27 research outputs found

    Scalable Media Coding Enabling Content-Aware Networking

    Get PDF
    Increasingly popular multimedia services are expected to play a dominant role in the future of the Internet. In this context, it is essential that content-aware networking (CAN) architectures explicitly address the efficient delivery and processing of multimedia content. This article proposes the adoption of a content-aware approach into the network infrastructure, thus making it capable of identifying, processing, and manipulating media streams and objects in real time to maximize quality of service (QoS) and experience (QoE). Our proposal is built on the exploitation of scalable media coding technologies within such a content-aware networking environment. This discussion is based on four representative use cases for media delivery (unicast, multicast, peer-to-peer, and adaptive HTTP streaming) and reviews CAN challenges, specifically flow processing, caching/buffering, and QoS/QoE management

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Distribuição de vídeo para grupos de utilizadores em redes móveis heterogéneas19

    Get PDF
    The evolutions veri ed in mobile devices capabilities (storage capacity, screen resolution, processor, etc.) over the last years led to a signi cant change in mobile user behavior, with the consumption and creation of multimedia content becoming more common, in particular video tra c. Consequently, mobile operator networks, despite being the target of architectural evolutions and improvements over several parameters (such as capacity, transmission and reception performance, amongst others), also increasingly become more frequently challenged by performance aspects associated to the nature of video tra c, whether by the demanding requirements associated to that service, or by its volume increase in such networks. This Thesis proposes modi cations to the mobile architecture towards a more e cient video broadcasting, de ning and developing mechanisms applicable to the network, or to the mobile terminal. Particularly, heterogeneous networks multicast IP mobility supported scenarios are focused, emphasizing their application over di erent access technologies. The suggested changes are applicable to mobile or static user scenarios, whether it performs the role of receiver or source of the video tra c. Similarly, the de ned mechanisms propose solutions targeting operators with di erent video broadcasting goals, or whose networks have di erent characteristics. The pursued methodology combined an experimental evaluation executed over physical testbeds, with the mathematical evaluation using network simulation, allowing the veri cation of its impact on the optimization of video reception in mobile terminalsA evolução veri cada nas características dos dispositivos moveis (capacidade de armazenamento, resolução do ecrã, processador, etc.) durante os últimos anos levou a uma alteração signi cativa nos comportamentos dos utilizadores, sendo agora comum o consumo e produção de conteúdos multimédia envolvendo terminais móveis, em particular o tráfego vídeo. Consequentemente, as redes de operador móvel, embora tendo também sido alvo constante de evoluções arquitecturais e melhorias em vários parâmetros (tais como capacidade, ritmo de transmissão/recepção, entre outros), vêemse cada vez mais frequentemente desa adas por aspectos de desempenho associados à natureza do tráfego de vídeo, seja pela exigência de requisitos associados a esse serviço, quer pelo aumento do volume do mesmo nesse tipo de redes. Esta Tese propôe alterações à arquitetura móvel para a disseminação de vídeo mais e ciente, de nindo e desenvolvendo mecanismos aplicáveis à rede, ou ao utilizador móvel. Em particular, são focados cenários suportados por IP multicast em redes móveis heterogéneas, isto é, com ênfase na aplicação destes mecanismos sobre diferentes tecnologias de acesso. As alterações sugeridas aplicam-se a cenários de utilizador estático ou móvel, sendo este a fonte ou receptor do tráfego vídeo. Da mesma forma, são propostas soluções tendo em vista operadores com diferentes objectivos de disseminação de vídeo, ou cujas redes têm diferentes características. A metodologia utilizada combinou a avaliação experimental em testbeds físicas com a avaliação matemática em simulações de redes, e permitiu veri car o impacto sobre a optimização da recepção de vídeo em terminais móveisPrograma Doutoral em Telecomunicaçõe

    Application of service composition mechanisms to Future Networks architectures and Smart Grids

    Get PDF
    Aquesta tesi gira entorn de la hipòtesi de la metodologia i mecanismes de composició de serveis i com es poden aplicar a diferents camps d'aplicació per a orquestrar de manera eficient comunicacions i processos flexibles i sensibles al context. Més concretament, se centra en dos camps d'aplicació: la distribució eficient i sensible al context de contingut multimèdia i els serveis d'una xarxa elèctrica intel·ligent. En aquest últim camp es centra en la gestió de la infraestructura, cap a la definició d'una Software Defined Utility (SDU), que proposa una nova manera de gestionar la Smart Grid amb un enfocament basat en programari, que permeti un funcionament molt més flexible de la infraestructura de xarxa elèctrica. Per tant, revisa el context, els requisits i els reptes, així com els enfocaments de la composició de serveis per a aquests camps. Fa especial èmfasi en la combinació de la composició de serveis amb arquitectures Future Network (FN), presentant una proposta de FN orientada a serveis per crear comunicacions adaptades i sota demanda. També es presenten metodologies i mecanismes de composició de serveis per operar sobre aquesta arquitectura, i posteriorment, es proposa el seu ús (en conjunció o no amb l'arquitectura FN) en els dos camps d'estudi. Finalment, es presenta la investigació i desenvolupament realitzat en l'àmbit de les xarxes intel·ligents, proposant diverses parts de la infraestructura SDU amb exemples d'aplicació de composició de serveis per dissenyar seguretat dinàmica i flexible o l'orquestració i gestió de serveis i recursos dins la infraestructura de l'empresa elèctrica.Esta tesis gira en torno a la hipótesis de la metodología y mecanismos de composición de servicios y cómo se pueden aplicar a diferentes campos de aplicación para orquestar de manera eficiente comunicaciones y procesos flexibles y sensibles al contexto. Más concretamente, se centra en dos campos de aplicación: la distribución eficiente y sensible al contexto de contenido multimedia y los servicios de una red eléctrica inteligente. En este último campo se centra en la gestión de la infraestructura, hacia la definición de una Software Defined Utility (SDU), que propone una nueva forma de gestionar la Smart Grid con un enfoque basado en software, que permita un funcionamiento mucho más flexible de la infraestructura de red eléctrica. Por lo tanto, revisa el contexto, los requisitos y los retos, así como los enfoques de la composición de servicios para estos campos. Hace especial hincapié en la combinación de la composición de servicios con arquitecturas Future Network (FN), presentando una propuesta de FN orientada a servicios para crear comunicaciones adaptadas y bajo demanda. También se presentan metodologías y mecanismos de composición de servicios para operar sobre esta arquitectura, y posteriormente, se propone su uso (en conjunción o no con la arquitectura FN) en los dos campos de estudio. Por último, se presenta la investigación y desarrollo realizado en el ámbito de las redes inteligentes, proponiendo varias partes de la infraestructura SDU con ejemplos de aplicación de composición de servicios para diseñar seguridad dinámica y flexible o la orquestación y gestión de servicios y recursos dentro de la infraestructura de la empresa eléctrica.This thesis revolves around the hypothesis the service composition methodology and mechanisms and how they can be applied to different fields of application in order to efficiently orchestrate flexible and context-aware communications and processes. More concretely, it focuses on two fields of application that are the context-aware media distribution and smart grid services and infrastructure management, towards a definition of a Software-Defined Utility (SDU), which proposes a new way of managing the Smart Grid following a software-based approach that enable a much more flexible operation of the power infrastructure. Hence, it reviews the context, requirements and challenges of these fields, as well as the service composition approaches. It makes special emphasis on the combination of service composition with Future Network (FN) architectures, presenting a service-oriented FN proposal for creating context-aware on-demand communication services. Service composition methodology and mechanisms are also presented in order to operate over this architecture, and afterwards, proposed for their usage (in conjunction or not with the FN architecture) in the deployment of context-aware media distribution and Smart Grids. Finally, the research and development done in the field of Smart Grids is depicted, proposing several parts of the SDU infrastructure, with examples of service composition application for designing dynamic and flexible security for smart metering or the orchestration and management of services and data resources within the utility infrastructure

    Enhanced Multimedia Exchanges over the Internet

    Get PDF
    Although the Internet was not originally designed for exchanging multimedia streams, consumers heavily depend on it for audiovisual data delivery. The intermittent nature of multimedia traffic, the unguaranteed underlying communication infrastructure, and dynamic user behavior collectively result in the degradation of Quality-of-Service (QoS) and Quality-of-Experience (QoE) perceived by end-users. Consequently, the volume of signalling messages is inevitably increased to compensate for the degradation of the desired service qualities. Improved multimedia services could leverage adaptive streaming as well as blockchain-based solutions to enhance media-rich experiences over the Internet at the cost of increased signalling volume. Many recent studies in the literature provide signalling reduction and blockchain-based methods for authenticated media access over the Internet while utilizing resources quasi-efficiently. To further increase the efficiency of multimedia communications, novel signalling overhead and content access latency reduction solutions are investigated in this dissertation including: (1) the first two research topics utilize steganography to reduce signalling bandwidth utilization while increasing the capacity of the multimedia network; and (2) the third research topic utilizes multimedia content access request management schemes to guarantee throughput values for servicing users, end-devices, and the network. Signalling of multimedia streaming is generated at every layer of the communication protocol stack; At the highest layer, segment requests are generated, and at the lower layers, byte tracking messages are exchanged. Through leveraging steganography, essential signalling information is encoded within multimedia payloads to reduce the amount of resources consumed by non-payload data. The first steganographic solution hides signalling messages within multimedia payloads, thereby freeing intermediate node buffers from queuing non-payload packets. Consequently, source nodes are capable of delivering control information to receiving nodes at no additional network overhead. A utility function is designed to minimize the volume of overhead exchanged while minimizing visual artifacts. Therefore, the proposed scheme is designed to leverage the fidelity of the multimedia stream to reduce the largest amount of control overhead with the lowest negative visual impact. The second steganographic solution enables protocol translation through embedding packet header information within payload data to alternatively utilize lightweight headers. The protocol translator leverages a proposed utility function to enable the maximum number of translations while maintaining QoS and QoE requirements in terms of packet throughput and playback bit-rate. As the number of multimedia users and sources increases, decentralized content access and management over a blockchain-based system is inevitable. Blockchain technologies suffer from large processing latencies; consequently reducing the throughput of a multimedia network. Reducing blockchain-based access latencies is therefore essential to maintaining a decentralized scalable model with seamless functionality and efficient utilization of resources. Adapting blockchains to feeless applications will then port the utility of ledger-based networks to audiovisual applications in a faultless manner. The proposed transaction processing scheme will enable ledger maintainers in sustaining desired throughputs necessary for delivering expected QoS and QoE values for decentralized audiovisual platforms. A block slicing algorithm is designed to ensure that the ledger maintenance strategy is benefiting the operations of the blockchain-based multimedia network. Using the proposed algorithm, the throughput and latency of operations within the multimedia network are then maintained at a desired level

    The Effective Transmission and Processing of Mobile Multimedia

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Proactive Mechanisms for Video-on-Demand Content Delivery

    Get PDF
    Video delivery over the Internet is the dominant source of network load all over the world. Especially VoD streaming services such as YouTube, Netflix, and Amazon Video have propelled the proliferation of VoD in many peoples' everyday life. VoD allows watching video from a large quantity of content at any time and on a multitude of devices, including smart TVs, laptops, and smartphones. Studies show that many people under the age of 32 grew up with VoD services and have never subscribed to a traditional cable TV service. This shift in video consumption behavior is continuing with an ever-growing number of users. satisfy this large demand, VoD service providers usually rely on CDN, which make VoD streaming scalable by operating a geographically distributed network of several hundreds of thousands of servers. Thereby, they deliver content from locations close to the users, which keeps traffic local and enables a fast playback start. CDN experience heavy utilization during the day and are usually reactive to the user demand, which is not optimal as it leads to expensive over-provisioning, to cope with traffic peaks, and overreacting content eviction that decreases the CDN's performance. However, to sustain future VoD streaming projections with hundreds of millions of users, new approaches are required to increase the content delivery efficiency. To this end, this thesis identifies three key research areas that have the potential to address the future demand for VoD content. Our first contribution is the design of vFetch, a privacy-preserving prefetching mechanism for mobile devices. It focuses explicitly on OTT VoD providers such as YouTube. vFetch learns the user interest towards different content channels and uses these insights to prefetch content on a user terminal. To do so, it continually monitors the user behavior and the device's mobile connectivity pattern, to allow for resource-efficient download scheduling. Thereby, vFetch illustrates how personalized prefetching can reduce the mobile data volume and alleviate mobile networks by offloading peak-hour traffic. Our second contribution focuses on proactive in-network caching. To this end, we present the design of the ProCache mechanism that divides the available cache storage concerning separate content categories. Thus, the available storage is allocated to these divisions based on their contribution to the overall cache efficiency. We propose a general work-flow that emphasizes multiple categories of a mixed content workload in addition to a work-flow tailored for music video content, the dominant traffic source on YouTube. Thereby, ProCache shows how content-awareness can contribute to efficient in-network caching. Our third contribution targets the application of multicast for VoD scenarios. Many users request popular VoD content with only small differences in their playback start time which offers a potential for multicast. Therefore, we present the design of the VoDCast mechanism that leverages this potential to multicast parts of popular VoD content. Thereby, VoDCast illustrates how ISP can collaborate with CDN to coordinate on content that should be delivered by ISP-internal multicast

    OpenCache:a content delivery platform for the modern internet

    Get PDF
    Since its inception, the World Wide Web has revolutionised the way we share information, keep in touch with each other and consume content. In the latter case, it is now used by thousands of simultaneous users to consume video, surpassing physical media as the primary means of distribution. With the rise of on-demand services and more recently, high-definition media, this popularity has not waned. To support this consumption, the underlying infrastructure has been forced to evolve at a rapid pace. This includes the technology and mechanisms to facilitate the transmission of video, which are now offered at varying levels of quality and resolution. Content delivery networks are often deployed in order to scale the distribution provision. These vary in nature and design; from third-party providers running entirely as a service to others, to in-house solutions owned by the content service providers themselves. However, recent innovations in networking and virtualisation, namely Software Defined Networking and Network Function Virtualisation, have paved the way for new content delivery infrastructure designs. In this thesis, we discuss the motivation behind OpenCache, a next-generation content delivery platform. We examine how we can leverage these emerging technologies to provide a more flexible and scalable solution to content delivery. This includes analysing the feasibility of novel redirection techniques, and how these compare to existing means. We also investigate the creation of a unified interface from which a platform can be precisely controlled, allowing new applications to be created that operate in harmony with the infrastructure provision. Developments in distributed virtualisation platforms also enables functionality to be spread throughout a network, influencing the design of OpenCache. Through a prototype implementation, we evaluate each of these facets in a number of different scenarios, made possible through deployment on large-scale testbeds

    Efficient delivery of scalable media streaming over lossy networks

    Get PDF
    Recent years have witnessed a rapid growth in the demand for streaming video over the Internet, exposing challenges in coping with heterogeneous device capabilities and varying network throughput. When we couple this rise in streaming with the growing number of portable devices (smart phones, tablets, laptops) we see an ever-increasing demand for high-definition videos online while on the move. Wireless networks are inherently characterised by restricted shared bandwidth and relatively high error loss rates, thus presenting a challenge for the efficient delivery of high quality video. Additionally, mobile devices can support/demand a range of video resolutions and qualities. This demand for mobile streaming highlights the need for adaptive video streaming schemes that can adjust to available bandwidth and heterogeneity, and can provide us with graceful changes in video quality, all while respecting our viewing satisfaction. In this context the use of well-known scalable media streaming techniques, commonly known as scalable coding, is an attractive solution and the focus of this thesis. In this thesis we investigate the transmission of existing scalable video models over a lossy network and determine how the variation in viewable quality is affected by packet loss. This work focuses on leveraging the benefits of scalable media, while reducing the effects of data loss on achievable video quality. The overall approach is focused on the strategic packetisation of the underlying scalable video and how to best utilise error resiliency to maximise viewable quality. In particular, we examine the manner in which scalable video is packetised for transmission over lossy networks and propose new techniques that reduce the impact of packet loss on scalable video by selectively choosing how to packetise the data and which data to transmit. We also exploit redundancy techniques, such as error resiliency, to enhance the stream quality by ensuring a smooth play-out with fewer changes in achievable video quality. The contributions of this thesis are in the creation of new segmentation and encapsulation techniques which increase the viewable quality of existing scalable models by fragmenting and re-allocating the video sub-streams based on user requirements, available bandwidth and variations in loss rates. We offer new packetisation techniques which reduce the effects of packet loss on viewable quality by leveraging the increase in the number of frames per group of pictures (GOP) and by providing equality of data in every packet transmitted per GOP. These provide novel mechanisms for packetizing and error resiliency, as well as providing new applications for existing techniques such as Interleaving and Priority Encoded Transmission. We also introduce three new scalable coding models, which offer a balance between transmission cost and the consistency of viewable quality
    corecore