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Abstract
Although the Internet was not originally designed for exchanging multimedia streams, con-

sumers heavily depend on it for audiovisual data delivery. The intermittent nature of multi-

media tra�c, the unguaranteed underlying communication infrastructure, and dynamic user

behavior collectively result in the degradation of Quality-of-Service (QoS) and Quality-of-

Experience (QoE) perceived by end-users. Consequently, the volume of signalling messages

is inevitably increased to compensate for the degradation of the desired service qualities. Im-

proved multimedia services could leverage adaptive streaming as well as blockchain-based so-

lutions to enhance media-rich experiences over the Internet at the cost of increased signalling

volume. Many recent studies in the literature provide signalling reduction and blockchain-

based methods for authenticated media access over the Internet while utilizing resources quasi-

e�ciently. To further increase the e�ciency of multimedia communications, novel signalling

overhead and content access latency reduction solutions are investigated in this dissertation in-

cluding: (1) the first two research topics utilize steganography to reduce signalling bandwidth

utilization while increasing the capacity of the multimedia network; and (2) the third research

topic utilizes multimedia content access request management schemes to guarantee throughput

values for servicing users, end-devices, and the network.

Signalling of multimedia streaming is generated at every layer of the communication pro-

tocol stack; At the highest layer, segment requests are generated, and at the lower layers, byte

tracking messages are exchanged. Through leveraging steganography, essential signalling in-

formation is encoded within multimedia payloads to reduce the amount of resources consumed

by non-payload data. The first steganographic solution hides signalling messages within multi-

media payloads, thereby freeing intermediate node bu↵ers from queuing non-payload packets.

Consequently, source nodes are capable of delivering control information to receiving nodes

at no additional network overhead. A utility function is designed to minimize the volume

of overhead exchanged while minimizing visual artifacts. Therefore, the proposed scheme

is designed to leverage the fidelity of the multimedia stream to reduce the largest amount of
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control overhead with the lowest negative visual impact. The second steganographic solution

enables protocol translation through embedding packet header information within payload data

to alternatively utilize lightweight headers. The protocol translator leverages a proposed util-

ity function to enable the maximum number of translations while maintaining QoS and QoE

requirements in terms of packet throughput and playback bit-rate.

As the number of multimedia users and sources increases, decentralized content access

and management over a blockchain-based system is inevitable. Blockchain technologies suf-

fer from large processing latencies; consequently reducing the throughput of a multimedia

network. Reducing blockchain-based access latencies is therefore essential to maintaining a

decentralized scalable model with seamless functionality and e�cient utilization of resources.

Adapting blockchains to feeless applications will then port the utility of ledger-based networks

to audiovisual applications in a faultless manner. The proposed transaction processing scheme

will enable ledger maintainers in sustaining desired throughputs necessary for delivering ex-

pected QoS and QoE values for decentralized audiovisual platforms. A block slicing algorithm

is designed to ensure that the ledger maintenance strategy is benefiting the operations of the

blockchain-based multimedia network. Using the proposed algorithm, the throughput and la-

tency of operations within the multimedia network are then maintained at a desired level.

Keywords: Multimedia, adaptive streaming, signalling overhead, processing latency, blockchain,
steganography, embedded signalling exchange
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Lay Summary
The Internet was not initially designed for exchanging multimedia streams but for sending

and receiving bytes of data. The consumer Internet is heavily utilized for exchanging audio-

visual data while it is not the best medium for transmitting said data. The intermittent nature

of multimedia tra�c, the unguaranteed underlying communication infrastructure, and dynamic

user behaviour collectively result in the degradation of perceived multimedia quality by end-

users. To compensate for the decreased perceived quality, the volume of signalling messages

increases to attempt pushing the quality metrics to the desired levels. To improve the utility

of the Internet in delivering multimedia, adaptive streaming solutions as well as blockchain-

based solutions are utilized to cope with the Internet’s environment. Many recent studies at-

tempt reducing the volume of signalling overhead generated by the aforementioned streaming

solution quasi-e�ciently. To further increase the e�ciency of multimedia communications,

novel signalling overhead and content access latency reduction solutions are investigated in

this dissertation including: (1) the first two research topics utilize covert channels to reduce

signalling bandwidth utilization while increasing the capacity of the multimedia network; and

(2) the third research topic utilizes multimedia content access request management schemes to

guarantee throughput values for servicing users, end-devices, and the network.
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Chapter 1

Introduction

High fidelity multimedia streaming over the Internet has proliferated in modern society due

to the ever-increasing ties amongst people and businesses, thereby occupying the majority of

all exchanged tra�c. The Internet is a popular multimedia exchange medium due to its wide

access availability; however, it is being used outside of its original design. In the next few

years, the Information and Communication Technology (ICT) infrastructures, particularly the

Internet, is expected to service tra�c that is 80% from multimedia origins with at least 82% in

high definition [1]. However, due to the inherent properties of the Internet, there is a mismatch

between the underlying infrastructure and the diverse nature of multimedia streams resulting

in unwanted Quality-of-Service (QoS) and Quality-of-Experience (QoE) degradation.

1.1 Research Motivation

Initially, Internet Protocol (IP)-based networks are designed to transfer bytes of data in a

one-size-fits-all fashion over their non-deterministic paths; however, they are currently used for

exchanging multimedia streams in ubiquitous manner [2]. To overcome the non-deterministic

paths of the Internet while servicing a large user-base, adaptive multimedia streaming technolo-

gies [3] and blockchain-based systems [4] are employed to their full potential. The outcome

of utilizing adaptive multimedia streaming is a cost-e↵ective service deployment in terms of

hardware availability, however, it is costly in terms of total generated signalling overhead from

1
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every layer of the IP communication stack. Similarly, utilizing blockchain-based solutions to

enable decentralized content access will service a large number of users, however, at the cost

of induced processing latencies and reduced service throughput. The lack of initiative from

Internet Service Providers (ISPs) to upgrade the inadequate infrastructure to better service

multimedia tra�c promoted the proliferation of signalling overhead reductions mechanisms at

every layer of the IP stack and enhanced decentralized multimedia access technologies. The

mismatch between the Internet and audiovisual applications is the primary driver behind in-

ducing non-payload overhead as well as processing latencies; therefore, appropriate mitigation

will provision resources to deliver expected QoS and QoE requirements.

Traditional approaches to reducing control overhead tra�c and enabling large scale central-

ized source-client multimedia models include the use of caching nodes and distribution centres

located near concentrations of users [5, 6]. Although cache nodes are the ideal choice for adap-

tive multimedia streaming services due to their simplicity, they are extremely costly, require

continuous upgrades, and are not su�cient to overcome the rapid growth of multimedia appli-

cations. Recently, signalling overhead reduction methods designed to decrease the generated

overhead costs at every layer of the IP communication stack have emerged. The layer-specific

solutions are e↵ective tools in improving the e�ciency of multimedia streams while comple-

menting traditional caching approaches as well as alleviating intermediate node bu↵ers. To

further improve control overhead reduction schemes, cross-layer solutions are needed and im-

plemented through using steganography within multimedia streams. The inherent data hiding

properties of multimedia payloads are being actively exploited by Content Distribution Net-

works (CDNs) to deliver enhanced services to end-users or to combat theft as well as illegal

distribution of intellectual property. Due to the nature of multimedia payloads, they are ideally

suited for data hiding and creation of covert communication channels with large bandwidth ca-

pacity. The unique data hiding properties of multimedia are not only appropriate for enhancing

user experience but also for improving the communication e�ciency over the erratic paths of

the Internet.
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HyperText Transfer Protocol/Transmission Control Protocol (HTTP/TCP) is a combina-

tion of mature IP protocols that enable adaptive multimedia streaming services, such as HTTP

Adaptive Streaming (HAS), due to their ability to leverage existing hardware as well as wide

device interoperability. However, HAS-based streaming services are susceptible to packet loss,

network congestion, and non-deterministic behaviour due to the underlying infrastructure. The

existing control overhead reduction methods found in the literature [7–27] operate individually

at each layer of the IP communication stack without coordinating with each other. Further-

more, they are ine�cient in terms of responding to change in network conditions as well as

on-demand requested fidelities. Overcoming the limitations of existing signalling overhead re-

duction techniques is achievable through cross-layer cooperation of the IP stack. Cross-layer

overhead mitigation will require exploiting the steganographic capacity of multimedia streams

to embed and exchange control overhead thereby alleviating delivery networks from processing

non-payload data. In terms of content access, server-client models of managing multimedia are

expensive as more hardware and infrastructure is needed as the demand increases, and there-

fore blockchain-based solutions [28–35] have emerged. Blockchain-based technologies enable

scalable multimedia access, however, the processing latency of said management systems are

inherently large due to the secure nature of ledger-based networks. Without undermining se-

curity features of a blockchain-based system, e�cient ledger processing disciplines are needed

to reduce content access latency and enable throughput provisioning. It is therefore of great

importance to enhance the e�ciency of multimedia systems through improved communication

streams as well as seamless access to content.

1.1.1 Gauging Signalling Overhead Volume in Multimedia-based Appli-

cations

In order to overcome the challenges of delivering multimedia over the Internet, service

providers utilize adaptive multimedia streaming technologies as well as decentralized content

access management as inexpensive solutions. Adaptive streaming technologies enable end-
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to-end multimedia delivery through sophisticated and coordinated signalling overhead tra�c

flows [36]. At the application layer, the employed adaptive streaming technologies require re-

ceiving processes to request multimedia chunks through signalling messages on a segment-by-

segment basis. Subsequently, every byte of data generated at the application layer is transported

utilizing lower-layer protocols that commission additional signalling messages to guarantee the

delivery of said bytes. Consequently, due to the Internet’s inherent time-varying properties as

well as a client’s changing demands, generated signalling overhead volume is shifting accord-

ingly. The time-varying properties of network paths will induce packet losses, retransmissions,

multimedia segment size change, and multimedia fidelity requests, at the expense of addi-

tional ine�cient signalling overhead exchanges. Furthermore, multimedia request-response

transactions and tra�c are intermittent in behaviour with bursty tendencies. As a result, the

signalling overhead generated needs to be mitigated to alleviate source-destination pairs as

well as intermediate nodes from having resources consumed to process non-payload data. Un-

like centralized server-client models, decentralized content access management schemes are

necessary to enable e�cient distribution models that are able to scale to meet significant multi-

media demands e�ciently. Through using blockchains, service providers are utilizing a secure

and Peer-to-Peer (P2P) capable technology that enables e�cient service scalability [37]. The

security features of a blockchain, however, introduce large processing overheads resulting in

reduced perceived QoS values.

To properly mitigate the signalling overhead volume in adaptive multimedia streaming

technologies, such as HAS, the inducing processes must be identified. HAS is HTTP/TCP

based, and therefore all exchanged data is encapsulated using the TCP protocol. Using the

TCP protocol allows sharing large sized segments and control messages with delivery guaran-

tees, however, it utilizes Acknowledgement (ACK) messages to drive segment transmissions

[38]. Due to the nature of the Internet paths and the IP protocol stack, segment sizes are lim-

ited, and therefore, numerous segments must be exchanged in the form of packets to achieve

delivery. Consequently, the number of ACK messages exchanged during a multimedia trans-
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mission is inevitably large. Furthermore, all packet losses and retransmissions will generate

another round of ACK messages to close the gap of missing packets. It can be seen that due

to the nature of multimedia streams, HAS generates a large amount of control overhead at the

transport layer of the IP communication stack.

Reducing signalling overheard does not reduce the processing overhead introduced by us-

ing blockchains for scalable multimedia content access management, and by extension, user

authentication. The inherent security features built into a blockchain-based system introduce a

significant processing overhead and therefore pose as an ine�cient method of driving system

and network events. In blockchain-based financial systems, processing fee structures are used

to increase the e�ciency of a system. However, blockchains used in multimedia services are

not capable of using fee-based structures, and therefore, appropriate processing schemes need

to be investigated. An event driving mechanism is needed to reduce the processing overhead

introduced by the security features of a blockchain system for specific network tasks.

1.1.2 E�cient Multimedia Signalling Exchange Methods for Payload De-

livery Over the Internet Medium

Identifying the processes contributing to the exchanged control overhead allows appropri-

ate solutions to be designed and implemented. The types of solutions to reduce control over-

head exchanged as a result of multimedia streams is classified into two categories: application

layer solutions and lower layer-based solutions. Application layer solutions target reducing

the number of request-response transactions performed by a source-destination pair. Lower

layers-based solutions tend to address the signalling overhead generated by the transport layer

and networking layer of the IP communication stack. Application layer solutions tend to mod-

ify the features of HAS-based streaming through manipulating the types of segments provided,

their frequency, and their size, among other features. Lower layer-based solutions tend to mod-

ify the features of the protocols providing end-to-end connectivity and delivery. Modifying the

features of lower-layer protocols includes reducing the frequency of exchanged messages, the
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size of the headers used, and using alternative protocols, to name a few [39].

The end-to-end delivery is conditional on the network paths, perceived congestion, inter-

and intra-ISP agreements, and node bu↵ers, among others. The inherent multimedia data hid-

ing capacity can be leveraged beyond providing auxiliary services or piracy combating water-

mark schemes to create e�cient signalling exchanges. The covert channels are used to either

transport complete control messages from any layer in the IP protocol stack or to be used as

a protocol translator. The protocol translator can hide important protocol information within

the multimedia payload and use a lightweight alternative protocol for end-to-end delivery. In

one-hop communications, inflated routing protocols and their headers are not necessary for

end-to-end delivery. Due to the limitations of one-hop communication networks, a simple one-

hop routing scheme needs to be investigated. Finally, a blockchain-based multimedia content

access management system is capable of handling a degree of fault tolerance. The fault tol-

erance induces processing latencies and reduces throughputs for di↵erent components of the

system. E�cient event validation is performed through appropriate event-by-event processing

where a feeless tiered structure is needed to introduce a network driving mechanism.

1.1.3 Decentralized Multimedia Access Management and Copyright Pro-

tection

Multimedia transmissions over the Internet should not only be e�cient in exchanging con-

trol overhead but should also be e�cient in scaling to meet demand volume, essentially man-

aging processing overhead. Blockchains play a vital role in enabling secure decentralized

technologies, however, they lack the proper methods of processing events and reducing related

overhead. Existing solutions providing methods for processing blockchain events are geared

towards blockchain-based digital currency services [41–60] and are therefore not suitable for

multimedia services. The incompatibility between the available blockchain processing meth-

ods and need of multimedia services promotes the investigation of an e�cient event driving

scheme. A candidate solution to the aforementioned gap of processing methods is to use a
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feeless, priority-driven scheme, for processing multimedia system and network events. The

priority-driven blockchain processing scheme will be designed to further enable blockchains

outside of digital currency applications while reducing processing overhead as well as increas-

ing the e�ciency of multimedia services.

1.2 Dissertation Contributions

The main contributions of this dissertation are summarized as follows:

• In order to reduce the amount of signalling overhead exchanged in multimedia streams,

it is necessary to identify all entities contributing to the signalling stream. Once the

sources are identified, a novel cross-layer steganographic-based solution is proposed and

utilized to embed the generated signalling messages in a unique manner within multi-

media payloads to reduce the amount of exchanged overhead. The proposed scheme

utilizes the data hiding capacity of multimedia files to embed control messages within

audiovisual data where the receiving node will perform a decoding process to extract

the hidden signalling data. A utility function is designed to reduce the amount of over-

head exchanged while ensuring a low amount of visual artifacts perceived by a user. The

proposed scheme is capable of extending existing overhead reduction methods to further

decrease the amount of exchanged control messages.

• Since smaller sized segments are more adaptable to network conditions, a novel steganographic-

based packet size reduction scheme, as well as a simplified routing scheme, is proposed.

Unlike existing stream sensitive solutions, the proposed steganographic scheme trans-

lates protocols with a large header size to a protocol with reduced header sizes. The

translator operates through embedding packet header information within multimedia

payloads, and therefore are less sensitive to streaming conditions. In the specific case

of one-hop communications, a simplified routing scheme is used in place of the cur-

rent network layer protocol to perform end-to-end routing while using a smaller sized
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header. A utility function is designed to reduce the size of packets through performing

translations while guaranteeing low visual artifacts.

• A novel blockchain ledger maintenance algorithm is proposed to increase the e�ciency

of decentralized content access management systems used in multimedia services. Exist-

ing ledger maintenance schemes utilize digital currencies for e�cient tiered processing

and therefore limited to currency based applications. The proposed algorithm is feeless

and designed to be used in any industrial blockchain-based application free from digital

currencies. The proposed solution will increase the e�ciency of multimedia services

through selecting the appropriate events to process at the correct time. The proposed al-

gorithm is a block slicing technique designed to allow ledger maintainers in provisioning

throughputs and reducing latencies as needed.

• The aforementioned solutions are capable of cooperating with existing methods to further

enhance their performance. More specifically, the steganographic-based schemes are

designed to work solely on their own or through extending existing solutions. A test-bed

is designed and used as a proof-of-concept implementation to demonstrate the proposed

steganographic schemes. Finally, the blockchain-based solution is capable of enabling

additional tiered processing for currency as well as non-currency-based applications.

1.3 Dissertation Organization

The following details the organization of the remaining chapters of this dissertation:

Chapter 2 provides the details of adaptive multimedia streaming technologies, multimedia

encoding formats, existing solutions to reducing exchanged signalling overhead, steganogra-

phy in multimedia, fundamentals of blockchain technologies, and existing blockchain-based

multimedia services.

Chapter 3 focuses on the proposed cross-layer steganographic-based signalling overhead

reductions scheme, where a utility function, as well as a real-time algorithm, are designed to
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reduce the visual artifacts perceived by users.

Chapter 4 focuses on the proposed steganographic-based header size-reduction scheme en-

abled through protocol translation as well as the simplified routing solutions. Furthermore, a

utility function, as well as a heuristic algorithm, are given to evaluate the cost savings while

maintaining a low visual error.

Chapter 5 details a feeless blockchain processing scheme designed for industrial application

of blockchain technologies, such as multimedia content management and user authentication

services. A blockchain processing algorithm is given to ensure the driving of system and

network events to achieve desired request throughputs. The designed processing algorithm

is an e�cient way of reducing processing overhead while attaining specific throughputs for

events from di↵erent priority classes.

Finally, in Chapter 6, concluding remarks as well as future research directions are given.



Chapter 2

Challenges and Solutions of Multimedia
Streaming Technologies over IP-based
Networks

This chapter summarizes the signalling overhead generating sources found in multimedia

services as well as the e↵ects of the lacking underlying communication infrastructure used for

exchanging audiovisual data. Adaptive multimedia streaming, data hiding, and blockchain-

based systems enable digital multimedia services and therefore are widely adopted by content

providers as secure solutions for end-to-end delivery of segments. The aforementioned tech-

nologies, the insights into control overhead reduction solutions as well as scalable multimedia

rights management systems are addressed in this chapter.

2.1 Interoperable Visual Encoding and Network Signalling

Formats

The Advanced Video Coding (H.264/AVC) format is the most popular video compression

representations used to decrease multimedia storage and transmission bandwidth [61]. All

exchanged multimedia on all devices and services is compressed using an encoder and decom-

pressed using a decoder. Prior to performing the compression process, the source multimedia

input is first processed in the prediction block where it is treated in blocks of 16x16 pixels

10
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termed as Macroblocks (MBs). Using previous blocks and data within the current frame, the

encoder will try to predict a related block and correct the prediction using MB subtraction pro-

cesses. The prediction phase essentially forms MBs based on the previously coded data from

the current (intra) frame or previously (inter) coded frames. The predication phase performs

a motion estimation process to find a suitable inter- and intra-predication frame descriptions.

Subsequently, a motion compensation process subtracts a prediction block from the current

MB block to construct a residual MB description. In doing so, the encoder is only informing

the decoder of residual blocks where the decoder will reconstruct the frames using the inverse

method of forming residual blocks.

Residual blocks are generated subsequent to the subtraction process where a 4x4 or an 8x8

Integer Transform (IT), an approximate form of the Discrete Cosine Transform (DCT), is per-

formed on said block of residual samples. The DCT process provides insights on parts of the

image that have di↵erent importance with respect to the image’s quality through a transforma-

tion from the spatial domain to the frequency domain. Each of the output coe�cients of the

forward transform phase are weighted values of standard basis patterns. The inverse transform

uses the combination of coe�cient values and basis patterns to reconstruct image blocks. The

H.264 format is designed to provide network friendliness through Network Abstraction Layer

(NAL) packet units. The NAL units are capable of mapping H.264 Video Coding Layer (VCL)

information generated through the encoding process to organized packets. The organized NAL

units are also used with non-VCL information to exchange playback control information. Non-

VCL NAL units will contain data, such as Sequence Parameter Set (SPS) and Picture Parameter

Set (PPS), to enable the decoder in performing a correct playback [62].

H.264 variations of media encoding outputs are suitable to meet the required video rep-

resentation for storage, however, they can fail at meeting the various transmission scenarios

with unpredictable network conditions. Scalable media streaming is used to create layers or

sub-streams from a single media source where each additional layer received enhances the re-

ceived fidelity, as illustrated in Fig. 2.1. The layers are either sent with hierarchal dependence
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in Scalable Video Coding (SVC) form or they are individually decodable and are sent in Mul-

tiple Descriptions Coding (MDC) form [63]. If a video stream is layered using MDC, each

description sent must carry enough information about the original video in order for the decod-

ing process to occur. Carrying additional information about the original source video results

in a reduction of compression e�ciency and combining multiple MDC descriptions together

requires a high computational power [64]. The reduced compression e�ciency and the need

for a high computational power to combine multiple descriptions of MDC promoted the use of

SVC instead.

Server

Base Layer
Layer 0

Temporal
enhancement

Layer 1

Spatial
enhancement

Layer 2

Client
Bandwidth

High

Moderate

Low

All Layers

Layer 0 + Layer 1

Layer 0

Figure 2.1: As clients request additional media representations, the media fidelity is enhanced. Layer-
ing video streams using SVC enables the receiver to progressively enhance received video quality as
additional descriptions are received. The most important layer in SVC is known as the base layer (BL)
and each additional layer is known as an enhancement layer (EL).

2.1.1 Adaptive Multimedia Streaming Sporadic Tra�c and Signalling

Sources

Streaming multimedia over the Internet is made available through application layer proto-

cols including: Real-time Transport Protocol (RTP), RTP Control Protocol (RTCP) [67], Real-
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time Streaming Protocol (RTSP) [68], and Hypertext Transfer Protocol (HTTP) [69]. The RTP

protocol transfers media segments over User Datagram Protocol (UDP) where the RTCP pro-

tocol is used for congestion control as well as configurations to meet Quality-of-Service (QoS)

requirements. Since multimedia is an error-tolerant function, intuitively, UDP will seem to

be the optimal transport layer protocol for streaming as it is a mature protocol, with a small

header size, and is inherently connectionless where data is not tracked nor retransmitted. All

of the mentioned UDP-based streaming paradigms fail at traversing Network Address Trans-

lation (NAT) tables and firewalls and also require investments in network infrastructures and

dedicated servers to manage separate streaming sessions. The dedicated servers are needed

to compensate for UDP’s stateless nature where no connection information is retained by the

source-destination pairs [70]. Although initially deemed unsuitable for multimedia streaming

[71], Transmission Control Protocol (TCP) is the preferred transport layer protocol for deliv-

ery due to inherently being stateful, connection-oriented, byte-oriented, and as a result reliable.

The preferred application layer protocol to be used with TCP is HTTP where HTTP/TCP-based

streaming is formally known as HTTP Adaptive Streaming (HAS).

The design of RTP/RTCP promotes functionality that is well suited for UDP but not for

TCP-based connections and therefore are not used alongside TCP. Although RTSP utilizes

TCP, it is a stateful protocol, which unlike stateless HTTP, is expensive to scale and conse-

quently not as popular as HAS-based streaming. HAS virtually enables multimedia deliv-

ery to all devices connected to the Internet due to leveraging existing hardware and popular

HTTP/TCP protocol combination, thereby minimizing deployment costs. TCP’s features in-

cluding: built-in feedback and congestion control mechanisms, are enabled by Acknowledge-

ment (ACK) messages returned from receiving clients to source nodes [18]. Due to HTTP’s

need of TCP’s features, the TCP ACK messages are overlooked since an HTTP-based stream-

ing service is far less complex and therefore cost-e↵ective. The benefits of HTTP are twofold;

firstly, HTTP is designed to service clients at large scales e↵ortlessly; secondly, firewalls and

other network devices are easily configured to allow HTTP-based tra�c [70]. HTTP is capable
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of scaling due to the use of caches, widespread protocol use, and e�cient hardware support

as a result of HTTP’s maturity. A significant contributor to HTTP’s scalability is shifting the

multimedia stream control to the client from the server-side through having clients send HTTP

control messages, such as GET requests. A client in control of the stream will adapt the multi-

media quality according to the observed network conditions to maintain a filled bu↵er, thereby

reducing playback interruptions. A simple method for a client to detect the need for reducing

playback quality is by using TCP’s built-in congestion control mechanisms.
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Figure 2.2: The client will utilize HTTP GET requests to choose di↵erent fidelities of multimedia
descriptions suited for observed network conditions.

Clients will request multimedia descriptions of di↵erent qualities when needed, where each

segment of a multimedia file is divided into multiple chunks with known starting points as

shown in Fig. 2.2. A Content Distribution Network (CDN) will present clients with Media

Presentation Description (MPD) [72] files to outline the available formats, bitrates, and URL

addresses of available media segments as illustrated by Fig. 2.3. The MPD files contain meta-

data needed by clients to construct appropriate HTTP Uniform Resource Locator (URL) paths

to retrieve desired segments using a chain of HTTP GET requests. The MPD files will describe
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Segment Request/Delivery
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Figure 2.3: HAS utilizing HTTP as well as cache servers for e�cient delivery.

the di↵erent video adaptations of the same segment, along with the di↵erent representations,

available at the server during each period. For each segment identified belonging to all the rep-

resentations described in the MPD file, a URL is available for the client to complete a desired

segment retrieval. An MPD file is illustrated in Fig. 2.4 to show the hierarchical data structure

that is used to represent deliverable versions of multimedia. The ability of seamlessly switching

between segments with di↵erent representations is made possible with the media content being

mapped to a global synchronization presentation timeline. For on-demand content, all segment

availability and duration times are primarily identical with minor variations. For live content,

segment availability occurs over time and are ideally short in length to meet end-to-end latency

constraints. The simplicity of streaming multimedia using HTTP/TCP-based methods placed

HAS as the underlying solution for content delivery at large multimedia enablers including

Apple’s HTTP Live Streaming, Microsoft’s Smooth Streaming, and Adobe’s HTTP Dynamic

Streaming technologies.

The decoupling between the multimedia payload and the HTTP-based delivery service en-

abled the addition of new services and streaming requirements at little cost. HTTP-based

services will easily stream new media formats, including three dimensional and ultra-high def-
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Figure 2.4: An MPD file is provided to the client for driving request-response interactions.

inition. Content providers are also capable of using new media codecs, such as SVC, on the

fly. An ongoing challenge in the digital media rights protection world [73] is combating piracy

where content providers are capable of doing so by extending HTTP-based streaming services

as needed. The decoupling further enables a content provider in using di↵erent encapsula-

tion formats, such as MPEG-2 Transport Stream (TS), as requested by a receiving client [3].

Another advantage of the decoupled model is the possibility to use HAS in topological sys-

tems including: multicasting [74–77], Network Coding (NC) [78–81], and Peer-to-Peer (P2P)

streaming [82–86] configurations. HTTP-based delivery enables addressing privacy concerns

of the consumers through leveraging end-to-end encrypted tunnels (HTTPS). The data tunnels
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Figure 2.5: The TLS protocol rests above the transport layer in the application layer where it encap-
sulates all application generated data when enabled for a specific service. Due to being an application
layer service, TLS will not encrypt any information observed at the transport layer and below.

are encrypted using an asymmetric and symmetric key cryptography with a key known only

to the source-destination pair. The cryptographic Transport Layer Security (TLS) [87] proto-

col encrypts (decrypts) application layer information on-the-fly and is therefore easily utilized

with multimedia flows. To verify that the ownership of a set of asymmetric cryptography keys,

including the public keys of a service provider, Certificate Authorities (CA) are widely used.

A digital certificate issued by a third-party CA is utilized to assert the public keys of a service

to verify the signature of the author of the exchanged payloads. To verify a digital signature,

asymmetric cryptography plays a vital role. The true author of a message initially encrypts and

signs a message using a private key that is known only to the author. The receiver is capable of

verifying the author using the author’s known public key. Once the TLS session is established

using the asymmetric keys, the TLS protocol cryptographically encapsulates all HTTP mes-

sages and payloads using the exchanged symmetric key. Therefore, TLS encryption is limited

to the application layer, leaving transport layer data unencrypted as illustrated by Fig. 2.5.

The TLS protocol supports multi-service configurations where end-nodes will request specific

servers (services) in plain-text while establishing the TLS-session. However, in order to estab-

lish a TLS session, a TCP connection is first initiated between source-destination pairs. All of

the messages generated by the TLS protocol will then be exchanged using the underlying TCP

protocol.

The TLS protocol is a stateful connection that is established using plain-text exchanges,

asymmetrically encrypted messages, and finally symmetrically encrypted payloads. The TLS
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handshaking process will introduce a delay in establishing a communication session. Further-

more, additional signalling messages are exchanged between source-destination pairs to main-

tain the encrypted session, including key updates and session identification changes. Clients

will initially send a Client Hello message to a server with the TLS version used, the available

cipher suites, and the name of the requested server. The server will respond to the client with

a Server Hello message that contains information on the supported TLS versions and session

identification information. The server will then send a digital certificate that can be easily ver-

ified using information from CAs. Once the certificate is verified, the client-server pair can

now communicate using asymmetric cryptography to exchange the key utilized for the sym-

metrically encrypting the payload. The client and server will utilize asymmetric cryptography

to encrypt and exchange random strings and bytes of data that is utilized in generating the ses-

sion key used in the symmetric cryptography session. Once the client and the server compute

the key, the client will send the server a Finished message that is encrypted using the com-

puted key; similarly, the server will send the client a Finished message that is encrypted using

the computed key. All of the application layer payloads generated subsequent to computing

the symmetric key is now exchanged in an encrypted format using the aforementioned keys.

The symmetric key, however, is periodically renegotiated between source-destination pairs to

enhance the security precautions. Due to the utilization of asymmetric and symmetric cryp-

tography, the integrity of the data is verified using author signatures and verifications. Since

clients utilize CAs to verify servers, service providers are now capable of signing all generated

payloads using their private key. Consequently, a client will need to verify the signed payloads

using the server’s known and verified public key.

Whether HAS is used alone or alongside a topological delivery solution, the continuously

growing overhead needed in order for a multimedia exchange to occur will occupy interme-

diate node bu↵ers and increase processing time; As a result, reduced service performance is

experienced through induced playback freezing. As the intermediate and source nodes become

busier with processing overhead data, limited resources are being allocated away from mul-
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Figure 2.6: A TLS session begins with a handshake process and then moves to exchanging payloads.
The TLS handshake process occurs after the TCP connection is established. In the TLS handshake
process, source-destination pairs exchange sessions keys to cipher all application layer data.

timedia services to signalling plane handling. The excess overhead will lead to congestion

and inevitably forcing multimedia applications to perform retransmissions. As the number of

Round Trip Times (RTTs) needed to complete a transaction increases, the latency will behave

accordingly. T. Flach et al. [88] demonstrate the e↵ects of packet loss on TCP connections

where flows will require longer times to complete the transfer of payloads. The retransmission

timeout timer in TCP is one of the protocol’s negative features as it introduces a delay that is

larger than the RTT. In addition to multicasting, NC, and P2P technologies, HAS-based ser-

vices will generate massive amounts of overhead at the application layer and by extension, at

the transport layer, as the stream length, multimedia fidelity, stream configuration, and network

conditions vary. Given that the Internet is a popular streaming platform, the inadequate un-

derlying infrastructure furthers the overhead challenge as congestion and retransmissions will

take place [89]. Unavoidable sources of latency, retransmissions, and excess overheads are

due to the inter- and intra-ISP agreements and configurations for data paths, allocated band-

width, and assigned priority class. Furthermore, the current communication infrastructure is

non-deterministic and is geared towards file-based work-flows and is equipped with one-size

fits-all protocols. This type of environment is not well suited for multimedia services leading
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to ine�cient use of network resources. The network will employ intermediate node bu↵ering

and increased end-to-end delivery time to compensate for the current lacking conditions [2].

2.1.2 Cost E↵ective Signalling Overhead Reduction Solutions

The wide adoption and deployment of HTTP/TCP adaptive multimedia streaming pro-

moted the development of numerous signalling overhead reduction solutions. The proposed

solutions address overhead generated at the application layer and at the lower layers in ad-

dition to using advanced multimedia compression schemes. A combination of the aforemen-

tioned solutions from each layer can be used simultaneously, however, as multimedia fidelity

and service complexity increases, additional header mitigation solutions are needed.

2.1.2.1 Subsiding HTTP Redundancies and Payload Sizes of Request-Response Interac-

tions

The popularity of HAS-based streaming echoed well within the research community as

there numerous works of literature targeting overhead reduction. The existing overhead re-

duction solutions operate at the application layer, transport layer, and network layer [8–27].

Application layer solutions suggest changing traditional pull-based streams to push-based [8–

15] to reduce the number of requests created by the client. The literature proposes using push

capabilities built-in HTTP 2.0 where the server can send multiple multimedia descriptions and

maintain a persistent connection with destination nodes without requiring a request for each

description as illustrated by Fig. 2.7. Van der Hooft et al. [8, 9] promote the use of server push

to deliver the base layer of SVC-HAS encoded media as well k segments to the client when

receiving GET requests. Consequently, startup costs are eliminated, the number of RTT cycles

decreases, and reduced playout freezes in high latency scenarios. Wei et al. [10] propose a

scheme is designed to push k audio and video simultaneously when a request is received from

a client to further reduce generated overhead. Xiao et al. [13] show that k-push schemes do

not have a linear relationship between the value of k and the gained throughput, su↵er from
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Figure 2.7: Server push technology available with HTTP 2.0 will reply to every request received from a
destination node with k segments.

reduced network adaptability, and will promote over-pushing. Xiao et al. propose an adap-

tive push scheme where the value of k changes dynamically by having the system alternate

between k-push and no-push states. Huysegems et al. [14] propose ten di↵erent server push

schemes including: safety push, layered push, full push, and pull many, among others, to be

used in adaptive streaming and as soon as the MPD request is received. The server responding

with segments as soon as the MPD request is received eliminates startup delays. Clients will

experience a small representation switching delay since the server leaped ahead by transmit-

ting k segments of a previously requested fidelity. Therefore, when the k-push mechanism is

employed, requesting a di↵erent bitrate and by extension, the k parameter method will incur

additional delays. The results show that the incurred switching delays subsequent to using the

k parameter are much more significant than the expected delay. Finally, the receiving nodes are

capable of abusing the source by increasing the number of requests sent and as a result con-

sume a more substantial portion of bandwidth. This is demonstrated by assuming a receiver

that generates r requests in a small period of time and therefore forcing the source to respond
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with r ⇤ K audio/video segments.

To overcome the storage and bandwidth limitations, video encoding [62] is the first part of

a bigger multi-part solution. Video encoding is a cost-saving tool that allows Content Delivery

Networks (CDNs) to deliver higher-quality media to numerous users while reducing costs by

virtue of using reduced amounts of bandwidth. As technological advances are made, such as

cheaper and low-power chips, higher compression ratios are achievable through increasingly

complex algorithms. Subsequent to capturing videos, uncompressed files are subject to video

processing and signal analysis techniques prior to transmission in order to exploit the cost sav-

ings of video encoding. The uncompressed video consists of a sequence of ordered frames

of real-world scenes where the aforementioned frames might have a high degree of statistical

redundancies within themselves or with their neighbouring frames [65]. Video compression

processes remove spatial and temporal redundancies from a sequence of frames where they are

based on the perception limitations of the Human Visual System (HVS). Additional redundan-

cies that are not perceptible by HVS are found through exploiting the high degree of inter- and

intra-frame similarities [90].

With the proliferation of digital video and new emerging technologies that use the Internet

and other non-deterministic communication channels, varying encoding bitrates of media are

used to reduce bandwidth usage. Large CDNs including YouTube, Google, Apple, and Netflix,

currently rely on employing HAS over TCP/IP [3, 5, 91], to adapt video services to current

network conditions, end-device capabilities, and server load [92]. HAS operates based on

client feedback, where the client measures available bandwidth and bu↵er status and the server

provides videos in multiple representations to meet the various clients’ capabilities. Overhead

costs in HAS vary according to segment size, desired coding e�ciency, and client feedback.

Small segments will allow the HAS based systems to respond to network changes rapidly at

a higher overhead cost, however, larger segments will be slower at responding to network

changes while enabling higher coding e�ciency at a lower overhead cost. Therefore it is

vital to find the balance between segment size and desired coding e�ciency to maintain a low
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overhead cost [66].

2.1.2.2 TCP Alternate Configurations and Transport Layer Delivery Protocols

Reducing and manipulating ACK exchange behaviour as well as varying other transport

layer configurations are promoted to decrease signalling overhead [16–19]. The aforemen-

tioned literature identifies the e↵ects of manipulating TCP options as a means of reducing

session overhead by varying the frequency of TCP ACK messages as well as employing Selec-

tive Acknowledgements (SACK). Manipulating the frequency of ACK messages will directly

a↵ect the growth of the congestion window accordingly. Delaying ACKs negatively a↵ects

the slow start phase of the congestion window since there are fewer ACKs being received in

the slowest growth phase of the window. Using TCP SACK will reduce the number of ACK

messages, however, while streaming real-time media, the packet being retransmitted may ex-

pire [19]. Allman in [18] propose two primary di↵erent delayed ACK schemes to reduce the

number of exchanged signalling messages. The first proposed method is designed to generate

delayed ACK messages once the TCP congestion window escapes the slow-start phases. There-

fore, while in the slow-start phase, ACK messages are needed for growth until the congestion

avoidance phase is reached. Once at the congestion avoidance phase, ACK message frequency

is reduced where an ACK is exchanged every n segments. The second method utilizes Ap-

propriate Byte Counting (ABC) to grow the congestion window. Unlike traditional congestion

window growth that is based on the number of received ACK messages, byte counting is an

alternative method independent of the number of ACK messages received. While using byte

counting to grow the TCP congestion window, the window size will increase according to the

number of acknowledged bytes by the received ACK messages, and therefore fewer ACK mes-

sages are needed to grow the congestion window. In order for the proposed methods to succeed,

the source-destination pair must communicate to each other whether the transmission is in the

slow-start phase or otherwise since the stream must be outside the slow-start phase to succeed.

Furthermore, the proposed delay schemes will su↵er in sessions where the connection needs to
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reset due to the repeated occurrence of the slow-start phase.

Landstrom et al. [17] proposed a scheme that is designed to reduce the frequency of gener-

ated TCP ACK messages by manipulating the settings of the protocol. The aim of the proposal

is to show that a stream’s performance can be maintained when a reduced number of ACKs

is transmitted. Furthermore, Landstrom et al. show that a source-destination pair does not

achieve the best results when using the default TCP delayed ACK strategy, and therefore, a

di↵erent ACK delay strategy is needed. Landstrom et al. show that in certain scenarios with

favourable conditions, there is the potential to further reduce the number of ACKs transmitted

from one ACK for every two-in-order segments to one ACK for every four-in-order segments.

By reducing the frequency, the ACK messages are essentially delayed for delivery as illustrated

in Fig. 2.8. In the default scenario, an ACK message is expected to be sent by a destination

node for every segment successfully received from a source node. Furthermore, in [17], the

proposed frequency manipulation solution utilizes ABC [18] to compensate for the reduced

frequency of ACK messages to maintain the desired performance.

Source Destination

Time Time

Segment

...

...

Segment

ACK

Figure 2.8: The TCP protocol is an ACK-based protocol that depends on the number of bytes success-
fully exchanged to transmit new segments.

Another solution involves reducing header sizes through compression [20–24] as an e↵ec-
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tive way of decreasing signalling overhead. The compression schemes include: Robust Header

Compression (ROHC) [20], IP Header Compression (IPHC) [21], Compressed RTP (CRTP)

[22], Enhanced Compressed RTP (ECRTP) [23], and Tunneling Multiplexed Compressed RTP

(TCRTP) [24]. The proposed compression schemes are stream-based and designed to com-

press a variety of used protocols including UDP, TCP, and IP. Stream-based compression is

sensitive to packet loss and therefore is not suitable for networks with non-deterministic be-

haviours, such as the Internet. Additionally, if header stripping is performed on a compressed

packet at an intermediate node, a receiver will not be able to decompress the packet. The al-

ternative to compression schemes is to use protocols that behave in a similar manner as TCP

with a reduced header size [25, 26]. The Datagram Congestion Control Protocol (DCCP) is

designed to replace and mimic TCP behaviour with 12 byte header. The DCCP protocol is not

a mature protocol and lacks features found in TCP, such as tracking the receiver’s bu↵er size

and therefore is not as reliable [25].

2.2 Multimedia-based Steganography and its Applications

Current digital steganography is used unidirectionally and for a limited number of purposes,

including copyright protection of video or audio files [40], content authentication, embedding

subtitles [96], updating keys in multicast scenarios [97], and by definition, data hiding in covert

channels [98]. Data hiding in covert multimedia is broadly categorized into two groups based

on the application, namely watermarking and steganography. Digital watermarking is used

in digital media to claim ownership of material or copyright protection while steganography

is used to transfer data secretly. Digital watermarks are typically designed to withstand ge-

ometric attacks, compression, and other forms of media editing while remaining transparent.

Steganography is concerned with maximizing the amount of embedded data while remaining

imperceptible by insuring minimal distortion of the cover media. The importance of digital

watermarking in combating piracy [73] is emphasized by the degree of easiness digital multi-
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media is shared across the Internet. Digital steganography, watermarking, or data hiding in the

most abstract sense can occur at any level in the TCP/IP abstraction as illustrated by Fig. 2.9

and is an inherent part of a multimedia system. The TCP/IP model inherently supports network

steganography where protocol headers and behaviour are exploited for covert communications

[99].

Application
Payload

Steganography
Transport

Network
Steganography

Network
Data-link

Physical
Physical Layer
Steganography

Figure 2.9: TCP/IP stack separated into regions defined by the type of steganography used.

2.2.1 Data Hiding Basics in Bandwidth-Rich and Restricted Mediums

Digital steganography is implemented in multimedia using slightly less complex meth-

ods such as Least Significant Bit (LSB) embedding within pixel channels and more advanced

methods such as LSB within the DCT and Dual-tree Complex Wavelet Transform (DT-CWT)

coe�cients. The di↵erent data embedding and data hiding techniques are measured using three

factors including: capacity, transparency, and robustness as shown in Fig. 2.10. The three fac-

tors influence each other based on the desired quality, and hence, there is a tradeo↵ between

them. For example, in a data hiding situation where robustness to geometric attacks is required

with a minimum visibility of the hidden data to the user, capacity will be sacrificed as data

can only be embedded in limited locations within the carrier object. Consider an image of size

512x512 pixels where each pixel in the image has three channels representing a colour from

the Red Green Blue (RGB) colour gamut. The channel elements of each pixel are assumed to

be represented by b bits. If the intensity of the pixel channel elements vary from 0 to 255, then

8-bits are needed to represent each element. To embed data within one of the pixel’s channels,
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the LSB values describing the intensities found within said channel are changed as necessary.

Using the LSB method on a 512x512 image will allow approximately 33,000 bytes of data to

be hidden per channel. Changing the value of an LSB in some pixels of a channel does not

degrade the image quality significantly, however, the generated signal is susceptible to noise

[96].

Capacity

Robustness Transparency

Figure 2.10: Trade-o↵ triangle of steganographic features used in covert multimedia channels.

Advanced data embedding techniques used for embedding watermarks, such as methods

that embed data within the DT-CWT transform coe�cients, are more robust to noise and can

withstand geometric attacks [100]. Watermarks are used in the multimedia industry for com-

bating piracy by embedding an imperceptible payload in the content. The payload is detected

in either a blind or non-blind fashion where the former does not need any reference frames

and the latter will need some reference frames to extract the watermark [40]. Blind watermark

extraction is a di�cult process in comparison to its counterpart due to the absence of refer-

ence frames. A multitude of schemes are proposed in the literature to embed watermarks in

audio and video content using di↵erent types of transformers including DCT, Discrete Wavelet

Transform (DWT), and DT-CWT. Most of the latest watermarking methods use DT-CWT due

to its shift-invariance, directional selectivity, and perfect reconstruction [101]. The DT-CWT

is easy to implement since existing hardware can implement it using existing DWT software

[102]. Given an RGB source, an encoder will transform that source into the Luma and Chroma
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The source will then process YUV according to the encoding process as necessary. Once

the forward transform stage is reached, the watermark is embedded in the low frequency com-

ponents of the DT-CWT coe�cients as shown in Fig. 2.11. The extraction can be performed

in a blind fashion by using the same embedding key in the decoder and following the DT-CWT

procedure [101].

Input
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Figure 2.11: Performing a data hiding process within DT-CWT coe�cients.

Using the aforementioned steganographic mechanisms, a number of algorithms and proce-

dures [103–110] detailing how to embed data within real-time and on-demand H.264 streams

are found within the literature. Furthermore, the steganographic methods are used in [111–115]

to provide di↵erent services for and through multimedia transmission sessions including ses-

sion key exchange and censorship bypass using covert channels. In [103], Priya and Amritha

test steganoraphic operations including: Least Significant Bit (LSB), Pixel Value Di↵erence

(PVD), and Tri-way (TPVD), on H.264, H.265, and High E�ciency Video Coding (HEVC)

formats. The encoded payloads are 25 to 125 bytes long where the Peak Signal-to-Noise Ratio
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(PSNR) is found to evaluate the quality of the video post embedding. In [103], the embedding

process occurs in the I, B, and P frames and is distributed between the Luma and Chroma chan-

nels of a 14 s long video available in various definitions and aspect ratios. The test performed

on the H.265 multimedia formats showed that H.265 is the most resilient for data hiding es-

pecially when TPVD is used. In terms of H.264, LSB and PVD-based encoding operations

achieved relatively the same quality changes for all embedding sizes. In [105, 105], Bose-

Chaudhuri-Hochquenghem (BCH) codes are proposed to encode steganographic data prior to

embedding within H.264 multimedia formats. The BCH-based code utilizes LSB to embed

data within the DCT coe�cients of multimedia frames. The proposed algorithm encodes data

in the Luma DCT channel blocks of the I-frame. The proposed scheme is able to embed 280

bytes in 20 I-frames. Using BCH to encode data that will reside within H.264 prior to encod-

ing to improve robustness against quantization attacks, an essential feature when watermarking

multimedia against piracy.

Nguyen et al. [106] propose an algorithm for hiding data in H.264 multimedia format. The

proposed algorithm hides data within the Quantized Discrete Transform (QDCT) coe�cients

of I-frames. The proposed algorithm uses DCT coe�cients for data embedding through LSB

and intra-frame prediction modes to determine whether to extract an encoded payload or not.

Kapotas et al. [107] propose exploiting the inter prediction phase of the H.264 video encoder to

embed data. The motion estimation process found in the inter prediction encoding phase treats

frames in chunks of blocks to evaluate the motion compensation value. The frames are chunked

according to 7 di↵erent block sizes where the proposed steganographic algorithm logically

ties sizes to binary codes. The proposed steganographic scheme will force an H.264 encoder

to choose di↵erent block sizes to represent a specific hidden message. Chen et al. [109]

propose using LSB on the quantized DCT coe�cients to embed data in a high capacity and in

a reversible manner. The proposed scheme hides data in the high frequency coe�cients through

histogram shifting to achieve reversibility. Using a�ne rules, the coe�cient values correspond

to binary sequences representing the embedded data where the receiver will use said rules to
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extract the hidden data and recover the original stream. Laura et al. [110] propose a real-

time steganographic technique to embed data in the luminance coe�cients of the multimedia

I-frames. The continuous motion prediction process performed through the comparison of I-

frame blocks promotes a large steganographic embedding capacity since frames are made of

a large number of block chunks. The block chunks are used in the intra-predicted motion

process to create residual blocks. The DCT coe�cient values of the evaluated residual blocks

are modified with the hidden message where an H.264 stream is then created.

A notable service that uses steganography is found in [111] where data hiding is used in

managing multimedia session access. Trappe et al. [111] propose a novel media-dependent

key management and distribution scheme for multimedia multicast scenarios. This approach

is employed at the application layer and uses data embedding schemes to hide re-keying mes-

sages within multimedia content. The advantage and focus of this method is the increased

di�culty for malicious users to gather information regarding the membership system and its

behavior. Since the re-keying messages are embedded within the multimedia data, the amount

of messages transmitted during the broadcast session are reduced. There are three events that

can trigger the use of re-keying messages which are key refresh events for security enhance-

ment and key updates subsequent to users providing their desire to leaving or joining the mul-

timedia session. Embedding the re-keying messages will reduce bandwidth consumption in

heterogeneous applications only if the re-keying messages are invoked which might not occur

as frequently as desired. In online multiplayer games, conferences, meetings, and P2P video

streaming applications, re-keying messages are not necessarily invoked as frequently due to to

the commitment of the user to the application.

Zhao et al. [112] propose a method to hide data within one of the frames of a popular video

compression standard known as MPEG-2. The MPEG-2 standard uses three di↵erent types

of frames in a repeating sequence, such as I1B2B3P4B5B6P7B8B9P10B11B12, to construct many

Group of Pictures (GOP). The proposed method exploits the B frames of GOPs by embedding

data within their multimedia packets. However, the weakness of proposed approach lies within
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the B frames dependency on the I and P frames for the decoding process. If the receiver does

not have the I or P frames, the B frames are useless. Decoding and presentation timestamps,

among other information, are required by the receiver for display synchronization and proper

frame decoding in addition to the I and P frames. The preferred protocol to transport any

MPEG-2 related data would be RTP over UDP/IP thereby limiting the proposed method to

embedding data at the application layer making it susceptible to packet loss. In fact, an error

in an I or P frame will have an e↵ect on the remaining B and P frames in the GOP. The

proposed method will negatively a↵ect the quality of the video transmission due to how it

behaves. It operates by replacing the payload of RTP packets of B frames with a steganographic

payload and by transmitting the packet on time or after an intentional delay. The receiver will

then consider these packets as lost packets and are forcefully dropped. Zhao et al. further

expanded the proposed scheme by hiding data within the RTP header as well as shown in

[113]. Concealing data using the proposed method will limit the amount of information that

can be transported due to the decrease in received video quality as the amount of hidden data

increases. Additionally, the proposed method will not reduce network congestion nor improve

the overall quality of the transmission scenario. In [114] the authors introduce a new covert

channel to bypass communication censorship by encoding information as player actions in

a real-time strategy (RTS) video games. The discrete proposed scheme only operates at the

application layer and is designed to carry a small amount of data at the average rate of 200 bits

per second. To transport RTS game player actions, UDP/IP is used thereby reliability must be

ensured at the application layer. However, using UDP/IP and application layer feedback creates

a covert channel that susceptible to loss and is bandwidth limited. Similar to [114], Rook is

proposed in [115] as a method to bypass censorship using an online game as a covert channel.

The proposed scheme is a low bandwidth covert communication platform that is capable of

achieving a throughput of approximately 20 bits per second.
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2.3 Basic Concepts of Blockchain-based Networks

Service decentralization is an essential component to achieving scalability as the demand

on an application grows, such as the demand on multimedia applications. The blockchain is a

popular solution for application decentralization due to its inherent security focused properties.

A blockchain is a decentralized and secure technology that enables the scalability of numer-

ous applications through continuous record maintenance, global consensus, and tamper-proof

design. Record maintenance is an essential component of a blockchain-based system with a

high task completion delay due to the scrutiny of a blockchain system’s security [116]. Unfor-

tunately, existing record maintenance solutions are primarily geared towards digital currency

systems or systems with a large computational capacity.

The blockchain is a special type of database consisting of grouped units of transaction

entries termed as as blocks [117]. Each block and its entries are cryptographically linked to

the preceding block to achieve tamper-proof status. The tamper-proof status as well as the

cryptographic dependency between blocks is an iterative process starting at the very first block

of a blockchain-based system. While using blockchains, transactions are permanently recorded

to the ledger unless the majority of participating record maintainers agree to a modification

at the cost of reprocessing the necessary list of blocks. The sheer amount of computational

power needed to reprocess existing blocks e↵ectively promotes blockchains as a decentralized

system with a high Byzantine Fault Tolerance (BZT). The underlying assumption is that it is

harder to control the majority of the computing power in a blockchain network through layers

of computationally expensive cryptographic puzzles. A cryptographic puzzle is solved and

added to the existing layers of computations at the formation of new blocks. New blocks tend

to be limited in space, and therefore are capable of framing a finite number of transactions.

Each block, its transactions, and the hash value of the preceding block are computationally

hashed until a nonce is found to meet the blockchain network’s target value [117]. Since the

essence of the security is the computational complexity, the process is time-consuming. Record

maintainers, formally known as miners, are capable of purchasing additional computing power
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to solve the cryptographic puzzles at a higher throughput, however, blockchain networks are

designed to increase the puzzle di�culty accordingly to thwart malicious users. The limited

block sizes and computationally expensive cryptographic puzzles will result in large mining

pools for miners to select transactions from. In blockchain-based digital currency systems,

such as Bitcoin, miners are capable of enforcing fees to enable transactions in securing a spot

in a soon-to-be published block, even if said transactions arrived in the mining pool at a later

time. In essence, transactions are capable of purchasing their processing guarantee and priority

from miners. Existing mining disciplines are fee-based and are primarily geared towards digital

currencies.

A blockchain network operates purely over Peer-to-Peer (P2P) protocols thereby achieving

decentralization in the communication plane as illustrated in Fig. 2.12. In a blockchain-based

system, nodes do not explicitly communicate with each other but rather communicate through

the ledger by sending transactions to miners. A source node will send a transaction to a set of

miners maintaining the ledger where the miners will validate the received transactions. A miner

will initially select transactions from its mining pool to form a block of transactions where the

block is then validated through using a cryptographic puzzle. Once the block puzzle is solved,

the new block is then shared between nodes and is accessible by any node participating in the

network, whether a miner or a simple node. A new node joining a blockchain network is ca-

pable of requesting an entire copy of the ledger from its peers where the ledger will contain all

transactions. All participating nodes are easily capable of verifying the author of a transactions

and the sequence of events recorded in the ledger. To verify a transaction, the hash value of

a transaction, hT , must be found and cryptographically evaluated with the author’s public key

[117].

The hash value is a mathematically computed string of bits that are mapped to the input data

where ideally no two inputs will have the same string of bits as an output. The generated string

of bits are identical in size regardless of the input length, a feature much needed when dealing
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Figure 2.12: Nodes communicate with each other using P2P networks to enable blockchain-based ap-
plications and decentralized services.

with very large transactions. The hashing function plays an important role in block publishing

as well. Miners will run blocks through hashing functions in addition to a nonce value until a
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Figure 2.13: Transactions are signed using the private key and verified using the public key counterpart.

nonce is found that satisfies the current blockchain network security measures. The nonce value

is a random string of numbers that is only found through iterative computationally expensive

brute force mechanisms. Once a miner finds a nonce value for a block it’s ready to publish, a

miner will broadcast the block and the nonce to all participating nodes. All participating nodes

are then capable of verifying the new block by hashing the block with the given nonce value as

well as the hash value of the preceding block as illustrated in Fig. 2.14. Although the process

of finding the nonce is time and resource consuming, the verification of the nonce is rather

quick. Verifying the value of the nonce can be done at any block in the blockchain system and

not only the most recent published blocks [117].

A blockchain system is further capable of utilizing digital smart contracts where legitimate

transactions are executed without intervention from any source [117]. All mining nodes per-

forming ledger maintenance will have a copy of all smart contracts where they are executed

accordingly. The aforementioned properties prompted the adoption of blockchains by numer-

ous applications and services that su↵ered from scalability issues. The inherent properties of

a blockchain-system, such as a high level of fault tolerance and traceability, enabled secure

large scale decentralized deployments of numerous applications and services. The applications

that benefited from blockchains include: IoT-based, multimedia solutions, health care systems,

energy trading, and social media platforms, among others. All of the applications and services
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Figure 2.14: Blocks of transactions appended to a ledger by miners and shared across a blockchain-
based network.

benefiting from blockchain-systems will face the challenge of building blocks since it is time

consuming and resource consuming. The mining pools of maintenance nodes will definitely

have an overflow where transactions must wait for a long period of time in said pool. Min-

ers enabled transactions to minimize mining queue waiting time through a tiered processing

structure where transactions pay higher fees for faster expedited processing. Existing mining

disciplines are ine�cient for industrial applications and therefore feeless solutions are needed

for tiered mining. The alternative solution is to design miners operating in industrial settings

to mine transactions in order of arrival.

2.3.1 Decentralized Multimedia Content Access and Management Solu-

tions

Multimedia services are extremely popular, require the harmonious collaboration of nu-

merous systems, and services large audiences simultaneously. The grand size of multimedia

applications today promote the use of blockchains to securely enable di↵erent components
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of the service. Accessing multimedia content and combating piracy is an ongoing challenge

in the multimedia world where blockchains stepped in as an important scalable solution for

protecting digital rights. Digital rights management occurs by allowing legitimate users in

accessing content and by tracking down pirated content. Decentralized consensus of access,

identity attestation, and identity management is a solution developed by Yasin and Liu [28]. In

[28], Yasin and Liu propose using blockchain with smart contracts to secure users’ identities

and provide users intent, whether malicious or otherwise. The proposed blockchain solution

will provide insights of users degree of maliciousness through analysis and record keeping of

institutional and social media data. Zyskind et al. [29] propose using a decentralized personal

data management system that uses distributed hash tables o↵ the blockchain-chain to give users

control of their data. Using the proposed scheme, users are capable of allowing services access

to their personal data through the blockchain. The application will then use the data to verify

the user through the recorded information.

Tracking and combating sources of multimedia piracy is an ongoing challenge due to the

loss of revenue for the content creators and rights holders. The grand size of distribution and

popularity of multimedia will require a decentralized, secure and trustworthy solution for scal-

able digital rights protection. Numerous digital rights protection solutions [30–35] are found in

the literature promoting the use of blockchain due to their scalability and tamper resistance. Xu

et al. [30] proposed a blockchain-based scheme for tracking down pirated content and protect-

ing intellectual property communicated digitally. Ma et al. [31] propose a blockchain-based

scheme where two ledgers are used separately to store information on right protected media.

In [31], one of the ledgers will be used to store unencrypted data while the other will store

ciphered data. The blockchain-based solution will provide traceability through maintaining an

access record to all Digital Rights Management (DRM) content in addition to media water-

marking for user identification. Ma et al. [32] propose using a blockchain-based system in a

master-slave setup to provide DRM protection and user authentication. The proposed scheme

sets powerful ledger maintaining nodes as masters and less powerful devices responsible for
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generating transactions as slaves. The master nodes will then distribute transaction verifica-

tion and block nonce evaluation to slave nodes. Zhao et al. [33] propose using blockchains

alongside steganographic watermarking to protect multimedia digital rights. Zhao et al. de-

signed a media protection scheme are users need to request data extraction mechanisms from

data hiding servers in-order to enable multimedia playback. Initially, all multimedia files must

be signed and baked into the ledger prior to processing by the data hiding server and view-

ing by a user. Bhowmik and Feng [34] propose to use blockchains to hold a complete log of

transactions detailing any edits or modifications completed on all multimedia segments. All

multimedia will be stegonagraphically watermarked with hash-based identification string used

to retrieve the modification history from the ledger. Furthermore, the hidden watermark will

contain details on the edited parts of the multimedia file in order to retrieve the original media

descriptions. Bhowmik and Feng [34] successfully hid a watermark that is 8,220 bytes using a

wavelet transform-based method in a multimedia file where the details stored in a blockchain

are used to restore the original image and identify who performed the editing. Ma et al. [35]

propose the Blockchain as a Service (BaaS) model to simplify utilizing blockchains in di↵erent

services, such as digital rights protection in multimedia. Ma et al. show that using blockchain

as an the infrastructure of a tamper proof DRM service, as well as a digital cryptocurrency to

be used in purchasing multimedia is possible due to the customizability of blockchains.

2.4 Summary

Although the Internet is not designed for exchanging multimedia, it is the most popular

multimedia communication medium within consumer markets. The Internet’s infrastructure is

not suitable for multimedia exchanges since its a delay and loss sensitive application operating

over non-deterministic routes with best e↵ort guarantees. To overcome the lacking infras-

tructure while exploiting existing hardware, adaptive multimedia streaming solutions based on

HTTP/TCP protocol combination gained popularity. Albeit adaptive multimedia solutions are
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used, the inherent mismatch between multimedia services and the underlying communication

infrastructure as well as the best e↵ort protocols results in large amounts of generated overhead,

intermediate node bu↵ering, network congestion, and unnecessary retransmissions. Further-

more, as multimedia fidelity and accompanying services become increasingly more prominent,

additional signalling overhead will be generated in the form of request-response interactions.

The overhead generated in a multimedia session occurs at every layer of the TCP/IP abstraction

and as a result numerous works of literature propose overhead reductions methods to increase

the e�ciency of data exchanges. Additionally, as multimedia services become increasingly

more complex and diverse in nature, signalling overhead mitigation mechanisms are needed to

reduce service provider costs. Numerous large scale multimedia deployments will require ser-

vices to protect digital content rights as well as manage access to licensed content. Blockchain

technologies enable secure, immutable, and decentralized scalability of services and are thus

ideal for digital rights management and other large scale industrial solutions. Unfortunately,

existing blockchain maintenance solutions are geared towards digital currency services, and

therefore new ledger maintenance solutions need to be investigated to address the gap.
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Tapering Multimedia Bandwidth
Utilization through Steganographic-based
Signalling Overhead Mitigation

Though they are famous for generating a sizeable amount of signalling overhead, adap-

tive streaming technologies are deployed on a wide scale. Adaptive streaming technologies

o✏oad session configuration and control to the receiving client to enable enhanced network

response and scalability [5]. Reducing costs for streaming sessions between source-destination

pairs promotes the exchange of request-response interactions at a higher e�ciency, and thus

minimizing redundancies. This chapter proposes a novel cross-layer steganographic-based

overhead reduction mechanism for real-time and on-demand multimedia streams. In the pro-

posed scheme, nodes will embed signalling information within multimedia payloads to reduce

end-to-end session costs. The facilitated deployments of HAS-based streaming technologies

enabled rapid adoption, therefore signalling overhead reduction mechanisms play an important

role in extending multimedia sessions. When a client requests a segment from a server, the

client will send an HTTP-based request where the server will respond with the desired seg-

ment. As the client requests additional features and services, such as increased multimedia

quality, additional HTTP-based requests are generated. All of the stream data, whether re-

quests or segments, is exchanged over TCP and is subject to retransmission when necessary.

The nodes performing the embedding process will consider the aforementioned signalling data

for embedding within multimedia payloads. Nodes will initially determine whether the session

40
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conditions are appropriate for utilizing the encoding scheme through probing network con-

ditions to reduce retransmissions and induced visual artifacts. The client node is aiming to

determine the total observed reduction in resource consumption and mean queue waiting time

by performing the proposed process. If the conditions of performing the embedding process

surpass the desired thresholds, signalling overhead messages are then encoded within multi-

media payloads. The results obtained through simulations, as well as the proof-of-concept

implementation, validate the proposed scheme’s ability in decreasing resource consumption by

signalling overhead flows.

3.1 Introduction

Content distribution networks quickly recognized the lack of initiative from Internet ser-

vice providers to update the Internet’s infrastructure, and as a result HAS propelled to be the

preferred mechanism for delivering multimedia [69, 70]. Adaptive multimedia streaming tech-

nologies, particularly HAS, are responsible for generating large amounts of signalling over-

head at every layer of the TCP/IP stack. The generated signalling overhead is primarily due

to the nature of the employed protocols that are designed to cope with the Internet’s erroneous

paths. The erroneous properties of the Internet’s underlying infrastructure prevents service

providers from guaranteeing throughput, dedicated routes, or bandwidth allocations. Although

the employed protocols are designed to cope with the Internet’s behavior, they are not designed

for exchanging multimedia but for indiscriminately exchanging bytes of data. The employed

family of protocols, particularly the IP suite, have a one-size-fits-all approach to delivering in-

formation from all services. The set of IP protocols commonly dubbed as the TCP/IP stack are

designed to tolerate the Internet’s unpredictable behavior through retransmissions or moving

past undelivered data. Retransmissions are important for HAS-based streaming to ensure the

delivery of signalling messages and MPD files, however, they unnecessary when dealing with

multimedia payloads. The inherent ine�ciencies in combination with the diverse nature of
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multimedia tra�c produces large amounts of overhead messages. The mismatch between mul-

timedia applications and the infrastructure of the Internet resulted in network-based compensa-

tion through increased generated signalling overhead, intermediate node bu↵ering, retransmis-

sions, and as a result, network congestion. The mismatch is further exacerbated through the In-

ternet’s non-deterministic behavior, unpredictable routing paths, service provider agreements,

and best-e↵ort guarantees provided by the protocols employed. Essentially, the economical

design of the ICT infrastructures, particularly the Internet, created a challenge and a barrier for

real-time bandwidth-sharing applications [93, 94]. The Internet’s economical design, protocol

stack, and current hardware will result in the degradation of the QoS perceived by users of

multimedia applications [2].

Reducing exchanged signalling overhead received substantial attention in the literature,

more precisely in the areas of HAS-based streaming and TCP-based sessions. Signalling over-

head reduction mechanisms are present at the application, transport, and network layers of the

TCP/IP stack [7–27]. The existing solutions suggest modifying a server to change from tra-

ditional pull-based methods to push-based [8–15] to reduce the number of requests sent by

a client. However, reducing the number of received requests will negatively a↵ect the trans-

mission scenario in congested networks and the stream’s congestion window growth rate. By

exchanging fewer segment requests, the transmission session is slower to react to network con-

ditions and subject to abuse by a requesting node. Fewer segment requests will result in a

TCP congestion window growing at a slower pace, especially during the slow-start phase. Un-

like pull-based sessions where clients continuously request additional media segments, push-

based schemes will prompt source nodes to utilize the HTTP 2.0 feature of responding with

k-segments per request received from a client. Manipulating the configurations of transport

layer protocols is another option [16–19] where TCP ACK messages are delayed to confirm a

group of segments simultaneously or grow the TCP congestion window according to the num-

ber of bytes received. Manipulating the configuration will require source-destination pairs to

exchange details regarding the slow-start phase continuously. Finally, alternatives to the TCP
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protocol are proposed [25, 26] with a smaller header size and similar functionality, however,

the protocols are not as mature as TCP.

Overcoming the inadequateness of the existing solutions is possible by employing real-time

steganography for embedding signalling overhead within multimedia payloads. In this chapter,

an end-to-end steganographic approach is developed to improve the performance of real-time

streams by reducing bandwidth costs and queue waiting times. Unlike the aforesaid overhead

reduction schemes, the proposed encoding process does not increase the burden on the client

side while proactively adapting to network conditions, thereby maintaining a desired QoS. The

steganographic solution is a cross-layer approach where signalling messages from all of the

TCP/IP stack layers are subject to embedding within the application layer multimedia payload.

The embedding process is performed on a packet-by-packet basis to avoid the e↵ects of packet

loss where receiving nodes are still capable of decoding messages independently regardless of

received packets. Payload packets will benefit from the embedding process, more precisely

packets at the rear of a transmission queue, will benefit by experiencing reduced mean waiting

times within the said queue. The costs of transmitting a signalling message are avoided at the

generating node as well as the intermediate nodes where the destination node must perform

the decoding process. Finally, while using the proposed embedding scheme, the proactive

and responsive behavior of HAS is maintained. The embedding process is completed using

LSB [95] steganographic method and is applied adaptively in real-time through the continuous

exploitation of internal TCP components as well as collected packets’ statistics. By probing the

RTT and Retransmission Timeout (RTO) values placed by the TCP congestion window, each

stream is given a connection score to dynamically determine if a stream is fit for the embedding

process.

The goal of the proposed steganographic cross-layer signalling approach is to reduce mul-

timedia session overhead while maintaining QoS requirements. The proposed solution uses a

cross-layer steganographic-based approach where signalling data from any layer of the TCP/IP

stack is embedded in the application layer payload as shown in Fig. 3.1. In this manner, key
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Figure 3.1: The proposed scheme promotes a cross-layer steganographic solution where data from dif-
ferent layers is embedded in payloads from other layers.

limitations are avoided from network layer steganography such as the limited embedding ca-

pacity or consequences of header stripping. The inherent design and need of signalling in using

HAS and, by extension, the TCP/IP stack produces information frequently. For example, if a

service provider of a cloud conferencing application, P2P content delivery system, or STB con-

tent sharing, decides to use HAS over TCP/IP, many acknowledgement packets, GET requests,

and other signalling messages are exchanged between the source-destination pairs to enable

the transmission of new payload messages. The proposed mechanism is designed to improve

stream performance by eliminating a significant number of the exchanged signalling messages.

The encoding process is done in a logical manner where the TCP congestion window is probed

to determine streaming conditions, whether they are suitable for encoding signalling data or

otherwise.

The rest of the chapter is organized as follows: In Section 3.2, the system model considered

in this chapter is introduced. In Section 3.3 the details of the proposed steganographic scheme

for embedding signalling overhead within multimedia payloads, multi-application identifica-

tion scheme, estimated throughput gains and bandwidth utilization gains, as well as handling

HTTPS streams, are presented. In Section 3.4, simulation and implementation results are pre-

sented and analyzed. Finally, in Section 3.5, the chapter summary is given.
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3.2 System Model Description, Assumptions, and Problem

Formulation

Assume an N node scenario where the nodes are exchanging multimedia data and other

services amongst each other using HAS-based streaming as well as TCP streams over the

Internet as illustrated in Fig. 3.2. Each node is requesting d segments using signalling messages

that vary in size and will therefore require a di↵erent amount of resources to complete the

embedding. The total number of signalling messages k, in terms of ACK and GET messages,

generated per d segments is k � d due to the number of ACKs and retransmissions. The total

amount of payload segments generated throughout the session is d 2 D where the total number

of signalling messages K � D. To avoid playback freezing, the total playback time of the

d requested segments is larger than t seconds of multimedia descriptions. Each multimedia

packet is at least 1,460 bytes large and each non-payload packet is at least 70 bytes large.

Using the existing data exchange models, session information is transferred as two separate

streams, data and signalling, as shown in Fig. 3.3a. However, clients using the proposed

steganographic approach to delivering signalling messages will still generate said messages

where they are embedded within the multimedia payload on-the-fly. The embedding process

will result in a unified flow stream as shown in Fig. 3.3b where data and signalling information

are multiplexed on a packet-by-packet basis. A summary of frequently used notations is found

in Table 3.1.

As signalling messages are embedded within payloads, there will be fewer signalling mes-

sages occupying resources within the network. However, due to the greedy behavior of TCP,

an increased number of payload messages will be exchanged, triggering an increased number

of signalling messages generated at layers. Therefore, the embedding capacity of the system

must be increasing in a similar manner to the AIMD algorithm where the number of d seg-

ments increases and as a result k behaves accordingly. A cost formulation is designed to select

non-payload messages destined for embedding to minimize the amount of exchanged overhead
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Figure 3.2: N users communicating simultaneously over the Internet to stream multimedia and complete
file exchanges.

between source-destination pairs. Consider Q  N users connected through a web-video con-

ferencing application that uses HAS over TCP/IP. Each node n 2 N = {1, 2, ..,Q} represents

a di↵erent user with a total of F frames to send. Each TCP connection has a maximum win-

dow size of Wmax,n, a round-trip time of RTTn, and a maximum achievable throughput of Wmax,n
RTTn

[118]. Each participating node will minimize the amount of data sent using (3.2a).

The total amount of data a node has to send at any given instant to all receiving nodes in N

is

T = D + I, (3.1)

where D and I are the complete sets of payload and non-payload messages, respectively. At

any given instant, the set of signalling messages being sent from a node performing the em-

bedding process to destination n varies in size In
k 2 In and k 2 K = {1, 2, ...K} where K is the

signalling message index and In ⇢ I. As the number of signalling messages increases, the num-

ber of segments exchanged the next round will increase accordingly to mimic TCP behavior.

Therefore Ti is the total data exchanged at t1 and Ti < Ti+1 due to the ever-increasing payload
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Figure 3.3: Two streaming approaches: (a) Traditional streaming involves separate signalling and data
streams. (b) The proposed scheme will combine the signalling and data streams into a single stream
using steganography.

and request asymptotic relationship. However to replicate congested networks, the value of T

is decreased at random time intervals and at pre-determined thresholds to set an upper-bound

on the maximum throughput.

The purpose of the non-linear objective function (3.2a) is to maximize the number of sig-

nalling messages In
k 2 I chosen for the embedding process consequently minimizing the value

of T since there are fewer signalling messages to send. The formulation aims to ultimately

decrease the amount of data sent from the source node while maintaining a low visual error

rate and is formulated as

min
{xn

k },{mn}
(D + (I �

X

n2N

X

k2K
In
k xn

kmn)) (3.2a)

s.t. P
k2K Ern

k xn
kP

k2K xn
k
 �n 8n 2 N (3.2b)
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Table 3.1: Summary of the most significant notation used in this section.

Notation Definition
Q Total number of nodes/users
n Node number n
K Total number of signalling messages per node
k Current signalling message k
D Total data waiting to be sent to all nodes
I Total signalling information waiting to be sent to all nodes
In
k Signalling message k being sent to node n

xn
k Binary decision variable for In

k and node n
mn Network condition binary decision variable for node n
Ern

k Error generated due to embedding In
k

�n Maximum allowed error
C Available resources for performing the embedding process
en

k Resources needed to perform embedding process for In
k

S n Connection score for node n
L Minimum allowed connection score
P Frame height
W Frame width

X

n2N

X

k2K
en

k xn
k  C (3.2c)

P
n2N S nmnP

n2N mn
� L (3.2d)

mn 2 {0, 1} 8n 2 N (3.2e)

xn
k 2 {0, 1} 8n 2 N, 8k 2 K. (3.2f)

To compute the Ern
k of a frame or for a portion of a frame, (3.3) is used. The height and

width of the frame are of size P and W pixels, where the error is calculated and averaged using
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all samples, p 2 P and w 2 W, in the reference frames. In (3.3), f (.) refers to the original

sample pixel value prior to the embedding process while f 0(.) refers to the new sample pixel

value subsequent to the embedding process.

Ern
k =

1
PW

X

p2P

X

w2W
( f (p,w) � f 0(p,w))2. (3.3)

Signalling data may be embedded in one or all of the channels of a frame’s pixels, depend-

ing on the employed data-hiding scheme. Due to the hiding process, the original frame data is

modified and therefore an error, Ern
k , is induced. The embedding process completed for des-

tination node n on the kth signalling message, In
k , generates a visual artifact, Ern

k , subsequent

to the encoding process due to changing frame information. The total error generated must be

maintained under a certain limit, �n, to prevent the user from seeing visual artifacts as shown

in constraint (3.2b). To minimize wasted embedding processes, only destinations with reliable

connection scores, S n, are considered to satisfy perceived path conditions. Each score, S n, is

based on the TCP congestion window state and the observed exchanged messages statistics

between a source node and destination node n. The TCP congestion window is chosen as one

of the means of evaluating S n due to said window’s behavior reflecting the state of the propa-

gation path. If there are multiple streams between a source-destination pair, then S n is based

on all streams between said pair. The connection score is continuously updated since the TCP

is designed to update the RTO value as time progresses. The congestion window dynamically

changes RTO values due to the non-deterministic behavior of the delivery paths. By using the

values computed at the transport layer by the TCP protocol, each receiving node is assigned a

connection score as

S =
CR
BR
, (3.4)

where BR is the optimal observed RTO value throughout the lifetime of the transmission and

CR is the most recent estimate of the RTO value.

The purpose of S n is to combine multiple stream statistics to characterize the overall
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path conditions between source-destination pairs to reduce the number of retransmissions and

wasted embedding processes. If there are various sets of multiple streams heading towards a

number of destinations, then the average score of the chosen stream sets must be greater than

or equal to L to ensure proper delivery and minimize the e↵ects of packet-loss as shown in con-

straint (3.2d). To prevent the source node from overwhelming itself, the capacity of embedding

processes, C, is limited to said node’s capabilities. Data embedding consumes additional sys-

tem resources where each embedding process will consume en
k resources and therefore it must

be maintained under a certain capacity C as shown in constraint (3.2c). Signalling messages

with a larger size will have a larger embedding e↵ort, en
k , and a result, will consume additional

resources when compared to smaller signalling messages. Finally, binary decision variables

responsible for declaring whether the embedding process will take place or otherwise. The

decision variables mn and xn
k are binary variables as shown in statements (3.2e) and (3.2f),

respectively, and are subject to the optimization process. The xn
k decision variable is used to

determine whether a packet is considered for embedding and the mn decision variable is used

to identify whether a certain stream meets the score requirement constraint placed by L.

3.3 Proposed Real-time Cost Savings Evaluation

The proposed objective function (3.2a) is non-linear and consumes a large amount of time

to find a solution. Therefore a linear objective function is proposed in this section subsequent

to analyzing the costs of data delivery in the time domain. The costs of delivering data between

a source-destination pair can be measured in terms of end-to-end response time and bandwidth.

The one-way delay of an application is determined by the total delays a packet experiences on

the path towards the destination. The one-way delay is

D = dt + dpg + dpc + dq, (3.5)
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where dt is the transmission delay or the time needed to send a packet of size L at rate R, dpg

is the propagation delay that is determined by the signal propagation speed and by the length

of the links used along the path, dpc is the processing time needed for the packet to determine

the output link and other information, and dq is the time a packet waits for transmission in the

output queue of a link. The delay value D is therefore reduced to a much smaller value by using

LSB to embed signalling information within multimedia frames. Subsequent to using LSB, the

new delay value for the encoded data at the sourced-destination pair is,

De = de
pc + de

q, (3.6)

where de
pc is the new processing delay generated by finding and embedding the signalling data

in a suitable media frame. The de
q term is the new queuing delay experienced by the signalling

data. The frame used for embedding the data will experience a new delay value at the source

and receiving nodes as well. The new frame delay value at the source node is,

Df = dt + dpg + d f
pc + d f

q , (3.7)

where d f
pc and d f

q are the new processing and queuing delays experienced by the frame data,

respectively. As a result, the value of Df is De < D  Df . However, at intermediate nodes, the

delay of messages carrying payload information is expressed by D. Due to hiding signalling

messages within other payloads, intermediate node queues will have increased bu↵er spaces

and a number of delays of length D are avoided. Assume a queue of outgoing packets originat-

ing from a source application that is generating and sending data to N destinations. The sum of

the total number of payload packets Dn and signalling packets In heading towards destination

n is:

Pn = Dn + In. (3.8)

As a result the total number of expected packets is
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PT =

NX

n=1

Pn. (3.9)

Each node n receiving encoded packets is assigned a sliding window of size Gn at the

source node. Gn defines the maximum number of packets allowed for embedding at any given

time instant, t. Therefore the total number of embedding slots available at the source node is
PN

n=1 Gn = G. The source (destination) node performing the embedding (decoding) process has

a limited capacity C available to perform the encoding (decoding) process and as a result G 

C. Using C, a source node will be able to embed the maximum number of messages without

overwhelming itself as well as the receiving nodes. A Linear Programming (LP) approach is

found by relaxing the constraints of the non-linear objective function (3.2a) and using Little’s

theorem to transform it to a minimization of waiting time rather than signalling data. The

purpose of the new objective function (3.10a) is to minimize the total waiting time at the source

node or essentially maximize the amount of waiting time reduced by performing the embedding

process. The objective function uses a binary decision variable, xn
k , and aims to optimize it to

determine whether each node will receive embedded data or otherwise. Furthermore, for the

objective function to determine a list of nodes that will receive embedded data, each packet k

in the queue of the source node heading towards destination n will receive an expected waiting

time value of wn
k . The expected waiting time, wn

k , of a considered packet within a transmission

queue is determined by summing the total waiting time of every single packet ahead of the

considered packet where the waiting time is directly proportional to the processing speed of a

node.

max
{xn

k }
xn

kwn
k (3.10a)

s.t.
X

n2N
xn

k  C 8k 2 K (3.10b)

xn 2 {0, 1} 8n 2 N. (3.10c)
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The linear function in (3.10a) will maximize the waiting time reduced while meeting con-

straint (3.10b). The constraint described in (3.10b) ensures that the total number of packets

embedded does not exceed the allowed capacity C, assuming the same amount of resources are

needed by all receiving entities. The second constraint (3.10c) describes the decision variable

as a binary decision variable for all nodes and is set to high if the node n is chosen to receive

embedded data. Subsequent to solving the objective function, decision variable matrix xn
k is

obtained, and is used to identify which nodes will receive embedded data as well as the total

waiting time reduced from matrix wn
k .

It is known that VBR tra�c resembles an M/G/1 input process that is closely related to

a Poisson Pareto Burst Process (PPBP) [155–158]. Therefore a PPBP is setup and is used to

simulate a VBR application as means of estimating the expected queue length. Therefore the

total number of packets generated is given by,

Pn =
�ntrn��

� � 1
, (3.11)

where �n is used to describe the arrival of bursts as a Poisson process with a mean of 1
� , t is

the period of time being considered, rn is the amount of work generated by each burst, � is

the minimum allowed burst length and the start of the Pareto tail, and � is the decay of the

Pareto tail. Knowing that the said process has a property of self-similarity with decay, the

Hurst parameter is therefore used to define �. To maintain self-similar behavior, a finite mean,

and infinite variance, � must be in the range of 1 < � < 2. Therefore the Hurst parameter is

given as,

H =
3 � �

2
. (3.12)

To approximate the number of packets in the queue subsequent to future embedding pro-

cesses while taking into account the arrival rate of packets as well as their processing rate, Pnew

must be evaluated. Using Little’s theorem, Nq = �lWavg, where the total number of packets in
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Figure 3.4: The packet arrival and departure rates are expressed by ↵(t) and �(t), respectively, where
each packet spends a delay of W(t) in a given queue.

a queue, Nq, is determined using the arrival rate, �l, and the total time each packet spends in

the queue, Wavg. The average arrival rate, �l =
↵(t)

t , is the total number of packets that arrived,

↵(t), with respect to the time interval, t. Knowing the number of packets departed is �(t), then

the number of packets in the queue at time t, is N(t) = ↵(t) � �(t) as shown in Fig. 3.4. To

determine the amount of time each packet spends in a queue, the waiting times of the packets

ahead of the considered packet must be summed. The average time each packet spends in the

queue within time interval t can therefore be expressed as:

Wavg =

P
i2I Wi

↵(t)
, (3.13)

where Wi is the waiting time of packet i in the queue.

If LSB embedding is used, the departure rate �(t) will increase by ⇣(t) as shown in Fig. 3.4,

where a new departure rate is found as

�new(t) = �(t) + ⇣(t). (3.14)
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The new departure rate is used to find the new waiting time. More specifically the new

waiting time is

X

i2Inew

Wnew,i =

Z ⌧1

⌧0

↵(⌧)d⌧ �
Z ⌧1

⌧0

�new(⌧)d⌧ =
X

i2I
Wi �

Z ⌧1

⌧0

⇣(⌧)d⌧. (3.15)

It is possible to estimate the increase in departure rate by using objective function (3.10a).

The waiting time Wg is the time a packet would have waited within a queue if it is not em-

bedded. By performing the embedding process, the waiting time Wg is skipped at the node

performing the embedding process. The proposed LP objective function (3.10a) is used to

determine the value of Wg, and therefore the new waiting time is

X

i2I
Wi �

X

g2G
Wg =

X

i2Inew

Wnew,i. (3.16)

If the new waiting time is divided by the old waiting time, factor j is found as

P
i2Inew Wnew,iP

i2I Wi
= j, (3.17)

where it is used to estimate the new number of packets in the queue with respect to the original

number of packets in the queue, PT . Therefore the new number of packets in the queue is

Pnew = j ⇥ PT = j ⇥
X

n2N

�ntrn��

� � 1
. (3.18)

Using the new estimated number of packets in the queue, the number of packets considered

for the embedding process at time instant t is then given by

Nt = PT � Pnew. (3.19)

The new values are then used to estimate the total saved costs in terms of packets S p. The

total amount of saved costs at the source node at a given instant from all of the streaming

sessions is
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S p =
X

t2T
(1 � Pe)(1 � Pc)Nt, (3.20)

where Pe is the probability of an error occurring within the transmission channel and Pc is the

embedding channel’s error probability.

3.3.1 Systematic Multi-service Identification Mechanism

The embedding process is designed to be stream agnostic and destination-dependent to al-

low non-payload data of di↵erent transmissions to be embedded within di↵erent streams. The

proposed scheme employs an LSB-based method for embedding data as it provides high ca-

pacity with minimal signal degradation and is usable with popular video compression formats

such as H.264 [103]. When an image or sequence of images are transferred over an IP network

using the TCP/IP stack, the images are segmented and acknowledged according to an agree-

ment between the client and the server. When a network lacks the resources to process a large

amount of data, the employed scheme will embed signalling data within the payload using soft-

ware based methods without the need of additional hardware. The embedded data is hidden on

a packet-by-packet basis to minimize the e↵ects of packet loss. Subsequent to successful en-

coding processes, a signalling packet at the rear of the queue will advance to front of the queue

if there is a suitable payload available for embedding. Likewise, payload messages waiting in

the transmission queue will have fewer signalling messages ahead of them. Furthermore, the

embedded packet will not experience any delays within intermediate nodes and as a result the

destination will receive signalling messages at an earlier time-slot.

To inform a receiver of the presence of embedded data, a special code is embedded indi-

cating whether data is present or otherwise as shown in Fig. 3.5. To facilitate the decoding

process for the receiving nodes and allow multiplexing of di↵erent streams, unique codes are

embedded ahead of the signalling message information. A unique code is chosen to represent

TCP Acknowledgement (ACK) messages in the di↵erent phases of transmission including the
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Synchronization (SYN) phase, Established Transmission (EST) phase, and ending the trans-

mission session phase (FIN). Furthermore, clients will use HTTP requests known as GET to

request additional media representations from the source node and therefore GET messages

are assigned a unique identification code as well. Essentially, the codes are unique to each type

of signalling message embedded and to the given data stream. The unique codes are embedded

ahead of the signalling information and will power the multiplexing process of embedding var-

ious signalling messages of a number of streams simultaneously. Using this method, a receiver

will be able to correctly identify the type of embedded signalling message and the stream it

belongs to.

1 0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 ... 1 1 0 1 0 1 1 0 ... 1 1 1 1 0 1 0 1

{110010 ... 0 ... 1} ACK

{110101 ... 0 ... 1} GET

Figure 3.5: Using the embedded codes, the receiver will be able to identify the type of message embed-
ded, the phase of transmission the message belongs to, and the stream it belongs to.

A source-destination pair communicating with each other can have a number of streams

exchanging payload and signalling messages over di↵erent protocols originating from various

applications and services. Furthermore, each communication protocol utilizes a predefined set

of signalling messages aiming to complete tasks necessary for the applications communicat-

ing between said pairs. In the presence of multiple streams, the embedding process must be

capable of handling all streams seamlessly. To facilitate the multiplexing process of embed-

ding signalling information originating from multiple streams, a unique preamble known to

all participating nodes is encoded with the subject control information. The preamble is de-

termined by the source-destination pairs and will be used by the receiving nodes to identify

the service and stream each embedded signalling message belongs to. The preamble is deter-

mined by collectively considering multiple characteristics including: the number of services
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active between a source-destination pair, the number of protocols employed, and the number

of signalling messages subject to the embedding process. For each source-destination pair, the

aforementioned values are combined together to find their sum expressed as

Z = A + J + V, (3.21)

where A is the total number of services active between a source-destination pair, J is the number

of protocols used, and V is the number of signalling messages that may be embedded. The total

number of bits needed to express Z is found as

b = dlog2 Ze, (3.22)

where b is then expressed as the nearest multiple of 8-bit words as shown in Fig. 3.6. The

source node performing the embedding process will then assign a unique b-bits value code that

will be used by the receiver to infer the embedded signalling message, the stream it belongs to,

and the service generating it. If the total number of services, protocols, and messages subject

to the embedding process is < 255, then the total number of bits needed for the embedding

preamble is 8 bits. As the total value of Z increases, additional bits are needed to represent

the value. The 8-bit words are embedded using the same process of encoding used to embed

the signalling messages where they are extracted for decoding by the receiver as shown in Fig.

3.5. Using the decoded values, the receiver will be able to uniquely identify each embedded

message. As shown in Fig. 3.7, a packet with a payload containing an embedded signalling

message will have its unique identification code encoded prior to said message. The unique

code is initially embedded prior to the signalling message to facilitate the decoding process. In

Fig. 3.7, the bits with a single line beneath them are indicating the unique code used to iden-

tify the signalling message. The bits with two lines beneath them are indicating the signalling

message information. The source-destination pairs need to exchange the unique codes in ad-

vance to facilitate the decoding process. It is assumed that the node performing the embedding



3.3. Proposed Real-time Cost Savings Evaluation 59

process is capable of grouping services and related protocols based on relevant destinations to

enable the encoding process.

Z value b bits
< 255 8
< 65535 16
< 4294967295 32

Figure 3.6: The total number of bits needed is found by using (3.22) subsequently formatting it to
nearest multiple of 8-bit words.

Payload

Header 10110101 ... 11001011 ... 11001011 ... 11011101 ...

Code Signalling Message

Figure 3.7: A sample packet with a payload containing an embedded signalling message also includes
a unique identification code related to said message.

3.3.2 Enabling Data Embedding in HTTPS-based Flows

Incorporating secure HTTP (HTTPS) will force the utilization of TLS or Secure Socket

Layer (SSL) for privacy and end-to-end encryption. The application of TLS will enforce sym-

metric and asymmetric key cryptography for encryption, identity authentication, and handshak-

ing. In order to operate the proposed steganography-based scheme with TLS, an Identity Man-

agement (IM) bus is needed to run locally. The steganographic scheme requires a bi-directional

tra�c flow to enable data embedding. Therefore, when using TLS with bi-directional multime-

dia flows, the IM bus will facilitate the communication channels between said flows. The IM

will enable bidirectional communication between multiple encrypted TLS-based flows through

mimicking a secure message exchange router. The IM bus will essentially enable a real-time

messaging system between all TLS applications through the underlying kernel as illustrated in
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Fig. 3.8. The kernel abstraction that also defines the TCP/IP stack is now modified where the

scheme will utilize the IM bus for inter-flow communication. The IM bus will require applica-

tion layer services to provide their symmetric encryption keys to enable cross-service payload

decryption and data embedding.

i\j a b c ...
a
b X
c X
...

Figure 3.8: The IM bus will enable local communication between TLS-based flows. The IM bus is
essentially exploiting the locality of the exchanged symmetric keys to access the payload information.
Application i will utilize the keys of application j to decrypt application j’s data and perform an embed-
ding process.

An alternative to the IM bus is to create a unified identity that is used by the bi-directional

TLS flows simultaneously. Using the unified identity shared between all HTTPS flows, the

information exchanged during the TLS/SSL handshake process will be identical across mul-

tiple transmission flows. Therefore, clients contacting multiple service providers on the same

destination node will need to utilize the same information across all TLS flows to create iden-

tical encryption (decryption) key. Similarly, the service providers on the destination node must

mimic the client behaviour and enable the sharing of information across servers. In doing so,

both, the client and source nodes, will force a TLS handshaking process that generates the

same keys used for ciphering the payloads. Since the session keys are identical, an appli-

cation can easily decode the payload of another application and perform the aforementioned

steganographic embedding process. The final solution to overcome the unique TLS flows is

to utilize a blockchain for a cross-flow identification ledger. The cross-flow identity ledger

is consulted to enable privacy and end-to-end encryption through leveraging the blockchains

cryptographic services. An application that desires to perform an embedding process will

consult the blockchain on the necessary information needed to decrypt the flow of another ap-

plication. Once the application receives the needed keys and information from the blockchain,
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the application will perform the embedding process. The advantages of the IM bus is two-fold:

firstly, the entire bus is contained locally within the host systems, thereby, improving perfor-

mance; and secondly, it can be implemented purely in software as a kernel function similar to

iptables or route. The blockchain-based solution will enable a secure, scalable, and decentral-

ized solution, however, will induce additional communication as well as deployment costs. As

a result, the IM bus is the idle candidate for enabling cross-application TLS-based flows.

3.4 Simulation and Implementation Evaluation and Analy-

sis

The proposed embedding scheme was simulated in a parking-lot configuration using Net-

work Simulator 3 (NS3) [153] as a platform. The topology was tested under varying number

of nodes transmitting data to each other using TCP/IP protocol stack, as shown in Fig. 3.9.

Each topology configuration is repeated with an induced path error of of 0%, 5%, and 10%.

Only node 0 is capable of encoding information within payload data on the forward channel.

Each node is generating packets at an average rate of 100 packets per second (pps), where each

packet is 1460 bytes large. The packets are generated according to a Pareto distribution due

to VBR’s tra�c shape similarity of the aforementioned distribution [155–158]. Two scenarios

are used to generate the simulation results, where one allows nodes to use the proposed LSB-

based technique and the other is free from the proposed scheme to be used as a benchmark.

Each simulation is repeated with 10, 16, 20, 26, and 30 nodes. Each source node is generating

a video with a frame rate of 16 Mbps as payload data. The optimization functions are then

simulated in MATLAB and subsequently compared to the results obtained in NS3. Subse-

quent to the aforementioned simulation scenarios, a proo f �o f � concept implementation was

completed using LXC virtualization technology connected over a multi-hop contained network

within NS3. The intermediate nodes formed a Wide Area Network (WAN) where each node

was an individual LXC machine configured for routing packets across multiple networks. Both
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machines exchanged multimedia data using VideoLan Media Player (VLC) as the server and

receiver for the application layer process.

0 1 ... i rr

r+1r+1

r+Nr+N

Figure 3.9: Simulated parking-lot topology with N source and destination nodes.

3.4.1 Numerical and Discrete Event Simulation Results and Analysis

The proposed solution was verified using simulations of parking-lot topology networks with

a varying number of nodes were simulated using NS3. Each node was generating 16 Mbps of

multimedia information per stream. The intermediate nodes were given a large transmission

capacity capable of processing a volume of packets relative to the network size. Several ses-

sion metrics were observed at each node including: the total number of packets exchanged, the

total amount of data exchanged, throughput, the average queue waiting time, average packet

size, the payload message ratio, the signalling message ratio, and the number of encoded mes-

sages. The perceived QoS and QoE metrics are directly a↵ected by the bandwidth consumed

in sending and receiving messages. As the number of payload messages increases, the QoS

and QoE increase due to the availability of additional multimedia descriptions. The decrease

in the average packet size indicates an increased number of embedding processes as well as an
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increased number of exchanged payload packets, further improving the QoS and QoE. The av-

erage packet size, payload message ratios and signalling message ratios were measured on the

up-link and down-link streams. In addition to varying the size of the topology, the proposed

scheme was tested under 0.00%, 5.00%, and 10.00% induced channel errors to observe the

proposed scheme’s behaviour in problematic environments. The aforementioned metrics were

observed to quantify the e↵ects of using LSB as means of exchanging signalling information.

The e↵ects of the proposed scheme were not limited to the source-destination pairs, but they

propagated throughout intermediate nodes as well.

Table 3.2: Sent and received packet sizes were observed at the encoding node. The encoding node
was consistently sending larger number of payloads and therefore achieved larger packet sizes on the
up-link.

Sent Packet Size Encoded Benchmark
Nodes /% Error 0.00 5.00 10.00 0.00 5.00 10.00

10 0.53 0.98 1.00 0.53 0.95 0.96
16 0.54 0.98 1.00 0.53 0.95 0.95
20 0.54 0.98 1.00 0.53 0.96 0.97
26 0.60 0.98 1.00 0.53 0.96 0.98
30 0.78 0.97 0.99 0.52 0.95 0.98

Received Packet Size Encoded Benchmark
Nodes /% Error 0.00 5.00 10.00 0.00 5.00 10.00

10 0.98 0.28 0.18 0.97 0.21 0.20
16 0.98 0.28 0.18 0.97 0.21 0.22
20 0.98 0.27 0.17 0.98 0.20 0.17
26 0.95 0.27 0.17 0.98 0.19 0.15
30 0.89 0.28 0.18 1.00 0.22 0.15

The number of packets exchanged is observed at the source node performing the encoding

process and encompasses the total number of sent, received, and dropped packets. Likewise,

the total amount of data (MB) exchanged is based on the total amount of data sent, received,

and dropped. During the simulation with 0.00% induced channel error, the total number of sent

of packets increased by 5.33% however the amount of sent data, excluding the encoded data
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stream, increased by approximately 23.13% and as a result, the throughput increased by 5.77%.

Considering the encoded data stream, an additional 4.71% increase in number of packets sent is

observed. The encoded data stream contributes an additional 0.48% in the amount of data sent.

The total number of received packets increased by 18.89% which corresponds to a 14.17%

increase in the amount of received data. The number of packets dropped subsequent to using

the proposed scheme remained the same. The queue waiting times are observed at the source

node performing the encoding process where the average queue time decreases by 29.61%.

Even though the average queue time decreased only by 29.61%, the amount of additional sent

data did not exceed 23.13% as a result of TCP’s greedy behaviour. TCP’s greedy behaviour is

observed at the source-destination pair, where the source is the node performing the encoding

process and the destination is the node receiving encoded data. The destination nodes were

receiving signalling messages at an earlier time-slot prompting the transmission of additional

payload messages to the source, hence the increase in the number of received packets and data

observed at the source node.
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Figure 3.10: The number of embedded messages tends to increase as the size of the topology increases.
During the 0.00% induced channel error, the most substantial increase is observed, specifically at the
largest topology size. During the 5.00% and 10.00% induced error, the number of messages embedded is
significantly less than that of the 0.00% error, however steadily increases as the topology size increases.
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The average size of packets sent and received are shown in Table 3.2 where both payload

and signalling messages are considered proportionally to the total number of packets sent and

received. In Table 3.2, the normalized packet sizes are shown where as the number of payload

(signalling) messages exchanged increases (decreases), the average size of packets increases

(decreases) as well thereby indicating that the amount of overhead is reduced (increased). On

average, the sent packet size increased by 13.94% and the received packet size decreased by

2.70%. The reason for the decreased received packet size is due to the increase in payload

messages which prompted an increase in signalling messages received. Subsequent to the em-

bedding process, the ratio of payload messages sent from the total number of packets increased

by 13.43% while the ratio of signalling messages sent decreased by 15.28% when compared

to the benchmark scenario. The ratio of payload messages received decreased by 2.52% while

the ratio of signalling messages received increased by 3.15%, hence the aforementioned de-

crease of 2.70% of received packet size is inevitable. From Fig. 3.10, the largest number of

packets embedded is when the network size was 30 at 0.00% error. Consequently, the largest

packet size sent during the 0.00% induced error simulation is also for the 30 node topology as

shown in Table 3.2. From Table 3.2, the largest received packet size is seen during the 30 node

topology simulation without the proposed scheme. The reason behind the decrease in the size

of received messages during the 30 node simulation is due to the increase in the size of sent

messages. The increase in the size of sent payload messages prompted an increase in received

signalling messages, thereby decreasing the received message size by 11.00% when compared

to the benchmark scenario. The decrease in message size did not a↵ect the total amount of

received data where, in fact, the total amount of received data did increase by 14.17%.

The simulations conducted under the 5.00% induced channel error achieved a positive bal-

ance between the amount of data sent and received. From Table 3.2, under the 5.00% simula-

tion, the average size of packets sent was approximately 2.40% larger while using the proposed

scheme when compared to the benchmark scenario. Additionally, the average size of received

packets was approximately 7.00% larger than the benchmark counterpart. Taking into consider-
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ation the fact that 2.20% fewer packets were sent, the sent payload ratio did increase by 2.18%

forcing the average sent packet size to grow. The largest average sent packet size was seen

during the simulations with 10.00% induced error as shown by Table 3.2. On average, the sent

packet size was 3.00% larger while using the proposed scheme as opposed to the benchmark

counterpart. The reason for the increase in the size of sent packets is due to the fact that 2.50%

fewer packets were sent while the sent payload packet ratio increased by 2.54%. Subsequent

to experiencing a decrease in the number of packets sent, the amount of data sent, excluding

the encoded data, remained the same. The encoded data contributed an additional 2.66% to

the number of packets sent and that was equivalent to a 0.08% increase in the total amount of

data sent. Since the amount of data sent remained relatively the same, the throughput value

increased by 0.08%. The average received packet size and the number of received packets

remained relatively the same however the amount of received data did increase by 2.03% as a

result of a 1.15% increase in the ratio of received payloads.
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Figure 3.11: The optimal and approximate formulations were evaluated in MATLAB using the OPTI
toolbox [154] and compared to the results achieved in NS3. Due to TCP’s unpredictable greedy behav-
ior, the NS3 results attempt to remain situated between the approximated and optimal results achieved
in MATLAB. While the network was simulated in smaller topologies, TCP’s competition for network
access is far more aggressive than when the network is simulated in larger topologies.

The results obtained in NS3 were compared to the results obtained using MATLAB as
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shown in Fig. 3.11. The results obtained in the NS3 simulation are extremely close to the

results obtained using MATLAB and essentially lie between the approximate and optimal so-

lution. The optimal solution is infeasible since the amount of time needed to evaluate the

algorithm is significantly large and therefore, cannot be used in real-time. Additionally, the

amount of time needed to solve the optimal solution is exponentially larger than that of the

approximate solution. The approximate solution is solved almost instantaneously and provides

a real-time alternative to the optimal solution. The reason why the NS3 solutions are slightly

di↵erent for the smaller sized simulations is due to TCP’s greedy behaviour, the consequen-

tial behaviour that resulted from the embedding process, and the response of the intermediate

nodes. The di↵erence is primarily visible for the small-sized simulations since a small topol-

ogy size allows the e↵ects of TCP’s greedy behaviour to be exacerbated. Furthermore, the

embedding process forced the TCP congestion window to grow at a faster pace prompting the

source node to generate an increased number of signalling messages and consequently, an ad-

ditional number of embedding processes took place. The intermediate nodes played a vital role

in shaping the e↵ects of the embedding process. During the 0.00% induced error simulation,

the amount of data sent and received processed by the intermediate nodes increased by 11.14%

and 11.15%, respectively. The increase in the size of processed data forced the average queue

waiting time to grow by 2.80%. However, during the 5.00% and 10.00% induced error simula-

tions, the increase in the amount of sent and received data was not as significant as that of the

0.00% error simulation where the average queue waiting time decreased by 2.98% and 2.16%,

respectively.

In Fig. 3.12, a number of simulations were completed where the overhead size was ob-

served and compared to a benchmark scenario without any overhead reduction schemes. The

proposed scheme was simulated and compared to the k-push scheme proposed in [10] and the

frequency manipulation scheme proposed in [17]. In each conducted simulation, all participat-

ing nodes were performing the aforementioned solutions in di↵erent topology sizes. Further-

more, the k-push scheme was extended to use the embedding scheme proposed in this chapter
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Figure 3.12: The proposed embedding scheme was compared to and extended a k-push and signalling
message frequency manipulation schemes. The proposed solution achieved the most considerable re-
ductions in the signalling overhead volume. The embedding scheme was also used to further increase
the Push scheme in reducing the amount of signalling information generated during the session.

to further reduce the size of the observed overhead. From Fig. 3.12, the proposed scheme

achieved a reduced amount of overhead when compared to the k-push and frequency manipu-

lation solutions regardless of topology size. Additionally, the amount of data exchanged while

using the proposed embedding scheme was approximately 5.61% larger than the amount of

data exchanged in the k-push and frequency manipulation solutions. The largest amount of

overhead reduction was observed when the proposed embedding scheme was combined with

the k-push solution. The reason behind the massive success of extending the existing k-push

work was the increased number of payload messages when compared to the number of sig-

nalling messages generated. From the results illustrated in Fig. 3.12, the proposed embedding

scheme was capable of drastically reducing the amount of overhead observed on its own and

in cooperation with existing solutions.
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3.4.2 NS3 Emulated Proof-of-concept Implementation

To validate the proposed scheme, the results achieved in MATLAB, and the results achieved

in NS3, a real multimedia transmission session between 2 virtual machines was completed.

Using LXC [161] technology, 2 virtual machines were set up as transceivers exchanging mul-

timedia information. Each machine was using VLC [162] to host a HTTP/TCP server that was

providing a video stream to the other receiving node. Additionally, each virtual machine was

using VLC media player to request more data and render the received output. The multimedia

file used in the transmissions was an open-source video known as Big Buck Bunny [163] and

was provided in the popular H.264 format. Fig. 3.13 shows a side-by-side comparison of a

frame (right) from the original video without any data embedded and a frame (left) from the

video with 70 bytes of embedded information. The two virtual machines were connected over

a multi-hop network with five intermediate nodes contained in NS3. The intermediate nodes

were set up using LXC containers with routing capabilities and were responsible for connect-

ing the machines with the VLC-based transceivers. The nodes containing the VLC transceivers

were performing the encoding (decoding) process.

Subsequent to the validation process, the original video was compared to the video stream

with embedded data to identify the perceived Peak Signal-to-Noise (PSNR) ratio. Due to the

embedding process modifying only I-frames, the PSNR was ⇡ 37 dB, which was within the

acceptable range of quality change [165]. To reduce the e↵ects of data embedding and achieve

improved PSNR values, signalling data must be embedded in B and P-frames rather than I-

frames. The achieved cost reductions were ⇡ 0.19 % in terms of bandwidth, ⇡ 90.23 % in

terms of queue waiting time, and 3.45% in the number of sent packets, while the average sent

packet size and throughput increased by 8.03% and 2.81%, respectively. The increase in the

average packet size was due to the increase in the number of signalling messages encoded on

the forward channel.



70 Chapter 3.

(a) (b)

Figure 3.13: The open-source Big Buck Bunny video in H.264 format was used to test the proposed
scheme. (a) The image on the left and on the (b) right is a side-by-side comparison of a frame containing
embedded data and a frame from the original video, respectively.

3.5 Summary

Adaptive multimedia streaming services over the Internet are notorious for generating large

amounts of signalling overhead. A novel cross-layer steganographic scheme is given to reduce

overhead resource consumption in multimedia applications. The proposed scheme aims to

reduce costs at source nodes and intermediate network nodes. Furthermore, the scheme is de-

signed to multiplex a various number of streams using a unique code identification mapping

scheme. The proposed scheme utilizes LSB encoding to intelligently hide signalling messages

within payload packets to create a unified data stream. A utility function is given to minimize

server side transmission costs while reducing visual artifacts induced by the embedding pro-

cess observed by users. The proposed scheme dynamically selects nodes to receive embedded

signalling information based on continuously updated end-to-end path conditions. Elaborate

simulations were conducted to prove the performance of the proposed embedding scheme. The

proposed scheme reduces bandwidth consumption and time delays typically introduced by the

exchange of signalling messages. Additionally, the stream’s performance tends to improve

as the number of exchanged messages with content data increases subsequent to a growth in

the number of encoded messages. An implementation of the proposed scheme was completed

using LXC virtualization technology where two servers and receivers are connected using a

multi-hop network exchanged a multimedia segment in the popular Advanced Video Coding
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(H.264) format. The LXC setup showed that the video quality post processing is well within

the range of acceptable PSNR values while reducing bandwidth consumption, queue waiting

times, and number of exchanged messages.



Chapter 4

Reducing Protocol Header Sizes for
Enhanced Network Adaption of
Request-Response Interactions

After recognizing that steganographic-based embedding of signalling overhead flows is a

playable method of reducing the volume of complete non-payload packets, an alternate embed-

ding scheme is proposed to promote further cost savings. HAS-based servers initially provide

clients with MPDs to inform them of all available segments where clients will proceed in per-

forming requests of said segments [5]. The available encoding, size, format, length, and other

segment configurations deemed necessary by the client will directly influence the amount of

signalling overhead generated. Smaller sized segments respond to network changes promptly,

are more likely to be delivered during network congestion, and reduce the amount of resources

used on a segment-by-segment basis. This chapter proposes a novel protocol translator and

routing schemes to reduce HAS overhead while combing the properties of the UDP and TCP

protocols within the same stream. The proposed protocol translator exploits steganographic

encoding to e↵ectively reduce the size of packets prior to transmission. By using the low com-

plexity LSB-based encoding process, the translator will reduce the impact of using TCP as a

reliable end-to-end protocol in multimedia streams through using an alternate protocol. The

translator powers source-destination pairs to be capable of converting a TCP stream to a UDP

stream prior to-flight and vice versa. In this manner, the benefits of using TCP are observed

at the source-destination pairs while reducing resource consumption of packets in-flight due to

72
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using UDP and, by extension, a smaller header size. In the specific case of Device-to-Device

(D2D) communications, a Simplified Routing (SR) scheme is designed to be used in place of

Internet Protocol Version 4/6 (IPv4/IPv6). A utility function is developed to find the optimal

overhead savings where simulations are conducted to verify the designs. The proposed trans-

lator is then implemented using VLC [162] transceivers residing in Linux Containers virtual

machines where a multimedia file is exchanged in H.264 format. The extensive simulations and

implementation platform show that the proposed methodologies will systematically decrease

the amount of overhead needed while increasing the overall network capacity. Furthermore, the

simulation results demonstrate that the proposed methods are capable of successfully extending

existing overhead reduction methods.

4.1 Introduction

In addition to embedding complete signalling messages, the bandwidth of a multimedia-

based covert channel can be further exploited to promote additional cost savings through inter-

packet embedding. Inter-packet embedding is concerned with hiding current packet informa-

tion within the payload it is carrying. In this chapter, a novel protocol translator and routing

schemes are proposed to extend the existing signalling overhead reduction methods. The pro-

posed protocol translator exploits steganographic encoding to e↵ectively reduce the size of

packets prior to transmission. By using the low complexity LSB-based encoding process, the

translator will reduce the impact of using TCP as a reliable end-to-end protocol in multime-

dia streams. The translator is used by source-destination pairs to switch TCP-based streams

to UDP-based prior to-flight and vice versa. In this manner, the benefits of using TCP are

observed at the source-destination pairs while reducing resource consumption of packets in-

flight due to using UDP and, by extension, a smaller header size. The proposed translator

operates by having source nodes encode important TCP header information within multimedia

payloads using LSB. Once the encoding procedure is completed, a UDP header is used for
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packets in-flight, and as a result decreasing the average packet size of a stream. Subsequent

to a destination node receiving a payload with encoded information, the receiver will decode

the packet and use the extracted information for restoring TCP related information. In addi-

tion to the protocol translator, a Simplified Routing (SR) scheme is given to be used in place

of Internet Protocol Version 4/6 (IPv4/IPv6). Resource-constrained devices are limited to the

number of connections that they can maintain, and therefore, IPv4/IPv6 addresses are wasteful.

In the specific case of D2D communications using SR will provide nodes with short logical ad-

dresses instead of IPv4/IPv6 addressing, thereby further decreasing header sizes and resource

consumption.
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Figure 4.1: The activity patterns of multimedia currently (a) ON-OFF behavior due to multimedia
streams where ideally (b) a longer OFF slot is desired.

Multimedia streams tend to have an intermittent behaviour of ON-OFF patterns [119] as

illustrated in Fig. 4.1a where resources in devices are behaving accordingly. The benefits of

exploiting the proposed LSB and SR schemes are two-fold: firstly, an ON period that will
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end at t01 rather than t1, allowing the radio to enter an extended OFF period; secondly, nodes

are able to exchange packets at an earlier point such as t1 rather than t2. Finally, due to the

reduced packet sizes, transmission queues are capable of tightly grouping an increased number

of packets within said queue. Reducing packet sizes will ultimately lead to decreased resource

consumption in terms of energy, for portable devices, and bandwidth as shown in Fig. 4.1b.

The decrease in energy consumption is observed during the transmission of bits of packets as

there are a reduced number of bits representing said packets. Additionally, network interfaces

in portable devices are able to enter an OFF period for an extended period of time. In terms

of the transmission queue, packets will occupy a smaller space and will be processed in a

shorter period of time due to the aforementioned size reductions. Furthermore, the packets

processed with the proposed schemes will utilize a smaller amount of bandwidth where as

multimedia fidelity increases, hence the number of packets exchanged increases, the e↵ects

of the proposed schemes are more significant. Finally, intermediate nodes participating in the

delivery of multimedia streams will have packets occupying smaller spaces within their bu↵ers.

To achieve the aforementioned overhead reductions, the e↵ective size of packets is de-

creased by employing the proposed protocol translator. Networks lacking in resources will

benefit from the LSB technique at very low costs since the implementation is possible through

software methods without installing additional hardware. The aforementioned procedures har-

moniously cooperate to reduce the average packet size, ultimately decreasing network radio

usage within resource-constrained devices and consequently leading to resource savings [120–

122]. An optimization formulation is given to minimize the visual artifacts induced by the

encoding process while maximizing the amount of overhead saved. LSB is chosen to cipher

the TCP related information due the simplicity of performing the encoding (decoding) process

as well as the insignificant power consumption [123, 124]. The proposed schemes essentially

reduces the overhead on a packet-by-packet basis by replacing TCP headers with UDP head-

ers, as well as the networking layer protocol to use SR instead of IPv4/IPv6, thereby decreasing

packet sizes.
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The remainder of this chapter is organized as follows: In Section 4.2 the system model

description, energy-draining and device cooperation model, as well as the proposed cost-saving

utility function is given. In Section 4.3, the proposed translation scheme as well as network

o✏oading evaluation are detailed. In Section 4.4 the simulation and implementation platforms

and results and analysed. Finally, a summary is given in Section 4.5.

4.2 System Model Description and Preliminaries

A wireless network consisting of N mobile devices located in a cluster overseen by a Base

Station (BS) as illustrated in Fig. 4.2 where {n1, n2, ...nj} ⇢ N devices are requesting a popu-

lar multimedia file. In the wireless network mobile devices are capable of establishing D2D

transmissions operate by establishing single-hop links between source-destination pairs while

reusing cellular channels occupied by nearby radios [133–135]. The nodes will request sets

of K segments from each neighbour where each segment is at least 1,460 bytes large. As the

fidelity of a multimedia stream increases, the number of segments Kj increases accordingly

as well for each destination node j. The total sum of number of bits sent, Nt, and number

of bits received, Nr, is larger than total number of bits needed Nt + Nt �
P

j2N Kj due to re-

transmissions and other propagation errors. Due to utilizing TCP, a connection S i, j is assigned

through evaluating the current congestion window size over the maximum achievable window

size; consequently, larger window sizes will allow higher throughputs and as result increase

the number of encoding operations. The connection between two devices is initially evaluated

using the minimum required RTO where a smaller RTO is an indicator of appropriate transmis-

sion conditions. However, as the RTO increases, the size of the congestion window decreases

and is therefore / 1
RTO . Therefore, S i, j =

CW
MW , where CW is the current window or current

RTO value and MW is the maximum congestion window size or minimum RTO observed. The

connection score needs to be greater than pre-determined threshold, L, to reduce the number

of lost embedding operations due to retransmissions.
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It is assumed that prior to establishing any D2D network connections, each node will re-

ceive a unique address that is smaller in size than the 32-bit IPv4 address. Furthermore, each

node is capable of performing an a�ne transformation between the simple address and the true

identity of the participating receiver.
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Figure 4.2: Mobile nodes requesting a multimedia file from nearby devices through one-hop connec-
tions.

D2D communications are ultimately limited by the available resources of participating

nodes where each node will be able to support only a few number of established links. The

source-destination pairs will directly exchange live content while leveraging cached multime-

dia [136–150] files to alleviate Base Stations (BS) from completing redundant requests [125].

Mobile devices utilizing D2D links are subject to significant power consumption and battery

life reduction as a result of neighboring users digesting multimedia [126]. Assuming one of

the aforementioned D2D caching schemes are utilized, requesting node nj will be serviced

by a nearby device nj+k using D2D communications. For simplicity, devices nj+k and nj are

referred to i and j from hereon in, respectively. Each node will have K payloads available

for transmission upon reception of requests. However, due to the limited resources available
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Table 4.1: Frequently used notations in this section.

Notation Definition
i Source node i
j Destination node j
Nt Total number of bits transmitted
Nr Total number of bits received
Ti Device i’s cooperation time
N Total number of nodes
K Total number of messages per node
k Current message k
I j
k Message k being sent to node j

I j
k,new Message k being sent to node j post processing

x j
k Binary decision variable for I j

k in node i
mj Network condition binary decision variable for node i
Er j

k Error generated due to embedding I j
k

� j Maximum allowed error
ek, j E↵ort needed for embedding I j

k

Di Available resources for performing the embedding process
S i, j Connection score between node i and j
L j Minimum connection score threshold

within D2D devices, the number of embedding processes must consume a total e↵ort that is
P

k2K
P

j2J ek, j  Di to maintain cooperation with nodes. The embedding e↵ort of each TCP

header related data is determined by the number of bits subject to embedding for completing

the encoding operation. The reason for said limitation is to prevent nodes from consuming the

entire energy budget, Bi, of node i. Each node’s cooperation is limited with a finite energy

budget, Bi, that is split between bits received, br, and bits sent, bt, consumption of energy. Key

notations used in this chapter are shown in Table 4.1.

4.2.1 Simplified Routing Address Allocation and Zone Identification

D2D transmissions operate by establishing single-hop links between source-destination

pairs while reusing cellular channels occupied by nearby radios. The source-destination pairs
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will directly exchange live content while leveraging cached multimedia files to alleviate BSs

from completing redundant requests [125]. Delivering multimedia over D2D links is a chal-

lenge exacerbated by the limitations of participating nodes, non-deterministic channel condi-

tions, and best-e↵ort guarantees provided by underlying protocols [135]. Participating nodes

consume a significant amount of their limited resources, namely energy and bandwidth, to

deliver multimedia descriptions over D2D links. For the designed optimization function to

operate, nodes using D2D links will agree on their SR identification prior to exchanging mul-

timedia segments to be used in-place of the existing network layer header. Through using

the SR scheme, packet sizes are e↵ectively smaller without contributing visual degradation to

multimedia streams consequently extending the energy budget contribution. To determine the

addresses used in SR, the number of bits representing the participating nodes is given as

b = dlog2 ne, (4.1)

where n is the number of participating nodes overseen by the BS. The number of bits b, must

be greater than bmin, if there are too few nodes sharing the addressing scheme. Each node is

then assigned a unique Network Access Code (NAC) by the BS to be used as an alternative

to IPv4/IPv6 addresses. If a BS tends to place devices in clusters, the clusters will be given

addresses in according to (4.1) as well to generate a complete address as shown in Fig. 4.3.

Logical Address

0 · · · 0 � 0 · · · 0

Zone � NAC

Figure 4.3: The first half of the address represents the cluster while the second half represents a node
within the given cluster.

The minimum size of the SR header is at least 1 byte long. With a 1 byte header, the pro-
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posed scheme can represent up to 256 devices uniquely in a one-hop communication scenario.

If 1 byte SR headers are used in-place of IPv4 protocol headers, the new header size is only

95% smaller than the original headers.

4.2.2 Utilization of Limited Energy Budgets by One-hop Connections

In a D2D network, each device within the cluster is limited by an energy budget of Bi

dedicated for D2D communication. The energy budget is defined as

X

j2Nt

bt(i, j)
X

c2C
rc

i, j +
X

j2Nr

br( j, i)
X

c2C
rc

j,i  Bi, (4.2)

where bt(i, j) is the energy consumed by device i to perform a transmission of one bit of data

to device j, br( j, i) is the energy consumed by device i to receive one bit of data from device j,

rc
i, j is the throughput of the up-link for file c, and rc

j,i is the throughput of the down-link [127].

It is evident from equation (4.2) that a device in D2D consumes energy while transmitting

and receiving information, as well as while idle [128–130], thereby further reinforcing the

need of reducing packet sizes using the proposed translator and SR scheme. Using (4.2), the

cooperative duration of device i is

Ti =
BiX

j2Nt

bt(i, j)
X

c2C
rc

i, j +
X

j2Nr

br( j, i)
X

c2C
rc

j,i

, (4.3)

where Ti is a ratio of the energy budget allocated by i and the total amount of consumed energy

in exchanging bits. Maximizing Ti will be an optimal solution to preventing D2D outages from

occurring and as a result further increasing the o↵-loading process from the BS. In (4.2), the

energy used in transmitting bits is strictly defined by the underlying circuitry and is di�cult

to manipulate unless hardware with greater energy e�ciency is used. The throughput however

plays a significant role in dictating the length of Ti since it is directly proportional to the size,

M, of the transmitted segments at rate R. Through leveraging the protocol translator, the size of



4.2. SystemModel Description and Preliminaries 81

packet headers will decrease by 12 bytes at least, due to UDP’s 8 byte header size. Therefore,

the combination of the protocol translator as well as the SR header will decrease a packet

header size by at least 75% when compared to the original header. As the number of bits used

in each packet decreases, the total cooperation time of each node will increase accordingly as

illustrated in (4.3).

4.2.3 Problem Formulation, Constraints, and Network Assumptions

To minimize the size of the exchanged segments, variables x j
k and mj subject to optimization

by each device i using the following non-linear optimization objective function given as

max
{x j

k},{m j}

NX

j=1

KX

k=1

(I j
k � I j

k,new)x j
kmj (4.4a)

s.t.

PK
k Er j

kx j
kPK

k x j
k

 � j 8 j 2 N (4.4b)

NX

j

KX

k

x j
kek, j  Di (4.4c)

PN
j S i, jm j
PN

j mj
� Lj (4.4d)

mj 2 {0, 1} 8 j 2 N (4.4e)

x j
k 2 {0, 1} 8 j 2 N, 8k 2 K (4.4f)

In (4.4a), I j
k is the packet with identification k chosen to use the proposed solutions before

heading to destination j and I j
k,new is the new size of the packet post processing. To determine
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whether a packet will be processed by the proposed schemes, binary decision variables x j
k

and mj must be set to high. The x variable is determined by the first and second constraints

of the proposed optimization. Constraint (4.4b) ensures that the embedding process does not

create visual artefacts by maintaining an error level below � j. Constraint (4.4c) ensures that

the embedding e↵ort required ek, j by all packets does not exceed the available processing limit

Di to avoid overwhelming the source-destination pair from the encoding and decoding process.

Each TCP connection established by source-destination pairs will be given a score S i, j based on

the size of the congestion window and the received control messages where higher performing

streams will receive higher scores. Using mj in constraint (4.4d) will ensure that only stream

with a connection score greater than Lj will receive encoded data and as a result reduce the

e↵ects of packet loss on the system. Reducing the e↵ects of packet loss will avail by decreasing

wasted time and energy in resource scarce devices. Due to the translation process and SR,

packet sizes are subject to change, and therefore the observed throughput values of streams

between i and j are subject to change as well. Since the device cooperation time Ti is a↵ected

by throughput values, it is important to maintain it above Tmin to maximize the cooperation

time. As illustrated in Fig. 4.4, the proposed translator and SR schemes will end packet

transmissions at t01 rather than t1. Decreasing the size of each packet will result in shorter bursts

ending at t01 thereby enabling longer o↵ periods and increased cost savings.

radio
stream

t
t0

t01 t1 t2

Figure 4.4: The shorter bursts will allow radios of resource constrained devices to enter the OFF� state
for a longer duration or exchange packets at an earlier point in time.

Furthermore, nodes establishing D2D links need to choose peers with Signal-to-noise ratio

(SNR) [131] that must be larger than a �min for optimal performance. The SNR is evaluated as
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�i, j =
ptihi, jdi, j

�2 , (4.5)

where pti is the transmission power of node i, hi, j is the channel gain from node i to j, di, j is the

distance between the source-destination pair, and �2 is additive Gaussian noise. However noise

is not only present within the channel, it is also present in the multimedia payloads subsequent

to the embedding process. The visual error due to the embedding process is

Er =
1

PW

PX

p=1

WX

w=1

( f (p,w) � f 0(p,w))2, (4.6)

where P is the height and W is the width of a considered frame. In (4.6), the initial sample

value, f (.) located at p 2 P and w 2 W of the reference frame, is compared to the new sample

value, f 0(.) located at p 2 P and w 2 W in the new frame, subsequent to the embedding process.

4.3 Steganographic-based Protocol Translation Scheme

Unlike traditional tra�c flows similar to what is shown in Fig. 4.5a, steganography is

used to enable protocol translation by embedding information in the payload as shown in Fig.

4.5b. Using steganography a source node is capable of translating an HTTP/TCP stream to be

HTTP/UDP in-flight and a destination node translates the received stream back to HTTP/TCP

using the encoded information. The receiver is aware of the presence of embedded data by fin-

gerprinting special codes similar to the ones proposed in chapter 3. Using the unique codes, the

correct interpretation by the receiver is ensured. The protocol translation process requires co-

operation between the application layer and transport layer as shown in Fig. 4.6. The node per-

forming the translation process is designed to embed header data within multimedia streams on

a packet-by-packet basis. Prior to the embedding process, a source node must decide whether

to embed complete TCP headers, to embed unique TCP header data only to minimize visual

artifacts, or use a modified UDP header for transmission to further reduce packet sizes.
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Figure 4.5: Multimedia streaming will utilize (a) HTTP/TCP from end-to-end or (b) HTTP/UDP during
flight as enabled through the protocol translator.

Stack Proposed
Application

Translation
Transport
Network SR
Data-link Data-link
Physical Physical

Figure 4.6: Due to the cross-layer commitment, the application layer and transport layer are summed
into a single layer declared as the translation layer.

Embedding complete TCP headers is the simplest form, however they contain redundant

data since TCP and UDP headers share the same source and destination port numbers. To

reduce the visual e↵ects of the embedding process and minimize unnecessary redundancies,

source nodes will not embed data that is shared between TCP and UDP headers. By the virtue

of the encoding process, essentially modifying the multimedia payload, the UDP and TCP

checksum fields are now redundant as well. The UDP checksum field is therefore utilized to

further reduce the visual artifacts by embedding data within said field while the TCP checksum

field will be completed by the receiving node prior to processing. To further reduce the ob-

served visual artifacts, the maximum packet length will be agreed upon ahead of time between

source-destination pairs. By determining the maximum packet length, the maximum number
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of bits needed by the length field in the UDP header will be known. Knowing the maximum

number of bits needed from the UDP length field will free the remaining bits to be used in a

similar manner as the UDP checksum field. The aforementioned decisions made by the source

node will decrease the e↵ects of the embedding process. If a source node decides to focus on

reducing packet sizes, a modified UDP header will be used in place of the default UDP header.

10110101 11010101 ... 11010110 ... 11110101

{110010 ... 0 ... 1} TCP Header

{110101 ... 0 ... 1} Other Header

Figure 4.7: Using the embedded codes, the receiver will be able to identify the type of header that is
embedded.

The modified UDP header will not contain the source and destination port number fields

since embedding a complete TCP header will include said fields. By not including the source

and destination port numbers, the UDP header will be 50% smaller in size. The source node

will proceed by treating the length and checksum fields in the previously mentioned manner to

reduce visual artifacts while using the modified UDP header. To use the modified UDP header,

it must be employed in conjunction with a networking layer protocol that contains a protocol

identification field, such as IPv4. The IPv4 header contains a protocol identification field that is

used to inform the receiver of the presence of a transport layer protocol, such as TCP or UDP,

where TCP is identified as protocol number 6 and UDP is identified as protocol number 17.

The protocol identification field in the IPv4 header can uniquely identify 256 protocols since

the field is 8 bits long [132]. Since not all 256 numbers of the protocol identification field are

assigned, a protocol number for modified UDP is chosen at the networking layer to be used

by source-destination pairs. The receiving node will have to perform packet reconstruction

operations to restore the original HTTP/TCP packet from the HTTP/UDP packet received. By

receiving an HTTP/UDP packet, a node will be aware that the packet is modified and contains

embedded data. To properly reconstruct a packet, a receiving node will use the unique codes
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found in Fig. 4.7. Using the unique codes, a receiving node will need to either decode a

complete TCP header, or reconstruct a TCP header using the UDP source and destination port

numbers, or reconstruct a modified UDP header using the encoded TCP information.

4.3.1 Evaluating Base Station O✏oading within One-hop Networks

The non-linear objective function presented in the previous section requires a large amount

of time to find a solution, and therefore a more convenient process is needed. In this section it

is assumed that the BS will behave in a greedy manner with the desire to o↵-load the maximum

amount of data possible to surrounding nodes. It is in the best interest of the BS to maximize

the collaboration time Ti of participating nodes and as a result achieve a high data o✏oad

rate. Maximizing the duration Ti is determined by how well the available energy budget Bi

of each D2D device is utilized. For the optimal balance between the needs of the BS and

the length of Ti, the BS will communicate to the D2D devices available the desired hit ratio

hr to manipulate Ti of the said devices according to the needs of the BS. In order for the

BS to successfully determine hr, each D2D device must inform the BS of the available Bi.

Algorithm 1 is designed to take into consideration the needs of the BS subsequent to D2D

devices declaring their limitations. The BS evaluates the desired hrmin based on

hrmin =

P
i2N Bi

N ⇥ hrmax
, (4.7)

where hrmax is the total number of cache hits expected by each node i, N is the total number

of devices participating, and Bi is the energy budget of each participating node. The given

algorithm will continuously be evaluated and updated after each iteration. Using the proposed

algorithm, each node will participate a minimum number of times prior to the BS needing

to re-evaluate its strategy. Once the BS receives the Bi of participating D2D devices, D2D

participant devices will receive an expected hrmin. Essentially, hrmin is a measure of expected

amount of work given to each D2D device to allow enhanced Bi expenditure.
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Algorithm 1: Balancing packet processing with BS needs.
1 if D2D available then
2 while hri < hrmin do
3 if Packets determined successfully then
4 if Encoding successful then
5 Update Ti and hri ;
6 else
7 select other packet;
8 end
9 else

10 Wait for new time-slot;
11 end
12 end
13 if hri � hrmin then
14 if Bi � Bmin then
15 BS updates hrmin value ;
16 goto 1;
17 else
18 Node i is not considered for D2D
19 end
20 else
21 End D2D communication;
22 end
23 else
24 BS completes request ;
25 end

Subsequent to exchanging Bi and hrmin values, each device i will determine the packets sub-

ject to the translation process by using the linear optimization function in (4.8a). The proposed

linear formulation aims to maximize the number of translations while making sure that con-

nection established between the D2D nodes is robust, thereby reducing the number of needed

retransmissions and as a result extending the collaboration time Ti. The linear formulation

optimizes variable x j,k for maximizing the reduction of bits is

max
{x j,k}

NX

j=1

KX

k=1

(I j
k � I j

k,new)x j,k (4.8a)

s.t.
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NX

j

KX

k

x j,kek, j  Di (4.8b)

x j,k 2 {0, 1} 8 j 2 N,8k 2 K (4.8c)

Constraint (4.8b) ensures that the sum of embedding e↵orts ek, j is less than the total em-

bedding capacity Di to prevent overwhelming the source-destination pairs. Using the number

of bytes available for sending subsequent to the embedding process, it is possible to estimate

the remaining cooperation time of node i by updating the throughput values and calculating Ti

from (4.3). The new value of Ti will be sent to the BS to help the BS determine a new value

of hrmin if necessary. Once the D2D device reaches the predetermined hrmin, the device will

update the BS with the new values of Ti and by extension the remaining Bi. Using the updated

values, the BS will determine whether a given device is fit for servicing future requests, and if

so, the number of allotted requests.

4.4 Simulation and Implementation Configurations and Re-

sults

The proposed translator and SR schemes are simulated in a wireless cluster of nodes us-

ing NS3 [153] and MATLAB as two separate validation platforms. The D2D network is set

up to use the energy saving methods in a number of simulations subsequent to performing

a series of counterpart benchmark tests. The general topology configuration used is shown

in Fig. 4.8 and is subject to grow in number of rows and columns as additional nodes are

added. In addition to varying the simulation size, the number of established links varied as

well. All nodes are capable of encoding (decoding) information within payload data on the

up-link (down-link) channel. Each node is generating data at no more than 2 Mbps where each

packet is at least 1,460 bytes large. The packets are generated according to a Pareto Poisson
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Burst Process (PPBP) to mimic a realistic tra�c shape [155–158, 160]. Furthermore, all nodes

establishing D2D links are using the proposed SR scheme for routing rather than the tradi-

tional IPv4/IPv6 networking layer. Subsequent to the aforementioned simulation scenarios, a

proo f � o f � concept implementation was completed using machine virtualization residing

within a portable battery powered device. The virtual machines established a D2D network

over a wireless channel contained within NS3 where one virtual machine acted as a server

while the other requested multimedia content. The device’s energy drain rate and transmission

statistics were logged during a benchmark scenario and while using the proposed translation

scheme to determine the e↵ects of said scheme.

BS

UE1 UE2 UEi

Figure 4.8: Simulated wireless topology where the dashed lines represent D2D connections and the
solid line represents BS connections.

4.4.1 MATLAB and NS3 Simulation Results and Analysis

The proposed schemes were verified using simulations in NS3 and MATLAB with varying

topology sizes and number of established D2D connections. In addition to varying the topol-

ogy size, the nodes were stationary in the initial set of simulations while mobile in the latter.

The node positions were randomly selected, however, the configuration was maintained across
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repeated simulations to ensure a proper comparison scenario. The mobility of the nodes was

random and described using a Gauss-Markov model in a three-dimensional space. The source

applications were generating a maximum of 2 Mbps of data for each individual stream accord-

ing to a PPBP process. Finally, the simulations were conducted while having multi-sources

transmitting data and then repeated with a single source only. The results obtained in NS3

were then compared to the results observed in the MATLAB simulations. Three primary met-

rics were observed throughout the sessions including: node cooperation time, amount of data

exchanged, and the amount of overhead reduced. It is assumed that all nodes have similar cir-

cuitry and energy consumption rates and therefore the NS3 generic Lithium Ion battery model

was used for all simulations.
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Figure 4.9: The proposed schemes successfully extended signalling reductions solutions [10, 17] to
further decrease the bandwidth consumed by non-payload data. Using the proposed protocol translator
and SR, an additional 6.5% in signalling overhead reductions was achieved in addition to the signalling
reduction achieved by the solutions proposed in [10, 17].

The proposed scheme was used to extend existing overhead reduction methods as illus-

trated by Fig. 4.9. The schemes chosen to extend using the proposed protocol translator and

SR layer are found in [17] and [10]. The TCP protocol is a byte-oriented stream where an

ACK message is expected to be sent by a destination node for every segment successfully re-
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ceived from a source node. The ACK messages are important for the TCP protocol since the

congestion window grows according to the number of ACK messages received. In [17], the

authors proposed reducing the number of Transmission Control Protocol (TCP) Acknowledge-

ment (ACK) frequencies by manipulating the settings of the protocol, essentially delaying the

delivery of ACK messages. Furthermore, in [17], the authors propose using Appropriate Byte

Counting (ABC) to compensate for the reduced frequency of ACK messages to maintain the

desired performance. When using byte counting, the source node TCP congestion window will

grow according to the number of acknowledged bytes by the received ACK messages rather

than the number of ACK messages received. In [10], the authors propose using server push

capabilities built-in HTTP 2.0. The server push capabilities enable content providers to send

multiple multimedia descriptions and maintain a persistent connection with destination nodes

without requiring a request for each description. The overhead reductions methods proposed in

[17] and [10] achieved approximately 60% and 70% overhead reductions, respectively. Using

the proposed scheme to extend the aforementioned works, overhead size decreased by approx-

imately an additional 6.5%. Therefore, employing the proposed scheme in conjunction with

the existing signalling reduction solutions will decrease a session’s bandwidth consumption

by non-payload data. The decrease in bandwidth promotes a decrease in energy consumed by

non-payload and similar type of data as well as enable tightly packed transmissions. Devices

are accessing a wireless channel at successively smaller intervals, thereby spending a reduced

amount of time in idle and an increased amount of time transmitting packets.

The proposed protocol translator and SR methods reduce the size of packets and by exten-

sion directly a↵ect the cooperation time as described by (4.3). As the availability period of

nodes increase, the length of time a device can share a media feed behaves accordingly. Band-

width consumed through sending and receiving data a↵ects a node’s cooperation time on a

bit-by-bit basis. As the number of bits exchanged between source-destination pairs decreases,

a node’s availability time will behave accordingly, providing an extended coverage period for

the multimedia feeds available within the said device. The proposed optimal formulations of
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the protocol translator and SR schemes are simulated in MATLAB to find the signalling reduc-

tions and subsequently used to determine the cooperation time of nodes using (4.3).
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Figure 4.10: Nodes are capable of participating within the network for an extended period of time due
to utilizing the proposed solutions. However, the cooperation time of nodes decreases as the number of
established D2D links increases. The e↵ects of the number of established links per nodes on the node
availability period is demonstrated. The node availability time increased significantly while using both
the translator and SR solutions simultaneously due to the largest decrease in packet size.

The MATLAB simulation results describing a node’s availability period were then com-

pared to the node’s cooperation time measured in NS3 simulations illustrated in Fig. 4.10. The

MATLAB simulations are completed under the set-up of combining both the translator and

SR schemes simultaneously; however, the NS3 simulations are completed under three di↵erent

variations including: translator only, SR only, and translator with SR simultaneously. Accord-

ing to the illustrated results, both MATLAB and NS3 confirm that the number of established

D2D links a↵ected the observed node cooperation time. The cooperation time of each node

tends to decrease as the number of established links increases, whether the translator is used

with or without the SR scheme, or vice versa. The largest gain in terms of node cooperation

time is observed on the MATLAB platform and confirmed by NS3 simulations where the net-

work had the fewest number of established D2D links. Therefore, in large topologies with the

potential of establishing a sizeable number of D2D links, it is ideal to form clusters of small
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D2D networks and limit the number of D2D links established within each cluster.

The results illustrated in this section demonstrate the capability of extending existing schemes

to further reduce the signalling overhead size, increase node cooperation time, and increase the

amount of data exchanged subsequent to utilizing the proposed schemes. Ideally, the proposed

methods should be used in situations where nodes are clustered together in small groups to

maximize the amount of signalling overhead saved in terms of cooperation time and band-

width.

4.4.2 Virtualization-based Implementation on a Portable Resource Lim-

ited Device

To validate the protocol translation process as well as the aforementioned simulation re-

sults, a real multimedia transmission session between 2 virtual machines was completed. Using

LXC [161] technology, 2 virtual machines were set up to exchange multimedia information as

shown in Fig. 4.11. One virtual machine was using VLC [162] to host an HTTP/TCP server

while the other was using VLC for playback. The multimedia file used in the transmissions was

an open-source video known as Big Buck Bunny [163] and was provided in the popular H.264

format. Fig. 4.12 shows a side-by-side comparison of a frame, 4.12a, from the original video

without any data embedded and a frame, 4.12b, from the video with 24 bytes of embedded

information. The two virtual machines were connected to form a D2D network over a wireless

channel contained within NS3. The implementation was set to run on a battery powered device

to measure the change in the device’s power consumption induced by the encoding and de-

coding processes. The multimedia stream exchanged 5.99% more descriptions while using the

proposed translation scheme when compared to a traditional streaming scenario. The energy

consumption of the device increased by 0.88% which is due to the increases in exchanged data

as well as the encoding (decoding) processes completed. The average waiting time of packets

within the transmission queue decreased by ⇡ 10%. Subsequent to the validation process, the

original video was compared to the video stream with embedded data to identify the perceived
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NS3 Wireless Channel

D2D connection

Figure 4.11: Using a configuration of a VLC media player within LXC containers on a Linux host
machine, the proposed protocol translator was implemented. The D2D-capable devices where behaving
as media servers and sinks connected to each other using a wireless channel contained in NS3. The
devices establish a direct D2D connection to exchange live and cache multimedia segments.

peak signal-to-noise (PSNR) ratio. The PSNR was 36.7 dB, which was within the acceptable

range of quality change [164]. To reduce the energy impact induced by the encoding (decoding)

process, the software code must leverage energy e�cient routines.

(a) (b)

(c)

Figure 4.12: The (a) original frame is compared to (b) a frame containing embedded data where a
superimposed (c) figure of the two frames is used to highlight their di↵erences.
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4.5 Summary

In this chapter, a novel cross-layer steganographic translator is given to enable resource con-

strained devices in decreasing the average size of packets. The translator powers source nodes

with the ability to use lightweight headers within packet flight while maintaining original pro-

tocol characteristics. The proposed scheme translates multimedia streams from HTTP/TCP to

HTTP/UDP in-flight. A source node will use LSB to encode TCP data in multimedia descrip-

tions where destination nodes will decode embedded data to restore TCP related information.

In addition to the translator, a SR scheme is given to enable mobile nodes in using a lightweight

alternative to IPv4/IPv6, further reducing the average size of packets exchanged. The proposed

schemes are designed to work simultaneously and in harmony with existing overhead reduction

mechanisms to induce additional resource savings across a wider range of networks. Extensive

simulations are presented on MATLAB and NS3 to validate the proposed schemes. The simula-

tion results show that the proposed methods are capable of cooperating with existing overhead

reduction schemes, increase node cooperation, and increase available bandwidth while exceed-

ing QoS constraints. An implementation of the proposed scheme was completed using LXC

virtualization technology where one server and one receiver were connected using a D2D net-

work and set to exchange a multimedia segment in H.264 format. The perceived PSNR values

observed post implementation are well within an acceptable range while reducing transmission

queue times for outgoing packets.



Chapter 5

Increasing Decentralized Network
Throughput of Multimedia Content
Access and Rights Management Systems

Reducing packet sizes and the number of exchanged signalling messages are e↵ective meth-

ods of decreasing service costs and increasing the e�ciency of multimedia payload delivery.

However, as the size of multimedia services increases, blockchain-based networks are utilized

for their secure decentralized features, thereby inducing service access latencies and decreased

content playback throughput. Blockchain-based networks operate through generating a large

number of transactions destined to be securely recorded on a ledger shared primarily by net-

work maintainers, formally known as miners, and any interested nodes. Consequently, miners

responsible for maintaining a common ledger will have large mining pools filled with trans-

actions waiting to be processed. Therefore, in order to achieve and maintain desired QoS and

QoE requirements, multimedia applications utilizing blockchains will need miners that follow

a tiered transaction processing structure. The tiered transaction processing structure will en-

able transactions in reducing their mining pool residence time. In this chapter, a novel tiered

mining structure designed to reduce transaction mining pool residence time while preventing

transaction processing starvation, decreasing content access latency, and increasing network

throughput is proposed. The proposed processing scheme is tiered according to the priority

class a transaction belongs to where higher priority transactions are more likely to be guaran-

teed space in future blocks than low priority transactions. To prevent abuse of the high priority

96
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transaction status flag, the proposed scheme is designed to circumvent low priority transaction

starvation through an adaptive block slicing mechanism. The proposed block slicing scheme

allocates chunks of a soon-to-be published block to transactions of varying priority classes

found in the mining pool. Using the proposed slicing algorithm, a blockchain-based network

is capable of guaranteeing a processing throughput of transactions of di↵erent priority classes.

A transaction ageing process is proposed where transactions will increase in weight as their

mining pool residence time increases. Subsequent to a miner evaluating the slice size of each

priority class, the miner will select the transactions with the highest weights to fill the slices

from its mining pool. The scheme is validated through elaborate simulations as well as a proof-

of-concept implementation where nodes are built and used to exchange transactions of di↵erent

priority classes.

5.1 Introduction

Popular applications operating over the Internet, such as multimedia streaming services, at-

tract a large audience and as a result must be scalable to serve the growing demand. Extending

applications and services with blockchain-based solutions resolves a number of deployment

challenges including: scalability, decentralized trust, traceability, and immutability [169]. A

blockchain-based multimedia service will utilize miners located locally [170] or in edge nodes

[171, 172] to maintain a system’s ledger. Each miner must try to publish a block to be ap-

pended to the ledger by grouping select transactions from said miner’s mining pool to form

transaction blocks. Maintaining a ledger in a blockchain-based system is one of the most im-

portant blockchain-related activities that must be performed by miners continuously regardless

of the success of previous mining operations. The importance of a ledger’s upkeep resulted

in a low throughput and computationally expensive maintenance process where transactions

wait patiently in mining pools for inclusion in soon-to-be published blocks [59]. The e↵ects

of a blockchain’s low processing throughput are observed by end-users due to an increase in
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multimedia access latency and verification of content licensing agreements. Finite transaction

space found in blocks is a blockchain-based system’s defining element that is necessary to

govern the throughput of an underlying multimedia network. Furthermore, block sizes are non

negotiable and must be agreed upon by all miners and ledger maintainers prior to commencing

operations. Another throughput limiting factor is the mining complexity set by a blockchain

network to maintain a desired security level during operations [173]. The mining complexity

varies with time and is a key element to blockchain security and decentralization. While a

miner is waiting until it can publish a transaction block, a miner’s mining pool will continue

to receive new transactions of all priority classes. The finite transaction block space limits

the number of transactions included, thereby forcing a number of transactions to reside for a

longer period of time within a miner’s mining pool. As transactions reside in mining pools,

the multimedia network will experience reduced throughputs due to the increase in transaction

processing latency within miner nodes [29]. Miners adopt di↵erent policies for selecting trans-

actions for an upcoming transaction block, and therefore not all transactions have the same

processing throughput.

Existing mining policies are primarily geared for blockchain systems used in digital cur-

rency applications where miners utilize the notion of fees to guarantee priority of transaction

processing. A cryptocurrency miner is capable of developing a fee structure scheme outlining

charges for providing di↵erent levels of guarantees. In the presence of a fee structure scheme,

transactions are capable of minimizing their mining pool residence time by paying higher fees

than other transactions, thereby ensuring their inclusion in a soon-to-be published block. In the

absence of fees and cryptocurrencies, such as blockchain-based multimedia access services,

miners will have to resort to publishing transaction blocks by selecting transactions through

alternative methods. The existing literature [41–60] provide transaction selection schemes by

either depending on paid fees structures to ensure mining or by treating transactions on a First

In First Out (FIFO) basis. The aforementioned solutions do not address scenarios without

cryptocurrencies, such as blockchains-based multimedia networks, that require transaction pri-
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ority processing. Additionally, the existing schemes depend on fees to complete transactions,

thereby enabling richer sources to secure larger amounts of mining resources over less fortu-

nate sources. Furthermore, as the number of transactions waiting to be processed in the network

increases, a miner is capable of demanding an increased fee due to the larger competition for

transaction spaces within soon-to-be published blocks. Finally, miners will focus on financial

interest and behave in a greedy manner by only mining transactions that pay the highest fees.

Although financially driven mining disciplines are simple and successfully introduced tiered

mining schemes, they fail to address systems independent of fees and cryptocurrencies.
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Figure 5.1: Processes at earlier stages are the most valuable due to enabling a large amount of future
processes to take place.

The large size of multimedia services will demand scalable solutions to address digital
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content access, rights, and management. Blockchains are a secure way of enabling the scal-

ability of multimedia services [28–35] however said multimedia applications will su↵er from

decreased QoS and QoE values. The decrease in QoS and QoE descriptions is a direct conse-

quence of incompatible miner transaction processing disciplines attempting to operate outside

of digital currency applications. In this chapter, a feeless tiered mining discipline is proposed

for blockchain-based multimedia applications and other non-digital currency services. Con-

sequently, blockchain-based multimedia content access and rights management will overcome

the limitations of financially driven mining schemes. By overcoming financially driven mining

schemes, multimedia service providers are capable of increasing content playback throughput

as well as decreasing content access latency. Similar to the fee structure of financially driven

mining, the proposed scheme is a feeless tiered processing structure that is introduced to prior-

itize transaction mining. The tiered processing structure depends on the priority of the process

generating the transactions, the priority label found within a transaction, or the priority of the

process generating a transaction as illustrated by the operational value in Fig. 5.1. While em-

ploying the proposed scheme within miners, a miner will include transactions in upcoming

blocks based on priority where higher priority transactions are guaranteed block space over

lower priority transactions. To ensure the processing of low priority transactions, the scheme

is equipped with a utility function designed to alleviate low priority packet starvation. In any

tiered mining discipline, whether fee based or otherwise, low priority transaction processing

starvation is possible if the number of high priority transactions found within a mining pool

far exceeds lower priority transactions. The proposed process prevents low priority transac-

tion starvation by employing a utility function designed to guarantee low priority transaction

inclusion in soon-to-be published blocks.

The remainder of this chapter is organized as follows: In Section 5.2, the system model

description as well as the proposed transaction selection utility function are given. In Sec-

tion 5.3, the proposed block slicing algorithm is detailed. In Section 5.4 the simulation and

implementation platforms and results and analysed. Finally, a summary is given in Section 5.5.
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5.2 System Model Description and Problem Formulation

A blockchain-based multimedia network similar to the illustration in Fig. 5.1 will benefit

from a feeless mining structure to enable transaction processing priority while preventing low

priority transaction starvation. Each process at each stage is generating transactions of events

and communicating them to miners within the network for ledger appending. Assume that

there are multiple processes and nodes categorized into I = {0, 1, ..., i} priority classes. Each

miner is receiving K transactions from each priority class where a miner will form a block of

transactions from said transactions. The total sum of the size of transactions S =
P

i2I
P

k2K S k
i

must be less than the total network pre-determined block size CB. Due to the limitation CB,

as the number of generated transactions increases, the mining pools will bu↵er an increased

number of transactions from all classes. The key notations used in this section are shown in

Table 5.1.

Table 5.1: Summary of frequently used notations in this section.

Notation Definition
n Current node n
N Set of nodes
i Priority class i
I Set of priority classes
k Transaction k
K Set of transactions
xk

i Binary decision variable for transaction k
Wk

i Weight of transaction k from class i
S k

i Size of transaction k from class i
CB Size of transaction block
Vk

i Value of transaction k from class i
VB Expected value of current block
�H High priority transaction arrival rate
�L Low priority transaction arrival rate
B(CB) Denial of service probability
S i Class i slice size
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The priority and importance of transactions are directly related to the stage the transactions

belong to as indicated in Fig. 5.1. Therefore, due to the interdependence of processes, parent

tasks have a higher priority when compared to tasks down the production line. As tasks are

tirelessly running, transactions are continuously generated by participating devices and sent to

dedicated blockchain miners for processing. Transactions generated by higher priority tasks

will receive guaranteed processing and inclusion in future transaction blocks. Once a block of

transactions is created, the block is then shared with the rest of the miners in the blockchain

network. As transactions are being stored within the miners’ mining pools, the number of

high priority transactions will eventually exceed their lower priority counterparts. The slow

throughput of blockchain networks in the presence of excess high priority transactions will

result in starvation of lower priority transactions. A scenario where the number of transactions

from high priority classes far exceeds transactions with low priority is considered to mimic low

priority class starvation. The slow throughput is unavoidable due to the security features of a

blockchain-based network, and as a result the throughput of content playback as well as access

is therefore significantly reduced. Therefore, managing the transaction processing discipline

within miners is an e↵ective method in alleviating processing starvation.

If unmitigated, low priority class starvation will eventually result in distributed transaction

blocks that do not include a significant amount of transactions of said class. To prevent low

priority transaction starvation, miners will utilize (5.1a) to determine the allocation of trans-

actions in soon-to-be published blocks. Low priority transaction starvation will lead to longer

transaction residence time within a miner’s mining pool. Each transaction added in a soon-

to-be published block will contribute a value Vk
i to the operations of the network, where the

total block contribution is V =
P

i2I
P

k2K Vk
i . The value of each transaction depends on the

number of processes and future actions it enables to occur where as the number of succeeding

transactions increases, the value Vk
i increases as well. The utility function aims to minimize

the total weight of the transactions to be included in a soon-to-be published block, however,

each block must contain transactions that contribute a value, V � VB, to the operational flow.
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Each transaction k from priority class i is given a weight, Wk
i , that is directly correlated with

the class priority. As the priority class of a transaction increases, the weight of each transaction

increases accordingly. The utility function utilizes xk
i to minimize the total sum of weights

W =
P

i2I
P

k2K Wk
i and is evaluated as

min
{xk

i }

IX

i=1

KX

k=1

Wk
i xk

i (5.1a)

s.t.

IX

i=1

KX

k=1

S k
i xk

i  CB 8i 2 N (5.1b)

1
VB

IX

i=1

KX

k=1

Vk
i xk

i � 1 (5.1c)

xk
i 2 {0, 1} 8 j 2 N, 8k 2 K. (5.1d)

Constraint (5.1b) ensures that the total sum of all transaction sizes S k
i is less than or equal

to the block size agreed upon by the blockchain network. If the sum of transaction sizes ex-

ceeds the network determined size, the block will be refused by other miners or the publishing

miner must drop some transactions back to the mining pool. Constraint (5.1c) ensures that the

transactions within the block must add an operational value of VB or greater when being pub-

lished to the network. The operational value of each process is determined by the number of

child processes that depend on the considered source. If a process enables a larger number of

sub-processes to occur down the production line, then the related transaction will be assigned

a higher Vk
i . In (5.1a), the sum of the weights of each transaction Wk

i is aimed to be minimized

to ensure the processing of low priority transactions, however, the value added by each block

must be at-least VB. To determine whether a transaction will adhere to proposed fair processing

scheme, binary decision variable xk
i must be set to high.
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5.3 Proposed Block Slicing Algorithm for Decentralized Through-

put Provisioning

The proposed slicing algorithm is a real-time estimation of the aforementioned utility func-

tion that divides soon-to-be published blocks into compartments dedicated to hold a number

of transactions from di↵erent priority classes. While using the slicing process, low priority

transactions are subject to an ageing process where the oldest transactions are included in their

respective slices first. The ageing process will ensure that low priority transactions left be-

hind from previous block publishing iterations will have priority in inclusion over recently

received transactions. The objective function presented in the previous subsection requires a

large amount of time to find a solution, and therefore a real-time process is provided. It is

assumed that each process is generating two classes of transactions, high and low priority, ac-

cording to a Poisson distribution with a rate of �H and �L, respectively. Each transaction k,

whether high or low priority or in a miner’s mining pool, is given a weight that is found as

Wk
i =
�k

i

Ci
, (5.2)

where �k
i is the variable used for the ageing process of transaction k and Ci is the cost of delaying

a transaction of class i. The ageing process is designed to increase the priority of transactions

as they age in the mining pool. By ageing transactions, their priority level is elevated to en-

sure future processing and inclusion in soon-to-be published transaction blocks. The ageing

process is necessary since the number of high priority transactions in a miner’s mining pool

may completely occupy a future transaction block and absolutely prevent low priority trans-

actions from being published. The ageing process is designed to counteract the starvation of

low priority class transactions introduced by the abundance of high priority class transactions.

Additionally, in scenarios where greedy processes abuse the high priority classification, low

priority transactions will still be published. The ageing variable is found as
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�i = Td � Ta, (5.3)

where Ta is the arrival time of a transaction to the mining pool and Td is the expected departure

time of a transaction. The value of Td is essentially Ta in addition to the waiting time Ti of

a transaction within the mining pool. Subsequent to each iteration of a new transaction block

formation and publishing, the value of Td will grow by Ti. As the value of Td grows, the weight

given to a transaction will also grow and therefore, age successfully. Assuming transactions of

high and low priorities are arriving according to a Poisson process with aggregate rate � and

they are processed at deterministic rate D, then the expected waiting time of a transaction from

class i [151] within the mining pool is

Ti =
Ri

(1 � ⇢1)(1 � ⇢1 � ⇢2)
, (5.4)

where Ri is the residual service time of class i transactions and ⇢ is the utilization factor based

on the arrival rate � and miner service rate µ. The mean residual service time depends on the

average transaction size L and is given by

Ri =
1
2

X

i2I
�i

L
D
. (5.5)

Due to the mining process and complexity set within the blockchain network, the waiting

time Ti is the time needed to complete the mining process. The mining process in large sys-

tems, such as Bitcoin, takes on average 10 minutes to see a new block published within the

blockchain network. The finite size of a transaction block, CB, and the Poisson defined be-

havior of transactions generated, some transactions will not be included in future blocks. By

knowing the deterministic processing time of transactions found within the mining pool, the

service denial probability [152] is found. The probability characterizing the possibility of a

transaction not being included in a new transaction block is
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B(CB) =
1 + (⇢ � 1)QCB

1 + ⇢QCB

, (5.6)

where QCB is the number of transactions found within the current block being prepared for

publishing. The denial-of-service probability (5.6) is then used to find the aggregate arrival

rate � that the miner can handle from all processes. The aggregate arrival rate is used to define

the total arrival rate experienced by the miner from all processes to achieve a desired denial-

of-service rate. Therefore, the miner node is aware that there are scenarios where high priority

transactions will take precedence for inclusion in soon-to-be published blocks and low priority

transactions must remain within the mining pool. The miner is essentially determining the ratio

of stalled low priority transactions by controlling the observed � from each participating node.

The aggregate value of � is found as

� =
µU

1 � B(CB)
, (5.7)

where U is the utilization observed by the miner due to the incoming transactions. In order to

have a 0% denial-of-service rate, a miner must request from participating processes to generate

transactions at an aggregate rate that is less than µU. If there are I processes, then each device

must generate at a rate of �n =
µU
I . Likewise if a miner desires a denial-of-service rate B(CB),

then the aggregate value of � is found first using µU
1�B(CB) . The value of � is the sum of high, �H,

and low �L, priority transaction arrival rates. Once a miner determines the aggregate value of

� for all processes, the expected needed occupancy for a high priority class is

EH = NHS H,a, (5.8)

where S H,a is the average size of transactions, NH is the current number of high priority trans-

actions in the mining pool as well as the expected number, E[NH], of high priority transactions

arriving at �H. Each transaction class will then occupy space in a new transaction block ac-

cording to the found expected occupancy value. Based on a transaction block’s total space
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available, CB, a priority class slice size, S i, is

S H =

8>>>>>><
>>>>>>:

EH
CB
, EH < CB,

WH
EH
CB
, EH � CB,

(5.9)

where WH is the weight of transactions evaluated as

Wi =
Wclass

Wtotal
. (5.10)

The total weight of a class, Wclass, of transactions and Wtotal is the total weight from all

classes. As low priority transactions age in the mining pool, the weight of the low priority

class will increase as a whole due to the aforementioned ageing process. Through ageing, the

value of Wclass will change and therefore, the priority class slice size will fluctuate accordingly.

Using the value of aggregate � as well as ↵i, the observed average number of arrivals from

class i in time period t, the miner can expect high priority transactions to arrive at a rate of

�H =
↵H

↵H + ↵L
�, (5.11)

where ↵H
↵H+↵L

is referred to as h from hereon in. The term h is the observed fraction of arriving

high priority transactions from all transactions over a period of time t. Using h, the expected

arrival rate for low priority transactions is

�L = (1 � h)�. (5.12)

Subsequent to evaluating �H and �L, the expected number of incoming packets is found.

The total number of transactions during period t is

Ni(t) =
Z t1

t0
↵i(⌧)d(⌧). (5.13)
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If a miner observes time period t = t1 � t0, the miner will find the expected number of

transactions from class i as Ni = �it. The miner’s advantage of evaluating the expected number

of transactions of class i, is found in estimating Wclass, Wtotal, and as a result Wi. Furthermore,

the expected number of arriving transactions will enable the miner to determine the slice size of

class i by initially evaluating (5.8). Due to the miner using variable h to determine the expected

number of transactions from a certain class, (5.9) is approximated as

S H = hCB, (5.14)

where the remainder of the fraction is allocated to determine the slice size for low priority

transactions as

S L = (1 � h)CB. (5.15)

Using (5.14), a miner is able to allocate a portion of a soon-to-be published transactions

block to hold at least S H fraction of CB as high priority transactions and S L as low priority

transactions. Subsequent to finding the amount of space reserved for each priority class, the

miner will form a new block from transactions with highest Wk
i values. The finite size of a

block will force a number of transactions to remain within the mining pool and therefore the

weight of the transactions residing in said pool will continuously increase according to (5.2)

regardless of their priority class. As a result, low weight transactions from any class will have to

stay within the mining pool until inclusion in a future block or network wide adoption through

a block published by another miner. In the event of transaction adoption to ledger through a

block published by another miner, the Wclass, Wtotal, and Wi variables are updated by excluding

the weight of said transaction. The new slice size is

S 0i = GiS i, (5.16)

where Gi is the smoothing factor to counteract the changes introduced by the updated Wi
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value. Accounting for the decentralized and distributed cooperation found within blockchain-

based networks, miner nodes can set Gi to a value that will benefit the network as a whole

by increasing the total allocation for class i. The total allocation of slices for all classes,

G1S 1 + G2S 2 + ... + GiS i  S T , must be less than S T to prevent the class allocation from

exceeding CB block size limitation as illustrated by Fig. 5.2.

S 1

S 2

S 3
...

C
B

Figure 5.2: All transactions from class i must not occupy more than their class allocated slice S i.

5.4 Simulation and Implementation Platforms and Configu-

rations

NS3 [153] was used to simulate a network of devices sending transactions to a miner in an

industrial setting as shown in Fig. 5.3. The nodes were communicating with each other as well

as the miner using a wireless interface running on the IEEE 802.11 standard. By using NS3,

an industrial setting was accurately mimicked through a lossy channel, random transaction

broadcast times, varying volume of generated transactions from each node, random distances

between nodes, random placement of nodes, random mobility of a portion of the nodes, and

varying the network size. The nodes generated transactions with payload sizes ranging from

20 to 100 bytes at a maximum aggregate throughput of 16,000 transactions per second (tps).

The transactions were generated according to a Pareto Poisson Burst Process (PPBP) to mimic
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a realistic tra�c shape [155–160]. The transaction priority class was randomly chosen by each

node prior to a transmission. Although the priority class was randomly chosen, each node

was designed to generate a larger number of high priority transactions to simulate low priority

class starvation. To simulate node movement, a 3D Gauss-Markov mobility model [159] was

used. It was assumed that a miner’s mining pool holds unlimited transactions and a miner tries

to publish a new block every 10 minutes. Each NS3 simulation run was used to generate a

snapshot of a mining pool for further MATLAB processing. MATLAB was used for the Opti

Toolbox [154] to evaluate the proposed optimization formulation as well as the evaluation of

the proposed real-time estimation.

M

1 2

34

5 7

6

89

10 11

i

Figure 5.3: Simulated network topology where nodes are placed randomly with a miner, node labelled
M, in the center.

5.4.1 Simulation Results and Analysis

The proposed scheme is verified using simulation based methods where nodes generated

transactions of various sizes at random intervals of time. The network generated a maximum

throughput of 16,000 tps in all simulation topologies and configurations. The nodes generated a
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large number of transactions that are either high or low priority where the system is designed to

generate more of the former. In doing so, the generated low priority transactions experienced

starvation and had to remain within the mining pool of a miner. Subsequent to generating

transactions and entering the starvation period of low priority transactions, the miner is respon-

sible for determining the transactions that will be included in the new transactions block. The

objective of the miner is to include low priority transactions in the new block, however, the

published block must include transactions that are valuable to the operations of the network.

Blockchain miners are the nodes responsible for publishing new transaction blocks where each

block holds a finite number of transactions. The block size for the simulations is set at 1 MB

while the transaction sizes ranged from 20 bytes to 100 bytes. Furthermore, the network is

assumed to publish a new block every 10 minute intervals. In a blockchain-based multimedia

service network, miners are capable of preparing multiple blocks for publishing in a sequential

manner and therefore the block probability is illustrated as shown in Fig. 5.4. As the number

of blocks increases, the the blocking probability decreases due to the presence of more enti-

ties willing to hold an additional number of transactions. The increase in number of blocks

is synonymous with increasing the transaction block size from 1 MB to a larger value, or to a

maximum of 7 MB in case of Fig. 5.4. Since the system is designed to simulate low priority

transaction starvation, transactions sent during smaller generation rates are therefore subject

to experiencing blocking as well. From Fig. 5.4, it can be seen that as the aggregate value of

incoming transactions rate, �, increases, the blocking probability will behave accordingly.

The number and size of blocks generated by blockchain miners in multimedia networks

will vary according to the implementation and usage scenario. To overcome the variability of

environment and implementation, the system is measured in terms of utilization, U, to achieve

a desired performance as illustrated in Fig. 5.5. The utilization experienced by each miner will

vary according to the aggregate value of the arrival rates of high and low priority transactions.

Furthermore, the utilization is also a↵ected by the number of blocks generated or the total size

of a transactions block. As the transaction arrival rate � increases (decreases), the observed
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Figure 5.4: The denial of service probability experienced by low priority transaction coming as part of
an aggregate rate of �.

utilization will increase (decrease) as well. However, as the number of transaction blocks or

the size of a transaction block increases (decreases), the observed miner utilization decreases

(increases). The relationship between the transaction arrival rate, block size, and utilization

can be used to attain a desired blocking probability. It can be seen that a miner generating only

1 block at a time will reach full utilization at a lower � rate than when generating multiple

blocks at a time. Assume a scenario where a miner is generating three blocks at a time while

only observing 75% utilization. In the aforementioned scenario, the miner has the option to

consolidate the operations into a single block rather than three to increase the utilization from

75% to 100%. In doing so, the miner will publish fewer blocks, thereby consuming fewer

resources within the network, while achieving the same utilization. Therefore, using Fig. 5.5, a

miner is capable of adapting its e↵ort according to the load presented, essentially manipulating

the denial of service probability to a desired value. If the miner chooses to increase (decrease)

the number of published blocks, the miner is essentially decreasing (increasing) the block

probability while maintaining a desired utilization value and by extension throughput values.

A miner will ideally aim for 100% utilization to minimize wasted block space and consumed
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resources. In a scenario where a miner is generating only 1 block of transactions every 10

minutes, the denial of service probability for low priority transactions will be approximately

30%.
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Figure 5.5: The aggregate transactions arrival rate, �, directly a↵ects the utilization rates of a miner.

To measure the throughput of the blockchain network, and by extension the high and low

priority transaction publishing time, the number of transactions added to the ledger is observed

over 10 minute intervals. The mining pool of a miner is infinitely larger than a transaction

block to hold all incoming transactions and all transactions that are not published due to the

overwhelming presence of high priority transactions. The throughput of high and low priority

transactions as the total number of transactions increased within the mining pool is illustrated in

Fig. 5.6 and in Fig. 5.7, respectively. From the simulations, it is evident that the throughput of

high and low priority transactions is directly a↵ected by the number of transactions within the

mining pool due to a↵ecting the denial of service probability. As the number of high priority

transactions increased, the denial of service probability of low priority transactions increased

as well, therefore the throughput experienced by low priority transactions changed. According

to the benchmark scenario, as the number of transactions within the mining pool increases,

the throughput will eventually be the result of high priority transactions being published only.
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By publishing high priority transactions only it means that 100% denial of service probabil-

ity for low priority transactions is achieved. From Fig. 5.6, it can be seen that the proposed

scheme in the optimal scenario decreased the throughput of high priority transactions by ap-

proximately 10.81%. The decrease in high priority transaction throughput indicates an increase

in the low priority transactions’ throughput by an equivalent amount. Furthermore, the low pri-

ority transactions are no longer experiencing any denial of service regardless of the number of

transactions within the mining pool. Due to the optimal formulation consuming a large amount

of time to find a solution, the real-time estimation is evaluated as well. The real-time esti-

mation decreased high priority transaction throughput by 19.15%, and therefore successfully

increased low priority transaction throughput by an equivalent amount. Therefore, by using

the proposed scheme, low priority transactions are still serviced even during times where they

normally would have been blocked.
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Figure 5.6: The throughput of high priority transactions as the number of transactions within the mining
pool increased.

The observed throughput generated subsequent to using the proposed scheme is compared

to a benchmark scenario and a random scenario. The benchmark scenario is the case where a

miner behaves in a typical manner where high priority transactions are favored over low pri-
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Figure 5.7: The throughput of low priority transactions as the number of transactions within the mining
pool increased.

ority transactions. In the benchmark scenario, high priority transactions had a much larger

throughput value when compared to the proposed schemes. This is primarily due to the miner

simply processing high priority transactions first and then low priority transactions if there is

room available within the current block. In the random scenario, the miner randomly picks

transactions for publication within the new block. Since a larger number of high priority trans-

actions is generated, the throughput of high priority transactions is larger during the random

scenario as well. Due to the industrial setting, the value added by each transaction is important

for the overall operation of the network. The value added to the network by using the aforemen-

tioned schemes is illustrated in Fig. 5.8, as the number of transactions within the transaction

pool increased. The figure shows the expected value of published blocks in comparison to the

optimal and estimated schemes. The expected value shown in Fig. 5.8 is the largest due to

the block containing primarily high priority transactions. In contrast to the expected value,

the optimal formulation produced blocks with slightly lower values due to the inclusion of

low priority transactions. The low priority transactions decreased the value of the transaction

blocks by approximately 7.45% subsequent to employing the optimal formulation. Likewise,
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Figure 5.8: Each transaction published is necessary for the operation of the industrial setting and there-
fore adds a value to the network when published.

the real-time estimate decreased the block value by approximately 13.96% when compared to

the expected block value. The decrease in the block value subsequent to using the real-time

estimation is due to the inclusion of low priority transactions with lower value added to the

network. Therefore, using the proposed scheme will decrease the value added by each block of

transactions to the network, however the throughput of low priority transactions will increase.

Furthermore, the proposed scheme will end the starvation of low priority transactions empow-

ered by the abundance high priority transactions by essentially guaranteeing publication using

the aforementioned block slicing scheme.

5.4.2 NetEM and WLAN-based Implementation of Feeless Mining

To validate the proposed scheme as well as the simulation results, a proof-of-concept im-

plementation is completed with an application that does not depend on digital currencies. A

number of devices are created using LXC [161] virtualization container technology as well as

portable temperature sensing devices running a Linux based operating system. The portable

sensors are Raspberry Pi (RPi) [167] devices with a DS18B20 [168] temperature sensor con-
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nected through the RPi’s General Purpose Input and Output (GPIO) pins as shown in Fig. 5.9.

A blockchain miner is running on dedicated machine where the miner received transactions

generated by the LXC machines as well as the portable temperature sensor devices. The LXC

machines and miner are operating simultaneously within the same host device. To create an

industrial environment between the miner and LXC machines, the tra�c generated by the vir-

tual machines is tunneled through a NetEM [166] emulated channel with a 1ms delay and 1%

packet loss rate. The portable temperature sensing devices are placed randomly at distances

that are at least 10 meters or more from the miner.

Figure 5.9: The temperature sensor is connected to the RPi through the on-chip GPIO.

Host Device

M
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Figure 5.10: The miner and the virtual nodes shared a host device and exchanged data over a NetEM
[166] simulated channel.
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Figure 5.11: The low priority transaction throughput increased when compared to the benchmark values.

The portable sensors sent their transactions to the miner directly using an ad-hoc connec-

tion established over WiFi running the IEEE 802.11b standard as illustrated by Fig. 5.10. Not

all of the portable sensors are placed in Line-of-Sight (LOS) from the miner. As the devices

sensed temperature values, transactions containing the observed temperature values are cre-

ated and sent to the miner. Each created transaction is randomly assigned a high or low priority

status where the node is designed to generate more of the former. Nodes are set to generate a

larger number of high priority transactions to mimic low priority transaction starvation, thereby

successfully testing the purpose of the proposed scheme. The virtual nodes created using the

LXC containers, generated random temperature values where the priority of created transac-

tions is assigned in a similar manner as previously discussed. While low priority transactions

are starved, the observed throughput of said transactions followed a similar trend of the results

obtained in the previously discussed simulation results section. As illustrated by Fig. 5.11,

the observed implementation results agree with the obtained simulation results, where the pro-

posed scheme successfully increases the throughput of low priority transactions. Furthermore,

as the number of transactions in the mining pool increases, the throughput gains decrease as

well. From the implementation, the throughput of low priority transactions increased by ap-
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proximately 23.22%, however the value of each block generated, on average, decreased by

19.05%.

5.5 Summary

Blockchains enable multimedia services to grow to a large size through their decentralized

design as well as cryptographic properties. In a blockchain-based multimedia system, all trans-

actions are recorded on a ledger by a set of miners dedicated to continuously perform a mainte-

nance process regardless of the outcome of previous processes. Blockchain-based multimedia

systems enable a secure decentralized audiovisual content access with a traceable watermark-

ing system that is suitable for combating content piracy and unauthorized content access. Due

to the reliance of large multimedia systems on blockchains, network access throughput is re-

duced as transaction processing latency increases due to the blockchain’s security properties.

Processing latencies are mitigated through mining disciplines carried out by ledger maintain-

ers to move certain transactions at varying throughputs. Existing mining disciplines are geared

towards financially-driven blockchain applications, such as cryptocurrencies, and therefore are

not suitable for industrial blockchain-based services, such as multimedia based content access

and rights management systems. In this chapter, a novel feeless mining discipline scheme is de-

signed to help miners generate transaction blocks e�ciently. The proposed scheme overcomes

low priority transaction starvation using a given utility function designed to select transactions

from a mining pool to be published in future blocks. The utility function minimizes the overall

priority of transactions within the block while making sure that the operational value added

by said block is su�cient for the source process. A real-time process is given to overcome

the computational complexity of the aforementioned utility function. The real-time process

utilizes ageing to increase the priority of transactions previously residing in mining pools. Fur-

thermore, a transaction block is sliced into compartments to hold a number of transactions

from a received priority class. Subsequent to determining the size of slices, transactions are
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selected from the mining pool with selection priority given to aged transactions first. Elabo-

rate simulations are conducted to prove the performance of the proposed mining discipline in

feeless blockchain-based systems, such as multimedia networks. The simulations show that

the processing throughput of a priority class can be improved using the block slicing algo-

rithm. Furthermore, the simulations demonstrate that the proposed solution can be utilized to

prevent low priority transaction starvation and subsequently used to determine the publishing

throughput of transaction from di↵erent priority classes. Furthermore, a proof-of-concept im-

plementation is completed with a non-digital currency based application to demonstrate the

playability of the proposed solution. The implemented nodes are built and used to sense tem-

peratures of o�ce spaces that are subsequently shared with dedicated miners in the form of

blockchain transactions. Each node is given a priority level and generated transactions with

data regarding the sensed the temperature. To reproduce low priority transaction starvation,

LXC virtual machines are used to simulate temperature sensing nodes. The LXC containers

are connected to the miner over simulated wireless channels.
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Conclusion and Future Work

6.1 Conclusion

Increasing the e�ciency of multimedia streaming applications is a challenge due to the di-

verse nature of audiovisual tra�c, the non-deterministic behaviour of network paths, as well as

the ever-increasing demand. The challenge is further exacerbated by the best-e↵ort guarantees

provided by the Internet Protocol (IP) stack as well as the one-size-fits-all approach for deliver-

ing data. Existing multimedia signalling overhead reduction mechanisms and blockchain-based

content management solutions attempt to resolve the challenges of multimedia streaming, how-

ever they are not adequate as multimedia fidelity and services increase in capacity. This dis-

sertation investigates multimedia streaming tra�c and services to: 1) reduce the amount of

signalling overhead generated through a steganographic-based approach, 2) decrease the size

of exchanged segments by utilizing a steganographic-based protocol translator as well as a

Simplified Routing (SR) scheme, and 3) provide a block slicing algorithm for decreasing trans-

action mining pool residence time thereby increasing processing throughput in decentralized

multimedia content rights management services.

Chapter 2 details the fundamentals of adaptive multimedia streaming technologies, includ-

ing the size and role of exchanged signalling overhead, the most popular multimedia encoding

format, Scalable Media Coding (SVC) formats, and data hiding in multimedia mediums. A

literature survey of existing signalling overhead reduction techniques available at each layer of

121
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the TCP/IP stack is given in addition to insights of their limitations. As multimedia applications

grow to a large size and service an equally sized audience, blockchains are utilized to enable

a scalable multimedia content access management system. The existing works on blockchains

utilized in multimedia content access management are discussed to address combating multi-

media piracy and giving access to legitimate users who paid the multimedia licensing fees.

To alleviate source-destination pairs exchanging multimedia bi-directionally, a novel steganographic-

based signalling overhead reduction technique is designed. To identify messages destined for

embedding, Chapter 3 presents the sources responsible for generating control overhead in terms

of request-response transactions as well as HTTP requests. The proposed technique leverages

steganography to create hidden signalling data tra�c flows, thereby alleviating resource con-

sumption within source and intermediate nodes. Additionally, the scheme is a cross-layer solu-

tion where nodes embed signalling messages within multimedia payloads while ensuring low

visual artifacts. To minimize the observed visual artifacts, a utility function is given to evalu-

ate the optimal cost savings while maintaining a tolerable level of visual artifacts. To enable a

multi-protocol approach, where signalling overhead from any application is embeddable within

a multimedia payload, a unique control message identification system is designed. The identifi-

cation system assigns unique codes to identify di↵erent services and their respective signalling

messages, thereby allowing receiving nodes to decode a hidden signalling message correctly.

Source-destination pairs, as well as intermediate nodes, benefit from a reduced number of ex-

changed non-payload messages as fewer resources are allocated towards overhead exchange;

as a result, the e�ciency of the communication stream increases. The results obtained through

simulations, as well as the proof-of-concept implementation, validate the proposed scheme’s

ability in decreasing the amount of resources consumed by control overhead flows while in-

creasing the network’s e�ciency through increased observed throughput values.

Using the aforementioned steganographic technology, a novel covert channel-based proto-

col translator for multimedia streams is proposed in Chapter 4. The solution is designed to

reduce packet headers on a packet-by-packet basis and as a result, increasing the e�ciency of
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multimedia streams. The protocol translator embeds important TCP header information within

multimedia payloads while replacing the existing TCP header with a UDP header. The trans-

lator enables nodes to maintain the properties of TCP streams at the end-nodes while using

UDP during flight for its reduced header size. The source-destination pairs are capable of con-

verting packets from HTTP/TCP to HTTP/UDP and vice-versa during a multimedia exchange

session. Furthermore, in the specific scenario of Device-to-Device (D2D) communications,

a Simplified Routing (SR) scheme is designed to further reduce the size of packets. The SR

scheme replaces inflated networking layer headers with a simplified smaller sized header due to

the inherent limitation of D2D communications. A utility function is designed to evaluate the

optimal cost savings while maintaining a tolerable level of visual artifacts. The extensive simu-

lations and implementation show that the proposed methodologies will systematically decrease

the amount of overhead exchanged while increasing the overall network capacity. Furthermore,

the simulation results demonstrate that the proposed methods are capable of successfully ex-

tending existing overhead reduction methods.

Although the aforementioned signalling overhead reduction solutions provision bandwidth

by decreasing the resource consumption of non-payload data, system throughput management

is needed to enhance blockchain-based systems. As multimedia systems increase in popular-

ity, blockchains will enable secure and decentralized deployments. Due to the security require-

ments of blockchain-based systems and the lack of e�cient transaction processing solutions for

multimedia-based systems, transaction processing throughput diminishes the system through-

put prompting a decrease in QoS and QoE. In chapter 5, the use of blockchain systems in large

feeless applications, such as multimedia content management and access services, is addressed

where an e�cient mining scheme is proposed. The proposed steganographic-based solutions

can harmoniously exist with the mining schemes to ensure smooth and uninterrupted playback.

Blockchains are used in large-sized systems due to their aforementioned scalability and secu-

rity features; however, as a result, su↵er from reducing processing throughput. The reduced

throughput is an ongoing challenge that is very well addressed in blockchain-based digital cur-
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rency applications where transactions are capable of paying ledger maintainers higher fees for

faster processing times. The existing mining disciplines are therefore geared towards systems

utilizing blockchains in digital currency applications and as a result, are inappropriate for in-

dustrial applications, such as the aforementioned multimedia services. The proposed mining

scheme introduces the notion of priority in exchanged transactions where miners slice outgo-

ing blocks according to the di↵erent priority classes of transactions found in the mining pool.

As transaction age in the mining pool, an ageing process is introduced to promote transactions

waiting for a longer period of time in the mining pool as the next transaction to be selected in

the block formation process. The scheme is validated through elaborate simulations that are

conducted to demonstrate the performance of the proposed mining discipline. The simulations

focus on preventing low priority transaction starvation and subsequently used to determine the

publishing throughput of transactions from di↵erent priority classes. Furthermore, a proof-of-

concept implementation is completed where nodes are built and used to exchange transactions

of di↵erent priority classes.

6.2 Future Work

There are several topics related to the research presented that need additional investigating

and further studies. Some of the topics include:

• To reduce the e↵ects of embedding TCP headers and control messages, recovery bits

should be exchanged or a codebook should be used to reduce visual artifacts. An al-

ternative to recovery bit exchange and special codebooks would be using header field

values that are currently unassigned or undefined to carry the recovery bits. Finally, the

values in header fields can be changed to odd or even as necessary to signal an additional

layer of recovery bits.

• In live multimedia streams, such as broadcasting a live soccer match, requires real-time

production prior to user delivery. The proposed steganographic-based solutions can be
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extended to service live production networks to increase the network’s production win-

dow time. Reducing signalling overhead exchanged as well as average packet sizes in-

creases the e�ciency of live production networks through decreasing the ratio of over-

head to payload sent.

• Blockchains are inherently scalable and decentralized and therefore are capable of ex-

tending the proposed steganographic methods. Using blockchains, the visual artifacts

induced by the proposed embedding process can be decreased through identifying the

a↵ected parts. Recovery bits are then exchanged between ledger maintainers and re-

questing nodes to reduce the observed artifacts. The reduction in observed artifacts will

facilitate maintaining desired QoS and QoE for a large number of service consumers.
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