnico requerimiento, por tanto, es que la
placa tenga conectividad para poder comunicarla con el PC (e.g.: a través
de un puerto Ethernet, PCI, etc...).

A lo largo de este trabajo de investigacion, he utilizado varias FPGAs
de Xilinx. En la Seccion he incluido varios ejemplos de uso de la PE,
que dan una idea aproximada del tamano de los MPSoCs que se pueden
instanciar dentro de distintos modelos de FPGA. Como plataforma principal,
he elegido la Virtex 2 Pro vp30 board, con 3M de puertas, dos PowerPC
empotrados, memorias SRAM y DDR, y puerto de Ethernet, que tiene un
coste de alrededor de 2,000 doélares en el mercado, y puede acomodar un core
complejo, como el Leon3, junto con el sistema de emulacion, en el 50 % de
SUS recursos.

El fabricante, Xilinx, provee las herramientas Embedded Development
Kit e Integrated Design Environment que, junto con la herramienta de si-
mulacion Modelsim (de Mentor Graphics), han sido las utilizadas para el
desarrollo.
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En cuanto a los modelos SW, las bibliotecas que se ejecutan en el PC
han sido escritas en C++. Por tanto, podemos emplear cualquier compilador
estandar, como G+, para generar los ejecutables. En mi caso, he usado el
entorno Visual Studio Suite, de Microsoft, para escribir, compilar, y depurar
el codigo.

Por tltimo, tampoco hay requerimientos especificos en cuanto al PC sobre
el que corren los modelos de estimaciéon. En mis experimentos, he utilizado
siempre un PC estandar (desde un Pentium 4 con 256 MB de RAM), y fue
suficiente para hacer funcionar la plataforma a plena velocidad (con la FPGA
trabajando a 100MHz). De hecho, tal y como explico en la Seccion , las
Unicas pausas observadas se debieron a las limitaciones del ancho de banda
del puerto de comunicaciones.

A.5. Experimentos

En esta seccién, presento tres casos de estudio dirigidos a ilustrar el
uso practico de la PE para evaluar el impacto que las decisiones de diserio
(desde el layout del floorplan, a la seleccion del compilador) tienen sobre el
rendimiento, la temperatura, o la fiabilidad del MPSoC final.

A.5.1. Exploracién de las caracteristicas térmicas

En este primer experimento, aplico el entorno de emulaciéon a la fase de
diseno de un MPSoC que contiene 4 cores RISC, con el objeto de estudiar
su comportamiento térmico bajo diferentes configuraciones.

El Sistema Emulado contiene 4 procesadores ARM7, cada uno conectado
a dos cachés locales con mapeo directo y escritura directa, de 8KB cada una, y
a una memoria privada de 32KB. Por 1iltimo, existe otra memoria compartida
entre todos, también de 32KB. Tal y como se muestra en la Figura
las memorias y los procesadores estidn conectados, bien mediante un bus
AMBA, Figura , o mediante una simple NoC (creada usando XPipes
[TMBDMOS], con cuatro switches de 6x6, e interfaces de red (modulos NI)),
Figura [A.11pb, lo que da lugar a dos floorplans diferentes, ambos disenados
con tecnologia de 0.13 pm. Los ARMY pueden funcionar hasta 500MHz, y
las interconexiones funcionan siempre a la misma frecuencia que los cores.
Cada componente presente en la Figura contiene un sniffer asociado
que monitoriza la actividad de ese médulo en particular.

En cuanto a las aplicaciones SW, he diseniado un programa, MATRIX,
que realiza multiplicaciones de matrices de manera colaborativa entre cores;
un filtro de dithering, DITHERING, que aplica el algoritmo de Floyd [FS85]
sobre dos imégenes de 128x128 y, finalmente, la aplicacion MATRIX-TM, que
impone en todos los procesadores una carga cercana al 100 % para permitir
observar facilmente los efectos en la temperatura.
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Figura A.11: Dos soluciones de interconexion diferentes para la arquitectura
bésica del caso de estudio.

Ambos floorplans considerados en la Figura han sido divididos en
128 celdas térmicas, de tamano 150um * 150um cada una. En la Tabla
enumero las propiedades térmicas de los materiales usados en los experimen-
tos. Como valor por defecto para la resistencia empaquetado-ambiente, tomo
el valor de 40KW/K, que se corresponde con un empaquetado econémico ti-
pico para sistemas empotrados [BEAEQ]].

Por altimo, describo brevemente el entorno del MPARM, que ha sido
el simulador usado en varios resultados como punto de referencia contra el
que comparar la PE. El MPARM [BBB™05| es un simulador SW, escrito
en SystemC, que permite modelar MPSoCs con una resolucién a nivel de
ciclo; no s6lo el HW, sino también el SW: desde simples aplicaciones, has-
ta Sistemas Operativos multiprocesador. Soporta multitud de componentes

Tabla A.1: Propiedades térmicas de los materiales utilizados en los experi-
mentos.

150 - (39 W/mK
1.628¢ — 12J /um®K

conductividad térmica del Silicio
calor especifico del Silicio

grosor del Silicio 350um
conductividad térmica del Cobre 400W/mK

calor especifico del Cobre 3.55¢ — 12J /um’>K
grosor del Cobre 1,000um

40K /W (bajo coste)
2.82 x 10~% (1+0.0039AT)m,
AT = T-293.15K

conductividad empaquetado-ambiente
resistividad eléctrica del Aluminio
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Tabla A.2: Comparaciones de tiempo entre la Plataforma de Emulacién y el
simulador MPARM.

’ Benchmark \ MPARM \ PE \ Speed-Up ‘
Matrix (1 core) 106 seg | 1.2 seg 88x
Matrix (4 cores) 5 min 23 seg | 1.2 seg 269x
Matrix (8 cores) 13 min 17 seg | 1.2 seg 664 x
Dithering (4 cores-bus) 2 min 35 seg | 0.18 seg 861 x
Dithering (4 cores-NoC) 3 min 15 seg | 0.17 seg 1,147x
Matrix-TM (4 cores-NoC) 2 dias | 5’02 seg 1,612

HW vy sistemas heterogéneos, y puede conectarse a bibliotecas térmicas, y
demas herramientas de otros fabricantes, para ampliar sus posibilidades. Por
ejemplo, XpipesCompiler [JMBDMOS| y Sunfloor [SMBDMO09|, para el dise-
no de NoCs y de floorplans, respectivamente. En todos los experimentos, el
MPARM se ha ejecutado en un Pentium 4, a 3.0GHz, con 1GB de SDRAM,
y ejecutando GNU/Linux 2.6.

A.5.1.1. Arquitecturas MPSoC: Simulaciéon contra emulaciéon

Con objeto de estudiar el rendimiento de la PE, he evaluado varias con-
figuraciones del MPSoC emulado: con interconexién basada en bus y basada
en NoC, variando el ntiimero de procesadores (de 1 a 8), y con distintas apli-
caciones SW (Matrix, Dithering y Matrix-TM). Como ejemplo, el MPSoC
con bus y 4 procesadores (i.e., aquel de la Figura [A.11h), consume el 66 %
de la FPGA V2VP30, y se ejecuta a 100MHz.

Los resultados se muestran en la Tabla [A.2] Los tiempos obtenidos in-
dican como el entorno HW/SW de emulacion escala mucho mejor que el
simulador SW. De hecho, la exploracién del MPSoC con 8 cores llevd 1.2
segundos en la PE, pero mas de 13 minutos en el MPARM (a 125KHz), lo
que significa una mejora de 664 x. Ademaés, la exploracion de NoCs muestra
atn mayores mejoras (1,147x), debido a la sobrecarga que tiene el simulador
SW para gestionar las diferentes senales en paralelo.

A.5.1.2. Modelado térmico a nivel de ciclo de MPSoCs

Con el objetivo de estudiar la evolucién de la temperatura en el MPSoC,
ejecuté 100K iteraciones del programa Matrix-TM, con el sistema corriendo
a 500MHz. Los resultados, Figura demuestran la necesidad de realizar
largas emulaciones para poder apreciar los efectos térmicos dentro del chip:
la PE tardé 5 minutos en emular la aplicacién corriendo sobre el MPSoC,
incluidos los calculos de temperatura, mientras que el MPARM tardo dos dias
para simular los 0.18 segundos de ejecucion (representados en el 6valo de la
esquina inferior-izquierda de la Figura . La simulacién en MPARM,
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Figura A.12: Evolucién de la temperatura con y sin DFS.

por tanto, representa sélo una pequena parte del comportamiento térmico
del MPSoC.

Debido a las altas temperaturas observadas en este diseno, realicé unas
pequenas modificaciones en el sistema de cara a poder explorar los posibles
beneficios de aplicar técnicas sencillas de control de temperatura. En parti-
cular, modifiqué el médulo VPCM para permitir cambiar la frecuencia del
sistema en tiempo de ejecucion (i.e., realizar escalado dindmico de la fre-
cuencia, o DFS). El control es puramente HW: si el VPCM, a través de los
sensores de temperatura presentes en el sistema, detecta que se ha superado
un cierto limite, reduce la frecuencia de 500 a 100 MHz. En cuanto se vuelve
a una temperatura segura, se elimina esta limitaciéon. En este ejemplo he
usado los limites de 350 y 340 Kelvin, respectivamente.

Los resultados obtenidos empleando DFS se muestran en la Figura
(traza Emulacion con DFS), e indican que esta simple politica de gestion
de temperatura podria ser altamente beneficiosa para disenos de MPSoCs
que usan empaquetado de bajo coste. Ademas, demuestran la conveniencia
de usar herramientas como la PE, en lugar de simuladores SW, para rea-
lizar exploraciones répidas y detalladas del comportamiento térmico de los
MPSoCs.

A.5.1.3. Exploraciéon para la seleccion de floorplan

Tal y como expliqué en la introduccién, una vez seleccionados los compo-
nentes que formaran un determinado MPSoC, quedan atn muchas decisiones
por tomar como, por ejemplo, el lugar que ocuparéd cada uno de ellos en el
floorplan. El siguiente experimento va destinado a estudiar el comportamien-
to térmico de distintos floorplans alternativos para una misma arquitectura
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Figura A.13: Evolucién de la temperatura para diferentes floorplans, con el
sistema ejecutando Matrix-TM a 500 MHz, con DFS.

base; en concreto, aquella de la Figura[A.TIp, que contiene 4 cores, intercone-
xi6n NoC, y que corre a 500MHz. Junto al floorplan original, he considerado
otras dos alternativas: con los cores concentrados en el centro del chip, y con
los cores dispersos en los extremos.

Los resultados se muestran en la Figura [A.13] El mejor floorplan para
minimizar las temperaturas es el que tiene los cores dispersos (Scattered) (un
15% menos de calentamiento, de media) que, ademas, retrasa la necesidad
de aplicar DFS. Como contrapartida, se observé que sus interconexiones se
calientan méas debido a su mayor longitud, que puede dar lugar a congestio-
nes en la NoC. La peor distribucién, la que concentra los cores en el centro
(Clustered), se calienta tan s6lo un 5% méas que la solucion inicial, disena-
da a mano, y que presenta las interconexiones méas cortas. Por tanto, este
estudio demuestra la necesidad de explorar diferentes soluciones arquitecto-
nicas antes de poder decidirnos por una que, a priori, pudiera parecer mas
ventajosa.

A.5.1.4. Exploraciéon para la seleccion de empaquetado

La Figura muestra los diferentes perfiles térmicos que presenta el
MPSoC base, con el floorplan de la Figura [A.11p, para distintas soluciones
de empaquetado: el de bajo coste (45KW /W), el estandar (12 KW /W), y el
de alto coste (BKW/W).

En el caso del empaquetado estandar, el MPSoC alcanzé una tempera-
tura maxima de 360 Kelvin, cuando no se aplico DFS; mientras que, con
el empaquetado barato, subié hasta los 500 Kelvin. Sin embargo, ambas so-
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Figura A.14: Evolucién de la temperatura para tres soluciones de empaque-
tado diferentes: de bajo coste, estandar, y de alto coste.

luciones presentan un comportamiento parecido al activar la estrategia de
DFS (para valores del umbral de 350 y 340 Kelvin). Por tanto, en este caso
no hay mejoras significativas, y seria preferible la solucién barata. El com-
portamiento térmico con el empaquetado de alto coste, por el contrario, es
totalmente diferente: el chip nunca supera los 325 Kelvin. Luego, ésta solu-
cion, ademdas de no requerir DFS, alargaria el tiempo de vida del sistema,
v serfa muy interesante para aplicar en versiones del chip de alta fiabilidad.
Como contrapartida, tendriamos el sobreprecio del sistema final, que sera
entre 5 y 12 veces méas que aquel que usa empaquetado estandar, y hasta 20
veces mas que la solucién con empaquetado de bajo coste.

Los resultados de este experimento indican los beneficios de realizar un
detallado anélisis térmico, considerando distintas tecnologias de empaqueta-
do, durante la fase de disenio de un MPSoC. Dicho estudio nos puede permitir
ahorrarnos un empaquetado méas caro que apenas presenta ventajas o, por el
contrario, el implementar el mecanismo de DFS cuando no resulta necesario.
La decisién adecuada, en cualquier caso, dependerd de las restricciones que
tengamos en nuestro diseno particular.

A.5.2. Entorno de exploracién de fiabilidad

En este segundo conjunto de experimentos, he aplicado la PE a un core
complejo, un procesador Leon3, con el objetivo de estudiar como las modifi-
caciones en el compilador pueden afectar a la temperatura observada a nivel
de microarquitectura; en concreto, al banco de registros.

El Leon3 |Gaib] es una CPU de 32 bits con arquitectura Sparc-V8 que
se utiliza para aplicaciones empotradas; tiene una arquitectura similar a los
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cores comerciales, con cachés separadas de instrucciones y datos, unidad de
gestion de memoria, buffer de traduccién anticipada... y puede ser extendido
a una configuraciéon multiprocesador. El banco de registros presenta la tipica
estructura basada en ventanas de los Sparc [Inc|, y puede ser configurado
con un nimero variable de registros, que va desde los 40 a los 520. En la
pagina web del fabricante [Gaia], Gaisler Research Inc., esta disponible una
version sintetizable del core, que incluye todo el cédigo fuente para poder
realizar modificaciones, asi como las herramientas necesarias para completar
el desarrollo HW y SW.

El Sistema Emulado utilizado en este experimento consta de un Leon3
con 256 registros, de tres puertos cada uno (dos de lectura y uno de escritura),
y organizados fisicamente en una estructura regular de 32 filas y 8 columnas;
tiene una memoria SDRAM, cachés de instrucciones y datos asociativas por
conjuntos (de 16KB y con cuatro vias), y TLBs independientes de 32 entradas
cada uno. La politica de reemplazo es LRU. Ademas, el sistema incluye 64KB
de ROM y RAM, 512 MB de memoria DDR, buses AMBA, un temporizador,
y el controlador de interrupciones. Por tultimo, una interfaz serie permite
comunicarse y depurar el procesador.

Cada registro tiene un sniffer asociado que monitoriza su funcionamiento.
El Motor de Emulacion extrae los datos y los envia al PC cada 10ms, para
calcular la potencia consumida y estimar la temperatura y el Tiempo Medio
de Fallo (MTTF, por sus siglas en inglés) de cada registro, haciendo uso
de los modelos SW de estimacion de potencia, temperatura y fiabilidad,
respectivamente.

Las Bibliotecas SW de Estimacién han sido configuradas para modelar
un banco de registros implementado con una tecnologia de 90nm, dividido en
256 celdas térmicas, una por registro (organizadas, por tanto, en una rejilla
regular de 32 filas y 8 columnas). Cada celda mide 300um x 300 pm, y las
caracterfsticas térmicas de los materiales considerados son las representadas
en la Tabla De cara a analizar el caso peor, el banco de registros se
modela rodeado de celdas con una temperatura cercana al punto caliente
(establecido en 328 Kelvin): 318 Kelvin. El exterior de estas celdas es el aire
ambiente.

En cuanto al SW que corre en el Leon3, se ejecutan un subconjunto de
aplicaciones tomadas de los benchmarks MiBench |[GRET01]| y CommBench
[WF00], compiladas con el GCC 3.2.3 para arquitectura Sparc usando distin-
tos niveles de optimizacion (ver figuras). Los resultados muestran la fiabilidad
a tres anos vista.

A.5.2.1. Elaboracién de la politica de mejora de la fiabilidad

De cara a determinar los factores que afectan a la fiabilidad del banco de
registros, se ha llevado a cabo un estudio inicial, cuyos resultados sintetizo a
continuacion (las graficas muestran el porcentaje de degradacion del MTTF
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inicialmente previsto por el fabricante):

En primer lugar, la Figura nos permite ver que los benchmarks que
peores valores de fiabilidad arrojan son aquellos que hacen uso intensivo de
un numero reducido de registros, como FFT y bitcount, que analizaremos
mas detalladamente.

Asf pues, por un lado, la Figura muestra los resultados obtenidos
tras recompilar la aplicaciéon FFT usando distintas opciones de compilacién
(desde -O0 hasta -03): un mayor grado de optimizacion favorece el reuso de
registros y, por tanto, la apariciéon de puntos calientes, haciendo disminuir
la fiabilidad (hasta un 3%, en el caso de -O3). Por otro lado, una tercera
grafica, Figura[A.I7], muestra en detalle los factores que contribuyen al valor
final del MTTF, cuando FFT es compilado con -O3; siendo SM el factor
dominante.

Finalmente, la Figura muestra el nimero de registros danados (con-
sideramos como tales aquellos con un MTTF por debajo del 2% del valor
nominal), al cabo de 2 anos, para el benchmark bitcount: varia entre 1 y 4,
dependiendo del nivel de optimizaciéon usado por el compilador.

A la vista de estos resultados, he redefinido la politica de asignacion de
registros que hace el compilador GCC, que asigna los registros de una lista
de registros libres [bib03]. En lugar de ello, mi politica selecciona un registro
tras comprobar previamente que sus vecinos no han sido asignados, siempre
y cuando sea posible. De esta manera, se busca crear un patrén similar a un
tablero de ajedrez, que facilite la difusion del calor. La Figura muestra
el mapa térmico instantaneo del banco de registros, donde se observa cé6mo la
nueva politica contribuye a un mejor balance térmico, reduciendo eficazmente
el nimero de puntos calientes.

Reanalizo, a continuacién, dos de las graficas anteriores en las que se
muestran los beneficios de esta nueva politica (con el nombre de MODI-
FIED): En la Figura[A.18] se aprecia la reduccion en el nimero de registros
danados; de hecho, con este benchmark (bitcount), se consigue que no haya
ningin registro danado al cabo de dos afios. En la Figura se ve, mas
en detalle, que esta politica es muy eficaz para minimizar la degradaciéon del
MTTF; se reduce tan s6lo un 0.2% en el intervalo representado.

A.5.3. Politicas de gestidon térmica a nivel de sistema

En este experimento muestro un ejemplo de céomo se puede gestionar
la temperatura en un entorno multiprocesador a nivel de Sistema Operati-
vo (OS); elaboro, implemento, y aplico una politica de gestion térmica de
MPSoCs basada en la migracién de tareas en tiempo real.

La arquitectura HW del entorno con Sistema Operativo Mulli- Procesador
(MPOS) para emulacion con retroalimentacion térmica consta de los siguien-
tes componentes:
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» [l Sistema Emulado contiene un nimero configurable de procesadores
soft-cores, que ejecutan uClinux, y se comunican y sincronizan a través
de una memoria compartida.

= El Motor de Emulacién es andlogo al que se presenté inicialmente, con
la salvedad de que los sensores de temperatura se han mapeado en el
rango de memoria de todos los procesadores.

s Las Bibliotecas SW de Estimacién no se ven modificadas, puesto que
operan con estadisticas provenientes de los sniffers, y generan tempe-
raturas para los sensores térmicos. No influye si es un sistema multi-
procesador, o tiene SO, dado que los sniffers analizan los componentes
HW del sistema.

A.5.3.1. Extensiones HW y SW del MPOS

La parte méas importante de este experimento ha sido el dotar a la PE
con el soporte necesario para poder realizar migraciones de tareas entre pro-
cesadores. Para ello, he realizado modificaciones tanto en el HW como en el
SW del Sistema Emulado.

Como base para el SO, he utilizado uCLinux; una distribucién, de tipo
Linux, enfocada a sistemas muy sencillos, uniprocesador, y sin unidad de
gestion de memoria.

A nivel HW, ha sido necesario anadir los siguientes elementos: un con-
trolador de interrupciones inter-procesador, para poder senalizar eventos sin
necesidad de realizar espera activa; un moédulo de exclusiéon mutua, necesa-
rio para implementar este mecanismo en el SW; un traductor de direcciones,
para suplir la falta de MMU; un multiplexador de conexiones serie, para co-
municarnos de manera sencilla con todos los procesadores; y un modulo de
escalado de frecuencia, para ajustar independientemente la de cada core.

El objetivo del mencionado HW, es dar soporte al SW que va por encima,
para poder ejecutar un MPOS con migracion de tareas.

La arquitectura SW completa se muestra en la Figura[A.20} tal y como se
aprecia, se fundamenta en tres componentes: (i) un SO (uCLinux) para cada
procesador, que se ejecuta en memoria privada, (ii) una capa intermedia que
ofrece servicios de sincronizacion y comunicacion, y (iii) el soporte de migra-
cion de tareas y de gestion dinamica de recursos. Cada tarea se ejecuta en
un s6lo SO, y puede ser migrada de uno a otro. Los datos se comparten entre
tareas mediante el uso de servicios explicitos. Para que todo esto funcione,
existen una serie de servicios que se ejecutan en segundo plano:

s Kl Soporte de Comunicaciones y Sincronizacién: Ofrece mecanismos de
paso de mensajes y de memoria compartida.

= Fl Soporte de Migracion de Tareas: Permite suspender la ejecuciéon de
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una tarea en un procesador y continuarla en otro diferente, mantenien-
do el estado. Para ello, se replica parte de la estructura de datos que
gestiona las tareas en el ntcleo del SO. Se cuenta, ademés, con unos
demonios (un maestro y varios esclavos, uno por procesador) que tra-
bajan a nivel de ntcleo, y que colaboran conjuntamente para realizar
las migraciones que se ordenan desde el SW a nivel de usuario.

= El Motor de Decisién: Es una aplicacién que monitoriza la temperatura
del sistema (facilitada por el SW intermedio, en tiempo real, al MPOS),
y se encarga de distribuir dindmicamente el trabajo entre los distintos
procesadores, activando para ello migraciones de tareas. El usuario
debera modificarla para programar sus propias politicas de gestiéon de
temperatura.

A.5.3.2. Caso de estudio

En esta seccion, incluyo un conjunto de experimentos enfocados a com-
probar la eficacia de la PE para estudiar técnicas de gestion de temperatura
a nivel de SO en sistemas multiprocesador (MPSoCs).

En primer lugar, he de comentar el flujo de disefio de la “PE mejorada
con MPOS”, que contiene una pequena modificacién con respecto al presen-
tado en la Seccion [A.4] A la hora de generar los binarios para la FPGA,
se debe indicar al SO la configuracion HW subyacente. En la préctica, esto
requiere, simplemente, facilitar un fichero de configuracion, generado auto-
méticamente por el EDK, al conjunto de herramientas que genera el SW; de
esta manera, el SO incluye en su kérnel los drivers de los modulos instancia-
dos, y da soporte al usuario para accederlos. El conjunto de herramientas que
acompanan a uCLinux se encarga, automaticamente, de generar el kérnel del
S0, asi como de compilar la aplicacién de usuario, incluirla en el sistema de
archivos, y generar la imagen SW final (kérnel + sistema de archivos).

La arquitectura del Sistema Emulado se puede observar en el floorplan de
la Figura[A.21} Consta de 4 cores ARMT7, cada uno con una memoria privada,
cacheable, de 64KB, y con acceso a una memoria compartida de 32KB. Hay
dos cachés independientes (instrucciones y datos) por procesador, de 8KB
cada una. Las memorias y los procesadores estan conectados mediante un
bus AMBA. Como SW, ejecutan tareas sintéticas que imponen una carga
cercana al 100 %.

En cuanto a la infraestructura de emulacién, el floorplan se ha dividido
en 128 celdas térmicas regulares, y hay un sniffer por elemento presente en la
Figura[A.21] Las frecuencias y las cargas de trabajo de los cores constituyen
la informacién monitorizada.

La Figura muestra el sistema ejecutando una tarea SW que se va
migrando, de forma rotacional, entre los distintos cores. Obsérvese que, de
los cuatro procesadores que se han mapeado en el sistema, tan sélo se usan
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los tres primeros; esto nos permite simplificar las figuras, pues el cuarto
procesador no aporta informacién relevante en este caso particular. Asi pues,
el propietario de la tarea cambia periédicamente, de MB1 a MB0, a MB2, y
de vuelta a MB1. En el floorplan, Procesadorl se refiere a MB0, Procesador2
a MBI, etc...

Las curvas de la Figura muestran las temperaturas y las frecuen-
cias de cada core a lo largo del tiempo. Dentro del Sistema Emulado, el SW
intermedio est4 continuamente monitorizando las temperaturas de los proce-
sadores, y comparandolas con un limite, fijado en 365 Kelvin. Como se puede
observar, en cuanto la temperatura de MB1 supera el limite preestablecido,
el Motor de Decisién inicia la migracién de la tarea hacia el procesador MB2,
que esta frio. Tras esto, la frecuencia de MB1 puede decrementarse, lo que da
lugar a un descenso de la temperatura del mismo. Al cabo de un tiempo, la
misma situacién se repetira: primero, entre MB2 y MB3 y, posteriormente,
entre MB3 y MB1.

La realizacién de este experimento me ha permitido, no s6lo probar la
eficacia de la PE para realizar este tipo de estudios sino, también, extraer
las siguientes conclusiones:

= La temperatura de cada core depende de los elementos adyacentes, y
estd fuertemente afectada por la carga de trabajo. Este hecho puede
ser aprovechado por el SO, puesto que tiene conocimiento pleno de
las tareas que se estan ejecutando y, lo que es més importante, de las
que estan planificadas para ejecutarse en el futuro, lo que le permitira
tomar decisiones “méas térmicamente inteligentes” para el sistema.

s Kl tiempo necesario para observar cambios en la temperatura es mu-
cho mayor que el requerido para migrar una tarea. Por esta razon, la
migraciéon de tareas, a pesar de la sobrecarga que presenta debida a
la replicaciéon de datos, es un mecanismo valido para realizar gestién
térmica.

» En cuanto al rendimiento de la plataforma, la duracién del experimento
fueron 90 segundos para emular 6 segundos de tiempo real, lo que
significa una mejora de més de 1000x con respecto a simuladores SW
que modelan el SO [16].

A.6. Conclusiones y trabajo futuro

A dia de hoy, las arquitecturas MPSoC son la mejor alternativa a los
sistemas tradicionales, que ya no son capaces de cumplir con las estrictas
restricciones de disefio actuales (rendimiento, tamafio, consumo, ...). Sin em-
bargo, su alta complejidad trae nuevos retos para el diseniador que, en tiempo
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de disenio, ha de tener en cuenta futuros problemas de temperatura, fiabili-
dad, etc... Por tanto, se necesitan nuevas herramientas que permitan acelerar
este nuevo flujo de diseno.

En esta tesis, he introducido un nuevo entorno de emulacion HW/SW,
que permite a los disefiadores de MPSoCs estudiar el comportamiento de
este tipo de sistemas en cuanto a rendimiento, consumo de potencia, tempe-
ratura, y fiabilidad, con mayor rapidez (hasta tres 6rdenes de magnitud) que
utilizando simuladores SW. Ademas, a diferencia de estos, no presenta los
problemas de escalabilidad asociados al crecimiento del nimero de senales a
gestionar dentro del Sistema Emulado.

El trabajo incluye una secciéon experimental con ejemplos en los cuales
utilizo la PE para explorar el espacio de disefio de varias arquitecturas MP-
SoC de cara a aplicar modificaciones, tanto HW como SW, para mejorar sus
propiedades. Los resultados obtenidos son representativos, y no hacen sino
abrir la puerta a futura experimentacién con el entorno.

Asi como en la Seccion se describieron una serie de modificacio-
nes para dotar a la PE de un MPOS con migracién de tareas, propongo a
continuacion una lista de posibles mejoras arquitecténicas para la platafor-
ma. Debe tenerse en cuenta que todas ellas requieren un gran esfuerzo de
implementacién:

= Expandir a un entorno multi-FPGA: Para modelar MPSoCs més gran-
des, podemos usar FPGAs con mas capacidad o migrar a una platafor-
ma multi-FPGA. La segunda opcioén es mas atractiva desde el punto
de vista econtmico, puesto que los modelos grandes de FPGAs son
ordenes de magnitud mas caros.

= Mejorar la comunicacion FPGA-PC: A medida que el Sistema Emula-
do crece en tamano, también crece la cantidad de informacién a inter-
cambiar. Cuando la conexién Ethernet sature, se podria pasar a una
conexion Gigabit-Ethernet y, de ahi, evolucionar a una conexion PCI,
o a usar el Serial IO de Xilinx, por ejemplo.

= Portar nuevos cores y procesadores: Como, por ejemplo, el procesador
OpenRiscl1200, cuyo codigo fuente esta disponible, libre de cargos, en
internet.

= Integrar herramientas de terceros: Desarrollar scripts que automaticen
la ejecucion de otras herramientas (e.g.: Sunfloor), sin salir del flujo de
la PE.

Para concluir, presento varios campos de trabajo que se pueden beneficiar
en gran medida de la plataforma:

= Estudio de técnicas complejas de gestion de temperatura: En los expe-
rimentos, introduje varias politicas sencillas de control de temperatura
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para demostrar la utilidad de la PE. La plataforma ofrece un entorno
perfecto para desarrollar técnicas més avanzadas, como las basadas en
teoria de control o en redes neuronales (que aprenden de la historia
pasada), por citar dos ejemplos. De cara a la implementacion, en prin-
cipio, tan s6lo se necesita modificar el Motor de Decision, el algoritmo
que auténomamente activa las contramedidas térmicas, aunque, adicio-
nalmente, seria conveniente anadir un mayor soporte HW (e.g.: cachés
reconfigurables, adaptaciéon de la anchura de estructuras, control de
especulacion, etc...), para ampliar el espacio para la optimizacion.

» Inyeccién de fallos: Usando técnicas de inyeccién de fallos, los disefia-
dores estudian el comportamiento de los sistemas ante circunstancias
inesperadas. La arquitectura puede ser entonces modificada para mejo-
rar el manejo de errores y reducir las vulnerabilidades del sistema. En
la PE, el Motor de Emulacién tiene control total de todo lo que suce-
de; bastarfa anadir un mecanismo para inyectar fallos bajo demanda.
Desde el punto de vista de la implementacién, es anélogo a introducir
la temperatura, procedente de la salida de la biblioteca térmica, de
vuelta en los sensores térmicos.

» Ataques de canal auxiliar: Se trata de un tipo de ataques a sistemas de
encriptaciéon electrénicos que explotan la informacion “auxiliar” emi-
tida durante la operacion del dispositivo (i.e.: consumo de potencia,
emision electromagnética, sonido, detalles de temporizacion, etc.) para
romper el sistema. Utilizando la PE podemos evaluar rapidamente, por
ejemplo, lo robustas que son las distintas opciones de implementacién
de un determinado sistema frente a un ataque de canal auxiliar. Pa-
ra llevarlo a cabo, debemos aumentar la precisién de los modelos de
estimacién, que deben ofrecer estimaciones a nivel de ciclo, en lugar
de a nivel de paso de emulacién. También se podrian anadir nuevos
modelos, para el espectro electromagnético emitido, el ruido generado,
etc.

s Sintesis de alto nivel: Se denomina asi a un proceso de diseno auto-
matico que consiste en interpretar un algoritmo y crear el HW que
implementa dicho comportamiento. Dependiendo de los parametros a
optimizar (e.g., area, consumo, rendimiento), la herramienta de sintesis
de alto nivel generara distintas soluciones. Mediante la PE, podemos
evaluarlas y caracterizarlas de manera automatica.

A.6.1. Legado

La Plataforma de Emulacién es un ambicioso proyecto cuya semilla fue
plantada, all4 por 2005, en la Universidad Complutense de Madrid. En con-
creto, nacié dentro de mi Proyecto de Fin de Carrera de Ingenierfa en In-
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formatica titulado: “Desarrollo de una plataforma de emulacién de sistemas
empotrados multiprocesador”. Con el paso de los afnos, el proyecto florecio
de manera espectacular gracias a la colaboracién con otros grupos de otras
partes del Globo:

» El grupo de Arquitectura y Tecnologia de Computadores (ArTeCS) de
la Universidad Complutense de Madrid, Espana.

» El Laboratorio de Sistemas Empotrados (ESL), y el Laboratorio de
Sistemas Integrados (LSI), del Instituto de Ingenieria Electronica de la
Escuela de Ingenieria (STI) de la EPFL, Suiza.

= El Departamento de Matematicas e Informatica de la Universidad de
Cagliari, Italia.

» El Departamento de Ingenieria Electronica e Informatica (DEIS), de
la Universidad de Bolonia, Italia.

= El Departamento de Informatica e Ingenieria de la Universidad del
Estado de Pensilvania, Estados Unidos.

A continuacion, presento la lista de publicaciones, relacionadas con la
Plataforma de Emulacién, que he producido durante mi doctorado:

1. “A Fast HW/SW FPGA-Based Thermal Emulation Framework for
Multi-Processor System-on-Chip”, David Atienza, Pablo G. Del Va-
lle, Giacomo Paci, Francesco Poletti, Luca Benini, Giovanni De Mi-
cheli, Jose M. Mendias, 43rd Design Automation Conference (DAC),
ACM Press, San Francisco, California, USA, ISSN:0738-100X, ISBN:
1-59593-381-6, pp. 618-623, July 24-28, 2006.

2. “A Complete Multi-Processor System-on-Chip FPGA-Based Emula-
tion Framework”, Pablo G. Del Valle, David Atienza, Ivan Magan,
Javier G. Flores, Esther A. Perez, Jose M. Mendias, Luca Benini,
Giovanni De Micheli, Proc. of 14th Annual IFIP/TEEE International
Conference on Very Large Scale Integration (VLSI-SoC), Nice, Fran-
ce, ISBN: 3-901882-19-7 2006 IFIP, IEEE Catalog: 06EX1450, pp. 140
-145, October 2006.

3. “Architectural Exploration of MPSoC Designs Based on an FPGA
Emulation Framework”, Pablo G. del Valle, David Atienza, Ivan Ma-
gan, Javier G. Flores, Esther A. Perez, Jose M. Mendias, Luca Benini,
Giovanni De Micheli, XXI Conference on Design of Circuits and In-
tegrated Systems (DCIS), Barcelona, Spain. Publisher Departament
dElectrénica-Universitat de Barcelona, pp. 1-6, November 2006.
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4. “HW-SW Emulation Framework for Temperature-Aware Design in MP-
SoCs”, David Atienza, Pablo G. Del Valle, Giacomo Paci, Francesco
Poletti, Luca Benini, Giovanni De Micheli, Jose M. Mendias, Roman
Hermida, ACM Transactions on Design Automation for Embedded
Systems (TODAES), ISSN: 1084-4309, Association for Computing Ma-
chinery, Vol. 12, Nr. 3, pp. 1 - 26, August 2007.

5. “Application of FPGA Emulation to SoC Floorplan and Packaging Ex-
ploration”, Pablo G. Del Valle, David Atienza, Giacomo Paci, Francesco
Poletti, Luca Benini, Giovanni De Micheli, Jose M. Mendias, Roman
Hermida. Proc. of XXII Conference on Design of Circuits and Integra-
ted Systems (DCIS), Sevilla, Spain. Publisher Departament dElectrénica-
Universitat de Barcelona, November 2007.

6. “Reliability-Aware Design for Nanometer-Scale Devices”, David Atien-
za, Giovanni De Micheli, Luca Benini, José L. Ayala, Pablo G. Del
Valle, Michael DeBole, Vijay Narayanan. Proceedings of the 13th Asia
South Pacific Design Automation Conference, ASP-DAC 2008, Seoul,
Korea, January 21-24, 2008. TEEE 2008.

7. “Emulation-based transient thermal modeling of 2D/3D systems-on-
chip with active cooling”, Pablo G. Del Valle, David Atienza. Micro-
electronics Journal, Elsevier Science Publishers B. V., Vol. 42, Nr. 4,
pp- 564 - 571, April 2011.

8. “Performance and Energy Trade-offs Analysis of L2 on-Chip Cache
Architectures for Embedded MPSoCs”, Aly, Mohamed M. Sabry, Rug-
giero Martino, Garcia del Valle, Pablo. Proceedings of the 20th sym-
posium on Great lakes symposium on VLSI, 2010, p. 305-310. ISBN:
978-1-4503-0012-4.

Por tltimo, incluyo también una lista con publicaciones relevantes, en
las cuales no he intervenido directamente, que derivan de la investigacion de
terceras personas que han utilizado el entorno de emulacién para validar sus
ideas:

s “Adaptive task migration policies for thermal control in MPSoCs”, D.
Cuesta, J.L. Ayala, J.I. Hidalgo, D. Atienza, A. Acquaviva, E. Macii.
ISVLSI, IEEE Computer Society Annual Symposium on VLSI, 2010.

» “Thermal-aware floorplanning exploration for 3D multi-core architectu-
res”, D. Cuesta, J.L. Ayala, J.I. Hidalgo, M. Poncino, A. Acquaviva, E.
Macii. Proceedings of the 20th symposium on Great lakes symposium
on VLSI, GLSVLSI 2010.

s “Thermal balancing policy for multiprocessor stream computing plat-
formg”, F. Mulas, D. Atienza, A. Acquaviva, S. Carta, L. Benini, and
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G. De Micheli. Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2009.

= “Thermal-aware compilation for register window-based embedded pro-
cessors”, Mohamed M. Sabry, J.I.. Ayala, and D. Atienza. Embedded
Systems Letters, 2010.

= “Thermal-aware compilation for system-on-chip processing architectu-
res.”, Mohamed M. Sabry, J.L.. Ayala, and D. Atienza. Proceedings of
the 20th symposium on Great lakes symposium on VLSI, GLSVLSI
2010).

= “Impact of task migration on streaming multimedia for embedded mul-
tiprocessors: A quantitative evaluation.”, M. Pittau, A. Alimonda, S.
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Figura A.15: Evolucién de la degradacion del MTTF, a lo largo de 3 afios,
para varios benchmarks.
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Figura A.16: Evolucién de la degradacion del MTTF para el benchmark
FFT, bajo diferentes niveles de optimizacién del compilador.
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Figura A.19: Distribucién de temperaturas en el banco de registros del Leon3,
utilizando diferentes politicas de asignacion de registros.
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-4 Qué te parece desto, Sancho? — Dijo Don Quijote —
Bien podrdn los encantadores quitarme la ventura,

pero el esfuerzo y el dnimo, serd imposible.

Sequnda parte del Ingenioso Caballero
Don Quijote de La Mancha
Miguel de Cervantes

—What dost thou think of this, Sancho? — Said Don Quizote —
The enchanters may be able to rob me of good fortune,
but of fortitude and courage they cannot.

Don Quizote, Part IT
Miguel de Cervantes
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Ahora, si vuesas mercedes me disculparan,
una cita me aguarda; se trata de
labrar ciertos puntitos...

Pablo
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